Sample records for battery charge controller

  1. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOEpatents

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  2. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOEpatents

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  3. Electrochemically controlled charging circuit for storage batteries

    DOEpatents

    Onstott, E.I.

    1980-06-24

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  4. Method and apparatus for smart battery charging including a plurality of controllers each monitoring input variables

    DOEpatents

    Hammerstrom, Donald J.

    2013-10-15

    A method for managing the charging and discharging of batteries wherein at least one battery is connected to a battery charger, the battery charger is connected to a power supply. A plurality of controllers in communication with one and another are provided, each of the controllers monitoring a subset of input variables. A set of charging constraints may then generated for each controller as a function of the subset of input variables. A set of objectives for each controller may also be generated. A preferred charge rate for each controller is generated as a function of either the set of objectives, the charging constraints, or both, using an algorithm that accounts for each of the preferred charge rates for each of the controllers and/or that does not violate any of the charging constraints. A current flow between the battery and the battery charger is then provided at the actual charge rate.

  5. 30 CFR 56.4502 - Battery-charging stations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Battery-charging stations. 56.4502 Section 56... Control Installation/construction/maintenance § 56.4502 Battery-charging stations. (a) Battery-charging... prohibited at the battery charging station during battery charging. (c) Readily visible signs prohibiting...

  6. 30 CFR 56.4502 - Battery-charging stations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Battery-charging stations. 56.4502 Section 56... Control Installation/construction/maintenance § 56.4502 Battery-charging stations. (a) Battery-charging... prohibited at the battery charging station during battery charging. (c) Readily visible signs prohibiting...

  7. 30 CFR 56.4502 - Battery-charging stations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Battery-charging stations. 56.4502 Section 56... Control Installation/construction/maintenance § 56.4502 Battery-charging stations. (a) Battery-charging... prohibited at the battery charging station during battery charging. (c) Readily visible signs prohibiting...

  8. 30 CFR 56.4502 - Battery-charging stations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Battery-charging stations. 56.4502 Section 56... Control Installation/construction/maintenance § 56.4502 Battery-charging stations. (a) Battery-charging... prohibited at the battery charging station during battery charging. (c) Readily visible signs prohibiting...

  9. 30 CFR 56.4502 - Battery-charging stations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Battery-charging stations. 56.4502 Section 56... Control Installation/construction/maintenance § 56.4502 Battery-charging stations. (a) Battery-charging... prohibited at the battery charging station during battery charging. (c) Readily visible signs prohibiting...

  10. Development of a Microcontroller-based Battery Charge Controller for an Off-grid Photovoltaic System

    NASA Astrophysics Data System (ADS)

    Rina, Z. S.; Amin, N. A. M.; Hashim, M. S. M.; Majid, M. S. A.; Rojan, M. A.; Zaman, I.

    2017-08-01

    A development of a microcontroller-based charge controller for a 12V battery has been explained in this paper. The system is designed based on a novel algorithm to couple existing solar photovoltaic (PV) charging and main grid supply charging power source. One of the main purposes of the hybrid charge controller is to supply a continuous charging power source to the battery. Furthermore, the hybrid charge controller was developed to shorten the battery charging time taken. The algorithm is programmed in an Arduino Uno R3 microcontroller that monitors the battery voltage and generates appropriate commands for the charging power source selection. The solar energy is utilized whenever the solar irradiation is high. The main grid supply will be only consumed whenever the solar irradiation is low. This system ensures continuous charging power supply and faster charging of the battery.

  11. Nondissipative optimum charge regulator

    NASA Technical Reports Server (NTRS)

    Rosen, R.; Vitebsky, J. N.

    1970-01-01

    Optimum charge regulator provides constant level charge/discharge control of storage batteries. Basic power transfer and control is performed by solar panel coupled to battery through power switching circuit. Optimum controller senses battery current and modifies duty cycle of switching circuit to maximize current available to battery.

  12. 30 CFR 57.4502 - Battery-charging stations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Battery-charging stations. 57.4502 Section 57... and Control Installation/construction/maintenance § 57.4502 Battery-charging stations. (a) Battery... shall be prohibited at the battery charging station during battery charging. (c) Readily visible signs...

  13. 30 CFR 57.4502 - Battery-charging stations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Battery-charging stations. 57.4502 Section 57... and Control Installation/construction/maintenance § 57.4502 Battery-charging stations. (a) Battery... shall be prohibited at the battery charging station during battery charging. (c) Readily visible signs...

  14. 30 CFR 57.4502 - Battery-charging stations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Battery-charging stations. 57.4502 Section 57... and Control Installation/construction/maintenance § 57.4502 Battery-charging stations. (a) Battery... shall be prohibited at the battery charging station during battery charging. (c) Readily visible signs...

  15. 30 CFR 57.4502 - Battery-charging stations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Battery-charging stations. 57.4502 Section 57... and Control Installation/construction/maintenance § 57.4502 Battery-charging stations. (a) Battery... shall be prohibited at the battery charging station during battery charging. (c) Readily visible signs...

  16. 30 CFR 57.4502 - Battery-charging stations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Battery-charging stations. 57.4502 Section 57... and Control Installation/construction/maintenance § 57.4502 Battery-charging stations. (a) Battery... shall be prohibited at the battery charging station during battery charging. (c) Readily visible signs...

  17. Battery Charge Equalizer with Transformer Array

    NASA Technical Reports Server (NTRS)

    Davies, Francis

    2013-01-01

    High-power batteries generally consist of a series connection of many cells or cell banks. In order to maintain high performance over battery life, it is desirable to keep the state of charge of all the cell banks equal. A method provides individual charging for battery cells in a large, high-voltage battery array with a minimum number of transformers while maintaining reasonable efficiency. This is designed to augment a simple highcurrent charger that supplies the main charge energy. The innovation will form part of a larger battery charge system. It consists of a transformer array connected to the battery array through rectification and filtering circuits. The transformer array is connected to a drive circuit and a timing and control circuit that allow individual battery cells or cell banks to be charged. The timing circuit and control circuit connect to a charge controller that uses battery instrumentation to determine which battery bank to charge. It is important to note that the innovation can charge an individual cell bank at the same time that the main battery charger is charging the high-voltage battery. The fact that the battery cell banks are at a non-zero voltage, and that they are all at similar voltages, can be used to allow charging of individual cell banks. A set of transformers can be connected with secondary windings in series to make weighted sums of the voltages on the primaries.

  18. Battery charge regulator is coulometer controlled

    NASA Technical Reports Server (NTRS)

    Paulkovich, J.

    1967-01-01

    Coulometer controlled battery charge regulator controls nickel/cadmium type primary cells used in space applications. The use of the coulometer as an ampere hour measuring device permits all available current to go to the battery until full charge state is reached, at which time the charge rate is automatically reduced.

  19. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOEpatents

    Bockelmann, Thomas R [Battle Creek, MI; Beaty, Kevin D [Kalamazoo, MI; Zou, Zhanijang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-07-21

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  20. Optimal Battery Charging for Damage Mitigation

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Lorenzo, Carl F.

    2003-01-01

    Our control philosophy is to charge the NiH2 cell in such a way that the damage incurred during the charging period is minimized, thus extending its cycle life. This requires nonlinear dynamic model of NiH2 cell and a damage rate model. We must do this first. This control philosophy is generally considered damage mitigating control or life-extending control. This presentation covers how NiH2 cells function, electrode behavior, an essentialized model, damage mechanisms for NiH2 batteries, battery continuum damage modeling, and battery life models. The presentation includes graphs and a chart illustrating how charging a NiH2 battery with different voltages and currents affects damages the battery and affects its life. The presentation concludes with diagrams of control system architectures for tracking battery recharging.

  1. Rechargeable Li/Li(x)CoO(2) 100 Ah/600 Ah Battery With Integral Smart Charge Control

    DTIC Science & Technology

    1999-03-01

    Rechargeable Li/LixCo02100 Ah/600 Ah Battery with Integral Smart Charge Control By Charles J. Kelly ^ (Alliant Techsystems, Inc., Alliant Power...Rechargeable Li/LixCo02100 Ah/600 Ah Battery with Integral Smart Charge Control By Charles J. Kelly (Alliant Techsystems, Inc., Alliant Power Sources...AND SUBTITLE Rechargeable Li/LixCo02100 Ah/600 Ah Battery with Integral Smart Charge Control 6 AUTHOR(S) C. J. Kelly (Alliant Power Sources Co

  2. Battery Research & Development Need for Military Vehicle Application

    DTIC Science & Technology

    2012-06-19

    The charge control for lithium ion battery chemistries is different from those of flooded and sealed lead acid batteries. • The discharge control...for lithium ion battery chemistries is different from those of flooded and sealed lead acid batteries. • Battery charging voltage changes with the

  3. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    DOEpatents

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2003-06-24

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  4. Systems and methods for initializing a charging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perisic, Milun; Ransonm, Ray M.; Kojouke, Lateef A.

    2017-09-26

    Systems and methods are provided for charging a battery. The system, for example, includes, but is not limited to a first interface configured to receive a voltage from an AC voltage source, a matrix conversion module comprising a plurality of switches electrically connected to the first interface and configured to provide a charging voltage to the battery, and a controller communicatively connected to the matrix conversion module, wherein the controller is configured to: determine a voltage of the battery, determine an angle of the AC voltage source to initiate charging of the battery based upon the voltage of the battery,more » and control the plurality of switches to provide the charging voltage to the battery between the determined angle of the AC voltage source and a subsequent zero-crossing of the AC voltage source.« less

  5. Fuzzy control of battery chargers

    NASA Astrophysics Data System (ADS)

    Aldridge, Jack

    1996-03-01

    The increasing reliance on battery power for portable terrestrial purposes, such as portable tools, portable computers, and telecommunications, provides motivation to optimize the battery charging process with respect to speed of charging and charging cycle lifetime of the battery. Fuzzy control, implemented on a small microcomputer, optimizes charging in the presence of nonlinear effects and large uncertainty in the voltage vs. charge state characteristics for the battery. Use of a small microcontroller makes possible a small, capable, and affordable package for the charger. Microcontroller-based chargers provide improved performance by adjusting both charging voltage and charging current during the entire charging process depending on a current estimate of the state of charge of the battery. The estimate is derived from the zero-current voltage of the battery and the temperature and their rates of change. All of these quantities are uncertain due to the variation in condition between the individual cells in a battery, the rapid and nonlinear dependence of the fundamental electrochemistry on the internal temperature, and the placement of a single temperature sensor within the battery package. While monitoring the individual cell voltages and temperatures would be desirable, cost and complexity considerations preclude the practice. NASA has developed considerable technology in batteries for supplying significant amounts of power for spacecraft and in fuzzy control techniques for the space applications. In this paper, we describe how we are using both technologies to build an optimal charger prototype as a precursor to a commercial version.

  6. Characterization of 109 Ah Ni-MH batteries charging with hydrogen sensing termination

    NASA Astrophysics Data System (ADS)

    Viera, J. C.; González, M.; Liaw, B. Y.; Ferrero, F. J.; Álvarez, J. C.; Campo, J. C.; Blanco, C.

    The use of Ni-MH batteries for traction applications in electric and hybrid vehicles is increasingly attractive and reliable. Besides the energy and power handling, and the cost issues, high tolerance to abuse is an important aspect of the Ni-MH technology. Thus, the ability to reduce charging time and to absorb regenerative breaking is highly desirable in these traction applications. This requires an accurate control of the charge termination. To facilitate an easy and reliable charging control and to avoid battery premature failure or ageing it is very important to know the behavior of the battery under a range of charging conditions. In this paper, we described the performance of high capacity commercial Ni-MH traction batteries (12 V, 109 Ah modules) when subjected to different charging rates (0.1, 0.2, 0.5, and 1.0 C) from 100% depth of discharge (DOD). Changes in battery voltage and temperature during charging were monitored, with a particular emphasis on the detection of the presence of hydrogen near the battery. This unique hydrogen detection outside the battery was used as the method for the end-of-charge termination to prevent overcharging of the battery. Relevant parameters, such as charge acceptance, energy efficiency, and charging time, were analyzed for comparison.

  7. On the use of an Arduino-based controller to control the charging process of a wind turbine

    NASA Astrophysics Data System (ADS)

    Mahmuddin, Faisal; Yusran, Ahmad Muhtam; Klara, Syerly

    2017-02-01

    In order to avoid an excessive charging voltage which can damage power storage when converting wind energy using a turbine, it is necessary to control the charging voltage of the turbine generator. In the present study, a charging controller which uses an Arduino microcontroller, is designed. 3 (three) indicator lights are installed to indicate the battery charging process, power diversion to dummy load and battery power level. The performance of the designed controller is evaluated by simulating 3 cases. In this simulation, a battery with maximum voltage of 12.4 V is used. Case 1 is performed with input voltage equals the one set in Arduino which is 10 V. In this case, the battery is charged up to 10.8 V. In case 2, the input voltage is 13 V while the maximum voltage set in Arduino is also 13 V. In this case, the battery is charged up to maximum voltage of the battery. Moreover, the dummy load indicator is ON and charging indicator is OFF after the maximum charging voltage is reached because the electricity is flowed to the dummy load. In the final case, the input voltage is set to be 16 V while the maximum voltage set in Arduino is 13 V. In this case, the charging indicator is OFF and dummy load indicator is ON which means that the Arduino has successfully switched the power to be flowed to dummy load. From the 3 (three) cases, it can be concluded that the designed controller works perfectly to control the charging process of the wind turbine. Moreover, the charging time needed in each case can also be determined.

  8. Solar bus regulator and battery charger for IMP's H, I, and J

    NASA Technical Reports Server (NTRS)

    Paulkovich, J.

    1972-01-01

    Interplanetary Monitoring Probe (IMP) spacecrafts H, I, and J utilize a direct energy transfer (DET) type of power system operating from a solar array source. A shunt type of regulator prevents the bus voltage from exceeding a preset voltage level. The power system utilizes a single differential amplifier with dual outputs to control the battery charge/shunt regulator and the discharge regulator. A two-voltage level, current limited, series charger and a current sensor control battery state of charge of the silver-cadmium battery pack. Premature termination of the battery charge is prevented by a power available gate that also initiates charge current to the battery upon availability of excess power.

  9. Sliding mode control based on Kalman filter dynamic estimation of battery SOC

    NASA Astrophysics Data System (ADS)

    He, Dongmeia; Hou, Enguang; Qiao, Xin; Liu, Guangmin

    2018-06-01

    Lithium-ion battery charge state of the accurate and rapid estimation of battery management system is the key technology. In this paper, an exponentially reaching law sliding-mode variable structure control algorithm based on Kalman filter is proposed to estimate the state of charge of Li-ion battery for the dynamic nonlinear system. The RC equivalent circuit model is established, and the model equation with specific structure is given. The proposed Kalman filter sliding mode structure is used to estimate the state of charge of the battery in the battery model, and the jitter effect can be avoided and the estimation performance can be improved. The simulation results show that the proposed Kalman filter sliding mode control has good accuracy in estimating the state of charge of the battery compared with the ordinary Kalman filter, and the error range is within 3%.

  10. Alternator control for battery charging

    DOEpatents

    Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.

    2015-07-14

    In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.

  11. An Balancing Strategy Based on SOC for Lithium-Ion Battery Pack

    NASA Astrophysics Data System (ADS)

    Li, Peng

    2017-09-01

    According to the two kinds of working state of a battery pack, we designed a balancing strategy based on SOC, and expounds the working principle of balanced control strategy: the battery is charging, the battery charged state of the highest monomer battery is balanced discharge, strong single battery charging current decreases, while the other single cell in the same group is not affected; the battery is in a discharge or static state, single cell battery is the weakest balanced charge, while the other single cell in the same group are not affected. In this paper, we design a kind of lithium ion battery charging and discharging equalizer based on Buck chopper circuit and Boost-Buck chopper circuit. The equalizer is balanced charging and discharging experiments of series four lithium iron phosphate battery, the experimental results show that this equalizer has not only improved the degree not equilibrium between single cells, and improve the battery charge and discharge capacity.

  12. Battery charge control with temperature compensated voltage limit

    NASA Technical Reports Server (NTRS)

    Thierfelder, H. E.

    1983-01-01

    Battery charge control for orbiting spacecraft with mission durations from three to ten years, is a critical design feature that is discussed. Starting in 1974, the General Electric Space Systems Division designed, manufactured and tested battery systems for six different space programs. Three of these are geosynchronous missions, two are medium altitude missions and one is a near-earth mission. All six power subsystems contain nickel cadmium batteries which are charged using a temperature compensated voltage limit. This charging method was found to be successful in extending the life of nickel cadmium batteries in all three types of earth orbits. Test data and flight data are presented for each type of orbit.

  13. Circuit with a Switch for Charging a Battery in a Battery Capacitor Circuit

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A. (Inventor); Ashtiani, Cyrus N. (Inventor)

    2008-01-01

    A circuit for charging a battery combined with a capacitor includes a power supply adapted to be connected to the capacitor, and the battery. The circuit includes an electronic switch connected to the power supply. The electronic switch is responsive to switch between a conducting state to allow current and a non-conducting state to prevent current flow. The circuit includes a control device connected to the switch and is operable to generate a control signal to continuously switch the electronic switch between the conducting and non-conducting states to charge the battery.

  14. An omnipotent Li-ion battery charger with multimode control and polarity reversible techniques

    NASA Astrophysics Data System (ADS)

    Chen, Jiann-Jong; Ku, Yi-Tsen; Yang, Hong-Yi; Hwang, Yuh-Shyan; Yu, Cheng-Chieh

    2016-07-01

    The omnipotent Li-ion battery charger with multimode control and polarity reversible techniques is presented in this article. The proposed chip is fabricated with TSMC 0.35μm 2P4M complementary metal-oxide- semiconductor processes, and the chip area including pads is 1.5 × 1.5 mm2. The structure of the omnipotent charger combines three charging modes and polarity reversible techniques, which adapt to any Li-ion batteries. The three reversible Li-ion battery charging modes, including trickle-current charging, large-current charging and constant-voltage charging, can charge in matching polarities or opposite polarities. The proposed circuit has a maximum charging current of 300 mA and the input voltage of the proposed circuit is set to 4.5 V. The maximum efficiency of the proposed charger is about 91% and its average efficiency is 74.8%. The omnipotent charger can precisely provide the charging current to the battery.

  15. Improved Control of Charging Voltage for Li-Ion Battery

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul; Bugga, Ratnakumar

    2006-01-01

    The protocol for charging a lithium-ion battery would be modified, according to a proposal, to compensate for the internal voltage drop (charging current internal resistance of the battery). The essence of the modification is to provide for measurement of the internal voltage drop and to increase the terminal-voltage setting by the amount of the internal voltage drop. Ordinarily, a lithium-ion battery is charged at constant current until its terminal voltage attains a set value equal to the nominal full-charge potential. The set value is chosen carefully so as not to exceed the lithium-plating potential, because plated lithium in metallic form constitutes a hazard. When the battery is charged at low temperature, the internal voltage drop is considerable because the electrical conductivity of the battery electrolyte is low at low temperature. Charging the battery at high current at any temperature also gives rise to a high internal voltage drop. In some cases, the internal voltage drop can be as high as 1 volt per cell. Because the voltage available for charging is less than the terminal voltage by the amount of the internal voltage drop, the battery is not fully charged (see figure), even when the terminal voltage reaches the set value. In the modified protocol, the charging current would be periodically interrupted so that the zero-current battery-terminal voltage indicative of the state of charge could be measured. The terminal voltage would also be measured at full charging current. The difference between the full-current and zero-current voltages would equal the internal voltage drop. The set value of terminal voltage would then be increased beyond the nominal full-charge potential by the amount of the internal voltage drop. This adjustment would be performed repeatedly, in real time, so that the voltage setting would track variations in the internal voltage drop to afford full charge without risk of lithium plating. If the charging current and voltage settings were controlled by a computer, then this method of charge control could readily be implemented in software.

  16. Charging system and method for multicell storage batteries

    DOEpatents

    Cox, Jay A.

    1978-01-01

    A battery-charging system includes a first charging circuit connected in series with a plurality of battery cells for controlled current charging. A second charging circuit applies a controlled voltage across each individual cell for equalization of the cells to the fully charged condition. This controlled voltage is determined at a level above the fully charged open-circuit voltage but at a sufficiently low level to prevent corrosion of cell components by electrochemical reaction. In this second circuit for cell equalization, a transformer primary receives closely regulated, square-wave voltage which is coupled to a plurality of equal secondary coil windings. Each secondary winding is connected in parallel to each cell of a series-connected pair of cells through half-wave rectifiers and a shared, intermediate conductor.

  17. Maximum Power Point tracking charge controllers for telecom applications -- Analysis and economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wills, R.H.

    Simple charge controllers connect photovoltaic modules directly to the battery bank resulting in a significant power loss if the battery bank voltage differs greatly from the PV Maximum Power Point (MPP) voltage. Recent modeling work at AES has shown that dc-dc converter type MPP tracking charge controllers can deliver more than 30% more energy from PV modules to the battery when the PV modules are cool and the battery state of charge is low--this is typically both the worst case condition (i.e., winter) and also the design condition that determines the PV array size. Economic modeling, based on typical telecommore » system installed costs shows benefits of more than $3/Wp for MPPT over conventional charge controllers in this application--a value that greatly exceeds the additional cost of the dc-dc converter.« less

  18. Mathematical analysis and coordinated current allocation control in battery power module systems

    NASA Astrophysics Data System (ADS)

    Han, Weiji; Zhang, Liang

    2017-12-01

    As the major energy storage device and power supply source in numerous energy applications, such as solar panels, wind plants, and electric vehicles, battery systems often face the issue of charge imbalance among battery cells/modules, which can accelerate battery degradation, cause more energy loss, and even incur fire hazard. To tackle this issue, various circuit designs have been developed to enable charge equalization among battery cells/modules. Recently, the battery power module (BPM) design has emerged to be one of the promising solutions for its capability of independent control of individual battery cells/modules. In this paper, we propose a new current allocation method based on charging/discharging space (CDS) for performance control in BPM systems. Based on the proposed method, the properties of CDS-based current allocation with constant parameters are analyzed. Then, real-time external total power requirement is taken into account and an algorithm is developed for coordinated system performance control. By choosing appropriate control parameters, the desired system performance can be achieved by coordinating the module charge balance and total power efficiency. Besides, the proposed algorithm has complete analytical solutions, and thus is very computationally efficient. Finally, the efficacy of the proposed algorithm is demonstrated using simulations.

  19. Design of Solar Street Lamp Control System Based on MPPT

    NASA Astrophysics Data System (ADS)

    Cui, Fengying

    This paper proposes a new solar street lamp control system which is composed of photovoltaic cell, controller, battery and load. In this system controller as the key part applies the microchip to achieve many functions. According to the nonlinear output characteristics of solar cell and the influence of environment, it uses the perturbation and observation (P&O) method to realize the maximum power point tracking (MPPT) and promotes the efficiency. In order to prolong the battery life the pulse width modulation (PWM) charge mode is selected to control the battery capacity and provent the battery from the state of over-charge and over-discharge. Meanwhile the function of temperature compensation, charge and discharge protection are set to improve the running safety and stability.

  20. Combination field chopper and battery charger

    DOEpatents

    Steigerwald, R.L.; Crouch, K.E.; Wilson, J.W.A.

    1979-08-13

    A power transistor used in a chopper circuit to control field excitation of a vehicle motor when in a power mode is also used to control charging current from an a-c to d-c rectifier to the vehicle battery when in a battery charging mode. Two isolating diodes and a small high frequency filter inductor are the only elements required in the chopper circuit to reconfigure the circuit for power or charging modes of operation.

  1. Combination field chopper and battery charger

    DOEpatents

    Steigerwald, Robert L.; Crouch, Keith E.; Wilson, James W. A.

    1981-01-01

    A power transistor used in a chopper circuit to control field excitation of a vehicle motor when in a power mode is also used to control charging current from an a-c to d-c rectifier to the vehicle battery when in a battery charging mode. Two isolating diodes and a small high frequency filter inductor are the only elements required in the chopper circuit to reconfigure the circuit for power or charging modes of operation.

  2. Ni-MH battery charger with a compensator for electric vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, H.W.; Han, C.S.; Kim, C.S.

    1996-09-01

    The development of a high-performance battery and safe and reliable charging methods are two important factors for commercialization of the Electric Vehicles (EV). Hyundai and Ovonic together spent many years in the research on optimum charging method for Ni-MH battery. This paper presents in detail the results of intensive experimental analysis, performed by Hyundai in collaboration with Ovonic. An on-board Ni-MH battery charger and its controller which are designed to use as a standard home electricity supply are described. In addition, a 3 step constant current recharger with the temperature and the battery aging compensator is proposed. This has amore » multi-loop algorithm function to detect its 80% and fully charged state, and carry out equalization charging control. The algorithm is focused on safety, reliability, efficiency, charging speed and thermal management (maintaining uniform temperatures within a battery pack). It is also designed to minimize the necessity for user input.« less

  3. Development of a solar-powered electric bicycle in bike sharing transportation system

    NASA Astrophysics Data System (ADS)

    Adhisuwignjo, S.; Siradjuddin, I.; Rifa'i, M.; Putri, R. I.

    2017-06-01

    The increasing mobility has directly led to deteriorating traffic conditions, extra fuel consumption, increasing automobile exhaust emissions, air pollution and lowering quality of life. Apart from being clean, cheap and equitable mode of transport for short-distance journeys, cycling can potentially offer solutions to the problem of urban mobility. Many cities have tried promoting cycling particularly through the implementation of bike-sharing. Apparently the fourth generation bikesharing system has been promoted utilizing electric bicycles which considered as a clean technology implementation. Utilization of solar power is probably the development keys in the fourth generation bikesharing system and will become the standard in bikesharing system in the future. Electric bikes use batteries as a source of energy, thus they require a battery charger system which powered from the solar cells energy. This research aims to design and implement electric bicycle battery charging system with solar energy sources using fuzzy logic algorithm. It is necessary to develop an electric bicycle battery charging system with solar energy sources using fuzzy logic algorithm. The study was conducted by means of experimental method which includes the design, manufacture and testing controller systems. The designed fuzzy algorithm have been planted in EEPROM microcontroller ATmega8535. The charging current was set at 1.2 Amperes and the full charged battery voltage was observed to be 40 Volts. The results showed a fuzzy logic controller was able to maintain the charging current of 1.2 Ampere with an error rate of less than 5% around the set point. The process of charging electric bike lead acid batteries from empty to fully charged was 5 hours. In conclusion, the development of solar-powered electric bicycle controlled using fuzzy logic controller can keep the battery charging current in solar-powered electric bicycle to remain stable. This shows that the fuzzy algorithm can be used as a controller in the process of charging for a solar electric bicycle.

  4. Microprocessor control of photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Millner, A. R.; Kaufman, D. L.

    1984-01-01

    The present low power CMOS microprocessor controller for photovoltaic power systems possesses three programs, which are respectively intended for (1) conventional battery-charging systems with state-of-charge estimation and sequential shedding of subarrays and loads, (2) maximum power-controlled battery-charging systems, and (3) variable speed dc motor drives. Attention is presently given to the development of this terrestrial equipment for spacecraft use.

  5. Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can lastmore » up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.« less

  6. Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion

    NASA Astrophysics Data System (ADS)

    Kelly, Nelson A.; Gibson, Thomas L.

    There are an increasing number of vehicle choices available that utilize batteries and electric motors to reduce tailpipe emissions and increase fuel economy. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe environmental impact, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. In this report we will demonstrate the solar-powered charging of the high-voltage nickel-metal hydride (NiMH) battery used in the GM 2-mode hybrid system. In previous studies we have used low-voltage solar modules to produce hydrogen via the electrolysis of water and to directly charge lithium-ion battery modules. Our strategy in the present work was to boost low-voltage PV voltage to over 300 V using DC-DC converters in order to charge the high-voltage NiMH battery, and to regulate the battery charging using software to program the electronic control unit supplied with the battery pack. A protocol for high-voltage battery charging was developed, and the solar to battery charging efficiency was measured under a variety of conditions. We believe this is the first time such high-voltage batteries have been charged using solar energy in order to prove the concept of efficient, solar-powered charging for battery-electric vehicles.

  7. Development of satellite borne nickel hydrogen battery experiment equipment for ETS-6

    NASA Astrophysics Data System (ADS)

    Kuwashima, Saburou; Kamimori, Norimitsu; Kusawake, Hiroaki; Takahashi, Kazumichi

    1992-08-01

    An overview of the support rendered for the Engineering Test Satellite-6 (ETS-6) system integration test and protoflight test by the ETS-6 borne experimental nickel hydrogen battery development part is presented. Articles in the ETS-6 specifications and procedures related to the experimental battery were prepared or supported in preparation because of the battery's special characteristics such as its automatic control dependency on the bus voltage, thermal sensitivity equivalent to that of other batteries and so forth. System tests were witnessed and the acquired data were evaluated. Charging characteristics from 0 V were verified at trickle charging rate, using a flight scale model of Nickel Hydrogen (Ni-H2) Battery (NHB) after long term storage and an engineering model of the Ni-H2 Battery Controller (NHC). Requests for approval were submitted to the related self governing bodies in accordance with the Explosives Control Law when NHB's were charged and discharged. Installation and calibration data acquisition of the inner pressure sensors for the Ni-H2 battery cells for the flight model NHB were conducted and the battery assembly was started.

  8. Real time charge efficiency monitoring for nickel electrodes in NICD and NIH2 cells

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. H.

    1987-09-01

    The charge efficiency of nickel-cadmium and nickel-hydrogen battery cells is critical in spacecraft applications for determining the amount of time required for a battery to reach a full state of charge. As the nickel-cadmium or nickel-hydrogen batteries approach about 90 percent state of charge, the charge efficiency begins to drop towards zero, making estimation of the total amount of stored charge uncertain. Charge efficiency estimates are typically based on prior history of available capacity following standardized conditions for charge and discharge. These methods work well as long as performance does not change significantly. A relatively simple method for determining charge efficiencies during real time operation for these battery cells would be a tremendous advantage. Such a method was explored and appears to be quite well suited for application to nickel-cadmium and nickel-hydrogen battery cells. The charge efficiency is monitored in real time, using only voltage measurements as inputs. With further evaluation such a method may provide a means to better manage charge control of batteries, particularly in systems where a high degree of autonomy or system intelligence is required.

  9. Real time charge efficiency monitoring for nickel electrodes in NICD and NIH2 cells

    NASA Technical Reports Server (NTRS)

    Zimmerman, A. H.

    1987-01-01

    The charge efficiency of nickel-cadmium and nickel-hydrogen battery cells is critical in spacecraft applications for determining the amount of time required for a battery to reach a full state of charge. As the nickel-cadmium or nickel-hydrogen batteries approach about 90 percent state of charge, the charge efficiency begins to drop towards zero, making estimation of the total amount of stored charge uncertain. Charge efficiency estimates are typically based on prior history of available capacity following standardized conditions for charge and discharge. These methods work well as long as performance does not change significantly. A relatively simple method for determining charge efficiencies during real time operation for these battery cells would be a tremendous advantage. Such a method was explored and appears to be quite well suited for application to nickel-cadmium and nickel-hydrogen battery cells. The charge efficiency is monitored in real time, using only voltage measurements as inputs. With further evaluation such a method may provide a means to better manage charge control of batteries, particularly in systems where a high degree of autonomy or system intelligence is required.

  10. Battery charging and discharging research based on the interactive technology of smart grid and electric vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Mingyang

    2018-06-01

    To further study the bidirectional flow problem of V2G (Vehicle to Grid) charge and discharge motor, the mathematical model of AC/DC converter and bi-directional DC/DC converter was established. Then, lithium battery was chosen as the battery of electric vehicle and its mathematical model was established. In order to improve the service life of lithium battery, bidirectional DC/DC converter adopted constant current and constant voltage control strategy. In the initial stage of charging, constant current charging was adopted with current single closed loop control. After reaching a certain value, voltage was switched to constant voltage charging controlled by voltage and current. Subsequently, the V2G system simulation model was built in MATLAB/Simulink. The simulation results verified the correctness of the control strategy and showed that when charging, constant current and constant voltage charging was achieved, the grid side voltage and current were in the same phase, and the power factor was about 1. When discharging, the constant current discharge was applied, and the grid voltage and current phase difference was r. To sum up, the simulation results are correct and helpful.

  11. An electric vehicle propulsion system's impact on battery performance: An overview

    NASA Technical Reports Server (NTRS)

    Bozek, J. M.; Smithrick, J. J.; Cataldo, R. C.; Ewashinka, J. G.

    1980-01-01

    The performance of two types of batteries, lead-acid and nickel-zinc, was measured as a function of the charging and discharging demands anticipated from electric vehicle propulsion systems. The benefits of rapid high current charging were mixed: although it allowed quick charges, the energy efficiency was reduced. For low power (overnight) charging the current wave shapes delivered by the charger to the battery tended to have no effect on the battery cycle life. The use of chopper speed controllers with series traction motors resulted in a significant reduction in the energy available from a battery whenever the motor operates at part load. The demand placed on a battery by an electric vehicle propulsion system containing electrical regenerative braking confirmed significant improvment in short term performance of the battery.

  12. Model Based Optimal Control, Estimation, and Validation of Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Perez, Hector Eduardo

    This dissertation focuses on developing and experimentally validating model based control techniques to enhance the operation of lithium ion batteries, safely. An overview of the contributions to address the challenges that arise are provided below. Chapter 1: This chapter provides an introduction to battery fundamentals, models, and control and estimation techniques. Additionally, it provides motivation for the contributions of this dissertation. Chapter 2: This chapter examines reference governor (RG) methods for satisfying state constraints in Li-ion batteries. Mathematically, these constraints are formulated from a first principles electrochemical model. Consequently, the constraints explicitly model specific degradation mechanisms, such as lithium plating, lithium depletion, and overheating. This contrasts with the present paradigm of limiting measured voltage, current, and/or temperature. The critical challenges, however, are that (i) the electrochemical states evolve according to a system of nonlinear partial differential equations, and (ii) the states are not physically measurable. Assuming available state and parameter estimates, this chapter develops RGs for electrochemical battery models. The results demonstrate how electrochemical model state information can be utilized to ensure safe operation, while simultaneously enhancing energy capacity, power, and charge speeds in Li-ion batteries. Chapter 3: Complex multi-partial differential equation (PDE) electrochemical battery models are characterized by parameters that are often difficult to measure or identify. This parametric uncertainty influences the state estimates of electrochemical model-based observers for applications such as state-of-charge (SOC) estimation. This chapter develops two sensitivity-based interval observers that map bounded parameter uncertainty to state estimation intervals, within the context of electrochemical PDE models and SOC estimation. Theoretically, this chapter extends the notion of interval observers to PDE models using a sensitivity-based approach. Practically, this chapter quantifies the sensitivity of battery state estimates to parameter variations, enabling robust battery management schemes. The effectiveness of the proposed sensitivity-based interval observers is verified via a numerical study for the range of uncertain parameters. Chapter 4: This chapter seeks to derive insight on battery charging control using electrochemistry models. Directly using full order complex multi-partial differential equation (PDE) electrochemical battery models is difficult and sometimes impossible to implement. This chapter develops an approach for obtaining optimal charge control schemes, while ensuring safety through constraint satisfaction. An optimal charge control problem is mathematically formulated via a coupled reduced order electrochemical-thermal model which conserves key electrochemical and thermal state information. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting nonlinear multi-state optimal control problem. Minimum time charge protocols are analyzed in detail subject to solid and electrolyte phase concentration constraints, as well as temperature constraints. The optimization scheme is examined using different input current bounds, and an insight on battery design for fast charging is provided. Experimental results are provided to compare the tradeoffs between an electrochemical-thermal model based optimal charge protocol and a traditional charge protocol. Chapter 5: Fast and safe charging protocols are crucial for enhancing the practicality of batteries, especially for mobile applications such as smartphones and electric vehicles. This chapter proposes an innovative approach to devising optimally health-conscious fast-safe charge protocols. A multi-objective optimal control problem is mathematically formulated via a coupled electro-thermal-aging battery model, where electrical and aging sub-models depend upon the core temperature captured by a two-state thermal sub-model. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting highly nonlinear six-state optimal control problem. Charge time and health degradation are therefore optimally traded off, subject to both electrical and thermal constraints. Minimum-time, minimum-aging, and balanced charge scenarios are examined in detail. Sensitivities to the upper voltage bound, ambient temperature, and cooling convection resistance are investigated as well. Experimental results are provided to compare the tradeoffs between a balanced and traditional charge protocol. Chapter 6: This chapter provides concluding remarks on the findings of this dissertation and a discussion of future work.

  13. Charge-Control Unit for Testing Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Mazo, Michelle A.; Button, Robert M.

    2008-01-01

    A charge-control unit was developed as part of a program to validate Li-ion cells packaged together in batteries for aerospace use. The lithium-ion cell charge-control unit will be useful to anyone who performs testing of battery cells for aerospace and non-aerospace uses and to anyone who manufacturers battery test equipment. This technology reduces the quantity of costly power supplies and independent channels that are needed for test programs in which multiple cells are tested. Battery test equipment manufacturers can integrate the technology into their battery test equipment as a method to manage charging of multiple cells in series. The unit manages a complex scheme that is required for charging Li-ion cells electrically connected in series. The unit makes it possible to evaluate cells together as a pack using a single primary test channel, while also making it possible to charge each cell individually. Hence, inherent cell-to-cell variations in a series string of cells can be addressed, and yet the cost of testing is reduced substantially below the cost of testing each cell as a separate entity. The unit consists of electronic circuits and thermal-management devices housed in a common package. It also includes isolated annunciators to signal when the cells are being actively bypassed. These annunciators can be used by external charge managers or can be connected in series to signal that all cells have reached maximum charge. The charge-control circuitry for each cell amounts to regulator circuitry and is powered by that cell, eliminating the need for an external power source or controller. A 110-VAC source of electricity is required to power the thermal-management portion of the unit. A small direct-current source can be used to supply power for an annunciator signal, if desired.

  14. Determination of the state-of-charge in leadacid batteries by means of a reference cell

    NASA Astrophysics Data System (ADS)

    Armenta, C.

    A knowledge of the state-of-charge of any battery is an essential requirement for system energy management and for battery life extension. In photovoltaic power plants and stand-alone photovoltaic installations, a knowledge of the state-of-charge helps one to predict remaining energy, to determine time remaining before battery turndown, and to avoid failures during operation. A reliable method of predicting the state-of-charge will allow reduced installation costs because less reserve capacity is needed to guarantee a reliable energy supply. We propose an on-line method based on simple electrical measurements combined with a new electrolyte agitation technique which avoids systematic control of the battery state-of-charge. The method is very accurate and reduces the standard error in the state-of-charge prediction.

  15. PSO Based PI Controller Design for a Solar Charger System

    PubMed Central

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs). PMID:23766713

  16. PSO based PI controller design for a solar charger system.

    PubMed

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs).

  17. Modular Battery Charge Controller

    NASA Technical Reports Server (NTRS)

    Button, Robert; Gonzalez, Marcelo

    2009-01-01

    A new approach to masterless, distributed, digital-charge control for batteries requiring charge control has been developed and implemented. This approach is required in battery chemistries that need cell-level charge control for safety and is characterized by the use of one controller per cell, resulting in redundant sensors for critical components, such as voltage, temperature, and current. The charge controllers in a given battery interact in a masterless fashion for the purpose of cell balancing, charge control, and state-of-charge estimation. This makes the battery system invariably fault-tolerant. The solution to the single-fault failure, due to the use of a single charge controller (CC), was solved by implementing one CC per cell and linking them via an isolated communication bus [e.g., controller area network (CAN)] in a masterless fashion so that the failure of one or more CCs will not impact the remaining functional CCs. Each micro-controller-based CC digitizes the cell voltage (V(sub cell)), two cell temperatures, and the voltage across the switch (V); the latter variable is used in conjunction with V(sub cell) to estimate the bypass current for a given bypass resistor. Furthermore, CC1 digitizes the battery current (I1) and battery voltage (V(sub batt) and CC5 digitizes a second battery current (I2). As a result, redundant readings are taken for temperature, battery current, and battery voltage through the summation of the individual cell voltages given that each CC knows the voltage of the other cells. For the purpose of cell balancing, each CC periodically and independently transmits its cell voltage and stores the received cell voltage of the other cells in an array. The position in the array depends on the identifier (ID) of the transmitting CC. After eight cell voltage receptions, the array is checked to see if one or more cells did not transmit. If one or more transmissions are missing, the missing cell(s) is (are) eliminated from cell-balancing calculations. The cell-balancing algorithm is based on the error between the cell s voltage and the other cells and is categorized into four zones of operation. The algorithm is executed every second and, if cell balancing is activated, the error variable is set to a negative low value. The largest error between the cell and the other cells is found and the zone of operation determined. If the error is zero or negative, then the cell is at the lowest voltage and no balancing action is needed. If the error is less than a predetermined negative value, a Cell Bad Flag is set. If the error is positive, then cell balancing is needed, but a hysteretic zone is added to prevent the bypass circuit from triggering repeatedly near zero error. This approach keeps the cells within a predetermined voltage range.

  18. Modeling and simulation performance of photovoltaic system integration battery and supercapacitor paralellization of MPPT prototipe for solar vehicle

    NASA Astrophysics Data System (ADS)

    Ajiatmo, Dwi; Robandi, Imam

    2017-03-01

    This paper proposes a control scheme photovoltaic, battery and super capacitor connected in parallel for use in a solar vehicle. Based on the features of battery charging, the control scheme consists of three modes, namely, mode dynamic irradian, constant load mode and constant voltage charging mode. The shift of the three modes can be realized by controlling the duty cycle of the mosffet Boost converter system. Meanwhile, the high voltage which is more suitable for the application can be obtained. Compared with normal charging method with parallel connected current limiting detention and charging method with dynamic irradian mode, constant load mode and constant voltage charging mode, the control scheme is proposed to shorten the charging time and increase the use of power generated from the PV array. From the simulation results and analysis conducted to determine the performance of the system in state transient and steady-state by using simulation software Matlab / Simulink. Response simulation results demonstrate the suitability of the proposed concept.

  19. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    NASA Astrophysics Data System (ADS)

    Xavier, Marcelo A.; Trimboli, M. Scott

    2015-07-01

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggest significant performance improvements might be achieved by extending the result to electrochemical models.

  20. Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, R.L.; Turpin, J.F.; Corey, G.P.

    1996-12-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PVmore » market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.« less

  1. Geosynchronous Performance of a Lithium-titanium Disulfide Battery

    NASA Technical Reports Server (NTRS)

    Otzinger, B.

    1985-01-01

    An ambient temperature rechargeable Lithium-Titanium disulfide (Li-TiS2) five cell battery has completed the first orbital year of accelerated synchronous orbit testing. A novel charge/discharge, state of charge (SOC) control scheme is utilized, together with taper current charge backup to overcome deleterious effects associated with high end of charge and low end of discharge voltages. It is indicated that 10 orbital years of simulated synchronous operation may be achieved. Preliminary findings associated with cell matching and battery performance are identified.

  2. Change control microcomputer device for vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morishita, M.; Kouge, S.

    1986-08-19

    A charge control microcomputer device for a vehicle is described which consists of: a clutch device for transmitting the rotary output of an engine; a charging generator driven by the clutch device; a battery charged by an output of the charging generator; a voltage regulator for controlling an output voltage of the charging generator to a predetermined value; an engine controlling microcomputer for receiving engine data, to control the engine; and a charge control microcomputer for processing the engine data from the engine controlling microcomputer and charge system data including terminal voltage data from the battery and generated voltage datamore » from the charging generator, to determine a reference voltage for the voltage regulator in accordance with the engine data and the charge system data, and for processing an engine rotation signal to generate and apply an operating instruction to the clutch device in accordance with the engine data and the charge system data, such that the charging generator is driven within a predetermined range of revolutions per minute at all times.« less

  3. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xavier, MA; Trimboli, MS

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggestmore » significant performance improvements might be achieved by extending the result to electrochemical models. (C) 2015 Elsevier B.V. All rights reserved.« less

  4. Battery Cell Balancing Optimisation for Battery Management System

    NASA Astrophysics Data System (ADS)

    Yusof, M. S.; Toha, S. F.; Kamisan, N. A.; Hashim, N. N. W. N.; Abdullah, M. A.

    2017-03-01

    Battery cell balancing in every electrical component such as home electronic equipment and electric vehicle is very important to extend battery run time which is simplified known as battery life. The underlying solution to equalize the balance of cell voltage and SOC between the cells when they are in complete charge. In order to control and extend the battery life, the battery cell balancing is design and manipulated in such way as well as shorten the charging process. Active and passive cell balancing strategies as a unique hallmark enables the balancing of the battery with the excellent performances configuration so that the charging process will be faster. The experimental and simulation covers an analysis of how fast the battery can balance for certain time. The simulation based analysis is conducted to certify the use of optimisation in active or passive cell balancing to extend battery life for long periods of time.

  5. Will Your Battery Survive a World With Fast Chargers?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer, J. S.; Wood, E.

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that result could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development ofmore » BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. We find that the impact of realistic fast charging on battery degradation is minimal for most drivers, due to the low frequency of use. However, in the absence of active battery cooling systems, a driver's desired utilization of a BEV and fast charging infrastructure can result in unsafe peak battery temperatures. We find that active battery cooling systems can control peak battery temperatures to safe limits while allowing the desired use of the vehicle.« less

  6. Hybrid vehicle control

    DOEpatents

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  7. Alternate charging profiles for the onboard nickel cadmium batteries of the Explorer Platform/Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Prettyman-Lukoschek, Jill S.

    1995-01-01

    The Explorer Platform/Extreme Ultraviolet Explorer (EP/EUVE) spacecraft power is provided by the Modular Power Subsystems (MPS) which contains three 50 ampere-hour Nickel Cadmium (NiCd) batteries. The batteries were fabricated by McDonnell Douglas Electronics Systems Company, with the cells fabricated by Gates Aerospace Batteries (GAB), Gainesville, Florida. Shortly following launch, the battery performance characteristics showed similar signatures as the anomalous performance observed on both the Upper Atmosphere Research Satellite (UARS) and the Compton Gamma Ray Observatory (CGRO). This prompted the development and implementation of alternate charging profiles to optimize the spacecraft battery performance. The Flight Operations Team (FOT), under the direction of Goddard Space Flight Center's (GSFC) EP/EUVE Project and Space Power Applications Branch have monitored and managed battery performance through control of the battery Charge to Discharge (C/D) ratio and implementation of a Solar Array (SA) offset. This paper provides a brief overview of the EP/EUVE mission, the MPS, the FOT's battery management for achieving the alternate charging profile, and the observed spacecraft battery performance.

  8. Optimal charge control strategies for stationary photovoltaic battery systems

    NASA Astrophysics Data System (ADS)

    Li, Jiahao; Danzer, Michael A.

    2014-07-01

    Battery systems coupled to photovoltaic (PV) modules for example fulfill one major function: they locally decouple PV generation and consumption of electrical power leading to two major effects. First, they reduce the grid load, especially at peak times and therewith reduce the necessity of a network expansion. And second, they increase the self-consumption in households and therewith help to reduce energy expenses. For the management of PV batteries charge control strategies need to be developed to reach the goals of both the distribution system operators and the local power producer. In this work optimal control strategies regarding various optimization goals are developed on the basis of the predicted household loads and PV generation profiles using the method of dynamic programming. The resulting charge curves are compared and essential differences discussed. Finally, a multi-objective optimization shows that charge control strategies can be derived that take all optimization goals into account.

  9. Nickel-cadmium battery system for electric vehicles

    NASA Astrophysics Data System (ADS)

    Klein, M.; Charkey, A.

    A nickel-cadmium battery system has been developed and is being evaluated for electric vehicle propulsion applications. The battery system design features include: (1) air circulation through gaps between cells for thermal management, (2) a metal-gas coulometric fuel gauge for state-of-charge and charge control, and (3) a modified constant current ac/dc power supply for the charger. The battery delivers one and a half to two times the energy density of comparable lead-acid batteries depending on operating conditions.

  10. The 1982 Goddard Space Flight Center Battery Workshop

    NASA Technical Reports Server (NTRS)

    Halpert, G. (Editor)

    1983-01-01

    Various topics concerned with advanced battery technology are addressed including lithium cell and battery safety developments, mathematical modelling, charge control of aerospace power systems, and the application of nickel hydrogen cells/batteries vis-a-vis nickel cadmium cells/batteries.

  11. Real-Time Charging Strategies for an Electric Vehicle Aggregator to Provide Ancillary Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenzel, George; Negrete-Pincetic, Matias; Olivares, Daniel E.

    Real-time charging strategies, in the context of vehicle to grid (V2G) technology, are needed to enable the use of electric vehicle (EV) fleets batteries to provide ancillary services (AS). Here, we develop tools to manage charging and discharging in a fleet to track an Automatic Generation Control (AGC) signal when aggregated. We also propose a real-time controller that considers bidirectional charging efficiency and extend it to study the effect of looking ahead when implementing Model Predictive Control (MPC). Simulations show that the controller improves tracking error as compared with benchmark scheduling algorithms, as well as regulation capacity and battery cycling.

  12. Real-Time Charging Strategies for an Electric Vehicle Aggregator to Provide Ancillary Services

    DOE PAGES

    Wenzel, George; Negrete-Pincetic, Matias; Olivares, Daniel E.; ...

    2017-03-13

    Real-time charging strategies, in the context of vehicle to grid (V2G) technology, are needed to enable the use of electric vehicle (EV) fleets batteries to provide ancillary services (AS). Here, we develop tools to manage charging and discharging in a fleet to track an Automatic Generation Control (AGC) signal when aggregated. We also propose a real-time controller that considers bidirectional charging efficiency and extend it to study the effect of looking ahead when implementing Model Predictive Control (MPC). Simulations show that the controller improves tracking error as compared with benchmark scheduling algorithms, as well as regulation capacity and battery cycling.

  13. Electrochemical model based charge optimization for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pramanik, Sourav; Anwar, Sohel

    2016-05-01

    In this paper, we propose the design of a novel optimal strategy for charging the lithium-ion battery based on electrochemical battery model that is aimed at improved performance. A performance index that aims at minimizing the charging effort along with a minimum deviation from the rated maximum thresholds for cell temperature and charging current has been defined. The method proposed in this paper aims at achieving a faster charging rate while maintaining safe limits for various battery parameters. Safe operation of the battery is achieved by including the battery bulk temperature as a control component in the performance index which is of critical importance for electric vehicles. Another important aspect of the performance objective proposed here is the efficiency of the algorithm that would allow higher charging rates without compromising the internal electrochemical kinetics of the battery which would prevent abusive conditions, thereby improving the long term durability. A more realistic model, based on battery electro-chemistry has been used for the design of the optimal algorithm as opposed to the conventional equivalent circuit models. To solve the optimization problem, Pontryagins principle has been used which is very effective for constrained optimization problems with both state and input constraints. Simulation results show that the proposed optimal charging algorithm is capable of shortening the charging time of a lithium ion cell while maintaining the temperature constraint when compared with the standard constant current charging. The designed method also maintains the internal states within limits that can avoid abusive operating conditions.

  14. Mariner Mars 1971 battery design, test, and flight performance

    NASA Technical Reports Server (NTRS)

    Bogner, R. S.

    1973-01-01

    The design, integration, fabrication, test results, and flight performance of the battery system for the Mariner Mars spacecraft launched in May 1971 are presented. The battery consists of 26 20-Ah hermetically sealed nickel-cadmium cells housed in a machined magnesium chassis. The battery package weighs 29.5 kg and is unique in that the chassis also serves as part of the spacecraft structure. Active thermal control is accomplished by louvers mounted to the battery baseplate. Battery charge is accomplished by C/10 and C/30 constant current chargers. The switch from the high-rate to low-rate charge is automatic, based on terminal voltage. Additional control is possible by ground command or onboard computer. The performance data from the flight battery is compared to the data from various battery tests in the laboratory. Flight battery data was predictable based on ground test data.

  15. Evaluation of several state-of-charge algorithms

    NASA Astrophysics Data System (ADS)

    Espinosa, J. M.; Martin, M. E.; Burke, A. F.

    1988-09-01

    One of the important needs in marketing an electric vehicle is a device which reliably indicates battery state-of-charge for all types of driving. The purpose of the state-of-charge indicator is analogous to a gas gauge in an internal combustion engine powered vehicle. Many different approaches have been tried to accurately predict battery state-of-charge. This report evaluates several of these approaches. Four different algorithms were implemented into software on an IBM PC and tested using a battery test database for ALCO 2200 lead-acid batteries generated at the INEL. The database was obtained under controlled conditions which compare with the battery response in real EV use. Each algorithm is described in detail as to theory and operational functionality. Also discussed is the hardware and data requirements particular to implementing the individual algorithms. The algorithms were evaluated for accuracy using constant power, stepped power, and simulated vehicle (SFUDS79) discharge profiles. Attempts were made to explain the cause of differences between the predicted and actual state-of-charge and to provide possible remedies to correct them. Recommendations for future work on battery state-of-charge indicators are presented that utilize the hardware and software now in place in the INEL Battery Laboratory.

  16. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  17. Performance of Li-Ion Cells Under Battery Voltage Charge Control

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari; Day, John H. (Technical Monitor)

    2001-01-01

    A study consisting of electrochemical characterization and Low-Earth-Orbit (LEO) cycling of Li-Ion cells from three vendors was initiated in 1999 to determine the cycling performance and to infuse the new technology in the future NASA missions. The 8-cell batteries included in this evaluation are prismatic cells manufactured by Mine Safety Appliances Company (MSA), cylindrical cells manufactured by SAFT and prismatic cells manufactured by Yardney Technical Products, Inc. (YTP). The three batteries were cycle tested in the LEO regime at 40% depth of discharge, and under a charge control technique that consists of battery voltage clamp with a current taper. The initial testing was conducted at 20 C; however, the batteries were cycled also intermittently at low temperatures. YTP 20 Ah cells consisted of mixed-oxide (Co and Ni) positive, graphitic carbon negative, LIPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 32 V. The low temperature cycling tests started after 4575 cycles at 20 C. The cells were not capable of cycling. at low temperature since the charge acceptance at battery level was poor. There was a cell in the battery that showed too high an end-of-charge (EOC) voltage thereby limiting the ability to charge the rest of the cells in the battery. The battery has completed 6714 cycles. SAFT 12 Ah cells consisted of mixed-oxide (Co and NO positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was for 30.8 V. The low temperature cycling tests started after 4594 cycles at 20 C. A cell that showed low end of discharge (EOD) and EOC voltages and three other cells that showed higher EOC voltages limited the charge acceptance at the selected voltage limit during charge. The cells were capable of cycling at 10 C and 0 C but the charge voltage limit had to be increased to 34.3 V (4.3 V per cell). The low temperature cycling may have induced poor chargeability since the voltage had to be increased to achieve the required charge input. The battery has completed 6226 cycles. MSA 10 Ah cells consisted of Co oxide positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 30.8 V. The low temperature cycling tests were started after 2182 cycles at 20 C. The cells were capable of cycling at 10 C and 0 C. Like SAFT, the voltage limit on charge had to be increased to 36 V (4.5 V per cell). There was a cell (cell S/N 13) in the battery that showed poor performance features such as low EOD voltage and high EOC voltage. The battery has completed 3441 cycles. A reconditioning procedure that consisted of C15 charge to a taper current of C/100 and C/20 discharge improved the voltage behavior of SAFT and MSA cells with no significant effect on YTP cells. We have demonstrated that the charge operation with VT clamp at battery rather than at cell level is feasible for onboard Li-Ion battery operation.

  18. New Secondary Batteries Utilizing Electronically Conductive Polypyrrole Cathode. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yeu, Taewhan

    1991-01-01

    To gain a better understanding of the dynamic behavior in electronically conducting polypyrroles and to provide guidance toward designs of new secondary batteries based on these polymers, two mathematical models are developed; one for the potentiostatically controlled switching behavior of polypyrrole film, and one for the galvanostatically controlled charge/discharge behavior of lithium/polypyrrole secondary battery cell. The first model is used to predict the profiles of electrolyte concentrations, charge states, and electrochemical potentials within the thin polypyrrole film during switching process as functions of applied potential and position. Thus, the detailed mechanisms of charge transport and electrochemical reaction can be understood. Sensitivity analysis is performed for independent parameters, describing the physical and electrochemical characteristic of polypyrrole film, to verify their influences on the model performance. The values of independent parameters are estimated by comparing model predictions with experimental data obtained from identical conditions. The second model is used to predict the profiles of electrolyte concentrations, charge state, and electrochemical potentials within the battery system during charge and discharge processes as functions of time and position. Energy and power densities are estimated from model predictions and compared with existing battery systems. The independent design criteria on the charge and discharge performance of the cell are provided by studying the effects of design parameters.

  19. A Battery Charger and State of Charge Indicator

    NASA Technical Reports Server (NTRS)

    Latos, T. S.

    1984-01-01

    A battery charger which has a full wave rectifier in series with a transformer isolated 20 kHz dc-dc converter with high frequency switches, which are programmed to actively shape the input dc line current to be a mirror image of the ac line voltage is discussed. The power circuit operates at 2 kW peak and 1 kW average power. The BC/SCI has two major subsystems: (1) the battery charger power electronics with its controls; and (2) a microcomputer subsystem which is used to acquire battery terminal data and exercise the state of charge software programs. The state of charge definition employed is the energy remaining in the battery when extracted at a 10 kW rate divided by the energy capacity of a fully charged new battery. The battery charger circuit is an isolated boost converter operating at an internal frequency of 20 kHz. The switches selected for the battery charger are the single most important item in determining its efficiency. The combination of voltage and current requirements dictate the use of high power NPN Darlington switching transistors. The power circuit topology is a three switch design which utilizes a power FET on the center tap of the isolation transformer and the power Darlingtons on each of the two ends. An analog control system is employed to accomplish active input current waveshaping as well as the necessary regulation.

  20. Charge control microcomputer device for vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morishita, M.; Kouge, S.

    1986-08-26

    A charge control microcomputer device is described for a vehicle, comprising: an AC generator driven by an engine for generating an output current, the generator having armature coils and a field coil; a battery charged by a rectified output of the generator and generating a terminal voltage; a voltage regulator for controlling a current flowing in the field coil, to control an output voltage of the generator to a predetermined value; an engine controlling microcomputer for receiving engine parameter data from the engine, to control the operation of the engine; a charge control microcomputer for processing input data including datamore » on at least one engine parameter output from the engine controlling microcomputer, and charge system data including at least one of battery terminal voltage data, generator voltage data and generator output current data, to provide a reference voltage for the voltage regulator.« less

  1. Galileo IOV Electrical Power Subsystem Relies On Li-Ion Batter Charge Management Controlled By Hardware

    NASA Astrophysics Data System (ADS)

    Douay, N.

    2011-10-01

    In the frame of GALILEO In-Orbit Validation program which is composed of 4 satellites, Thales Alenia Space France has designed, developed and tested the Electrical Power Subsystem. Besides some classical design choices like: -50V regulated main power bus provided by the PCDU manufactured by Terma (DK), -Solar array, manufactured by Dutch-Space (NL), using Ga-As triple junction technology from Azur Space Power Solar GmbH, -SAFT (FR) Lithium-ion Battery for which cell package balancing function is required, -Solar Array Drive Mechanism, provided by RUAG Space Switzerland, to transfer the power. This subsystem features a fully autonomous, failure tolerant, battery charge management able to operate even after a complete unavailability of the on-board software. The battery charge management is implemented such that priority is always given to satisfy the satellite main bus needs in order to maintain the main bus regulation under MEA control. This battery charge management principle provides very high reliability and operational robustness. So, the paper describes : -the battery charge management concept using a combination of PCDU hardware and relevant battery lines monitoring, -the functional aspect of the single point failure free S4R (Sequential Switching Shunt Switch Regulator) and associated performances, -the failure modes isolated and passivated by this architecture. The paper will address as well the autonomous balancing function characteristics and performances.

  2. Ex-situ and in-situ observations of the effects of gamma radiation on lithium ion battery performance

    NASA Astrophysics Data System (ADS)

    Tan, Chuting; Bashian, Nicholas H.; Hemmelgarn, Chase W.; Thio, Wesley J.; Lyons, Daniel J.; Zheng, Yuan F.; Cao, Lei R.; Co, Anne C.

    2017-07-01

    Radiation effects induced by gamma rays on battery performance were investigated by measuring the capacity and resistance of a series of battery coin cells in-situ directly under gamma radiation and ex-situ. An experimental setup was developed to charge and discharge batteries directly under gamma radiation, equipped with precise temperature control, at The Ohio State University Nuclear Reactor Lab. Latent effects induced by gamma radiation on battery components directly influence their performance. Charge and discharge capacity and overall resistance throughout a time span of several weeks post irradiation were monitored and compared to control groups. It was found that exposure to gamma radiation does not significantly alter the available capacity and the overall cell resistance immediately, however, battery performance significantly decreases with time post irradiation. Also, batteries exposed to a higher cumulative dose showed close-to-zero capacity at two-week post irradiation.

  3. Minimization of Impact from Electric Vehicle Supply Equipment to the Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castello, Charles C

    This research presents a comparison of two control systems for peak load shaving using local solar power generation (i.e., photovoltaic array) and local energy storage (i.e., battery bank). The purpose is to minimize load demand of electric vehicle supply equipment (EVSE) on the electric grid. A static and dynamic control system is compared to decrease demand from EVSE. Static control of the battery bank is based on charging and discharging to the electric grid at fixed times. Dynamic control, with 15-minute resolution, forecasts EVSE load based on data analysis of collected data. In the proposed dynamic control system, the sigmoidmore » function is used to shave peak loads while limiting scenarios that can quickly drain the battery bank. These control systems are applied to Oak Ridge National Laboratory s (ORNL) solar-assisted electric vehicle (EV) charging stations. This installation is composed of three independently grid-tied sub-systems: (1) 25 EVSE; (2) 47 kW photovoltaic (PV) array; and (3) 60 kWh battery bank. The dynamic control system achieved the greatest peak load shaving, up to 34% on a cloudy day and 38% on a sunny day. The static control system was not ideal; peak load shaving was 14.6% on a cloudy day and 12.7% on a sunny day. Simulations based on ORNL data shows solar-assisted EV charging stations combined with the proposed dynamic battery control system can negate up to 89% of EVSE load demand on sunny days.« less

  4. 46 CFR 112.39-1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...

  5. 46 CFR 112.39-1 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...

  6. 46 CFR 112.39-1 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...

  7. 46 CFR 112.39-1 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...

  8. 46 CFR 112.39-1 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...

  9. Battery charger and state of charge indicator. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latos, T.S.

    1984-04-15

    The battery charger has a full-wave rectifier in series with a transformer isolated 20 kHz dc-dc converter with high frequency switches which are programmed to actively shape the input ac line current to be a mirror image of the ac line voltage. The power circuit is capable of operating at 2 kW peak and 1 kW average power. The BC/SCI has two major subsystems: (1) the battery charger power electronics with its controls; and (2) a microcomputer subsystem which is used to acquire battery terminal data and exercise the state-of-charge software programs. The state-of-charge definition employed is the energy remainingmore » in the battery when extracted at a 10 kW rate divided by the energy capacity of a fully charged new battery. The battery charger circuit is an isolated boost converter operating at an internal frequency of 20 kHz. The switches selected for the battery charger are the single most important item in determining its efficiency. The combination of voltage and current requirements dictated the use of high power NPN Darlington switching transistors. The power circuit topology developed is a three switch design utilizing a power FET on the center tap of the isolation transformer and the power Darlingtons on each of the two ends. An analog control system is employed to accomplish active input current waveshaping as well as the necessary regulation.« less

  10. Dynamic analysis of a photovoltaic power system with battery storage capability

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.; Blaha, R. J.; Pickrell, R. L.

    1979-01-01

    A photovolataic power system with a battery storage capability is analyzed. A dual battery current control concept is proposed, which enables the battery to either supply or accept power depending upon system environment and load conditions. A simulation of the power system, including the battery current control, is developed and evaluated. The evaulation demonstrate the visbility of the battery control concept of switch the battery from a charge to discharge mode and back as required by load and environmental conditions. An acceptable system operation is demonstrated over the entire insolation range. Additionally, system sensitivity, bandwidth, and damping characteristics of the battery control are shown to be acceptable for a projected hardware implementation.

  11. Space platform power system hardware testbed

    NASA Technical Reports Server (NTRS)

    Sable, D.; Patil, A.; Sizemore, T.; Deuty, S.; Noon, J.; Cho, B. H.; Lee, F. C.

    1991-01-01

    The scope of the work on the NASA Space Platform includes the design of a multi-module, multi-phase boost regulator, and a voltage-fed, push-pull autotransformer converter for the battery discharger. A buck converter was designed for the charge regulator. Also included is the associated mode control electronics for the charger and discharger, as well as continued development of a comprehensive modeling and simulation tool for the system. The design of the multi-module boost converter is discussed for use as a battery discharger. An alternative battery discharger design is discussed using a voltage-fed, push-pull autotransformer converter. The design of the charge regulator is explained using a simple buck converter. The design of the mode controller and effects of locating the bus filter capacitor bank 20 feet away from the power ORU are discussed. A brief discussion of some alternative topologies for battery charging and discharging is included. The power system modeling is described.

  12. Hubble Space Telescope electrical power system

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Bush, John R., Jr.

    1990-01-01

    The Hubble Space Telescope (HST) electrical power system (EPS) is supplying between 2000 and 2400 W of continuous power to the electrical loads. The major components of the EPS are the 5000-W back surface field reflector solar array, the six nickel-hydrogen (NiH2) 22-cell 88-Ah batteries, and the charge current controllers, which, in conjunction with the flight computer, control battery charging. The operation of the HST EPS and the results of the HST NiH2 six-battery test are discussed, and preliminary flight data are reviewed. The HST NiH2 six-battery test is a breadboard of the HST EPS on test at Marshall Space Flight Center.

  13. Sealed nickel cadmium batteries

    NASA Astrophysics Data System (ADS)

    Raudszus, W.; Kiehne, H. A.; Cloke, F. R.

    1982-10-01

    The design, manufacture, and application of maintenance-free sealed NiCd batteries are surveyed. The principles of electrochemical power supplies and the history of the development of NiCd cells are reviewed. The batteries produced by Varta Batterie AG are presented; topics discussed include design parameters, electrical and physical characteristics, performance under adverse conditions, type range, production, and quality control. Application techniques, including cell-type choice, charging units and charging circuits, and the construction of standby power supplies, are considered, with reference to national and international standards of performance and classification. No individual items are abstracted in this volume

  14. Flexible Hybrid Battery/Pseudocapacitor

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Paley, Steven

    2015-01-01

    Batteries keep devices working by utilizing high energy density, however, they can run down and take tens of minutes to hours to recharge. For rapid power delivery and recharging, high-power density devices, i.e., supercapacitors, are used. The electrochemical processes which occur in batteries and supercapacitors give rise to different charge-storage properties. In lithium ion (Li+) batteries, the insertion of Li+, which enables redox reactions in bulk electrode materials, is diffusion controlled and can be slow. Supercapacitor devices, also known as electrical double-layer capacitors (EDLCs) store charge by adsorption of electrolyte ions onto the surface of electrode materials. No redox reactions are necessary, so the response to changes in potential without diffusion limitations is rapid and leads to high power. However, the charge in EDLCs is confined to the surface, so the energy density is lower than that of batteries.

  15. Research on Battery Energy Storage System Based on User Side

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Zhang, Yichi; Yun, Zejian; Wang, Xuguang; Zhang, Dong; Bian, Di

    2018-01-01

    This paper introduces the effect of user side energy storage on the user side and the network side, a battery energy storage system for the user side is designed. The main circuit topology of the battery energy storage system based on the user side is given, the structure is mainly composed of two parts: DC-DC two-way half bridge converter and DC-AC two-way converter, a control strategy combining battery charging and discharging characteristics is proposed to decouple the grid side and the energy storage side, and the block diagram of the charging and discharging control of the energy storage system is given. The simulation results show that the battery energy storage system of the user side can not only realize reactive power compensation of low-voltage distribution network, but also improve the power quality of the users.

  16. Microprocessor controlled advanced battery management systems

    NASA Technical Reports Server (NTRS)

    Payne, W. T.

    1978-01-01

    The advanced battery management system described uses the capabilities of an on-board microprocessor to: (1) monitor the state of the battery on a cell by cell basis; (2) compute the state of charge of each cell; (3) protect each cell from reversal; (4) prevent overcharge on each individual cell; and (5) control dual rate reconditioning to zero volts per cell.

  17. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    NASA Astrophysics Data System (ADS)

    Schaeck, S.; Stoermer, A. O.; Hockgeiger, E.

    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 °C and at 3 °C battery temperature.

  18. New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation

    NASA Astrophysics Data System (ADS)

    Vo, Thanh Tu; Chen, Xiaopeng; Shen, Weixiang; Kapoor, Ajay

    2015-01-01

    In this paper, a new charging strategy of lithium-polymer batteries (LiPBs) has been proposed based on the integration of Taguchi method (TM) and state of charge estimation. The TM is applied to search an optimal charging current pattern. An adaptive switching gain sliding mode observer (ASGSMO) is adopted to estimate the SOC which controls and terminates the charging process. The experimental results demonstrate that the proposed charging strategy can successfully charge the same types of LiPBs with different capacities and cycle life. The proposed charging strategy also provides much shorter charging time, narrower temperature variation and slightly higher energy efficiency than the equivalent constant current constant voltage charging method.

  19. Solar photovoltaic charging of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gibson, Thomas L.; Kelly, Nelson A.

    Solar photovoltaic (PV) charging of batteries was tested by using high efficiency crystalline and amorphous silicon PV modules to recharge lithium-ion battery modules. This testing was performed as a proof of concept for solar PV charging of batteries for electrically powered vehicles. The iron phosphate type lithium-ion batteries were safely charged to their maximum capacity and the thermal hazards associated with overcharging were avoided by the self-regulating design of the solar charging system. The solar energy to battery charge conversion efficiency reached 14.5%, including a PV system efficiency of nearly 15%, and a battery charging efficiency of approximately 100%. This high system efficiency was achieved by directly charging the battery from the PV system with no intervening electronics, and matching the PV maximum power point voltage to the battery charging voltage at the desired maximum state of charge for the battery. It is envisioned that individual homeowners could charge electric and extended-range electric vehicles from residential, roof-mounted solar arrays, and thus power their daily commuting with clean, renewable solar energy.

  20. Advanced batteries for load-leveling - The utility perspective on system integration

    NASA Astrophysics Data System (ADS)

    Delmonaco, J. L.; Lewis, P. A.; Roman, H. T.; Zemkoski, J.

    1982-09-01

    Rechargeable battery systems for applications as utility load-leveling units, particularly in urban areas, are discussed. Particular attention is given to advanced lead-acid, zinc-halogen, sodium-sulfer, and lithium-iron sulfide battery systems, noting that battery charging can proceed at light load hours and requires no fuel on-site. Each battery site will have a master site controller and related subsystems necessary for ensuring grid-quality power output from the batteries and charging when feasible. The actual interconnection with the grid is envisioned as similar to transmission, subtransmission, or distribution systems similar to cogeneration or wind-derived energy interconnections. Analyses are presented of factors influencing the planning economics, impacts on existing grids through solid-state converters, and operational and maintenance considerations. Finally, research directions towards large scale battery implementation are outlined.

  1. Special Test Methods for Batteries

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1984-01-01

    Various methods are described for measuring heat generation in primary and secondary batteries as well as the specific heat of batteries and cell thermal conductance. Problems associated with determining heat generation in large batteries are examined. Special attention is given to monitoring temperature gradients in nickel cadmium cells, the use of auxiliary electrodes for conducting tests on battery charge control, evaluating the linear sweep of current from charge to discharge, and determining zero current voltage. The fast transient behavior of batteries in the microsecond range, and the electrical conductance of nickel sinters in the thickness direction are also considered. Mechanical problems experienced in the vibration of Ni-Cd batteries and tests to simulate cyclic fatigue of the steel table connecting the plates to the comb are considered. Methods of defining the distribution of forces when cells are compressed during battery packaging are also explored.

  2. Special test methods for batteries

    NASA Astrophysics Data System (ADS)

    Gross, S.

    1984-09-01

    Various methods are described for measuring heat generation in primary and secondary batteries as well as the specific heat of batteries and cell thermal conductance. Problems associated with determining heat generation in large batteries are examined. Special attention is given to monitoring temperature gradients in nickel cadmium cells, the use of auxiliary electrodes for conducting tests on battery charge control, evaluating the linear sweep of current from charge to discharge, and determining zero current voltage. The fast transient behavior of batteries in the microsecond range, and the electrical conductance of nickel sinters in the thickness direction are also considered. Mechanical problems experienced in the vibration of Ni-Cd batteries and tests to simulate cyclic fatigue of the steel table connecting the plates to the comb are considered. Methods of defining the distribution of forces when cells are compressed during battery packaging are also explored.

  3. Development, modeling and research of the system of automatic control and equalization of the charge state of a battery pack of a hybrid engine of a vehicle

    NASA Astrophysics Data System (ADS)

    Bakhmutov, S.; Sizov, Y.; Kim, M.

    2018-02-01

    The article is devoted to the topical problem of developing effective means of monitoring and leveling the charge state of batteries in a power unit of hybrid and electric cars. A system for automatic control and equalization of the charge state of a battery pack of a combined power plant, the originality of which is protected by the Russian Federation patent, is developed and described. A distinctive feature of the device is the possibility of using it both in conditions of charging (power consumption) and in operating conditions (energy recovery). The device is characterized by high reliability, simplicity of the circuit-making solution, low self-consumption and low cost. To test the efficiency of the proposed device, its computer simulation and experimental research were carried out. As a result of multi factorial experiment, a regression equation has been obtained which makes it possible to judge the high efficiency of detecting the degree of inhomogeneity of controlled batteries with respect to the parameters of an equivalent replacement circuit: voltage, internal resistance and capacitance in the magnitude of the obtained coefficients of influence of each of these factors, and also take into account the effects of their pair interactions.

  4. The effect of cell design and test criteria on the series/parallel performance of nickel cadmium cells and batteries

    NASA Technical Reports Server (NTRS)

    Halpert, G.; Webb, D. A.

    1983-01-01

    Three batteries were operated in parallel from a common bus during charge and discharge. SMM utilized NASA Standard 20AH cells and batteries, and LANDSAT-D NASA 50AH cells and batteries of a similar design. Each battery consisted of 22 series connected cells providing the nominal 28V bus. The three batteries were charged in parallel using the voltage limit/current taper mode wherein the voltage limit was temperature compensated. Discharge occurred on the demand of the spacecraft instruments and electronics. Both flights were planned for three to five year missions. The series/parallel configuration of cells and batteries for the 3-5 yr mission required a well controlled product with built-in reliability and uniformity. Examples of how component, cell and battery selection methods affect the uniformity of the series/parallel operation of the batteries both in testing and in flight are given.

  5. Engineering and Abuse Testing of Panasonic Lithium-Ion Battery and Cells

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Bragg, Bobby J.

    2000-01-01

    This viewgraph presentation reviews the performance testing of Lithium Ion batteries and cells under different conditions of charge and discharge. The tests show that the 0.5 C rate of charge and discharge might be the ideal condition for long term cycling. It reviews the issues of overcharge and overdischarge of the cells. The cells and the battery have adequate protection under both conditions to prevent any catastrophic occurrences. Temperatures above 150 C are required to vent the cells or cause a thermal runaway, Since this situation is non-credible in the cabin of the Space Shuffle or ISS this should not pose a problem. The presentation includes graphs and charts showing the charge and discharge capacities of the battery and also the current and voltage profiles. A view of a circuit board which contains the controlling mechanism for the battery is also shown.

  6. 30 CFR 77.1106 - Battery-charging stations; ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Battery-charging stations; ventilation. 77.1106... COAL MINES Fire Protection § 77.1106 Battery-charging stations; ventilation. Battery-charging stations shall be located in well-ventilated areas. Battery-charging stations shall be equipped with reverse...

  7. 30 CFR 77.1106 - Battery-charging stations; ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Battery-charging stations; ventilation. 77.1106... COAL MINES Fire Protection § 77.1106 Battery-charging stations; ventilation. Battery-charging stations shall be located in well-ventilated areas. Battery-charging stations shall be equipped with reverse...

  8. 30 CFR 77.1106 - Battery-charging stations; ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Battery-charging stations; ventilation. 77.1106... COAL MINES Fire Protection § 77.1106 Battery-charging stations; ventilation. Battery-charging stations shall be located in well-ventilated areas. Battery-charging stations shall be equipped with reverse...

  9. 30 CFR 77.1106 - Battery-charging stations; ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Battery-charging stations; ventilation. 77.1106... COAL MINES Fire Protection § 77.1106 Battery-charging stations; ventilation. Battery-charging stations shall be located in well-ventilated areas. Battery-charging stations shall be equipped with reverse...

  10. 30 CFR 77.1106 - Battery-charging stations; ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Battery-charging stations; ventilation. 77.1106... COAL MINES Fire Protection § 77.1106 Battery-charging stations; ventilation. Battery-charging stations shall be located in well-ventilated areas. Battery-charging stations shall be equipped with reverse...

  11. Charge control of nickel-cadmium batteries by coulometer and third electrode method

    NASA Technical Reports Server (NTRS)

    Ford, F.; Paulkovitch, J.

    1968-01-01

    Combined coulometer/third electrode control circuit for a nickel-cadmium battery included at least one cell of the third electrode type is illustrated. The coulometer/third electrode sensing circuit controls the series regulator as necessary to maintain the sensing voltage at the preset sensing level.

  12. Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy

    DOE PAGES

    Rosewater, David; Ferreira, Summer; Schoenwald, David; ...

    2018-01-25

    Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less

  13. Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosewater, David; Ferreira, Summer; Schoenwald, David

    Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less

  14. Nonlinear Dynamics and Bifurcation Analysis of a Boost Converter for Battery Charging in Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Al-Hindawi, Mohammed M.; Abusorrah, Abdullah; Al-Turki, Yusuf; Giaouris, Damian; Mandal, Kuntal; Banerjee, Soumitro

    Photovoltaic (PV) systems with a battery back-up form an integral part of distributed generation systems and therefore have recently attracted a lot of interest. In this paper, we consider a system of charging a battery from a PV panel through a current mode controlled boost dc-dc converter. We analyze its complete nonlinear/nonsmooth dynamics, using a piecewise model of the converter and realistic nonlinear v-i characteristics of the PV panel. Through this study, it is revealed that system design without taking into account the nonsmooth dynamics of the converter combined with the nonlinear v-i characteristics of the PV panel can lead to unpredictable responses of the overall system with high current ripple and other undesirable phenomena. This analysis can lead to better designed converters that can operate under a wide variation of the solar irradiation and the battery's state of charge. We show that the v-i characteristics of the PV panel combined with the battery's output voltage variation can increase or decrease the converter's robustness, both under peak current mode control and average current mode control. We justify the observation in terms of the change in the discrete-time map caused by the nonlinear v-i characteristics of the PV panel. The theoretical results are validated experimentally.

  15. An area and power-efficient analog li-ion battery charger circuit.

    PubMed

    Do Valle, Bruno; Wentz, Christian T; Sarpeshkar, Rahul

    2011-04-01

    The demand for greater battery life in low-power consumer electronics and implantable medical devices presents a need for improved energy efficiency in the management of small rechargeable cells. This paper describes an ultra-compact analog lithium-ion (Li-ion) battery charger with high energy efficiency. The charger presented here utilizes the tanh basis function of a subthreshold operational transconductance amplifier to smoothly transition between constant-current and constant-voltage charging regimes without the need for additional area- and power-consuming control circuitry. Current-domain circuitry for end-of-charge detection negates the need for precision-sense resistors in either the charging path or control loop. We show theoretically and experimentally that the low-frequency pole-zero nature of most battery impedances leads to inherent stability of the analog control loop. The circuit was fabricated in an AMI 0.5-μm complementary metal-oxide semiconductor process, and achieves 89.7% average power efficiency and an end voltage accuracy of 99.9% relative to the desired target 4.2 V, while consuming 0.16 mm(2) of chip area. To date and to the best of our knowledge, this design represents the most area-efficient and most energy-efficient battery charger circuit reported in the literature.

  16. Modeling, hybridization, and optimal charging of electrical energy storage systems

    NASA Astrophysics Data System (ADS)

    Parvini, Yasha

    The rising rate of global energy demand alongside the dwindling fossil fuel resources has motivated research for alternative and sustainable solutions. Within this area of research, electrical energy storage systems are pivotal in applications including electrified vehicles, renewable power generation, and electronic devices. The approach of this dissertation is to elucidate the bottlenecks of integrating supercapacitors and batteries in energy systems and propose solutions by the means of modeling, control, and experimental techniques. In the first step, the supercapacitor cell is modeled in order to gain fundamental understanding of its electrical and thermal dynamics. The dependence of electrical parameters on state of charge (SOC), current direction and magnitude (20-200 A), and temperatures ranging from -40°C to 60°C was embedded in this computationally efficient model. The coupled electro-thermal model was parameterized using specifically designed temporal experiments and then validated by the application of real world duty cycles. Driving range is one of the major challenges of electric vehicles compared to combustion vehicles. In order to shed light on the benefits of hybridizing a lead-acid driven electric vehicle via supercapacitors, a model was parameterized for the lead-acid battery and combined with the model already developed for the supercapacitor, to build the hybrid battery-supercapacitor model. A hardware in the loop (HIL) setup consisting of a custom built DC/DC converter, micro-controller (muC) to implement the power management strategy, 12V lead-acid battery, and a 16.2V supercapacitor module was built to perform the validation experiments. Charging electrical energy storage systems in an efficient and quick manner, motivated to solve an optimal control problem with the objective of maximizing the charging efficiency for supercapacitors, lead-acid, and lithium ion batteries. Pontryagins minimum principle was used to solve the problems analytically. Efficiency analysis for constant power (CP) and optimal charging strategies under different charging times (slow and fast) was performed. In case of the lithium ion battery, the model included the electronic as well as polarization resistance. Furthermore, in order to investigate the influence of temperature on the internal resistance of the lithium ion battery, the optimal charging problem for a three state electro-thermal model was solved using dynamic programming (DP). The ability to charge electric vehicles is a pace equivalent to fueling a gasoline car will be a game changer in the widespread acceptability and feasibility of the electric vehicles. Motivated by the knowledge gained from the optimal charging study, the challenges facing the fast charging of lithium ion batteries are investigated. In this context, the suitable models for the study of fast charging, high rate anode materials, and different charging strategies are studied. The side effects of fast charging such as lithium plating and mechanical failure are also discussed. This dissertation has targeted some of the most challenging questions in the field of electrical energy storage systems and the reported results are applicable to a wide range of applications such as in electronic gadgets, medical devices, electricity grid, and electric vehicles.

  17. System and method for charging electrochemical cells in series

    DOEpatents

    DeLuca, William H.; Hornstra, Jr, Fred; Gelb, George H.; Berman, Baruch; Moede, Larry W.

    1980-01-01

    A battery charging system capable of equalizing the charge of each individual cell at a selected full charge voltage includes means for regulating charger current to first increase current at a constant rate until a bulk charging level is achieved or until any cell reaches a safe reference voltage. A system controller then begins to decrease the charging rate as long as any cell exceeds the reference voltage until an equalization current level is reached. At this point, the system controller activates a plurality of shunt modules to permit shunting of current around any cell having a voltage exceeding the reference voltage. Leads extending between the battery of cells and shunt modules are time shared to permit alternate shunting of current and voltage monitoring without the voltage drop caused by the shunt current. After each cell has at one time exceeded the reference voltage, the charging current is terminated.

  18. Hybrid power systems for autonomous MEMS

    NASA Astrophysics Data System (ADS)

    Bennett, Daniel M.; Selfridge, Richard H.; Humble, Paul; Harb, John N.

    2001-08-01

    This paper describes the design of a hybrid power system for use with autonomous MEMS and other microdevices. This hybrid power system includes energy conversion and storage along with an electronic system for managing the collection and distribution of power. It offers flexibility and longevity in a compact package. The hybrid power system couples a silicon solar cell with a microbattery specially designed for MEMS applications. We have designed a control/interface charging circuit to be compatible with a MEMS duty cycle. The design permits short pulses of 'high' power while taking care to avoid excessive charging or discharging of the battery. Charging is carefully controlled to provide a balance between acceptably small charging times and a charging profile that extends battery life. Our report describes the charging of our Ni/Zn microbatteries using solar cells. To date we have demonstrated thousands of charge/discharge cycles of a simulated MEMS duty cycle.

  19. 29 CFR 1917.157 - Battery charging and changing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Battery charging and changing. 1917.157 Section 1917.157..., DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.157 Battery charging and changing. (a) Only designated persons shall change or charge batteries. (b) Battery charging...

  20. 29 CFR 1917.157 - Battery charging and changing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Battery charging and changing. 1917.157 Section 1917.157..., DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.157 Battery charging and changing. (a) Only designated persons shall change or charge batteries. (b) Battery charging...

  1. 29 CFR 1917.157 - Battery charging and changing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Battery charging and changing. 1917.157 Section 1917.157..., DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.157 Battery charging and changing. (a) Only designated persons shall change or charge batteries. (b) Battery charging...

  2. 29 CFR 1917.157 - Battery charging and changing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Battery charging and changing. 1917.157 Section 1917.157..., DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.157 Battery charging and changing. (a) Only designated persons shall change or charge batteries. (b) Battery charging...

  3. 29 CFR 1917.157 - Battery charging and changing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Battery charging and changing. 1917.157 Section 1917.157..., DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.157 Battery charging and changing. (a) Only designated persons shall change or charge batteries. (b) Battery charging...

  4. Experimental Discussion on a 6-kW, 2-kWh Battery Energy Storage System Using a Bidirectional Isolated DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Abe, Takahiro; Tan, Nadia Mei Lin; Akagi, Hirofumi

    This paper presents an experimental discussion on a 6-kW, full-bridge, zero-voltage switching bidirectional isolated dc/dc converter for a 53.2-V, 2-kWh Li-ion battery energy storage system. The combination of high-frequency switching devices, 600-V/200-A IGBTs and 100-V/500-A MOSFETs with a high-frequency transformer reduces the weight and physical size of the bidirectional isolated dc/dc converter. The dc voltage on the high-voltage side of the converter is controlled in a range of 300V to 355V as the battery voltage on the low-voltage side varies from 50V to 59V. Experimental verification of bidirectional power flow into (battery charging) or out of (battery discharging) the Li-ion battery bank is also presented. The maximal efficiency of the dc/dc converter is measured to be 98.1% during charging and 98.2% during discharging, excluding the gate drive loss and control circuit loss.

  5. Analysis of spacecraft battery charger systems

    NASA Astrophysics Data System (ADS)

    Kim, Seong J.; Cho, Bo H.

    In spacecraft battery charger systems, switching regulators are widely used for bus voltage regulation, charge current regulation, and peak power tracking. Small-signal dynamic characteristics of the battery charging subsystem of direct energy transfer (DET) and peak power tracking (PPT) systems are analyzed to facilitate design of the control loop for optimum performance and stability. Control loop designs of the charger in various modes of operation are discussed. Analyses are verified through simulations. It is shown that when the charger operates in the bus voltage regulation mode, the control-to-voltage transfer function has a negative DC gain and two LHP zeros in both the DET and PPT systems. The control-to-inductor current transfer function also has a negative DC gain and a RHP zero. Thus, in the current-mode control, the current loop can no longer be used to stabilize the system. When the system operates in the charge current regulation mode, the charger operates with a fixed duty cycle which is determined by the regulated bus voltage and the battery voltage. Without an input filter, the converter becomes a first-order system. When the peak power tracker is inactive, the operating point of the solar array output moves to the voltage source region. Thus, the solar array behaves as a stiff voltage source to a constant power load.

  6. Battery Control Algorithms | Transportation Research | NREL

    Science.gov Websites

    publications. Accounting for Lithium-Ion Battery Degradation in Electric Vehicle Charging Optimization Advanced Reformulation of Lithium-Ion Battery Models for Enabling Electric Transportation Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems Contact Ying Shi Email | 303-275-4240

  7. Effect of Polymer Electrode Morphology on Performance of a Lithium/Polypyrrole Battery. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Nicholson, Marjorie Anne

    1991-01-01

    A variety of conducting polymer batteries were described in the recent literature. In this work, a Li/Polypyrrole secondary battery is described. The effect of controlling the morphology of the polymer on enhancement of counterion diffusion in the polymer phase is explored. A method of preparing conducting polymers was developed which yields high surface area per unit volume of electrode material. A porous membrane is used as a template in which to electrochemically polymerize pyrrole, then the membrane is dissolved, leaving the polymer in a fibrillar form. Conventionally, the polymer is electrochemically polymerized as a dense polymer film on a smooth Pt disk electrode. Previous work has shown that when the polymer is electrochemically polymerized in fribrillar form, charge transport rates are faster and charge capacities are greater than for dense, conventionally grown films containing the same amount of polymer. The purpose is to expand previous work by further investigating the possibilities of the optimization of transport rates in polypyrrole films by controlling the morphology of the films. The utility of fibrillar polypyrrole as a cathode material in a lithium/polymer secondary battery is then assessed. The performance of the fibrillar battery is compared to the performance of an analogous battery which employed a conventionally grown polypyrrole film. The study includes a comparison of cyclic voltammetry, shape of charge/discharge curves, discharge time and voltage, cycle life, coulombic efficiencies, charge capacities, energy densities, and energy efficiencies.

  8. The characteristics and limitations of the MPS/MMS battery charging system

    NASA Technical Reports Server (NTRS)

    Ford, F. E.; Palandati, C. F.; Davis, J. F.; Tasevoli, C. M.

    1980-01-01

    A series of tests was conducted on two 12 ampere hour nickel cadmium batteries under a simulated cycle regime using the multiple voltage versus temperature levels designed into the modular power system (MPS). These tests included: battery recharge as a function of voltage control level; temperature imbalance between two parallel batteries; a shorted or partially shorted cell in one of the two parallel batteries; impedance imbalance of one of the parallel battery circuits; and disabling and enabling one of the batteries from the bus at various charge and discharge states. The results demonstrate that the eight commandable voltage versus temperature levels designed into the MPS provide a very flexible system that not only can accommodate a wide range of normal power system operation, but also provides a high degree of flexibility in responding to abnormal operating conditions.

  9. Integrated Power Source Grant

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Traditional spacecraft power systems incorporate a solar array energy source, an energy storage element (battery), and battery charge control and bus voltage regulation electronics to provide continuous electrical power for spacecraft systems and instruments. Dedicated power conditioning components provide limited fault isolation between systems and instruments, while a centralized power-switching unit provides spacecraft load control. Battery undervoltage conditions are detected by the spacecraft processor, which removes fault conditions and non-critical loads before permanent battery damage can occur. Cost effective operation of a micro-sat constellation requires a fault tolerant spacecraft architecture that minimizes on-orbit operational costs by permitting autonomous reconfiguration in response to unexpected fault conditions. A new micro-sat power system architecture that enhances spacecraft fault tolerance and improves power system survivability by continuously managing the battery charge and discharge processes on a cell-by-cell basis has been developed. This architecture is based on the Integrated Power Source (US patent 5644207), which integrates dual junction solar cells, Lithium Ion battery cells, and processor based charge control electronics into a structural panel that can be deployed or used to form a portion of the outer shell of a micro-spacecraft. The first generation Integrated Power Source is configured as a one inch thick panel in which prismatic Lithium Ion battery cells are arranged in a 3x7 matrix (26VDC) and a 3x1 matrix (3.7VDC) to provide the required output voltages and load currents. A multi-layer structure holds the battery cells, as well as the thermal insulators that are necessary to protect the Lithium Ion battery cells from the extreme temperatures of the solar cell layer. Independent thermal radiators, located on the back of the panel, are dedicated to the solar cell array, the electronics, and the battery cell array. In deployed panel applications, these radiators maintain the battery cells in an appropriate operational temperature range.

  10. Modular Battery Controller

    NASA Technical Reports Server (NTRS)

    Button, Robert M (Inventor); Gonzalez, Marcelo C (Inventor)

    2017-01-01

    Some embodiments of the present invention describe a battery including a plurality of master-less controllers. Each controller is operatively connected to a corresponding cell in a string of cells, and each controller is configured to bypass a fraction of current around the corresponding cell when the corresponding cell has a greater charge than one or more other cells in the string of cells.

  11. The 2004 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: Super NiCd(TradeMark) Energy Storage for Gravity Probe-B Relativity Mission; Hubble Space Telescope 2004 Battery Update; The Development of Hermetically Sealed Aerospace Nickel-Metal Hydride Cell; Serial Charging Test on High Capacity Li-Ion Cells for the Orbiter Advanced Hydraulic Power System; Cell Equalization of Lithium-Ion Cells; The Long-Term Performance of Small-Cell Batteries Without Cell-Balancing Electronics; Identification and Treatment of Lithium Battery Cell Imbalance under Flight Conditions; Battery Control Boards for Li-Ion Batteries on Mars Exploration Rovers; Cell Over Voltage Protection and Balancing Circuit of the Lithium-Ion Battery; Lithium-Ion Battery Electronics for Aerospace Applications; Lithium-Ion Cell Charge Control Unit; Lithium Ion Battery Cell Bypass Circuit Test Results at the U.S. Naval Research Laboratory; High Capacity Battery Cell By-Pass Switches: High Current Pulse Testing of Lithium-Ion; Battery By-Pass Switches to Verify Their Ability to Withstand Short-Circuits; Incorporation of Physics-Based, Spatially-Resolved Battery Models into System Simulations; A Monte Carlo Model for Li-Ion Battery Life Projections; Thermal Behavior of Large Lithium-Ion Cells; Thermal Imaging of Aerospace Battery Cells; High Rate Designed 50 Ah Li-Ion Cell for LEO Applications; Evaluation of Corrosion Behavior in Aerospace Lithium-Ion Cells; Performance of AEA 80 Ah Battery Under GEO Profile; LEO Li-Ion Battery Testing; A Review of the Feasibility Investigation of Commercial Laminated Lithium-Ion Polymer Cells for Space Applications; Lithium-Ion Verification Test Program; Panasonic Small Cell Testing for AHPS; Lithium-Ion Small Cell Battery Shorting Study; Low-Earth-Orbit and Geosynchronous-Earth-Orbit Testing of 80 Ah Batteries under Real-Time Profiles; Update on Development of Lithium-Ion Cells for Space Applications at JAXA; Foreign Comparative Technology: Launch Vehicle Battery Cell Testing; 20V, 40 Ah Lithium Ion Polymer Battery for the Spacesuit; Low Temperature Life-Cycle Testing of a Lithium-Ion Battery for Low-Earth-Orbiting Spacecraft; and Evaluation of the Effects of DoD and Charge Rate on a LEO Optimized 50 Ah Li-Ion Aerospace Cell.

  12. Threshold-Based Random Charging Scheme for Decentralized PEV Charging Operation in a Smart Grid.

    PubMed

    Kwon, Ojin; Kim, Pilkee; Yoon, Yong-Jin

    2016-12-26

    Smart grids have been introduced to replace conventional power distribution systems without real time monitoring for accommodating the future market penetration of plug-in electric vehicles (PEVs). When a large number of PEVs require simultaneous battery charging, charging coordination techniques have become one of the most critical factors to optimize the PEV charging performance and the conventional distribution system. In this case, considerable computational complexity of a central controller and exchange of real time information among PEVs may occur. To alleviate these problems, a novel threshold-based random charging (TBRC) operation for a decentralized charging system is proposed. Using PEV charging thresholds and random access rates, the PEVs themselves can participate in the charging requests. As PEVs with a high battery state do not transmit the charging requests to the central controller, the complexity of the central controller decreases due to the reduction of the charging requests. In addition, both the charging threshold and the random access rate are statistically calculated based on the average of supply power of the PEV charging system that do not require a real time update. By using the proposed TBRC with a tolerable PEV charging degradation, a 51% reduction of the PEV charging requests is achieved.

  13. Threshold-Based Random Charging Scheme for Decentralized PEV Charging Operation in a Smart Grid

    PubMed Central

    Kwon, Ojin; Kim, Pilkee; Yoon, Yong-Jin

    2016-01-01

    Smart grids have been introduced to replace conventional power distribution systems without real time monitoring for accommodating the future market penetration of plug-in electric vehicles (PEVs). When a large number of PEVs require simultaneous battery charging, charging coordination techniques have become one of the most critical factors to optimize the PEV charging performance and the conventional distribution system. In this case, considerable computational complexity of a central controller and exchange of real time information among PEVs may occur. To alleviate these problems, a novel threshold-based random charging (TBRC) operation for a decentralized charging system is proposed. Using PEV charging thresholds and random access rates, the PEVs themselves can participate in the charging requests. As PEVs with a high battery state do not transmit the charging requests to the central controller, the complexity of the central controller decreases due to the reduction of the charging requests. In addition, both the charging threshold and the random access rate are statistically calculated based on the average of supply power of the PEV charging system that do not require a real time update. By using the proposed TBRC with a tolerable PEV charging degradation, a 51% reduction of the PEV charging requests is achieved. PMID:28035963

  14. A comparative study of kalman filtering based observer and sliding mode observer for state of charge estimation

    NASA Astrophysics Data System (ADS)

    Ben Sassi, Hicham; Errahimi, Fatima; Es-Sbai, Najia; Alaoui, Chakib

    2018-05-01

    Nowadays, electric mobility is starting to define society and is becoming more and more irreplaceable and essential to daily activities. Safe and durable battery is of a great significance for this type of mobility, hence the increasing interest of research activity oriented to battery studies, in order to assure safe operating mode and to control the battery in case of any abnormal functioning conditions that could damage the battery if not properly managed. Lithium-ion technology is considered the most suitable existing technology for electrical storage, because of their interesting features such as their relatively long cycle life, lighter weight, their high energy density, However, there is a lot of work that is still needed to be done in order to assure safe operating lithium-ion batteries, starting with their internal status monitoring, cell balancing within a battery pack, and thermal management. Tasks that are accomplished by the battery management system (BMS) which uses the state of charge (SOC) as an indicator of the internal charge level of the battery, in order to avoid unpredicted system interruption. Since the state of charge is an inner state of a the battery which cannot be directly measured, a powerful estimation technique is inevitable, in this paper we investigate the performances of tow estimation strategies; kalman filtering based observers and sliding mode observers, both strategies are compared in terms of accuracy, design requirement, and overall performances.

  15. Recent developments in nickel hydrogen technology

    NASA Astrophysics Data System (ADS)

    Beauchamp, R. L.; Dunlop, J. D.

    1988-05-01

    A program to design and develop a multikilowatt-hour nickel hydrogen battery for storing electricity from photovoltaic or other power sources is continuing under a cost sharing contract with Sandia National Laboratories. The challenge has been to dramatically reduce the first cost of the battery to make it economically competitive, on a life-cycle cost basis, with other energy storage batteries used in terrestrial applications. The advantages offered by nickel hydrogen batteries are: (1) long cycle life, (2) no maintenance, and (3) a high tolerance to abuse. The last being the most important, implying that there is no need for a charge controller between the solar array and the battery. This would have a beneficial effect on the installation's long term reliability and cost. It also means that one can take full advantage of the maximum output of the solar array, in contrast to systems where the controller isolates the battery during times of maximum insolation. Couple this to the battery's excellent energy efficiency and there can be a significant reduction in the size of the array. In addition, since the state-of-charge is directly related to pressure, the battery can be used as a load management system.

  16. Fast charging nickel-metal hydride traction batteries

    NASA Astrophysics Data System (ADS)

    Yang, Xiao Guang; Liaw, Bor Yann

    This paper describes the fast charge ability, or "fast rechargeability", of nominal 85 Ah Ni-MH modules under various fast charge conditions, including constant current (CC); typically 1-3C, and constant power (CP) regimes. Our tests revealed that there is no apparent difference between CC and CP fast charge regimes with respect to charge efficiency and time. Following the USABC Electric Vehicle Battery Test Procedures Manual (Revision 2, 1996), we demonstrated that we were able to return 40% state of charge (SOC) from 60% depth of discharge (DOD) to 20% DOD within 15 min. Most importantly, we found that the internal pressure of the cell is the most critical parameter in the control of the fast charge process and the safe operation of the modules.

  17. 29 CFR 1926.441 - Batteries and battery charging.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Batteries and battery charging. 1926.441 Section 1926.441... for Special Equipment § 1926.441 Batteries and battery charging. (a) General requirements—(1) Batteries of the unsealed type shall be located in enclosures with outside vents or in well ventilated rooms...

  18. 29 CFR 1926.441 - Batteries and battery charging.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Batteries and battery charging. 1926.441 Section 1926.441... for Special Equipment § 1926.441 Batteries and battery charging. (a) General requirements—(1) Batteries of the unsealed type shall be located in enclosures with outside vents or in well ventilated rooms...

  19. 29 CFR 1926.441 - Batteries and battery charging.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Batteries and battery charging. 1926.441 Section 1926.441... for Special Equipment § 1926.441 Batteries and battery charging. (a) General requirements—(1) Batteries of the unsealed type shall be located in enclosures with outside vents or in well ventilated rooms...

  20. 29 CFR 1926.441 - Batteries and battery charging.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Batteries and battery charging. 1926.441 Section 1926.441... for Special Equipment § 1926.441 Batteries and battery charging. (a) General requirements—(1) Batteries of the unsealed type shall be located in enclosures with outside vents or in well ventilated rooms...

  1. 29 CFR 1926.441 - Batteries and battery charging.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Batteries and battery charging. 1926.441 Section 1926.441... for Special Equipment § 1926.441 Batteries and battery charging. (a) General requirements—(1) Batteries of the unsealed type shall be located in enclosures with outside vents or in well ventilated rooms...

  2. Instantaneous charging & discharging cycle analysis of a novel supercapacitor based energy harvesting circuit

    NASA Astrophysics Data System (ADS)

    Khan, MD Shahrukh Adnan; Kuni, Sharsad Kara; Rajkumar, Rajprasad; Syed, Anas; Hawladar, Masum; Rahman, Md. Moshiur

    2017-12-01

    In this paper, an extensive effort has been made to design and develop a prototype in a laboratory setup environment in order to investigate experimentally the response of a novel Supercapacitor based energy harvesting circuit; particularly the phenomena of instantaneous charging and discharging cycle is analysed. To maximize battery lifespan and storage capacity, charging/discharging cycles need to be optimized in such a way, it ultimately enhances the system performances reliably. Keeping this into focus, an Arduino-MOSFET based control system is developed to charge the Supercapacitor from a low wind Vertical Axis Turbine (VAWT) and discharge it through a 6V battery. With a wind speed of 5m/s, the wind turbine requires approximately 8.1 hours to charge the 6V battery through Supercapacitor bank that constitutes 18 cycles in which each cycle consumes 27 minutes. The overall performance of the proposed system was quite convincing in a sense that the efficiency of the developed Energy Harvesting Circuit EHC raises to 19% in comparison to direct charging of the battery from the Vertical wind turbine. At low wind speed, such value of efficiency margin is quite encouraging which essentially validates the system design.

  3. Design of a hybrid battery charger system fed by a wind-turbine and photovoltaic power generators.

    PubMed

    Chang Chien, Jia-Ren; Tseng, Kuo-Ching; Yan, Bo-Yi

    2011-03-01

    This paper is aimed to develop a digital signal processor (DSP) for controlling a solar cell and wind-turbine hybrid charging system. The DSP consists of solar cells, a wind turbine, a lead acid battery, and a buck-boost converter. The solar cells and wind turbine serve as the system's main power sources and the battery as an energy storage element. The output powers of solar cells and wind turbine have large fluctuations with the weather and climate conditions. These unstable powers can be adjusted by a buck-boost converter and thus the most suitable output powers can be obtained. This study designs a booster by using a dsPIC30F4011 digital signal controller as a core processor. The DSP is controlled by the perturbation and observation methods to obtain an effective energy circuit with a full 100 W charging system. Also, this DSP can, day and night, be easily controlled and charged by a simple program, which can change the state of the system to reach a flexible application based on the reading weather conditions.

  4. Advanced Cell-Level Control for Extending Electric Vehicle Battery Pack Lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehman, M. Muneeb Ur; Zhang, Fan; Evzelman, Michael

    A cell-level control approach for electric vehicle battery packs is presented that enhances traditional battery balancing goals to not only provide cell balancing but also achieve significant pack lifetime extension. These goals are achieved by applying a new life-prognostic based control algorithm that biases individual cells differently based on their state of charge, capacity and internal resistance. The proposed life control approach reduces growth in capacity mismatch typically seen in large battery packs over life while optimizing usable energy of the pack. The result is a longer lifetime of the overall pack and a more homogeneous distribution of cell capacitiesmore » at the end of the first life for vehicle applications. Active cell balancing circuits and associated algorithms are used to accomplish the cell-level life extension objectives. This paper presents details of the cell-level control approach, selection and design of the active balancing system, and low-complexity state-of-charge, capacity, and series-resistance estimation algorithms. A laboratory prototype is used to demonstrate the proposed control approach. The prototype consists of twenty-one 25 Ah Panasonic lithium-Ion NMC battery cells from a commercial electric vehicle and an integrated BMS/DC-DC system that provides 750 W to the vehicle low voltage auxiliary loads.« less

  5. Advanced Cell-Level Control for Extending Electric Vehicle Battery Pack Lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehman, M. Muneeb Ur; Zhang, Fan; Evzelman, Michael

    2017-02-16

    A cell-level control approach for electric vehicle battery packs is presented that enhances traditional battery balancing goals to not only provide cell balancing but also achieve significant pack lifetime extension. These goals are achieved by applying a new life-prognostic based control algorithm that biases individual cells differently based on their state of charge, capacity and internal resistance. The proposed life control approach reduces growth in capacity mismatch typically seen in large battery packs over life while optimizing usable energy of the pack. The result is a longer lifetime of the overall pack and a more homogeneous distribution of cell capacitiesmore » at the end of the first life for vehicle applications. Active cell balancing circuits and associated algorithms are used to accomplish the cell-level life extension objectives. This paper presents details of the cell-level control approach, selection and design of the active balancing system, and low-complexity state-of-charge, capacity, and series-resistance estimation algorithms. A laboratory prototype is used to demonstrate the proposed control approach. The prototype consists of twenty-one 25 Ah Panasonic lithium-Ion NMC battery cells from a commercial electric vehicle and an integrated BMS/DC-DC system that provides 750 W to the vehicle low voltage auxiliary loads.« less

  6. Advanced valve-regulated lead-acid batteries for hybrid vehicle applications

    NASA Astrophysics Data System (ADS)

    Soria, M. L.; Trinidad, F.; Lacadena, J. M.; Sánchez, A.; Valenciano, J.

    Future vehicle applications require the development of reliable and long life batteries operating under high-rate partial-state-of-charge (HRPSoC) working conditions. Work presented in this paper deals with the study of different design parameters, manufacturing process and charging conditions of spiral wound valve-regulated lead-acid (VRLA) batteries, in order to improve their reliability and cycle life for hybrid vehicle applications. Test results show that both electrolyte saturation and charge conditions have a strong effect on cycle life at HRPSoC performance, presumably because water loss finally accelerates battery failure, which is linked to irreversible sulphation in the upper part of the negative electrodes. By adding expanded graphite to the negative active mass formulation, increasing the electrolyte saturation degree (>95%) and controlling overcharge during regenerative braking periods (voltage limitation and occasional boosting) it is possible to achieve up to 220,000 cycles at 2.5% DOD, equivalent to 5500 capacity throughput. These results could make lead acid batteries a strong competitor for HEV applications versus other advanced systems such as Ni-MH or Li-ion batteries.

  7. 77 FR 4618 - NHTSA Activities Under the United Nations World Forum for the Harmonization of Vehicle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... electrical components, including lithium-ion and other types of batteries, their performance during normal..., engine coolant temp, lighting switch control, position lamp and battery charging. The remaining five are... develop the GTR, which would apply to all types of hybrid and pure electric vehicles, their batteries, and...

  8. 46 CFR 112.55-10 - Storage battery charging.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storage battery charging. 112.55-10 Section 112.55-10... AND POWER SYSTEMS Storage Battery Installation § 112.55-10 Storage battery charging. (a) Each storage battery installation for emergency lighting and power, and starting batteries for an emergency diesel or...

  9. 46 CFR 112.55-10 - Storage battery charging.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Storage battery charging. 112.55-10 Section 112.55-10... AND POWER SYSTEMS Storage Battery Installation § 112.55-10 Storage battery charging. (a) Each storage battery installation for emergency lighting and power, and starting batteries for an emergency diesel or...

  10. 46 CFR 112.55-10 - Storage battery charging.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Storage battery charging. 112.55-10 Section 112.55-10... AND POWER SYSTEMS Storage Battery Installation § 112.55-10 Storage battery charging. (a) Each storage battery installation for emergency lighting and power, and starting batteries for an emergency diesel or...

  11. 46 CFR 112.55-10 - Storage battery charging.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Storage battery charging. 112.55-10 Section 112.55-10... AND POWER SYSTEMS Storage Battery Installation § 112.55-10 Storage battery charging. (a) Each storage battery installation for emergency lighting and power, and starting batteries for an emergency diesel or...

  12. 46 CFR 112.55-10 - Storage battery charging.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Storage battery charging. 112.55-10 Section 112.55-10... AND POWER SYSTEMS Storage Battery Installation § 112.55-10 Storage battery charging. (a) Each storage battery installation for emergency lighting and power, and starting batteries for an emergency diesel or...

  13. Applications technology satellites battery and power system design

    NASA Technical Reports Server (NTRS)

    Ford, F. E.; Bemis, B.

    1977-01-01

    A summary of the ATS battery design which is onboard the Applications Technology Satellite (ATS) is provided. The 15 ampere hour nickel cadmium cells were manufactured by Gulton, 19 series connected cells per battery, and there are two batteries in each spacecraft. The operating design life was two years in a synchronous orbit, and a maximum depth of discharge of 50 percent. The design temperature for the batteries in the spacecraft was 0 to 25 C, and the charge control consisted of 1 volt versus temperature on a constant percentage voltage. Also, C/10 current limit, and a commandable trickle charge rate, using C/20 or C/60. The undervoltage was sent across a 9 cell and a 10 cell group, and it was set at one volt average per group on either group.

  14. Reconditioning of Batteries on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hajela, Gyan; Cohen, Fred; Dalton, Penni

    2004-01-01

    Primary source of electric power for the International Space Station (ISS) is the photovoltaic module (PVM). At assembly complete stage, the ISS will be served by 4 PVMs. Each PVM contains two independent power channels such that one failure will result in loss of only one power channel. During early stages of assembly, the ISS is served by only one PVM designated as P6. Solar arrays are used to convert solar flux into electrical power. Nickel hydrogen batteries are used to store electrical power for use during periods when the solar input is not adequate to support channel loads. Batteries are operated per established procedures that ensure that they are maintained within specified temperature limits, charge current is controlled to conform to a specified charge profile, and battery voltages are maintained within specified limits. Both power channels on the PVM P6 have been operating flawlessly since December 2000 with 100 percent power availability. All components, including batteries, are monitored regularly to ensure that they are operating within specified limits and to trend their wear out and age effects. The paper briefly describes the battery trend data. Batteries have started to show some effects of aging and a battery reconditioning procedure is being evaluated at this time. Reconditioning is expected to reduce cell voltage divergence and provide data that can be used to update the state of charge (SOC) computation in the software to account for battery age. During reconditioning, each battery, one at a time, will be discharged per a specified procedure and then returned to a full state of charge. The paper describes the reconditioning procedure and the expected benefits. The reconditioning procedures have been thoroughly coordinated by all affected technical teams and approved by all required boards. The reconditioning is tentatively scheduled for September 2004.

  15. Battery materials for ultrafast charging and discharging.

    PubMed

    Kang, Byoungwoo; Ceder, Gerbrand

    2009-03-12

    The storage of electrical energy at high charge and discharge rate is an important technology in today's society, and can enable hybrid and plug-in hybrid electric vehicles and provide back-up for wind and solar energy. It is typically believed that in electrochemical systems very high power rates can only be achieved with supercapacitors, which trade high power for low energy density as they only store energy by surface adsorption reactions of charged species on an electrode material. Here we show that batteries which obtain high energy density by storing charge in the bulk of a material can also achieve ultrahigh discharge rates, comparable to those of supercapacitors. We realize this in LiFePO(4) (ref. 6), a material with high lithium bulk mobility, by creating a fast ion-conducting surface phase through controlled off-stoichiometry. A rate capability equivalent to full battery discharge in 10-20 s can be achieved.

  16. Fast charging of lithium-ion batteries at all temperatures.

    PubMed

    Yang, Xiao-Guang; Zhang, Guangsheng; Ge, Shanhai; Wang, Chao-Yang

    2018-06-25

    Fast charging is a key enabler of mainstream adoption of electric vehicles (EVs). None of today's EVs can withstand fast charging in cold or even cool temperatures due to the risk of lithium plating. Efforts to enable fast charging are hampered by the trade-off nature of a lithium-ion battery: Improving low-temperature fast charging capability usually comes with sacrificing cell durability. Here, we present a controllable cell structure to break this trade-off and enable lithium plating-free (LPF) fast charging. Further, the LPF cell gives rise to a unified charging practice independent of ambient temperature, offering a platform for the development of battery materials without temperature restrictions. We demonstrate a 9.5 Ah 170 Wh/kg LPF cell that can be charged to 80% state of charge in 15 min even at -50 °C (beyond cell operation limit). Further, the LPF cell sustains 4,500 cycles of 3.5-C charging in 0 °C with <20% capacity loss, which is a 90× boost of life compared with a baseline conventional cell, and equivalent to >12 y and >280,000 miles of EV lifetime under this extreme usage condition, i.e., 3.5-C or 15-min fast charging at freezing temperatures.

  17. A monitoring system based on electric vehicle three-stage wireless charging

    NASA Astrophysics Data System (ADS)

    Hei, T.; Liu, Z. Z.; Yang, Y.; Hongxing, CHEN; Zhou, B.; Zeng, H.

    2016-08-01

    An monitoring system for three-stage wireless charging was designed. The vehicle terminal contained the core board which was used for battery information collection and charging control and the power measurement and charging control core board was provided at the transmitting terminal which communicated with receiver by Bluetooth. A touch-screen display unit was designed based on MCGS (Monitor and Control Generated System) to simulate charging behavior and to debug the system conveniently. The practical application shown that the system could be stable and reliable, and had a favorable application foreground.

  18. Solar Powered Aircraft, Photovoltaic Array/Battery System Tabletop Demonstration: Design and Operation Manual

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)

    2000-01-01

    A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.

  19. Electric motorcycle charging station powered by solar energy

    NASA Astrophysics Data System (ADS)

    Siriwattanapong, Akarawat; Chantharasenawong, Chawin

    2018-01-01

    This research proposes a design and verification of an off-grid photovoltaic system (PVS) for electric motorcycle charging station to be located in King’s Mongkut’s University of Technology Thonburi, Bangkok, Thailand. The system is designed to work independently (off-grid) and it must be able to fully charge the batteries of a typical passenger electric motorcycle every evening. A 1,000W Toyotron electric motorcycle is chosen for this study. It carries five units of 12.8V 20Ah batteries in series; hence its maximum energy requirement per day is 1,200Wh. An assessment of solar irradiation data and the Generation Factor in Bangkok, Thailand suggests that the charging system consists of one 500W PV panel, an MPPT charge controller, 48V 150Ah battery, a 1,000W DC to AC inverter and other safety devices such as fuses and breakers. An experiment is conducted to verify the viability of the off-grid PVS charging station by collecting the total daily energy generation data in the raining season and winter. The data suggests that the designed off-grid solar power charging station for electric motorcycle is able to supply sufficient energy for daily charging requirements.

  20. Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles

    PubMed Central

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented. PMID:22163697

  1. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    PubMed

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  2. A high-performance transcutaneous battery charger for medical implants.

    PubMed

    Artan, N; Vanjani, Hitesh; Vashist, Gurudath; Fu, Zhen; Bhakthavatsala, Santosh; Ludvig, Nandor; Medveczky, Geza; Chao, H

    2010-01-01

    As new functionality is added to the implantable devices, their power requirements also increase. Such power requirements make it hard for keeping such implants operational for long periods by non-rechargeable batteries. This result in a need for frequent surgeries to replace these batteries. Rechargeable batteries can satisfy the long-term power requirements of these new functions. To minimize the discomfort to the patients, the recharging of the batteries should be as infrequent as possible. Traditional battery charging methods have low battery charging efficiency. This means they may limit the amount of charge that can be delivered to the device, speeding up the depletion of the battery and forcing frequent recharging. In this paper, we evaluate the suitability of a state-of-the-art general purpose charging method called current-pumped battery charger (CPBC) for implant applications. Using off-the-shelf components and with minimum optimization, we prototyped a proof-of-concept transcutaenous battery charger based on CPBC and show that the CPBC can charge a 100 mAh battery transcutaneously within 137 minutes with at most 2.1°C increase in tissue temperature even with a misalignment of 1.3 cm in between the coils, while keeping the battery charging efficiency at 85%.

  3. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles.

    PubMed

    Hwang, Jenn-Jiang; Hu, Jia-Sheng; Lin, Chih-Hong

    2015-01-01

    The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility.

  4. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles

    PubMed Central

    Hwang, Jenn-Jiang; Lin, Chih-Hong

    2015-01-01

    The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility. PMID:26236771

  5. Charging, power management, and battery degradation mitigation in plug-in hybrid electric vehicles: A unified cost-optimal approach

    NASA Astrophysics Data System (ADS)

    Hu, Xiaosong; Martinez, Clara Marina; Yang, Yalian

    2017-03-01

    Holistic energy management of plug-in hybrid electric vehicles (PHEVs) in smart grid environment constitutes an enormous control challenge. This paper responds to this challenge by investigating the interactions among three important control tasks, i.e., charging, on-road power management, and battery degradation mitigation, in PHEVs. Three notable original contributions distinguish our work from existing endeavors. First, a new convex programming (CP)-based cost-optimal control framework is constructed to minimize the daily operational expense of a PHEV, which seamlessly integrates costs of the three tasks. Second, a straightforward but useful sensitivity assessment of the optimization outcome is executed with respect to price changes of battery and energy carriers. The potential impact of vehicle-to-grid (V2G) power flow on the PHEV economy is eventually analyzed through a multitude of comparative studies.

  6. Adiabatic charging of nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Lurie, Chuck; Foroozan, S.; Brewer, Jeff; Jackson, Lorna

    1995-01-01

    Battery management during prelaunch activities has always required special attention and careful planning. The transition from nickel-cadium to nickel-hydrogen batteries, with their high self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, has made this aspect of spacecraft battery management even more challenging. The AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure efficient charging, was considered and proved to be difficult and expensive. Alternative approaches were evaluated. Optimized charging, in the absence of cooling, appeared promising and was investigated. Initial testing was conducted to demonstrate the feasibility of the 'Adiabatic Charging' approach. Feasibility was demonstrated and additional testing performed to provide a quantitative, parametric data base. The assumption that the battery is in an adiabatic environment during prelaunch charging is a conservative approximation because the battery will transfer some heat to its surroundings by convective air cooling. The amount is small compared to the heat dissipated during battery overcharge. Because the battery has a large thermal mass, substantial overcharge can occur before the cells get too hot to charge efficiently. The testing presented here simulates a true adiabatic environment. Accordingly the data base may be slightly conservative. The adiabatic charge methodology used in this investigation begins with stabilizing the cell at a given starting temperature. The cell is then fully insulated on all sides. Battery temperature is carefully monitored and the charge terminated when the cell temperature reaches 85 F. Charging has been evaluated with starting temperatures from 55 to 75 F.

  7. Further demonstration of the VRLA-type UltraBattery under medium-HEV duty and development of the flooded-type UltraBattery for micro-HEV applications

    NASA Astrophysics Data System (ADS)

    Furukawa, J.; Takada, T.; Monma, D.; Lam, L. T.

    The UltraBattery has been invented by the CSIRO Energy Technology in Australia and has been developed and produced by the Furukawa Battery Co., Ltd., Japan. This battery is a hybrid energy storage device which combines a super capacitor and a lead-acid battery in single unit cells, taking the best from both technologies without the need of extra, expensive electronic controls. The capacitor enhances the power and lifespan of the lead-acid battery as it acts as a buffer during high-rate discharging and charging, thus enabling it to provide and absorb charge rapidly during vehicle acceleration and braking. The laboratory results of the prototype valve-regulated UltraBatteries show that the capacity, power, available energy, cold cranking and self-discharge of these batteries have met, or exceeded, all the respective performance targets set for both minimum and maximum power-assist HEVs. The cycling performance of the UltraBatteries under micro-, mild- and full-HEV duties is at least four times longer than that of the state-of-the-art lead-acid batteries. Importantly, the cycling performance of UltraBatteries is proven to be comparable or even better than that of the Ni-MH cells. On the other hand, the field trial of UltraBatteries in the Honda Insight HEV shows that the vehicle has surpassed 170,000 km and the batteries are still in a healthy condition. Furthermore, the UltraBatteries demonstrate very good acceptance of the charge from regenerative braking even at high state-of-charge, e.g., 70% during driving. Therefore, no equalization charge is required for the UltraBatteries during field trial. The HEV powered by UltraBatteries gives slightly higher fuel consumption (cf., 4.16 with 4.05 L/100 km) and CO 2 emissions (cf., 98.8 with 96 g km -1) compared with that by Ni-MH cells. There are no differences in driving experience between the Honda Insight powered by UltraBatteries and by Ni-MH cells. Given such comparable performance, the UltraBattery pack costs considerably less - only 20-40% of that of the Ni-MH pack by one estimate. In parallel with the field trial, a similar 144-V valve-regulated UltraBattery pack was also evaluated under simulated medium-HEV duty in our laboratories. In this study, the laboratory performance of the 144-V valve-regulated UltraBattery pack under simulated medium-HEV duty and that of the recently developed flooded-type UltraBattery under micro-HEV duty will be discussed. The flooded-type UltraBattery is expected to be favorable to the micro-HEVs because of reduced cost compared with the equivalent valve-regulated counterpart.

  8. Alternative Fuels Data Center: How Do All-Electric Cars Work?

    Science.gov Websites

    charge while charging the pack. Power electronics controller: This unit manages the flow of electrical of the engine, electric motor, power electronics, and other components. Traction battery pack: Stores

  9. Method and apparatus for indicating electric charge remaining in batteries based on electrode weight and center of gravity

    DOEpatents

    Rouhani, S. Zia

    1996-01-01

    In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery.

  10. Method and apparatus for indicating electric charge remaining in batteries based on electrode weight and center of gravity

    DOEpatents

    Rouhani, S.Z.

    1996-12-03

    In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery. 35 figs.

  11. Thermal management of batteries

    NASA Astrophysics Data System (ADS)

    Gibbard, H. F.; Chen, C.-C.

    Control of the internal temperature during high rate discharge or charge can be a major design problem for large, high energy density battery systems. A systematic approach to the thermal management of such systems is described for different load profiles based on: thermodynamic calculations of internal heat generation; calorimetric measurements of heat flux; analytical and finite difference calculations of the internal temperature distribution; appropriate system designs for heat removal and temperature control. Examples are presented of thermal studies on large lead-acid batteries for electrical utility load levelling and nickel-zinc and lithium-iron sulphide batteries for electric vehicle propulsion.

  12. A structural study of solid electrolyte interface on negative electrode of lithium-Ion battery by electron microscopy.

    PubMed

    Matsushita, Tadashi; Watanabe, Jiro; Nakao, Tatsuya; Yamashita, Seiichi

    2014-11-01

    For the last decades, the performance of the lithium-ion battery (LIB) has been significantly improved and its applications have been expanding rapidly. However, its performance has yet to be enhanced.In the lithium-ion battery development, it is important to elucidate the electrode structure change in detail during the charge and discharge cycling. In particular, solid electrolyte interface (SEI) formed by decomposition of the electrolytes on the graphite negative electrode surface should play an important role for battery properties. Therefore, it is essential to control the structure and composition of SEI to improve the battery performance. Here, we conducted a scanning electron microscope (SEM) and transmission electron microscope (TEM) study to elucidate the structures of the SEI during the charge and discharge process using LiNi1/3Co1/3Mn1/3O2 [1] cathode and graphite anode. [2] Since SEI is a lithium-containing compound with high activity, it was observed without being exposed to the atmosphere. The electrodes including SEI were sampled after dismantling batteries with cutoff voltages of 3V and 4.2V for the charge process and 3V for the discharge process. Fig.1 shows SEM images of the graphite electrode surface during the charge and discharge process. The change of the SEI structure during the process was clearly observed. Further, TEM images showed that the SEI grew thicker during the charge process and becomes thinner when discharged. These results with regard to the reversible SEI structure could give a new insight for the battery development.jmicro;63/suppl_1/i21/DFU056F1F1DFU056F1Fig. 1.SEM images of the graphite electrode surface:(a) before charge process;(b) with charge-cutoff voltage of 3.0V; (c) with charge-cutoff voltage of 4.2V; (d) with discharge-cutoff voltage of 3.0V. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Silver-silver sulfate reference electrodes for use in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Ruetschi, Paul

    Electrochemical properties of silver-silver sulfate reference electrodes for lead-acid batteries are described, and the following possible applications discussed: Determination of individual capacities of positive and negative plates. Monitoring individual electrode behavior during deep discharge and cell reversal. Optimization charge or discharge parameters, by controlling the current such that pre-determined limits of positive or negative half-cell potential are respected. Observation of acid concentration differences, for example due to acid stratification, by measuring diffusion potentials (concentration-cell voltages). Detection of defective cells, and defective plate sets, in a string of cells, at the end of their service life. Silver-silver sulfate reference electrodes, permanently installed in lead-acid cells, may be a means to improve battery management, and therewith to improve reliability and service life. In vented batteries, reference electrodes may be used to limit positive plate polarization during charge, or float-charge. Limiting the positive half-cell potential to an upper, pre-set value would permit to keep anodic corrosion as low as possible. During cycling, discharge could be terminated when the half-cell potential of the positive electrode has dropped to a pre-set limit. This would prevent excessive discharge of the positive electrodes, which could result in an improvement of cycle life. In valve-regulated batteries, reference electrodes may be used to adjust float-charge conditions such as to assure sufficient cathodic polarization of the negative electrodes, in order to avoid sulfation. The use of such reference electrodes could be beneficial particularly in multi-cell batteries, with overall voltages above 12 V, operated in a partial-state-of-charge.

  14. Understanding Side Reactions in K–O 2 Batteries for Improved Cycle Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xiaodi; Lau, Kah Chun; Yu, Mingzhe

    2014-10-20

    Superoxide based metal-air (or metal-oxygen) batteries, including potassium and sodium-oxygen batteries, have emerged as promising alternative chemistries in the metal-air battery family because of much improved round-trip efficiencies (>90%). In order to improve the cycle life of these batteries, it is crucial to understand and control the side reactions between the electrodes and the electrolyte. For potassium-oxygen batteries using ether-based electrolytes, the side reactions on the potassium anode have been identified as the main cause of battery failure. The composition of the side products formed on the anode, including some reaction intermediates, have been identified and quantified. Combined experimental studiesmore » and density functional theory (DFT) calculations show the side reactions are likely driven by the interaction of potassium with ether molecules and the crossover of oxygen from the cathode. To inhibit these side reactions, the incorporation of a polymeric potassium ion selective membrane (Nafion-K+) as a battery separator is demonstrated that significantly improves the battery cycle life. The K-O-2 battery with the Nafion-K+ separator can be discharged and charged for more than 40 cycles without increases in charging overpotential.« less

  15. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-08-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium-air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications.

  16. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    PubMed Central

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-01-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium–air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications. PMID:26311589

  17. Research on power equalization using a low-loss DC-DC chopper for lithium-ion batteries in electric vehicle

    NASA Astrophysics Data System (ADS)

    Wei, Y. W.; Liu, G. T.; Xiong, S. N.; Cheng, J. Z.; Huang, Y. H.

    2017-01-01

    In the near future, electric vehicle is entirely possible to replace traditional cars due to its zero pollution, small power consumption and low noise. Lithium-ion battery, which owns lots of advantages such as lighter and larger capacity and longer life, has been widely equipped in different electric cars all over the world. One disadvantage of this energy storage device is state of charge (SOC) difference among these cells in each series branch. If equalization circuit is not allocated for series-connected batteries, its safety and lifetime are declined due to over-charge or over-discharge happened, unavoidably. In this paper, a novel modularized equalization circuit, based on DC-DC chopper, is proposed to supply zero loss in theory. The proposed circuit works as an equalizer when Lithium-ion battery pack is charging or discharging or standing idle. Theoretical analysis and control method have been finished, respectively. Simulation and small scale experiments are applied to verify its real effect.

  18. Charging performance of automotive batteries-An underestimated factor influencing lifetime and reliable battery operation

    NASA Astrophysics Data System (ADS)

    Sauer, Dirk Uwe; Karden, Eckhard; Fricke, Birger; Blanke, Holger; Thele, Marc; Bohlen, Oliver; Schiffer, Julia; Gerschler, Jochen Bernhard; Kaiser, Rudi

    Dynamic charge acceptance and charge acceptance under constant voltage charging conditions are for two reasons essential for lead-acid battery operation: energy efficiency in applications with limited charging time (e.g. PV systems or regenerative braking in vehicles) and avoidance of accelerated ageing due to sulphation. Laboratory tests often use charge regimes which are beneficial for the battery life, but which differ significantly from the operating conditions in the field. Lead-acid batteries in applications with limited charging time and partial-state-of-charge operation are rarely fully charged due to their limited charge acceptance. Therefore, they suffer from sulphation and early capacity loss. However, when appropriate charging strategies are applied most of the lost capacity and thus performance for the user may be recovered. The paper presents several aspects of charging regimes and charge acceptance. Theoretical and experimental investigations show that temperature is the most critical parameter. Full charging within short times can be achieved only at elevated temperatures. A strong dependency of the charge acceptance during charging pulses on the pre-treatment of the battery can be observed, which is not yet fully understood. But these effects have a significant impact on the fuel efficiency of micro-hybrid electric vehicles.

  19. Battery model for electrical power system energy balance

    NASA Technical Reports Server (NTRS)

    Hafen, D. P.

    1983-01-01

    A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.

  20. Pocket nickel cadmium cell and battery evaluation

    NASA Technical Reports Server (NTRS)

    Lear, J. W.

    1980-01-01

    The Nickel Cadmium 129-ampere hour cell was tested in order to characterize the cell under controlled conditions. Results of charge characterization and discharge characterization are reported. Ampere hour efficiency, open circuit stand, and cycle life operation results are included. The battery is briefly described.

  1. A solar charge and discharge controller for wireless sensor nodes

    NASA Astrophysics Data System (ADS)

    Dang, Yibo; Shen, Shu

    2018-02-01

    Aiming at the energy supply problem that restricts the life of wireless sensor nodes, a solar energy charge and discharge controller suitable for wireless sensor nodes is designed in this paper. A Microcontroller is used as the core of the solar charge and discharge controller. The software of the solar charge and discharge controller adopts the C language to realize the program of the main control module. Firstly, the function of monitoring solar panel voltage and lithium battery voltage are simulated by Protel software, and the charge time is tested in cloudy and overcast outdoor environment. The results of the experiment show that our controller meets the power supply demand of wireless sensor nodes.

  2. Optimal management of batteries in electric systems

    DOEpatents

    Atcitty, Stanley; Butler, Paul C.; Corey, Garth P.; Symons, Philip C.

    2002-01-01

    An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

  3. Battery-Charge-State Model

    NASA Technical Reports Server (NTRS)

    Vivian, H. C.

    1985-01-01

    Charge-state model for lead/acid batteries proposed as part of effort to make equivalent of fuel gage for battery-powered vehicles. Models based on equations that approximate observable characteristics of battery electrochemistry. Uses linear equations, easier to simulate on computer, and gives smooth transitions between charge, discharge, and recuperation.

  4. Lithium-ion battery diagnostic and prognostic techniques

    DOEpatents

    Singh, Harmohan N.

    2009-11-03

    Embodiments provide a method and a system for determining cell imbalance condition of a multi-cell battery including a plurality of cell strings. To determine a cell imbalance condition, a charge current is applied to the battery and is monitored during charging. The charging time for each cell string is determined based on the monitor of the charge current. A charge time difference of any two cell strings in the battery is used to determine the cell imbalance condition by comparing with a predetermined acceptable charge time difference for the cell strings.

  5. Battery Power Management in Heavy-duty HEVs based on the Estimated Critical Surface Charge

    DTIC Science & Technology

    2011-03-01

    health prospects without any penalty on fuel efficiency. Keywords: Lithium - ion battery ; power management; critical surface charge; Lithium-ion...fuel efficiency. 15. SUBJECT TERMS Lithium - ion battery ; power management; critical surface charge; Lithium-ion concentration; estimation; extended...Di Domenico, D., Fiengo, G., and Stefanopoulou, A. (2008) ’ Lithium - ion battery state of charge estimation with a kalman filter based on a

  6. TOPEX electrical power system

    NASA Technical Reports Server (NTRS)

    Chetty, P. R. K.; Roufberg, Lew; Costogue, Ernest

    1991-01-01

    The TOPEX mission requirements which impact the power requirements and analyses are presented. A description of the electrical power system (EPS), including energy management and battery charging methods that were conceived and developed to meet the identified satellite requirements, is included. Analysis of the TOPEX EPS confirms that all of its electrical performance and reliability requirements have been met. The TOPEX EPS employs the flight-proven modular power system (MPS) which is part of the Multimission Modular Spacecraft and provides high reliability, abbreviated development effort and schedule, and low cost. An energy balance equation, unique to TOPEX, has been derived to confirm that the batteries will be completely recharged following each eclipse, under worst-case conditions. TOPEX uses three NASA Standard 50AH Ni-Cd batteries, each with 22 cells in series. The MPS contains battery charge control and protection based on measurements of battery currents, voltages, temperatures, and computed depth-of-discharge. In case of impending battery depletion, the MPS automatically implements load shedding.

  7. Design and evaluation of a microgrid for PEV charging with flexible distribution of energy sources and storage

    NASA Astrophysics Data System (ADS)

    Pyne, Moinak

    This thesis aspires to model and control, the flow of power in a DC microgrid. Specifically, the energy sources are a photovoltaic system and the utility grid, a lead acid battery based energy storage system and twenty PEV charging stations as the loads. Theoretical principles of large scale state space modeling are applied to model the considerable number of power electronic converters needed for controlling voltage and current thresholds. The energy storage system is developed using principles of neural networks to facilitate a stable and uncomplicated model of the lead acid battery. Power flow control is structured as a hierarchical problem with multiple interactions between individual components of the microgrid. The implementation is done using fuzzy logic with scheduling the maximum use of available solar energy and compensating demand or excess power with the energy storage system, and minimizing utility grid use, while providing multiple speeds of charging the PEVs.

  8. Laboratory evaluation of a pilot cell battery protection system for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.; Thomas, R. D.

    1981-01-01

    An energy storage method for the 3.5 kW battery power system was investigated. The Pilot Cell Battery Protection System was tested for use in photovoltaic power systems and results show that this is a viable method of storage battery control. The method of limiting battery depth of discharge has the following advantages: (1) temperature sensitivity; (2) rate sensitivity; and (3) state of charge indication. The pilot cell concept is of interest in remote stand alone photovoltaic power systems. The battery can be protected from damaging overdischarge by using the proper ratio of pilot cell capacities to main battery capacity.

  9. Nickel-hydrogen battery state of charge during low rate trickle charging

    NASA Technical Reports Server (NTRS)

    Lurie, C.; Foroozan, S.; Brewer, J.; Jackson, L.

    1995-01-01

    Battery temperature increase, due to low rate trickle charging, has been determined experimentally, using a six cell battery module in a test setup simulating the anticipated AXAF-1 prelaunch environment. Test results indicate trickle charge rates less than or equal to the self discharge rate do not increase dissipation beyond that due to the self discharge. Significant trickle charge rates (approximately C/500) result in battery temperatures only a few degrees (F) higher than those observed during periods of open circuit stand.

  10. Thermal behaviors of Ni-MH batteries using a novel impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiao, Pu; Gao, Wenying; Qiu, Xinping; Zhu, Wentao; Sun, Jie; Chen, Liquan

    In this paper, a novel impedance spectroscopy was used to describe the thermal behaviors of Ni-MH batteries. The impedance functions were derived similarly to electric impedance functions. The square of current was treated as a current equivalent and heat-flow as a voltage equivalent. The impedance spectra of batteries during charge showed that the combination of hydrogen and oxygen increased rapidly when charge rate was higher than 0.5 C. Thermal runaway might happen when battery was charged at temperature above 348 K even at a low charge rate. The cycling test showed that the charge efficiency of battery was the highest after cycling at high-rate for 10-100 cycles and decreased after more cycles. Different batteries showed different thermal behaviors which may be caused by the different structures of batteries.

  11. Modeling Stationary Lithium-Ion Batteries for Optimization and Predictive Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kyri A; Shi, Ying; Christensen, Dane T

    Accurately modeling stationary battery storage behavior is crucial to understand and predict its limitations in demand-side management scenarios. In this paper, a lithium-ion battery model was derived to estimate lifetime and state-of-charge for building-integrated use cases. The proposed battery model aims to balance speed and accuracy when modeling battery behavior for real-time predictive control and optimization. In order to achieve these goals, a mixed modeling approach was taken, which incorporates regression fits to experimental data and an equivalent circuit to model battery behavior. A comparison of the proposed battery model output to actual data from the manufacturer validates the modelingmore » approach taken in the paper. Additionally, a dynamic test case demonstrates the effects of using regression models to represent internal resistance and capacity fading.« less

  12. Modeling Stationary Lithium-Ion Batteries for Optimization and Predictive Control: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raszmann, Emma; Baker, Kyri; Shi, Ying

    Accurately modeling stationary battery storage behavior is crucial to understand and predict its limitations in demand-side management scenarios. In this paper, a lithium-ion battery model was derived to estimate lifetime and state-of-charge for building-integrated use cases. The proposed battery model aims to balance speed and accuracy when modeling battery behavior for real-time predictive control and optimization. In order to achieve these goals, a mixed modeling approach was taken, which incorporates regression fits to experimental data and an equivalent circuit to model battery behavior. A comparison of the proposed battery model output to actual data from the manufacturer validates the modelingmore » approach taken in the paper. Additionally, a dynamic test case demonstrates the effects of using regression models to represent internal resistance and capacity fading.« less

  13. Hybrid Engine Powered City Car: Fuzzy Controlled Approach

    NASA Astrophysics Data System (ADS)

    Rahman, Ataur; Mohiuddin, AKM; Hawlader, MNA; Ihsan, Sany

    2017-03-01

    This study describes a fuzzy controlled hybrid engine powered car. The car is powered by the lithium ion battery capacity of 1000 Wh is charged by the 50 cc hybrid engine and power regenerative mode. The engine is operated with lean mixture at 3000 rpm to charge the battery. The regenerative mode that connects with the engine generates electrical power of 500-600 W for the deceleration of car from 90 km/h to 20 km/h. The regenerated electrical power has been used to power the air-conditioning system and to meet the other electrical power. The battery power only used to propel the car. The regenerative power also found charging the battery for longer operation about 40 minutes and more. The design flexibility of this vehicle starts with whole-vehicle integration based on radical light weighting, drag reduction, and accessory efficiency. The energy efficient hybrid engine cut carbon dioxide (CO2) and nitrogen oxides (N2O) emission about 70-80% as the loads on the crankshaft such as cam-follower and its associated rotating components are replaced by electromagnetic systems, and the flywheel, alternator and starter motor are replaced by a motor generator. The vehicle was tested and found that it was able to travel 70 km/litre with the power of hybrid engine.

  14. Implementation of a Battery Health Monitor and Vertical Lift Aircraft Testbed for the Application of an Electrochemisty-Based State of Charge Estimator

    NASA Technical Reports Server (NTRS)

    Potteiger, Timothy R.; Eure, Kenneth W.; Levenstein, David

    2017-01-01

    Prediction methods concerning remaining charge in lithium-ion batteries that power unmanned aerial vehicles are of critical concern for the safe fulfillment of mission objectives. In recent years, lithium-ion batteries have been the power source for both fixed wing and vertical lift electric vehicles. The purpose of this document is to describe in detail the implementation of a battery health monitor for estimating the state of charge of a lithium-ion battery and a lithium-ion polymer battery that is used to power a vertical lift aircraft test-bed. It will be demonstrated that an electro-chemistry based state of charge estimator effectively tracks battery discharge characteristics and may be employed as a useful tool in monitoring battery health.

  15. Constant voltage and constant current control implementation for electric vehicles (evs) wireless charger

    NASA Astrophysics Data System (ADS)

    Tampubolon, Marojahan; Pamungkas, Laskar; Hsieh, Yao Ching; Chiu, Huang Jen

    2018-04-01

    This paper presents the implementation of Constant Voltage (CV) and Constant Current (CC) control for a wireless charger system. A battery charging system needs these control modes to ensure the safety of the battery and the effectiveness of the charging system. Here, the wireless charger system does not employ any post-regulator stage to control the output voltage and output current of the charger. But, it uses a variable frequency control incorporated with a conventional PI control. As a result, the size and the weight of the system are reduced. This paper discusses the brief review of the SS-WPT, control strategy and implementation of the CV and CC control. Experimental hardware with 2kW output power has been performed and tested. The results show that the proposed CV and CC control method works well with the system.

  16. Hubble Space Telescope On-orbit NiH2 Battery Performance

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Krol, Stanley J., Jr.

    2002-01-01

    This paper summarizes the Hubble Space Telescope (HST) nickel-hydrogen (NiH2) battery performance from launch to the present time. Over the life of HST vehicle configuration, charge system degradation and failures together with thermal design limitations have had a significant effect on the capacity of the HST batteries. Changes made to the charge system configuration in order to protect against power system failures and to maintain battery thermal stability resulted in undercharging of the batteries. This undercharging resulted in decreased usable battery capacity as well as battery cell voltage/capacity divergence. This cell divergence was made evident during on-orbit battery capacity measurements by a relatively shallow slope of the discharge curve following the discharge knee. Early efforts to improve the battery performance have been successful. On-orbit capacity measurement data indicates increases in the usable battery capacity of all six batteries as well as improvements in the battery cell voltage/capacity divergence. Additional measures have been implemented to improve battery performance, however, failures within the HST Power Control Unit (PCU) have prevented verification of battery status. As this PCU fault prevents the execution of on-orbit capacity testing, the HST Project has based the battery capacity on trends, which utilizes previous on-orbit battery capacity test data, for science mission and servicing mission planning. The Servicing Mission 38 (SM-3B) in March 2002 replaced the faulty PCU. Following the servicing mission, on-orbit capacity test resumed. A summary of battery performance is reviewed since launch in this paper.

  17. The UltraBattery-A new battery design for a new beginning in hybrid electric vehicle energy storage

    NASA Astrophysics Data System (ADS)

    Cooper, A.; Furakawa, J.; Lam, L.; Kellaway, M.

    The UltraBattery, developed by CSIRO Energy Technology in Australia, is a hybrid energy storage device which combines an asymmetric super-capacitor and a lead-acid battery in single unit cells. This takes the best from both technologies without the need for extra, expensive electronic controls. The capacitor enhances the power and lifespan of the lead-acid battery as it acts as a buffer during high-rate discharging and charging, thus enabling it to provide and absorb charge rapidly during vehicle acceleration and braking. The initial performance of the prototype UltraBatteries was evaluated according to the US FreedomCAR targets and was shown to meet or exceed these in terms of power, available energy, cold cranking and self-discharge set for both minimum and maximum power-assist hybrid electric vehicles (HEVs). Other laboratory cycling tests showed a fourfold improvement over previous state-of-the-art lead-acid batteries under the RHOLAB test profile and better life than commercial nickel/metal hydride (NiMH) cells used in a Honda Insight when tested under the EUCAR HEV profile. As a result of this work, a set of twelve 12 V modules was built by The Furukawa Battery Co., Ltd. in Japan and were fitted into a Honda Insight instead of the NiMH battery by Provector Ltd. The battery pack was fitted with full monitoring and control capabilities and the car was tested at Millbrook Proving Ground under a General Motors road test simulation cycle for an initial target of 50 000 miles which was extended to 100 000 miles. This was completed on 15th January 2008 without any battery problems. Furthermore, the whole test was completed without the need for any conditioning or equalisation of the battery pack.

  18. An Electronic System for Ultra-low Power Hearing Implants

    DTIC Science & Technology

    2013-02-15

    analyzers [1], [2], useful in several hearing systems. 4) We have designed and built a lithium - ion battery -recharging circuit that exploits a novel analog...control strategy with a tanh-like transconductance amplifier to automatically cause the charging in of a lithium - ion battery to transition from

  19. Chopper-controlled discharge life cycling studies on lead-acid batteries

    NASA Technical Reports Server (NTRS)

    Kraml, J. J.; Ames, E. P.

    1982-01-01

    State-of-the-art 6 volt lead-acid golf car batteries were tested. A daily charge/discharge cycling to failure points under various chopper controlled pulsed dc and continuous current load conditions was undertaken. The cycle life and failure modes were investigated for depth of discharge, average current chopper frequency, and chopper duty cycle. It is shown that battery life is primarily and inversely related to depth of discharge and discharge current. Failure mode is characterized by a gradual capacity loss with consistent evidence of cell element aging.

  20. Comparison of Battery Life Across Real-World Automotive Drive-Cycles (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, K.; Earleywine, M.; Wood, E.

    2011-11-01

    Laboratories run around-the-clock aging tests to try to understand as quickly as possible how long new Li-ion battery designs will last under certain duty cycles. These tests may include factors such as duty cycles, climate, battery power profiles, and battery stress statistics. Such tests are generally accelerated and do not consider possible dwell time at high temperatures and states-of-charge. Battery life-predictive models provide guidance as to how long Li-ion batteries may last under real-world electric-drive vehicle applications. Worst-case aging scenarios are extracted from hundreds of real-world duty cycles developed from vehicle travel surveys. Vehicles examined included PHEV10 and PHEV40 EDVsmore » under fixed (28 degrees C), limited cooling (forced ambient temperature), and aggressive cooling (20 degrees C chilled liquid) scenarios using either nightly charging or opportunity charging. The results show that battery life expectancy is 7.8 - 13.2 years for the PHEV10 using a nightly charge in Phoenix, AZ (hot climate), and that the 'aggressive' cooling scenario can extend battery life by 1-3 years, while the 'limited' cooling scenario shortens battery life by 1-2 years. Frequent (opportunity) charging can reduce battery life by 1 year for the PHEV10, while frequent charging can extend battery life by one-half year.« less

  1. Charge Efficiency Tests of Lead/Acid Batteries

    NASA Technical Reports Server (NTRS)

    Rowlette, J. J.

    1984-01-01

    Current, voltage, and gas evolution measured during charge/discharge cycles. Series of standarized tests for evaluating charging efficiency of lead/acid storage batteries described in report. Purpose of tests to provide information for design of battery charger that allows maximum recharge efficiency for electric-vehicle batteries consistent with other operating parameters, such as range, water loss, and cycle life.

  2. Li-Ion Battery and Supercapacitor Hybrid Design for Long Extravehicular Activities

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2013-01-01

    With the need for long periods of extravehicular activities (EVAs) on the Moon or Mars or a near-asteroid, the need for long-performance batteries has increased significantly. The energy requirements for the EVA suit, as well as surface systems such as rovers, have increased significantly due to the number of applications they need to power at the same time. However, even with the best state-of-the-art Li-ion batteries, it is not possible to power the suit or the rovers for the extended period of performance. Carrying a charging system along with the batteries makes it cumbersome and requires a self-contained power source for the charging system that is usually not possible. An innovative method to charge and use the Li-ion batteries for long periods seems to be necessary and hence, with the advent of the Li-ion supercapacitors, a method has been developed to extend the performance period of the Li-ion power system for future exploration applications. The Li-ion supercapacitors have a working voltage range of 3.8 to 2.5 V, and are different from a traditional supercapacitor that typically has a working voltage of 1 V. The innovation is to use this Li-ion supercapacitor to charge Liion battery systems on an as-needed basis. The supercapacitors are charged using solar arrays and have battery systems of low capacity in parallel to be able to charge any one battery system while they provide power to the application. Supercapacitors can safely take up fast charge since the electrochemical process involved is still based on charge separation rather than the intercalation process seen in Li-ion batteries, thus preventing lithium metal deposition on the anodes. The lack of intercalation and eliminating wear of the supercapacitors allows for them to be charged and discharged safely for a few tens of thousands of cycles. The Li-ion supercapacitors can be charged from the solar cells during the day during an extended EVA. The Liion battery used can be half the capacity required for a nominal EVA. The small Li-ion battery can be divided into two parallel modules with independent charging ports that would allow the supercapacitors to charge one battery while the other is providing power to the rover or suit.

  3. Lithium-Ion Battery Failure: Effects of State of Charge and Packing Configuration

    DTIC Science & Technology

    2016-08-22

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6180--16-9689 Lithium - Ion Battery Failure: Effects of State of Charge and Packing...PAGES 17. LIMITATION OF ABSTRACT Lithium - Ion Battery Failure: Effects of State of Charge and Packing Configuration Neil S. Spinner,* Katherine M. Hinnant...Steven G. Tuttle (202) 404-3419 Lithium - ion battery safety remains a significant concern, as battery failure leads to ejection of hazardous materials

  4. Nickel-hydrogen battery state of charge during low rate trickle charging

    NASA Technical Reports Server (NTRS)

    Lurie, C.; Foroozan, S.; Brewer, J.; Jackson, L.

    1996-01-01

    The NASA AXAF-I program requires high battery state of charge at launch. Traditional approaches to providing high state of charge, during prelaunch operations, require significant battery cooling. The use of active cooling, in the AXAF-I prelaunch environment, was considered and proved to be difficult to implement and very expensive. Accordingly alternate approaches were considered. An approach utilizing adiabatic charging and low rate trickle charge, was investigated and proved successful.

  5. Behavior data of battery and battery pack SOC estimation under different working conditions.

    PubMed

    Zhang, Xu; Wang, Yujie; Yang, Duo; Chen, Zonghai

    2016-12-01

    This article provides the dataset of operating conditions of battery behavior. The constant current condition and the dynamic stress test (DST) condition were carried out to analyze the battery discharging and charging features. The datasets were achieved at room temperature, in April, 2016. The shared data contributes to clarify the battery pack state-of-charge (SOC) and the battery inconsistency, which is also shown in the article of "An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model" (X. Zhang, Y. Wang, D. Yang, et al., 2016) [1].

  6. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.

    2017-09-01

    A thermal management system is necessary to control the operating temperature of the lithium ion batteries in battery packs for electrical and hybrid electrical vehicles. This paper proposes a new battery thermal management system based on one type of phase change material for the battery packs in hybrid electrical vehicles and develops a three dimensional electrochemical thermal model. The temperature distributions of the batteries are investigated under various operating conditions for comparative evaluations. The proposed system boils liquid propane to remove the heat generated by the batteries, and the propane vapor is used to cool the part of the battery that is not covered with liquid propane. The effect on the thermal behavior of the battery pack of the height of the liquid propane inside the battery pack, relative to the height of the battery, is analyzed. The results show that the propane based thermal management system provides good cooling control of the temperature of the batteries under high and continuous charge and discharge cycles at 7.5C.

  7. The Effect of Oxidation and Charge/Discharge rates on Li Plating in All-Solid-State Batteries

    NASA Astrophysics Data System (ADS)

    Yulaev, Alexander; Oleshko, Vladimir; Talin, A. Alec; Leite, Marina S.; Kolmakov, Andrei

    All-solid-state Li-ion batteries (SSLIBs) is currently an extensive area of research due to their promising specific power and energy density properties. Moreover, SSLIBs significantly mitigate the safety risks of the thermal runaway that may occur in liquid electrolyte batteries. We fabricated a model SSLIB, which consists of LiCoO2 cathode layer, LiPON as an electrolyte, and a model ultra-thin carbon anode. Using in operando scanning electron microscopy in conjunction with electrochemical measurements, we found that depending on ambient oxidizing conditions and charging rate, the morphology of plated lithium alternates between quasi-1D and 3D microstructures. In addition, we were able to use an electron beam as a virtual nano-electrode to selectively control the nucleation rate and Li growth structure during the SSLIB charging with high spatial resolution. Finally, we determined the conditions when lithium may be oxidized even during battery cycling under UHV conditions, leading to significant capacity losses. We foresee that our work will provide deeper insights into a safe SSLIB performance under real world operating conditions.

  8. Grid tied PV/battery system architecture and power management for fast electric vehicle charging

    NASA Astrophysics Data System (ADS)

    Badawy, Mohamed O.

    The prospective spread of Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) arises the need for fast charging rates. Higher charging rates requirements lead to high power demands, which cant be always supported by the grid. Thus, the use of on-site sources alongside the electrical grid for EVs charging is a rising area of interest. In this dissertation, a photovoltaic (PV) source is used to support the high power EVs charging. However, the PV output power has an intermittent nature that is dependable on the weather conditions. Thus, battery storage are combined with the PV in a grid tied system, providing a steady source for on-site EVs use in a renewable energy based fast charging station. Verily, renewable energy based fast charging stations should be cost effective, efficient, and reliable to increase the penetration of EVs in the automotive market. Thus, this Dissertation proposes a novel power flow management topology that aims on decreasing the running cost along with innovative hardware solutions and control structures for the developed architecture. The developed power flow management topology operates the hybrid system at the minimum operating cost while extending the battery lifetime. An optimization problem is formulated and two stages of optimization, i.e online and offline stages, are adopted to optimize the batteries state of charge (SOC) scheduling and continuously compensate for the forecasting errors. The proposed power flow management topology is validated and tested with two metering systems, i.e unified and dual metering systems. The results suggested that minimal power flow is anticipated from the battery storage to the grid in the dual metering system. Thus, the power electronic interfacing system is designed accordingly. Interconnecting bi-directional DC/DC converters are analyzed, and a cascaded buck boost (CBB) converter is chosen and tested under 80 kW power flow rates. The need to perform power factor correction (PFC) on the grid power while supplying the battery storage and the DC loads inspired a novel dual switch control structure for the CBB AC/DC converter used in this dissertation. Thus, The CBB operates at a discontinuous capacitor voltage mode (DCVM) and the control structure enables for a non-distorted input current at overlapping output voltage levels. The PFC concept is validated and tested for a single phase rectifier and a 3 phase extension of the proposed concept is presented. Lastly, the PV source used in this study is required to supply power to both, the grid system, and to the DC loads, i.e the battery storage and the EVs. Thus, the PV panels used are connected in series to reach a desirable high voltage on the DC bus output of the PV system. Consequently, a novel differential power processing architecture is proposed in this dissertation. The proposed architecture enables each PV element to operate at its local maximum power point (MPP) while processing only a small portion of its total generated power through the distributed integrated converters. This leads to higher energy capture at an increased conversion efficiency while overcoming the difficulties associated with unmatched MPPs of the PV elements.

  9. The Electric Vehicle Alternative.

    DTIC Science & Technology

    1981-06-01

    7 qc, LIST OF TABLES Table Page 2-1 AIR TRAINING COMMAND EV DEMONSTRATION PROGRAM 30 3-1 COMPUTATION FOR DERIVATION OF THE COMBINED RELIABILITY...batteries wear out quickly be- cause the zinc they use gets dissapated in their charging/discharging cycle. GM plans to have such problems solved by 1985...with how the G & W battery controls the release of poi- sonous chlorine gas in the case of an accident.. Unlike the lead-acid battery, the zinc

  10. Simulation of electric vehicles with hybrid power systems

    NASA Astrophysics Data System (ADS)

    Burke, A. F.; Cole, G. H.

    Computer programs for the simulation of the operation of electric vehicles with hybrid power systems are described. These programs treat cases in which high energy density ultracapacitors or high power density pulse batteries are used to load level the main energy storage battery in the vehicle. A generalized control strategy for splitting the power between the main battery and the pulse power devices is implemented such that the user can specify the nominal battery power as a function of the state-of-charge of the ultracapacitor or pulse power battery. The programs display graphically on the screen, as they run, the power from both the main battery and the pulse power device and the state-of-charge of the pulse power device. After each run is completed, a summary is printed out from which the effect of load leveling the battery on vehicle range and energy consumption can be determined. Default input files are provided with the programs so various combinations of vehicles, driveline components, and batteries of special current interest to the EV community can be run with either type of pulse power device. Typical simulation results are shown including cases in which the pulse power devices are connected in parallel with the main battery without interface electronics.

  11. A brief review on key technologies in the battery management system of electric vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Kailong; Li, Kang; Peng, Qiao; Zhang, Cheng

    2018-04-01

    Batteries have been widely applied in many high-power applications, such as electric vehicles (EVs) and hybrid electric vehicles, where a suitable battery management system (BMS) is vital in ensuring safe and reliable operation of batteries. This paper aims to give a brief review on several key technologies of BMS, including battery modelling, state estimation and battery charging. First, popular battery types used in EVs are surveyed, followed by the introduction of key technologies used in BMS. Various battery models, including the electric model, thermal model and coupled electro-thermal model are reviewed. Then, battery state estimations for the state of charge, state of health and internal temperature are comprehensively surveyed. Finally, several key and traditional battery charging approaches with associated optimization methods are discussed.

  12. Development of a multiplexed bypass control system for aerospace batteries

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1977-01-01

    A breadboard bypass control system was developed to control a battery comprised of 26 JPL-developed negative limited Ni-Cd cells. The system was designed to automatically remove cells from the circuit when their voltages exceeded a fixed limit on charge and fell below a fixed limit on discharge. Major components of the system consisted of a cell voltage monitor, a multiplexing circuit, and individual electromechanical relays for each cell. The system was found to function well in controlling the battery during a simulated 10-month MM-71 mission and a 2-month simulated low earth orbit cycling mission. A flight version of the bypass system was estimated to have a total parts count of 150 and total weight of 1.63 kg. When fully developed, the system shows promise for improving life and reliability of spacecraft batteries.

  13. Impact of Fast Charging on Life of EV Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan

    2015-05-03

    Utilization of public charging infrastructure is heavily dependent on user-specific travel behavior. The availability of fast chargers can positively affect the utility of battery electric vehicles, even given infrequent use. Estimated utilization rates do not appear frequent enough to significantly impact battery life. Battery thermal management systems are critical in mitigating dangerous thermal conditions on long distance tours with multiple fast charge events.

  14. Supercapacitor performance evaluation in replacing battery based on charging and discharging current characteristics

    NASA Astrophysics Data System (ADS)

    Sani, A.; Siahaan, S.; Mubarakah, N.; Suherman

    2018-02-01

    Supercapacitor is a new device of energy storage, which has much difference between ordinary capacitors and batteries. Supercapacitor have higher capacitance and energy density than regular capacitors. The supercapacitor also has a fast charging time, as well as a long life. To be used as a battery replacement please note the internal parameters of the battery to be replaced. In this paper conducted a simulation study to utilize supercapacitor as a replacement battery. The internal parameters of the battery and the supercapacitor are obtained based on the characteristics of charging and discharging current using a predefined equivalent circuit model. The battery to be replaced is a 12-volt lead-acid type, 6.5 Ah which is used on motorcycles with 6A charging and discharging currents. Super capacitor replacement capacitor is a capacity of 1600F, 2.7V which is connected in series as many as 6 pieces with 16.2 volt terminal voltage and charging current 12A. To obtain the same supercapacitor characteristic as the battery characteristic to be replaced, modification of its internal parameters is made. The results show that the super-capacitor can replace the battery function for 1000 seconds.

  15. Probability based remaining capacity estimation using data-driven and neural network model

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Yang, Duo; Zhang, Xu; Chen, Zonghai

    2016-05-01

    Since large numbers of lithium-ion batteries are composed in pack and the batteries are complex electrochemical devices, their monitoring and safety concerns are key issues for the applications of battery technology. An accurate estimation of battery remaining capacity is crucial for optimization of the vehicle control, preventing battery from over-charging and over-discharging and ensuring the safety during its service life. The remaining capacity estimation of a battery includes the estimation of state-of-charge (SOC) and state-of-energy (SOE). In this work, a probability based adaptive estimator is presented to obtain accurate and reliable estimation results for both SOC and SOE. For the SOC estimation, an n ordered RC equivalent circuit model is employed by combining an electrochemical model to obtain more accurate voltage prediction results. For the SOE estimation, a sliding window neural network model is proposed to investigate the relationship between the terminal voltage and the model inputs. To verify the accuracy and robustness of the proposed model and estimation algorithm, experiments under different dynamic operation current profiles are performed on the commercial 1665130-type lithium-ion batteries. The results illustrate that accurate and robust estimation can be obtained by the proposed method.

  16. Larry car for a coking oven battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corry, D.B.

    A larry car (3) for transporting a charge of pre-heated coal along the top of a battery of coke ovens, from a storage installation including a group of metering bins (1) at one or more filling stations above the battery, to a corresponding group of charge holes for the oven chamber to be charged, the car including a corresponding group of coal transfer hoppers (4) each having valved inlet and discharge apertures (5,21), a sealed connection (2) between each metering bin and transfer hopper, an inert gas reservoir (10) connectable via a valved manifold (13,14) to each transfer hopper, amore » valved connection (7,8,9) for charging the reservoir, and a valved connection (15,16,17) to permit dusty gas to be displaced into the storage bunkers, and control means for the various valved connections to maintain continuous isolation of the interior of each transfer hopper from the atmosphere, to permit dust-laden gases to escape into the storage installation, and to cause inert medium to displace coal discharged from the transfer hoppers.« less

  17. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XII, LEARNING ABOUT BATTERY SERVICING AND TESTING (PART I).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THID MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION AND MAINTENANCE OF LEAD-ACID STORAGE BATTERIES USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE (1) BATTERY COMPONENTS AND CONSTRUCTION, (2) CHEMICAL ACTION IN BATTERIES, (3) THE BATTERY AND THE CHARGING CIRCUIT, (4) BATTERY CHARGING VOLTAGE, (5) EFFECTS OF…

  18. Effects of Ni particle morphology on cell performance of Na/NiCl2 battery

    NASA Astrophysics Data System (ADS)

    Kim, Mangi; Ahn, Cheol-Woo; Hahn, Byung-Dong; Jung, Keeyoung; Park, Yoon-Cheol; Cho, Nam-ung; Lee, Heesoo; Choi, Joon-Hwan

    2017-11-01

    Electrochemical reaction of Ni particle, one of active cathode materials in the Na/NiCl2 battery, occurs on the particle surface. The NiCl2 layer formed on the Ni particle surface during charging can disconnect the electron conduction path through Ni particles because the NiCl2 layer has very low conductivity. The morphology and size of Ni particles, therefore, need to be controlled to obtain high charge capacity and excellent cyclic retention. Effects of the Ni particle size on the cell performance were investigated using spherical Ni particles with diameters of 0.5 μm, 6 μm, and 50 μm. The charge capacities of the cells with spherical Ni particles increased when the Ni particle size becomes smaller because of their higher surface area but their charge capacities were significantly decreased with increasing cyclic tests owing to the disconnection of electron conduction path. The inferior cyclic retention of charge capacity was improved using reticular Ni particles which maintained the reliable connection for the electron conduction in the Na/NiCl2 battery. The charge capacity of the cell with the reticular Ni particles was higher than the cell with the small-sized spherical Ni particles approximately by 26% at 30th cycle.

  19. Integrated thermal and energy management of plug-in hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Shams-Zahraei, Mojtaba; Kouzani, Abbas Z.; Kutter, Steffen; Bäker, Bernard

    2012-10-01

    In plug-in hybrid electric vehicles (PHEVs), the engine temperature declines due to reduced engine load and extended engine off period. It is proven that the engine efficiency and emissions depend on the engine temperature. Also, temperature influences the vehicle air-conditioner and the cabin heater loads. Particularly, while the engine is cold, the power demand of the cabin heater needs to be provided by the batteries instead of the waste heat of engine coolant. The existing energy management strategies (EMS) of PHEVs focus on the improvement of fuel efficiency based on hot engine characteristics neglecting the effect of temperature on the engine performance and the vehicle power demand. This paper presents a new EMS incorporating an engine thermal management method which derives the global optimal battery charge depletion trajectories. A dynamic programming-based algorithm is developed to enforce the charge depletion boundaries, while optimizing a fuel consumption cost function by controlling the engine power. The optimal control problem formulates the cost function based on two state variables: battery charge and engine internal temperature. Simulation results demonstrate that temperature and the cabin heater/air-conditioner power demand can significantly influence the optimal solution for the EMS, and accordingly fuel efficiency and emissions of PHEVs.

  20. Plug-in hybrid electric vehicles as a source of distributed frequency regulation

    NASA Astrophysics Data System (ADS)

    Mullen, Sara Kathryn

    The movement to transform the North American power grid into a smart grid may be accomplished by expanding integrated sensing, communications, and control technologies to include every part of the grid to the point of end-use. Plug-in hybrid electric vehicles (PHEV) provide an opportunity for small-scale distributed storage while they are plugged-in. With large numbers of PHEV and the communications and sensing associated with the smart grid, PHEV could provide ancillary services for the grid. Frequency regulation is an ideal service for PHEV because the duration of supply is short (order of minutes) and it is the highest priced ancillary service on the market offering greater financial returns for vehicle owners. Using Simulink a power system simulator modeling the IEEE 14 Bus System was combined with a model of PHEV charging and the controllers which facilitate vehicle-to-grid (V2G) regulation supply. The system includes a V2G controller for each vehicle which makes regulation supply decisions based on battery state, user preferences, and the recommended level of supply. A PHEV coordinator controller located higher in the system has access to reliable frequency measurements and can determine a suitable local automatic generation control (AGC) raise/lower signal for participating vehicles. A first step implementation of the V2G supply system where battery charging is modulated to provide regulation was developed. The system was simulated following a step change in loading using three scenarios: (1) Central generating units provide frequency regulation, (2) PHEV contribute to primary regulation analogous to generator speed governor control, and (3) PHEV contribute to primary and secondary regulation using an additional integral term in the PHEV control signal. In both cases the additional regulation provided by PHEV reduced the area control error (ACE) compared to the base case. Unique contributions resulting from this work include: (1) Studied PHEV energy systems and limitations on battery charging/discharging, (2) Reviewed standards for interconnection of distributed resources and electric vehicle charging [1], [2], (3) Explored strategies for distributed control of PHEV charging, (4) Developed controllers to accommodate PHEV regulation, and (5) Developed a simulator combining a power system model and PHEV/V2G components.

  1. Exfoliated, Nitrogen-Doped Graphene Nanosheet Cathode for Lithium-Oxygen Batteries

    DTIC Science & Technology

    2014-06-01

    scanning electron microscopy; oxygen reduction reaction; cyclic voltammetry ; lithium-oxygen battery. Introduction The continuous...77 K (Micromeritics ASAP 2020). The porosity of cathode material was characterized by a gas pycnometer (Micromeritis, Accu Pyc II 1340). Cyclic ... voltammetry (CV) and galvanostatic charge-discharge measurements of the specimens were conducted using a computer controlled VersaSTAT 4 (Princeton

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, AG; Bhadra, S; Hertzberg, BJ

    We demonstrate that a simple acoustic time-of-flight experiment can measure the state of charge and state of health of almost any closed battery. An acoustic conservation law model describing the state of charge of a standard battery is proposed, and experimental acoustic results verify the simulated trends; furthermore, a framework relating changes in sound speed, via density and modulus changes, to state of charge and state of health within a battery is discussed. Regardless of the chemistry, the distribution of density within a battery must change as a function of state of charge and, along with density, the bulk modulimore » of the anode and cathode changes as well. The shifts in density and modulus also change the acoustic attenuation in a battery. Experimental results indicating both state-of-charge determination and irreversible physical changes are presented for two of the most ubiquitous batteries in the world, the lithium-ion 18650 and the alkaline LR6 (AA). Overall, a one-or two-point acoustic measurement can be related to the interaction of a pressure wave at multiple discrete interfaces within a battery, which in turn provides insights into state of charge, state of health, and mechanical evolution/degradation.« less

  3. Enabling fast charging - Battery thermal considerations

    NASA Astrophysics Data System (ADS)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler; Wood, Eric; Ahmed, Shabbir; Bloom, Ira; Dufek, Eric; Shirk, Matthew; Meintz, Andrew; Kreuzer, Cory; Michelbacher, Christopher; Burnham, Andrew; Stephens, Thomas; Francfort, James; Carlson, Barney; Zhang, Jiucai; Vijayagopal, Ram; Hardy, Keith; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Jansen, Andrew N.; Tanim, Tanvir; Markel, Anthony

    2017-11-01

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  4. Wireless Battery Management System of Electric Transport

    NASA Astrophysics Data System (ADS)

    Rahman, Ataur; Rahman, Mizanur; Rashid, Mahbubur

    2017-11-01

    Electric vehicles (EVs) are being developed and considered as the future transportation to reduce emission of toxic gas, cost and weight. The battery pack is one of the main crucial parts of the electric vehicle. The power optimization of the battery pack has been maintained by developing a two phase evaporative thermal management system which operation has been controlled by using a wireless battery management system. A large number of individual cells in a battery pack have many wire terminations that are liable for safety failure. To reduce the wiring problem, a wireless battery management system based on ZigBee communication protocol and point-to-point wireless topology has been presented. Microcontrollers and wireless modules are employed to process the information from several sensors (voltage, temperature and SOC) and transmit to the display devices respectively. The WBMS multistage charge balancing system offering more effective and efficient responses for several numbers of series connected battery cells. The concept of double tier switched capacitor converter and resonant switched capacitor converter is used for reducing the charge balancing time of the cells. The balancing result for 2 cells and 16 cells are improved by 15.12% and 25.3% respectively. The balancing results are poised to become better when the battery cells are increased.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kandler; Shi, Ying; Santhanagopalan, Shriram

    Predictive models of Li-ion battery lifetime must consider a multiplicity of electrochemical, thermal, and mechanical degradation modes experienced by batteries in application environments. To complicate matters, Li-ion batteries can experience different degradation trajectories that depend on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. We present a generalized battery life prognostic model framework for battery systems design and control. The model framework consists of trial functions that are statistically regressed to Li-ion cell life datasets wherein the cells have been aged under differentmore » levels of stress. Degradation mechanisms and rate laws dependent on temperature, storage, and cycling condition are regressed to the data, with multiple model hypotheses evaluated and the best model down-selected based on statistics. The resulting life prognostic model, implemented in state variable form, is extensible to arbitrary real-world scenarios. The model is applicable in real-time control algorithms to maximize battery life and performance. We discuss efforts to reduce lifetime prediction error and accommodate its inevitable impact in controller design.« less

  6. State-of-charge coulometer

    NASA Technical Reports Server (NTRS)

    Rowlette, J. J. (Inventor)

    1985-01-01

    A coulometer for accurately measuring the state-of-charge of an open-cell battery utilizing an aqueous electrolyte, includes a current meter for measuring the battery/discharge current and a flow meter for measuring the rate at which the battery produces gas during charge and discharge. Coupled to the flow meter is gas analyzer which measures the oxygen fraction of the battery gas. The outputs of the current meter, flow meter, and gas analyzer are coupled to a programmed microcomputer which includes a CPU and program and data memories. The microcomputer calculates that fraction of charge and discharge current consumed in the generation of gas so that the actual state-of-charge can be determined. The state-of-charge is then shown on a visual display.

  7. 46 CFR 96.35-20 - Spare charges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Spare charges. 96.35-20 Section 96.35-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS VESSEL CONTROL AND... carried for each self-contained breathing apparatus, and a complete set of spare batteries shall be...

  8. 46 CFR 77.35-20 - Spare charges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Spare charges. 77.35-20 Section 77.35-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS VESSEL CONTROL AND MISCELLANEOUS... for each self-contained breathing apparatus, and a complete set of spare batteries shall be carried...

  9. 46 CFR 77.35-20 - Spare charges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Spare charges. 77.35-20 Section 77.35-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS VESSEL CONTROL AND MISCELLANEOUS... for each self-contained breathing apparatus, and a complete set of spare batteries shall be carried...

  10. 40 CFR 86.1721-99 - Application for certification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... which the vehicle is certifying: LDV, LDT 0-3750 lbs LVW, LDT 3751-5750 lbs LVW (state test weight range... of the propulsion system for the vehicle. (4) Identification and description of the climate control... state-of-charge, battery charging capacity and recharging procedures, and any other relevant information...

  11. 40 CFR 86.1721-99 - Application for certification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... which the vehicle is certifying: LDV, LDT 0-3750 lbs LVW, LDT 3751-5750 lbs LVW (state test weight range... of the propulsion system for the vehicle. (4) Identification and description of the climate control... state-of-charge, battery charging capacity and recharging procedures, and any other relevant information...

  12. 40 CFR 86.1721-99 - Application for certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... which the vehicle is certifying: LDV, LDT 0-3750 lbs LVW, LDT 3751-5750 lbs LVW (state test weight range... of the propulsion system for the vehicle. (4) Identification and description of the climate control... state-of-charge, battery charging capacity and recharging procedures, and any other relevant information...

  13. Model-Based Battery Management Systems: From Theory to Practice

    NASA Astrophysics Data System (ADS)

    Pathak, Manan

    Lithium-ion batteries are now extensively being used as the primary storage source. Capacity and power fade, and slow recharging times are key issues that restrict its use in many applications. Battery management systems are critical to address these issues, along with ensuring its safety. This dissertation focuses on exploring various control strategies using detailed physics-based electrochemical models developed previously for lithium-ion batteries, which could be used in advanced battery management systems. Optimal charging profiles for minimizing capacity fade based on SEI-layer formation are derived and the benefits of using such control strategies are shown by experimentally testing them on a 16 Ah NMC-based pouch cell. This dissertation also explores different time-discretization strategies for non-linear models, which gives an improved order of convergence for optimal control problems. Lastly, this dissertation also explores a physics-based model for predicting the linear impedance of a battery, and develops a freeware that is extremely robust and computationally fast. Such a code could be used for estimating transport, kinetic and material properties of the battery based on the linear impedance spectra.

  14. Charge Characteristics of Rechargeable Batteries

    NASA Astrophysics Data System (ADS)

    Maheswaranathan, Ponn; Kelly, Cormac

    2014-03-01

    Rechargeable batteries play important role in technologies today and they are critical for the future. They are used in many electronic devices and their capabilities need to keep up with the accelerated pace of technology. Efficient energy capture and storage is necessary for the future rechargeable batteries. Charging and discharging characteristics of three popular commercially available re-chargeable batteries (NiCd, NiMH, and Li Ion) are investigated and compared with regular alkaline batteries. Pasco's 850 interface and their voltage & current sensors are used to monitor the current through and the potential difference across the battery. The discharge current and voltage stayed fairly constant until the end, with a slightly larger drop in voltage than current, which is more pronounced in the alkaline batteries. After 25 charge/discharge cycling there is no appreciable loss of charge capacities in the Li Ion battery. Energy densities, cycle characteristics, and memory effects will also be presented. Sponsored by the South Carolina Governor's school for Science and Mathematics under the Summer Program for Research Interns program.

  15. Progress in electrochemical storage for battery systems

    NASA Technical Reports Server (NTRS)

    Ford, F. E.; Hennigan, T. J.; Palandati, C. F.; Cohn, E.

    1972-01-01

    Efforts to improve electrochemical systems for space use relate to: (1) improvement of conventional systems; (2) development of fuel cells to practical power systems; and (3) a search for new systems that provide gains in energy density but offer comparable life and performance as conventional systems. Improvements in sealed conventional systems resulted in the areas of materials, charge control methods, cell operations and battery control, and specific process controls required during cell manufacture. Fuel-cell systems have been developed for spacecraft but the use of these power plants is limited. For present and planned flights, nickel-cadmium, silver-zinc, and silver-cadmium systems will be used. Improvements in nickel-cadmium batteries have been applied in medical and commercial areas.

  16. Lithium Ion Battery (LIB) Charger: Spacesuit Battery Charger Design with 2-Fault Tolerance to Catastrophic Hazards

    NASA Technical Reports Server (NTRS)

    Darcy, Eric; Davies, Frank

    2009-01-01

    Charger design that is 2-fault tolerant to catastrophic has been achieved for the Spacesuit Li-ion Battery with key features. Power supply control circuit and 2 microprocessors independently control against overcharge. 3 microprocessor control against undercharge (false positive: Go for EVA) conditions. 2 independent channels provide functional redundancy. Capable of charge balancing cell banks in series. Cell manufacturing and performance uniformity is excellent with both designs. Once a few outliers are removed, LV cells are slightly more uniform than MoliJ cells. If cell balance feature of charger is ever invoked, it will be an indication of a significant degradation issue, not a nominal condition.

  17. NREL's Battery Life Predictive Model Helps Companies Take Charge | News |

    Science.gov Websites

    lithium-ion (Li-ion) batteries, are complex electrochemical systems. There are typically several different NREL NREL's Battery Life Predictive Model Helps Companies Take Charge NREL's Battery Life monitor. An example of a stationary, grid-connected battery is the NREL project from Erigo/EaglePicher

  18. Optimization analysis of thermal management system for electric vehicle battery pack

    NASA Astrophysics Data System (ADS)

    Gong, Huiqi; Zheng, Minxin; Jin, Peng; Feng, Dong

    2018-04-01

    Electric vehicle battery pack can increase the temperature to affect the power battery system cycle life, charge-ability, power, energy, security and reliability. The Computational Fluid Dynamics simulation and experiment of the charging and discharging process of the battery pack were carried out for the thermal management system of the battery pack under the continuous charging of the battery. The simulation result and the experimental data were used to verify the rationality of the Computational Fluid Dynamics calculation model. In view of the large temperature difference of the battery module in high temperature environment, three optimization methods of the existing thermal management system of the battery pack were put forward: adjusting the installation position of the fan, optimizing the arrangement of the battery pack and reducing the fan opening temperature threshold. The feasibility of the optimization method is proved by simulation and experiment of the thermal management system of the optimized battery pack.

  19. Chemically rechargeable battery

    NASA Technical Reports Server (NTRS)

    Graf, James E. (Inventor); Rowlette, John J. (Inventor)

    1984-01-01

    Batteries (50) containing oxidized, discharged metal electrodes such as an iron-air battery are charged by removing and storing electrolyte in a reservoir (98), pumping fluid reductant such as formalin (aqueous formaldehyde) from a storage tank (106) into the battery in contact with the surfaces of the electrodes. After sufficient iron hydroxide has been reduced to iron, the spent reductant is drained, the electrodes rinsed with water from rinse tank (102) and then the electrolyte in the reservoir (106) is returned to the battery. The battery can be slowly electrically charged when in overnight storage but can be quickly charged in about 10 minutes by the chemical procedure of the invention.

  20. Probing lithium-ion batteries' state-of-charge using ultrasonic transmission - Concept and laboratory testing

    NASA Astrophysics Data System (ADS)

    Gold, Lukas; Bach, Tobias; Virsik, Wolfgang; Schmitt, Angelika; Müller, Jana; Staab, Torsten E. M.; Sextl, Gerhard

    2017-03-01

    For electrically powered applications such as consumer electronics and especially for electric vehicles a precise state-of-charge estimation for their lithium-ion batteries is desired to reduce aging, e.g. avoiding detrimental states-of-charge. Today, this estimation is performed by battery management systems that solely rely on charge bookkeeping and cell voltage measurements. In the present work we introduce a new, physical probe for the state-of-charge based on ultrasonic transmission. Within the simple experimental setup raised cosine pulses are applied to lithium-ion battery pouch cells, whose signals are sensitive to changes in porosity of the graphite anode during charging/dis-charging and, therefore, to the state-of-charge. The underlying physical principle can be related to Biot's theory about propagation of waves in fluid saturated porous media and by including scattering by boundary layers inside the cell.

  1. Rechargeable Battery Auto-Cycler Requiring Lower Power and Dissipating Reduced Waste Heat

    NASA Technical Reports Server (NTRS)

    Hanson, Thomas David (Inventor)

    2018-01-01

    A battery charger system includes a power supply and a switch connected to the power supply wherein the switch has a first switch half and a second switch half. First and second batteries are selectively connected to the power supply via the switch. The first and second switch halves are moved between a plurality of operational positions to fully charge the first battery, discharge the first battery into the second battery, discharge the second battery into the first battery, and fully charge the second battery.

  2. Study of imbalanced internal resistance on drop voltage of LiFePO4 battery system connected in parallel

    NASA Astrophysics Data System (ADS)

    Adie Perdana, Fengky; Supriyanto, Agus; Purwanto, Agus; Jamaluddin, Anif

    2017-01-01

    The purpose of this research focuses on the effect of imbalanced internal resistance for the drop voltage of LiFePO4 18650 battery system connected in parallel. The battery pack has been assembled consist of two cell battery LiFePO4 18650 that has difference combination of internal resistance. Battery pack was tested with 1/C constant current charging, 3,65V per group sel, 3,65V constant voltage charging, 5 minutes of rest time between charge and discharge process, 1/2C Constant current discharge until 2,2V, 26 cycle of measurement test, and 4320 minutes rest time after the last charge cycle. We can conclude that the difference combination of internal resistance on the battery pack seriously influence the drop voltage of a battery. Theoretical and experimental result show that the imbalance of internal resistance during cycling are mainly responsible for the drop voltage of LiFePO4 parallel batteries. It is thus a good way to avoid drop voltage fade of parallel battery system by suppressing variations of internal resistance.

  3. Battery Cell Balancing System and Method

    NASA Technical Reports Server (NTRS)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  4. Systems and methods for initializing a charging system

    DOEpatents

    Ransom, Ray M.; Perisic, Milun; Kajouke, Lateef A.

    2014-09-09

    Systems and methods are provided for initiating a charging system. The method, for example, may include, but is not limited to, providing, by the charging system, an incrementally increasing voltage to a battery up to a first predetermined threshold while the energy conversion module has a zero-percent duty cycle, providing, by the charging system, an incrementally increasing voltage to the battery from an initial voltage level of the battery up to a peak voltage of a voltage source while the energy conversion module has a zero-percent duty cycle, and providing, by the charging system, an incrementally increasing voltage to the battery by incrementally increasing the duty cycle of the energy conversion module.

  5. Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects

    NASA Astrophysics Data System (ADS)

    Gomez, Jamie; Nelson, Ruben; Kalu, Egwu E.; Weatherspoon, Mark H.; Zheng, Jim P.

    2011-05-01

    Equivalent circuit model (EMC) of a high-power Li-ion battery that accounts for both temperature and state of charge (SOC) effects known to influence battery performance is presented. Electrochemical impedance measurements of a commercial high power Li-ion battery obtained in the temperature range 20 to 50 °C at various SOC values was used to develop a simple EMC which was used in combination with a non-linear least squares fitting procedure that used thirteen parameters for the analysis of the Li-ion cell. The experimental results show that the solution and charge transfer resistances decreased with increase in cell operating temperature and decreasing SOC. On the other hand, the Warburg admittance increased with increasing temperature and decreasing SOC. The developed model correlations that are capable of being used in process control algorithms are presented for the observed impedance behavior with respect to temperature and SOC effects. The predicted model parameters for the impedance elements Rs, Rct and Y013 show low variance of 5% when compared to the experimental data and therefore indicates a good statistical agreement of correlation model to the actual experimental values.

  6. On the optimal sizing of batteries for electric vehicles and the influence of fast charge

    NASA Astrophysics Data System (ADS)

    Verbrugge, Mark W.; Wampler, Charles W.

    2018-04-01

    We provide a brief summary of advanced battery technologies and a framework (i.e., a simple model) for assessing electric-vehicle (EV) architectures and associated costs to the customer. The end result is a qualitative model that can be used to calculate the optimal EV range (which maps back to the battery size and performance), including the influence of fast charge. We are seeing two technological pathways emerging: fast-charge-capable batteries versus batteries with much higher energy densities (and specific energies) but without the capability to fast charge. How do we compare and contrast the two alternatives? This work seeks to shed light on the question. We consider costs associated with the cells, added mass due to the use of larger batteries, and charging, three factors common in such analyses. In addition, we consider a new cost input, namely, the cost of adaption, corresponding to the days a customer would need an alternative form of transportation, as the EV would not have sufficient range on those days.

  7. Smart Power Supply for Battery-Powered Systems

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have differing power needs, this supply also has a secondary power bus, which can be programmed a priori or on-the-fly to boost the primary battery voltage level from 24 to 50 V to accommodate various loads as they are brought on line. Through voltage and current monitoring, the device can also shield the charging source from overloads, keep it within safe operating modes, and can meter available power to the application and maintain safe operations.

  8. Impact of Fast Charging on Life of EV Batteries; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan

    Installation of fast charging infrastructure is considered by many as one of potential solutions to increase the utility and range of electric vehicles (EVs). This is expected to reduce the range anxiety of drivers of EVs and thus increase their market penetration. Level 1 and 2 charging in homes and workplaces is expected to contribute to the majority of miles driven by EVs. However, a small percentage of urban driving and most of inter-city driving could be only achieved by a fast-charging network. DC fast charging at 50 kW, 100 kW, 120 kW compared to level 1 (3.3 kW) andmore » level 2 (6.6 kW) results in high-current charging that can adversely impact the life of the battery. In the last couple of years, we have investigated the impact of higher current rates in batteries and potential of higher temperatures and thus lower service life. Using mathematical models, we investigated the temperature increase of batteries due to higher heat generation during fast charge and have found that this could lead to higher temperatures. We compared our models with data from other national laboratories both for fine-tuning and calibration. We found that the incremental temperature rise of batteries during 1C to 3C fast charging may reduce the practical life of the batteries by less than 10% over 10 to 15 years of vehicle ownership. We also found that thermal management of batteries is needed for fast charging to prevent high temperature excursions leading to unsafe conditions.« less

  9. The On-orbit Performance and Simulation Tests of the Lithium-Ion Secondary Battery for the Interplanetary Satellite 'HAYABUSA'

    NASA Astrophysics Data System (ADS)

    Sone, Yoshitsugu; Uno, Masatoshi; Hirose, Kazuyuki; Tajima, Michio; Ooto, Hiroki; Yamamoto, Masahiro; Eguro, Takashi; Sakai, Shigeru; Yoshida, Teiji

    2005-05-01

    The Japanese satellite 'HAYABUSA' is currently en route to an asteroid named ITOKAWA. The satellite is powered by a 13.2 Ah lithium-ion secondary battery. To realize maximum performance of the battery for long flight operation, the state-of-charge (SOC) of the battery is maintained at ca. 65% during storage in case it is required for contingency operations. To maintain this SOC condition, the battery is charged once a week. We further charge the battery up to 4.1 V/cell using bypass circuits to balance the cells every four months. The capacity of the battery was measured during the flight operation, which revealed the appropriate capacity for the HAYABUSA mission.

  10. 30 CFR 7.69 - Approval marking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that the unit's components must not be disassembled or removed. (d) The replacement battery types if the unit has replaceable batteries. (e) A warning placed next to the charging connector that the battery only be charged in a fresh air location if rechargeable batteries are used. (f) A warning that the...

  11. 30 CFR 7.69 - Approval marking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that the unit's components must not be disassembled or removed. (d) The replacement battery types if the unit has replaceable batteries. (e) A warning placed next to the charging connector that the battery only be charged in a fresh air location if rechargeable batteries are used. (f) A warning that the...

  12. 30 CFR 7.69 - Approval marking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that the unit's components must not be disassembled or removed. (d) The replacement battery types if the unit has replaceable batteries. (e) A warning placed next to the charging connector that the battery only be charged in a fresh air location if rechargeable batteries are used. (f) A warning that the...

  13. 30 CFR 7.69 - Approval marking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that the unit's components must not be disassembled or removed. (d) The replacement battery types if the unit has replaceable batteries. (e) A warning placed next to the charging connector that the battery only be charged in a fresh air location if rechargeable batteries are used. (f) A warning that the...

  14. 30 CFR 7.69 - Approval marking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that the unit's components must not be disassembled or removed. (d) The replacement battery types if the unit has replaceable batteries. (e) A warning placed next to the charging connector that the battery only be charged in a fresh air location if rechargeable batteries are used. (f) A warning that the...

  15. Incidence and management of prolonged charge times in the Medtronic model 7219 implantable cardioverter defibrillator.

    PubMed

    Mann, D E; Gleason, S A; Kelly, P A; Easley, A R; Reiter, M J

    2001-06-01

    The Medtronic Jewel PCD model 7219, introduced in 1994, was the first downsized, pectoral implantable cardioverter defibrillator (ICD), and many of these units are approaching or have reached the elective replacement indicator (ERI). Unlike later Medtronic ICDs and most other ICDs, in which ERI is defined by battery voltage, the ERI in the model 7219 series is defined when either the capacitor charge time to full output is repeatedly> or =14.5 s or when battery voltage is< or =4.91 V. In this study we examined which of the two ERI criteria was met first in patients with this device model. We also assessed the effects of manual dumping and recharging and of increasing the automatic capacitor reformation frequency on prolonged charge times. In 16 patients with follow-up <2 years, 15 reached the charge time ERI before battery voltage ERI. Manual dumping and recharging led to spuriously low charge times due to residual charge at the start of recharging, and increasing the automatic capacitor reformation frequency to once a month did not decrease prolonged charge times. Because of persistently prolonged charge times, 15 patients had generator changes. None of these patients had reached battery voltage ERI (battery voltage at time of explantation 5.06+/-0.06 V). Thus in this early pectoral device, prolonged charge times occur commonly before battery voltage ERI is reached. Whether prolonged charge times will have an impact on device longevity in later model ICDs is unknown.

  16. Development of a microprocessor controller for stand-alone photovoltaic power systems

    NASA Technical Reports Server (NTRS)

    Millner, A. R.; Kaufman, D. L.

    1984-01-01

    A controller for stand-alone photovoltaic systems has been developed using a low power CMOS microprocessor. It performs battery state of charge estimation, array control, load management, instrumentation, automatic testing, and communications functions. Array control options are sequential subarray switching and maximum power control. A calculator keypad and LCD display provides manual control, fault diagnosis and digital multimeter functions. An RS-232 port provides data logging or remote control capability. A prototype 5 kW unit has been built and tested successfully. The controller is expected to be useful in village photovoltaic power systems, large solar water pumping installations, and other battery management applications.

  17. Testing activities at the National Battery Test Laboratory

    NASA Astrophysics Data System (ADS)

    Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.

    The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.

  18. Evaluation of a new charge algorithm for a lead-acid battery with gelled electrolyte using a 96V gel cell IV as a test battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, D.K.

    1989-10-01

    This document has reported a summary of test results obtained utilizing the new UAH charge algorithm for Lead-Acid batteries with gelled electrolyte. The battery performance data for a 96V Phase IV Gel/Cell battery pack was tested in a Jet Industries Electrica vehicle. It was shown that the new charge concept is sound although there can be problems with batteries that are highly imbalanced and where excessive electronic noise is experienced on the electronic signal feed-back line that carries the voltage sensor signals from the battery. Additional work is needed to add intelligence to the charge algorithm in terms of amore » better ability to extract the beginning of gas development from the voltage spread function. This can probably be accomplished by scanning the voltages more often and including that data into the function analysis by adding software filters. The Phase IV Gel/Cell battery performance was found to be about 20% lower than that of the Phase III Gel/Cell battery. Problems with cell valve leakage were encountered in the Phase IV Gel/Cell that pose a threat to battery life although so far no battery module has been lost. 2 refs., 13 figs., 4 tabs.« less

  19. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery – Part 1

    PubMed Central

    Purushothaman, B. K.; Wainright, J. S.

    2012-01-01

    A low pressure nickel-hydrogen battery using either a metal hydride or gaseous hydrogen for H2 storage has been developed for use in implantable neuroprosthetic devices. In this paper, pressure variations inside the cell for the gaseous hydrogen version are analyzed and correlated with oxygen evolution side reaction at the end of charging, the recombination of oxygen with hydrogen during charging and a subsequent rest period, and the self-discharge of the nickel electrode. About 70% of the recombination occurred simultaneously with oxygen evolution during charging and the remaining oxygen recombined with hydrogen during the 1st hour after charging. Self-discharge of the cell varies linearly with hydrogen pressure at a given state of charge and increased with increasing battery charge levels. The coulometric efficiency calculated based on analysis of the pressure-time data agreed well with the efficiency calculated based on the current-time data. Pressure variations in the battery are simulated accurately to predict coulometric efficiency and the state of charge of the cell, factors of extreme importance for a battery intended for implantation within the human body. PMID:22423175

  20. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery - Part 1.

    PubMed

    Purushothaman, B K; Wainright, J S

    2012-05-15

    A low pressure nickel-hydrogen battery using either a metal hydride or gaseous hydrogen for H(2) storage has been developed for use in implantable neuroprosthetic devices. In this paper, pressure variations inside the cell for the gaseous hydrogen version are analyzed and correlated with oxygen evolution side reaction at the end of charging, the recombination of oxygen with hydrogen during charging and a subsequent rest period, and the self-discharge of the nickel electrode. About 70% of the recombination occurred simultaneously with oxygen evolution during charging and the remaining oxygen recombined with hydrogen during the 1(st) hour after charging. Self-discharge of the cell varies linearly with hydrogen pressure at a given state of charge and increased with increasing battery charge levels. The coulometric efficiency calculated based on analysis of the pressure-time data agreed well with the efficiency calculated based on the current-time data. Pressure variations in the battery are simulated accurately to predict coulometric efficiency and the state of charge of the cell, factors of extreme importance for a battery intended for implantation within the human body.

  1. State of charge indicators for a battery

    DOEpatents

    Rouhani, S. Zia

    1999-01-01

    The present invention relates to state of charge indicators for a battery. One aspect of the present invention utilizes expansion and contraction displacements of an electrode plate of a battery to gauge the state of charge in the battery. One embodiment of a battery of the present invention includes an anodic plate; a cathodic plate; an electrolyte in contact with the anodic and cathodic plates; plural terminals individually coupled with one of the anodic and cathodic plates; a separator intermediate the anodic and cathodic plates; an indicator configured to indicate an energy level of the battery responsive to movement of the separator; and a casing configured to house the anodic and cathodic plates, electrolyte, and separator.

  2. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    DOE PAGES

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; ...

    2014-11-18

    Through a systematic study of lithium molybdenum trioxide (Li 2MoO 3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO 2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li 2MoO 3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O asmore » controlling factor in ‘normal’ materials. The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.« less

  3. The charge-discharge characteristics and diffusion mechanism of Ti-Si-Al thin film anode using an electrically induced crystallization process

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Ting; Hung, Fei-Yi; Lui, Truan-Sheng

    2018-04-01

    In this study, an Al-Si-Ti multilayer thin film structure is designed as the anode of a lithium ion battery. The novel structure restricts the expansion of Si during charge-discharge, and its battery capacity can reach 1112 mA h g-1 after a 100-cycle charge-charging test under a 0.2 C charge-discharge rate without annealing. Notably, after a 200 °C vacuum annealing process, the cyclic capacity of the anode rises to 1208 mA h g-1 through crystallization of the Al and Ti buffer layer. However, its thermal diffusion behavior in the Al/Si or Ti/Si interfaces seriously reduces the performance and restricts the expansion of Si. The electrically induced crystallization (EIC) process not only performs crystallization but also controls the interfacial stability, after which its capacity can obviously improve to 1602 mA h g-1 after 100 cycles. Using EIC, the electron flow drives the Cu and Al atoms to endow the Si matrix with doping properties and further increases the electron conductivity of the anode. This result demonstrates that the EIC process is a suitable post-treatment process for multilayer anodes and provides a reference for future battery designs.

  4. Robust Battery Fuel Gauge Algorithm Development, Part 3: State of Charge Tracking

    DTIC Science & Technology

    2014-10-19

    X. Zhang, F. Sun, and J. Fan, “State-of-charge estimation of the lithium - ion battery using an adaptive extended kalman filter based on an improved...framework with ex- tended kalman filter for lithium - ion battery soc and capacity estimation,” Applied Energy, vol. 92, pp. 694–704, 2012. [16] X. Hu, F...Sun, and Y. Zou, “Estimation of state of charge of a lithium - ion battery pack for electric vehicles using an adaptive luenberger observer,” Energies

  5. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes

    PubMed Central

    Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen

    2017-01-01

    Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ∼3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries. PMID:28585527

  6. Enabling fast charging – Battery thermal considerations

    DOE PAGES

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; ...

    2017-10-23

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell,more » the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less

  7. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes

    NASA Astrophysics Data System (ADS)

    Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen

    2017-06-01

    Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ~3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries.

  8. Fabrication of solid-state secondary battery using semiconductors and evaluation of its charge/discharge characteristics

    NASA Astrophysics Data System (ADS)

    Sasaki, Atsuya; Sasaki, Akito; Hirabayashi, Hideaki; Saito, Shuichi; Aoki, Katsuaki; Kataoka, Yoshinori; Suzuki, Koji; Yabuhara, Hidehiko; Ito, Takahiro; Takagi, Shigeyuki

    2018-04-01

    Li-ion batteries have attracted interest for use as storage batteries. However, the risk of fire has not yet been resolved. Although solid Li-ion batteries are possible alternatives, their performance characteristics are unsatisfactory. Recently, research on utilizing the accumulation of carriers at the trap levels of semiconductors has been performed. However, the detailed charge/discharge characteristics and principles have not been reported. In this report, we attempted to form new n-type oxide semiconductor/insulator/p-type oxide semiconductor structures. The battery characteristics of these structures were evaluated by charge/discharge measurements. The obtained results clearly indicated the characteristics of rechargeable batteries. Furthermore, the fabricated structure accumulated an approximately 5000 times larger number of carriers than a parallel plate capacitor. Additionally, by constructing circuit models based on the experimental results, the charge/discharge mechanisms were considered. This is the first detailed experimental report on a rechargeable battery that operates without the double injection of ions and electrons.

  9. Enabling fast charging – Battery thermal considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell,more » the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less

  10. Understanding Function and Performance of Carbon Additives in Lead-Acid Batteries

    DOE PAGES

    Enos, D. G.; Ferreira, S. R.; Barkholtz, H. M.; ...

    2017-10-31

    While the low cost and strong safety record of lead-acid batteries make them an appealing option compared to lithium-ion technologies for stationary storage, they can be rapidly degraded by the extended periods of high rate, partial state-of-charge operation required in such applications. Degradation occurs primarily through a process called hard sulfation, where large PbSO 4 crystals are formed on the negative battery plates, hindering charge acceptance and reducing battery capacity. Various researchers have found that the addition of some forms of excess carbon to the negative active mass in lead-acid batteries can mitigate hard sulfation, but the mechanism through whichmore » this is accomplished is unclear. In this work, the effect of carbon composition and morphology was explored by characterizing four discrete types of carbon additives, then evaluating their effect when added to the negative electrodes within a traditional valve-regulated lead-acid battery design. The cycle life for the carbon modified cells was significantly larger than an unmodified control, with cells containing a mixture of graphitic carbon and carbon black yielding the greatest improvement. The carbons also impacted other electrochemical aspects of the battery (e.g., float current, capacity, etc.) as well as physical characteristics of the negative active mass, such as the specific surface area.« less

  11. Understanding Function and Performance of Carbon Additives in Lead-Acid Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enos, D. G.; Ferreira, S. R.; Barkholtz, H. M.

    While the low cost and strong safety record of lead-acid batteries make them an appealing option compared to lithium-ion technologies for stationary storage, they can be rapidly degraded by the extended periods of high rate, partial state-of-charge operation required in such applications. Degradation occurs primarily through a process called hard sulfation, where large PbSO 4 crystals are formed on the negative battery plates, hindering charge acceptance and reducing battery capacity. Various researchers have found that the addition of some forms of excess carbon to the negative active mass in lead-acid batteries can mitigate hard sulfation, but the mechanism through whichmore » this is accomplished is unclear. In this work, the effect of carbon composition and morphology was explored by characterizing four discrete types of carbon additives, then evaluating their effect when added to the negative electrodes within a traditional valve-regulated lead-acid battery design. The cycle life for the carbon modified cells was significantly larger than an unmodified control, with cells containing a mixture of graphitic carbon and carbon black yielding the greatest improvement. The carbons also impacted other electrochemical aspects of the battery (e.g., float current, capacity, etc.) as well as physical characteristics of the negative active mass, such as the specific surface area.« less

  12. Technical Consultation of the Hubble Space Telescope (HST) Nickel Hydrogen (NiH2) Battery Charge Capacity Prediction. Version 1.0

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Pandipati, Radha; Ling, Jerri; Miller, Thomas; Jeevarajan, Judith; Halpert, Gerald; Zimmerman, Albert

    2005-01-01

    The purpose of the GSFC position paper is to identify critical HST milestone dates for continued science studies followed by the attachment of a re-entry module or a robotic servicing mission. The paper examines the viability of the HST with respect to the NiH2 continued battery charge capacity. In the course of the assessment, it was recognized that the HST battery thermal control system has an average heat dissipation limitation of 30 W per bay per orbit cycle. This thermal constraint will continue to govern options for battery capacity maintenance. In addition, the HST usage represents the longest exposure ofNiH2 batteries to Low Earth Orbit (LEO) at the current level of Depth of Discharge (DOD). Finally, the current battery life is at the limit predicted by the manufacturer, Eaglepicher. Therefore, given these factors, the potential exists that the HST battery capacities could radically degrade at any point. Given this caveat on any life extrapolations, the conservative model proposed in the GSFC position paper was viewed by the NESC as having several technical assumptions such as limited utilization of flight battery capacity data, the susceptibility of the proposed prediction method to large variations when supplemented with additional information, and the failure to qualitatively or quantitatively assess life prediction sensitivities. The NESC conducted an independent evaluation of the supporting information and assumptions to generate the predictions for battery capacity loss and practicality of on-orbit battery conditioning.

  13. Results of chopper-controlled discharge life cycling studies on lead acid batteries

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.; Sidik, S. M.

    1982-01-01

    A group of 108 state of the art nominally 6 volt lead acid batteries were tested in a program of one charge/discharge cycle per day for over two years or to ultimate battery failure. The primary objective was to determine battery cycle life as a function of depth of discharge (25 to 75 percent), chopper frequency (100 to 1000 Hz), duty cycle (25 to 87.5 percent), and average discharge current (20 to 260 A). The secondary objective was to determine the types of battery failure modes, if any, were due to the above parameters. The four parameters above were incorporated in a statistically designed test program.

  14. Battery capacity and recharging needs for electric buses in city transit service

    DOE PAGES

    Gao, Zhiming; Lin, Zhenhong; LaClair, Tim J.; ...

    2017-01-27

    Our paper evaluates the energy consumption and battery performance of city transit electric buses operating on real day-to-day routes and standardized bus drive cycles, based on a developed framework tool that links bus electrification feasibility with real-world vehicle performance, city transit bus service reliability, battery sizing and charging infrastructure. The impacts of battery capacity combined with regular and ultrafast charging over different routes have been analyzed in terms of the ability to maintain city transit bus service reliability like conventional buses. These results show that ultrafast charging via frequent short-time boost charging events, for example at a designated bus stopmore » after completing each circuit of an assigned route, can play a significant role in reducing the battery size and can eliminate the need for longer duration charging events that would cause schedule delays. Furthermore, the analysis presented shows that significant benefits can be realized by employing multiple battery configurations and flexible battery swapping practices in electric buses. These flexible design and use options will allow electric buses to service routes of varying city driving patterns and can therefore enable meaningful reductions to the cost of the vehicle and battery while ensuring service that is as reliable as conventional buses.« less

  15. Battery capacity and recharging needs for electric buses in city transit service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Lin, Zhenhong; LaClair, Tim J.

    Our paper evaluates the energy consumption and battery performance of city transit electric buses operating on real day-to-day routes and standardized bus drive cycles, based on a developed framework tool that links bus electrification feasibility with real-world vehicle performance, city transit bus service reliability, battery sizing and charging infrastructure. The impacts of battery capacity combined with regular and ultrafast charging over different routes have been analyzed in terms of the ability to maintain city transit bus service reliability like conventional buses. These results show that ultrafast charging via frequent short-time boost charging events, for example at a designated bus stopmore » after completing each circuit of an assigned route, can play a significant role in reducing the battery size and can eliminate the need for longer duration charging events that would cause schedule delays. Furthermore, the analysis presented shows that significant benefits can be realized by employing multiple battery configurations and flexible battery swapping practices in electric buses. These flexible design and use options will allow electric buses to service routes of varying city driving patterns and can therefore enable meaningful reductions to the cost of the vehicle and battery while ensuring service that is as reliable as conventional buses.« less

  16. All Solid State Rechargeable Lithium Batteries using Block Copolymers

    NASA Astrophysics Data System (ADS)

    Hallinan, Daniel; Balsara, Nitash

    2011-03-01

    The growing need for alternative energy and increased demand for mobile technology require higher density energy storage. Existing battery technologies, such as lithium ion, are limited by theoretical energy density as well as safety issues. Other battery chemistries are promising options for dramatically increasing energy density. Safety can be improved by replacing the flammable, reactive liquids used in existing lithium-ion battery electrolytes with polymer electrolytes. Block copolymers are uniquely suited for this task because ionic conductivity and mechanical strength, both important properties in battery formulation, can be independently controlled. In this study, lithium batteries were assembled using lithium metal as negative electrode, polystyrene-b-poly(ethylene oxide) copolymer with lithium salt as electrolyte, and a positive electrode. The positive electrode consisted of polymer electrolyte for ion conduction, carbon for electron conduction, and an active material. Batteries were charged and discharged over many cycles. The battery cycling results were compared to a conventional battery chemistry.

  17. Testing and development of electric vehicle batteries for EPRI Electric Transportation Program

    NASA Astrophysics Data System (ADS)

    1985-11-01

    Argonne National Laboratory conducted an electric-vehicle battery testing and development program for the Electric Power Research Institute. As part of this program, eighteen battery modules previously developed by Johnson Controls, Inc. were tested. This type of battery (EV-2300 - an improved state-of-the-art lead-acid battery) was designed specifically for improved performance, range, and life in electric vehicles. In order to obtain necessary performance data, the batteries were tested under various duty cycles typical of normal service. This program, supported by the Electric Power Research Institute, consisted of three tasks: determination of the effect of cycle life vs peak power and rest period, determination of the impact of charge method on cycle life, and evaluation of the EV-2300 battery system. Two supporting studies were also carried out: one on thermal management of electric-vehicle batteries and one on enhanced utilization of active material in lead-acid batteries.

  18. Operationally Responsive Space Standard Bus Battery Thermal Balance Testing and Heat Dissipation Analysis

    NASA Technical Reports Server (NTRS)

    Marley, Mike

    2008-01-01

    The focus of this paper will be on the thermal balance testing for the Operationally Responsive Space Standard Bus Battery. The Standard Bus thermal design required that the battery be isolated from the bus itself. This required the battery to have its own thermal control, including heaters and a radiator surface. Since the battery was not ready for testing during the overall bus thermal balance testing, a separate test was conducted to verify the thermal design for the battery. This paper will discuss in detail, the test set up, test procedure, and results from this test. Additionally this paper will consider the methods taken to determine the heat dissipation of the battery during charge and discharge. It seems that the heat dissipation for Lithium Ion batteries is relatively unknown and hard to quantify. The methods used during test and the post test analysis to estimate the heat dissipation of the battery will be discussed.

  19. Redox reactions with empirical potentials: atomistic battery discharge simulations.

    PubMed

    Dapp, Wolf B; Müser, Martin H

    2013-08-14

    Batteries are pivotal components in overcoming some of today's greatest technological challenges. Yet to date there is no self-consistent atomistic description of a complete battery. We take first steps toward modeling of a battery as a whole microscopically. Our focus lies on phenomena occurring at the electrode-electrolyte interface which are not easily studied with other methods. We use the redox split-charge equilibration (redoxSQE) method that assigns a discrete ionization state to each atom. Along with exchanging partial charges across bonds, atoms can swap integer charges. With redoxSQE we study the discharge behavior of a nano-battery, and demonstrate that this reproduces the generic properties of a macroscopic battery qualitatively. Examples are the dependence of the battery's capacity on temperature and discharge rate, as well as performance degradation upon recharge.

  20. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIV, I--MAINTAINING THE FUEL SYSTEM PART III--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING THE VOLTAGE REGULATOR/ALTERNATOR.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL AND BATTERY CHARGING SYSTEM. TOPICS ARE (1) INJECTION TIMING CONTROLS, (2) GOVERNOR, (3) FUEL SYSTEM MAINTENANCE TIPS, (4) THE CHARGING SYSTEM, (5) REGULATING THE GENERATOR/ALTERNATOR, AND (6) CHARGING SYSTEM SERVICE…

  1. Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Shirk; Jeffrey Wishart

    2015-04-01

    As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, andmore » at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.« less

  2. Improved charging performance of Li-O2 batteries by forming Ba-incorporated Li2O2 as the discharge product

    NASA Astrophysics Data System (ADS)

    Matsuda, Shoichi; Uosaki, Kohei; Nakanishi, Shuji

    2017-06-01

    Although Li-O2 batteries can potentially achieve greater than two-fold higher energy densities than Li-ion batteries, the basic performance of Li-O2 batteries remains poor. In particular, the large over-potential of positive electrode reactions during the charging process results in low round-trip energy efficiency and limited cycle life, and is therefore the main barrier to the practical use of rechargeable Li-O2 batteries. In the present study, we demonstrate that the charging performance of Li-O2 batteries can be significantly improved by simply adding barium (Ba) ions into the electrolyte. Elemental analysis revealed that Ba-incorporated Li2O2 was obtained as the main discharge product of a Li-O2 cell operated in the presence of Ba2+. Notably, the improvement of charging performance was confirmed to originate from the Ba-incorporated Li2O2 deposits, rather than the Ba2+ present in the electrolyte. The present results suggest that the incorporation of heteroatoms into the discharge product is an effective approach for improving the charging performance of Li-O2 batteries.

  3. Electric vehicle energy management system

    NASA Astrophysics Data System (ADS)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  4. Optimal Battery Utilization Over Lifetime for Parallel Hybrid Electric Vehicle to Maximize Fuel Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Chinmaya; Naghshtabrizi, Payam; Verma, Rajeev

    This paper presents a control strategy to maximize fuel economy of a parallel hybrid electric vehicle over a target life of the battery. Many approaches to maximizing fuel economy of parallel hybrid electric vehicle do not consider the effect of control strategy on the life of the battery. This leads to an oversized and underutilized battery. There is a trade-off between how aggressively to use and 'consume' the battery versus to use the engine and consume fuel. The proposed approach addresses this trade-off by exploiting the differences in the fast dynamics of vehicle power management and slow dynamics of batterymore » aging. The control strategy is separated into two parts, (1) Predictive Battery Management (PBM), and (2) Predictive Power Management (PPM). PBM is the higher level control with slow update rate, e.g. once per month, responsible for generating optimal set points for PPM. The considered set points in this paper are the battery power limits and State Of Charge (SOC). The problem of finding the optimal set points over the target battery life that minimize engine fuel consumption is solved using dynamic programming. PPM is the lower level control with high update rate, e.g. a second, responsible for generating the optimal HEV energy management controls and is implemented using model predictive control approach. The PPM objective is to find the engine and battery power commands to achieve the best fuel economy given the battery power and SOC constraints imposed by PBM. Simulation results with a medium duty commercial hybrid electric vehicle and the proposed two-level hierarchical control strategy show that the HEV fuel economy is maximized while meeting a specified target battery life. On the other hand, the optimal unconstrained control strategy achieves marginally higher fuel economy, but fails to meet the target battery life.« less

  5. Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes.

    PubMed

    Patel, Shrayesh N; Javier, Anna E; Balsara, Nitash P

    2013-07-23

    Block copolymers that can simultaneously conduct electronic and ionic charges on the nanometer length scale can serve as innovative conductive binder material for solid-state battery electrodes. The purpose of this work is to study the electronic charge transport of poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-PEO) copolymers electrochemically oxidized with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt in the context of a lithium battery charge/discharge cycle. We use a solid-state three-terminal electrochemical cell that enables simultaneous conductivity measurements and control over electrochemical doping of P3HT. At low oxidation levels (ratio of moles of electrons removed to moles of 3-hexylthiophene moieties in the electrode), the electronic conductivity (σe,ox) increases from 10(-7) S/cm to 10(-4) S/cm. At high oxidation levels, σe,ox approaches 10(-2) S/cm. When P3HT-PEO is used as a conductive binder in a positive electrode with LiFePO4 active material, P3HT is electrochemically active within the voltage window of a charge/discharge cycle. The electronic conductivity of the P3HT-PEO binder is in the 10(-4) to 10(-2) S/cm range over most of the potential window of the charge/discharge cycle. This allows for efficient electronic conduction, and observed charge/discharge capacities approach the theoretical limit of LiFePO4. However, at the end of the discharge cycle, the electronic conductivity decreases sharply to 10(-7) S/cm, which means the "conductive" binder is now electronically insulating. The ability of our conductive binder to switch between electronically conducting and insulating states in the positive electrode provides an unprecedented route for automatic overdischarge protection in rechargeable batteries.

  6. Death by a thousand charges

    NASA Astrophysics Data System (ADS)

    Beuse, Martin

    2018-05-01

    Battery charging and discharging regimes mostly attempt to maximize potential profit by following price signals. Combining a technical understanding of batteries with financial theory, researchers now present a framework that allows optimization of economic benefits considering both potential revenues and battery degradation.

  7. Development and Implementation of a Hardware In-the-Loop Test Bed for Unmanned Aerial Vehicle Control Algorithms

    NASA Technical Reports Server (NTRS)

    Nyangweso, Emmanuel; Bole, Brian

    2014-01-01

    Successful prediction and management of battery life using prognostic algorithms through ground and flight tests is important for performance evaluation of electrical systems. This paper details the design of test beds suitable for replicating loading profiles that would be encountered in deployed electrical systems. The test bed data will be used to develop and validate prognostic algorithms for predicting battery discharge time and battery failure time. Online battery prognostic algorithms will enable health management strategies. The platform used for algorithm demonstration is the EDGE 540T electric unmanned aerial vehicle (UAV). The fully designed test beds developed and detailed in this paper can be used to conduct battery life tests by controlling current and recording voltage and temperature to develop a model that makes a prediction of end-of-charge and end-of-life of the system based on rapid state of health (SOH) assessment.

  8. A phenomenological force model of Li-ion battery packs for enhanced performance and health management

    NASA Astrophysics Data System (ADS)

    Oh, Ki-Yong; Epureanu, Bogdan I.

    2017-10-01

    A 1-D phenomenological force model of a Li-ion battery pack is proposed to enhance the control performance of Li-ion battery cells in pack conditions for efficient performance and health management. The force model accounts for multiple swelling sources under the operational environment of electric vehicles to predict swelling-induced forces in pack conditions, i.e. mechanically constrained. The proposed force model not only incorporates structural nonlinearities due to Li-ion intercalation swelling, but also separates the overall range of states of charge into three ranges to account for phase transitions. Moreover, an approach to study cell-to-cell variations in pack conditions is proposed with serial and parallel combinations of linear and nonlinear stiffness, which account for battery cells and other components in the battery pack. The model is shown not only to accurately estimate the reaction force caused by swelling as a function of the state of charge, battery temperature and environmental temperature, but also to account for cell-to-cell variations due to temperature variations, SOC differences, and local degradation in a wide range of operational conditions of electric vehicles. Considering that the force model of Li-ion battery packs can account for many possible situations in actual operation, the proposed approach and model offer potential utility for the enhancement of current battery management systems and power management strategies.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, Peter; Jacobson, Arne; Mills, Evan

    Creation of light for work, socializing, and general illumination is a fundamental application of technology around the world. For those who lack access to electricity, an emerging and diverse range of LED based lighting products hold promise for replacing and/or augmenting their current fuel-based lighting sources that are costly and dirty. Along with analysis of environmental factors, economic models for total cost-ofownership of LED lighting products are an important tool for studying the impacts of these products as they emerge in markets of developing countries. One important metric in those models is the minimum illuminance demanded by end-users for amore » given task before recharging the lamp or replacing batteries. It impacts the lighting service cost per unit time if charging is done with purchased electricity, batteries, or charging services. The concept is illustrated in figure 1: LED lighting products are generally brightest immediately after the battery is charged or replaced and the illuminance degrades as the battery is discharged. When a minimum threshold level of illuminance is reached, the operational time for the battery charge cycle is over. The cost to recharge depends on the method utilized; these include charging at a shop at a fixed price per charge, charging on personal grid connections, using solar chargers, and purchasing dry cell batteries. This Research Note reports on the observed"charge-triggering" illuminance level threshold for night market vendors who use LED lighting products to provide general and task oriented illumination. All the study participants charged with AC power, either at a fixed-price charge shop or with electricity at their home.« less

  10. Charge control microcomputer device for vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morishita, M.; Kouge, S.

    1986-10-14

    This patent describes a charge control microcomputer device for a vehicle, comprising: speed changing means for transmitting the output torque of an engine. The speed changing means includes a slip clutch means having an output with a variable slippage amount with respect to its input and controlled in accordance with an operating instruction. The speed changing means further includes a speed change gear for changing the rotational speed input thereto at an output thereto, the speed change gear receiving the output of the slip clutch means; a charging generator driven by the output of the speed change gear; a batterymore » charged by an output voltage of the charging generator; a voltage regulator for controlling the output voltage of the charging generator to a predetermined value; an engine controlling microcomputer for receiving data from the engine, to control the engine, the engine data comprising at least an engine speed signal; a charge control microcomputer for processing engine data from the engine controlling microcomputer and charge system data including terminal voltage data from the battery and generated voltage data from the changing generator; and a display unit for displaying detection data, including fault detection data, form the charge control microcomputer.« less

  11. Design and development of electric vehicle charging station equipped with RFID

    NASA Astrophysics Data System (ADS)

    Panatarani, C.; Murtaddo, D.; Maulana, D. W.; Irawan, S.; Joni, I. M.

    2016-02-01

    This paper reports the development of electric charging station from distributed renewable for electric vehicle (EV). This designed refer to the input voltage standard of IEC 61851, plugs features of IEC 62196 and standard communication of ISO 15118. The developed electric charging station used microcontroller ATMEGA8535 and RFID as controller and identifier of the EV users, respectively. The charging station successfully developed as desired features for electric vehicle from renewable energy resources grid with solar panel, wind power and batteries storage.

  12. Active model-based balancing strategy for self-reconfigurable batteries

    NASA Astrophysics Data System (ADS)

    Bouchhima, Nejmeddine; Schnierle, Marc; Schulte, Sascha; Birke, Kai Peter

    2016-08-01

    This paper describes a novel balancing strategy for self-reconfigurable batteries where the discharge and charge rates of each cell can be controlled. While much effort has been focused on improving the hardware architecture of self-reconfigurable batteries, energy equalization algorithms have not been systematically optimized in terms of maximizing the efficiency of the balancing system. Our approach includes aspects of such optimization theory. We develop a balancing strategy for optimal control of the discharge rate of battery cells. We first formulate the cell balancing as a nonlinear optimal control problem, which is modeled afterward as a network program. Using dynamic programming techniques and MATLAB's vectorization feature, we solve the optimal control problem by generating the optimal battery operation policy for a given drive cycle. The simulation results show that the proposed strategy efficiently balances the cells over the life of the battery, an obvious advantage that is absent in the other conventional approaches. Our algorithm is shown to be robust when tested against different influencing parameters varying over wide spectrum on different drive cycles. Furthermore, due to the little computation time and the proved low sensitivity to the inaccurate power predictions, our strategy can be integrated in a real-time system.

  13. Pressure Switch Is a Low Cost Battery Indicator

    NASA Technical Reports Server (NTRS)

    Abita, J. L.

    1982-01-01

    Conventional pressure switch, fabricated by printed-circuit manufacturing techniques, can indicate when charge on battery departs from preset level. Membrane on switch is exposed to internal pressure of battery, which varies according to stored charge. When pressure varies from preset level, switch can turn on a light-emitting diode or similar indicator to warn user that battery is low.

  14. Study on the State of Health Detection of Li-ion Power Batteries Based on Adaptive Unscented Kalman Filters

    NASA Astrophysics Data System (ADS)

    Yan, Xiangwu; Deng, Haoran; Wang, Ling; Guo, Qi

    2017-12-01

    It is essential to estimate the state of charge (SOC) and state of health (SOH) of the monomer battery in the electric vehicle li-ion power battery accurately for extending the li-ion power battery life. Based on the battery Thevenin equivalent circuit model, the paper uses adaptive unscented Kalman filter (AUKF) to estimate the inner ohmic resistance and the state of charge in real time, according to the function between the inner ohmic resistance and the state of health, the state of health can be estimated in real time. The battery charged and discharged experiments were done under two different conditions to verify the feasibility and accuracy of this method.

  15. Interactions between lignosulphonates and the components of the lead-acid battery. Part 1. Adsorption isotherms

    NASA Astrophysics Data System (ADS)

    Myrvold, Bernt O.

    The expander performs at least five different tasks in the battery. It is a fluidiser for the negative paste. It controls the formation stage of the battery. It controls the shape and size of the lead sulphate crystals formed upon discharge, and thus prevents the sintering of the active mass. It controls the rate of the lead to lead sulphate oxidation during discharge. Finally, it affects the charge acceptance. To gain more understanding of these different effects the interaction between lead, lead(II) oxide, lead(IV) oxide, lead sulphate, barium sulphate and carbon black and the experimental lignosulphonate (LS) expander UP-414 has been investigated. We also compared with Vanisperse A and several other lignosulphonates, to elucidate the mechanisms operating. In most cases, we have studied concentration ranges that are both higher and lower than those normally encountered in batteries. There is no adsorption of lignosulphonates to pure lead surfaces. Adsorption to lead sulphate is a slow process. In the presence of lead ions lignosulphonates will also adsorb to lead. The adsorption to lead(II) oxide is a fast process, and a strong adsorption occurs. In all these cases, it is preferably the high molecular weight fraction that interacts with the solid surfaces. Lead ions leaching from the surface complexes with lignosulphonates to give a more hydrophobic species. This allows the normally negatively charged lignosulphonate to adsorb to the negatively charged substrates. The lignosulphonates have an ability to complex lead ions and keep them solvated. This confirms previous observations of the lignosulphonates ability to promote the dissolution-precipitation mechanism for lead sulphate formation on the expense of the solid-state reaction.

  16. Crimson Viper 2015

    DTIC Science & Technology

    2015-08-01

    lithium charged battery in order to charge batteries Lessons Learned Technology Focused • Don’t wait until execution time to start unit. Even if...communications • Optional passport MRZ and smartcard readers • Dual hot-swappable batteries , 2.4 Ahr, Li Ion , with Smart Battery technology...6.2” x 1.8” (24.13 cm x 15.75 cm x 4.57 cm) Weight 3.2 lbs (1.45 kg) Battery Dual hot-swappable, 2.9 Ahr, Li Ion Battery Life Up to 8 hours

  17. Crewed Space Vehicle Battery Safety Requirements

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Darcy, Eric C.

    2014-01-01

    This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.

  18. Efficiency of Pm-147 direct charge radioisotope battery.

    PubMed

    Kavetskiy, A; Yakubova, G; Yousaf, S M; Bower, K; Robertson, J D; Garnov, A

    2011-05-01

    A theoretical analysis is presented here of the efficiency of direct charge radioisotope batteries based on the efficiency of the radioactive source, the system geometry, electrostatic repulsion of beta particles from the collector, the secondary electron emission, and backscattered beta particles from the collector. Efficiency of various design batteries using Pm-147 sources was experimentally measured and found to be in good agreement with calculations. The present approach can be used for predicting the efficiency for different designs of direct charge radioisotope batteries. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Sodium-Oxygen Batteries: A Comparative Review from Chemical and Electrochemical Fundamentals to Future Perspective.

    PubMed

    Yadegari, Hossein; Sun, Qian; Sun, Xueliang

    2016-09-01

    Alkali metal-oxygen (Li-O2 , Na-O2 ) batteries have attracted a great deal of attention recently due to their high theoretical energy densities, comparable to gasoline, making them attractive candidates for application in electrical vehicles. However, the limited cycling life and low energy efficiency (high charging overpotential) of these cells hinder their commercialization. The Li-O2 battery system has been extensively studied in this regard during the past decade. Compared to the numerous reports of Li-O2 batteries, the research on Na-O2 batteries is still in its infancy. Although, Na-O2 batteries show a number of attractive properties such as low charging overpotential and high round-trip energy efficiency, their cycling life is currently limited to a few tens of cycles. Therefore, understanding the chemistry behind Na-O2 cells is critical towards enhancing their performance and advancing their development. Chemical and electrochemical reactions of Na-O2 batteries are reviewed and compared with those of Li-O2 batteries in the present review, as well as recent works on the chemical composition and morphology of the discharge products in these batteries. Furthermore, the determining kinetics factors for controlling the chemical composition of the discharge products in Na-O2 cells are discussed and the potential research directions toward improving Na-O2 cells are proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Strain measurement based battery testing

    DOEpatents

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  1. Calorimetric evaluation of commercial Ni-MH cells and charges

    NASA Technical Reports Server (NTRS)

    Darcy, Eric C.; Hughes, Brent M.

    1995-01-01

    The test objectives are to evaluate the electrical and thermal performance of commercial Ni-MH cells and to evaluate the effectiveness of commercial charge control circuits. The ultimate design objectives are to determine which cell designs are most suitable for scale-up and to guide the design of future Shuttle and Station based battery chargers.

  2. Overview of the Design, Development, and Application of Nickel-hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Thaller, Lawrence H.; Zimmerman, Albert H.

    2003-01-01

    This document provides an overview of the design, development, and application of nickel-hydrogen (Ni-H2) battery technology for aerospace applications. It complements and updates the information presented in NASA RP-1314, NASA Handbook for Nickel- Hydrogen Batteries, published in 1993. Since that time, nickel-hydrogen batteries have become widely accepted for aerospace energy storage requirements and much more has been learned. The intent of this document is to capture some of that additional knowledge. This document addresses various aspects of nickel-hydrogen technology including the electrochemical reactions, cell component design, and selection considerations; overall cell and battery design considerations; charge control considerations; and manufacturing issues that have surfaced over the years that nickel-hydrogen battery technology has been the major energy storage technology for geosynchronous and low-Earth-orbiting satellites.

  3. Experimental comparison of PV-smoothing controllers using distributed generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Dean; Ellis, Abraham; Denda, Atsushi

    The power output variability of photovoltaic systems can affect local electrical grids in locations with high renewable energy penetrations or weak distribution or transmission systems. In those rare cases, quick controllable generators (e.g., energy storage systems) or loads can counteract the destabilizing effects by compensating for the power fluctuations. Previously, control algorithms for coordinated and uncoordinated operation of a small natural gas engine-generator (genset) and a battery for smoothing PV plant output were optimized using MATLAB/Simulink simulations. The simulations demonstrated that a traditional generation resource such as a natural gas genset in combination with a battery would smooth the photovoltaicmore » output while using a smaller battery state of charge (SOC) range and extending the life of the battery. This paper reports on the experimental implementation of the coordinated and uncoordinated controllers to verify the simulations and determine the differences in the controllers. The experiments were performed with the PNM PV and energy storage Prosperity site and a gas engine-generator located at the Aperture Center at Mesa Del Sol in Albuquerque, New Mexico. Two field demonstrations were performed to compare the different PV smoothing control algorithms: (1) implementing the coordinated and uncoordinated controls while switching off a subsection of the PV array at precise times on successive clear days, and (2) comparing the results of the battery and genset outputs for the coordinated control on a high variability day with simulations of the coordinated and uncoordinated controls. It was found that for certain PV power profiles the SOC range of the battery may be larger with the coordinated control, but the total amp-hours through the battery-which approximates battery wear-will always be smaller with the coordinated control.« less

  4. Performance of the Lester battery charger in electric vehicles

    NASA Technical Reports Server (NTRS)

    Vivian, H. C.; Bryant, J. A.

    1984-01-01

    Tests are performed on an improved battery charger. The primary purpose of the testing is to develop test methodologies for battery charger evaluation. Tests are developed to characterize the charger in terms of its charge algorithm and to assess the effects of battery initial state of charge and temperature on charger and battery efficiency. Tests show this charger to be a considerable improvement in the state of the art for electric vehicle chargers.

  5. Study on LOC for modern facility agriculture automatic walking equipment LiFePO4 battery

    NASA Astrophysics Data System (ADS)

    Liu, Xuepeng; Zhao, Dongmei

    2017-08-01

    LiFePO4 battery LOC (life Of Charge) is the assessment of the ability to work within a cycle of battery charge and discharge period, which likes the miles for vehicle. LOC is related with battery capacity, working condition and stress. LOC consists of the model of the battery's SOC online prediction model, the analysis of RBSOC and the LOC model of multi-condition and multi-stress.

  6. Battery Charge Affects the Stability of Light Intensity from Light-emitting Diode Light-curing Units.

    PubMed

    Tongtaksin, A; Leevailoj, C

    This study investigated the influence of battery charge levels on the stability of light-emitting diode (LED) curing-light intensity by measuring the intensity from fully charged through fully discharged batteries. The microhardness of resin composites polymerized by the light-curing units at various battery charge levels was measured. The light intensities of seven fully charged battery LED light-curing units-1) LY-A180, 2) Bluephase, 3) Woodpecker, 4) Demi Plus, 5) Saab II, 6) Elipar S10, and 7) MiniLED-were measured with a radiometer (Kerr) after every 10 uses (20 seconds per use) until the battery was discharged. Ten 2-mm-thick cylindrical specimens of A3 shade nanofilled resin composite (PREMISE, Kerr) were prepared per LED light-curing unit group. Each specimen was irradiated by the fully charged light-curing unit for 20 seconds. The LED light-curing units were then used until the battery charge fell to 50%. Specimens were prepared again as described above. This was repeated again when the light-curing units' battery charge fell to 25% and when the light intensity had decreased to 400 mW/cm 2 . The top/bottom surface Knoop hardness ratios of the specimens were determined. The microhardness data were analyzed by one-way analysis of variance with Tukey test at a significance level of 0.05. The Pearson correlation coefficient was used to determine significant correlations between surface hardness and light intensity. We found that the light intensities of the Bluephase, Demi Plus, and Elipar S10 units were stable. The intensity of the MiniLED unit decreased slightly; however, it remained above 400 mW/cm 2 . In contrast, the intensities of the LY-A180, Woodpecker, and Saab II units decreased below 400 mW/cm 2 . There was also a significant decrease in the surface microhardnesses of the resin composite specimens treated with MiniLED, LY-A180, Woodpecker, and Saab II. In conclusion, the light intensity of several LED light-curing units decreased as the battery was discharged, with a coincident reduction in the units' ability to polymerize resin composite. Therefore, the intensity of an LED light-curing unit should be evaluated during the life of its battery charge to ensure that sufficient light intensity is being generated.

  7. Machine Learning Based Diagnosis of Lithium Batteries

    NASA Astrophysics Data System (ADS)

    Ibe-Ekeocha, Chinemerem Christopher

    The depletion of the world's current petroleum reserve, coupled with the negative effects of carbon monoxide and other harmful petrochemical by-products on the environment, is the driving force behind the movement towards renewable and sustainable energy sources. Furthermore, the growing transportation sector consumes a significant portion of the total energy used in the United States. A complete electrification of this sector would require a significant development in electric vehicles (EVs) and hybrid electric vehicles (HEVs), thus translating to a reduction in the carbon footprint. As the market for EVs and HEVs grows, their battery management systems (BMS) need to be improved accordingly. The BMS is not only responsible for optimally charging and discharging the battery, but also monitoring battery's state of charge (SOC) and state of health (SOH). SOC, similar to an energy gauge, is a representation of a battery's remaining charge level as a percentage of its total possible charge at full capacity. Similarly, SOH is a measure of deterioration of a battery; thus it is a representation of the battery's age. Both SOC and SOH are not measurable, so it is important that these quantities are estimated accurately. An inaccurate estimation could not only be inconvenient for EV consumers, but also potentially detrimental to battery's performance and life. Such estimations could be implemented either online, while battery is in use, or offline when battery is at rest. This thesis presents intelligent online SOC and SOH estimation methods using machine learning tools such as artificial neural network (ANN). ANNs are a powerful generalization tool if programmed and trained effectively. Unlike other estimation strategies, the techniques used require no battery modeling or knowledge of battery internal parameters but rather uses battery's voltage, charge/discharge current, and ambient temperature measurements to accurately estimate battery's SOC and SOH. The developed algorithms are evaluated experimentally using two different batteries namely lithium iron phosphate (LiFePO 4) and lithium titanate (LTO), both subjected to constant and dynamic current profiles. Results highlight the robustness of these algorithms to battery's nonlinear dynamic nature, hysteresis, aging, dynamic current profile, and parametric uncertainties. Consequently, these methods are susceptible and effective if incorporated with the BMS of EVs', HEVs', and other battery powered devices.

  8. Alternating-Current Motor Drive for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  9. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging.

    PubMed

    Yu, Mingzhe; Ren, Xiaodi; Ma, Lu; Wu, Yiying

    2014-10-03

    With a high theoretical specific energy, the non-aqueous rechargeable lithium-oxygen battery is a promising next-generation energy storage technique. However, the large charging overpotential remains a challenge due to the difficulty in electrochemically oxidizing the insulating lithium peroxide. Recently, a redox shuttle has been introduced into the electrolyte to chemically oxidize lithium peroxide. Here, we report the use of a triiodide/iodide redox shuttle to couple a built-in dye-sensitized titanium dioxide photoelectrode with the oxygen electrode for the photoassisted charging of a lithium-oxygen battery. On charging under illumination, triiodide ions are generated on the photoelectrode, and subsequently oxidize lithium peroxide. Due to the contribution of the photovoltage, the charging overpotential is greatly reduced. The use of a redox shuttle to couple a photoelectrode and an oxygen electrode offers a unique strategy to address the overpotential issue of non-aqueous lithium-oxygen batteries and also a distinct approach for integrating solar cells and batteries.

  10. A battery power model for the EUVE spacecraft

    NASA Technical Reports Server (NTRS)

    Yen, Wen L.; Littlefield, Ronald G.; Mclean, David R.; Tuchman, Alan; Broseghini, Todd A.; Page, Brenda J.

    1993-01-01

    This paper describes a battery power model that has been developed to simulate and predict the behavior of the 50 ampere-hour nickel-cadmium battery that supports the Extreme Ultraviolet Explorer (EUVE) spacecraft in its low Earth orbit. First, for given orbit, attitude, solar array panel and spacecraft load data, the model calculates minute-by-minute values for the net power available for charging the battery for a user-specified time period (usually about two weeks). Next, the model is used to calculate minute-by-minute values for the battery voltage, current and state-of-charge for the time period. The model's calculations are explained for its three phases: sunrise charging phase, constant voltage phase, and discharge phase. A comparison of predicted model values for voltage, current and state-of-charge with telemetry data for a complete charge-discharge cycle shows good correlation. This C-based computer model will be used by the EUVE Flight Operations Team for various 'what-if' scheduling analyses.

  11. Neutron Radiography, Tomography, and Diffraction of Commercial Lithium-ion Polymer Batteries

    NASA Astrophysics Data System (ADS)

    Butler, Leslie G.; Lehmann, Eberhard H.; Schillinger, Burkhard

    Imaging an intact, commercial battery as it cycles and wears is proved possible with neutron imaging. The wavelength range of imaging neutrons corresponds nicely with crystallographic dimensions of the electrochemically active species and the metal elec- trodes are relatively transparent. The time scale of charge/discharge cycling is well matched to dynamic tomography as performed with a golden ratio based projection angle ordering. The hydrogen content does create scatter which tends to blur internal struc- ture. In this report, three neutron experiments will be described: 3D images of charged and discharged batteries were obtained with monochromatic neutrons at the FRM II reactor. 2D images (PSI) of fresh and worn batteries as a function of charge state may show a new wear pattern. In situ neutron diffraction (SNS) of the intact battery provides more information about the concentrations of electrochemical species within the battery as a function of charge state and wear. The combination of 2D imaging, 3D imaging, and diffraction data show how neutron imaging can contribute to battery development and wear monitoring.

  12. Midcourse Space Experiment (MSX)

    DTIC Science & Technology

    1992-08-01

    Facility (PCF), on South Base. The PPF houses the MSX spacecraft for the prelaunch operations (installation of payload fairing, battery charging , etc...include: unpacking the spacecraft from its shipping container; charging the onboard nickel-hydrogen batteries ; filling the cryostat with solid...activities, and will remain in orbit for several hundred years. The MSX spacecraft is solar powered with a battery backup. The battery is capable of

  13. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong

    2014-12-01

    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  14. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for High Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-11-01

    A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g-1 at current densities of 1, 2, 5, 10 A g-1, respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials.

  15. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors.

    PubMed

    Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-11-14

    A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g(-1) at current densities of 1, 2, 5, 10 A g(-1), respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials.

  16. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for High Performance Supercapacitors

    PubMed Central

    Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-01-01

    A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g−1 at current densities of 1, 2, 5, 10 A g−1, respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials. PMID:25394517

  17. New battery model considering thermal transport and partial charge stationary effects in photovoltaic off-grid applications

    NASA Astrophysics Data System (ADS)

    Sanz-Gorrachategui, Iván; Bernal, Carlos; Oyarbide, Estanis; Garayalde, Erik; Aizpuru, Iosu; Canales, Jose María; Bono-Nuez, Antonio

    2018-02-01

    The optimization of the battery pack in an off-grid Photovoltaic application must consider the minimum sizing that assures the availability of the system under the worst environmental conditions. Thus, it is necessary to predict the evolution of the state of charge of the battery under incomplete daily charging and discharging processes and fluctuating temperatures over day-night cycles. Much of previous development work has been carried out in order to model the short term evolution of battery variables. Many works focus on the on-line parameter estimation of available charge, using standard or advanced estimators, but they are not focused on the development of a model with predictive capabilities. Moreover, normally stable environmental conditions and standard charge-discharge patterns are considered. As the actual cycle-patterns differ from the manufacturer's tests, batteries fail to perform as expected. This paper proposes a novel methodology to model these issues, with predictive capabilities to estimate the remaining charge in a battery after several solar cycles. A new non-linear state space model is proposed as a basis, and the methodology to feed and train the model is introduced. The new methodology is validated using experimental data, providing only 5% of error at higher temperatures than the nominal one.

  18. Complete Prevention of Dendrite Formation in Zn Metal Anodes by Means of Pulsed Charging Protocols.

    PubMed

    Garcia, Grecia; Ventosa, Edgar; Schuhmann, Wolfgang

    2017-06-07

    Zn metal as anode in rechargeable batteries, such as Zn/air or Zn/Ni, suffers from poor cyclability. The formation of Zn dendrites upon cycling is the key limiting step. We report a systematic study of the influence of pulsed electroplating protocols on the formation of Zn dendrites and in turn on strategies to completely prevent Zn dendrite formation. Because of the large number of variables in electroplating protocols, a scanning droplet cell technique was adapted as a high-throughput methodology in which a descriptor of the surface roughness can be in situ derived by means of electrochemical impedance spectroscopy. Upon optimizing the electroplating protocol by controlling nucleation, zincate ion depletion, and zincate ion diffusion, scanning electron microscopy and atomic force microscopy confirmed the growth of uniform and homogenous Zn deposits with a complete prevention of dendrite growth. The implementation of pulsed electroplating as the charging protocol for commercially available Ni-Zn batteries leads to substantially prolonged cyclability demonstrating the benefits of pulsed charging in Zn metal-based batteries.

  19. Design construction and analysis of solar ridge concentrator photovoltaic (PV) system to improve battery charging performance.

    PubMed

    Narasimman, Kalaiselvan; Selvarasan, Iniyan

    2016-05-01

    A ridge concentrator photovoltaic system for a 10W multi-crystalline solar panel was designed with the concentration ratios of 1X and 2X. The ray tracing model of ridge concentrator photovoltaic system was carried out using Trace-Pro simulation. The optimum tilt angle for the concentrator PV system throughout the year was computed. The electrical parameters of the 3 panels were analyzed. The effect of temperature on the electrical performance of the panel was also studied. The reduction of voltage due to increasing panel temperature was managed by MPES type Charge controller. Glass reflector with reflectivity 0.95 was chosen as the ridge wall for the concentrator system. The maximum power outputs for the 1X and 2X panel reached were 9W and 10.5W with glass reflector. The percentage of power improvement for 1X and 2X concentrations were 22.3% and 45.8% respectively. The 2X concentrated panel connected battery takes lower time to charge compared with normal panel connected battery. Copyright © 2016. Published by Elsevier Inc.

  20. Power subsystem performance prediction /PSPP/ computer program.

    NASA Technical Reports Server (NTRS)

    Weiner, H.; Weinstein, S.

    1972-01-01

    A computer program which simulates the operation of the Viking Orbiter Power Subsystem has been developed. The program simulates the characteristics and interactions of a solar array, battery, battery charge controls, zener diodes, power conditioning equipment, and the battery spacecraft and zener diode-spacecraft thermal interfaces. This program has been used to examine the operation of the Orbiter power subsystem during critical phases of the Viking mission - from launch, through midcourse maneuvers, Mars orbital insertion, orbital trims, Lander separation, solar occultations and unattended operation - until the end of the mission. A typical computer run for the first 24 hours after launch is presented which shows the variations in solar array, zener diode, battery charger, batteries and user load characteristics during this period.

  1. Nanotechnologies for efficient solar and wind energy harvesting and storage

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2010-08-01

    We describe nanotechnologies used to improve the efficient harvest of energy from the Sun and the wind, and the efficient storage of energy in secondary batteries and ultracapacitors, for use in a variety of applications including smart grids, electric vehicles, and portable electronics. We demonstrate high-quality nanostructured copper indium gallium selenide (CIGS) thin films for photovoltaic (PV) applications. The self-assembly of nanoscale p-n junction networks creates n-type networks that act as preferential electron pathways, and p-type networks that act as preferential hole pathways, allowing positive and negative charges to travel to the contacts in physically separated paths, reducing charge recombination. We also describe PV nanotechnologies used to enhance light trapping, photon absorption, charge generation, charge transport, and current collection. Furthermore, we describe nanotechnologies used to improve the efficiency of power-generating wind turbines. These technologies include nanoparticle-containing lubricants that reduce the friction generated from the rotation of the turbines, nanocoatings for de-icing and self-cleaning technologies, and advanced nanocomposites that provide lighter and stronger wind blades. Finally, we describe nanotechnologies used in advanced secondary batteries and ultracapacitors. Nanostructured powder-based and carbon-nanotube-based cathodes and anodes with ultra-high surface areas boost the energy and power densities in secondary batteries, including lithium-ion and sodium-sulfur batteries. Nanostructured carbon materials are also controlled on a molecular level to offer large surface areas for the electrodes of ultracapacitors, allowing to store and supply large bursts of energy needed in some applications.

  2. Development of a nickel/metal hydride battery (Ni/MH) system for EV application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikoma, M.; Hamada, S.; Morishita, N.

    1994-12-31

    In order to satisfy basic battery characteristics for electric vehicles (EV) such as specific energy, specific power and cycle life that are required for driving on urban streets, the authors have selected the valve-regulated lead acid battery as a conventional battery and the nickel/metal-hydride battery as an advanced battery, and have been studying their development in order to put them into practical use by 1998. Regarding the nickel/metal-hydride battery, excellent nickel positive electrode with high temperature charge efficiency accomplished with additives such as Ca compounds, and an exceedingly good hydrogen absorbing alloy negative electrode with high capacity and long cyclemore » life, achieved by adjustment of alloy composition, surface treatment, and control of binder and conductive additive have been developed to overcome difficulties in the scale-up of battery size. Modular batteries using this technology possess specific energy twice (70 Wh/kg) that of the lead-acid battery, and have superior specific power (160 Wh/kg) and cycle life. 5 refs.« less

  3. Fast Equalization for Large Lithium Ion Batteries

    DTIC Science & Technology

    2008-09-01

    Lithium - ion batteries use an electrolyte that is flammable if exposed to high temperatures. Slight differences between the series-connected cells in a LiIon battery pack can produce imbalances in the cell voltages, and this greatly reduces the charge capacity. These batteries cannot be trickle charged like a lead acid battery because this would slightly overcharge some cells and would cause these cells to ignite. There are different methods used to ensure that the cells of a battery pack are not overcharged. The targeted equalizer (EQU) described here can

  4. Burner ignition system

    DOEpatents

    Carignan, Forest J.

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  5. Estimation of Transport and Kinetic Parameters of Vanadium Redox Batteries Using Static Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seong Beom; Pratt, III, Harry D.; Anderson, Travis M.

    Mathematical models of Redox Flow Batteries (RFBs) can be used to analyze cell performance, optimize battery operation, and control the energy storage system efficiently. Among many other models, physics-based electrochemical models are capable of predicting internal states of the battery, such as temperature, state-of-charge, and state-of-health. In the models, estimating parameters is an important step that can study, analyze, and validate the models using experimental data. A common practice is to determine these parameters either through conducting experiments or based on the information available in the literature. However, it is not easy to investigate all proper parameters for the modelsmore » through this way, and there are occasions when important information, such as diffusion coefficients and rate constants of ions, has not been studied. Also, the parameters needed for modeling charge-discharge are not always available. In this paper, an efficient way to estimate parameters of physics-based redox battery models will be proposed. Furthermore, this paper also demonstrates that the proposed approach can study and analyze aspects of capacity loss/fade, kinetics, and transport phenomena of the RFB system.« less

  6. Estimation of Transport and Kinetic Parameters of Vanadium Redox Batteries Using Static Cells

    DOE PAGES

    Lee, Seong Beom; Pratt, III, Harry D.; Anderson, Travis M.; ...

    2018-03-27

    Mathematical models of Redox Flow Batteries (RFBs) can be used to analyze cell performance, optimize battery operation, and control the energy storage system efficiently. Among many other models, physics-based electrochemical models are capable of predicting internal states of the battery, such as temperature, state-of-charge, and state-of-health. In the models, estimating parameters is an important step that can study, analyze, and validate the models using experimental data. A common practice is to determine these parameters either through conducting experiments or based on the information available in the literature. However, it is not easy to investigate all proper parameters for the modelsmore » through this way, and there are occasions when important information, such as diffusion coefficients and rate constants of ions, has not been studied. Also, the parameters needed for modeling charge-discharge are not always available. In this paper, an efficient way to estimate parameters of physics-based redox battery models will be proposed. Furthermore, this paper also demonstrates that the proposed approach can study and analyze aspects of capacity loss/fade, kinetics, and transport phenomena of the RFB system.« less

  7. Lead-acid batteries in micro-hybrid applications. Part I. Selected key parameters

    NASA Astrophysics Data System (ADS)

    Schaeck, S.; Stoermer, A. O.; Kaiser, F.; Koehler, L.; Albers, J.; Kabza, H.

    Micro-hybrid electric vehicles were launched by BMW in March 2007. These are equipped with brake energy regeneration (BER) and the automatic start and stop function (ASSF) of the internal combustion engine. These functions are based on common 14 V series components and lead-acid (LA) batteries. The novelty is given by the intelligent onboard energy management, which upgrades the conventional electric system to the micro-hybrid power system (MHPS). In part I of this publication the key factors for the operation of LA batteries in the MHPS are discussed. Especially for BER one is high dynamic charge acceptance (DCA) for effective boost charging. Vehicle rest time is identified as a particular negative parameter for DCA. It can be refreshed by regular fully charging at elevated charge voltage. Thus, the batteries have to be outstandingly robust against overcharge and water loss. This can be accomplished for valve-regulated lead-acid (VRLA) batteries at least if they are mounted in the trunk. ASSF goes along with frequent high-rate loads for warm cranking. The internal resistance determines the drop of the power net voltage during cranking and is preferably low for reasons of power net stability even after years of operation. Investigations have to be done with aged 90 Ah VRLA-absorbent glass mat (AGM) batteries. Battery operation at partial state-of-charge gives a higher risk of deep discharging (overdischarging). Subsequent re-charging then is likely to lead to the formation of micro-short circuits in the absorbent glass mat separator.

  8. The thermodynamic origin of hysteresis in insertion batteries

    NASA Astrophysics Data System (ADS)

    Dreyer, Wolfgang; Jamnik, Janko; Guhlke, Clemens; Huth, Robert; Moškon, Jože; Gaberšček, Miran

    2010-05-01

    Lithium batteries are considered the key storage devices for most emerging green technologies such as wind and solar technologies or hybrid and plug-in electric vehicles. Despite the tremendous recent advances in battery research, surprisingly, several fundamental issues of increasing practical importance have not been adequately tackled. One such issue concerns the energy efficiency. Generally, charging of 1010-1017 electrode particles constituting a modern battery electrode proceeds at (much) higher voltages than discharging. Most importantly, the hysteresis between the charge and discharge voltage seems not to disappear as the charging/discharging current vanishes. Herein we present, for the first time, a general explanation of the occurrence of inherent hysteretic behaviour in insertion storage systems containing multiple particles. In a broader sense, the model also predicts the existence of apparent equilibria in battery electrodes, the sequential particle-by-particle charging/discharging mechanism and the disappearance of two-phase behaviour at special experimental conditions.

  9. The thermodynamic origin of hysteresis in insertion batteries.

    PubMed

    Dreyer, Wolfgang; Jamnik, Janko; Guhlke, Clemens; Huth, Robert; Moskon, Joze; Gaberscek, Miran

    2010-05-01

    Lithium batteries are considered the key storage devices for most emerging green technologies such as wind and solar technologies or hybrid and plug-in electric vehicles. Despite the tremendous recent advances in battery research, surprisingly, several fundamental issues of increasing practical importance have not been adequately tackled. One such issue concerns the energy efficiency. Generally, charging of 10(10)-10(17) electrode particles constituting a modern battery electrode proceeds at (much) higher voltages than discharging. Most importantly, the hysteresis between the charge and discharge voltage seems not to disappear as the charging/discharging current vanishes. Herein we present, for the first time, a general explanation of the occurrence of inherent hysteretic behaviour in insertion storage systems containing multiple particles. In a broader sense, the model also predicts the existence of apparent equilibria in battery electrodes, the sequential particle-by-particle charging/discharging mechanism and the disappearance of two-phase behaviour at special experimental conditions.

  10. Charge-discharge characteristics of nickel/zinc battery with polymer hydrogel electrolyte

    NASA Astrophysics Data System (ADS)

    Iwakura, Chiaki; Murakami, Hiroki; Nohara, Shinji; Furukawa, Naoji; Inoue, Hiroshi

    A new nickel/zinc (Ni/Zn) battery was assembled by using polymer hydrogel electrolyte prepared from cross-linked potassium poly(acrylate) and KOH aqueous solution, and its charge-discharge characteristics were investigated. The experimental Ni/Zn cell with the polymer hydrogel electrolyte exhibited well-defined charge-discharge curves and remarkably improved charge-discharge cycle performance, compared to that with a KOH aqueous solution. Moreover, it was found that dendritic growth hardly occurred on the zinc electrode surface during charge-discharge cycles in the polymer hydrogel electrolyte. These results indicate that the polymer hydrogel electrolyte can successfully be used in Ni/Zn batteries as an electrolyte with excellent performance.

  11. Operando Grazing Incidence Small-Angle X-ray Scattering/X-ray Diffraction of Model Ordered Mesoporous Lithium-Ion Battery Anodes.

    PubMed

    Bhaway, Sarang M; Qiang, Zhe; Xia, Yanfeng; Xia, Xuhui; Lee, Byeongdu; Yager, Kevin G; Zhang, Lihua; Kisslinger, Kim; Chen, Yu-Ming; Liu, Kewei; Zhu, Yu; Vogt, Bryan D

    2017-02-28

    Emergent lithium-ion (Li + ) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li + ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li + , but in many cases these nanostructures evolve during electrochemical charging-discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporous NiCo 2 O 4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge-discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Conversely, anodes with larger ordered mesopores (17-28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. This preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; however, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge-discharge cycles leads to capacity decay in battery performance. These multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) are translated to the nanostructure during battery operation. Moreover, small changes in the nanostructure can build up to significant morphological transformations that adversely impact battery performance through multiple charge-discharge cycles.

  12. A low-overpotential potassium-oxygen battery based on potassium superoxide.

    PubMed

    Ren, Xiaodi; Wu, Yiying

    2013-02-27

    Li-O(2) battery is regarded as one of the most promising energy storage systems for future applications. However, its energy efficiency is greatly undermined by the large overpotentials of the discharge (formation of Li(2)O(2)) and charge (oxidation of Li(2)O(2)) reactions. The parasitic reactions of electrolyte and carbon electrode induced by the high charging potential cause the decay of capacity and limit the battery life. Here, a K-O(2) battery is report that uses K(+) ions to capture O(2)(-) to form the thermodynamically stable KO(2) product. This allows for the battery to operate through the one-electron redox process of O(2)/O(2)(-). Our studies confirm the formation and removal of KO(2) in the battery cycle test. Furthermore, without the use of catalysts, the battery shows a low discharge/charge potential gap of less than 50 mV at a modest current density, which is the lowest one that has ever been reported in metal-oxygen batteries.

  13. 46 CFR 185.720 - Weekly maintenance and inspections.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... starting the engine; and (c) Each battery for rescue boat engine starting must be brought up to full charge at least once each week if: (1) The battery is of a type that requires recharging; and (2) The battery is not connected to a device that keeps it continuously charged. ...

  14. 46 CFR 185.720 - Weekly maintenance and inspections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... starting the engine; and (c) Each battery for rescue boat engine starting must be brought up to full charge at least once each week if: (1) The battery is of a type that requires recharging; and (2) The battery is not connected to a device that keeps it continuously charged. ...

  15. 46 CFR 185.720 - Weekly maintenance and inspections.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... starting the engine; and (c) Each battery for rescue boat engine starting must be brought up to full charge at least once each week if: (1) The battery is of a type that requires recharging; and (2) The battery is not connected to a device that keeps it continuously charged. ...

  16. 46 CFR 185.720 - Weekly maintenance and inspections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... starting the engine; and (c) Each battery for rescue boat engine starting must be brought up to full charge at least once each week if: (1) The battery is of a type that requires recharging; and (2) The battery is not connected to a device that keeps it continuously charged. ...

  17. 46 CFR 185.720 - Weekly maintenance and inspections.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... starting the engine; and (c) Each battery for rescue boat engine starting must be brought up to full charge at least once each week if: (1) The battery is of a type that requires recharging; and (2) The battery is not connected to a device that keeps it continuously charged. ...

  18. Models for Conducting Economic Analysis of Alternative Fuel Vehicles.

    DTIC Science & Technology

    1987-06-01

    where regenerative braking is employed (5) Efficient, safe, and reliable operation (6) Overload protection for motors, motor reversing, and charging of...current to the motor in order to control the flow of power. [Ref. 3:p. 171] The regenerative braking mentioned in (4) above is a means of charging the...recovered electrically and used to charge the battery, thus extending the range of the vehicle. In regenerative braking , the electric vehicle’s V 23 AA Sg

  19. Optical state-of-charge monitor for batteries

    DOEpatents

    Weiss, Jonathan D.

    1999-01-01

    A method and apparatus for determining the instantaneous state-of-charge of a battery in which change in composition with discharge manifests itself as a change in optical absorption. In a lead-acid battery, the sensor comprises a fiber optic system with an absorption cell or, alternatively, an optical fiber woven into an absorbed-glass-mat battery. In a lithium-ion battery, the sensor comprises fiber optics for introducing light into the anode to monitor absorption when lithium ions are introduced.

  20. An electrostatic CMOS/BiCMOS Lithium ion vibration-based harvester-charger IC

    NASA Astrophysics Data System (ADS)

    Torres, Erick Omar

    Self-powered microsystems, such as wireless transceiver microsensors, appeal to an expanding application space in monitoring, control, and diagnosis for commercial, industrial, military, space, and biomedical products. As these devices continue to shrink, their microscale dimensions allow them to be unobtrusive and economical, with the potential to operate from typically unreachable environments and, in wireless network applications, deploy numerous distributed sensing nodes simultaneously. Extended operational life, however, is difficult to achieve since their limited volume space constrains the stored energy available, even with state-of-the-art technologies, such as thin-film lithium-ion batteries (Li Ion) and micro-fuel cells. Harvesting ambient energy overcomes this deficit by continually replenishing the energy reservoir and, as a result, indefinitely extending system lifetime. In this work, an electrostatic harvester that harnesses ambient kinetic energy from vibrations to charge an energy-storage device (e.g., a battery) is investigated, developed, and evaluated. The proposed harvester charges and holds the voltage across a vibration-sensitive variable capacitor so that vibrations can induce it to generate current into the battery when capacitance decreases (as its plates separate). The challenge is that energy is harnessed at relatively slow rates, producing low output power, and the electronics required to transfer it to charge a battery can easily demand more than the power produced. To this end, the system reduces losses by time-managing and biasing its circuits to operate only when needed and with just enough energy while charging the capacitor through an efficient quasi-lossless inductor-based precharger. As result, the proposed energy harvester stores a net energy gain in the battery during every vibration cycle. Two energy-harvesting integrated circuits (IC) were analyzed, designed, developed, and validated using a 0.7-im BiCMOS process and a 30-Hz mechanical variable capacitor. The precharger, harvester, monitoring, and control microelectronics of the first prototype draw sufficient power to operate and at the same time produce experimentally 1.27, 2.14, and 2.87 nJ per vibration cycle for battery voltages at 2.7, 3.5, and 4.2 V, which with 30-Hz vibrations produce 38.1, 64.2, and 86.1 nW. By incorporating into the system a self-tuning loop that adapts optimally the inductor-based precharger to varying battery voltages, the second prototype harnessed and gained 1.93, 2.43, and 3.89 nJ per vibration cycle at battery voltages 2.7, 3.5, and 4.2 V, generating 57.89, 73.02, and 116.55 nW at 30 Hz. The harvester ultimately charges from 2.7 to 4.2 V a 1-muF capacitor (which emulates a small thin-film Li Ion) in approximately 69 s, harnessing in the same length of time 47.9% more energy than with a non-adapting harvester.

  1. VRLA Ultrabattery for high-rate partial-state-of-charge operation

    NASA Astrophysics Data System (ADS)

    Lam, L. T.; Louey, R.; Haigh, N. P.; Lim, O. V.; Vella, D. G.; Phyland, C. G.; Vu, L. H.; Furukawa, J.; Takada, T.; Monma, D.; Kano, T.

    The objective of this study is to produce and test the hybrid valve-regulated Ultrabattery designed specifically for hybrid-electric vehicle duty, i.e., high-rate partial-state-of-charge operation. The Ultrabattery developed by CSIRO Energy Technology is a hybrid energy-storage device, which combines an asymmetric supercapacitor, and a lead-acid battery in one unit cells, taking the best from both technologies without the need for extra, expensive electronic controls. The capacitor will enhance the power and lifespan of the lead-acid battery as it acts as a buffer during high-rate discharging and charging. Consequently, this hybrid technology is able to provide and absorb charge rapidly during vehicle acceleration and braking. The work programme of this study is divided into two main parts, namely, field trial of prototype Ultrabatteries in a Honda Insight HEV and laboratory tests of prototype batteries. In this paper, the performance of prototype Ultrabatteries under different laboratory tests is reported. The evaluation of Ultrabatteries in terms of initial performance and cycling performance has been conducted at both CSIRO and Furukawa laboratories. The initial performance of prototype Ultrabatteries, such as capacity, power, cold cranking and self-discharge has been evaluated based upon the US FreedomCAR Battery Test Manual (DOE/ID-11069, October 2003). Results show that the Ultrabatteries meet, or exceed, respective targets of power, available energy, cold cranking and self-discharge set for both minimum and maximum power-assist HEVs. The cycling performance of prototype Ultrabatteries has been evaluated using: (i) simplified discharge and charge profile to simulate the driving conditions of micro-HEV; (ii) 42-V profile to simulate the driving conditions of mild-HEV and (iii) EUCAR and RHOLAB profiles to simulate the driving conditions of medium-HEV. For comparison purposes, nickel-metal-hydride (Ni-MH) cells, which are presently used in the Honda Insight HEV, have also been subjected to some of the above profiles (i.e., simplified discharge and charge profile and EUCAR profile). Although the Ultrabattery and a Ni-MH cell under EUCAR test profile are still on cycling, the outcomes to date show that the performance of these batteries and cells has been at least four times longer than that of the state-of-the art lead-acid cells or batteries. Excitingly, the performance of Ultrabatteries is proven to be comparable with that of the Ni-MH cells.

  2. International Space Station Lithium-Ion Battery

    NASA Technical Reports Server (NTRS)

    Dalton, Penni J.; Schwanbeck, Eugene; North, Tim; Balcer, Sonia

    2016-01-01

    The International Space Station (ISS) primary Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-Ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. When deployed, they will be the largest Li-Ion batteries ever utilized for a human-rated spacecraft. This paper will include an overview of the ISS Li-Ion battery system architecture, the Li-Ion battery design and development, controls to limit potential hazards from the batteries, and the status of the Li-Ion cell and ORU life cycle testing.

  3. "Fuel Gage" for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Rowlette, J. J.

    1984-01-01

    Gas-emmission and time-integrated-current measurements indicate battery charge state. Tests indicate possibility of monitoring state of charge of lead/acid batteries at any stage in charging cycle by measuring charging current and either gas evolution or electrode potential. Data then processed by microcomputer. Uses include cell voltage, cell pressure, cell temperature and rate of gas recombination on catalyst.

  4. Degradation mechanism of over-charged LiCoO 2/mesocarbon microbeads battery during shallow depth of discharge cycling

    DOE PAGES

    Zhang, Lingling; Ma, Yulin; Cheng, Xinqun; ...

    2016-08-26

    LiCoO 2/mesocarbon microbeads (MCMB) batteries are over-charged to different voltage (4.4 V, 4.5 V, 4.6 V, and 4.7 V, respectively) for ten times, and then are cycled 1000 times for shallow depth of discharge. The morphology, structure, and electrochemical performance of the electrode materials were studied in detail in order to identify the capacity fading mechanism of over-charged battery after long-term cycling. The cycling performances of LiCoO 2/MCMB batteries are gradually aggravated with the increase of over-charging voltage and the degradation mechanism is diverse upon the degree of over-charging. Furthermore, the capacity fading after long-term cycling of battery over-charged tomore » 4.6 V or 4.7 V is mainly attributed to the cathodes. Soft X-ray absorption spectroscopy (XAS) demonstrates that the lower valence state of cobalt exists on the surface of the LiCoO 2 after serious over-charging (4.6 V or 4.7 V), and cobalt is dissolved then deposited on the anode according to the result of energy dispersive spectrometry (EDS). But, after shallow over-charging (4.4 V or 4.5 V), the capacity deterioration is proposed as the loss of active lithium, presented by the generation of the SEI film on the anode, which is verified by water washed tests.« less

  5. Management of Deep Brain Stimulator Battery Failure: Battery Estimators, Charge Density, and Importance of Clinical Symptoms

    PubMed Central

    Fakhar, Kaihan; Hastings, Erin; Butson, Christopher R.; Foote, Kelly D.; Zeilman, Pam; Okun, Michael S.

    2013-01-01

    Objective We aimed in this investigation to study deep brain stimulation (DBS) battery drain with special attention directed toward patient symptoms prior to and following battery replacement. Background Previously our group developed web-based calculators and smart phone applications to estimate DBS battery life (http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator). Methods A cohort of 320 patients undergoing DBS battery replacement from 2002–2012 were included in an IRB approved study. Statistical analysis was performed using SPSS 20.0 (IBM, Armonk, NY). Results The mean charge density for treatment of Parkinson’s disease was 7.2 µC/cm2/phase (SD = 3.82), for dystonia was 17.5 µC/cm2/phase (SD = 8.53), for essential tremor was 8.3 µC/cm2/phase (SD = 4.85), and for OCD was 18.0 µC/cm2/phase (SD = 4.35). There was a significant relationship between charge density and battery life (r = −.59, p<.001), as well as total power and battery life (r = −.64, p<.001). The UF estimator (r = .67, p<.001) and the Medtronic helpline (r = .74, p<.001) predictions of battery life were significantly positively associated with actual battery life. Battery status indicators on Soletra and Kinetra were poor predictors of battery life. In 38 cases, the symptoms improved following a battery change, suggesting that the neurostimulator was likely responsible for symptom worsening. For these cases, both the UF estimator and the Medtronic helpline were significantly correlated with battery life (r = .65 and r = .70, respectively, both p<.001). Conclusions Battery estimations, charge density, total power and clinical symptoms were important factors. The observation of clinical worsening that was rescued following neurostimulator replacement reinforces the notion that changes in clinical symptoms can be associated with battery drain. PMID:23536810

  6. Aligning PEV Charging Times with Electricity Supply and Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Cabell

    Plug-in electric vehicles (PEVs) are a growing source of electricity consumption that could either exacerbate supply shortages or smooth electricity demand curves. Extensive research has explored how vehicle-grid integration (VGI) can be optimized by controlling PEV charging timing or providing vehicle-to-grid (V2G) services, such as storing energy in vehicle batteries and returning it to the grid at peak times. While much of this research has modeled charging, implementation in the real world requires a cost-effective solution that accounts for consumer behavior. To function across different contexts, several types of charging administrators and methods of control are necessary to minimize costsmore » in the VGI context.« less

  7. 29 CFR 1910.1029 - Coke oven emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., including at least one sample during each shift for each battery and each job classification within the... controls to control coke oven emissions during charging operations: (a) One of the following methods of...) Aspiration systems designed and operated to provide sufficient negative pressure and flow volume to...

  8. 29 CFR 1910.1029 - Coke oven emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., including at least one sample during each shift for each battery and each job classification within the... controls to control coke oven emissions during charging operations: (a) One of the following methods of...) Aspiration systems designed and operated to provide sufficient negative pressure and flow volume to...

  9. 29 CFR 1910.1029 - Coke oven emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., including at least one sample during each shift for each battery and each job classification within the... controls to control coke oven emissions during charging operations: (a) One of the following methods of...) Aspiration systems designed and operated to provide sufficient negative pressure and flow volume to...

  10. Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li-S Batteries.

    PubMed

    Huang, Jing-Kai; Li, Mengliu; Wan, Yi; Dey, Sukumar; Ostwal, Mayur; Zhang, Daliang; Yang, Chih-Wen; Su, Chun-Jen; Jeng, U-Ser; Ming, Jun; Amassian, Aram; Lai, Zhiping; Han, Yu; Li, Sean; Li, Lain-Jong

    2018-01-23

    Ultrathin two-dimensional (2D) polymeric layers are capable of separating gases and molecules based on the reported size exclusion mechanism. What is equally important but missing today is an exploration of the 2D layers with charge functionality, which enables applications using the charge exclusion principle. This work demonstrates a simple and scalable method of synthesizing a free-standing 2D coordination polymer Zn 2 (benzimidazolate) 2 (OH) 2 at the air-water interface. The hydroxyl (-OH) groups are stoichiometrically coordinated and implement electrostatic charges in the 2D structures, providing powerful functionality as a charge barrier. Electrochemical performance of the Li-S battery shows that the Zn 2 (benzimidazolate) 2 (OH) 2 coordination polymer layers efficiently mitigate the polysulfide shuttling effects and largely enhance the battery capacity and cycle performance. The synthesis of the proposed coordination polymeric layers is simple, scalable, cost saving, and promising for practical use in batteries.

  11. Identifying Potential Markets for Behind-the-Meter Battery Energy Storage: A Survey of U.S. Demand Charges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaren, Joyce A; Gagnon, Pieter J; Mullendore, Seth

    This paper presents the first publicly available comprehensive survey of the magnitude of demand charges for commercial customers across the United States -- a key predictor of the financial performance of behind-the-meter battery storage systems. Notably, the analysis estimates that there are nearly 5 million commercial customers in the United States who can subscribe to retail electricity tariffs that have demand charges in excess of $15 per kilowatt (kW), over a quarter of the 18 million commercial customers in total in the United States. While the economic viability of installing battery energy storage must be determined on a case-by-case basis,more » high demand charges are often cited as a critical factor in battery project economics. Increasing use of demand charges in utility tariffs and anticipated future declines in storage costs will only serve to unlock additional markets and strengthen existing ones.« less

  12. Wireless Power Transfer

    ScienceCinema

    None

    2018-01-16

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consumption. Previously worrisome traffic delays now provide longer periods of charge while passing over in-motion chargers. Inclement weather such as rain and snow do not affect the charging capability. At ORNL, we are working to develop the robust nature of wireless power technology to provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions.

  13. Wireless Power Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-07-22

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forgetmore » to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consumption. Previously worrisome traffic delays now provide longer periods of charge while passing over in-motion chargers. Inclement weather such as rain and snow do not affect the charging capability. At ORNL, we are working to develop the robust nature of wireless power technology to provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions.« less

  14. Stirling Convertor Control for a Concept Rover at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Blaze-Dugala, Gina M.

    2009-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for potential use as an electric power system for space science missions. This generator would make use of the free-piston Stirling cycle to achieve higher conversion efficiency than currently used alternatives. NASA GRC initiated an experiment with an ASRG simulator to demonstrate the functionality of a Stirling convertor on a mobile application, such as a rover. The ASRG simulator made use of two Advanced Stirling Convertors to convert thermal energy from a heat source to electricity. The ASRG simulator was designed to incorporate a minimum amount of support equipment, allowing integration onto a rover powered directly by the convertors. Support equipment to provide control was designed including a linear AC regulator controller, constant power controller, and Li-ion battery charger controller. The ASRG simulator is controlled by a linear AC regulator controller. The rover is powered by both a Stirling convertor and Li-ion batteries. A constant power controller enables the Stirling convertor to maintain a constant power output when additional power is supplied by the Li-ion batteries. A Li-ion battery charger controller limits the charging current and cut off current of the batteries. This paper discusses the design, fabrication, and implementation of these three controllers.

  15. Implementation of a transcutaneous charger for fully implantable middle ear hearing device.

    PubMed

    Lim, H; Yoon, Y; Lee, C; Park, I; Song, B; Cho, J

    2005-01-01

    A transcutaneous charger for the fully implantable middle ear hearing device (F-IMEHD), which can monitor the charging level of battery, has been designed and implemented. In order to recharge the battery of F-IMEHD, the electromagnetic coupling between primary coil at outer body and secondary coil at inner body has been used. Considering the implant condition of the F-IMEHD, the primary coil and the secondary coil have been designed. Using the resonance of LC tank circuit at each coil, transmission efficiency was increased. Since the primary and the secondary coil are magnetically coupled, the current variation of the primary coil is related with the impedance of internal resonant circuit. Using the principle mentioned above, the implanted module could transmit outward the information about charging state of battery or coupling between two coils by the changing internal impedance. As in the demonstrated results of experiment, the implemented charger has supplied the sufficient operating voltage for the implanted battery within about 10 mm distance. And also, it has been confirmed that the implanted module can transmit information outward by control of internal impedance.

  16. Charging a Li-O₂ battery using a redox mediator.

    PubMed

    Chen, Yuhui; Freunberger, Stefan A; Peng, Zhangquan; Fontaine, Olivier; Bruce, Peter G

    2013-06-01

    The non-aqueous Li-air (O2) battery is receiving intense interest because its theoretical specific energy exceeds that of Li-ion batteries. Recharging the Li-O2 battery depends on oxidizing solid lithium peroxide (Li2O2), which is formed on discharge within the porous cathode. However, transporting charge between Li2O2 particles and the solid electrode surface is at best very difficult and leads to voltage polarization on charging, even at modest rates. This is a significant problem facing the non-aqueous Li-O2 battery. Here we show that incorporation of a redox mediator, tetrathiafulvalene (TTF), enables recharging at rates that are impossible for the cell in the absence of the mediator. On charging, TTF is oxidized to TTF(+) at the cathode surface; TTF(+) in turn oxidizes the solid Li2O2, which results in the regeneration of TTF. The mediator acts as an electron-hole transfer agent that permits efficient oxidation of solid Li2O2. The cell with the mediator demonstrated 100 charge/discharge cycles.

  17. The 100 ampere-hour nickel cadmium battery development program, volume 1

    NASA Technical Reports Server (NTRS)

    Gaston, S.

    1974-01-01

    A program to develop a long-life, reliable and safe 100 ampere-hour sealed nickel-cadmium cell and battery module with ancillary charge control and automated test equipment to fulfill the requirements of a large Manned Orbital Space Station which uses Solar Arrays as its prime source for 25 kW of electrical power was conducted. A sealed 100 ampere-hour cell with long life potential and a replaceable, space maintainable battery module has been developed for Manned Space Station applications. The 100 ampere-hour cell has been characterized for initial (early life) anticipated conditions.

  18. Rechargeable lithium battery technology - A survey

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Surampudi, Subbarao

    1990-01-01

    The technology of the rechargeable lithium battery is discussed with special attention given to the types of rechargeable lithium cells and to their expected performance and advantages. Consideration is also given to the organic-electrolyte and polymeric-electrolyte cells and to molten salt lithium cells, as well as to technical issues, such as the cycle life, charge control, rate capability, cell size, and safety. The role of the rechargeable lithium cell in future NASA applications is discussed.

  19. Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead acid batteries

    NASA Technical Reports Server (NTRS)

    Rowlette, J. J.

    1981-01-01

    Charge efficiencies were determined by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state of charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.

  20. Design description of the Schuchuli Village photovoltaic power system

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.; Vasicek, R. W.; Delombard, R.

    1981-01-01

    A stand alone photovoltaic (PV) power system for the village of Schuchuli (Gunsight), Arizona, on the Papago Indian Reservation is a limited energy, all 120 V (d.c.) system to which loads cannot be arbitrarily added and consists of a 3.5 kW (peak) PV array, 2380 ampere-hours of battery storage, an electrical equipment building, a 120 V (d.c.) electrical distribution network, and equipment and automatic controls to provide control power for pumping water into an existing water system; operating 15 refrigerators, a clothes washing machine, a sewing machine, and lights for each of the homes and communal buildings. A solar hot water heater supplies hot water for the washing machine and communal laundry. Automatic control systems provide voltage control by limiting the number of PV strings supplying power during system operation and battery charging, and load management for operating high priority at the expense of low priority loads as the main battery becomes depleted.

  1. Controllable Electrochemical Fabrication of KO2-Decorated Binder-Free Cathodes for Rechargeable Lithium-Oxygen Batteries.

    PubMed

    Yu, Wei; Wang, Huwei; Qin, Lei; Hu, Junyang; Liu, Liang; Li, Baohua; Zhai, Dengyun; Kang, Feiyu

    2018-05-23

    Understanding the electrochemical property of superoxides in alkali metal oxygen batteries is critical for the design of a stable oxygen battery with high capacity and long cycle performance. In this work, a KO 2 -decorated binder-free cathode is fabricated by a simple and efficient electrochemical strategy. KO 2 nanoparticles are uniformly coated on the carbon nanotube film (CNT-f) through a controllable discharge process in the K-O 2 battery, and the KO 2 -decorated CNT-f is innovatively introduced into the Li-O 2 battery as the O 2 diffusion electrode. The Li-O 2 battery based on the KO 2 -decorated CNT-f cathode can deliver enhanced discharge capacity, reduced charge overpotential, and more stable cycle performance compared with the battery in the absence of KO 2 . In situ formed KO 2 particles on the surface of CNT-f cathode assist to form Li 2 O 2 nanosheets in the Li-O 2 battery, which contributes to the improvement of discharge capacity and cycle life. Interestingly, the analysis of KO 2 -decorated CNT-f cathodes, after discharge and cycle tests, reveals that the electrochemically synthesized KO 2 seems not a conventional electrocatalyst but a partially dissolvable and decomposable promoter in Li-O 2 batteries.

  2. Supervised chaos genetic algorithm based state of charge determination for LiFePO4 batteries in electric vehicles

    NASA Astrophysics Data System (ADS)

    Shen, Yanqing

    2018-04-01

    LiFePO4 battery is developed rapidly in electric vehicle, whose safety and functional capabilities are influenced greatly by the evaluation of available cell capacity. Added with adaptive switch mechanism, this paper advances a supervised chaos genetic algorithm based state of charge determination method, where a combined state space model is employed to simulate battery dynamics. The method is validated by the experiment data collected from battery test system. Results indicate that the supervised chaos genetic algorithm based state of charge determination method shows great performance with less computation complexity and is little influenced by the unknown initial cell state.

  3. A Hydrogen-Evolving Hybrid-Electrolyte Battery with Electrochemical/Photoelectrochemical Charging from Water Oxidation.

    PubMed

    Jin, Zhaoyu; Li, Panpan; Xiao, Dan

    2017-02-08

    Decoupled hydrogen and oxygen production were successfully embedded into an aqueous dual-electrolyte (acid-base) battery for simultaneous energy storage and conversion. A three-electrode configuration was adopted, involving an electrocatalytic hydrogen-evolving electrode as cathode, an alkaline battery-type or capacitor-type anode as shuttle, and a charging-assisting electrode for electro-/photoelectrochemically catalyzing water oxidation. The conceptual battery not only synergistically outputs electricity and chemical fuels with tremendous specific energy and power densities, but also supports various approaches to be charged by pure or solar-assisted electricity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries

    PubMed Central

    Li, Qi; Tan, Shen; Li, Linlin; Lu, Yingying; He, Yi

    2017-01-01

    High energy and safe electrochemical storage are critical components in multiple emerging fields of technologies. Rechargeable lithium-metal batteries are considered to be promising alternatives for current lithium-ion batteries, leading to as much as a 10-fold improvement in anode storage capacity (from 372 to 3860 mAh g−1). One of the major challenges for commercializing lithium-metal batteries is the reliability and safety issue, which is often associated with uneven lithium electrodeposition (lithium dendrites) during the charging stage of the battery cycling process. We report that stable lithium-metal batteries can be achieved by simply charging cells with square-wave pulse current. We investigated the effects of charging period and frequency as well as the mechanisms that govern this process at the molecular level. Molecular simulations were performed to study the diffusion and the solvation structure of lithium cations (Li+) in bulk electrolyte. The model predicts that loose association between cations and anions can enhance the transport of Li+ and eventually stabilize the lithium electrodeposition. We also performed galvanostatic measurements to evaluate the cycling behavior and cell lifetime under pulsed electric field and found that the cell lifetime can be more than doubled using certain pulse current waveforms. Both experimental and simulation results demonstrate that the effectiveness of pulse current charging on dendrite suppression can be optimized by choosing proper time- and frequency-dependent pulses. This work provides a molecular basis for understanding the mechanisms of pulse current charging to mitigating lithium dendrites and designing pulse current waveforms for stable lithium-metal batteries. PMID:28776039

  5. Optimum selection of an implantable secondary battery for an artificial heart by examination of the cycle life test.

    PubMed

    Okamoto, Eiji; Watanabe, Kazuya; Hashiba, Kunihiro; Inoue, Taku; Iwazawa, Eichi; Momoi, Masato; Hashimoto, Takuya; Mitamura, Yoshinori

    2002-01-01

    An implantable secondary battery is one of the key components in a total artificial heart system. Because a 2 year cycle life is required, the cycle life of the secondary battery as well as its charge and discharge properties are important parameters for selection of an appropriate battery. We carried out cycle life tests on four kinds of rechargeable batteries (a Ni-MH secondary battery, a Ni-Cd secondary battery, a Li-ion battery with a graphite anode, and a Li-ion battery with a nongraphitizable carbon electrode) to determine their suitability as implanted back-up batteries. Each of the batteries was charge/discharge cycled at 37 degrees C to 39 degrees C using a charge current of 1 C ampere, and they were each fully discharged under either pulsatile discharge loads, which mimicked pulsatile operation, or a nonpulsatile load equivalent to the average of the pulsatile loads. The two Li-ion batteries made by different manufacturers both met the minimum requirement of cycle life of more than 1,500 cycles, considering safety coefficient regardless of the discharge pattern. In addition, the temperature increase of these Li-ion batteries (3 degrees C) was lower than that of Ni-Cd and Ni-MH batteries (15-25 degrees C). Out of these four batteries, the two Li-ion batteries are the most suitable for use in a totally implantable artificial heart system.

  6. Direct and continuous strain control of catalysts with tunable battery electrode materials

    DOE PAGES

    Wang, Haotian; Xu, Shicheng; Tsai, Charlie; ...

    2016-11-24

    We report a method for using battery electrode materials to directly and continuously control the lattice strain of platinum (Pt) catalyst and thus tune its catalytic activity for the oxygen reduction reaction (ORR). Whereas the common approach of using metal overlayers introduces ligand effects in addition to strain, by electrochemically switching between the charging and discharging status of battery electrodes the change in volume can be precisely controlled to induce either compressive or tensile strain on supported catalysts. Lattice compression and tension induced by the lithium cobalt oxide substrate of ~5% were directly observed in individual Pt nanoparticles with aberration-correctedmore » transmission electron microscopy. As a result, we observed 90% enhancement or 40% suppression in Pt ORR activity under compression or tension, respectively, which is consistent with theoretical predictions.« less

  7. Efficient Strategies for Predictive Cell-Level Control of Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Xavier, Marcelo A.

    This dissertation introduces a set of state-space based model predictive control (MPC) algorithms tailored to a non-zero feedthrough term to account for the ohmic resistance that is inherent to the battery dynamics. MPC is herein applied to the problem of regulating cell-level measures of performance for lithium-ion batteries; the control methodologies are used first to compute a fast charging profile that respects input, output, and state constraints, i.e., input current, terminal voltage, and state of charge for an equivalent circuit model of the battery cell, and extended later to a linearized physics-based reduced-order model. The novelty of this work can summarized as follows: (1) the MPC variants are employed to a physics based reduce-order model in order to make use of the available set of internal electrochemical variables and mitigate internal mechanisms of cell degradation. (e.g., lithium plating); (2) we developed a dual-mode MPC closed-loop paradigm that suits the battery control problem with the objective of reducing computational effort by solving simpler optimization routines and guaranteeing stability; and finally (3) we developed a completely new approach of the use of a predictive control strategy where MPC is employed as a "smart sensor" for power estimation. Results are presented that show the comparative performance of the MPC algorithms for both EMC and PBROM These results highlight that dual-mode MPC can deliver optimal input current profiles by using a shorter horizon while still guaranteeing stability. Additionally, rigorous mathematical developments are presented for the development of the MPC algorithms. The use of MPC as a "smart sensor" presents it self as an appealing method for power estimation, since MPC permits a fully dynamic input profile that is able to achieve performance right at the proper constraint boundaries. Therefore, MPC is expected to produce accurate power limits for each computed sample time when compared to the Bisection method [1] which assumes constant input values over the prediction interval.

  8. A nickel-cadmium battery reconditioning circuit

    NASA Technical Reports Server (NTRS)

    Lanier, R.

    1977-01-01

    The circuit presented is simple and small enough to be included in a typical battery charge/power control assembly, yet provides the advantage of a complete ground-type battery reconditioning discharge. Test results on the circuit when used to recondition two 24 cell, 20 A-h nickel-cadmium batteries are given. These results show that a battery reconditioned with this circuit returns to greater than 90 percent of its original capacity (greater than nameplate capacity) and follows a typical new battery degradation curve even after over 20,000 simulated orbital cycles for a 4 year period. Applications of the circuit are considered along with recommendations relative to its use. Its application in low voltage (22 to 36 Vdc) power systems and in high voltage (100 to 150 Vdc) power systems is discussed. The implications are that the high voltage systems have a greater need for battery reconditioning than their low voltage counterparts, and that using these circuit techniques, the expected life of a battery in low Earth orbit can be up to 5 years.

  9. Modelling of an advanced charging system for electric vehicles

    NASA Astrophysics Data System (ADS)

    Hassan Jaafar, Abdul; Rahman, Ataur; Mohiuddin, A. K. M.; Rashid, Mahbubur

    2017-03-01

    Climate Change is recognized as one of the greatest environmental problem facing the World today and it has long been appreciated by governments that reducing the impact of the internal combustion (IC) engine powered motor vehicle has an important part to play in addressing this threat. In Malaysia, IC engine powered motor vehicle accounts almost 90% of the national greenhouse gas (GHG) emissions. The need to reduce the emission is paramount, as Malaysia has pledged to reduce 40% of CO2 intensity by 2020 from 2005 level by 25% of improvement in average fuel consumption. The introduction of electric vehicles (EVs) is one of the initiatives. However in terms of percentage, the electric vehicles have not been commonly used by people nowadays and one of the reasons is lack in charging infrastructure especially when cars are on the road. The aim of this study is to simulate and model an advanced charging system for the charging infrastructure of EVs/HEVs all over the nation with slow charging mode with charging current 25 A, medium charging mode with charging current 50 A and fast charging mode with charging current 100 A. The slow charging mode is proposed for residence, medium charging mode for office parking lots, and fast charging mode is called fast charging track for charging station on road. With three modes charger topology, consumers could choose a suitable mode for their car based on their need. The simulation and experiment of advanced charging system has been conducted on a scale down battery pack of nominal voltage of 3.75 V and capacity of 1020 mAh. Result shows that the battery could be charging less than 1 hour with fast charging mode. However, due to limitation of Tenaga Nasional Berhad (TNB) power grid, the maximum 50 A current is considered to be the optimized passive mode for the EV’s battery charging system. The developed advanced charger prototype performance has been compared with the simulation result and conventional charger performance, the maximum variation has been found 15%, this closed agreement between the advanced charger prototype, simulation model and conventional charger validate the prototype model. Furthermore, based on the result presented in this report, the battery to be charged up to 85% of its rated capacity by constant current mode only rather than continue with constant voltage, which could shorten the battery charging time by 16% and prolong the battery life by 10%.

  10. Innovation Meets Performance Demands of Advanced Lithium-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advancements in high capacity and low density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and molecular layer MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using MLD to examine how surface modification could stabilize silicon anode material in Li-ion batteries, researchers discovered a new reaction precursor that leads to a flexible surface coating that accommodatesmore » volumetric expansion of silicon electrodes.« less

  11. Sunlight-charged electrochromic battery based on hybrid film of tungsten oxide and polyaniline

    NASA Astrophysics Data System (ADS)

    Chang, Xueting; Hu, Ruirui; Sun, Shibin; Liu, Jingrong; Lei, Yanhua; Liu, Tao; Dong, Lihua; Yin, Yansheng

    2018-05-01

    Electrochromic (EC) energy storage devices that could realize the multifunctional integration of energy storage and electrochromism have gained much recent attention. Herein, an EC battery based on the hybrid film of W18O49 and polyaniline (PANI) is developed and assembled, which integrates energy storage and EC functions in one device. The W18O49/PANI-EC battery delivers a discharging capacity of 52.96 mA h g-1, which is about two times higher than that of the W18O49-EC battery. Sunlight irradiation could greatly promote the oxidation reactions of both W18O49 and PANI during the charging process of the W18O49/PANI-EC battery, thus effectively accelerating the charging rate. This work provides a green, convenient, environmentally friendly, and cost-free charging strategy for the EC energy systems and could further advance the development of the multifunctional EC devices based on the organic/inorganic composites.

  12. Development of a VRLA battery with improved separators, and a charge controller, for low cost photovoltaic and wind powered installations

    NASA Astrophysics Data System (ADS)

    Fernandez, M.; Ruddell, A. J.; Vast, N.; Esteban, J.; Estela, F.

    There are many applications and uses for which it is more advantageous to use solar installations than to extend the electrical network and connect to it. This kind of applications are numerous covering from isolated houses to telephone repeaters and the like. These kind of applications share some common characteristics like being located in remote not easy accessible areas, require relatively low power for operation, and being difficult to maintain. Up to now the use of photovoltaic systems, no matter the impressive growth they are experimenting, suffer from some drawbacks, mainly related with the life expectations and reliability of such systems, and as a consequence of the cost of these systems, when calculated on a lifetime basis. To try to contribute to solve these problems, a project partially founded by the European Commission, has been carried out, with the main objective of increasing the life of these systems, and consequently to make them more attractive from the point of view of cost on a lifetime basis for consumers. Presently, the life of PV systems is limited by its weakest component, the battery. Battery failure modes in PV applications, are related with well known phenomena like corrosion, but also due to the special nature of this installations, with other factors like corrosion and growth in the upper part of the group, induced by the development of acid stratification inside the battery, with the more prone standard flooded types now in major use, and to a lesser extent the new valve regulated lead acid (VRLA) types beginning to be used. The main objectives of this project, were: to develop a new glass microfibre separator material, capable of minimizing acid stratification inside the battery. To develop a new VRLA battery, with a life duration of 800 cycles on cycling at 60% DOD and partial state of charge (PSOC) conditions. To develop a new charge regulator, that takes into account the condition of the battery in the near term, to modify its setting charging point. The fourth objective was the design and implementation of a PV/wind demonstration system, to test all the PV components under real conditions. The project has been successful, having achieved a life increase of 50%, moving achievable life from previous 500-750 cycles for the new battery and system.

  13. A method of computer modelling the lithium-ion batteries aging process based on the experimental characteristics

    NASA Astrophysics Data System (ADS)

    Czerepicki, A.; Koniak, M.

    2017-06-01

    The paper presents a method of modelling the processes of aging lithium-ion batteries, its implementation as a computer application and results for battery state estimation. Authors use previously developed behavioural battery model, which was built using battery operating characteristics obtained from the experiment. This model was implemented in the form of a computer program using a database to store battery characteristics. Batteries aging process is a new extended functionality of the model. Algorithm of computer simulation uses a real measurements of battery capacity as a function of the battery charge and discharge cycles number. Simulation allows to take into account the incomplete cycles of charge or discharge battery, which are characteristic for transport powered by electricity. The developed model was used to simulate the battery state estimation for different load profiles, obtained by measuring the movement of the selected means of transport.

  14. Charge retention test experiences on Hubble Space Telescope nickel-hydrogen battery cells

    NASA Technical Reports Server (NTRS)

    Nawrocki, Dave E.; Driscoll, J. R.; Armantrout, J. D.; Baker, R. C.; Wajsgras, H.

    1993-01-01

    The Hubble Space Telescope (HST) nickel-hydrogen battery module was designed by Lockheed Missile & Space Co (LMSC) and manufactured by Eagle-Picher Ind. (EPI) for the Marshall Space Flight Center (MSFC) as an Orbital Replacement Unit (ORU) for the nickel-cadmium batteries originally selected for this low earth orbit mission. The design features of the HST nickel hydrogen battery are described and the results of an extended charge retention test are summarized.

  15. High-Capacity Sodium Peroxide Based NaO 2 Batteries with Low Charge Overpotential via a Nanostructured Catalytic Cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Lu; Zhang, Dongzhou; Lei, Yu

    The superoxide based Na-O-2 battery has circumvented the issue of large charge overpotential in Li-O-2 batteries; however, the one-electron process leads to limited capacity. Herein, a sodium peroxide based low-overpotential (similar to 0.5 V) Na-O-2 battery with a capacity as high as 7.5 mAh/cm(2) is developed with Pd nanoparticles as catalysts on the cathode.

  16. Prismatic sealed nickel-cadmium batteries utilizing fiber structured electrodes. II - Applications as a maintenance free aircraft battery

    NASA Astrophysics Data System (ADS)

    Anderman, Menahem; Benczur-Urmossy, Gabor; Haschka, Friedrich

    Test data on prismatic sealed Ni-Cd batteries utilizing fiber structured electrodes (sealed FNC) is discussed. It is shown that, under a voltage limited charging scheme, the charge acceptance of the sealed FNC battery is far superior to that of the standard vented aircraft Ni-Cd batteries. This results in the sealed FNC battery maintaining its capacity over several thousand cycles without any need for electrical conditioning or water topping. APU start data demonstrate superior power capabilities over existing technologies. Performance at low temperature is presented. Abuse test results reveal a safe fail mechanism even under severe electrical abuse.

  17. Photovoltaic battery charging experience in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navarro, S.T. Jr.

    1997-12-01

    With the turn of the century, people in remote areas still live without electricity. Conventional electrification will hardly reach the remaining 50% of the population of the Philippines in remote areas. With photovoltaic technology, the delivery of electricity to remote areas can be sustainable. Malalison island was chosen as a project site for electrification using photovoltaic technology. With the fragile balance of ecology and seasonal income in this island, the PV electrification proved to be a better option than conventional fossil based electrification. The Solar Battery Charging Station (SBCS) was used to suit the economic and geographical condition of themore » island. Results showed that the system can charge as many as three batteries in a day for an average fee of $0.54 per battery. Charging is measured by an ampere-hour counter to determine the exact amount of charge the battery received. The system was highly accepted by the local residents and the demand easily outgrew the system within four months. A technical, economic and social evaluation was done. A recovery period of seven years and five months is expected when competed with the conventional battery charging in the mainland. The technical, economic, institutional and social risks faced by the project were analyzed. Statistics showed that there is a potential of 920,000 households that can benefit from PV electrification in the Philippines. The data and experiences gained in this study are valuable in designing SBCS for remote unelectrified communities in the Philippines and other developing countries.« less

  18. Method and apparatus for measuring the state of charge in a battery based on volume of battery components

    DOEpatents

    Rouhani, S. Zia

    1996-10-22

    The state of charge of electrochemical batteries of different kinds is determined by measuring the incremental change in the total volume of the reactive masses in the battery. The invention is based on the principle that all electrochemical batteries, either primary or secondary (rechargeable), produce electricity through a chemical reaction with at least one electrode, and the chemical reactions produce certain changes in the composition and density of the electrode. The reactive masses of the electrodes, the electrolyte, and any separator or spacers are usually contained inside a battery casing of a certain volume. As the battery is used, or recharged, the specific volume of at least one of the electrode masses will change and, since the masses of the materials do not change considerably, the total volume occupied by at least one of the electrodes will change. These volume changes may be measured in many different ways and related to the state of charge in the battery. In one embodiment, the volume change can be measured by monitoring the small changes in one of the principal dimensions of the battery casing as it expands or shrinks to accommodate the combined volumes of its components.

  19. High-temperature characteristics of advanced Ni-MH batteries using nickel electrodes containing CaF 2

    NASA Astrophysics Data System (ADS)

    Zhang, Xuezeng; Gong, Zhixin; Zhao, Shumei; Geng, Mingming; Wang, Yan; Northwood, Derek O.

    The high-temperature charge acceptance of Ni-MH batteries has been improved through the addition of calcium fluoride to the pasted nickel hydroxide electrode made using spherical Co(OH) 2-coated nickel hydroxide powder. The charge acceptance of the Ni-MH battery at 60 °C is over 95% at 1 C charge/discharge rates. The charge acceptance at 60 °C remains at over 90% through 10 cycles. The use of Co(OH) 2-coated Ni(OH) 2 plus a CaF 2 addition to the positive electrode also significantly improved the high-temperature stability in terms of reduced gas evolution.

  20. High-cycle-life, high-energy-density nickel-zinc batteries

    NASA Astrophysics Data System (ADS)

    Wagner, O. C.

    1982-02-01

    The ERADCOM nickel-zinc program, resulted in the development of 5 ampere-hour nickel-zinc cells that maintained 79% to 86% of initial capacity after 650 cycles on the C/3 80% DOD cycling regime. One cell is still delivering 70% of initial capacity after 880 cycles. This achievement is primarily due to the employment of an interrupted current (IC) charging mode on every cycle, the optimum frequency being 5 to 8 Hertz at a rest-to-pulse-ratio of 3/1, with charge control being by means of a GRL pressure switch attached to each cell at a cutoff pressure of 8 psig, and venting means at 10 psig. Design and performance characteristics of the battery are reported.

  1. Increased Energy Delivery for Parallel Battery Packs with No Regulated Bus

    NASA Astrophysics Data System (ADS)

    Hsu, Chung-Ti

    In this dissertation, a new approach to paralleling different battery types is presented. A method for controlling charging/discharging of different battery packs by using low-cost bi-directional switches instead of DC-DC converters is proposed. The proposed system architecture, algorithms, and control techniques allow batteries with different chemistry, voltage, and SOC to be properly charged and discharged in parallel without causing safety problems. The physical design and cost for the energy management system is substantially reduced. Additionally, specific types of failures in the maximum power point tracking (MPPT) in a photovoltaic (PV) system when tracking only the load current of a DC-DC converter are analyzed. The periodic nonlinear load current will lead MPPT realized by the conventional perturb and observe (P&O) algorithm to be problematic. A modified MPPT algorithm is proposed and it still only requires typically measured signals, yet is suitable for both linear and periodic nonlinear loads. Moreover, for a modular DC-DC converter using several converters in parallel, the input power from PV panels is processed and distributed at the module level. Methods for properly implementing distributed MPPT are studied. A new approach to efficient MPPT under partial shading conditions is presented. The power stage architecture achieves fast input current change rate by combining a current-adjustable converter with a few converters operating at a constant current.

  2. Battery and capacitor technology for uniform charge time in implantable cardioverter-defibrillators

    NASA Astrophysics Data System (ADS)

    Skarstad, Paul M.

    Implantable cardioverter-defibrillators (ICDs) are implantable medical devices designed to treat ventricular fibrillation by administering a high-voltage shock directly to the heart. Minimizing the time a patient remains in fibrillation is an important goal of this therapy. Both batteries and high-voltage capacitors used in these devices can display time-dependency in performance, resulting in significant extension of charge time. Altering the electrode balance in lithium/silver vanadium oxide batteries used to power these devices has minimized time-dependent changes in battery resistance. Charge-interval dependent changes in capacitor cycling efficiency have been minimized for stacked-plate aluminum electrolytic capacitors by a combination of material and processing factors.

  3. Research on SOC Calibration of Large Capacity Lead Acid Battery

    NASA Astrophysics Data System (ADS)

    Ye, W. Q.; Guo, Y. X.

    2018-05-01

    Large capacity lead-acid battery is used in track electric locomotive, and State of Charge (SOC) is an important quantitative parameter of locomotive power output and operating mileage of power emergency recovery vehicle. But State of Charge estimation has been a difficult part in the battery management system. In order to reduce the SOC estimation error better, this paper uses the linear relationship of Open Circuit Voltage (OCV) and State of Charge to fit the SOC-OCV curve equation by MATLAB. The method proposed in this paper is small, easy to implement and can be used in the battery non-working state SOC estimation correction, improve the estimation accuracy of SOC.

  4. Non-Faradaic Li + Migration and Chemical Coordination across Solid-State Battery Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gittleson, Forrest S.; El Gabaly, Farid

    Efficient and reversible charge transfer is essential to realizing high-performance solid-state batteries. Efforts to enhance charge transfer at critical electrode–electrolyte interfaces have proven successful, yet interfacial chemistry and its impact on cell function remains poorly understood. Using X-ray photoelectron spectroscopy combined with electrochemical techniques, we elucidate chemical coordination near the LiCoO 2–LIPON interface, providing experimental validation of space-charge separation. Space-charge layers, defined by local enrichment and depletion of charges, have previously been theorized and modeled, but the unique chemistry of solid-state battery interfaces is now revealed. Here we highlight the non-Faradaic migration of Li+ ions from the electrode to themore » electrolyte, which reduces reversible cathodic capacity by ~15%. Inserting a thin, ion-conducting LiNbO 3 interlayer between the electrode and electrolyte, however, can reduce space-charge separation, mitigate the loss of Li+ from LiCoO 2, and return cathodic capacity to its theoretical value. This work illustrates the importance of interfacial chemistry in understanding and improving solid-state batteries.« less

  5. First-principles Study on the Charge Transport Mechanism of Lithium Sulfide (Li2 S) in Lithium-Sulfur Batteries.

    PubMed

    Kim, B S Do-Hoon; Lee, M S Byungju; Park, Kyu-Young; Kang, Kisuk

    2016-04-20

    The lithium-sulfur chemistry is regarded as a promising candidate for next-generation battery systems because of its high specific energy (1675 mA h g(-1) ). Although issues such as low cycle stability and power capability of the system remain to be addressed, extensive research has been performed experimentally to resolve these problems. Attaining a fundamental understanding of the reaction mechanism and its reaction product would further spur the development of lithium-sulfur batteries. Here, we investigated the charge transport mechanism of lithium sulfide (Li2 S), a discharge product of conventional lithium-sulfur batteries using first-principles calculations. Our calculations indicate that the major charge transport is governed by the lithium-ion vacancies among various possible charge carriers. Furthermore, the large bandgap and low concentration of electron polarons indicate that the electronic conduction negligibly contributes to the charge transport mechanism in Li2 S. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Implementation of Four-Phase Interleaved Balance Charger for Series-Connected Batteries with Power Factor Correction

    NASA Astrophysics Data System (ADS)

    Juan, Y. L.; Lee, Y. T.; Lee, Y. L.; Chen, L. L.; Huang, M. L.

    2017-11-01

    A four-phase interleaved balance charger for series-connected batteries with power factor correction is proposed in this dissertation. In the two phases of two buckboost converters, the rectified ac power is firstly converted to a dc link capacitor. In the other two phases of two flyback converters, the rectified ac power is directly converted to charge the corresponding batteries. Additionally, the energy on the leakage inductance of flyback converter is bypassed to the dc link capacitor. Then, a dual-output balance charging circuit is connected to the dc link to deliver the dc link power to charge two batteries in the series-connected batteries module. The constant-current/constant-voltage charging strategy is adopted. Finally, a prototype of the proposed charger with rated power 500 W is constructed. From the experimental results, the performance and validity of the proposed topology are verified. Compared to the conventional topology with passive RCD snubber, the efficiency of the proposed topology is improved about 3% and the voltage spike on the active switch is also reduced. The efficiency of the proposed charger is at least 83.6 % within the CC/CV charging progress.

  7. Hybrid supercapacitor-battery materials for fast electrochemical charge storage

    PubMed Central

    Vlad, A.; Singh, N.; Rolland, J.; Melinte, S.; Ajayan, P. M.; Gohy, J.-F.

    2014-01-01

    High energy and high power electrochemical energy storage devices rely on different fundamental working principles - bulk vs. surface ion diffusion and electron conduction. Meeting both characteristics within a single or a pair of materials has been under intense investigations yet, severely hindered by intrinsic materials limitations. Here, we provide a solution to this issue and present an approach to design high energy and high power battery electrodes by hybridizing a nitroxide-polymer redox supercapacitor (PTMA) with a Li-ion battery material (LiFePO4). The PTMA constituent dominates the hybrid battery charge process and postpones the LiFePO4 voltage rise by virtue of its ultra-fast electrochemical response and higher working potential. We detail on a unique sequential charging mechanism in the hybrid electrode: PTMA undergoes oxidation to form high-potential redox species, which subsequently relax and charge the LiFePO4 by an internal charge transfer process. A rate capability equivalent to full battery recharge in less than 5 minutes is demonstrated. As a result of hybrid's components synergy, enhanced power and energy density as well as superior cycling stability are obtained, otherwise difficult to achieve from separate constituents. PMID:24603843

  8. Multi-timescale power and energy assessment of lithium-ion battery and supercapacitor hybrid system using extended Kalman filter

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Zhang, Xu; Liu, Chang; Pan, Rui; Chen, Zonghai

    2018-06-01

    The power capability and maximum charge and discharge energy are key indicators for energy management systems, which can help the energy storage devices work in a suitable area and prevent them from over-charging and over-discharging. In this work, a model based power and energy assessment approach is proposed for the lithium-ion battery and supercapacitor hybrid system. The model framework of the lithium-ion battery and supercapacitor hybrid system is developed based on the equivalent circuit model, and the model parameters are identified by regression method. Explicit analyses of the power capability and maximum charge and discharge energy prediction with multiple constraints are elaborated. Subsequently, the extended Kalman filter is employed for on-board power capability and maximum charge and discharge energy prediction to overcome estimation error caused by system disturbance and sensor noise. The charge and discharge power capability, and the maximum charge and discharge energy are quantitatively assessed under both the dynamic stress test and the urban dynamometer driving schedule. The maximum charge and discharge energy prediction of the lithium-ion battery and supercapacitor hybrid system with different time scales are explored and discussed.

  9. Cell overcharge testing inside sodium metal halide battery

    NASA Astrophysics Data System (ADS)

    Frutschy, Kris; Chatwin, Troy; Bull, Roger

    2015-09-01

    Testing was conducted to measure electrical performance and safety of the General Electric Durathon™ E620 battery module (600 V class 20 kWh) during cell overcharge. Data gathered from this test was consistent with SAE Electric Vehicle Battery Abuse Testing specification J2464 [1]. After cell overcharge failure and 24 A current flow for additional 60 minutes, battery was then discharged at 7.5 KW average power to 12% state of charge (SOC) and recharged back to 100% SOC. This overcharging test was performed on two cells. No hydrogen chloride (HCl) gas was detected during front cell (B1) test, and small amount (6.2 ppm peak) was measured outside the battery after center cell (F13) overcharge. An additional overcharge test was performed per UL Standard 1973 - Batteries for Use in Light Electric Rail (LER) Applications and Stationary Applications[2]. With the battery at 11% SOC and 280 °C float temperature, an individual cell near the front (D1) was deliberately imbalanced by charging it to 62% SOC. The battery was then recharged to 100% SOC. In all three tests, the battery cell pack was stable and individual cell failure did not propagate to other cells. Battery discharge performance, charge performance, and electrical isolation were normal after all three tests.

  10. Infrared thermography non-destructive evaluation of lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Zi-jun; Li, Zhi-qiang; Liu, Qiang

    2011-08-01

    The power lithium-ion battery with its high specific energy, high theoretical capacity and good cycle-life is a prime candidate as a power source for electric vehicles (EVs) and hybrid electric vehicles (HEVs). Safety is especially important for large-scale lithium-ion batteries, especially the thermal analysis is essential for their development and design. Thermal modeling is an effective way to understand the thermal behavior of the lithium-ion battery during charging and discharging. With the charging and discharging, the internal heat generation of the lithium-ion battery becomes large, and the temperature rises leading to an uneven temperature distribution induces partial degradation. Infrared (IR) Non-destructive Evaluation (NDE) has been well developed for decades years in materials, structures, and aircraft. Most thermographic methods need thermal excitation to the measurement structures. In NDE of battery, the thermal excitation is the heat generated from carbon and cobalt electrodes in electrolyte. A technique named "power function" has been developed to determine the heat by chemical reactions. In this paper, the simulations of the transient response of the temperature distribution in the lithium-ion battery are developed. The key to resolving the security problem lies in the thermal controlling, including the heat generation and the internal and external heat transfer. Therefore, three-dimensional modelling for capturing geometrical thermal effects on battery thermal abuse behaviour is required. The simulation model contains the heat generation during electrolyte decomposition and electrical resistance component. Oven tests are simulated by three-dimensional model and the discharge test preformed by test system. Infrared thermography of discharge is recorded in order to analyze the security of the lithium-ion power battery. Nondestructive detection is performed for thermal abuse analysis and discharge analysis.

  11. Lead-acid battery research and development—a vital key to winning new business

    NASA Astrophysics Data System (ADS)

    Bullock, Kathryn R.

    Battery strings are operated in a partial-state-of-charge mode (PSoC) in several new and changing applications for lead-acid batteries, in which the battery is seldom, if ever, fully charged or discharged. The lead battery industry faces new challenges as additional failure modes become evident in these PSoC applications. Without overcharge, cell imbalances caused by variations in cell temperature will cause premature failures. Valve-regulated lead-acid batteries are especially susceptible because of the heat generated by oxygen recombination at the negative plate. Improved thermal properties are shown by a proprietary battery design that combines absorptive glass mat and gelled acid technologies. Well-designed power systems are also required to reduce cell-to-cell temperature variations and, thereby, increase battery life.

  12. Controlled porosity in electrodes

    DOEpatents

    Chiang, Yet-Ming; Bae, Chang-Jun; Halloran, John William; Fu, Qiang; Tomsia, Antoni P.; Erdonmez, Can K.

    2015-06-23

    Porous electrodes in which the porosity has a low tortuosity are generally provided. In some embodiments, the porous electrodes can be designed to be filled with electrolyte and used in batteries, and can include low tortuosity in the primary direction of ion transport during charge and discharge of the battery. In some embodiments, the electrodes can have a high volume fraction of electrode active material (i.e., low porosity). The attributes outlined above can allow the electrodes to be fabricated with a higher energy density, higher capacity per unit area of electrode (mAh/cm.sup.2), and greater thickness than comparable electrodes while still providing high utilization of the active material in the battery during use. Accordingly, the electrodes can be used to produce batteries with high energy densities, high power, or both compared to batteries using electrodes of conventional design with relatively highly tortuous pores.

  13. Analysis of the internal temperature of the cells in a battery pack during SOC balancing

    NASA Astrophysics Data System (ADS)

    Mizanur, R.; Rashid, M. M.; Rahman, A.; Zahirul Alam, A. H. M.; Ihsan, S.; Mollik, M. S.

    2017-03-01

    Lithium-ion batteries are more suitable for the application of electric vehicle due to high energy and power density compared to other rechargeable batteries. However, the battery pack temperature has a great impact on the overall performance, cycle life, normal charging-discharging behaviour and even safety. During rapid charge transferring process, the internal temperature may exceed its allowable limit (460C). In this paper, an analysis of internal temperature during charge balancing and discharging conditions is presented. Specific interest is paid to the effects of temperature on the different rate of ambient temperature and discharging current. Matlab/Simulink Li-ion battery model and quasi-resonant converter base balancing system are used to study the temperature effect. Rising internal temperature depends on the rate of balancing current and ambient temperature found in the simulation results.

  14. Lithium-Ion Battery Failure: Effects of State of Charge and Packing Configuration

    DTIC Science & Technology

    2016-08-22

    and failure characteristics. Internal temperatures were obtained by designing and fabricating 18650 surrogate cells with embedded thermocouples which...Council Postdoctoral Associate Lithium-ion cell Lithium-ion battery fire Battery state of charge Packing configuration iii Contents 1.0 Background...and fabricating 18650 surrogate cells with embedded thermocouples which contained no active materials and were reused for multiple failure tests

  15. High-performance flexible energy storage and harvesting system for wearable electronics

    NASA Astrophysics Data System (ADS)

    Ostfeld, Aminy E.; Gaikwad, Abhinav M.; Khan, Yasser; Arias, Ana C.

    2016-05-01

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm2 and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices.

  16. High-performance flexible energy storage and harvesting system for wearable electronics.

    PubMed

    Ostfeld, Aminy E; Gaikwad, Abhinav M; Khan, Yasser; Arias, Ana C

    2016-05-17

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm(2) and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices.

  17. High-performance flexible energy storage and harvesting system for wearable electronics

    PubMed Central

    Ostfeld, Aminy E.; Gaikwad, Abhinav M.; Khan, Yasser; Arias, Ana C.

    2016-01-01

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm2 and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices. PMID:27184194

  18. The Importance of Nanometric Passivating Films on Cathodes forLi - Air Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian D.; Black, Robert; Radtke, Claudio

    2014-12-23

    Recently, there has been a transition from fully carbonaceous positive electrodes for the aprotic lithium oxygen battery to alternative materials and the use of redox mediator additives, in an attempt to lower the large electrochemical overpotentials associated with the charge reaction. However, the stabilizing or catalytic effect of these materials can become complicated due to the presence of major side-reactions observed during dis(charge). Here, we isolate the charge reaction from the discharge by utilizing electrodes prefilled with commercial lithium peroxide with a crystallite size of about 200-800 nm. Using a combination of S/TEM, online mass spectrometry, XPS, and electrochemical methodsmore » to probe the nature of surface films on carbon and conductive Ti-based nanoparticles, we show that oxygen evolution from lithium peroxide is strongly dependent on their surface properties. Insulating TiO2 surface layers on TiC and TiN - even as thin as 3 nm*can completely inhibit the charge reaction under these conditions. On the other hand, TiC, which lacks this oxide film, readily facilitates oxidation of the bulk Li2O2 crystallites, at a much lower overpotential relative to carbon. Since oxidation of lithium oxygen battery cathodes is inevitable in these systems, precise control of the surface chemistry at the nanoscale becomes of upmost importance.« less

  19. 29 CFR 1910.1029 - Coke oven emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cleaned with benzene then with acetone. 2. Pre-weigh the 2 ml Teflon cups to one hundredth of a milligram..., including at least one sample during each shift for each battery and each job classification within the... controls to control coke oven emissions during charging operations: (a) One of the following methods of...

  20. 29 CFR 1910.1029 - Coke oven emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cleaned with benzene then with acetone. 2. Pre-weigh the 2 ml Teflon cups to one hundredth of a milligram..., including at least one sample during each shift for each battery and each job classification within the... controls to control coke oven emissions during charging operations: (a) One of the following methods of...

  1. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries

    NASA Astrophysics Data System (ADS)

    Odziomek, Mateusz; Chaput, Frédéric; Rutkowska, Anna; Świerczek, Konrad; Olszewska, Danuta; Sitarz, Maciej; Lerouge, Frédéric; Parola, Stephane

    2017-05-01

    High-performance Li-ion batteries require materials with well-designed and controlled structures on nanometre and micrometre scales. Electrochemical properties can be enhanced by reducing crystallite size and by manipulating structure and morphology. Here we show a method for preparing hierarchically structured Li4Ti5O12 yielding nano- and microstructure well-suited for use in lithium-ion batteries. Scalable glycothermal synthesis yields well-crystallized primary 4-8 nm nanoparticles, assembled into porous secondary particles. X-ray photoelectron spectroscopy reveals presence of Ti+4 only; combined with chemical analysis showing lithium deficiency, this suggests oxygen non-stoichiometry. Electron microscopy confirms hierarchical morphology of the obtained material. Extended cycling tests in half cells demonstrates capacity of 170 mAh g-1 and no sign of capacity fading after 1,000 cycles at 50C rate (charging completed in 72 s). The particular combination of nanostructure, microstructure and non-stoichiometry for the prepared lithium titanate is believed to underlie the observed electrochemical performance of material.

  2. A novel phenomenological multi-physics model of Li-ion battery cells

    NASA Astrophysics Data System (ADS)

    Oh, Ki-Yong; Samad, Nassim A.; Kim, Youngki; Siegel, Jason B.; Stefanopoulou, Anna G.; Epureanu, Bogdan I.

    2016-09-01

    A novel phenomenological multi-physics model of Lithium-ion battery cells is developed for control and state estimation purposes. The model can capture electrical, thermal, and mechanical behaviors of battery cells under constrained conditions, e.g., battery pack conditions. Specifically, the proposed model predicts the core and surface temperatures and reaction force induced from the volume change of battery cells because of electrochemically- and thermally-induced swelling. Moreover, the model incorporates the influences of changes in preload and ambient temperature on the force considering severe environmental conditions electrified vehicles face. Intensive experimental validation demonstrates that the proposed multi-physics model accurately predicts the surface temperature and reaction force for a wide operational range of preload and ambient temperature. This high fidelity model can be useful for more accurate and robust state of charge estimation considering the complex dynamic behaviors of the battery cell. Furthermore, the inherent simplicity of the mechanical measurements offers distinct advantages to improve the existing power and thermal management strategies for battery management.

  3. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  4. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  5. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  6. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  7. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  8. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification

    NASA Astrophysics Data System (ADS)

    Han, Xuebing; Ouyang, Minggao; Lu, Languang; Li, Jianqiu; Zheng, Yuejiu; Li, Zhe

    2014-04-01

    When lithium-ion batteries age with cycling, the battery capacity decreases and the resistance increases. The aging mechanism of different types of lithium-ion batteries differs. The loss of lithium inventory, loss of active material, and the increase in resistance may result in battery aging. Generally, analysis of the battery aging mechanism requires dismantling of batteries and using methods such as X-ray diffraction and scanning electron microscopy. These methods may permanently damage the battery. Therefore, the methods are inappropriate for the battery management system (BMS) in an electric vehicle. The constant current charging curves while charging the battery could be used to get the incremental capacity and differential voltage curves for identifying the aging mechanism; the battery state-of-health can then be estimated. This method can be potentially used in the BMS for online diagnostic and prognostic services. The genetic algorithm could be used to quantitatively analyze the battery aging offline. And the membership function could be used for onboard aging mechanism identification.

  9. Computational models of an inductive power transfer system for electric vehicle battery charge

    NASA Astrophysics Data System (ADS)

    Anele, A. O.; Hamam, Y.; Chassagne, L.; Linares, J.; Alayli, Y.; Djouani, K.

    2015-09-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV.

  10. Monitoring state-of-charge of Ni-MH and Ni-Cd batteries using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hammouche, Abderrezak; Karden, Eckhard; De Doncker, Rik W.

    This paper reports on laboratory studies into the ac impedance spectra of nickel-metal hydride and nickel-cadmium batteries, aiming at finding out possible correlation between electrical parameters, extracted directly from the high frequency region, and the battery state-of-charge (SoC). Impedance diagrams were recorded immediately after interrupting the dc charge, or discharge, current. The study revealed that the series resonance frequency, at which the dynamic cell behavior switches from an inductive character ( Z″>0) to a capacitive one ( Z″<0), varied monotonously as a function of state-of-charge. This behavior was reproducible after intermittent charge and discharge. Half-cell measurements were also conducted to associate the cell impedance with either processes occurring at the positive or negative plates.

  11. Monitoring the battery status for photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Kim, Myungsoo; Hwang, Euijin

    Photovoltaic power systems in Korea have been installed in remote islands where it is difficult to connect the utilities. Lead/acid batteries are used as an energy storage device for the stand-alone photovoltaic system. Hence, monitoring the battery status of photovoltaic systems is quite important to extend the total system service life. To monitor the state-of-charge of batteries, we adopted a current interrupt technique to measure the internal resistance of the battery. The internal resistance increases at the end of charge/discharge steps and also with cycles. The specific gravity of the electrolyte was measured in relation to the state-of-charge. A home-made optical hydrometer was utilized for automatic monitoring of the specific gravity. It is shown that the specific gravity and stratification increase with cycle number. One of the photovoltaic systems in a remote island, Ho-do, which has 90 kW peak power was checked for actual operational conditions such as solar generation, load, and battery status.

  12. Design description of the Tangaye Village photovoltaic power system

    NASA Astrophysics Data System (ADS)

    Martz, J. E.; Ratajczak, A. F.

    1982-06-01

    The engineering design of a stand alone photovoltaic (PV) powered grain mill and water pump for the village of Tangaye, Upper Volta is described. The socioeconomic effects of reducing the time required by women in rural areas for drawing water and grinding grain were studied. The suitability of photovoltaic technology for use in rural areas by people of limited technical training was demonstrated. The PV system consists of a 1.8-kW (peak) solar cell array, 540 ampere hours of battery storage, instrumentation, automatic controls, and a data collection and storage system. The PV system is situated near an improved village well and supplies d.c. power to a grain mill and a water pump. The array is located in a fenced area and the mill, battery, instruments, controls, and data system are in a mill building. A water storage tank is located near the well. The system employs automatic controls which provide battery charge regulation and system over and under voltage protection. This report includes descriptions of the engineering design of the system and of the load that it serves; a discussion of PV array and battery sizing methodology; descriptions of the mechanical and electrical designs including the array, battery, controls, and instrumentation; and a discussion of the safety features. The system became operational on March 1, 1979.

  13. Design description of the Tangaye Village photovoltaic power system

    NASA Technical Reports Server (NTRS)

    Martz, J. E.; Ratajczak, A. F.

    1982-01-01

    The engineering design of a stand alone photovoltaic (PV) powered grain mill and water pump for the village of Tangaye, Upper Volta is described. The socioeconomic effects of reducing the time required by women in rural areas for drawing water and grinding grain were studied. The suitability of photovoltaic technology for use in rural areas by people of limited technical training was demonstrated. The PV system consists of a 1.8-kW (peak) solar cell array, 540 ampere hours of battery storage, instrumentation, automatic controls, and a data collection and storage system. The PV system is situated near an improved village well and supplies d.c. power to a grain mill and a water pump. The array is located in a fenced area and the mill, battery, instruments, controls, and data system are in a mill building. A water storage tank is located near the well. The system employs automatic controls which provide battery charge regulation and system over and under voltage protection. This report includes descriptions of the engineering design of the system and of the load that it serves; a discussion of PV array and battery sizing methodology; descriptions of the mechanical and electrical designs including the array, battery, controls, and instrumentation; and a discussion of the safety features. The system became operational on March 1, 1979.

  14. The testing of batteries linked to supercapacitors with electrochemical impedance spectroscopy: A comparison between Li-ion and valve regulated lead acid batteries

    NASA Astrophysics Data System (ADS)

    Ferg, Ernst; Rossouw, Claire; Loyson, Peter

    2013-03-01

    For electric vehicles, a supercapacitor can be coupled to the electrical system in order to increase and optimize the energy and power densities of the drive system during acceleration and regenerative breaking. This study looked at the charge acceptance and maximum discharge ability of a valve regulated lead acid (VRLA) and a Li-ion battery connected in parallel to supercapacitors. The test procedure evaluated the advantage of using a supercapacitor at a 2 F:1 Ah ratio with the battery types at various states of charge (SoC). The results showed that about 7% of extra charge was achieved over a 5-s test time for a Li-ion hybrid system at 20% SoC, whereas at the 80% SoC the additional capacity was approximately 16%. While for the VRLA battery hybrid system, an additional charge of up to 20% was achieved when the battery was at 80% SoC, with little or no benefit at the 20% SoC. The advantage of the supercapacitor in parallel with a VRLA battery was noticeable on its discharge ability, where significant extra capacity was achieved for short periods of time for a battery at the 60% and 40% SoC when compared to the Li-ion hybrid system. The study also made use of Electrochemical Impedance Spectroscopy (EIS) with a suitable equivalent circuit model to explain, in particular, the internal resistance and capacitance differences observed between the different battery chemistries with and without a supercapacitor.

  15. Structural and thermal stabilities of layered Li(Ni 1/3Co 1/3Mn 1/3)O 2 materials in 18650 high power batteries

    NASA Astrophysics Data System (ADS)

    He, Yan-Bing; Ning, Feng; Yang, Quan-Hong; Song, Quan-Sheng; Li, Baohua; Su, Fangyuan; Du, Hongda; Tang, Zhi-Yuan; Kang, Feiyu

    The structural and thermal stabilities of the layered Li(Ni 1/3Co 1/3Mn 1/3)O 2 cathode materials under high rate cycling and abusive conditions are investigated using the commercial 18650 Li(Ni 1/3Co 1/3Mn 1/3)O 2/graphite high power batteries. The Li(Ni 1/3Co 1/3Mn 1/3)O 2 materials maintain their layered structure even when the power batteries are subjected to 200 cycles with 10 C discharge rate at temperatures of 25 and 50 °C, whereas their microstructure undergoes obvious distortion, which leads to the relatively poor cycling performance of power batteries at high charge/discharge rates and working temperature. Under abusive conditions, the increase in the battery temperature during overcharge is attributed to both the reactions of electrolyte solvents with overcharged graphite anode and Li(Ni 1/3Co 1/3Mn 1/3)O 2 cathode and the Joule heat that results from the great increase in the total resistance (R cell) of batteries. The reactions of fully charged Li(Ni 1/3Co 1/3Mn 1/3)O 2 cathodes and graphite anodes with electrolyte cannot be activated during short current test in the fully charged batteries. However, these reactions occur at around 140 °C in the fully charged batteries during oven test, which is much lower than the temperature of about 240 °C required for the reactions outside batteries.

  16. New secondary batteries utilizing electronically conductive polymer cathodes

    NASA Technical Reports Server (NTRS)

    Martin, Charles R.; White, Ralph E.

    1989-01-01

    The objectives of this project are to optimize the transport rates in electronically conductive polypyrrole films by controlling the morphology of the film and to assess the utility of these films as cathodes in a lithium/polypyrrole secondary battery. During this research period, progress has been made in improving the charge transport rate of the supermolecular-engineered polypyrrole electrode by eliminating the polypyrrole baselayer that hampered earlier work. Also, the fibril density of the polypyrrole electrode was increased, providing more electroactive sites per unit area.

  17. Self-balancing feature of Lithium-Sulfur batteries

    NASA Astrophysics Data System (ADS)

    Knap, Vaclav; Stroe, Daniel-Ioan; Christensen, Andreas E.; Propp, Karsten; Fotouhi, Abbas; Auger, Daniel J.; Schaltz, Erik; Teodorescu, Remus

    2017-12-01

    The Li-S batteries are a prospective battery technology, which despite to its currently remaining drawbacks offers useable performance and interesting features. The polysulfide shuttle mechanism, a characteristic phenomenon for the Li-S batteries, causes a significant self-discharge at higher state-of-charge (SOC) levels, which leads to the energy dissipation of cells with higher charge. In an operation of series-connected Li-S cells, the shuttle mechanism results into a self-balancing effect which is studied here. A model for prediction of the self-balancing effect is proposed in this work and it is validated by experiments. Our results confirm the self-balancing feature of Li-S cells and illustrate their dependence on various conditions such as temperature, charging limits and idling time at high SOC.

  18. Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy.

    PubMed

    Liu, Pan; Han, Jiuhui; Guo, Xianwei; Ito, Yoshikazu; Yang, Chuchu; Ning, Shoucong; Fujita, Takeshi; Hirata, Akihiko; Chen, Mingwei

    2018-02-16

    Rechargeable non-aqueous lithium-oxygen batteries with a large theoretical capacity are emerging as a high-energy electrochemical device for sustainable energy strategy. Despite many efforts made to understand the fundamental Li-O 2 electrochemistry, the kinetic process of cathodic reactions, associated with the formation and decomposition of a solid Li 2 O 2 phase during charging and discharging, remains debate. Here we report direct visualization of the charge/discharge reactions on a gold cathode in a non-aqueous lithium-oxygen micro-battery using liquid-cell aberration-corrected scanning transmission electron microscopy (STEM) combining with synchronized electrochemical measurements. The real-time and real-space characterization by time-resolved STEM reveals the electrochemical correspondence of discharge/charge overpotentials to the nucleation, growth and decomposition of Li 2 O 2 at a constant current density. The nano-scale operando observations would enrich our knowledge on the underlying reaction mechanisms of lithium-oxygen batteries during round-trip discharging and charging and shed lights on the strategies in improving the performances of lithium-oxygen batteries by tailoring the cathodic reactions.

  19. Enhancing Capacity Performance by Utilizing the Redox Chemistry of the Electrolyte in a Dual-Electrolyte Sodium-Ion Battery.

    PubMed

    Senthilkumar, Sirugaloor Thangavel; Bae, Hyuntae; Han, Jinhyup; Kim, Youngsik

    2018-05-04

    A strategy is described to increase charge storage in a dual electrolyte Na-ion battery (DESIB) by combining the redox chemistry of the electrolyte with a Na + ion de-insertion/insertion cathode. Conventional electrolytes do not contribute to charge storage in battery systems, but redox-active electrolytes augment this property via charge transfer reactions at the electrode-electrolyte interface. The capacity of the cathode combined with that provided by the electrolyte redox reaction thus increases overall charge storage. An aqueous sodium hexacyanoferrate (Na 4 Fe(CN) 6 ) solution is employed as the redox-active electrolyte (Na-FC) and sodium nickel Prussian blue (Na x -NiBP) as the Na + ion insertion/de-insertion cathode. The capacity of DESIB with Na-FC electrolyte is twice that of a battery using a conventional (Na 2 SO 4 ) electrolyte. The use of redox-active electrolytes in batteries of any kind is an efficient and scalable approach to develop advanced high-energy-density storage systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Development and testing of a high cycle life 30 A-h sealed AgO-Zn battery

    NASA Technical Reports Server (NTRS)

    Bogner, R. S.

    1972-01-01

    A two-phase program was initiated to investigate design parameters and technology to develop an improved AgO-Zn battery. The basic performance goal was 100 charge/discharge cycles (22 h/2 h) at 50 percent depth of discharge following a six-month period of charged stand at room temperature. Phase 1, cell evaluation, involved testing 70 cells in five-cell groups. The major design variables were active material ratios, electrolyte concentrations, separator systems, and negative plate shape. Phase 1 testing showed that cycle life could be improved 10 percent to 20 percent by using greater ratios of zinc to silver oxide and higher electrolyte concentrations. Wedge-shaped negatives increased cycle life by nearly 100 percent. Phase 2 battery evaluation, which was initiated before the Phase 1 results were known completely, involved evaluation of six designs as 19-cell batteries. Only one battery exceeded 100 cycles following nine months charged stand.

  1. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    PubMed Central

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries. PMID:25563733

  2. Efficient Storing Energy Harvested by Triboelectric Nanogenerators Using a Safe and Durable All-Solid-State Sodium-Ion Battery.

    PubMed

    Hou, Huidan; Xu, Qingkai; Pang, Yaokun; Li, Lei; Wang, Jiulin; Zhang, Chi; Sun, Chunwen

    2017-08-01

    Storing energy harvested by triboelectric nanogenerators (TENGs) from ambient mechanical motion is still a great challenge for achieving low-cost and environmental benign power sources. Here, an all-solid-state Na-ion battery with safe and durable performance used for efficient storing pulsed energy harvested by the TENG is demonstrated. The solid-state sodium-ion batteries are charged by galvanostatic mode and pulse mode with the TENG, respectively. The all-solid-state sodium-ion battery displays excellent cyclic performance up to 1000 cycles with a capacity retention of about 85% even at a high charge and discharge current density of 48 mA g -1 . When charged by the TENG, an energy conversion efficiency of 62.3% is demonstrated. The integration of TENGs with the safe and durable all-solid-state sodium-ion batteries is potential for providing more stable power output for self-powered systems.

  3. Battery Safety Basics

    ERIC Educational Resources Information Center

    Roy, Ken

    2010-01-01

    Batteries commonly used in flashlights and other household devices produce hydrogen gas as a product of zinc electrode corrosion. The amount of gas produced is affected by the batteries' design and charge rate. Dangerous levels of hydrogen gas can be released if battery types are mixed, batteries are damaged, batteries are of different ages, or…

  4. Lightweight Battery Charge Regulator Used to Track Solar Array Peak Power

    NASA Technical Reports Server (NTRS)

    Soeder, James F.; Button, Robert M.

    1999-01-01

    A battery charge regulator based on the series-connected boost regulator (SCBR) technology has been developed for high-voltage spacecraft applications. The SCBR regulates the solar array power during insolation to prevent battery overcharge or undercharge conditions. It can also be used to provide regulated battery output voltage to spacecraft loads if necessary. This technology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. The high-voltage SCBR shown in the photograph has demonstrated power densities of over 1000 watts per kilogram (W/kg). Using four 150-W dc-dc converter modules, it can process 2500 W of power at 120 Vdc with a minimum input voltage of 90 Vdc. Efficiency of the SCBR was 94 to 98 percent over the entire operational range. Internally, the unit is made of two separate SCBR s, each with its own analog control circuitry, to demonstrate the modularity of the technology. The analog controllers regulate the output current and incorporate the output voltage limit with active current sharing between the two units. They also include voltage and current telemetry, on/off control, and baseplate temperature sensors. For peak power tracking, the SCBR was connected to a LabView-based data acquisition system for telemetry and control. A digital control algorithm for tracking the peak power point of a solar array was developed using the principle of matching the source impedance with the load impedance for maximum energy transfer. The algorithm was successfully demonstrated in a simulated spacecraft electrical system at the Boeing PhantomWorks High Voltage Test Facility in Seattle, Washington. The system consists of a 42-string, high-voltage solar array simulator, a 77-cell, 80-ampere-hour (A-hr) nickel-hydrogen battery, and a constant power-load module. The SCBR and the LabView control algorithm successfully tracked the solar array peak power point through various load transients, including sunlight discharge transients when the total load exceeded the maximum solar array output power.

  5. Fast charge implications: Pack and cell analysis and comparison

    NASA Astrophysics Data System (ADS)

    Tanim, Tanvir R.; Shirk, Matthew G.; Bewley, Randy L.; Dufek, Eric J.; Liaw, Bor Yann

    2018-03-01

    This study investigates the effect of 50-kW (about 2C) direct current fast charging on a full-size battery electric vehicle's battery pack in comparison to a pack exclusively charged at 3.3 kW, which is the common alternating current Level 2 charging power level. Comparable scaled charging protocols are also independently applied to individual cells at three different temperatures, 20 °C, 30 °C, and 40 °C, to perform a comparative analysis with the packs. Dominant cell-level aging modes were identified through incremental capacity analysis and compared with full packs to gain a clear understanding of additional key factors that affect pack aging. While the cell-level study showed a minor impact on performance due to direct current fast charging, the packs showed a significantly higher rate of capacity fade under similar charging protocols. This indicates that pack-level aging cannot be directly extrapolated from cell evaluation. Delayed fast charging, completing shortly before discharge, was found to have less of an impact on battery degradation than conventional alternating current Level 2 charging.

  6. Nickel cadmium battery operations and performance

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna; Prettyman-Lukoschek, Jill; Calvin, Richard; Berry, Thomas; Bote, Robert; Toft, Mark

    1994-01-01

    The Earth Radiation Budget Satellite (ERBS), Compton Gamma Ray Observatory (CGRO), Upper Atmosphere Research Satellite (UARS), and Extreme Ultraviolet Explorer (EUVE) spacecraft are operated from NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland. On-board power subsystems for each satellite employ NASA Standard 50 Ampere-hour (Ah) nickel-cadmium batteries in a parallel configuration. To date, these batteries have exhibited degradation over periods from several months (anomalous behavior, UARS and CGRO (MPS-1); to little if any, EUVE) to several years (old age, normal behavior, ERBS). Since the onset of degraded performance, each mission's Flight Operations Team (FOT), under the direction of their cognizant GSFC Project Personnel and Space Power Application Branch's Engineers has closely monitored the battery performance and implemented several charge control schemes in an effort to extend battery life. Various software and hardware solutions have been developed to minimize battery overcharge. Each of the four sections of this paper covers a brief overview of each mission's operational battery management and its associated spacecraft battery performance. Also included are new operational procedures developed on-orbit that may be of special interest to future mission definition and development.

  7. Lithium-Ion Battery Demonstrated for NASA Desert Research and Technology Studies

    NASA Technical Reports Server (NTRS)

    Bennett, William R.; Baldwin, Richard S.

    2008-01-01

    Lithium-ion batteries have attractive performance characteristics that are well suited to a number of NASA applications. These rechargeable batteries produce compact, lightweight energy-storage systems with excellent cycle life, high charge/discharge efficiency, and low self-discharge rate. NASA Glenn Research Center's Electrochemistry Branch designed and produced five lithium-ion battery packs configured to power the liquid-air backpack (LAB) on spacesuit simulators. The demonstration batteries incorporated advanced, NASA-developed electrolytes with enhanced low-temperature performance characteristics. The objectives of this effort were to (1) demonstrate practical battery performance under field-test conditions and (2) supply laboratory performance data under controlled laboratory conditions. Advanced electrolyte development is being conducted under the Exploration Technology Development Program by the NASA Jet Propulsion Laboratory. Three field trials were successfully completed at Cinder Lake from September 10 to 12, 2007. Extravehicular activities of up to 1 hr and 50 min were supported, with residual battery capacity sufficient for 30 min of additional run time. Additional laboratory testing of batteries and cells is underway at Glenn s Electrochemical Branch.

  8. Sequential Monte Carlo filter for state estimation of LiFePO4 batteries based on an online updated model

    NASA Astrophysics Data System (ADS)

    Li, Jiahao; Klee Barillas, Joaquin; Guenther, Clemens; Danzer, Michael A.

    2014-02-01

    Battery state monitoring is one of the key techniques in battery management systems e.g. in electric vehicles. An accurate estimation can help to improve the system performance and to prolong the battery remaining useful life. Main challenges for the state estimation for LiFePO4 batteries are the flat characteristic of open-circuit-voltage over battery state of charge (SOC) and the existence of hysteresis phenomena. Classical estimation approaches like Kalman filtering show limitations to handle nonlinear and non-Gaussian error distribution problems. In addition, uncertainties in the battery model parameters must be taken into account to describe the battery degradation. In this paper, a novel model-based method combining a Sequential Monte Carlo filter with adaptive control to determine the cell SOC and its electric impedance is presented. The applicability of this dual estimator is verified using measurement data acquired from a commercial LiFePO4 cell. Due to a better handling of the hysteresis problem, results show the benefits of the proposed method against the estimation with an Extended Kalman filter.

  9. Enabling fast charging – Vehicle considerations

    DOE PAGES

    Meintz, Andrew; Zhang, Jiucai; Vijayagopal, Ram; ...

    2017-11-01

    To achieve a successful increase in the plug-in battery electric vehicle (BEV) market it is anticipated that a significant improvement in battery performance is required to improve the range that BEVs can travel. While the range that BEVs can travel on a single recharge is improving, the rate at which these vehicles can be recharged is still much slower than conventional internal combustion engine vehicles. To achieve comparable recharge times we explore the vehicle considerations of charge rates up to 350 kW. This faster recharge is expected to significantly mitigate the perceived deficiencies for long-distance transportation, to provide alternative chargingmore » in densely populated areas where overnight charging at home may not be possible, and to reduce range anxiety for travel within a city when unplanned charging maybe required. This substantial increase in the charging rate is expected to create technical issues in the design of the battery system and the vehicle electrical architecture that must be resolved. This work will focus on the battery system thermal design and total recharge time to meet the goals of implementing higher charge rates as well as the impacts of the expected increase in system voltage on the components of the vehicle.« less

  10. Enabling fast charging – Vehicle considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meintz, Andrew; Zhang, Jiucai; Vijayagopal, Ram

    To achieve a successful increase in the plug-in battery electric vehicle (BEV) market it is anticipated that a significant improvement in battery performance is required to improve the range that BEVs can travel. While the range that BEVs can travel on a single recharge is improving, the rate at which these vehicles can be recharged is still much slower than conventional internal combustion engine vehicles. To achieve comparable recharge times we explore the vehicle considerations of charge rates up to 350 kW. This faster recharge is expected to significantly mitigate the perceived deficiencies for long-distance transportation, to provide alternative chargingmore » in densely populated areas where overnight charging at home may not be possible, and to reduce range anxiety for travel within a city when unplanned charging maybe required. This substantial increase in the charging rate is expected to create technical issues in the design of the battery system and the vehicle electrical architecture that must be resolved. This work will focus on the battery system thermal design and total recharge time to meet the goals of implementing higher charge rates as well as the impacts of the expected increase in system voltage on the components of the vehicle.« less

  11. Dual-bridge LLC-SRC with extended voltage range for deeply depleted PEV battery charging

    NASA Astrophysics Data System (ADS)

    Shahzad, M. Imran; Iqbal, Shahid; Taib, Soib

    2017-11-01

    This paper proposes a dual-bridge LLC series resonant converter with hybrid-rectifier for achieving extended charging voltage range of 50-420 V for on-board battery charger of plug-in electric vehicle for normal and deeply depleted battery charging. Depending upon the configuration of primary switching network and secondary rectifier, the proposed topology has three operating modes as half-bridge with bridge rectifier (HBBR), full-bridge with bridge rectifier (FBBR) and full-bridge with voltage doubler (FBVD). HBBR, FBBR and FBVD operating modes of converter achieve 50-125, 125-250 and 250-420 V voltage ranges, respectively. For voltage above 62 V, the converter operates below resonance frequency zero voltage switching region with narrow switching frequency range for soft commutation of secondary diodes and low turn-off current of MOSFETs to reduce switching losses. The proposed converter is simulated using MATLAB Simulink and a 1.5 kW laboratory prototype is also built to validate the operation of proposed topology. Simulation and experimental results show that the converter meets all the charging requirements for deeply depleted to fully charged battery using constant current-constant voltage charging method with fixed 400 V DC input and achieves 96.22% peak efficiency.

  12. Lithium ion batteries and their manufacturing challenges

    DOE PAGES

    Daniel, Claus

    2015-03-01

    There is no single lithium ion battery. With the variety of materials and electrochemical couples available, it is possible to design battery cells specific to their applications in terms of voltage, state of charge use, lifetime needs, and safety. Selection of specific electrochemical couples also facilitates the design of power and energy ratios and available energy. Integration in a large format cell requires optimized roll-to-roll electrode manufacturing and use of active materials. Electrodes are coated on a metal current collector foil in a composite structure of active material, binders, and conductive additives, requiring careful control of colloidal chemistry, adhesion, andmore » solidification. But the added inactive materials and the cell packaging reduce energy density. Furthermore, degree of porosity and compaction in the electrode can affect battery performance.« less

  13. Evaluation of nickel-hydrogen battery for space application

    NASA Technical Reports Server (NTRS)

    Billard, J. M.; Dupont, D.

    1983-01-01

    Results of electrical space qualification tests of nickel-hydrogen battery type HR 23S are presented. The results obtained for the nickel-cadmium battery type VO 23S are similar except that the voltage level and the charge conservation characteristics vary significantly. The electrical and thermal characteristics permit predictions of the following optimal applications: charge coefficient in the order of 1.3 to 1.4 at 20C; charge current density higher than C/10 at 20C; discharge current density from C/10 to C/3 at 20C; maximum discharge temperature: OC; storage temperature: -20C.

  14. Environment-Modulated Crystallization of Cu2O and CuO Nanowires by Electrospinning and Their Charge Storage Properties.

    PubMed

    Harilal, Midhun; G Krishnan, Syam; Pal, Bhupender; Reddy, M Venkatashamy; Ab Rahim, Mohd Hasbi; Yusoff, Mashitah Mohd; Jose, Rajan

    2018-02-06

    This article reports the synthesis of cuprous oxide (Cu 2 O) and cupric oxide (CuO) nanowires by controlling the calcination environment of electrospun polymeric nanowires and their charge storage properties. The Cu 2 O nanowires showed higher surface area (86 m 2 g -1 ) and pore size than the CuO nanowires (36 m 2 g -1 ). Electrochemical analysis was carried out in 6 M KOH, and both the electrodes showed battery-type charge storage mechanism. The electrospun Cu 2 O electrodes delivered high discharge capacity (126 mA h g -1 ) than CuO (72 mA h g -1 ) at a current density of 2.4 mA cm -2 . Electrochemical impedance spectroscopy measurements show almost similar charge-transfer resistance in Cu 2 O (1.2 Ω) and CuO (1.6 Ω); however, Cu 2 O showed an order of magnitude higher ion diffusion. The difference in charge storage between these electrodes is attributed to the difference in surface properties and charge kinetics at the electrode. The electrode also shows superior cyclic stability (98%) and Coulombic efficiency (98%) after 5000 cycles. Therefore, these materials could be acceptable choices as a battery-type or pseudocapacitive electrode in asymmetric supercapacitors.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lingling; Ma, Yulin; Cheng, Xinqun

    LiCoO 2/mesocarbon microbeads (MCMB) batteries are over-charged to different voltage (4.4 V, 4.5 V, 4.6 V, and 4.7 V, respectively) for ten times, and then are cycled 1000 times for shallow depth of discharge. The morphology, structure, and electrochemical performance of the electrode materials were studied in detail in order to identify the capacity fading mechanism of over-charged battery after long-term cycling. The cycling performances of LiCoO 2/MCMB batteries are gradually aggravated with the increase of over-charging voltage and the degradation mechanism is diverse upon the degree of over-charging. Furthermore, the capacity fading after long-term cycling of battery over-charged tomore » 4.6 V or 4.7 V is mainly attributed to the cathodes. Soft X-ray absorption spectroscopy (XAS) demonstrates that the lower valence state of cobalt exists on the surface of the LiCoO 2 after serious over-charging (4.6 V or 4.7 V), and cobalt is dissolved then deposited on the anode according to the result of energy dispersive spectrometry (EDS). But, after shallow over-charging (4.4 V or 4.5 V), the capacity deterioration is proposed as the loss of active lithium, presented by the generation of the SEI film on the anode, which is verified by water washed tests.« less

  16. Device for detecting the specific gravity of a liquid. [Patent application

    DOEpatents

    Derouin, C.R.; Kerwin, W.J.; McCormick, J.B.; Bobbett, R.E.

    1980-11-18

    A device for detecting the specific gravity of a liquid and a device for detecting the state of charge of a liquid phase electrolyte battery are described. In one embodiment of the present invention, a change in the critical angle of total internal reflection is utilized to determine the index of refraction of the liquid to be measured. It is shown that the index of refraction of the liquid is a function of the specific gravity of the liquid. In applications for measuring the state of charge of a battery, the specific gravity is proportional to the state of charge of the battery. A change in intensity of rays intersecting an interface surface indicates the critical angle which is a direct indication of the specific gravity of the liquid and the state of charge of a battery. In another embodiment, a light beam is projected through a transparent medium and then through a portion of the liquid to be measured. A change in refraction due to a change in the index of refraction of the liquid produces a deflection of the beam which is measured by a detector. The magnitude of deflection of the beam is directly proportional to the specific gravity of the liquid and the state of charge of a battery.

  17. Thermal modeling of a Ni-H2 battery cell

    NASA Technical Reports Server (NTRS)

    Ryu, Si-Ok; Dewitt, K. J.; Keith, T. G.

    1991-01-01

    The nickel-hydrogen secondary battery has many desirable features which make it attractive for satellite power systems. It can provide a significant improvement over the energy density of present spacecraft nickel-cadnium batteries, combined with longer life, tolerance to overcharge and possibility of state-of-charge indication. However, to realize these advantages, accurate thermal modeling of nickel-hydrogen cells is required in order to properly design the battery pack so that it operates within a specified temperature range during the operation. Maintenance of a low operating temperature and a uniform temperature profile within the cell will yield better reliability, improved cycle life and better charge/discharge efficiencies. This research has the objective of developing and testing a thermal model which can be used to characterize battery operation. Primarily, temperature distribution with the heat generation rates as a function of position and time will be evaluated for a Ni-H2 cell in the three operating modes: (1) charge cycle, (2) discharge cycle, and (3) overcharge condition, if applicable. Variables to be examined include charging current, discharge rates, state of charge, pressure and temperature. Once the thermal model has been developed, this resulting model will predict the actual operating temperature and temperature gradient for the specific cell geometry to be used.

  18. Modeling the effect of shunt current on the charge transfer efficiency of an all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Chen, Yong-Song; Ho, Sze-Yuan; Chou, Han-Wen; Wei, Hwa-Jou

    2018-06-01

    In an all-vanadium redox flow battery (VRFB), a shunt current is inevitable owing to the electrically conductive electrolyte that fills the flow channels and manifolds connecting cells. The shunt current decreases the performance of a VRFB stack as well as the energy conversion efficiency of a VRFB system. To understand the shunt-current loss in a VRFB stack with various designs and operating conditions, a mathematical model is developed to investigate the effects of the shunt current on battery performance. The model is calibrated with experimental data under the same operating conditions. The effects of the battery design, including the number of cells, state of charge (SOC), operating current, and equivalent resistance of the electrolytes in the flow channels and manifolds, on the shunt current are analyzed and discussed. The charge-transfer efficiency is calculated to investigate the effects of the battery design parameters on the shunt current. When the cell number is increased from 5 to 40, the charge transfer efficiency is decreased from 0.99 to a range between 0.76 and 0.88, depending on operating current density. The charge transfer efficiency can be maintained at higher than 0.9 by limiting the cell number to less than 20.

  19. The impact of range anxiety and home, workplace, and public charging infrastructure on simulated battery electric vehicle lifetime utility

    NASA Astrophysics Data System (ADS)

    Neubauer, Jeremy; Wood, Eric

    2014-07-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but have a limited utility due to factors including driver range anxiety and access to charging infrastructure. In this paper we apply NREL's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V) to examine the sensitivity of BEV utility to range anxiety and different charging infrastructure scenarios, including variable time schedules, power levels, and locations (home, work, and public installations). We find that the effects of range anxiety can be significant, but are reduced with access to additional charging infrastructure. We also find that (1) increasing home charging power above that provided by a common 15 A, 120 V circuit offers little added utility, (2) workplace charging offers significant utility benefits to select high mileage commuters, and (3) broadly available public charging can bring many lower mileage drivers to near-100% utility while strongly increasing the achieved miles of high mileage drivers.

  20. A Novel Approach of Battery Energy Storage for Improving Value of Wind Power in Deregulated Markets

    NASA Astrophysics Data System (ADS)

    Nguyen, Y. Minh; Yoon, Yong Tae

    2013-06-01

    Wind power producers face many regulation costs in deregulated environment, which remarkably lowers the value of wind power in comparison with the conventional sources. One of these costs is associated with the real-time variation of power output and being paid in frequency control market according to the variation band. In this regard, this paper presents a new approach to the scheduling and operation of battery energy storage installed in wind generation system. This approach depends on the statistic data of wind generation and the prediction of frequency control market prices to determine the optimal charging and discharging of batteries in real-time, which ultimately gives the minimum cost of frequency regulation for wind power producers. The optimization problem is formulated as the trade-off between the decrease in regulation payment and the increase in the cost of using battery energy storage. The approach is illustrated in the case study and the results of simulation show its effectiveness.

  1. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai

    2017-03-01

    Batteries using lithium (Li) metal as anodes are considered promising energy storage systems because of their high energy densities. However, safety concerns associated with dendrite growth along with limited cycle life, especially at high charge current densities, hinder their practical uses. Here we report that an optimal amount (0.05 M) of LiPF6 as an additive in LiTFSI-LiBOB dual-salt/carbonate-solvent-based electrolytes significantly enhances the charging capability and cycling stability of Li metal batteries. In a Li metal battery using a 4-V Li-ion cathode at a moderately high loading of 1.75mAh cm(-2), a cyclability of 97.1% capacity retention after 500 cycles along withmore » very limited increase in electrode overpotential is accomplished at a charge/discharge current density up to 1.75 mA cm(-2). The fast charging and stable cycling performances are ascribed to the generation of a robust and conductive solid electrolyte interphase at the Li metal surface and stabilization of the Al cathode current collector.« less

  2. Energy storage devices for future hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Karden, Eckhard; Ploumen, Servé; Fricke, Birger; Miller, Ted; Snyder, Kent

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential "battery pack" system suppliers are discussed.

  3. A new battery-charging method suggested by molecular dynamics simulations.

    PubMed

    Abou Hamad, Ibrahim; Novotny, M A; Wipf, D O; Rikvold, P A

    2010-03-20

    Based on large-scale molecular dynamics simulations, we propose a new charging method that should be capable of charging a lithium-ion battery in a fraction of the time needed when using traditional methods. This charging method uses an additional applied oscillatory electric field. Our simulation results show that this charging method offers a great reduction in the average intercalation time for Li(+) ions, which dominates the charging time. The oscillating field not only increases the diffusion rate of Li(+) ions in the electrolyte but, more importantly, also enhances intercalation by lowering the corresponding overall energy barrier.

  4. Nickel-cadium batteries for Apollo telescope mount

    NASA Technical Reports Server (NTRS)

    Kirsch, W. W.; Shikoh, A. E.

    1974-01-01

    The operational testing and evaluation program is presented which was conducted on 20-ampere-hour nickel-cadmium (Ni-Cd) batteries for use on the Apollo telescope mount (ATM). The test program was initiated in 1967 to determine if the batteries could meet ATM mission requirements and to determine operating characteristics and methods. The ATM system power and charging power for the Ni-Cd secondary batteries is provided by a solar array during the 58-minute daylight portion of the orbit; during the 36-minute night portion of the orbit, the Ni-Cd secondary batteries will supply ATM system power. The test results reflect battery operating characteristics and parameters relative to simulated ATM orbital test conditions. Maximum voltage, charge requirements, capacity, temperature, and cyclic characteristics are presented.

  5. Failure Analysis of Batteries Using Synchrotron-based Hard X-ray Microtomography

    PubMed Central

    Harry, Katherine J.; Parkinson, Dilworth Y.; Balsara, Nitash P.

    2015-01-01

    Imaging morphological changes that occur during the lifetime of rechargeable batteries is necessary to understand how these devices fail. Since the advent of lithium-ion batteries, researchers have known that the lithium metal anode has the highest theoretical energy density of any anode material. However, rechargeable batteries containing a lithium metal anode are not widely used in consumer products because the growth of lithium dendrites from the anode upon charging of the battery causes premature cell failure by short circuit. Lithium dendrites can also form in commercial lithium-ion batteries with graphite anodes if they are improperly charged. We demonstrate that lithium dendrite growth can be studied using synchrotron-based hard X-ray microtomography. This non-destructive imaging technique allows researchers to study the growth of lithium dendrites, in addition to other morphological changes inside batteries, and subsequently develop methods to extend battery life. PMID:26382323

  6. State of Charge estimation of lithium ion battery based on extended Kalman filtering algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Feng, Yiming; Pan, Binbiao; Wan, Renzhuo; Wang, Jun

    2017-08-01

    Accurate estimation of state-of-charge (SOC) for lithium ion battery is crucial for real-time diagnosis and prognosis in green energy vehicles. In this paper, a state space model of the battery based on Thevenin model is adopted. The strategy of estimating state of charge (SOC) based on extended Kalman fil-ter is presented, as well as to combine with ampere-hour counting (AH) and open circuit voltage (OCV) methods. The comparison between simulation and experiments indicates that the model’s performance matches well with that of lithium ion battery. The algorithm of extended Kalman filter keeps a good accura-cy precision and less dependent on its initial value in full range of SOC, which is proved to be suitable for online SOC estimation.

  7. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: Internal cell signals and utility for state estimation

    NASA Astrophysics Data System (ADS)

    Ganguli, Anurag; Saha, Bhaskar; Raghavan, Ajay; Kiesel, Peter; Arakaki, Kyle; Schuh, Andreas; Schwartz, Julian; Hegyi, Alex; Sommer, Lars Wilko; Lochbaum, Alexander; Sahu, Saroj; Alamgir, Mohamed

    2017-02-01

    A key challenge hindering the mass adoption of Lithium-ion and other next-gen chemistries in advanced battery applications such as hybrid/electric vehicles (xEVs) has been management of their functional performance for more effective battery utilization and control over their life. Contemporary battery management systems (BMS) reliant on monitoring external parameters such as voltage and current to ensure safe battery operation with the required performance usually result in overdesign and inefficient use of capacity. More informative embedded sensors are desirable for internal cell state monitoring, which could provide accurate state-of-charge (SOC) and state-of-health (SOH) estimates and early failure indicators. Here we present a promising new embedded sensing option developed by our team for cell monitoring, fiber-optic (FO) sensors. High-performance large-format pouch cells with embedded FO sensors were fabricated. This second part of the paper focuses on the internal signals obtained from these FO sensors. The details of the method to isolate intercalation strain and temperature signals are discussed. Data collected under various xEV operational conditions are presented. An algorithm employing dynamic time warping and Kalman filtering was used to estimate state-of-charge with high accuracy from these internal FO signals. Their utility for high-accuracy, predictive state-of-health estimation is also explored.

  8. Redox active polymers and colloidal particles for flow batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavvalapalli, Nagarjuna; Moore, Jeffrey S.; Rodriguez-Lopez, Joaquin

    The invention provides a redox flow battery comprising a microporous or nanoporous size-exclusion membrane, wherein one cell of the battery contains a redox-active polymer dissolved in the non-aqueous solvent or a redox-active colloidal particle dispersed in the non-aqueous solvent. The redox flow battery provides enhanced ionic conductivity across the electrolyte separator and reduced redox-active species crossover, thereby improving the performance and enabling widespread utilization. Redox active poly(vinylbenzyl ethylviologen) (RAPs) and redox active colloidal particles (RACs) were prepared and were found to be highly effective redox species. Controlled potential bulk electrolysis indicates that 94-99% of the nominal charge on different RAPsmore » is accessible and the electrolysis products are stable upon cycling. The high concentration attainable (>2.0 M) for RAPs in common non-aqueous battery solvents, their electrochemical and chemical reversibility, and their hindered transport across porous separators make them attractive materials for non-aqueous redox flow batteries based on size-selectivity.« less

  9. Performance and Safety Characteristics of Sanyo NiCd Cells

    NASA Technical Reports Server (NTRS)

    Deng, Yi; Jeevarajan, Judith; Bragg, Bobby; Zhang, Wenlin

    2002-01-01

    NiCd batteries are widely used for high drain applications like power tools and also in other portable equipment like cameras, PCs, etc. NASA and Dreamtime Holdings, Inc. worked together to have the capability of a High Definition TV (HDTV) on the ISS and Space Shuttle. The Sanyo HD camcorder was used on the STS 105 fight in July, 2001 . The camcorder used two versions of a NiCd battery. One was a cOlnmercial off-the-shelf Sony BP90 battery pack that had Sanyo NiCd D cells. The other was a modified battery (FBP-90) made by Frezzi Energy, which also had the same Sanyo NiCd D cells. The battery has 10 NiCd D cells in series to form a 12 V pack with 5.0 Ah capacity. Our current study involved the perforn1ance and abuse tests on the Sanyo NiCd 5.0 Ah D cells. The best combination of charge/discharge current rate is 0.3C for charge and 1/2e for discharge within 200 cycles. No significant changes in capacity were observed in 200 cycles. The cell also showed capability of 5C (25.0A) high rate discharge. In overcharge and overdischarge tests, all tested cells passed the tests without venting. In imbalance tests, the battery pack could be charged and discharged only at relatively low current. At charge current of 1.0A or less, the imbalanced cells in the battery pack displayed relatively high temperatures during charge or discharge. The cells functioned normally during internal short and no mishap occurred during external short. Cells passed exposure tests at 80 C and no leakage till 150 C during heat-tovent tests.

  10. Electric vehicle utilization for ancillary grid services

    NASA Astrophysics Data System (ADS)

    Aziz, Muhammad

    2018-02-01

    Electric vehicle has been developed through several decades as transportation mean, without paying sufficient attention of its utilization for other purposes. Recently, the utilization of electric vehicle to support the grid electricity has been proposed and studied intensively. This utilization covers several possible services including electricity storage, spinning reserve, frequency and voltage regulation, and emergency energy supply. This study focuses on theoretical and experimental analysis of utilization of electric vehicles and their used batteries to support a small-scale energy management system. Charging rate of electric vehicle under different ambient temperature (seasonal condition) is initially analyzed to measure the correlation of charging rate, charging time, and state-of-charge. It is confirmed that charging under warmer condition (such as in summer or warmer region) shows higher charging rate than one in colder condition, therefore, shorter charging time can be achieved. In addition, in the demonstration test, each five electric vehicles and used batteries from the same electric vehicles are employed and controlled to support the electricity of the office building. The performance of the system is evaluated throughout a year to measure the load leveling effect during peak-load time. The results show that the targeted peak-load can be shaved well under certain calculated peak-shaving threshold. The finding confirms that the utilization of electric vehicle for supporting the electricity of grid or certain energy management system is feasible and deployable in the future.

  11. Lithium-ion Battery Charge Methodologies Observed with Portable Electronic Equipment

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2009-01-01

    Commercial lithium-ion batteries in portable electronic equipment has been used by NASA for space applications since 1999. First battery that was certified for flight and flown for Shuttle use was the Canon BP 927 (2.7 Ah) battery pack. Since then, numerous portable equipment with li-ion batteries have been certified and flown and remain on-orbit for crew usage. Laptops (two generations with third one being worked on now) Camcorder Camera PDA 2 versions (second one being li-ion polymer cells) Satellite Phone Due to expense and time, certified batteries are used with different equipment with the help of adapters or by working with the manufacturer of the equipment to build the appropriate battery compartment and connector. Certified and dedicated chargers are available on Shuttle and on the ISS for safe charging.

  12. Performance characteristics of a battery charger and state-of-charge indicator

    NASA Technical Reports Server (NTRS)

    Edwards, D.; Klein, J.

    1984-01-01

    A battery charge/state of charge indicator (BC/SCI) system for electric vehicle use was developed. The original and subsequent objectives for the BC/SCI and the rationale for those objectives are described. The requirements generated from the objectives are listed and a description of the BC/SCI is provided. The power section problem, the tests, and the test results are discussed.

  13. Preparation and characterization of thick-film Ni/MH battery.

    PubMed

    Do, Jing-Shan; Yu, Sen-Hao; Cheng, Suh-Fen

    2004-07-30

    Using the porous polypropylene (PP) films sputtered with gold and the Ni as current collectors, the electroactive materials (Ni(OH)2 and metal hydride (MH)) of positive and negative electrodes were prepared on the current collector using thick-film technology. Two types of cell configurations were prepared and the characteristics of these batteries were compared. The cycle number for the formation of batteries based on the porous PP film was found to be 2, which was significantly less than that of batteries based on the ceramic substrates. Using the porous PP film as substrate, the number of cycles for the formation of battery increased from 2 to 5 with the increase of the charge/discharge rate from 0.1C/0.025C to 2.0C/0.5C. The silver oxides dendrites formed by the oxidation of silver paste used to adhere the current collectors and the conducting wires in the charge/discharge process caused a short contact between the positive and negative electrodes, which then caused the battery failure. The cycle life of the battery based on the porous PP film was found to be greater than 400 when the charge/discharge rate was 2.0C/0.5C.

  14. A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR

    DOE PAGES

    Duan, Wentao; Vemuri, Rama Ses; Milshtein, Jarrod D.; ...

    2016-03-10

    Redox flow batteries have shown outstanding promise for grid-scale energy storage to promote utilization of renewable energy and improve grid stability. Nonaqueous battery systems can potentially achieve high energy density because of their broad voltage window. In this paper, we report a new organic redox-active material for use in a nonaqueous redox flow battery, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) that has high solubility (>2.6 M) in organic solvents. PTIO exhibits electrochemically reversible disproportionation reactions and thus can serve as both anolyte and catholyte redox materials in a symmetric flow cell. The PTIO flow battery has a moderate cell voltage of ~1.7 V andmore » shows good cyclability under both cyclic voltammetry and flow cell conditions. Moreover, we demonstrate that FTIR can offer accurate estimation of the PTIO concentration in electrolytes and determine the state of charge of the PTIO flow cell, which suggests FTIR potentially as a powerful online battery status sensor. In conclusion, this study is expected to inspire more insights in this under-addressed area of state of charge analysis aiming at operational safety and reliability of flow batteries.« less

  15. Photovoltaic performance and reliability workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroposki, B

    1996-10-01

    This proceedings is the compilation of papers presented at the ninth PV Performance and Reliability Workshop held at the Sheraton Denver West Hotel on September 4--6, 1996. This years workshop included presentations from 25 speakers and had over 100 attendees. All of the presentations that were given are included in this proceedings. Topics of the papers included: defining service lifetime and developing models for PV module lifetime; examining and determining failure and degradation mechanisms in PV modules; combining IEEE/IEC/UL testing procedures; AC module performance and reliability testing; inverter reliability/qualification testing; standardization of utility interconnect requirements for PV systems; need activitiesmore » to separate variables by testing individual components of PV systems (e.g. cells, modules, batteries, inverters,charge controllers) for individual reliability and then test them in actual system configurations; more results reported from field experience on modules, inverters, batteries, and charge controllers from field deployed PV systems; and system certification and standardized testing for stand-alone and grid-tied systems.« less

  16. Segmental Interactions between Polymers and Small Molecules in Batteries and Biofuel Purification

    NASA Astrophysics Data System (ADS)

    Balsara, Nitash

    2015-03-01

    Polymers such as poly(ethylene oxide) (PEO) and poly(dimethyl siloxane) (PDMS) have the potential to play an important role in the emerging clean energy landscape. Mixtures of PEO and lithium salts are the most widely studied non-flammable electrolyte for rechargeable lithium batteries. PDMS membranes are ideally suited for purifying bioethanol and biobutanol from fermentation broths. The ability of PEO and PDMS to function in these applications depends on segmental interactions between the polymeric host and small molecule guests. One experimental approach for studying these interactions is X-ray absorption spectroscopy (XAS). Models for interpreting XAS spectra of amorphous mixtures and charged species such as salts must quantify the effect of segmental interactions on the electronic structure of the atoms of interest (e.g. sulfur). This combination of experiment and theory is used to determine the species formed in during charging and discharging lithium-sulfur batteries; the theoretical specific energy of lithium-sulfur batteries is a factor of four larger than that of current lithium-ion batteries. Selective transport of alcohols in PDMS-containing membranes is controlled by the size, shape, and connectivity of sub-nanometer cavities or free volume that form and disappear spontaneously as the chain segments undergo Brownian motion. We demonstrate that self-assembly of PDMS-containing block copolymers can be used to control segmental relaxation, which, in turn, affects free volume. Positron annihilation was used to determine the size distribution of free volume cavities in the PDMS-containing block copolymers. The effect of this artificial free volume on selective permeation of alcohols formed by fermentation of sugars derived from lignocellulosic biomass is studied. Molecular dynamics simulations are needed to understand the relationship between self-assembly, free volume, and transport in block copolymers.

  17. Implementation of Maximum Power Point Tracking (MPPT) Solar Charge Controller using Arduino

    NASA Astrophysics Data System (ADS)

    Abdelilah, B.; Mouna, A.; KouiderM’Sirdi, N.; El Hossain, A.

    2018-05-01

    the platform Arduino with a number of sensors standard can be used as components of an electronic system for acquiring measures and controls. This paper presents the design of a low-cost and effective solar charge controller. This system includes several elements such as the solar panel converter DC/DC, battery, circuit MPPT using Microcontroller, sensors, and the MPPT algorithm. The MPPT (Maximum Power Point Tracker) algorithm has been implemented using an Arduino Nano with the preferred program. The voltage and current of the Panel are taken where the program implemented will work and using this algorithm that MPP will be reached. This paper provides details on the solar charge control device at the maximum power point. The results include the change of the duty cycle with the change in load and thus mean the variation of the buck converter output voltage and current controlled by the MPPT algorithm.

  18. Li-ion cells for terrestrial robots

    NASA Technical Reports Server (NTRS)

    Chin, Keith B.; Smart, M. C.; Narayanan, S. R.; Ratnakumar, B. V.; Whitcanack, L. D.; Davies, E. D.; Surampudi, S.; Raman, N. S.

    2003-01-01

    SAFT prismatic wound 5 Ahr MP series cells were evaluated for potential application in a lithium ion battery designed for Tactical Mobile Robots (TMR). In order to satisfy battery design requirements, a 10 Ahr battery containing two parallel 8-cell strings was proposed. The proposed battery has a weight and volume of approximately 3.2kg and 1.6 liters, respectively. Cell qualification procedures include initial characterization, followed by charge/discharge cycling at 100% DOD with intermittent EIS measurements at various state of charge. Certain cells were also subjected to extreme operational temperatures for worst-case analysis. Excellent specific energy (>130 Whr/kg) was obtained with initial characterization cycles. Even at abusive thermal conditions, the cell capacity fade was less than Ahr after 300 cycles. Rate characterization showed good cell discharge behavior with minimal decrease in capacity. At various state of charge, impedance measurements suggest that the cathode play a more significant role in capacity. At various state of charge impedance measurements suggest that the cathode play a more significant role in capacity fade than the anode.

  19. Abstract - Belbas, Nicholas (EC2)

    NASA Technical Reports Server (NTRS)

    Belbas, Nicholas

    2017-01-01

    Originally, I was brought into the Design and Analysis Branch in the Crew and Thermal Systems to work on administrative tasks like archiving and scheduling. However, I ended up splitting my time between secretarial tasks and a technical project. My technical project was originally meant to be a wireless sensor package for the 20ft Spacecraft Thermal Vacuum Chamber in the B7 High Bay. I would be using a miniature wifi development board and a temperature/humidity sensor along with custom 3D modeling to accomplish this. However, after some discussion with my technical mentor, the plan was changed to a mobile autonomous self-charging sensor platform. A mobile platform will allow the sensors to be moved around without depressurizing the chamber. Also, the self-charging aspect of the package allows for almost unlimited time in the chamber. If the on-board battery runs low, the robot can easily be driven to its charging dock and continue to transmit while charging. The driving base is based around a Raspberry Pi 3 board with a 12C PMW DC Motor controller and a PWM controller driving two small gear motors. The sensor transmitter itself is a RHT03 temperature and humidity sensor and Cozir CO2 sensor connected to an ESP8266 Huzzah board. The power distribution system utilizes a pair of 3.7v 3600mah lipo batteries wired to Powerboost 500 boards. Also, the self-charging mechanism utilizes two 12v-max inductive charging coils wired into the same Powerboost boards as the battery. The Raspberry pi is running Python 3.3 for the driving base and Javascript MJPEG library for transmitting live video from the onboard camera. The sensor package is running Arduino-based C++ and the program capturing the data is running PyqtGraph Python and HTML. The shell of the robot itself is a 3D printed case that will (work in progress) snap together. The photo to the left shows the two halves separated from each other. The black shell contains the power distribution boards and connectors while the white shell contains the driving base and data systems.

  20. Multiple stage multiple filter hydrate store

    DOEpatents

    Bjorkman, H.K. Jr.

    1983-05-31

    An improved hydrate store for a metal halogen battery system is disclosed which employs a multiple stage, multiple filter means for separating the halogen hydrate from the liquid used in forming the hydrate. The filter means is constructed in the form of three separate sections which combine to substantially cover the interior surface of the store container. Exit conduit means is provided in association with the filter means for transmitting liquid passing through the filter means to a hydrate former subsystem. The hydrate former subsystem combines the halogen gas generated during the charging of the battery system with the liquid to form the hydrate in association with the store. Relief valve means is interposed in the exit conduit means for controlling the operation of the separate sections of the filter means, such that the liquid flow through the exit conduit means from each of the separate sections is controlled in a predetermined sequence. The three separate sections of the filter means operate in three discrete stages to provide a substantially uniform liquid flow to the hydrate former subsystem during the charging of the battery system. The separation of the liquid from the hydrate causes an increase in the density of the hydrate by concentrating the hydrate along the filter means. 7 figs.

  1. Multiple stage multiple filter hydrate store

    DOEpatents

    Bjorkman, Jr., Harry K.

    1983-05-31

    An improved hydrate store for a metal halogen battery system is disclosed which employs a multiple stage, multiple filter means or separating the halogen hydrate from the liquid used in forming the hydrate. The filter means is constructed in the form of three separate sections which combine to substantially cover the interior surface of the store container. Exit conduit means is provided in association with the filter means for transmitting liquid passing through the filter means to a hydrate former subsystem. The hydrate former subsystem combines the halogen gas generated during the charging of the battery system with the liquid to form the hydrate in association with the store. Relief valve means is interposed in the exit conduit means for controlling the operation of the separate sections of the filter means, such that the liquid flow through the exit conduit means from each of the separate sections is controlled in a predetermined sequence. The three separate sections of the filter means operate in three discrete stages to provide a substantially uniform liquid flow to the hydrate former subsystem during the charging of the battery system. The separation of the liquid from the hydrate causes an increase in the density of the hydrate by concentrating the hydrate along the filter means.

  2. In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors

    PubMed Central

    Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi

    2011-01-01

    Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ. PMID:22163735

  3. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors.

    PubMed

    Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi

    2011-01-01

    Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ.

  4. Joint optimisation of arbitrage profits and battery life degradation for grid storage application of battery electric vehicles

    NASA Astrophysics Data System (ADS)

    Kies, Alexander

    2018-02-01

    To meet European decarbonisation targets by 2050, the electrification of the transport sector is mandatory. Most electric vehicles rely on lithium-ion batteries, because they have a higher energy/power density and longer life span compared to other practical batteries such as zinc-carbon batteries. Electric vehicles can thus provide energy storage to support the system integration of generation from highly variable renewable sources, such as wind and photovoltaics (PV). However, charging/discharging causes batteries to degradate progressively with reduced capacity. In this study, we investigate the impact of the joint optimisation of arbitrage revenue and battery degradation of electric vehicle batteries in a simplified setting, where historical prices allow for market participation of battery electric vehicle owners. It is shown that the joint optimisation of both leads to stronger gains then the sum of both optimisation strategies and that including battery degradation into the model avoids state of charges close to the maximum at times. It can be concluded that degradation is an important aspect to consider in power system models, which incorporate any kind of lithium-ion battery storage.

  5. Modeling and Simulation of a Gallium Nitride (GaN) Betavoltaic Energy Converter

    DTIC Science & Technology

    2016-06-01

    information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY...June 2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 05/2015–08/2015 4. TITLE AND SUBTITLE Modeling and Simulation of a Gallium Nitride...current battery technology has several drawbacks, such as charge leakage, temperature and environment sensitivity, and finite charge cycles. Radioisotope

  6. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XIII, BATTERY SERVICE AND TESTING PROCEDURES--PART II.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO FAMILIARIZE THE TRAINEE WITH PROCEDURES FOR SERVICING LEAD-ACID STORAGE BATTERIES USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE (1) ELECTROLYTE AND SPECIFIC GRAVITY, (2) BATTERY CHARGING, (3) STORAGE BATTERY TYPES AND DESIGN, (4) BATTERY CAPACITY RATINGS, (5) BATTERY INSTALLATION, SERVICING, AND…

  7. New secondary batteries utilizing electronically conductive polymer cathodes

    NASA Technical Reports Server (NTRS)

    Martin, Charles R.; White, Ralph E.

    1989-01-01

    The objectives of this project are to characterize the transport properties in electronically conductive polymers and to assess the utility of these films as cathodes in lithium/polymer secondary batteries. During this research period, progress has been made in a literature survey of the historical background, methods of preparation, the physical and chemical properties, and potential technological applications of polythiophene. Progress has also been made in the characterization of polypyrrole flat films and fibrillar films. Cyclic voltammetry and potential step chronocoulometry were used to gain information on peak currents and potentials switching reaction rates, charge capacity, and charge retention. Battery charge/discharge studies were also performed.

  8. Submerged AUV Charging Station

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Chao, Yi; Curtin, Thomas

    2014-01-01

    Autonomous Underwater Vehicles (AUVs) are becoming increasingly important for military surveillance and mine detection. Most AUVs are battery powered and have limited lifetimes of a few days to a few weeks. This greatly limits the distance that AUVs can travel underwater. Using a series of submerged AUV charging stations, AUVs could travel a limited distance to the next charging station, recharge its batteries, and continue to the next charging station, thus traveling great distances in a relatively short time, similar to the Old West “Pony Express.” One solution is to use temperature differences at various depths in the ocean to produce electricity, which is then stored in a submerged battery. It is preferred to have the upper buoy submerged a reasonable distance below the surface, so as not to be seen from above and not to be inadvertently destroyed by storms or ocean going vessels. In a previous invention, a phase change material (PCM) is melted (expanded) at warm temperatures, for example, 15 °C, and frozen (contracted) at cooler temperatures, for example, 8 °C. Tubes containing the PCM, which could be paraffin such as pentadecane, would be inserted into a container filled with hydraulic oil. When the PCM is melted (expanded), it pushes the oil out into a container that is pressurized to about 3,000 psi (approx equals 20.7 MPa). When a valve is opened, the high-pressure oil passes through a hydraulic motor, which turns a generator and charges a battery. The low-pressure oil is finally reabsorbed into the PCM canister when the PCM tubes are frozen (contracted). Some of the electricity produced could be used to control an external bladder or a motor to the tether line, such that depth cycling is continued for a very long period of time. Alternatively, after the electricity is generated by the hydraulic motor, the exiting low-pressure oil from the hydraulic motor could be vented directly to an external bladder on the AUV, such that filling of the bladder causes the AUV to rise, and emptying of the bladder allows the AUV to descend. This type of direct buoyancy control is much more energy efficient than using electrical pumps in that the inefficiencies of converting thermal energy to electrical energy to mechanical energy is avoided. AUV charging stations have been developed that use electricity produced by waves on floating buoys and that use electricity from solar photovoltaics on floating buoys. This is the first device that has absolutely no floating or visible parts, and is thus impervious to storms, inadvertent ocean vessel collisions, or enemy sabotage.

  9. Analysis of Electric Vehicle DC High Current Conversion Technology

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Bai, Jing-fen; Lin, Fan-tao; Lu, Da

    2017-05-01

    Based on the background of electric vehicles, it is elaborated the necessity about electric energy accurate metering of electric vehicle power batteries, and it is analyzed about the charging and discharging characteristics of power batteries. It is needed a DC large current converter to realize accurate calibration of power batteries electric energy metering. Several kinds of measuring methods are analyzed based on shunts and magnetic induction principle in detail. It is put forward power batteries charge and discharge calibration system principle, and it is simulated and analyzed ripple waves containing rate and harmonic waves containing rate of power batteries AC side and DC side. It is put forward suitable DC large current measurement methods of power batteries by comparing different measurement principles and it is looked forward the DC large current measurement techniques.

  10. Method of minimizing the effects of parasitic currents

    DOEpatents

    Chi, Michael C.; Carr, Peter

    1983-02-01

    A method of minimizing the effect of parasitic currents in secondary batteries having a plurality of cells connected electrically in series and a common electrolyte in communication with the cells is described. Specifically, the parasitic currents flowing through the battery cause a cell imbalance over the charge/discharge cycle. This cell imbalance is minimized by first separating the cells of the battery into two equal groups. Then the battery is charged with the two groups of cells connected electrically in series, and subsequently discharged with the two groups of cells reconnected electrically in series in an inverted sequence.

  11. Hubble Space Telescope NiH2 six battery test

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Lanier, J. Roy

    1991-01-01

    The primary objectives of the test are: (1) to get a better understanding of the operating characteristics of the NiH2 batteries in the Hubble Space Telescope (HST) Electric Power Subsystem (EPS) by simulating every aspect of the expected operating environment; (2) to determine the optimum charge level and charge scheme for the NiH2 batteries in the HST EPS; (3) to predict the performance of the actual HST EPS; (4) to observe the aging characteristics of the batteries; and (5) to test different EPS anomalies before experiencing the anomalies on the actual HST.

  12. A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Wang, Yujie; Liu, Chang; Chen, Zonghai

    2018-02-01

    An accurate battery pack state of health (SOH) estimation is important to characterize the dynamic responses of battery pack and ensure the battery work with safety and reliability. However, the different performances in battery discharge/charge characteristics and working conditions in battery pack make the battery pack SOH estimation difficult. In this paper, the battery pack SOH is defined as the change of battery pack maximum energy storage. It contains all the cells' information including battery capacity, the relationship between state of charge (SOC) and open circuit voltage (OCV), and battery inconsistency. To predict the battery pack SOH, the method of particle swarm optimization-genetic algorithm is applied in battery pack model parameters identification. Based on the results, a particle filter is employed in battery SOC and OCV estimation to avoid the noise influence occurring in battery terminal voltage measurement and current drift. Moreover, a recursive least square method is used to update cells' capacity. Finally, the proposed method is verified by the profiles of New European Driving Cycle and dynamic test profiles. The experimental results indicate that the proposed method can estimate the battery states with high accuracy for actual operation. In addition, the factors affecting the change of SOH is analyzed.

  13. Data pieces-based parameter identification for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Zou, Yuan; Sun, Fengchun; Hu, Xiaosong; Yu, Yang; Feng, Sen

    2016-10-01

    Battery characteristics vary with temperature and aging, it is necessary to identify battery parameters periodically for electric vehicles to ensure reliable State-of-Charge (SoC) estimation, battery equalization and safe operation. Aiming for on-board applications, this paper proposes a data pieces-based parameter identification (DPPI) method to identify comprehensive battery parameters including capacity, OCV (open circuit voltage)-Ah relationship and impedance-Ah relationship simultaneously only based on battery operation data. First a vehicle field test was conducted and battery operation data was recorded, then the DPPI method is elaborated based on vehicle test data, parameters of all 97 cells of the battery package are identified and compared. To evaluate the adaptability of the proposed DPPI method, it is used to identify battery parameters of different aging levels and different temperatures based on battery aging experiment data. Then a concept of ;OCV-Ah aging database; is proposed, based on which battery capacity can be identified even though the battery was never fully charged or discharged. Finally, to further examine the effectiveness of the identified battery parameters, they are used to perform SoC estimation for the test vehicle with adaptive extended Kalman filter (AEKF). The result shows good accuracy and reliability.

  14. Visualizing the chemistry and structure dynamics in lithium-ion batteries by in-situ neutron diffraction

    PubMed Central

    Wang, Xun-Li; An, Ke; Cai, Lu; Feng, Zhili; Nagler, Stephen E.; Daniel, Claus; Rhodes, Kevin J.; Stoica, Alexandru D.; Skorpenske, Harley D.; Liang, Chengdu; Zhang, Wei; Kim, Joon; Qi, Yue; Harris, Stephen J.

    2012-01-01

    We report an in-situ neutron diffraction study of a large format pouch battery cell. The succession of Li-Graphite intercalation phases was fully captured under an 1C charge-discharge condition (i.e., charge to full capacity in 1 hour). However, the lithiation and dilithiation pathways are distinctively different and, unlike in slowing charging experiments with which the Li-Graphite phase diagram was established, no LiC24 phase was found during charge at 1C rate. Approximately 75 mol. % of the graphite converts to LiC6 at full charge, and a lattice dilation as large as 4% was observed during a charge-discharge cycle. Our work demonstrates the potential of in-situ, time and spatially resolved neutron diffraction study of the dynamic chemical and structural changes in “real-world” batteries under realistic cycling conditions, which should provide microscopic insights on degradation and the important role of diffusion kinetics in energy storage materials. PMID:23087812

  15. Enhancement of Voltage Stability of DC Smart Grid During Islanded Mode by Load Shedding Scheme

    NASA Astrophysics Data System (ADS)

    Nassor, Thabit Salim; Senjyu, Tomonobu; Yona, Atsushi

    2015-10-01

    This paper presents the voltage stability of a DC smart grid based on renewable energy resources during grid connected and isolated modes. During the islanded mode the load shedding, based on the state of charge of the battery and distribution line voltage, was proposed for voltage stability and reservation of critical load power. The analyzed power system comprises a wind turbine, a photovoltaic generator, storage battery as controllable load, DC loads, and power converters. A fuzzy logic control strategy was applied for power consumption control of controllable loads and the grid-connected dual active bridge series resonant converters. The proposed DC Smart Grid operation has been verified by simulation using MATLAB® and PLECS® Blockset. The obtained results show the effectiveness of the proposed method.

  16. Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging

    NASA Astrophysics Data System (ADS)

    Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B. Y.; García, V. M.; Viera, J. C.; González, M.

    2016-07-01

    One of the major issues hampering the acceptance of electric vehicles (EVs) is the anxiety associated with long charging time. Hence, the ability to fast charging lithium-ion battery (LIB) systems is gaining notable interest. However, fast charging is not tolerated by all LIB chemistries because it affects battery functionality and accelerates its aging processes. Here, we investigate the long-term effects of multistage fast charging on a commercial high power LiFePO4-based cell and compare it to another cell tested under standard charging. Coupling incremental capacity (IC) and IC peak area analysis together with mechanistic model simulations ('Alawa' toolbox with harvested half-cell data), we quantify the degradation modes that cause aging of the tested cells. The results show that the proposed fast charging technique caused similar aging effects as standard charging. The degradation is caused by a linear loss of lithium inventory, coupled with a less degree of linear loss of active material on the negative electrode. This study validates fast charging as a feasible mean of operation for this particular LIB chemistry and cell architecture. It also illustrates the benefits of a mechanistic approach to understand cell degradation on commercial cells.

  17. Aqueous Lithium-Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy.

    PubMed

    Yu, Mingzhe; McCulloch, William D; Beauchamp, Damian R; Huang, Zhongjie; Ren, Xiaodi; Wu, Yiying

    2015-07-08

    Integrating both photoelectric-conversion and energy-storage functions into one device allows for the more efficient solar energy usage. Here we demonstrate the concept of an aqueous lithium-iodine (Li-I) solar flow battery (SFB) by incorporation of a built-in dye-sensitized TiO2 photoelectrode in a Li-I redox flow battery via linkage of an I3(-)/I(-) based catholyte, for the simultaneous conversion and storage of solar energy. During the photoassisted charging process, I(-) ions are photoelectrochemically oxidized to I3(-), harvesting solar energy and storing it as chemical energy. The Li-I SFB can be charged at a voltage of 2.90 V under 1 sun AM 1.5 illumination, which is lower than its discharging voltage of 3.30 V. The charging voltage reduction translates to energy savings of close to 20% compared to conventional Li-I batteries. This concept also serves as a guiding design that can be extended to other metal-redox flow battery systems.

  18. Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries.

    PubMed

    VanGelder, L E; Kosswattaarachchi, A M; Forrestel, P L; Cook, T R; Matson, E M

    2018-02-14

    Non-aqueous redox flow batteries have emerged as promising systems for large-capacity, reversible energy storage, capable of meeting the variable demands of the electrical grid. Here, we investigate the potential for a series of Lindqvist polyoxovanadate-alkoxide (POV-alkoxide) clusters, [V 6 O 7 (OR) 12 ] (R = CH 3 , C 2 H 5 ), to serve as the electroactive species for a symmetric, non-aqueous redox flow battery. We demonstrate that the physical and electrochemical properties of these POV-alkoxides make them suitable for applications in redox flow batteries, as well as the ability for ligand modification at the bridging alkoxide moieties to yield significant improvements in cluster stability during charge-discharge cycling. Indeed, the metal-oxide core remains intact upon deep charge-discharge cycling, enabling extremely high coulombic efficiencies (∼97%) with minimal overpotential losses (∼0.3 V). Furthermore, the bulky POV-alkoxide demonstrates significant resistance to deleterious crossover, which will lead to improved lifetime and efficiency in a redox flow battery.

  19. A Look Inside SLAC's Battery Lab

    ScienceCinema

    Wei Seh, Zhi

    2018-01-26

    In this video, Stanford materials science and engineering graduate student Zhi Wei Seh shows how he prepares battery materials in SLAC's energy storage laboratory, assembles dime-sized prototype "coin cells" and then tests them to see how many charge-discharge cycles they can endure without losing their ability to hold a charge. Results to date have already set records: After 1,000 cycles, they retain 70 percent of their original charge.

  20. A Look Inside SLAC's Battery Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Seh, Zhi

    2014-07-17

    In this video, Stanford materials science and engineering graduate student Zhi Wei Seh shows how he prepares battery materials in SLAC's energy storage laboratory, assembles dime-sized prototype "coin cells" and then tests them to see how many charge-discharge cycles they can endure without losing their ability to hold a charge. Results to date have already set records: After 1,000 cycles, they retain 70 percent of their original charge.

  1. Moderate temperature sodium cells. V - Discharge reactions and rechargeability of NiS and NiS2 positive electrodes in molten NaAlCl4

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Elliot, J. E.

    1984-01-01

    NiS2 and NiS have been characterized as high energy density rechargeable positive electrodes for moderate-temperature Na batteries of the configuration, Na(1)/beta double prime-Al2O3/NaAlCl4(1), NiSx. The batteries operate in the temperature range 170 - 190 C. Positive electrode reactions during discharge/charge cycles have been characterized. Excellent rechargeability of the batteries has been demonstrated by extended cell cycling. A Na/NiS2 cell, operating at 190 C, exceeded 600 deep discharge/charge cycles with practically no capacity deterioration. The feasibility of secondary Na/NiSx batteries with specific energies equal to or greater than 50 Wh/lb and cycle lifes exceeding 1000 deep discharge/charge cycles has been demonstrated.

  2. Durability and reliability of electric vehicle batteries under electric utility grid operations: Bidirectional charging impact analysis

    NASA Astrophysics Data System (ADS)

    Dubarry, Matthieu; Devie, Arnaud; McKenzie, Katherine

    2017-08-01

    Vehicle-to-grid and Grid-to-vehicle strategies are often cited as promising to mitigate the intermittency of renewable energy on electric power grids. However, their impact on the vehicle battery degradation has not been investigated in detail. The aim of this work is to understand the impact of bidirectional charging on commercial Li-ion cells used in electric vehicles today. Results show that additional cycling to discharge vehicle batteries to the power grid, even at constant power, is detrimental to cell performance. This additional use of the battery packs could shorten the lifetime for vehicle use to less than five years. By contrast, the impact of delaying the charge in order to reduce the impact on the power grid is found to be negligible at room temperature, but could be significant in warmer climates.

  3. Novel technique to ensure battery reliability in 42-V PowerNets for new-generation automobiles

    NASA Astrophysics Data System (ADS)

    Lam, L. T.; Haigh, N. P.; Phyland, C. G.; Huynh, T. D.

    The proposed 42-V PowerNet in automobiles requires the battery to provide a large number of shallow discharge-charge cycles at a high rate. High-rate discharge is necessary for engine cranking, while high-rate charge is associated with regenerative braking. The battery will therefore operate at these high rates in a partial-state-of-charge condition — 'HRPSoC duty'. Under simulated HRPSoC duty, it is found that the valve-regulated lead-acid (VRLA) battery fails prematurely due to the progressive accumulation of lead sulfate mainly on the surfaces of the negative plates. This is because the lead sulfate layer cannot be converted efficiently back to sponge lead during charging either from the engine or from the regenerative braking. Eventually, this layer of lead sulfate develops to such extent that the effective surface area of the plate is reduced markedly and the plate can no longer deliver the high-cranking current demanded by the automobile. The objective of this study is to develop and optimize a pulse-generation technique to minimize the development of lead sulfate layers on negative plates of VRLA batteries subjected to HRPSoC duty. The technique involves the application of sets of charging pulses of different frequency. It is found that the cycle-life performance of VRLA batteries is enhanced markedly when d.c. pulses of high frequency are used. For example, battery durability is raised from ˜10 600 cycles (no pulses) to 32 000 cycles with pulses of high frequency. Two key factors contribute to this improvement. The first factor is localization of the charging current on the surfaces of the plates — the higher the frequency, the greater is the amount of current concentrated on the plate surface. This phenomenon is known as the 'skin effect' as only the outer 'skin' of the plate is effectively carrying the current. The second factor is delivery of sufficient charge to the Faradaic resistance of the plate to compensate for the energy loss to inductance and double-layer capacitance effects. The Faradaic resistance represents the electrochemical reaction, i.e., conversion of lead sulfate to lead. The inductance simply results from the connection either between the cables and the terminals of the battery or between the terminals, bus-bars, and the lugs of the plates. The capacitance arises from the double layer which exists at the interface between the plate and the electrolyte solution. These findings have provided a demonstration and a scientific explanation of the benefit of superimposed pulsed current charging in suppressing the sulfation of negative plates in VRLA batteries operated under 42-V PowerNet and hybrid electric vehicle duties. A Novel Pulse™ device has been developed by the CSIRO. This device has the capability to be programmable to suite various applications and can be miniaturized to be encapsulated in the battery cover.

  4. Optimization of batteries for plug-in hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    English, Jeffrey Robb

    This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity. Three sample optimizations were performed: a compact car, a, truck, and a sports car. The compact car benefits from increased battery capacity despite the associated higher cost. The truck returned the smallest possible battery of each chemistry, indicating that electrification is not advisable. The sports car optimization resulted in the largest possible battery, indicating large performance from increased electrification. These results mirror the current state of the electric vehicle market.

  5. Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution.

    PubMed

    Balke, Nina; Jesse, Stephen; Kim, Yoongu; Adamczyk, Leslie; Tselev, Alexander; Ivanov, Ilia N; Dudney, Nancy J; Kalinin, Sergei V

    2010-09-08

    The electrical bias driven Li-ion motion in silicon anode materials in thin film battery heterostructures is investigated using electrochemical strain microscopy (ESM), which is a newly developed scanning probe microscopy based characterization method. ESM utilizes the intrinsic link between bias-controlled Li-ion concentration and molar volume of electrode materials, providing the capability for studies on the sub-20 nm scale, and allows the relationship between Li-ion flow and microstructure to be established. The evolution of Li-ion transport during the battery charging is directly observed.

  6. Renewable Energy Systems for Forward Operating Bases: A Simulations-Based Optimization Approach

    DTIC Science & Technology

    2010-08-01

    07. C-8 ENERGY STORAGE MODELS Two types of energy storage were compared in these simulations: lead-acid batteries and molten salt storage...of charge: 80% The initial state of charge used for the molten salt storage system is slightly higher than that used for the lead-acid battery ...cost for lead-acid batteries was assumed to be $630/kWh. MOLTEN SALT STORAGE Domestic installed cost for the molten salt storage system was

  7. State-of-charge estimation in lithium-ion batteries: A particle filter approach

    NASA Astrophysics Data System (ADS)

    Tulsyan, Aditya; Tsai, Yiting; Gopaluni, R. Bhushan; Braatz, Richard D.

    2016-11-01

    The dynamics of lithium-ion batteries are complex and are often approximated by models consisting of partial differential equations (PDEs) relating the internal ionic concentrations and potentials. The Pseudo two-dimensional model (P2D) is one model that performs sufficiently accurately under various operating conditions and battery chemistries. Despite its widespread use for prediction, this model is too complex for standard estimation and control applications. This article presents an original algorithm for state-of-charge estimation using the P2D model. Partial differential equations are discretized using implicit stable algorithms and reformulated into a nonlinear state-space model. This discrete, high-dimensional model (consisting of tens to hundreds of states) contains implicit, nonlinear algebraic equations. The uncertainty in the model is characterized by additive Gaussian noise. By exploiting the special structure of the pseudo two-dimensional model, a novel particle filter algorithm that sweeps in time and spatial coordinates independently is developed. This algorithm circumvents the degeneracy problems associated with high-dimensional state estimation and avoids the repetitive solution of implicit equations by defining a 'tether' particle. The approach is illustrated through extensive simulations.

  8. Low-cost data acquisition systems for photovoltaic system monitoring and usage statistics

    NASA Astrophysics Data System (ADS)

    Fanourakis, S.; Wang, K.; McCarthy, P.; Jiao, L.

    2017-11-01

    This paper presents the design of a low-cost data acquisition system for monitoring a photovoltaic system’s electrical quantities, battery temperatures, and state of charge of the battery. The electrical quantities are the voltages and currents of the solar panels, the battery, and the system loads. The system uses an Atmega328p microcontroller to acquire data from the photovoltaic system’s charge controller. It also records individual load information using current sensing resistors along with a voltage amplification circuit and an analog to digital converter. The system is used in conjunction with a wall power data acquisition system for the recording of regional power outages. Both data acquisition systems record data in micro SD cards. The data has been successfully acquired from both systems and has been used to monitor the status of the PV system and the local power grid. As more data is gathered it can be used for the maintenance and improvement of the photovoltaic system through analysis of the photovoltaic system’s parameters and usage statistics.

  9. Intelligent Hybrid Vehicle Power Control. Part 2. Online Intelligent Energy Management

    DTIC Science & Technology

    2012-06-30

    IEC_HEV for vehicle energy optimization. IEC_HEV, the Figure 1. Power Split HEV configuration into VSC 5 online energy control is a component...in the Vehicle System Controller ( VSC ). The VSC for this configuration must manage the powertrain control in order to maintain a proper level of...charge in the battery. However, since two power sources are available to propel the vehicle, the VSC in this configuration has the additional

  10. Wireless power charging using point of load controlled high frequency power converters

    DOEpatents

    Miller, John M.; Campbell, Steven L.; Chambon, Paul H.; Seiber, Larry E.; White, Clifford P.

    2015-10-13

    An apparatus for wirelessly charging a battery of an electric vehicle is provided with a point of load control. The apparatus includes a base unit for generating a direct current (DC) voltage. The base unit is regulated by a power level controller. One or more point of load converters can be connected to the base unit by a conductor, with each point of load converter comprising a control signal generator that transmits a signal to the power level controller. The output power level of the DC voltage provided by the base unit is controlled by power level controller such that the power level is sufficient to power all active load converters when commanded to do so by any of the active controllers, without generating excessive power that may be otherwise wasted.

  11. Functional Evaluation of the DOZA DKG-05D Electronic Dosimeter System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piper, Roman K.; Scherpelz, Robert I.

    2009-11-04

    The DOZA DKG-05D electronic personal dosimeter (EPD) was the subject of a limited type-test evaluation in support of Plutonium Production Reactor Agreement (PPRA) Implementation. The primary goal of this evaluation was to provide confidence in the functionality of the dosimeter and identify potential weaknesses in PPRA applications. The tests were based on IEC-61526, recommendations of the International Electrotechnical Commission pertaining to EPDs. All tests were performed in Pacific Northwest National Laboratory’s (PNNL) Radiological Calibrations and Standards Facility in the 318 building. The first testing category was functional considerations. The tests found that the mechanical characteristics of the DKG-05D support usability.more » However, user controls are not intuitive and straightforward, and the user instructions were unclear and difficult to follow. The unit functioned in a variety of humidity conditions. In high temperature conditions it performed well. However, in cold conditions the display began to fade, which limits its usefulness below about 5 °C. The vendor claims that the unit functions to -20 °C, and it may be correctly recording doses at that low temperature, but the doses cannot be read in real time. Testing found that battery life is generally good, operating for 200 hours on a full charge. This is far more than needed for the intended application. Charging the battery, however, had some pitfalls resulting from two charging modes. The high-current mode would be automatically selected if the battery charge fell below a threshold value when inserted in the charger. Otherwise, a low-current mode would be selected. In some cases a battery needing recharging would not get sufficient current to fully charge in a reasonable time period. There were also problems found in the low-battery indication and there was a possibility for data loss in the low-battery condition. The EPD generally performed well in measuring dose and dose rate. There were some small problems with non-linearity over a range of doses, but these non-linearities were at extremely low and very high doses and would not adversely affect the performance in our intended application. The testing resulted in the general conclusion that the DOZA DKG-05D is suitable for use in PPRA applications for real-time indication of dose received by a user and for estimation of stay times in radiation zones. It can be used as a supplement to a passive dosimeter, but it should not be used for measuring the user’s dose of record.« less

  12. Intermetallic negative electrodes for non-aqueous lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Johnson, Christopher S.; Fransson, Linda M.; Edstrom, Ester Kristina; Henriksen, Gary

    2004-05-04

    A method of operating an electrochemical cell is disclosed. The cell has an intermetallic negative electrode of Cu.sub.6-x M.sub.x Sn.sub.5, wherein x is .ltoreq.3 and M is one or more metals including Si and a positive electrode containing Li in which Li is shuttled between the positive electrode and the negative electrode during charge and discharge to form a lithiated intermetallic negative electrode during charge. The voltage of the electrochemical cell is controlled during the charge portion of the charge-discharge cycles so that the potential of the lithiated intermetallic negative electrode in the fully charged electrochemical cell is less than 0.2 V but greater than 0 V versus metallic lithium.

  13. High-Performance Ga2O3 Anode for Lithium-Ion Batteries.

    PubMed

    Tang, Xun; Huang, Xin; Huang, Yongmin; Gou, Yong; Pastore, James; Yang, Yao; Xiong, Yin; Qian, Jiangfeng; Brock, Joel D; Lu, Juntao; Xiao, Li; Abruña, Héctor D; Zhuang, Lin

    2018-02-14

    There is a great deal of interest in developing battery systems that can exhibit self-healing behavior, thus enhancing cyclability and stability. Given that gallium (Ga) is a metal that melts near room temperature, we wanted to test if it could be employed as a self-healing anode material for lithium-ion batteries (LIBs). However, Ga nanoparticles (NPs), when directly applied, tended to aggregate upon charge/discharge cycling. To address this issue, we employed carbon-coated Ga 2 O 3 NPs as an alternative. By controlling the pH of the precursor solution, highly dispersed and ultrafine Ga 2 O 3 NPs, embedded in carbon shells, could be synthesized through a hydrothermal carbonization method. The particle size of the Ga 2 O 3 NPs was 2.6 nm, with an extremely narrow size distribution, as determined by high-resolution transmission electron microscopy and Brunauer-Emmett-Teller measurements. A lithium-ion battery anode based on this material exhibited stable charging and discharging, with a capacity of 721 mAh/g after 200 cycles. The high cyclability is due to not only the protective effects of the carbon shell but also the formation of Ga 0 during the lithiation process, as indicated by operando X-ray absorption near-edge spectroscopy.

  14. McArthur completes a battery charge on the defibrillator during Expedition 12

    NASA Image and Video Library

    2005-12-16

    ISS012-E-12570 (16 Dec. 2005) --- Astronaut William S. (Bill) McArthur Jr., Expedition 12 commander and NASA space station science officer, completes a battery charge on a cardiac defibrillator at the Human Research Facility (HRF) in the Destiny laboratory of the International Space Station.

  15. JLTV - Briefings to Industry, Ground Vehicle Power and Mobility (GVPM)

    DTIC Science & Technology

    2009-05-27

    lithium ion battery cathodes, separators, and electrolytes. This effort shall also access the...manufacturability of the improved designs using the new materials. PAYOFF: Improved lithium ion battery power density Improved lithium ion battery energy...negative electrodes in lithium-ion batteries. PAYOFF: Better understanding of lithium - ion battery charging limitations Improved safety for

  16. 46 CFR 169.668 - Batteries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Batteries. 169.668 Section 169.668 Shipping COAST GUARD... § 169.668 Batteries. (a) Each battery must be in a location that allows the gas generated in charging to... this section, a battery must not be located in the same compartment with a gasoline tank or gasoline...

  17. 46 CFR 169.668 - Batteries.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Batteries. 169.668 Section 169.668 Shipping COAST GUARD... § 169.668 Batteries. (a) Each battery must be in a location that allows the gas generated in charging to... this section, a battery must not be located in the same compartment with a gasoline tank or gasoline...

  18. 46 CFR 169.668 - Batteries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Batteries. 169.668 Section 169.668 Shipping COAST GUARD... § 169.668 Batteries. (a) Each battery must be in a location that allows the gas generated in charging to... this section, a battery must not be located in the same compartment with a gasoline tank or gasoline...

  19. 46 CFR 169.668 - Batteries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Batteries. 169.668 Section 169.668 Shipping COAST GUARD... § 169.668 Batteries. (a) Each battery must be in a location that allows the gas generated in charging to... this section, a battery must not be located in the same compartment with a gasoline tank or gasoline...

  20. 46 CFR 169.668 - Batteries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Batteries. 169.668 Section 169.668 Shipping COAST GUARD... § 169.668 Batteries. (a) Each battery must be in a location that allows the gas generated in charging to... this section, a battery must not be located in the same compartment with a gasoline tank or gasoline...

Top