Rouhani, S. Zia
1996-01-01
In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery.
Rouhani, S.Z.
1996-12-03
In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery. 35 figs.
Gaikwad, Abhinav M; Arias, Ana Claudia
2017-02-22
Flexible lithium-ion batteries are necessary for powering the next generation of wearable electronic devices. In most designs, the mechanical flexibility of the battery is improved by reducing the thickness of the active layers, which in turn reduces the areal capacity and energy density of the battery. The performance of a battery depends on the electrode composition, and in most flexible batteries, standard electrode formulation is used, which is not suitable for flexing. Even with considerable efforts made toward the development of flexible lithium-ion batteries, the formulation of the electrodes has received very little attention. In this study, we investigate the relation between the electrode formulation and the mechanical strength of the electrodes. Peel and drag tests are used to compare the adhesion and cohesion strength of the electrodes. The strength of an electrode is sensitive to the particle size and the choice of polymeric binder. By optimizing the electrode composition, we were able to fabricate a high areal capacity (∼2 mAh/cm 2 ) flexible lithium-ion battery with conventional metal-based current collectors that shows superior electrochemical and mechanical performance in comparison to that of batteries with standard composition.
Methods for thermodynamic evaluation of battery state of health
Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T
2013-05-21
Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.
Methods and systems for thermodynamic evaluation of battery state of health
Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T
2014-12-02
Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.
NASA Technical Reports Server (NTRS)
Narayan, Sri R. (Inventor); Kindler, Andrew (Inventor); Prakash, G.K. Surya (Inventor)
2014-01-01
Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.
Kaun, Thomas D.
1992-01-01
A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.
High voltage and high specific capacity dual intercalating electrode Li-ion batteries
NASA Technical Reports Server (NTRS)
Blanco, Mario (Inventor); West, William C. (Inventor)
2010-01-01
The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.
Fully Coupled Simulation of Lithium Ion Battery Cell Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trembacki, Bradley L.; Murthy, Jayathi Y.; Roberts, Scott Alan
Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulatedmore » and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.« less
Controlled porosity in electrodes
Chiang, Yet-Ming; Bae, Chang-Jun; Halloran, John William; Fu, Qiang; Tomsia, Antoni P.; Erdonmez, Can K.
2015-06-23
Porous electrodes in which the porosity has a low tortuosity are generally provided. In some embodiments, the porous electrodes can be designed to be filled with electrolyte and used in batteries, and can include low tortuosity in the primary direction of ion transport during charge and discharge of the battery. In some embodiments, the electrodes can have a high volume fraction of electrode active material (i.e., low porosity). The attributes outlined above can allow the electrodes to be fabricated with a higher energy density, higher capacity per unit area of electrode (mAh/cm.sup.2), and greater thickness than comparable electrodes while still providing high utilization of the active material in the battery during use. Accordingly, the electrodes can be used to produce batteries with high energy densities, high power, or both compared to batteries using electrodes of conventional design with relatively highly tortuous pores.
Paper‐Based Electrodes for Flexible Energy Storage Devices
Yao, Bin; Zhang, Jing; Kou, Tianyi; Song, Yu; Liu, Tianyu
2017-01-01
Paper‐based materials are emerging as a new category of advanced electrodes for flexible energy storage devices, including supercapacitors, Li‐ion batteries, Li‐S batteries, Li‐oxygen batteries. This review summarizes recent advances in the synthesis of paper‐based electrodes, including paper‐supported electrodes and paper‐like electrodes. Their structural features, electrochemical performances and implementation as electrodes for flexible energy storage devices including supercapacitors and batteries are highlighted and compared. Finally, we also discuss the challenges and opportunity of paper‐based electrodes and energy storage devices. PMID:28725532
High efficiency iron electrode and additives for use in rechargeable iron-based batteries
Narayan, Sri R.; Prakash, G. K. Surya; Aniszfeld, Robert; Manohar, Aswin; Malkhandi, Souradip; Yang, Bo
2017-02-21
An iron electrode and a method of manufacturing an iron electrode for use in an iron-based rechargeable battery are disclosed. In one embodiment, the iron electrode includes carbonyl iron powder and one of a metal sulfide additive or metal oxide additive selected from the group of metals consisting of bismuth, lead, mercury, indium, gallium, and tin for suppressing hydrogen evolution at the iron electrode during charging of the iron-based rechargeable battery. An iron-air rechargeable battery including an iron electrode comprising carbonyl iron is also disclosed, as is an iron-air battery wherein at least one of the iron electrode and the electrolyte includes an organosulfur additive.
Graphene-based battery electrodes having continuous flow paths
Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu
2014-05-24
Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.
Lithium battery electrodes with ultra-thin alumina coatings
Se-Hee, Lee; George, Steven M.; Cavanagh, Andrew S.; Yoon Seok, Jung; Dillon, Anne C.
2015-11-24
Electrodes for lithium batteries are coated via an atomic layer deposition process. The coatings can be applied to the assembled electrodes, or in some cases to particles of electrode material prior to assembling the particles into an electrode. The coatings can be as thin as 2 .ANG.ngstroms thick. The coating provides for a stable electrode. Batteries containing the electrodes tend to exhibit high cycling capacities.
Negative electrodes for Na-ion batteries.
Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi
2014-08-07
Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.
A review of laser electrode processing for development and manufacturing of lithium-ion batteries
NASA Astrophysics Data System (ADS)
Pfleging, Wilhelm
2018-02-01
Laser processes for cutting, annealing, structuring, and printing of battery materials have a great potential in order to minimize the fabrication costs and to increase the electrochemical performance and operational lifetime of lithium-ion cells. Hereby, a broad range of applications can be covered such as micro-batteries, mobile applications, electric vehicles, and stand-alone electric energy storage devices. Cost-efficient nanosecond (ns)-laser cutting of electrodes was one of the first laser technologies which were successfully transferred to industrial high-energy battery production. A defined thermal impact can be useful in electrode manufacturing which was demonstrated by laser annealing of thin-film electrodes for adjusting of battery active crystalline phases or by laser-based drying of composite thick-film electrodes for high-energy batteries. Ultrafast or ns-laser direct structuring or printing of electrode materials is a rather new technical approach in order to realize three-dimensional (3D) electrode architectures. Three-dimensional electrode configurations lead to a better electrochemical performance in comparison to conventional 2D one, due to an increased active surface area, reduced mechanical tensions during electrochemical cycling, and an overall reduced cell impedance. Furthermore, it was shown that for thick-film composite electrodes an increase of electrolyte wetting could be achieved by introducing 3D micro-/nano-structures. Laser structuring can turn electrodes into superwicking. This has a positive impact regarding an increased battery lifetime and a reliable battery production. Finally, laser processes can be up-scaled in order to transfer the 3D battery concept to high-energy and high-power lithium-ion cells.
Understanding and improving lithium ion batteries through mathematical modeling and experiments
NASA Astrophysics Data System (ADS)
Deshpande, Rutooj D.
There is an intense, worldwide effort to develop durable lithium ion batteries with high energy and power densities for a wide range of applications, including electric and hybrid electric vehicles. For improvement of battery technology understanding the capacity fading mechanism in batteries is of utmost importance. Novel electrode material and improved electrode designs are needed for high energy- high power batteries with less capacity fading. Furthermore, for applications such as automotive applications, precise cycle-life prediction of batteries is necessary. One of the critical challenges in advancing lithium ion battery technologies is fracture and decrepitation of the electrodes as a result of lithium diffusion during charging and discharging operations. When lithium is inserted in either the positive or negative electrode, there is a volume change associated with insertion or de-insertion. Diffusion-induced stresses (DISs) can therefore cause the nucleation and growth of cracks, leading to mechanical degradation of the batteries. With different mathematical models we studied the behavior of diffusion induces stresses and effects of electrode shape, size, concentration dependent material properties, pre-existing cracks, phase transformations, operating conditions etc. on the diffusion induced stresses. Thus we develop tools to guide the design of the electrode material with better mechanical stability for durable batteries. Along with mechanical degradation, chemical degradation of batteries also plays an important role in deciding battery cycle life. The instability of commonly employed electrolytes results in solid electrolyte interphase (SEI) formation. Although SEI formation contributes to irreversible capacity loss, the SEI layer is necessary, as it passivates the electrode-electrolyte interface from further solvent decomposition. SEI layer and diffusion induced stresses are inter-dependent and affect each-other. We study coupled chemical-mechanical degradation of electrode materials to understand the capacity fading of the battery with cycling. With the understanding of chemical and mechanical degradation, we develop a simple phenomenological model to predict battery life. On the experimental part we come up with a novel concept of using liquid metal alloy as a self-healing battery electrode. We develop a method to prepare thin film liquid gallium electrode on a conductive substrate. This enabled us to perform a series of electrochemical and characterization experiments which certify that liquid electrode undergo liquid-solid-liquid transition and thus self-heals the cracks formed during de-insertion. Thus the mechanical degradation can be avoided. We also perform ab-initio calculations to understand the equilibrium potential of various lithium-gallium phases. KEYWORDS: Lithium ion batteries, diffusion induced stresses, self-healing electrode, coupled chemical and mechanical degradation, life-prediction model.
NASA Astrophysics Data System (ADS)
Minato, Taketoshi; Abe, Takeshi
2017-12-01
The application potential of Li-ion batteries is growing as demand increases in different fields at various stages in energy systems, in addition to their conventional role as power sources for portable devices. In particular, applications in electric vehicles and renewable energy storage are increasing for Li-ion batteries. For these applications, improvements in battery performance are necessary. The Li-ion battery produces and stores electric power from the electrochemical redox reactions between the electrode materials. The interface between the electrodes and electrolyte strongly affects the battery performance because the charge transfer causing the electrode redox reaction begins at this interface. Understanding of the surface structure, electronic structure, and chemical reactions at the electrode-electrolyte interface is necessary to improve battery performance. However, the interface is located between the electrode and electrolyte materials, hindering the experimental analysis of the interface; thus, the physical properties and chemical processes have remained poorly understood until recently. Investigations of the physical properties and chemical processes at the interface have been performed using advanced surface science techniques. In this review, current knowledge and future research prospects regarding the electrode-electrolyte interface are described for the further development of Li-ion batteries.
Continuous process to produce lithium-polymer batteries
Chern, Terry Song-Hsing; Keller, David Gerard; MacFadden, Kenneth Orville
1998-01-01
Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte-electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be overcoated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance.
Electrode pattern design for GaAs betavoltaic batteries
NASA Astrophysics Data System (ADS)
Haiyang, Chen; Jianhua, Yin; Darang, Li
2011-08-01
The sensitivities of betavoltaic batteries and photovoltaic batteries to series and parallel resistance are studied. Based on the study, an electrode pattern design principle of GaAs betavoltaic batteries is proposed. GaAs PIN junctions with and without the proposed electrode pattern are fabricated and measured under the illumination of 63Ni. Results show that the proposed electrode can reduce the backscattering and shadowing for the beta particles from 63Ni to increase the GaAs betavoltaic battery short circuit currents effectively but has little impact on the fill factors and ideal factors.
Cell structure for electrochemical devices and method of making same
Kaun, Thomas D.
2007-03-27
An electrochemical device comprising alternating layers of positive and negative electrodes separated from each other by separator layers. The electrode layers extend beyond the periphery of the separator layers providing superior contact between the electrodes and battery terminals, eliminating the need for welding the electrode to the terminal. Electrical resistance within the battery is decreased and thermal conductivity of the cell is increased allowing for superior heat removal from the battery and increased efficiency. Increased internal pressure within the battery can be alleviated without damaging or removing the battery from service while keeping the contents of the battery sealed off from the atmosphere by a pressure release system. Nonoperative cells within a battery assembly can also be removed from service by shorting the nonoperative cell thus decreasing battery life.
Yabuuchi, Naoaki; Komaba, Shinichi
2014-01-01
Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed. PMID:27877694
Yabuuchi, Naoaki; Komaba, Shinichi
2014-08-01
Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed.
Advanced Architectures and Relatives of Air Electrodes in Zn-Air Batteries.
Pan, Jing; Xu, Yang Yang; Yang, Huan; Dong, Zehua; Liu, Hongfang; Xia, Bao Yu
2018-04-01
Zn-air batteries are becoming the promising power sources for portable and wearable electronic devices and hybrid/electric vehicles because of their high specific energy density and the low cost for next-generation green and sustainable energy technologies. An air electrode integrated with an oxygen electrocatalyst is the most important component and inevitably determines the performance and cost of a Zn-air battery. This article presents exciting advances and challenges related to air electrodes and their relatives. After a brief introduction of the Zn-air battery, the architectures and oxygen electrocatalysts of air electrodes and relevant electrolytes are highlighted in primary and rechargeable types with different configurations, respectively. Moreover, the individual components and major issues of flexible Zn-air batteries are also highlighted, along with the strategies to enhance the battery performance. Finally, a perspective for design, preparation, and assembly of air electrodes is proposed for the future innovations of Zn-air batteries with high performance.
3D-printed conductive static mixers enable all-vanadium redox flow battery using slurry electrodes
NASA Astrophysics Data System (ADS)
Percin, Korcan; Rommerskirchen, Alexandra; Sengpiel, Robert; Gendel, Youri; Wessling, Matthias
2018-03-01
State-of-the-art all-vanadium redox flow batteries employ porous carbonaceous materials as electrodes. The battery cells possess non-scalable fixed electrodes inserted into a cell stack. In contrast, a conductive particle network dispersed in the electrolyte, known as slurry electrode, may be beneficial for a scalable redox flow battery. In this work, slurry electrodes are successfully introduced to an all-vanadium redox flow battery. Activated carbon and graphite powder particles are dispersed up to 20 wt% in the vanadium electrolyte and charge-discharge behavior is inspected via polarization studies. Graphite powder slurry is superior over activated carbon with a polarization behavior closer to the standard graphite felt electrodes. 3D-printed conductive static mixers introduced to the slurry channel improve the charge transfer via intensified slurry mixing and increased surface area. Consequently, a significant increase in the coulombic efficiency up to 95% and energy efficiency up to 65% is obtained. Our results show that slurry electrodes supported by conductive static mixers can be competitive to state-of-the-art electrodes yielding an additional degree of freedom in battery design. Research into carbon properties (particle size, internal surface area, pore size distribution) tailored to the electrolyte system and optimization of the mixer geometry may yield even better battery properties.
A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.
Fang, Xin; Peng, Huisheng
2015-04-01
As a promising candidate for future batteries, the lithium-sulfur battery is gaining increasing interest due to its high capacity and energy density. However, over the years, lithium-sulfur batteries have been plagued by fading capacities and the low Coulombic efficiency derived from its unique electrochemical behavior, which involves solid-liquid transition reactions. Moreover, lithium-sulfur batteries employ metallic lithium as the anode, which engenders safety vulnerability of the battery. The electrodes play a pivotal role in the performance of lithium-sulfur batteries. A leap forward in progress of lithium-sulfur batteries is always accompanied by a revolution in the electrode technology. In this review, recent progress in rechargeable lithium-sulfur batteries is summarized in accordance with the evolution of the electrodes, including the diversified cathode design and burgeoning metallic-lithium-free anodes. Although the way toward application has still many challenges associated, recent progress in lithium-sulfur battery technology still paints an encouraging picture of a revolution in rechargeable batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Continuous process to produce lithium-polymer batteries
Chern, T.S.H.; Keller, D.G.; MacFadden, K.O.
1998-05-12
Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be over coated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance. 1 fig.
Electrode Nanostructures in Lithium‐Based Batteries
Mahmood, Nasir
2014-01-01
Lithium‐based batteries possessing energy densities much higher than those of the conventional batteries belong to the most promising class of future energy devices. However, there are some fundamental issues related to their electrodes which are big roadblocks in their applications to electric vehicles (EVs). Nanochemistry has advantageous roles to overcome these problems by defining new nanostructures of electrode materials. This review article will highlight the challenges associated with these chemistries both to bring high performance and longevity upon considering the working principles of the various types of lithium‐based (Li‐ion, Li‐air and Li‐S) batteries. Further, the review discusses the advantages and challenges of nanomaterials in nanostructured electrodes of lithium‐based batteries, concerns with lithium metal anode and the recent advancement in electrode nanostructures. PMID:27980896
Electrode Nanostructures in Lithium-Based Batteries.
Mahmood, Nasir; Hou, Yanglong
2014-12-01
Lithium-based batteries possessing energy densities much higher than those of the conventional batteries belong to the most promising class of future energy devices. However, there are some fundamental issues related to their electrodes which are big roadblocks in their applications to electric vehicles (EVs). Nanochemistry has advantageous roles to overcome these problems by defining new nanostructures of electrode materials. This review article will highlight the challenges associated with these chemistries both to bring high performance and longevity upon considering the working principles of the various types of lithium-based (Li-ion, Li-air and Li-S) batteries. Further, the review discusses the advantages and challenges of nanomaterials in nanostructured electrodes of lithium-based batteries, concerns with lithium metal anode and the recent advancement in electrode nanostructures.
Yu, Chuang; Ganapathy, Swapna; Eck, Ernst R H van; Wang, Heng; Basak, Shibabrata; Li, Zhaolong; Wagemaker, Marnix
2017-10-20
Solid-state batteries potentially offer increased lithium-ion battery energy density and safety as required for large-scale production of electrical vehicles. One of the key challenges toward high-performance solid-state batteries is the large impedance posed by the electrode-electrolyte interface. However, direct assessment of the lithium-ion transport across realistic electrode-electrolyte interfaces is tedious. Here we report two-dimensional lithium-ion exchange NMR accessing the spontaneous lithium-ion transport, providing insight on the influence of electrode preparation and battery cycling on the lithium-ion transport over the interface between an argyrodite solid-electrolyte and a sulfide electrode. Interfacial conductivity is shown to depend strongly on the preparation method and demonstrated to drop dramatically after a few electrochemical (dis)charge cycles due to both losses in interfacial contact and increased diffusional barriers. The reported exchange NMR facilitates non-invasive and selective measurement of lithium-ion interfacial transport, providing insight that can guide the electrolyte-electrode interface design for future all-solid-state batteries.
Numerical algorithm for optimization of positive electrode in lead-acid batteries
NASA Astrophysics Data System (ADS)
Murariu, Ancuta Teodora; Buimaga-Iarinca, Luiza; Morari, Cristian
2017-12-01
The positive electrode in lead-acid batteries is one of the most sensitive parts of the whole battery, since it is affected by various aggresive chemical processes during its life. Therefore, an optimal design of the positive electrode of the battery may have as efect a dramatic improvement of the properties of the battery - such as total capacity or endurance during its life. Our efforts dedicated to this goal cover a range of rather complex tasks, from the design based on numerical analysis to statistic analysis. We present the structure of the software implementation and the results obtained for three types of positive electrodes.
Alternating-polarity operation for complete regeneration of electrochemical deionization system
Tran, Tri D.; Lenz, David J.
2004-07-13
An electrically regeneratable battery of electrochemical cells for capacitive deionization (including electrochemical purification) and regeneration of electrodes is operated at alternate polarities during consecutive cycles. In other words, after each regeneration step operated at a given polarity in a deionization-regeneration cycle, the polarity of the deionization step in the next cycle is maintained. In one embodiment, two end electrodes are arranged one at each end of the battery, adjacent to end plates. An insulator layer is interposed between each end plate and the adjacent end electrode. Each end electrode includes a single sheet of conductive material having a high specific surface area and sorption capacity, preferably a sheet formed of carbon aerogel composite. The battery further includes a plurality of generally identical double-sided intermediate electrodes that are equidistally separated from each other, between the two end electrodes. As the electrolyte enters the battery of cells, it flows through a continuous open serpentine channel defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cells, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the electrodes of each cell of the battery are saturated with the removed ions, the battery is regenerated electrically at a reversed polarity from that during the deionization step of the cycle, thus significantly minimizing secondary wastes.
Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries
Pan, Jing; Xu, Yang Yang; Yang, Huan; Dong, Zehua; Liu, Hongfang
2018-01-01
Abstract Zn–air batteries are becoming the promising power sources for portable and wearable electronic devices and hybrid/electric vehicles because of their high specific energy density and the low cost for next‐generation green and sustainable energy technologies. An air electrode integrated with an oxygen electrocatalyst is the most important component and inevitably determines the performance and cost of a Zn–air battery. This article presents exciting advances and challenges related to air electrodes and their relatives. After a brief introduction of the Zn–air battery, the architectures and oxygen electrocatalysts of air electrodes and relevant electrolytes are highlighted in primary and rechargeable types with different configurations, respectively. Moreover, the individual components and major issues of flexible Zn–air batteries are also highlighted, along with the strategies to enhance the battery performance. Finally, a perspective for design, preparation, and assembly of air electrodes is proposed for the future innovations of Zn–air batteries with high performance. PMID:29721418
Zinc electrode and rechargeable zinc-air battery
Ross, Jr., Philip N.
1989-01-01
An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.
Electrodes for sealed secondary batteries
NASA Technical Reports Server (NTRS)
Boies, D. B.; Child, F. T.
1972-01-01
Self-supporting membrane electrode structures, in which active ingredients and graphite are incorporated in a polymeric matrix, improve performance of electrodes in miniature, sealed, alkaline storage batteries.
Rouhani, S. Zia
1996-10-22
The state of charge of electrochemical batteries of different kinds is determined by measuring the incremental change in the total volume of the reactive masses in the battery. The invention is based on the principle that all electrochemical batteries, either primary or secondary (rechargeable), produce electricity through a chemical reaction with at least one electrode, and the chemical reactions produce certain changes in the composition and density of the electrode. The reactive masses of the electrodes, the electrolyte, and any separator or spacers are usually contained inside a battery casing of a certain volume. As the battery is used, or recharged, the specific volume of at least one of the electrode masses will change and, since the masses of the materials do not change considerably, the total volume occupied by at least one of the electrodes will change. These volume changes may be measured in many different ways and related to the state of charge in the battery. In one embodiment, the volume change can be measured by monitoring the small changes in one of the principal dimensions of the battery casing as it expands or shrinks to accommodate the combined volumes of its components.
Polyanion-Type Electrode Materials for Sodium-Ion Batteries.
Ni, Qiao; Bai, Ying; Wu, Feng; Wu, Chuan
2017-03-01
Sodium-ion batteries, representative members of the post-lithium-battery club, are very attractive and promising for large-scale energy storage applications. The increasing technological improvements in sodium-ion batteries (Na-ion batteries) are being driven by the demand for Na-based electrode materials that are resource-abundant, cost-effective, and long lasting. Polyanion-type compounds are among the most promising electrode materials for Na-ion batteries due to their stability, safety, and suitable operating voltages. The most representative polyanion-type electrode materials are Na 3 V 2 (PO 4 ) 3 and NaTi 2 (PO 4 ) 3 for Na-based cathode and anode materials, respectively. Both show superior electrochemical properties and attractive prospects in terms of their development and application in Na-ion batteries. Carbonophosphate Na 3 MnCO 3 PO 4 and amorphous FePO 4 have also recently emerged and are contributing to further developing the research scope of polyanion-type Na-ion batteries. However, the typical low conductivity and relatively low capacity performance of such materials still restrict their development. This paper presents a brief review of the research progress of polyanion-type electrode materials for Na-ion batteries, summarizing recent accomplishments, highlighting emerging strategies, and discussing the remaining challenges of such systems.
Storage battery aspects of air-electrode research
NASA Astrophysics Data System (ADS)
Buzelli, E. S.; Berk, L. B.; Demczyk, B. G.; Zuckerbrod, D.
The use of air electrodes in secondary, alkaline energy storage systems offers several significant advantages over other conventional cathode systems. The oxygen, required for operation, is not stored or carried within the battery system. The weight of the air electrode is significantly lower than alternative cathode couples for the same mission. The cost of the air electrode is potentially low. As a result of these characteristics, alkaline electrolyte energy storage systems with air electrodes have the potential for achieving energy density levels in excess of 150 Whr/kg at low costs, $30-$40/kWh. The primary key to a successful metal-air secondary battery for an EV application is the development of a bifunctinal air electrode. This paper discusses the various aspects of air electrode research for this application, as well as the physical and performance requirements of the air electrode in this advanced technology battery system.
Electrode-active material for electrochemical batteries and method of preparation
Varma, R.
1983-11-07
A battery electrode material comprises a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.
Electrode-active material for electrochemical batteries and method of preparation
Varma, Ravi
1987-01-01
A battery electrode material comprising a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.
B4C as a stable non-carbon-based oxygen electrode material for lithium-oxygen batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Shidong; Xu, Wu; Cao, Ruiguo
Lithium-oxygen (Li-O 2) batteries have extremely high theoretical specific capacities and energy densities when compared with Li-ion batteries. However, the instability of both electrolyte and carbon-based oxygen electrode related to the nucleophilic attack of reduced oxygen species during oxygen reduction reaction and the electrochemical oxidation during oxygen evolution reaction are recognized as the major challenges in this field. Here we report the application of boron carbide (B 4C) as the non-carbon based oxygen electrode material for aprotic Li-O 2 batteries. B 4C has high resistance to chemical attack, good conductivity, excellent catalytic activity and low density that are suitable formore » battery applications. The electrochemical activity and chemical stability of B4C are systematically investigated in aprotic electrolyte. Li-O 2 cells using B4C based air electrodes exhibit better cycling stability than those used TiC based air electrode in 1 M LiTf-Tetraglyme electrolyte. The degradation of B 4C based electrode is mainly due to be the loss of active sites on B 4C electrode during cycles as identified by the structure and composition characterizations. These results clearly demonstrate that B 4C is a very promising alternative oxygen electrode material for aprotic Li-O 2 batteries. It can also be used as a standard electrode to investigate the stability of electrolytes.« less
Process for treating ab5 nickel-metal hydride battery scrap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyman, J.W.; Palmer, G.R.
1994-12-31
A process for treating an AB5 Ni-MH battery to recover purified positive and negative electrode components of the battery is disclosed. An AB5 Ni-MH battery is placed in a mineral acid leach solution to cause the positive and negative electrode components of the battery to separate.
Thackeray, Michael M [Naperville, IL; Vaughey, John T [Elmhurst, IL; Dees, Dennis W [Downers Grove, IL
2008-10-14
This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.
Electronically conductive polymer binder for lithium-ion battery electrode
Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe
2017-05-16
A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.
Electronically conductive polymer binder for lithium-ion battery electrode
Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe
2014-10-07
A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.
Small organic molecule based flow battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huskinson, Brian; Marshak, Michael; Aziz, Michael J.
The invention provides an electrochemical cell based on a new chemistry for a flow battery for large scale, e.g., gridscale, electrical energy storage. Electrical energy is stored chemically at an electrochemical electrode by the protonation of small organic molecules called quinones to hydroquinones. The proton is provided by a complementary electrochemical reaction at the other electrode. These reactions are reversed to deliver electrical energy. A flow battery based on this concept can operate as a closed system. The flow battery architecture has scaling advantages over solid electrode batteries for large scale energy storage.
The effect of the carbon nanotube buffer layer on the performance of a Li metal battery
NASA Astrophysics Data System (ADS)
Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan
2016-05-01
Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00465b
Cell for making secondary batteries
Visco, Steven J.; Liu, Meilin; DeJonghe, Lutgard C.
1992-01-01
The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.
Cell for making secondary batteries
Visco, S.J.; Liu, M.; DeJonghe, L.C.
1992-11-10
The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.
Dudney, Nancy J.; Li, Juchuan
2015-01-09
It is not simple to pull all the energy from a battery. For a battery to discharge, electrons and ions have to reach the same place in the active electrode material at the same moment. To reach the entire volume of the battery and maximize energy use, internal pathways for both electrons and ions must be low-resistance and continuous, connecting all regions of the battery electrode. Traditional batteries consist of a randomly distributed mixture of conductive phases within the active battery material. In these materials, bottlenecks and poor contacts may impede effective access to parts of the battery. On pagemore » 149 of this issue, Kirshenbaum et al. (1) explore a different approach, in which silver electronic pathways form on internal surfaces as the battery is discharged. Finally, the electronic pathways are well distributed throughout the electrode, improving battery performance.« less
All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries
NASA Astrophysics Data System (ADS)
Kim, Haegyeom; Park, Kyu-Young; Hong, Jihyun; Kang, Kisuk
2014-06-01
Herein, we propose an advanced energy-storage system: all-graphene-battery. It operates based on fast surface-reactions in both electrodes, thus delivering a remarkably high power density of 6,450 W kg-1total electrode while also retaining a high energy density of 225 Wh kg-1total electrode, which is comparable to that of conventional lithium ion battery. The performance and operating mechanism of all-graphene-battery resemble those of both supercapacitors and batteries, thereby blurring the conventional distinction between supercapacitors and batteries. This work demonstrates that the energy storage system made with carbonaceous materials in both the anode and cathode are promising alternative energy-storage devices.
All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries.
Kim, Haegyeom; Park, Kyu-Young; Hong, Jihyun; Kang, Kisuk
2014-06-13
Herein, we propose an advanced energy-storage system: all-graphene-battery. It operates based on fast surface-reactions in both electrodes, thus delivering a remarkably high power density of 6,450 W kg(-1)(total electrode) while also retaining a high energy density of 225 Wh kg(-1)(total electrode), which is comparable to that of conventional lithium ion battery. The performance and operating mechanism of all-graphene-battery resemble those of both supercapacitors and batteries, thereby blurring the conventional distinction between supercapacitors and batteries. This work demonstrates that the energy storage system made with carbonaceous materials in both the anode and cathode are promising alternative energy-storage devices.
All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries
Kim, Haegyeom; Park, Kyu-Young; Hong, Jihyun; Kang, Kisuk
2014-01-01
Herein, we propose an advanced energy-storage system: all-graphene-battery. It operates based on fast surface-reactions in both electrodes, thus delivering a remarkably high power density of 6,450 W kg−1total electrode while also retaining a high energy density of 225 Wh kg−1total electrode, which is comparable to that of conventional lithium ion battery. The performance and operating mechanism of all-graphene-battery resemble those of both supercapacitors and batteries, thereby blurring the conventional distinction between supercapacitors and batteries. This work demonstrates that the energy storage system made with carbonaceous materials in both the anode and cathode are promising alternative energy-storage devices. PMID:24923290
Hydrometallurgical treatment of nickel-metal hydride battery electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyman, J.W.; Palmer, G.R.
1995-12-31
Nickel-metal hydride (Ni-MH) battery electrodes have been developed as a substitute for cadmium-containing negative electrodes. Use of NI-MH electrodes offers enhanced electrochemical properties in many instances as well as reduced environmental toxicity. Rechargeable batteries using NI-MH electrodes are also strong candidates for electric vehicles. During the production and secondary reclamation of these battery types, recycling procedures will be needed to prevent environmental impact caused by these wastes as well as to recover the value inherent in the scrap. The US Bureau of Mines (USBM) is investigating hydrometallurgical technology that separates and recovers purified metallic components from Ni-MH battery scrap ofmore » two types, AB{sub 2} and AB{sub 5}. An investigation of acid dissolution and metal recovery techniques has determined several processing alternatives that may be used to promote the successful recycling of much of the battery fabrication scrap and eventual secondary scrap. The metals recovered are Ni, Co, and rare earth metals. Although recovery techniques have been identified in principal, their applicability to mixed battery waste stream and economic attractiveness remain to be demonstrated.« less
Ellingsen, Linda Ager-Wick; Holland, Alex; Drillet, Jean-Francois; Peters, Willi; Eckert, Martin; Concepcion, Carlos; Ruiz, Oscar; Colin, Jean-François; Knipping, Etienne; Pan, Qiaoyan; Wills, Richard G A; Majeau-Bettez, Guillaume
2018-06-01
Recently, rechargeable aluminum batteries have received much attention due to their low cost, easy operation, and high safety. As the research into rechargeable aluminum batteries with a room-temperature ionic liquid electrolyte is relatively new, research efforts have focused on finding suitable electrode materials. An understanding of the environmental aspects of electrode materials is essential to make informed and conscious decisions in aluminum battery development. The purpose of this study was to evaluate and compare the relative environmental performance of electrode material candidates for rechargeable aluminum batteries with an AlCl₃/EMIMCl (1-ethyl-3-methylimidazolium chloride) room-temperature ionic liquid electrolyte. To this end, we used a lifecycle environmental screening framework to evaluate 12 candidate electrode materials. We found that all of the studied materials are associated with one or more drawbacks and therefore do not represent a "silver bullet" for the aluminum battery. Even so, some materials appeared more promising than others did. We also found that aluminum battery technology is likely to face some of the same environmental challenges as Li-ion technology but also offers an opportunity to avoid others. The insights provided here can aid aluminum battery development in an environmentally sustainable direction.
Polyanion‐Type Electrode Materials for Sodium‐Ion Batteries
Ni, Qiao; Wu, Feng
2017-01-01
Sodium‐ion batteries, representative members of the post‐lithium‐battery club, are very attractive and promising for large‐scale energy storage applications. The increasing technological improvements in sodium‐ion batteries (Na‐ion batteries) are being driven by the demand for Na‐based electrode materials that are resource‐abundant, cost‐effective, and long lasting. Polyanion‐type compounds are among the most promising electrode materials for Na‐ion batteries due to their stability, safety, and suitable operating voltages. The most representative polyanion‐type electrode materials are Na3V2(PO4)3 and NaTi2(PO4)3 for Na‐based cathode and anode materials, respectively. Both show superior electrochemical properties and attractive prospects in terms of their development and application in Na‐ion batteries. Carbonophosphate Na3MnCO3PO4 and amorphous FePO4 have also recently emerged and are contributing to further developing the research scope of polyanion‐type Na‐ion batteries. However, the typical low conductivity and relatively low capacity performance of such materials still restrict their development. This paper presents a brief review of the research progress of polyanion‐type electrode materials for Na‐ion batteries, summarizing recent accomplishments, highlighting emerging strategies, and discussing the remaining challenges of such systems. PMID:28331782
Alloys of clathrate allotropes for rechargeable batteries
Chan, Candace K; Miller, Michael A; Chan, Kwai S
2014-12-09
The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.
Chemically rechargeable battery
NASA Technical Reports Server (NTRS)
Graf, James E. (Inventor); Rowlette, John J. (Inventor)
1984-01-01
Batteries (50) containing oxidized, discharged metal electrodes such as an iron-air battery are charged by removing and storing electrolyte in a reservoir (98), pumping fluid reductant such as formalin (aqueous formaldehyde) from a storage tank (106) into the battery in contact with the surfaces of the electrodes. After sufficient iron hydroxide has been reduced to iron, the spent reductant is drained, the electrodes rinsed with water from rinse tank (102) and then the electrolyte in the reservoir (106) is returned to the battery. The battery can be slowly electrically charged when in overnight storage but can be quickly charged in about 10 minutes by the chemical procedure of the invention.
Electrodics: mesoscale physicochemical interactions in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Mukherjee, Partha P.; Chen, Chien-Fan
2014-06-01
Recent years have witnessed an explosion of interest and research endeavor in lithium-ion batteries to enable vehicle electrification. In particular, a critical imperative is to accelerate innovation for improved performance, life and safety of lithium-ion batteries for electric drive vehicles. Lithium ion batteries are complex, dynamical systems which include a multitude of coupled physicochemical processes encompassing electronic/ionic/diffusive transport in solid/electrolyte phases, electrochemical and phase change reactions and diffusion induced stress generation in multi-scale porous electrode microstructures. While innovations in nanomaterials and nanostructures have spurred the recent advancements, fundamental understanding of the electrode processing - microstructure - performance interplay is of paramount importance. In this presentation, mesoscale physicochemical interactions in lithium-ion battery electrodes will be elucidated.
Perylene-Based All-Organic Redox Battery with Excellent Cycling Stability.
Iordache, Adriana; Delhorbe, Virginie; Bardet, Michel; Dubois, Lionel; Gutel, Thibaut; Picard, Lionel
2016-09-07
Organic materials derived from biomass can constitute a viable option as replacements for inorganic materials in lithium-ion battery electrodes owing to their low production costs, recyclability, and structural diversity. Among them, conjugated carbonyls have become the most promising type of organic electrode material as they present high theoretical capacity, fast reaction kinetics, and quasi-infinite structural diversity. In this letter, we report a new perylene-based all-organic redox battery comprising two aromatic conjugated carbonyl electrode materials, the prelithiated tetra-lithium perylene-3,4,9,10-tetracarboxylate (PTCLi6) as negative electrode material and the poly(N-n-hexyl-3,4,9,10-perylene tetracarboxylic)imide (PTCI) as positive electrode material. The resulting battery shows promising long-term cycling stability up to 200 cycles. In view of the enhanced cycling performances, the two organic materials studied herein are proposed as suitable candidates for the development of new all-organic lithium-ion batteries.
Improved zinc electrode and rechargeable zinc-air battery
Ross, P.N. Jr.
1988-06-21
The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.
Silver-silver sulfate reference electrodes for use in lead-acid batteries
NASA Astrophysics Data System (ADS)
Ruetschi, Paul
Electrochemical properties of silver-silver sulfate reference electrodes for lead-acid batteries are described, and the following possible applications discussed: Determination of individual capacities of positive and negative plates. Monitoring individual electrode behavior during deep discharge and cell reversal. Optimization charge or discharge parameters, by controlling the current such that pre-determined limits of positive or negative half-cell potential are respected. Observation of acid concentration differences, for example due to acid stratification, by measuring diffusion potentials (concentration-cell voltages). Detection of defective cells, and defective plate sets, in a string of cells, at the end of their service life. Silver-silver sulfate reference electrodes, permanently installed in lead-acid cells, may be a means to improve battery management, and therewith to improve reliability and service life. In vented batteries, reference electrodes may be used to limit positive plate polarization during charge, or float-charge. Limiting the positive half-cell potential to an upper, pre-set value would permit to keep anodic corrosion as low as possible. During cycling, discharge could be terminated when the half-cell potential of the positive electrode has dropped to a pre-set limit. This would prevent excessive discharge of the positive electrodes, which could result in an improvement of cycle life. In valve-regulated batteries, reference electrodes may be used to adjust float-charge conditions such as to assure sufficient cathodic polarization of the negative electrodes, in order to avoid sulfation. The use of such reference electrodes could be beneficial particularly in multi-cell batteries, with overall voltages above 12 V, operated in a partial-state-of-charge.
Alternating-polarity operation for complete regeneration of electrochemical deionization system
Tran, Tri D [Livermore, CA; Lenz, David J [Livermore, CA
2006-11-21
An electrically regeneratable battery of electrochemical cells for capacitive deionization (including electrochemical purification) and regeneration of electrodes is operated at alternate polarities during consecutive cycles. In other words, after each regeneration step operated at a given polarity in a deionization-regeneration cycle, the polarity of the deionization step in the next cycle is maintained. In one embodiment, two end electrodes are arranged one at each end of the battery, adjacent to end plates. An insulator layer is interposed between each end plate and the adjacent end electrode. Each end electrode includes a single sheet of conductive material having a high specific surface area and sorption capacity, preferably a sheet formed of carbon aerogel composite. The batter further includes a plurality of generally identical double-sided intermediate electrodes that are equidistally separated from each other, between the two end electrodes. As the electrolyte enters the battery of ells, t flows through a continuous open serpentine channel defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cells, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the electrodes of each cell of the battery are saturated with the removed ions, the battery is regenerated electrically at a reversed polarity from that during the deionization step of the cycle, thus significantly minimizing secondary wastes.
Charge control of nickel-cadmium batteries by coulometer and third electrode method
NASA Technical Reports Server (NTRS)
Ford, F.; Paulkovitch, J.
1968-01-01
Combined coulometer/third electrode control circuit for a nickel-cadmium battery included at least one cell of the third electrode type is illustrated. The coulometer/third electrode sensing circuit controls the series regulator as necessary to maintain the sensing voltage at the preset sensing level.
Process to produce lithium-polymer batteries
MacFadden, Kenneth Orville
1998-01-01
A polymer bonded sheet product suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance.
High-capacity FeTiO3/C negative electrode for sodium-ion batteries with ultralong cycle life
NASA Astrophysics Data System (ADS)
Ding, Changsheng; Nohira, Toshiyuki; Hagiwara, Rika
2018-06-01
The development of electrode materials which improve both the energy density and cycle life is one of the most challenging issues facing the practical application of sodium-ion batteries today. In this work, FeTiO3/C nanoparticles are synthesized as negative electrode materials for sodium-ion batteries. The electrochemical performance and charge-discharge mechanism of the FeTiO3/C negative electrode are investigated in an ionic liquid electrolyte at 90 °C. The FeTiO3/C negative electrode delivers a high reversible capacity of 403 mAh g-1 at a current rate of 10 mA g-1, and exhibits high rate capability and excellent cycling stability for up to 2000 cycles. The results indicate that FeTiO3/C is a promising negative electrode material for sodium-ion batteries.
Self-healing liquid/solid state battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, Paul J.; Chung, Brice H.V.; Phadke, Satyajit R.
A battery system that exchanges energy with an external device is provided. The battery system includes a positive electrode having a first metal or alloy, a negative electrode having a second metal or alloy, and an electrolyte including a salt of the second metal or alloy. The positive electrode, the negative electrode, and the electrolyte are in a liquid phase at an operating temperature during at least one portion of operation. The positive electrode is entirely in a liquid phase in one charged state and includes a solid phase in another charged state. The solid phase of the positive electrodemore » includes a solid intermetallic formed by the first and the second metals or alloys. Methods of storing electrical energy from an external circuit using such a battery system are also provided.« less
All Solid State Rechargeable Lithium Batteries using Block Copolymers
NASA Astrophysics Data System (ADS)
Hallinan, Daniel; Balsara, Nitash
2011-03-01
The growing need for alternative energy and increased demand for mobile technology require higher density energy storage. Existing battery technologies, such as lithium ion, are limited by theoretical energy density as well as safety issues. Other battery chemistries are promising options for dramatically increasing energy density. Safety can be improved by replacing the flammable, reactive liquids used in existing lithium-ion battery electrolytes with polymer electrolytes. Block copolymers are uniquely suited for this task because ionic conductivity and mechanical strength, both important properties in battery formulation, can be independently controlled. In this study, lithium batteries were assembled using lithium metal as negative electrode, polystyrene-b-poly(ethylene oxide) copolymer with lithium salt as electrolyte, and a positive electrode. The positive electrode consisted of polymer electrolyte for ion conduction, carbon for electron conduction, and an active material. Batteries were charged and discharged over many cycles. The battery cycling results were compared to a conventional battery chemistry.
Progress in batteries and solar cells - Volume 6
NASA Astrophysics Data System (ADS)
Shimotake, Hiroshi; Voss, Ernst
The present conference encompasses topics in lithium cell development, manganese cell design, lead-acid batteries, fuel cells, nickel-cadmium and other rechargeable batteries, and battery chargers and related power systems. Attention is given to molten carbonate fuel cells, prospects for sodium/sulfur propulsion batteries, ultrathin lithium batteries, solid state batteries, a gelled electrolyte lead-acid battery for deep discharge applications, and phosphoric acid fuel cells. Also discussed are computer-based battery monitors, a novel nickel-iron battery for electric vehicle applications, conductive polymer electrode electrochemical cells, and catalyst- and electrode-related research for phosphoric acid fuel cells.
NASA Astrophysics Data System (ADS)
Shangguan, Enbo; Chang, Zhaorong; Tang, Hongwei; Yuan, Xiao-Zi; Wang, Haijiang
In this paper, a novel strategy to regulate the discharge reservoir of negative electrodes in Ni-MH batteries is introduced by using Ni(OH) x (x = 2.10) and γ-CoOOH. The electrochemical measurements of these batteries demonstrate that the use of Ni(OH) x (x = 2.10) and γ-CoOOH can not only successfully regulate the discharge reservoir of negative electrodes in Ni-MH batteries to an adequate quantity, but also effectively improve the electrochemical performance of the batteries. Compared with normal batteries, the in-house prepared batteries with a lower discharge reservoir exhibit an enhanced discharge capacity, improved high-rate discharge ability, higher discharge potential plateau and superior cycle stability. The effect of Ni(OH) x (x = 2.10) and γ-CoOOH on the electrochemical performance of nickel electrode is also investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results suggest that the new method is simple and effective for cost reduction of Ni-MH batteries with improved electrochemical performance.
Battery with a microcorrugated, microthin sheet of highly porous corroded metal
LaFollette, Rodney M.
2005-09-27
Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (i) higher capacities (A.multidot.hr); and (j) high specific capacitance.
Recycling positive-electrode material of a lithium-ion battery
Sloop, Steven E.
2017-11-21
Examples are disclosed of methods to recycle positive-electrode material of a lithium-ion battery. In one example, the positive-electrode material is heated under pressure in a concentrated lithium hydroxide solution. After heating, the positive-electrode material is separated from the concentrated lithium hydroxide solution. After separating, the positive electrode material is rinsed in a basic liquid. After rinsing, the positive-electrode material is dried and sintered.
High temperature charging efficiency and degradation behavior of high capacity Ni-MH batteries
NASA Astrophysics Data System (ADS)
Choi, Jeon; Kim, Joong
2001-02-01
Recently the Ni/MH secondary battery has been studied extensively to achieve higher energy density, longer cycle life and faster charging-discharging rate for electric vehicles and portable computers, and etc. In this work, the charging efficiency of the Ni-MH battery which uses Ni electrode with addition of various compounds and the degradation behavior of the 90Ah battery were studied. The battery using the Ni electrode with Ca(OH)2 addition showed the charging efficiency and the utilization ratio significantly better than electrodes without added compounds. After 418 cycles, the residual capacities at the Ni electrode showed nearly the same values in the upper, middle and lower regions. In the case of the MH electrode, the residual capacity in the upper region appeared lower than that in other regions. As a result of ICP analysis, the amount of dissolved elements in the three regions appeared almost the same. The faster degradation in the upper region of the MH electrode was caused by the TiO2 oxide film formed at the electrode surface because of overcharging. The thickness of the oxide film increases with cycling, so it will form a layer that is not able to allow hydrogen to penetrate into the MH electrode.
Huang, Yi Fu; Ruan, Wen Hong; Lin, Dong Ling; Zhang, Ming Qiu
2017-01-11
Substituting conventional electrolyte for redox electrolyte has provided a new intriguing method for extending battery life. The efficiency of utilizing the contained redox species (RS) in the redox electrolyte can benefit from increasing the specific surface area of battery electrodes from the electrode side of the electrode-electrolyte interface, but is not limited to that. Herein, a new strategy using nanocomposite electrolyte is proposed to enlarge the interface with the aid of nanoinclusions from the electrolyte side. To do this, graphene oxide (GO) sheets are first dispersed in the electrolyte solution of tungstosilicic salt/lithium sulfate/poly(vinyl alcohol) (SiWLi/Li 2 SO 4 /PVA), and then the sheets are bridged to electrode, after casting and evaporating the solution on the electrode surface. By applying in situ conductive atomic force microscopy and Raman spectra, it is confirmed that the GO sheets doped with RS of SiWLi/Li 2 SO 4 can be bridged and electrically reduced as an extended electrode-electrolyte interface. As a result, the RS-coated GO sheets bridged to LiTi 2 (PO 4 ) 3 //LiMn 2 O 4 battery electrodes are found to deliver extra energy capacity (∼30 mAh/g) with excellent electrochemical cycling stability, which successfully extends the battery life by over 50%.
NASA Astrophysics Data System (ADS)
Rahmawati, Sitti; Agnesstacia
2014-03-01
This research analyzes the factors that affect the work of the battery from the star fruit extract and the cactus extract. The value voltage and current generated are measure the work of the battery. Voltage measurement based on the electrode distance function, and electrode surface area. Voltage as a surface area electrode function and electrode distance function determined the current density and the voltage generated. From the experimental results obtained that the battery voltage is large enough, it is about 1.8 V for the extract of star fruit, and 1.7 V for the extract of cactus, which means that the juice extract from star fruit and the juice extract of cactus can become an alternative as battery replacement. The measurements with different electrode surface area on the star fruit and cactus extract which has the depth of the electrode 0.5 cm to 4 cm causes a decrease in the electric current generated from 12.5 mA to 1.0 mA, but obtained the same voltage.
Electronically conductive polymer binder for lithium-ion battery electrode
Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan
2015-07-07
A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.
Electronically conductive polymer binder for lithium-ion battery electrode
Liu, Gao; Battaglia, Vincent S.; Park, Sang -Jae
2015-10-06
A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.
Electronically conductive polymer binder for lithium-ion battery electrode
Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan
2017-08-01
A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.
Flexible probe for measuring local conductivity variations in Li-ion electrode films
NASA Astrophysics Data System (ADS)
Hardy, Emilee; Clement, Derek; Vogel, John; Wheeler, Dean; Mazzeo, Brian
2018-04-01
Li-ion battery performance is governed by electronic and ionic properties of the battery. A key metric that characterizes Li-ion battery cell performance is the electronic conductivity of the electrodes, which are metal foils with thin coatings of electrochemically active materials. To accurately measure the spatial variation of electronic conductivity of these electrodes, a micro-four-line probe (μ4LP) was designed and used to non-destructively measure the properties of commercial-quality Li-ion battery films. This previous research established that the electronic conductivity of film electrodes is not homogeneous throughout the entirety of the deposited film area. In this work, a micro-N-line probe (μNLP) and a flexible micro-flex-line probe (μFLP) were developed to improve the non-destructive micro-scale conductivity measurements that we can take. These devices were validated by comparing test results to that of the predecessor, the micro-four-line probe (μ4LP), on various commercial-quality Li-ion battery electrodes. Results show that there is significant variation in conductivity on a millimeter and even micrometer length scale through the electrode film. Compared to the μ4LP, the μNLP and μFLP also introduce additional measurement configuration possibilities, while providing a more robust design. Researchers and manufacturers can use these probes to identify heterogeneity in their electrodes during the fabrication process, which will lead to the development of better batteries.
High-energy metal air batteries
Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun
2014-07-01
Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.
High-energy metal air batteries
Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun
2013-07-09
Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.
Transparent lithium-ion batteries
Yang, Yuan; Jeong, Sangmoo; Hu, Liangbing; Wu, Hui; Lee, Seok Woo; Cui, Yi
2011-01-01
Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional approach of using thin films for transparent devices is not suitable. Here we demonstrate a grid-structured electrode to solve this dilemma, which is fabricated by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human eyes, and, thus, the electrode appears transparent. Moreover, by aligning multiple electrodes together, the amount of energy stored increases readily without sacrificing the transparency. This results in a battery with energy density of 10 Wh/L at a transparency of 60%. The device is also flexible, further broadening their potential applications. The transparent device configuration also allows in situ Raman study of fundamental electrochemical reactions in batteries. PMID:21788483
He, Jianjiang; Wang, Ning; Cui, Zili; Du, Huiping; Fu, Lin; Huang, Changshui; Yang, Ze; Shen, Xiangyan; Yi, Yuanping; Tu, Zeyi; Li, Yuliang
2017-10-27
Organic electrodes are potential alternatives to current inorganic electrode materials for lithium ion and sodium ion batteries powering portable and wearable electronics, in terms of their mechanical flexibility, function tunability and low cost. However, the low capacity, poor rate performance and rapid capacity degradation impede their practical application. Here, we concentrate on the molecular design for improved conductivity and capacity, and favorable bulk ion transport. Through an in situ cross-coupling reaction of triethynylbenzene on copper foil, the carbon-rich frame hydrogen substituted graphdiyne film is fabricated. The organic film can act as free-standing flexible electrode for both lithium ion and sodium ion batteries, and large reversible capacities of 1050 mAh g -1 for lithium ion batteries and 650 mAh g -1 for sodium ion batteries are achieved. The electrode also shows a superior rate and cycle performances owing to the extended π-conjugated system, and the hierarchical pore bulk with large surface area.
NASA Astrophysics Data System (ADS)
Xu, R. C.; Wang, X. L.; Zhang, S. Z.; Xia, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P.
2018-01-01
Large interfacial resistance between electrode and electrolyte limits the development of high-performance all-solid-state batteries. Herein we report a uniform coating of Li7P3S11 solid electrolyte on MoS2 to form a MoS2/Li7P3S11 composite electrode for all-solid-state lithium ion batteries. The as-synthesized Li7P3S11 processes a high ionic of 2.0 mS cm-1 at room temperature. Due to homogeneous union and reduced interfacial resistance, the assembled all-solid-state batteries with the MoS2/Li7P3S11 composite electrode exhibit higher reversible capacity of 547.1 mAh g-1 at 0.1 C and better cycling stability than the counterpart based on untreated MoS2. Our study provides a new reference for design/fabrication of advanced electrode materials for high-performance all-solid-state batteries.
Cooper, J.F.
1996-11-26
Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.
Cooper, John F.
1996-01-01
Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.
Process to produce lithium-polymer batteries
MacFadden, K.O.
1998-06-30
A polymer bonded sheet product is described suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance. 1 fig.
AC impedance study of degradation of porous nickel battery electrodes
NASA Technical Reports Server (NTRS)
Lenhart, Stephen J.; Macdonald, D. D.; Pound, B. G.
1987-01-01
AC impedance spectra of porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (nonporous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low.
Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries.
Lee, Sechan; Kwon, Giyun; Ku, Kyojin; Yoon, Kyungho; Jung, Sung-Kyun; Lim, Hee-Dae; Kang, Kisuk
2018-03-27
Organic rechargeable batteries, which use organics as electrodes, are excellent candidates for next-generation energy storage systems because they offer design flexibility due to the rich chemistry of organics while being eco-friendly and potentially cost efficient. However, their widespread usage is limited by intrinsic problems such as poor electronic conductivity, easy dissolution into liquid electrolytes, and low volumetric energy density. New types of organic electrode materials with various redox centers or molecular structures have been developed over the past few decades. Moreover, research aimed at enhancing electrochemical properties via chemical tuning has been at the forefront of organic rechargeable batteries research in recent years, leading to significant progress in their performance. Here, an overview of the current developments of organic rechargeable batteries is presented, with a brief history of research in this field. Various strategies for improving organic electrode materials are discussed with respect to tuning intrinsic properties of organics using molecular modification and optimizing their properties at the electrode level. A comprehensive understanding of the progress in organic electrode materials is provided along with the fundamental science governing their performance in rechargeable batteries thus a guide is presented to the optimal design strategies to improve the electrochemical performance for next-generation battery systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Redox polymer electrodes for advanced batteries
Gregg, Brian A.; Taylor, A. Michael
1998-01-01
Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.
Redox polymer electrodes for advanced batteries
Gregg, B.A.; Taylor, A.M.
1998-11-24
Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene. 2 figs.
Electrode structures and surfaces for Li batteries
Thackeray, Michael M.; Kang, Sun-Ho; Balasubramanian, Mahalingam; Croy, Jason
2017-03-14
This invention relates to methods of preparing positive electrode materials for electrochemical cells and batteries. It relates, in particular, to a method for fabricating lithium-metal-oxide electrode materials for lithium cells and batteries. The method comprises contacting a hydrogen-lithium-manganese-oxide material with one or more metal ions, preferably in an acidic solution, to insert the one or more metal ions into the hydrogen-lithium-manganese-oxide material; heat-treating the resulting product to form a powdered metal oxide composition; and forming an electrode from the powdered metal oxide composition.
Frequency response of electrochemical cells
NASA Technical Reports Server (NTRS)
Thomas, Daniel L.
1989-01-01
Impedance concepts can be applied to the analysis of battery electrodes, yielding information about the structure of the electrode and the processes occurring in the electrode. Structural parameters such as the specific area (surface area per gram of electrode) can be estimated. Electrode variables such as surface overpotential, ohmic losses, and diffusion limitations may be studied. Nickel and cadmium electrodes were studied by measuring the ac impedance as a function of frequency, and the specific areas that were determined were well within the range of specific areas determined from BET measurements. Impedance spectra were measured for the nickel and cadmium electrodes, and for a 20 A-hr NiCd battery as functions of the state of charge. More work is needed to determine the feasibility of using frequency response as a nondestructive testing technique for batteries.
Self-discharge performance of Ni-MH battery by using electrodes with hydrophilic/hydrophobic surface
NASA Astrophysics Data System (ADS)
Li, Xiaofeng; Wang, Xiaojie; Dong, Huichao; Xia, Tongchi; Wang, Lizhen; Song, Yanhua
2013-12-01
The polytetrafluoroethylene (PTFE) and carboxymethyl cellulose (CMC) film is separately coated on the surface of the metal hydride (MH) and Ni(OH)2 electrodes to obtain the electrodes with hydrophobic or hydrophilic surface. The effects of the surface treatment on the oxygen and hydrogen evolution from the electrodes are studied by using cyclic voltammetry tests. Although the positive and negative active materials of the Ni-MH batteries show a lower self-decomposition rate after the CMC treatment, the self-discharge rate of the batteries show little change. On the contrary, the self-discharge rate of the batteries decreases from 35.9% to 27.1% by using the PTFE-treated Ni(OH)2 electrodes, which might be related to the suppression of the reaction between NiOOH and H2 by the hydrophobic film.
Malkhandi, Souradip; Yang, Bo; Manohar, Aswin K; Prakash, G K Surya; Narayanan, S R
2013-01-09
Iron-based rechargeable batteries, because of their low cost, eco-friendliness, and durability, are extremely attractive for large-scale energy storage. A principal challenge in the deployment of these batteries is their relatively low electrical efficiency. The low efficiency is due to parasitic hydrogen evolution that occurs on the iron electrode during charging and idle stand. In this study, we demonstrate for the first time that linear alkanethiols are very effective in suppressing hydrogen evolution on alkaline iron battery electrodes. The alkanethiols form self-assembled monolayers on the iron electrodes. The degree of suppression of hydrogen evolution by the alkanethiols was found to be greater than 90%, and the effectiveness of the alkanethiol increased with the chain length. Through steady-state potentiostatic polarization studies and impedance measurements on high-purity iron disk electrodes, we show that the self-assembly of alkanethiols suppressed the parasitic reaction by reducing the interfacial area available for the electrochemical reaction. We have modeled the effect of chain length of the alkanethiol on the surface coverage, charge-transfer resistance, and double-layer capacitance of the interface using a simple model that also yields a value for the interchain interaction energy. We have verified the improvement in charging efficiency resulting from the use of the alkanethiols in practical rechargeable iron battery electrodes. The results of battery tests indicate that alkanethiols yield among the highest faradaic efficiencies reported for the rechargeable iron electrodes, enabling the prospect of a large-scale energy storage solution based on low-cost iron-based rechargeable batteries.
Source of electrical power for an electric vehicle and other purposes, and related methods
LaFollette, Rodney M.
2000-05-16
Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries, silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (j) higher capacities (A.multidot.hr); and k) high specific capacitance.
Source of electrical power for an electric vehicle and other purposes, and related methods
LaFollette, Rodney M.
2002-11-12
Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form corrugated thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries, silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (i) higher capacities (A.multidot.hr); and (j) high specific capacitance.
Novel air electrode for metal-air battery with new carbon material and method of making same
Ross, P.N. Jr.
1988-06-21
This invention relates to a rechargeable battery or fuel cell. More particularly, this invention relates to a novel air electrode comprising a new carbon electrode support material and a method of making same. 3 figs.
High energy density micro-fiber based nickel electrode for aerospace batteries
NASA Technical Reports Server (NTRS)
Francisco, Jennifer; Chiappetti, Dennis; Coates, Dwaine
1996-01-01
The nickel electrode is the specific energy limiting component in battery systems such as nickel-hydrogen, nickel-metal hydride and nickel-zinc. Lightweight, high energy density nickel electrodes have been developed which deliver in excess of 180 mAh/g at the one-hour discharge rate. These electrodes are based on a highly porous, nickel micro-fiber (less than 10 micron diameter) substrate, electrochemically impregnated with nickel-hydroxide active material. Electrodes are being tested both as a flooded half-cell and in full nickel-hydrogen and nickel-metal hydride cells. The electrode technology developed is applicable to commercial nickel-based batteries for applications such as electric vehicles, cellular telephones and laptop computers and for low-cost, high energy density military and aerospace applications.
Pang, Wei Kong; Lu, Cheng-Zhang; Liu, Chia-Erh; Peterson, Vanessa K; Lin, Hsiu-Fen; Liao, Shih-Chieh; Chen, Jin-Ming
2016-06-29
High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is considered a potential high-power-density positive electrode for lithium-ion batteries, however, it suffers from capacity decay after extended charge-discharge cycling, severely hindering commercial application. Capacity fade is thought to occur through the significant volume change of the LNMO electrode occurring on cycling, and in this work we use operando neutron powder diffraction to compare the structural evolution of the LNMO electrode in an as-assembled 18650-type battery containing a Li4Ti5O12 negative electrode with that in an identical battery following 1000 cycles at high-current. We reveal that the capacity reduction in the battery post cycling is directly proportional to the reduction in the maximum change of the LNMO lattice parameter during its evolution. This is correlated to a corresponding reduction in the MnO6 octahedral distortion in the spinel structure in the cycled battery. Further, we find that the rate of lattice evolution, which reflects the rate of lithium insertion and removal, is ∼9 and ∼10% slower in the cycled than in the as-assembled battery during the Ni(2+)/Ni(3+) and Ni(3+)/Ni(4+) transitions, respectively.
Thick electrodes for Li-ion batteries: A model based analysis
NASA Astrophysics Data System (ADS)
Danner, Timo; Singh, Madhav; Hein, Simon; Kaiser, Jörg; Hahn, Horst; Latz, Arnulf
2016-12-01
Li-ion batteries are commonly used in portable electronic devices due to their outstanding energy and power density. A remaining issue which hinders the breakthrough e.g. in the automotive sector is the high production cost. For low power applications, such as stationary storage, batteries with electrodes thicker than 300 μm were suggested. High energy densities can be attained with only a few electrode layers which reduces production time and cost. However, mass and charge transport limitations can be severe at already small C-rates due to long transport pathways. In this article we use a detailed 3D micro-structure resolved model to investigate limiting factors for battery performance. The model is parametrized with data from the literature and dedicated experiments and shows good qualitative agreement with experimental discharge curves of thick NMC-graphite Li-ion batteries. The model is used to assess the effect of inhomogeneities in carbon black distribution and gives answers to the possible occurrence of lithium plating during battery charge. Based on our simulations we can predict optimal operation strategies and improved design concepts for future Li-ion batteries employing thick electrodes.
Dong, Xiaoli; Chen, Long; Liu, Jingyuan; Haller, Servane; Wang, Yonggang; Xia, Yongyao
2016-01-01
Current rechargeable batteries generally display limited cycle life and slow electrode kinetics and contain environmentally unfriendly components. Furthermore, their operation depends on the redox reactions of metal elements. We present an original battery system that depends on the redox of I−/I3− couple in liquid cathode and the reversible enolization in polyimide anode, accompanied by Li+ (or Na+) diffusion between cathode and anode through a Li+/Na+ exchange polymer membrane. There are no metal element–based redox reactions in this battery, and Li+ (or Na+) is only used for charge transfer. Moreover, the components (electrolyte/electrode) of this system are environment-friendly. Both electrodes are demonstrated to have very fast kinetics, which gives the battery a supercapacitor-like high power. It can even be cycled 50,000 times when operated within the electrochemical window of 0 to 1.6 V. Such a system might shed light on the design of high-safety and low-cost batteries for grid-scale energy storage. PMID:26844298
Dong, Xiaoli; Chen, Long; Liu, Jingyuan; Haller, Servane; Wang, Yonggang; Xia, Yongyao
2016-01-01
Current rechargeable batteries generally display limited cycle life and slow electrode kinetics and contain environmentally unfriendly components. Furthermore, their operation depends on the redox reactions of metal elements. We present an original battery system that depends on the redox of I(-)/I3 (-) couple in liquid cathode and the reversible enolization in polyimide anode, accompanied by Li(+) (or Na(+)) diffusion between cathode and anode through a Li(+)/Na(+) exchange polymer membrane. There are no metal element-based redox reactions in this battery, and Li(+) (or Na(+)) is only used for charge transfer. Moreover, the components (electrolyte/electrode) of this system are environment-friendly. Both electrodes are demonstrated to have very fast kinetics, which gives the battery a supercapacitor-like high power. It can even be cycled 50,000 times when operated within the electrochemical window of 0 to 1.6 V. Such a system might shed light on the design of high-safety and low-cost batteries for grid-scale energy storage.
NASA Astrophysics Data System (ADS)
Dallon, Kathryn L.; Yao, Jing; Wheeler, Dean R.; Mazzeo, Brian A.
2018-04-01
Measurements of the mechanical properties of lithium-ion battery electrode films can be used to quantify and improve manufacturing processes and to predict the mechanical and electrochemical performance of the battery. This paper demonstrates the use of acoustic resonances to distinguish among commercial-grade battery films with different active electrode materials, thicknesses, and densities. Resonances are excited in a clamped circular area of the film using a pulsed infrared laser, and responses are measured using an electret condenser microphone. A numerical model is used to quantify the sensitivity of resonances to changes in mechanical properties. When the numerical model is compared to simple analytical models for thin plates and membranes, the battery films measured here trend more similarly to the membrane model. Resonance measurements are also used to monitor the drying process. Results from a scanning laser Doppler vibrometer verify the modes excited in the films, and a combination of experimental and simulated results is used to estimate the Young's modulus of the battery electrode coating layer.
Transportation Research News | Transportation News | Transportation
Engineering has yielded new insights for lithium-ion (Li-ion) battery electrodes at the microstructural level -Phase Stochastics in Lithium-Ion Battery Electrodes" detailing the research and resulting revolutionizes the way lithium-ion (Li-ion) batteries are evaluated so designs can be improved before batteries
Multi-layered, chemically bonded lithium-ion and lithium/air batteries
Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R
2014-05-13
Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.
Hierarchically structured materials for lithium batteries
NASA Astrophysics Data System (ADS)
Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Ji-Guang
2013-10-01
The lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles, including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles. With the increasing demand for devices of high-energy densities (>500 Wh kg-1), new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB, have attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performance of these energy storage systems depends not only on the composition of the materials, but also on the structure of the electrode materials used in the batteries. Although the desired performance characteristics of batteries often have conflicting requirements with the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflicting requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate (1) how to realize the full potential of energy materials through the manipulation of morphologies, and (2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties and prolongs the electrode stability and battery lifetime.
Lithium Ion Battery Anode Aging Mechanisms
Agubra, Victor; Fergus, Jeffrey
2013-01-01
Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed. PMID:28809211
NASA Astrophysics Data System (ADS)
Jäckel, Nicolas; Dargel, Vadim; Shpigel, Netanel; Sigalov, Sergey; Levi, Mikhael D.; Daikhin, Leonid; Aurbach, Doron; Presser, Volker
2017-12-01
Intercalation-induced dimensional changes of composite battery electrodes containing either a stiff or a soft polymeric binder is one of the many factors determining the cycling performance and ageing. Herein, we report dimensional changes in bulk composite electrodes by in situ electrochemical dilatometry (eD) combined with electrochemical quartz-crystal microbalance with dissipation monitoring (EQCM-D). The latter tracks the mechanical properties on the level of the electrode particle size. Lithium iron phosphate (LiFePO4, LFP) electrodes with a stiff binder (PVdF) and a soft binder (NaCMC) were investigated by cycling in lithium sulfate (Li2SO4) aqueous solution. The electrochemical and mechanical electrode performances depend on the electrode cycling history. Based on combined eD and EQCM-D measurements we provide evidence which properties are preferred for a binder used for a composite Li-ion battery electrode.
Storage battery aspects of air-electrode research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buzzelli, E.S.; Berk, L.B.; Demczyk, B.G.
1983-08-01
The use of air electrodes in secondary, alkaline energy storage systems offers several significant advantages over other conventional cathode systems. The oxygen, required for operation, is not stored or carried within the battery system. The weight of the air electrode is significantly lower than alternative cathode couples for the same mission. The cost of the air electrode is potentially low. As a result of these characteristics, alkaline electrolyte energy storage systems with air electrodes have the potential for achieving energy density levels in excess of 150 Whr/kg at low costs, $30-$40/kWh. The primary key to a successful metal-air secondary batterymore » for an EV application is the development of a bifunctional air electrode. This paper discusses the various aspects of air electrode research for this application, as well as the physical and performance requirements of the air electrode in this advanced technology battery system.« less
Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries
Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos
2016-01-01
Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives. PMID:27297565
Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries
Shi, Feifei; Song, Zhichao; Ross, Philip N.; ...
2016-06-14
Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural pathmore » for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.« less
Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos
2016-06-01
Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.
NASA Astrophysics Data System (ADS)
Alaboina, Pankaj K.; Cho, Jong-Soo; Cho, Sung-Jin
2017-10-01
The electrochemical performance of a battery is considered to be primarily dependent on the electrode material. However, engineering and optimization of electrodes also play a crucial role, and the same electrode material can be designed to offer significantly improved batteries. In this work, Si-Fe-Mn nanomaterial alloy (Si/alloy) and graphite composite electrodes were densified at different calendering conditions of 3, 5, and 8 tons, and its influence on electrode porosity, electrolyte wettability, and long-term cycling was investigated. The active material loading was maintained very high ( 2 mg cm-2) to implement electrode engineering close to commercial loading scales. The densification was optimized to balance between the electrode thickness and wettability to enable the best electrochemical properties of the Si/alloy anodes. In this case, engineering and optimizing the Si/alloy composite electrodes to 3 ton calendering (electrode densification from 0.39 to 0.48 g cm-3) showed enhanced cycling stability with a high capacity retention of 100% over 100 cycles. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Shapira, Barak; Cohen, Izaak; Penki, Tirupathi Rao; Avraham, Eran; Aurbach, Doron
2018-02-01
The use of sodium manganese oxide as an intercalation electrode for water treatment was recently explored, and referred to as a "desalination battery" and "hybrid capacitive deionization". Here, we examine the feasibility of using such a desalination battery, comprising crystalline Na4Mn9O18 as the cathode and Ag/AgCl/Cl- electrode as the anode, to extract energy from low-grade waste heat sources. Sodium manganese oxide electrode's material was produced via a solid-state synthesis. Electrodes were produced by spray-coated onto graphite foils, and showed a temperature dependence of the electrode potential, namely, ∂ E / ∂ T , of -0.63 mV/K (whereas, the Ag/AgCl/Cl- mesh electrode showed much lower temperature dependence, < 0.1 mV/K). In order to demonstrate ion-removal capabilities together with the feasibility of thermal-energy conversion, a flow battery system was constructed. Thermally regenerative electrochemical cycles (TREC) were constructed for the flow battery cell. The thermal energy conversion, in this particular system, was shown to be feasible at relatively low C-rate (C/19) with temperatures varying between 30 °C and 70 °C.
Mechanical characterization and modeling for anodes and cathodes in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Wang, Lubing; Yin, Sha; Zhang, Chao; Huan, Yong; Xu, Jun
2018-07-01
Mechanical properties of electrode materials have significant influence over electrochemical properties as well as mechanical integrity of lithium-ion battery cells. Here, anode and cathode in a commercially available 18650 NCA (Nickel Cobalt Aluminum Oxide)/graphite cell were comprehensively studied by tensile tests considering material anisotropy, SOC (state of charge), strain rate and electrolyte content. Results showed that the mechanical properties of both electrodes were highly dependent on strain rate and electrolyte content; however, anode was SOC dependent while cathode was not. Besides, coupled effects of strain rate and SOC of anodes were also discussed. SEM (scanning electron microscope) images of surfaces and cross-sections of electrodes showed the fracture morphology. In addition, mechanical behavior of Cu foil separated from anode with different SOC values were studied and compared. Finally, constitutive models of electrodes considering both strain rate and anisotropy effects were established. This study reveals the relationship between electrochemical dependent mechanical behavior of the electrodes. The established mechanical models of electrodes can be applied to the numerical computation of battery cells. Results are essential to predict the mechanical responses as well as the deformation of battery cell under various loading conditions, facilitating safer battery design and manufacturing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Alasdair; Thomsen, Edwin; Reed, David
2016-04-20
A chemistry agnostic cost performance model is described for a nonaqueous flow battery. The model predicts flow battery performance by estimating the active reaction zone thickness at each electrode as a function of current density, state of charge, and flow rate using measured data for electrode kinetics, electrolyte conductivity, and electrode-specific surface area. Validation of the model is conducted using a 4kW stack data at various current densities and flow rates. This model is used to estimate the performance of a nonaqueous flow battery with electrode and electrolyte properties used from the literature. The optimized cost for this system ismore » estimated for various power and energy levels using component costs provided by vendors. The model allows optimization of design parameters such as electrode thickness, area, flow path design, and operating parameters such as power density, flow rate, and operating SOC range for various application duty cycles. A parametric analysis is done to identify components and electrode/electrolyte properties with the highest impact on system cost for various application durations. A pathway to 100$kWh -1 for the storage system is identified.« less
2014-06-30
The aim of this study is to develop metal hydride-carbon nanomaterial based nanocomposites as anode electrode materials for high capacity lithium ion battery and...henceforth to develop high energy density, and good cyclic stability lithium ion battery .
The effect of the carbon nanotube buffer layer on the performance of a Li metal battery.
Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan
2016-06-07
Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.
NASA Technical Reports Server (NTRS)
O'Donnell, Patricia M. (Editor)
1990-01-01
Attention is given to topics of advanced concepts, hydrogen-oxygen fuel cells and electrolyzers, nickel electrodes, and advanced rechargeable batteries. Papers are presented on human exploration mission studies, advanced rechargeable sodium batteries with novel cathodes, advanced double-layer capacitors, recent advances in solid-polymer electrolyte fuel cell technology with low platinum loading electrodes, electrocatalysts for oxygen electrodes in fuel cells and water electrolyzers for space applications, and the corrosion testing of candidates for the alkaline fuel cell cathode. Other papers are on a structural comparison of nickel electodes and precursor phases, the application of electrochemical impedance spectroscopy for characterizing the degradation of Ni(OH)2/NiOOH electrodes, advances in lightweight nickel electrode technology, multimission nickel-hydrogen battery cell for the 1990s, a sodium-sulfur battery flight experiment definition study, and advances in ambient-temperature secondary lithium cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Ho-Suk; Kim, Byeong-Wook; Park, Jin-Woo
Highlights: • The binder-free sulfur electrode with high sulfur contents of 75 wt.% was fabricated. • The binder-free sulfur electrode using NMP solvents showed 784 mAh g{sup −1} after 40 cycles. • The solvent affect the electrochemical properties of binder-free sulfur electrode films. - Abstract: The effects of solvents on the preparation of sulfur cathodes were investigated by fabricating binder-free sulfur electrode films using three different solvents: 1-methyl-2-pyrrolidinone (NMP), acetonitrile, and deionized water. These solvents are commonly employed to dissolve binders used to prepare sulfur cathodes for lithium–sulfur batteries. The sulfur electrode fabricated with NMP had a higher discharge capacitymore » and longer cycle life than the ones fabricated with acetonitrile and deionized water. Better adhesion between the current collector and the sulfur electrode accounted for the improved capacity and cycle life of the battery. In addition, the stability of the electrode in the electrolyte was a result of the solubility of sulfur in the solvent. We thus concluded that the solvents used in the fabrication of sulfur electrodes had a positive influence on the electrochemical properties of Li–S batteries.« less
Rechargeable Ni-Li battery integrated aqueous/nonaqueous system.
Li, Huiqiao; Wang, Yonggang; Na, Haitao; Liu, Haimei; Zhou, Haoshen
2009-10-28
A rechargeable Ni-Li battery, in which nickel hydroxide serving as a cathode in an aqueous electrolyte and Li metal serving as an anode in an organic electrolyte were integrated by a superionic conductor glass ceramic film (LISICON), was proposed with the expectation to combine the advantages of both a Li-ion battery and Ni-MH battery. It has the potential for an ultrahigh theoretical energy density of 935 Wh/kg, twice that of a Li-ion battery (414 Wh/kg), based on the active material in electrodes. A prototype Ni-Li battery fabricated in the present work demonstrated a cell voltage of 3.47 V and a capacity of 264 mAh/g with good retention during 50 cycles of charge/discharge. This battery system with a hybrid electrolyte provides a new avenue for the best combination of electrode/electrolyte/electrode to fulfill the potential of high energy density as well as high power density.
Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu
2016-05-19
Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances.
High-performance rechargeable batteries with fast solid-state ion conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, Joseph C.
A high-performance rechargeable battery using ultra-fast ion conductors. In one embodiment the rechargeable battery apparatus includes an enclosure, a first electrode operatively connected to the enclosure, a second electrode operatively connected to the enclosure, a nanomaterial in the enclosure, and a heat transfer unit.
Ni-MH battery electrodes made by a dry powder process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Z.; Sakai, T.; Noreus, D.
1995-12-01
A dry powder roller pressing process, once developed for making both of the electrodes in low cost Ni-Cd consumer batteries, has been utilized to make electrodes for Ni-MH batteries. The process was evaluated by manually making a series of sub-C type cells that were characterized with respect to specific capacity, cycle life, and self-discharge. The performance was comparable in several respects with that of cells made by more complex Ni-foam technologies.
TAIWO, OLUWADAMILOLA O.; FINEGAN, DONAL P.; EASTWOOD, DAVID S.; FIFE, JULIE L.; BROWN, LEON D.; DARR, JAWWAD A.; LEE, PETER D.; BRETT, DANIEL J.L.
2016-01-01
Summary Lithium‐ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium‐ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3‐D imaging techniques, quantitative assessment of 3‐D microstructures from 2‐D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two‐dimensional (2‐D) data sets. In this study, stereological prediction and three‐dimensional (3‐D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium‐ion battery electrodes were imaged using synchrotron‐based X‐ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2‐D image sections generated from tomographic imaging, whereas direct 3‐D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2‐D image sections is bound to be associated with ambiguity and that volume‐based 3‐D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially‐dependent parameters, such as tortuosity and pore‐phase connectivity. PMID:26999804
Taiwo, Oluwadamilola O; Finegan, Donal P; Eastwood, David S; Fife, Julie L; Brown, Leon D; Darr, Jawwad A; Lee, Peter D; Brett, Daniel J L; Shearing, Paul R
2016-09-01
Lithium-ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium-ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3-D imaging techniques, quantitative assessment of 3-D microstructures from 2-D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two-dimensional (2-D) data sets. In this study, stereological prediction and three-dimensional (3-D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium-ion battery electrodes were imaged using synchrotron-based X-ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2-D image sections generated from tomographic imaging, whereas direct 3-D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2-D image sections is bound to be associated with ambiguity and that volume-based 3-D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially-dependent parameters, such as tortuosity and pore-phase connectivity. © 2016 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.
First principles nickel-cadmium and nickel hydrogen spacecraft battery models
NASA Technical Reports Server (NTRS)
Timmerman, P.; Ratnakumar, B. V.; Distefano, S.
1996-01-01
The principles of Nickel-Cadmium and Nickel-Hydrogen spacecraft battery models are discussed. The Ni-Cd battery model includes two phase positive electrode and its predictions are very close to actual data. But the Ni-H2 battery model predictions (without the two phase positive electrode) are unacceptable even though the model is operational. Both models run on UNIX and Macintosh computers.
NASA Astrophysics Data System (ADS)
Marom, Rotem; Ziv, Baruch; Banerjee, Anjan; Cahana, Beni; Luski, Shalom; Aurbach, Doron
2015-11-01
Addition of various carbon materials into lead-acid battery electrodes was studied and examined in order to enhance the power density, improve cycle life and stability of both negative and positive electrodes in lead acid batteries. High electrical-conductivity, high-aspect ratio, good mechanical properties and chemical stability of multi-wall carbon nanotubes (MWCNT, unmodified and mofified with carboxylic groups) position them as viable additives to enhance the electrodes' electrical conductivity, to mitigate the well-known sulfation failure mechanism and improve the physical integration of the electrodes. In this study, we investigated the incorporation-effect of carbon nanotubes (CNT) to the positive and the negative active materials in lead-acid battery prototypes in a configuration of flooded cells, as well as gelled cells. The cells were tested at 25% and 30% depth-of-discharge (DOD). The positive effect of the carbon nanotubes (CNT) utilization as additives to both positive and negative electrodes of lead-acid batteries was clearly demonstrated and is explained herein based on microscopic studies.
Method of electrode fabrication and an electrode for metal chloride battery
Bloom, I.D.; Nelson, P.A.; Vissers, D.R.
1993-03-16
A method of fabricating an electrode for use in a metal chloride battery and an electrode are provided. The electrode has relatively larger and more uniform pores than those found in typical electrodes. The fabrication method includes the steps of mixing sodium chloride particles selected from a predetermined size range with metal particles selected from a predetermined size range, and then rigidifying the mixture. The electrode exhibits lower resistivity values of approximately 0.5 [Omega]cm[sup 2] than those resistivity values of approximately 1.0-1.5 [Omega]cm[sup 2] exhibited by currently available electrodes.
Method of electrode fabrication and an electrode for metal chloride battery
Bloom, Ira D.; Nelson, Paul A.; Vissers, Donald R.
1993-01-01
A method of fabricating an electrode for use in a metal chloride battery and an electrode are provided. The electrode has relatively larger and more uniform pores than those found in typical electrodes. The fabrication method includes the steps of mixing sodium chloride particles selected from a predetermined size range with metal particles selected from a predetermined size range, and then rigidifying the mixture. The electrode exhibits lower resistivity values of approximately 0.5 .OMEGA.cm.sup.2 than those resistivity values of approximately 1.0-1.5 .OMEGA.cm.sup.2 exhibited by currently available electrodes.
Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yersak, Alexander S.; Sharma, Kashish; Wallas, Jasmine M.
Ultrathin atomic layer deposition (ALD) coatings on the electrodes of Li-ion batteries can enhance the capacity stability of the Li-ion batteries. To commercialize ALD for Li-ion battery production, spatial ALD is needed to decrease coating times and provide a coating process compatible with continuous roll-to-roll (R2R) processing. The porous electrodes of Li-ion batteries provide a special challenge because higher reactant exposures are needed for spatial ALD in porous substrates. This work utilized a modular rotating cylinder spatial ALD reactor operating at rotation speeds up to 200 revolutions/min (RPM) and substrate speeds up to 200 m/min. The conditions for spatial ALDmore » were adjusted to coat flexible porous substrates. The reactor was initially used to characterize spatial Al2O3 and ZnO ALD on flat, flexible metalized polyethylene terephthalate foils. These studies showed that slower rotation speeds and spacers between the precursor module and the two adjacent pumping modules could significantly increase the reactant exposure. The modular rotating cylinder reactor was then used to coat flexible, model porous anodic aluminum oxide (AAO) membranes. The uniformity of the ZnO ALD coatings on the porous AAO membranes was dependent on the aspect ratio of the pores and the reactant exposures. Larger reactant exposures led to better uniformity in the pores with higher aspect ratios. The reactant exposures were increased by adding spacers between the precursor module and the two adjacent pumping modules. The modular rotating cylinder reactor was also employed for Al2O3 ALD on porous LiCoO2 (LCO) battery electrodes. Uniform Al coverages were obtained using spacers between the precursor module and the two adjacent pumping modules at rotation speeds of 25 and 50 RPM. The LCO electrodes had a thickness of ~49 um and pores with aspect ratios of ~12-25. Coin cells were then constructed using the ALD-coated LCO electrodes and were tested to determine their battery performance. The capacity of the Al2O3 ALD-coated LCO battery electrodes was measured versus the number of charge-discharge cycles. Both temporal and spatial ALD processing methods led to higher capacity stability compared with uncoated LCO battery electrodes. The results for improved battery performance were comparable for temporal and spatial ALD-coated electrodes. The next steps are also presented for scale-up to R2R spatial ALD using the modular rotating cylinder reactor.« less
Chervin, Christopher N; Parker, Joseph F; Nelson, Eric S; Rolison, Debra R; Long, Jeffrey W
2016-04-29
The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode-a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte.
NASA Astrophysics Data System (ADS)
Yang, Xiao Guang; Liaw, Bor Yann
Although large ampere hour nickel-metal hydride (Ni-MH) traction batteries are in the stage of being commercialized for electric and hybrid vehicle applications, little is known about their performance characteristics. By using a standard Hg/HgO reference electrode in a commercial Ni-MH battery, we were able to conduct in situ measurements to determine both kinetic and thermodynamic properties of the system, including the characteristics of individual electrodes. Using the galvanostatic intermittent titration technique (GITT), we simultaneously and effectively determined the open-circuit voltage of the battery, the equilibrium electrode potentials, and the diffusion coefficient of proton and hydrogen in the nickel and metal hydride electrode, respectively, as a function of the states of charge (SOC). Using the current-step excitation technique, we found that the internal resistance of the battery primarily comes from the metal hydride electrode, which is greater by one order of magnitude than that of the Ni electrode. The cyclic linear micro-polarization experiments, on the other hand, showed that the charge-transfer resistance of the electrochemical reaction at the metal hydride electrode is about twice larger than that of the Ni counterpart above 20% SOC. In comparison, the internal resistance is an order of magnitude smaller than those of the electrochemical charge-transfer reactions. The micro-polarization technique also allowed us to calculate the exchange current densities of the respective electrode electrochemical reactions and the associated specific exchange current densities. These in situ, simple but detailed, characterizations of the thermodynamic and kinetic properties of the Ni-MH system provided valuable information for better understanding of the battery performance.
Hybrid system for rechargeable magnesium battery with high energy density
NASA Astrophysics Data System (ADS)
Chang, Zheng; Yang, Yaqiong; Wang, Xiaowei; Li, Minxia; Fu, Zhengwen; Wu, Yuping; Holze, Rudolf
2015-07-01
One of the main challenges of electrical energy storage (EES) is the development of environmentally friendly battery systems with high safety and high energy density. Rechargeable Mg batteries have been long considered as one highly promising system due to the use of low cost and dendrite-free magnesium metal. The bottleneck for traditional Mg batteries is to achieve high energy density since their output voltage is below 2.0 V. Here, we report a magnesium battery using Mg in Grignard reagent-based electrolyte as the negative electrode, a lithium intercalation compound in aqueous solution as the positive electrode, and a solid electrolyte as a separator. Its average discharge voltage is 2.1 V with stable discharge platform and good cycling life. The calculated energy density based on the two electrodes is high. These findings open another door to rechargeable magnesium batteries.
Silver manganese oxide electrodes for lithium batteries
Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.
2006-05-09
This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.
Battery element and method for making same
NASA Technical Reports Server (NTRS)
Clough, Thomas J. (Inventor); Pinsky, Naum (Inventor)
1989-01-01
In a method for producing a battery element useful as at least a positive plate in a lead-acid battery, the element comprising a fluid impervious, electrically conductive matrix having mutually opposing first and second surfaces and positive active electrode material associated with the first surface of the matrix, the improvement which comprises: conditioning the first surface to enhance the association of the positive active electrode material and the first surface; and applying and associating the positive active electrode material to the first surface.
Component-cost and performance based comparison of flow and static batteries
NASA Astrophysics Data System (ADS)
Hopkins, Brandon J.; Smith, Kyle C.; Slocum, Alexander H.; Chiang, Yet-Ming
2015-10-01
Flow batteries are a promising grid-storage technology that is scalable, inherently flexible in power/energy ratio, and potentially low cost in comparison to conventional or ;static; battery architectures. Recent advances in flow chemistries are enabling significantly higher energy density flow electrodes. When the same battery chemistry can arguably be used in either a flow or static electrode design, the relative merits of either design choice become of interest. Here, we analyze the costs of the electrochemically active stack for both architectures under the constraint of constant energy efficiency and charge and discharge rates, using as case studies the aqueous vanadium-redox chemistry, widely used in conventional flow batteries, and aqueous lithium-iron-phosphate (LFP)/lithium-titanium-phosphate (LTP) suspensions, an example of a higher energy density suspension-based electrode. It is found that although flow batteries always have a cost advantage (kWh-1) at the stack level modeled, the advantage is a strong function of flow electrode energy density. For the LFP/LTP case, the cost advantages decreases from ∼50% to ∼10% over experimentally reasonable ranges of suspension loading. Such results are important input for design choices when both battery architectures are viable options.
Song, Shidong; Xu, Wu; Zheng, Jianming; Luo, Langli; Engelhard, Mark H; Bowden, Mark E; Liu, Bin; Wang, Chong-Min; Zhang, Ji-Guang
2017-03-08
Instability of carbon-based oxygen electrodes and incomplete decomposition of Li 2 CO 3 during charge process are critical barriers for rechargeable Li-O 2 batteries. Here we report the complete decomposition of Li 2 CO 3 in Li-O 2 batteries using the ultrafine iridium-decorated boron carbide (Ir/B 4 C) nanocomposite as a noncarbon based oxygen electrode. The systematic investigation on charging the Li 2 CO 3 preloaded Ir/B 4 C electrode in an ether-based electrolyte demonstrates that the Ir/B 4 C electrode can decompose Li 2 CO 3 with an efficiency close to 100% at a voltage below 4.37 V. In contrast, the bare B 4 C without Ir electrocatalyst can only decompose 4.7% of the preloaded Li 2 CO 3 . Theoretical analysis indicates that the high efficiency decomposition of Li 2 CO 3 can be attributed to the synergistic effects of Ir and B 4 C. Ir has a high affinity for oxygen species, which could lower the energy barrier for electrochemical oxidation of Li 2 CO 3 . B 4 C exhibits much higher chemical and electrochemical stability than carbon-based electrodes and high catalytic activity for Li-O 2 reactions. A Li-O 2 battery using Ir/B 4 C as the oxygen electrode material shows highly enhanced cycling stability than those using the bare B 4 C oxygen electrode. Further development of these stable oxygen-electrodes could accelerate practical applications of Li-O 2 batteries.
Choi, Ji-Seub; Lee, Hoi-Jin; Ha, Jong-Keun; Cho, Kwon-Koo
2018-09-01
Sn is one of the promising anode material for lithium-ion and sodium-ion batteries because of Sn has many advantages such as a high theoretical capacity of 994 mAh/g, inexpensive, abundant and nontoxic. However, Sn-based anodes have a critical problem from pulverization of the particles due to large volume change (>300% in lithium-ion battery and 420% in the sodium-ion battery) during alloying/dealloying reaction. To overcome this problem, we fabricate Sn/C particle of core/shell structure. Sn powder was produced by pulsed wire explosion in liquid media, and amorphous carbon coating process was prepared by hydrothermal synthesis. The charge capacity of Sn electrode and amorphous carbon coated Sn electrode was 413 mAh/g and 452 mAh/g after 40 cycles in lithium half-cell test. The charge capacity of Sn electrode and amorphous carbon coated Sn electrode was 240 mAh/g and 487 mAh/g after 40 cycles in sodium half-cell test. Amorphous carbon coating contributed to the improvement of capacity in lithium and sodium battery systems. And the effect of amorphous carbon coating in sodium battery system was superior to that in lithium battery system.
Zhang, Peng; Zhao, Yong; Zhang, Xinbo
2018-04-23
The lithium-O2 battery is one of most promising energy storage and conversion devices due to its ultrahigh theoretical energy density and hence has broad application potential in electrical vehicles and stationary power systems. However, the present Li-O2 battery suffers from a series of challenges for its practical application, such as its low capacity and rate capability, poor round-trip efficiency and short cycle life. These challenges mainly arise from the sluggish and unsustainable discharge and charge reactions at lithium and oxygen electrodes, which determine the performance and durability of a battery. In this review, we first provide insights on the present understanding of the discharge/charge mechanism of such a battery and follow up with establishing a correlation between the specific materials/structures of the battery modules and their functionality/stability within the recent progress in electrodes, electrolytes and redox mediators. Considerable emphasis is paid to the importance of functional orientation design and the synthesis of materials/structures towards accelerating and sustaining the electrode reactions of Li-O2 batteries. Moreover, the future directions and perspectives of rationally constructed material and surface/interface structures, as well as their optimal combinations are proposed for enhancement of the electrode reaction rate and sustainability, and consequently for a better performance and durability of such batteries.
Jin, Zhaoyu; Li, Panpan; Xiao, Dan
2017-02-08
Decoupled hydrogen and oxygen production were successfully embedded into an aqueous dual-electrolyte (acid-base) battery for simultaneous energy storage and conversion. A three-electrode configuration was adopted, involving an electrocatalytic hydrogen-evolving electrode as cathode, an alkaline battery-type or capacitor-type anode as shuttle, and a charging-assisting electrode for electro-/photoelectrochemically catalyzing water oxidation. The conceptual battery not only synergistically outputs electricity and chemical fuels with tremendous specific energy and power densities, but also supports various approaches to be charged by pure or solar-assisted electricity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Current collectors for improved safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelmalak, Michael Naguib; Allu, Srikanth; Dudney, Nancy J.
A battery electrode assembly includes a current collector with conduction barrier regions having a conductive state in which electrical conductivity through the conduction barrier region is permitted, and a safety state in which electrical conductivity through the conduction barrier regions is reduced. The conduction barrier regions change from the conductive state to the safety state when the current collector receives a short-threatening event. An electrode material can be connected to the current collector. The conduction barrier regions can define electrical isolation subregions. A battery is also disclosed, and methods for making the electrode assembly, methods for making a battery, andmore » methods for operating a battery.« less
Ion implantation of highly corrosive electrolyte battery components
Muller, R.H.; Zhang, S.
1997-01-14
A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, and sodium sulfur. 6 figs.
Ion implantation of highly corrosive electrolyte battery components
Muller, Rolf H.; Zhang, Shengtao
1997-01-01
A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, end sodium sulfur.
Lithium-Sulfur Batteries: from Liquid to Solid Cells?
Lin, Zhan; Liang, Chengdu
2014-11-11
Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and themore » electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.« less
Amyotrophic Lateral Sclerosis (ALS)
... Pacing System, which uses implanted electrodes and a battery pack to cause the diaphragm (breathing muscle) to ... Pacing System, which uses implanted electrodes and a battery pack to cause the diaphragm (breathing muscle) to ...
Electron Beam Curing of Composite Positive Electrode for Li-Ion Battery
Du, Zhijia; Janke, C. J.; Li, Jianlin; ...
2016-10-12
We have successfully used electron beam cured acrylated polyurethanes as novel binders for positive electrodes for Li-ion batteries. Furthermore, the cross-linked polymer after electron beam curing coheres active materials and carbon black together onto Al foil. Electrochemical tests demonstrate the stability of the polymer at a potential window of 2.0 V–4.6 V. The electrode is found to have similar voltage profiles and charge-transfer resistance compared to the conventional electrode using polyvinylidene fluoride as the binder. Finally, when the electrode is tested in full Li-ion cells, they exhibit excellent cycling performance, indicating promising use for this new type of binder inmore » commercial Li-ion batteries in the future.« less
Lightweight, durable lead-acid batteries
Lara-Curzio, Edgar [Lenoir City, TN; An, Ke [Knoxville, TX; Kiggans, Jr., James O.; Dudney, Nancy J [Knoxville, TN; Contescu, Cristian I [Knoxville, TN; Baker, Frederick S [Oak Ridge, TN; Armstrong, Beth L [Clinton, TN
2011-09-13
A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).
Lightweight, durable lead-acid batteries
Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O; Dudney, Nancy J; Contescu, Cristian I; Baker, Frederick S; Armstrong, Beth L
2013-05-21
A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Chenguang; Manohar, Aswin K.; Narayanan, S. R.
Iron-based alkaline rechargeable batteries such as iron-air and nickel-iron batteries are particularly attractive for large-scale energy storage because these batteries can be relatively inexpensive, environment- friendly, and also safe. Therefore, our study has focused on achieving the essential electrical performance and cycling properties needed for the widespread use of iron-based alkaline batteries in stationary and distributed energy storage applications.We have demonstrated for the first time, an advanced sintered iron electrode capable of 3500 cycles of repeated charge and discharge at the 1-hour rate and 100% depth of discharge in each cycle, and an average Coulombic efficiency of over 97%. Suchmore » a robust and efficient rechargeable iron electrode is also capable of continuous discharge at rates as high as 3C with no noticeable loss in utilization. We have shown that the porosity, pore size and thickness of the sintered electrode can be selected rationally to optimize specific capacity, rate capability and robustness. As a result, these advances in the electrical performance and durability of the iron electrode enables iron-based alkaline batteries to be a viable technology solution for meeting the dire need for large-scale electrical energy storage.« less
Yang, Chenguang; Manohar, Aswin K.; Narayanan, S. R.
2017-01-07
Iron-based alkaline rechargeable batteries such as iron-air and nickel-iron batteries are particularly attractive for large-scale energy storage because these batteries can be relatively inexpensive, environment- friendly, and also safe. Therefore, our study has focused on achieving the essential electrical performance and cycling properties needed for the widespread use of iron-based alkaline batteries in stationary and distributed energy storage applications.We have demonstrated for the first time, an advanced sintered iron electrode capable of 3500 cycles of repeated charge and discharge at the 1-hour rate and 100% depth of discharge in each cycle, and an average Coulombic efficiency of over 97%. Suchmore » a robust and efficient rechargeable iron electrode is also capable of continuous discharge at rates as high as 3C with no noticeable loss in utilization. We have shown that the porosity, pore size and thickness of the sintered electrode can be selected rationally to optimize specific capacity, rate capability and robustness. As a result, these advances in the electrical performance and durability of the iron electrode enables iron-based alkaline batteries to be a viable technology solution for meeting the dire need for large-scale electrical energy storage.« less
Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu
2016-01-01
Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances. PMID:27193448
Fundamental modeling the performance and degradation of HEV Lithium-ion battery
NASA Astrophysics Data System (ADS)
Fang, Weifang
Li-ion battery is now replacing nickel-metal hydride (NiMH) for hybrid electric vehicles (HEV). The advantages of Li-ion battery over NiMH are that it can provide longer life, higher cell voltage and higher energy density, etc. However, there are still some issues unsolved for Li-ion battery to fully satisfy the HEV requirement. At high temperature, thermal runaway may cause safety issues. At low temperature, however, its performance is dramatically reduced and also Li deposition may occur. Furthermore, degradation due to side reactions in the electrodes during cycling and storage results in capacity loss and impedance rise. An electrochemical-thermal coupled model is first used to predict performance of individual electrodes of Li-ion cells under HEV conditions that encompass a wide range of ambient temperatures. The model is validated against experimental data of not only the full cell but also individual electrodes and then used to study lithium deposition on the negative electrode during charging Li-ion battery at subzero temperature. The simulated property evolution, e.g. Li concentrations in electrode and electrolyte, shows that either low temperature or high charge rate may force Li insertion (into the negative carbon electrode) to occur in a narrow region near the separator. Therefore, Li deposition is mostly like to happen in this location. Modeling simulation shows that reduction of the negative electrode particle size can reduce Li deposition, which has same effect as improvement of the Li diffusion coefficient in the negative electrode. The model is also used to study charge protocols at subzero temperature. Model simulation shows that employing pulse current can improve cell temperature by the heat generated inside the cell, thus this designed charge protocol is able to reduce Li deposition and improve the charge efficiency as well. Individual aging mechanism is then implemented into each electrode to study Li-ion battery degradation during accelerated aging tests. The experimentally observed aging phenomena are interpreted using the degradation model. The simulated results show that the positive electrode active material loss is the main cause of capacity loss and impedance growth. And this is the key step for a model to well catch the experimentally observed aging phenomena in the two electrodes. In the future work, the degradation model will further help to prolong battery life through engineering and optimization in HEV applications.
Ngandjong, Alain C; Rucci, Alexis; Maiza, Mariem; Shukla, Garima; Vazquez-Arenas, Jorge; Franco, Alejandro A
2017-12-07
A novel multiscale modeling platform is proposed to demonstrate the importance of particle assembly during battery electrode fabrication by showing its effect on battery performance. For the first time, a discretized three-dimensional (3D) electrode resulting from the simulation of its fabrication has been incorporated within a 3D continuum performance model. The study used LiNi 0.5 Co 0.2 Mn 0.3 O 2 as active material, and the effect of changes of electrode formulation is explored for three cases, namely 85:15, 90:10, and 95:5 ratios between active material and carbon-binder domains. Coarse-grained molecular dynamics is used to simulate the electrode fabrication. The resulting electrode mesostructure is characterized in terms of active material surface coverage by the carbon-binder domains and porosity. The trends observed are nonintuitive, indicating a high degree of complexity of the system. These structures are subsequently implemented into a 3D continuum model which displays distinct discharge behaviors for the three cases. The study offers a method for developing a coherent theoretical understanding of electrode fabrication that can help optimize battery performance.
NASA Astrophysics Data System (ADS)
Wang, Yang; Roller, Justin; Maric, Radenka
2018-02-01
Nanostructured electrodes have significant potential for enhancing the kinetics of lithium storage in secondary batteries. A simple and economical manufacturing approach of these electrodes is crucial to the development and application of the next generation lithium ion (Li-ion) batteries. In this study, nanostructured α-Fe2O3 electrode is fabricated by a novel one-step flame combustion synthesis method, namely Reactive Spray Deposition Technology (RSDT). This process possesses the merits of simplicity and low cost. The structure and morphology of the electrode are investigated with X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Electrochemical performance of the nanostructured α-Fe2O3 electrodes as the anodes for Li-ion batteries is evaluated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy in coin-type half-cells. The as-prepared electrodes demonstrate superior cyclic performance at high current rate, which delivers a high reversible capacity of 1239.2 mAh g-1 at 1 C after 500 cycles. In addition, a discharge capacity of 513.3 mAh g-1 can be achieved at 10 C.
Non-gassing nickel-cadmium battery electrodes and cells
NASA Technical Reports Server (NTRS)
Luksha, E.; Gordy, D. J.
1972-01-01
The concept of a negative limited nongassing nickel-cadmium battery was demonstrated by constructing and testing practical size experimental cells of approximately 25 Ah capacity. These batteries operated in a gas-free manner and had measured energy densities of 10-11 Wh/lb. Thirty cells were constructed for extensive testing. Some small cells were tested for over 200 cycles at 100% depth. For example, a small cell with an electrodeposited cadmium active mass on a silver screen still had 55% of its theoretical capacity (initial efficiency was 85%). There was no evidence of deterioration of gassing properties with cycling of the nickel electrodes. The charge temperature was observed to be the most critical variable governing nickel electrode gassing. This variable was shown to be age dependent. Four types of cadmium electrodes were tested: an electrodeposited cadmium active mass on a cadmium or silver substrate, a porous sintered silver substrate based electrode, and a Teflon bonded pressed cadmium electrode. The electrodeposited cadmium mass on a silver screen was found to be the best all-around electrode from a performance point of view and from the point of view of manufacturing them in a size required for a 25 Ah size battery.
Li, Wenyue; Zhang, Zhenyu; Bian, Haidong; Ng, Tsz‐Wai
2015-01-01
3D graphene‐nanowall‐decorated carbon felts (CF) are synthesized via an in situ microwave plasma enhanced chemical vapor deposition method and used as positive electrode for vanadium redox flow battery (VRFB). The carbon fibers in CF are successfully wrapped by vertically grown graphene nanowalls, which not only increase the electrode specific area, but also expose a high density of sharp graphene edges with good catalytic activities to the vanadium ions. As a result, the VRFB with this novel electrode shows three times higher reaction rate toward VO2 +/VO2+ redox couple and 11% increased energy efficiency over VRFB with an unmodified CF electrode. Moreover, this designed architecture shows excellent stability in the battery operation. After 100 charging–discharging cycles, the electrode not only shows no observable morphology change, it can also be reused in another battery and practical with the same performance. It is believed that this novel structure including the synthesis procedure will provide a new developing direction for the VRFB electrode. PMID:27774399
Li, Wenyue; Zhang, Zhenyu; Tang, Yongbing; Bian, Haidong; Ng, Tsz-Wai; Zhang, Wenjun; Lee, Chun-Sing
2016-04-01
3D graphene-nanowall-decorated carbon felts (CF) are synthesized via an in situ microwave plasma enhanced chemical vapor deposition method and used as positive electrode for vanadium redox flow battery (VRFB). The carbon fibers in CF are successfully wrapped by vertically grown graphene nanowalls, which not only increase the electrode specific area, but also expose a high density of sharp graphene edges with good catalytic activities to the vanadium ions. As a result, the VRFB with this novel electrode shows three times higher reaction rate toward VO 2 + /VO 2+ redox couple and 11% increased energy efficiency over VRFB with an unmodified CF electrode. Moreover, this designed architecture shows excellent stability in the battery operation. After 100 charging-discharging cycles, the electrode not only shows no observable morphology change, it can also be reused in another battery and practical with the same performance. It is believed that this novel structure including the synthesis procedure will provide a new developing direction for the VRFB electrode.
Toward lithium ion batteries with enhanced thermal conductivity.
Koo, Bonil; Goli, Pradyumna; Sumant, Anirudha V; dos Santos Claro, Paula Cecilia; Rajh, Tijana; Johnson, Christopher S; Balandin, Alexander A; Shevchenko, Elena V
2014-07-22
As batteries become more powerful and utilized in diverse applications, thermal management becomes one of the central problems in their application. We report the results on thermal properties of a set of different Li-ion battery electrodes enhanced with multiwalled carbon nanotubes. Our measurements reveal that the highest in-plane and cross-plane thermal conductivities achieved in the carbon-nanotube-enhanced electrodes reached up to 141 and 3.6 W/mK, respectively. The values for in-plane thermal conductivity are up to 2 orders of magnitude higher than those for conventional electrodes based on carbon black. The electrodes were synthesized via an inexpensive scalable filtration method, and we demonstrate that our approach can be extended to commercial electrode-active materials. The best performing electrodes contained a layer of γ-Fe2O3 nanoparticles on carbon nanotubes sandwiched between two layers of carbon nanotubes and had in-plane and cross-plane thermal conductivities of ∼50 and 3 W/mK, respectively, at room temperature. The obtained results are important for thermal management in Li-ion and other high-power-density batteries.
NASA Astrophysics Data System (ADS)
Chervin, Christopher N.; Parker, Joseph F.; Nelson, Eric S.; Rolison, Debra R.; Long, Jeffrey W.
2016-04-01
The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode—a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte.
Phosphate Framework Electrode Materials for Sodium Ion Batteries
Fang, Yongjin; Zhang, Jiexin; Xiao, Lifen; Ai, Xinping; Yang, Hanxi
2017-01-01
Sodium ion batteries (SIBs) have been considered as a promising alternative for the next generation of electric storage systems due to their similar electrochemistry to Li‐ion batteries and the low cost of sodium resources. Exploring appropriate electrode materials with decent electrochemical performance is the key issue for development of sodium ion batteries. Due to the high structural stability, facile reaction mechanism and rich structural diversity, phosphate framework materials have attracted increasing attention as promising electrode materials for sodium ion batteries. Herein, we review the latest advances and progresses in the exploration of phosphate framework materials especially related to single‐phosphates, pyrophosphates and mixed‐phosphates. We provide the detailed and comprehensive understanding of structure–composition–performance relationship of materials and try to show the advantages and disadvantages of the materials for use in SIBs. In addition, some new perspectives about phosphate framework materials for SIBs are also discussed. Phosphate framework materials will be a competitive and attractive choice for use as electrodes in the next‐generation of energy storage devices. PMID:28546907
Phosphate Framework Electrode Materials for Sodium Ion Batteries.
Fang, Yongjin; Zhang, Jiexin; Xiao, Lifen; Ai, Xinping; Cao, Yuliang; Yang, Hanxi
2017-05-01
Sodium ion batteries (SIBs) have been considered as a promising alternative for the next generation of electric storage systems due to their similar electrochemistry to Li-ion batteries and the low cost of sodium resources. Exploring appropriate electrode materials with decent electrochemical performance is the key issue for development of sodium ion batteries. Due to the high structural stability, facile reaction mechanism and rich structural diversity, phosphate framework materials have attracted increasing attention as promising electrode materials for sodium ion batteries. Herein, we review the latest advances and progresses in the exploration of phosphate framework materials especially related to single-phosphates, pyrophosphates and mixed-phosphates. We provide the detailed and comprehensive understanding of structure-composition-performance relationship of materials and try to show the advantages and disadvantages of the materials for use in SIBs. In addition, some new perspectives about phosphate framework materials for SIBs are also discussed. Phosphate framework materials will be a competitive and attractive choice for use as electrodes in the next-generation of energy storage devices.
Rechargeable aluminum batteries with conducting polymers as positive electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudak, Nicholas S.
2013-12-01
This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole andmore » polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g -1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg -1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.« less
NASA Astrophysics Data System (ADS)
Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.
2018-04-01
Redox flow batteries with flow field designs have been demonstrated to boost their capacities to deliver high current density and power density in medium and large-scale energy storage applications. Nevertheless, the fundamental mechanisms involved with improved current density in flow batteries with serpentine flow field designs have been not fully understood. Here we report a three-dimensional model of a serpentine flow field over a porous carbon electrode to examine the distributions of pressure driven electrolyte flow penetrations into the porous carbon electrodes. We also estimate the maximum current densities associated with stoichiometric availability of electrolyte reactant flow penetrations through the porous carbon electrodes. The results predict reasonably well observed experimental data without using any adjustable parameters. This fundamental work on electrolyte flow distributions of limiting reactant availability will contribute to a better understanding of limits on electrochemical performance in flow batteries with serpentine flow field designs and should be helpful to optimizing flow batteries.
An advanced model framework for solid electrolyte intercalation batteries.
Landstorfer, Manuel; Funken, Stefan; Jacob, Timo
2011-07-28
Recent developments of solid electrolytes, especially lithium ion conductors, led to all solid state batteries for various applications. In addition, mathematical models sprout for different electrode materials and battery types, but are missing for solid electrolyte cells. We present a mathematical model for ion flux in solid electrolytes, based on non-equilibrium thermodynamics and functional derivatives. Intercalated ion diffusion within the electrodes is further considered, allowing the computation of the ion concentration at the electrode/electrolyte interface. A generalized Frumkin-Butler-Volmer equation describes the kinetics of (de-)intercalation reactions and is here extended to non-blocking electrodes. Using this approach, numerical simulations were carried out to investigate the space charge region at the interface. Finally, discharge simulations were performed to study different limitations of an all solid state battery cell. This journal is © the Owner Societies 2011
Application of a sodium sulfur cell with dynamic sulfur electrode to a battery system
NASA Astrophysics Data System (ADS)
Tokoi, H.; Takahashi, K.; Shimoyashiki, S.
1992-01-01
The construction and performance of a sodium sulfur battery system with dynamic sulfur electrodes are described. Three cells were first connected in parallel, then two such groups were connected in series. Each cell included a liquid sodium-filled beta-double-prime-alumina tube and a system to feed liquid sulfur into the annular cathode. Low-resistance graphite felt was tightly packed around the beta-double-prime-alumina tube. Sodium pentasulfide was removed from the sulfur electrode. The battery was operated automatically and stably charged and discharged in the two-phase region. The discharged energy was 4372 Wh (capacity 1170 Ah) during a continuous operation of 19.5 h. The discharge/charge energy efficiency of the battery was 82 percent at an averaged current density of 100 mA/sq cm and operating temperature of 350 C. The deviation of the cell current in a parallel chain was less than 7 percent, and this was induced by the difference in internal resistance. In the daily charge/discharge cycle, cell capacity with the dynamic sulfur electrode was 1.5 times higher than that with the static sulfur electrode using the same active surface of beta-double-prime-alumina, because the internal resistance of the former cell was constant regardless of cell capacity. This battery system with a dynamic sulfur electrode can be applied to energy storage systems,such as large scale load leveling systems, electric vehicle batteries, and solar energy systems.
Anderson, Travis M.; Pratt, Harry D.
2016-03-15
Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.
Hybrid system for rechargeable magnesium battery with high energy density
Chang, Zheng; Yang, Yaqiong; Wang, Xiaowei; Li, Minxia; Fu, Zhengwen; Wu, Yuping; Holze, Rudolf
2015-01-01
One of the main challenges of electrical energy storage (EES) is the development of environmentally friendly battery systems with high safety and high energy density. Rechargeable Mg batteries have been long considered as one highly promising system due to the use of low cost and dendrite-free magnesium metal. The bottleneck for traditional Mg batteries is to achieve high energy density since their output voltage is below 2.0 V. Here, we report a magnesium battery using Mg in Grignard reagent-based electrolyte as the negative electrode, a lithium intercalation compound in aqueous solution as the positive electrode, and a solid electrolyte as a separator. Its average discharge voltage is 2.1 V with stable discharge platform and good cycling life. The calculated energy density based on the two electrodes is high. These findings open another door to rechargeable magnesium batteries. PMID:26173624
Ionic liquid as an electrolyte additive for high performance lead-acid batteries
NASA Astrophysics Data System (ADS)
Deyab, M. A.
2018-06-01
The performance of lead-acid battery is improved in this work by inhibiting the corrosion of negative battery electrode (lead) and hydrogen gas evolution using ionic liquid (1-ethyl-3-methylimidazolium diethyl phosphate). The results display that the addition of ionic liquid to battery electrolyte (5.0 M H2SO4 solution) suppresses the hydrogen gas evolution to very low rate 0.049 ml min-1 cm-2 at 80 ppm. Electrochemical studies show that the adsorption of ionic liquid molecules on the lead electrode surface leads to the increase in the charge transfer resistance and the decrease in the double layer capacitance. I also notice a noteworthy improvement of battery capacity from 45 mAh g-1 to 83 mAh g-1 in the presence of ionic liquid compound. Scanning electron microscopy and energy dispersive X-ray analysis confirm the adsorption of ionic liquid molecules on the battery electrode surface.
Farmer, Joseph C.
2017-04-04
A high-performance rechargeable battery using ultra-fast ion conductors. In one embodiment the rechargeable battery apparatus includes an enclosure, a first electrode operatively connected to the enclosure, a second electrode operatively connected to the enclosure, a nanomaterial in the enclosure, and a heat transfer unit.
Highly improved voltage efficiency of seawater battery by use of chloride ion capturing electrode
NASA Astrophysics Data System (ADS)
Kim, Kyoungho; Hwang, Soo Min; Park, Jeong-Sun; Han, Jinhyup; Kim, Junsoo; Kim, Youngsik
2016-05-01
Cost-effective and eco-friendly battery system with high energy density is highly desirable. Herein, we report a seawater battery with a high voltage efficiency, in which a chloride ion-capturing electrode (CICE) consisting of Ag foil is utilized as the cathode. The use of Ag as the cathode leads to a sharp decrease in the voltage gaps between charge and discharge curves, based on reversible redox reaction of Ag/AgCl (at ∼2.9 V vs. Na+/Na) in a seawater catholyte during cycling. The Ag/AgCl reaction proves to be highly reversible during battery cycling. The battery employing the Ag electrode shows excellent cycling performance with a high Coulombic efficiency (98.6-98.7%) and a highly improved voltage efficiency (90.3% compared to 73% for carbonaceous cathode) during 20 cycles (total 500 h). These findings demonstrate that seawater batteries using a CICE could be used as next-generation batteries for large-scale stationary energy storage plants.
Khetan, Abhishek; Krishnamurthy, Dilip; Viswanathan, Venkatasubramanian
2018-03-20
One route toward sustainable land and aerial transportation is based on electrified vehicles. To enable electrification in transportation, there is a need for high-energy-density batteries, and this has led to an enormous interest in lithium-oxygen batteries. Several critical challenges remain with respect to realizing a practical lithium-oxygen battery. In this article, we present a detailed overview of theoretical efforts to formulate design principles for identifying stable electrolytes and electrodes with the desired functionality and stability. We discuss design principles relating to electrolytes and the additional stability challenges that arise at the cathode-electrolyte interface. Based on a thermodynamic analysis, we discuss two important requirements for the cathode: the ability to nucleate the desired discharge product, Li[Formula: see text]O[Formula: see text], and the ability to selectively activate only this discharge product while suppressing lithium oxide, the undesired secondary discharge product. We propose preliminary guidelines for determining the chemical stability of the electrode and illustrate the challenge associated with electrode selection using the examples of carbon cathodes and transition metals. We believe that a synergistic design framework for identifying electrolyte-electrode formulations is needed to realize a practical Li-O[Formula: see text] battery.
High rate, long cycle life battery electrode materials with an open framework structure
Wessells, Colin; Huggins, Robert; Cui, Yi; Pasta, Mauro
2015-02-10
A battery includes a cathode, an anode, and an aqueous electrolyte disposed between the cathode and the anode and including a cation A. At least one of the cathode and the anode includes an electrode material having an open framework crystal structure into which the cation A is reversibly inserted during operation of the battery. The battery has a reference specific capacity when cycled at a reference rate, and at least 75% of the reference specific capacity is retained when the battery is cycled at 10 times the reference rate.
The cell-in-series method: A technique for accelerated electrode degradation in redox flow batteries
Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.; ...
2015-11-21
Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrodemore » surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.« less
Si composite electrode with Li metal doping for advanced lithium-ion battery
Liu, Gao; Xun, Shidi; Battaglia, Vincent
2015-12-15
A silicon electrode is described, formed by combining silicon powder, a conductive binder, and SLMP.TM. powder from FMC Corporation to make a hybrid electrode system, useful in lithium-ion batteries. In one embodiment the binder is a conductive polymer such as described in PCT Published Application WO 2010/135248 A1.
Vanadyl phosphates as high energy density cathode materials for rechargeable sodium battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ruigang; Mizuno, Fuminori; Ling, Chen
A positive electrode comprising .epsilon.-VOPO.sub.4 and/or Na.sub.x(.epsilon.-VOPO.sub.4) wherein x is a value from 0.1 to 1.0 as an active ingredient, wherein the electrode is capable of insertion and release of sodium ions and a reversible sodium battery containing the positive electrode are provided.
NASA Technical Reports Server (NTRS)
Rock, M.
1981-01-01
Electrodes and electrolytes of nickel cadmium sealed batteries were analyzed. Different thermal analysis of negative and positive battery electrodes was conducted and the temperature ranges of occurrence of endotherms indicating decomposition of cadmium hydroxide and nickel hydroxide are identified. Atomic absorption spectroscopy was used to analyze electrodes and electrolytes for traces of nickel, cadmium, cobalt, and potassium. Calibration curves and data are given for each sample analyzed. Instrumentation and analytical procedures used for each method are described.
Alternating-polarity operation for complete regeneration of electrochemical deionization system
Tran, Tri D.; Lenz, David J.
2002-01-01
An electrically regeneratable battery of electrochemical cells for capacitive deionization (including electrochemical purification) and regeneration of electrodes is operated at alternate polarities during consecutive cycles. By polarizing the cells, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the electrodes of each cell of the battery are saturated with the removed ions, the battery is regenerated electrically at a reversed polarity from that during the deionization step of the cycle, thus significantly minimizing secondary wastes.
Toroidal cell and battery. [storage battery for high amp-hour load applications
NASA Technical Reports Server (NTRS)
Nagle, W. J. (Inventor)
1981-01-01
A toroidal storage battery designed to handle relatively high amp-hour loads is described. The cell includes a wound core disposed within a pair of toroidal channel shaped electrodes spaced apart by nylon insulator. The shape of the case electrodes of this toroidal cell allows a first planar doughnut shaped surface and the inner cylindrical case wall to be used as a first electrode and a second planar doughnut shaped surface and the outer cylindrical case wall to be used as a second electrode. Connectors may be used to stack two or more toroidal cells together by connecting substantially the entire surface area of the first electrode of a first cell to substantially the entire surface area of the second electrode of a second cell. The central cavity of each toroidal cell may be used as a conduit for pumping a fluid through the toroidal cell to thereby cool the cell.
The Effect of Microstructure On Transport Properties of Porous Electrodes
NASA Astrophysics Data System (ADS)
Peterson, Serena W.
The goal of this work is to further understand the relationships between porous electrode microstructure and mass transport properties. This understanding allows us to predict and improve cell performance from fundamental principles. The investigated battery systems are the widely used rechargeable Li-ion battery and the non-rechargeable alkaline battery. This work includes three main contributions in the battery field listed below. Direct Measurement of Effective Electronic Transport in Porous Li-ion Electrodes. An accurate assessment of the electronic conductivity of electrodes is necessary for understanding and optimizing battery performance. The bulk electronic conductivity of porous LiCoO2-based cathodes was measured as a function of porosity, pressure, carbon fraction, and the presence of an electrolyte. The measurements were performed by delamination of thin-film electrodes from their aluminum current collectors and by use of a four-line probe. Imaging and Correlating Microstructure To Conductivity. Transport properties of porous electrodes are strongly related to microstructure. An experimental 3D microstructure is needed not only for computation of direct transport properties, but also for a detailed electrode microstructure characterization. This work utilized X-ray tomography and focused ion beam (FIB)/scanning electron microscopy (SEM) to obtain the 3D structures of alkaline battery cathodes. FIB/SEM has the advantage of detecting carbon additives; thus, it was the main tomography tool employed. Additionally, protocols and techniques for acquiring, processing and segmenting series of FIB/SEM images were developed as part of this work. FIB/SEM images were also used to correlate electrodes' microstructure to their respective conductivities for both Li-ion and alkaline batteries. Electrode Microstructure Metrics and the 3D Stochastic Grid Model. A detailed characterization of microstructure was conducted in this work, including characterization of the volume fraction, nearest neighbor probability, domain size distribution, shape factor, and Fourier transform coefficient. These metrics are compared between 2D FIB/SEM, 3D FIB/SEM and X-ray structures. Among those metrics, the first three metrics are used as a basis for SG model parameterization. The 3D stochastic grid (SG) model is based on Monte Carlo techniques, in which a small set of fundamental inter-domain parameters are used to generate structures. This allows us to predict electrode microstructure and its effects on both electronic and ionic properties.
NASA Astrophysics Data System (ADS)
Yeh, Yuting
The lithium-ion battery has emerged as a common power source for portable consumer electronics since its debut two decades ago. Due to the low atomic weight and high electrochemical activity of lithium chemistry, lithium-ion battery has a higher energy density as compared to other battery systems, such as Ni-Cd, Ni-MH, and lead-acid batteries. As a result, use of lithium-ion batteries enables the size of batteries to be effectively reduced without compromising capacity. More importantly, as battery size is reduced, it enhances the applications of portable electronics, increasing the convenience of use. The 3-D battery architecture described in the dissertation is believed to be a new paradigm for future batteries. The architecture features coupled 3-D electrodes to provide better charge/discharge kinetics and a higher charge capacity per footprint area. The overarching objective of this dissertation is to implement the 3-D architecture using the lithium-ion chemistry. The 3-D lithium-ion batteries are designed to provide high areal energy density without compromising power density. The dissertation is comprised of four interrelated sections. First, a simulation was conducted to identify key battery parameters and to define an ideal three-dimensional cell structure. The second part of the research involved identifying fabrication routes to build the 3-D electrode, which was the key design element in the 3-D paradigm. The third part of the dissertation was to correlate the electrode performance with its geometric features. In particular, the influence of aspect ratio was investigated. Lastly, an electrolyte/separator was designed and fabricated based on the existing 3-D electrode configuration. This enabled 3-D battery to be assembled.
Liu, Hao; Zheng, Zheng; Chen, Bochao; Liao, Libing; Wang, Xina
2017-12-01
In order to reduce the amount of inactive materials, such as binders and carbon additives in battery electrode, porous cobalt monoxide nanofibers were directly grown on conductive substrate as a binder/additive-free lithium-ion battery anode. This electrode exhibited very high specific discharging/charging capacities at various rates and good cycling stability. It was promising as high capacity anode materials for lithium-ion battery.
Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond
NASA Astrophysics Data System (ADS)
Zhu, Hongzheng; Liu, Jian
2018-07-01
Solid-state batteries have received increasing attention due to their high safety aspect and high energy and power densities. However, the development of solid-state batteries is hindered by inferior solid-solid interfaces between the solid-state electrolyte and electrode, which cause high interfacial resistance, reduced Li-ion and electron transfer rate, and limited battery performance. Recently, spark plasma sintering (SPS) is emerging as a promising technique for fabricating solid-state electrolyte and electrode pellets with clean and intimate solid-solid interfaces. During the SPS process, the unique reaction mechanism through the combination of current, pressure and high heating rate allow the formation of desirable solid-solid interfaces between active material particles. Herein, this work focuses on the overview of the application of SPS for fabricating solid-state electrolyte and electrode in all solid-state Li-ion batteries, and beyond, such as solid-state Li-S and Na-ion batteries. The correlations among SPS parameters, interfacial resistance, and electrochemical properties of solid-state electrolytes and electrodes are discussed for different material systems. In the end, we point out future opportunities and challenges associated with SPS application in the hot area of solid-state batteries. It is expected that this timely review will stimulate more fundamental and applied research in the development of solid-state batteries by SPS.
Mousty, Christine; Leroux, Fabrice
2012-11-01
From an exhaustive overview based on applicative academic literature and patent domain, the relevance of Layered Double Hydroxide (LDHs) as electrode materials for electrochemical detection of organic molecules having environmental or health impact and energy storage is evaluated. Specifically the focus is driven on their application as supercapacitor, alkaline or lithium battery and (bio)-sensor. Inherent to the high versatility of their chemical composition, charge density, anion exchange capability, LDH-based materials are extensively studied and their performances for such applications are reported. Indeed the analytical characteristics (sensitivity and detection limit) of LDH-based electrodes are scrutinized, and their specific capacity or capacitance as electrode battery or supercapacitor materials, are detailed.
Reinforced Electrode Architecture for a Flexible Battery with Paperlike Characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaikwad, AM; Chu, HN; Qeraj, R
2013-02-10
Compliant energy storage has not kept pace with flexible electronics. Herein we demonstrate a technique to reinforce arbitrary battery electrodes by supporting them with mechanically tough, low-cost fibrous membranes, which also serve as the separator. The membranes were laminated to form a full cell, and this stacked membrane reinforcement bears the loads during flexing. This technique was used to make a high energy density, nontoxic Zn-MnO2 battery with printed current collectors. The Zn and MnO2 electrodes were prepared by using a solution-based embedding process. The cell had a nominal potential of 1.5 V and an effective capacity of approximately 3more » mA h cm(-2). We investigated the effect of bending and fatigue on the electrochemical performance and mechanical integrity of the battery. The battery was able to maintain its capacity even after 1000 flex cycles to a bend radius of 2.54 cm. The battery showed an improvement in discharge capacity (ca. 10%) if the MnO2 electrode was flexed to tension as a result of the improvement of particle-to-particle contact. In a demonstration, the flexible battery was used to power a light-emitting diode display integrated with a strain sensor and microcontroller.« less
NASA Astrophysics Data System (ADS)
Gou, Jun; Lee, Anson; Pyko, Jan
2014-10-01
The cranking and charging processes of a VRLA battery during stop-start cycling in micro-hybrid applications were simulated by one dimensional mathematical modeling, to study the formation and distribution of lead sulfate across the cell and analyze the resulting effect on battery aging. The battery focused on in this study represents a conventional VRLA battery without any carbon additives in the electrodes or carbon-based electrodes. The modeling results were validated against experimental data and used to analyze the "sulfation" of negative electrodes - the common failure mode of lead acid batteries under high-rate partial state of charge (HRPSoC) cycling. The analyses were based on two aging mechanisms proposed in previous studies and the predictions showed consistency with the previous teardown observations that the sulfate formed at the negative interface is more difficult to be converted back than anywhere else in the electrodes. The impact of cranking pulses during stop-start cycling on current density and the corresponding sulfate layer production was estimated. The effects of some critical design parameters on sulfate formation, distribution and aging over cycling were investigated, which provided guidelines for developing models and designing of VRLA batteries in micro-hybrid applications.
NASA Astrophysics Data System (ADS)
Shin, Hyun-Seop; Seo, Gi Won; Kwon, Kyoungwoo; Jung, Kyu-Nam; Lee, Sang Ick; Choi, Eunsoo; Kim, Hansung; Hwang, Jin-Ha; Lee, Jong-Won
2018-04-01
A rechargeable lithium-oxygen (Li-O2) battery is considered as a promising technology for electrochemical energy storage systems because its theoretical energy density is much higher than those of state-of-the-art Li-ion batteries. The cathode (positive electrode) for Li-O2 batteries is made of carbon and polymeric binders; however, these constituents undergo parasitic decomposition reactions during battery operation, which in turn causes considerable performance degradation. Therefore, the rational design of the cathode is necessary for building robust and high-performance Li-O2 batteries. Here, a binder-free carbon nanotube (CNT) electrode surface-modified by atomic layer deposition (ALD) of dual acting RuO2 as an inhibitor-promoter is proposed for rechargeable Li-O2 batteries. RuO2 nanoparticles formed directly on the binder-free CNT electrode by ALD play a dual role to inhibit carbon decomposition and to promote Li2O2 decomposition. The binder-free RuO2/CNT cathode with the unique architecture shows outstanding electrochemical performance as characterized by small voltage gaps (˜0.9 V) as well as excellent cyclability without any signs of capacity decay over 80 cycles.
Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.
Cheng, Fangyi; Chen, Jun
2012-03-21
Because of the remarkably high theoretical energy output, metal-air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal-air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal-air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic-organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal-air batteries (219 references).
Computer Aided Battery Engineering Consortium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesaran, Ahmad
A multi-national lab collaborative team was assembled that includes experts from academia and industry to enhance recently developed Computer-Aided Battery Engineering for Electric Drive Vehicles (CAEBAT)-II battery crush modeling tools and to develop microstructure models for electrode design - both computationally efficient. Task 1. The new Multi-Scale Multi-Domain model framework (GH-MSMD) provides 100x to 1,000x computation speed-up in battery electrochemical/thermal simulation while retaining modularity of particles and electrode-, cell-, and pack-level domains. The increased speed enables direct use of the full model in parameter identification. Task 2. Mechanical-electrochemical-thermal (MECT) models for mechanical abuse simulation were simultaneously coupled, enabling simultaneous modelingmore » of electrochemical reactions during the short circuit, when necessary. The interactions between mechanical failure and battery cell performance were studied, and the flexibility of the model for various batteries structures and loading conditions was improved. Model validation is ongoing to compare with test data from Sandia National Laboratories. The ABDT tool was established in ANSYS. Task 3. Microstructural modeling was conducted to enhance next-generation electrode designs. This 3- year project will validate models for a variety of electrodes, complementing Advanced Battery Research programs. Prototype tools have been developed for electrochemical simulation and geometric reconstruction.« less
Long life lithium batteries with stabilized electrodes
Amine, Khalil [Downers Grove, IL; Liu, Jun [Naperville, IL; Vissers, Donald R [Naperville, IL; Lu, Wenquan [Darien, IL
2009-03-24
The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.
Li, Jie; Liang, Xinhua; Liou, Frank; Park, Jonghyun
2018-01-30
This paper presents a new concept for making battery electrodes that can simultaneously control macro-/micro-structures and help address current energy storage technology gaps and future energy storage requirements. Modern batteries are fabricated in the form of laminated structures that are composed of randomly mixed constituent materials. This randomness in conventional methods can provide a possibility of developing new breakthrough processing techniques to build well-organized structures that can improve battery performance. In the proposed processing, an electric field (EF) controls the microstructures of manganese-based electrodes, while additive manufacturing controls macro-3D structures and the integration of both scales. The synergistic control of micro-/macro-structures is a novel concept in energy material processing that has considerable potential for providing unprecedented control of electrode structures, thereby enhancing performance. Electrochemical tests have shown that these new electrodes exhibit superior performance in their specific capacity, areal capacity, and life cycle.
High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects
Nanda, Jagjit; Martha, Surendra K.; Kalyanaraman, Ramki
2015-06-02
In this review, we summarize the current state-of-the art electrode materials used for high-capacity lithium-ion-based batteries and their significant role towards revolutionizing the electrochemical energy storage landscape in the area of consumer electronics, transportation and grid storage application. We discuss the role of nanoscale effects on the electrochemical performance of high-capacity battery electrode materials. Decrease in the particle size of the primary electrode materials from micron to nanometre size improves the ionic and electronic diffusion rates significantly. Nanometre-thick solid electrolyte (such as lithium phosphorous oxynitride) and oxides (such as Al 2O 3, ZnO, TiO 2 etc.) material coatings also improvemore » the interfacial stability and rate capability of a number of battery chemistries. Finally, we elucidate these effects in terms of different high-capacity battery chemistries based on intercalation and conversion mechanism.« less
Recent Progress in Iron-Based Electrode Materials for Grid-Scale Sodium-Ion Batteries.
Fang, Yongjin; Chen, Zhongxue; Xiao, Lifen; Ai, Xinping; Cao, Yuliang; Yang, Hanxi
2018-03-01
Grid-scale energy storage batteries with electrode materials made from low-cost, earth-abundant elements are needed to meet the requirements of sustainable energy systems. Sodium-ion batteries (SIBs) with iron-based electrodes offer an attractive combination of low cost, plentiful structural diversity and high stability, making them ideal candidates for grid-scale energy storage systems. Although various iron-based cathode and anode materials have been synthesized and evaluated for sodium storage, further improvements are still required in terms of energy/power density and long cyclic stability for commercialization. In this Review, progress in iron-based electrode materials for SIBs, including oxides, polyanions, ferrocyanides, and sulfides, is briefly summarized. In addition, the reaction mechanisms, electrochemical performance enhancements, structure-composition-performance relationships, merits and drawbacks of iron-based electrode materials for SIBs are discussed. Such iron-based electrode materials will be competitive and attractive electrodes for next-generation energy storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yu, Xingwen; Manthiram, Arumugam
2017-11-21
Electrode-electrolyte interfacial properties play a vital role in the cycling performance of lithium-sulfur (Li-S) batteries. The issues at an electrode-electrolyte interface include electrochemical and chemical reactions occurring at the interface, formation mechanism of interfacial layers, compositional/structural characteristics of the interfacial layers, ionic transport across the interface, and thermodynamic and kinetic behaviors at the interface. Understanding the above critical issues is paramount for the development of strategies to enhance the overall performance of Li-S batteries. Liquid electrolytes commonly used in Li-S batteries bear resemblance to those employed in traditional lithium-ion batteries, which are generally composed of a lithium salt dissolved in a solvent matrix. However, due to a series of unique features associated with sulfur or polysulfides, ether-based solvents are generally employed in Li-S batteries rather than simply adopting the carbonate-type solvents that are generally used in the traditional Li + -ion batteries. In addition, the electrolytes of Li-S batteries usually comprise an important additive, LiNO 3 . The unique electrolyte components of Li-S batteries do not allow us to directly take the interfacial theories of the traditional Li + -ion batteries and apply them to Li-S batteries. On the other hand, during charging/discharging a Li-S battery, the dissolved polysulfide species migrate through the battery separator and react with the Li anode, which magnifies the complexity of the interfacial problems of Li-S batteries. However, current Li-S battery development paths have primarily been energized by advances in sulfur cathodes. Insight into the electrode-electrolyte interfacial behaviors has relatively been overshadowed. In this Account, we first examine the state-of-the-art contributions in understanding the solid-electrolyte interphase (SEI) formed on the Li-metal anode and sulfur cathode in conventional liquid-electrolyte Li-S batteries and how the resulting chemical and physical properties of the SEI affect the overall battery performance. A few strategies recently proposed for improving the stability of SEI are briefly summarized. Solid Li + -ion conductive electrolytes have been attempted for the development of Li-S batteries to eliminate the polysulfide shuttle issues. One approach is based on a concept of "all-solid-state Li-S battery," in which all the cell components are in the solid state. Another approach is based on a "hybrid-electrolyte Li-S battery" concept, in which the solid electrolyte plays roles both as a Li + -ion conductor for the electrochemical reaction and as a separator to prevent polysulfide shuttle. However, these endeavors with the solid electrolyte are not able to provide an overall satisfactory cell performance. In addition to the low ionic conductivity of solid-state electrolytes, a critical issue lies in the poor interfacial properties between the electrode and the solid electrolyte. This Account provides a survey of the relevant research progress in understanding and manipulating the interfaces of electrode and solid electrolytes in both the "all-solid-state Li-S batteries" and the "hybrid-electrolyte Li-S batteries". A recently proposed "semi-solid-state Li-S battery" concept is also briefly discussed. Finally, future research and development directions in all the above areas are suggested.
Innovation Meets Performance Demands of Advanced Lithium-ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Advancements in high capacity and low density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and molecular layer MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using MLD to examine how surface modification could stabilize silicon anode material in Li-ion batteries, researchers discovered a new reaction precursor that leads to a flexible surface coating that accommodatesmore » volumetric expansion of silicon electrodes.« less
NASA Astrophysics Data System (ADS)
Zhao, Rui; Zhang, Sijie; Liu, Jie; Gu, Junjie
2015-12-01
Lithium ion (Li-ion) battery has emerged as an important power source for portable devices and electric vehicles due to its superiority over other energy storage technologies. A mild temperature variation as well as a proper operating temperature range are essential for a Li-ion battery to perform soundly and have a long service life. In this review paper, the heat generation and dissipation of Li-ion battery are firstly analyzed based on the energy conservation equations, followed by an examination of the hazardous effects of an above normal operating temperature. Then, advanced techniques in respect of electrode modification and systematic battery thermal management are inspected in detail as solutions in terms of reducing internal heat production and accelerating external heat dissipation, respectively. Specifically, variable parameters like electrode thickness and particle size of active material, along with optimization methods such as coating, doping, and adding conductive media are discussed in the electrode modification section, while the current development in air cooling, liquid cooling, heat pipe cooling, and phase change material cooling systems are reviewed in the thermal management part as different ways to improve the thermal performance of Li-ion batteries.
NASA Astrophysics Data System (ADS)
Anderman, Menahem; Benczur-Urmossy, Gabor; Haschka, Friedrich
Test data on prismatic sealed Ni-Cd batteries utilizing fiber structured electrodes (sealed FNC) is discussed. It is shown that, under a voltage limited charging scheme, the charge acceptance of the sealed FNC battery is far superior to that of the standard vented aircraft Ni-Cd batteries. This results in the sealed FNC battery maintaining its capacity over several thousand cycles without any need for electrical conditioning or water topping. APU start data demonstrate superior power capabilities over existing technologies. Performance at low temperature is presented. Abuse test results reveal a safe fail mechanism even under severe electrical abuse.
Lignin as a Binder Material for Eco-Friendly Li-Ion Batteries
Lu, Huiran; Cornell, Ann; Alvarado, Fernando; Behm, Mårten; Leijonmarck, Simon; Li, Jiebing; Tomani, Per; Lindbergh, Göran
2016-01-01
The industrial lignin used here is a byproduct from Kraft pulp mills, extracted from black liquor. Since lignin is inexpensive, abundant and renewable, its utilization has attracted more and more attention. In this work, lignin was used for the first time as binder material for LiFePO4 positive and graphite negative electrodes in Li-ion batteries. A procedure for pretreatment of lignin, where low-molecular fractions were removed by leaching, was necessary to obtain good battery performance. The lignin was analyzed for molecular mass distribution and thermal behavior prior to and after the pretreatment. Electrodes containing active material, conductive particles and lignin were cast on metal foils, acting as current collectors and characterized using scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge cycles. Good reversible capacities were obtained, 148 mAh·g−1 for the positive electrode and 305 mAh·g−1 for the negative electrode. Fairly good rate capabilities were found for both the positive electrode with 117 mAh·g−1 and the negative electrode with 160 mAh·g−1 at 1C. Low ohmic resistance also indicated good binder functionality. The results show that lignin is a promising candidate as binder material for electrodes in eco-friendly Li-ion batteries. PMID:28773252
NASA Astrophysics Data System (ADS)
Zhou, X. L.; Zhao, T. S.; Zeng, Y. K.; An, L.; Wei, L.
2016-10-01
In this work, a high-performance porous electrode, made of KOH-activated carbon-cloth, is developed for vanadium redox flow batteries (VRFBs). The macro-scale porous structure in the carbon cloth formed by weaving the carbon fibers in an ordered manner offers a low tortuosity (∼1.1) and a broad pore distribution from 5 μm to 100 μm, rendering the electrode a high hydraulic permeability and high effective ionic conductivity, which are beneficial for the electrolyte flow and ion transport through the porous electrode. The use of KOH activation method to create nano-scale pores on the carbon-fiber surfaces leads to a significant increase in the surface area for redox reactions from 2.39 m2 g-1 to 15.4 m2 g-1. The battery assembled with the present electrode delivers an energy efficiency of 80.1% and an electrolyte utilization of 74.6% at a current density of 400 mA cm-2, as opposed to an electrolyte utilization of 61.1% achieved by using a conventional carbon-paper electrode. Such a high performance is mainly attributed to the combination of the excellent mass/ion transport properties and the high surface area rendered by the present electrode. It is suggested that the KOH-activated carbon-cloth electrode is a promising candidate in redox flow batteries.
Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R; Smith, Raymond B; Bartelt, Norman C; Sugar, Joshua D; Fenton, Kyle R; Cogswell, Daniel A; Kilcoyne, A L David; Tyliszczak, Tolek; Bazant, Martin Z; Chueh, William C
2014-12-01
Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.
Multifunctional Yarns and Fabrics for Energy Applications (NBIT Phase 2)
2013-05-29
project focus on developing biscrolled carbon nanotube yarns and textiles for supercapacitor /battery and fuel cell electrode applications was chosen...redox supercapacitors resulted from program work. While project focus was on fuel cell and energy storage electrodes based on biscrolled yarns...project focus on developing biscrolled carbon nanotube yarns and textiles for supercapacitor /battery and fuel cell electrode applications was chosen
Vertically aligned carbon nanotube electrodes for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Welna, Daniel T.; Qu, Liangti; Taylor, Barney E.; Dai, Liming; Durstock, Michael F.
As portable electronics become more advanced and alternative energy demands become more prevalent, the development of advanced energy storage technologies is becoming ever more critical in today's society. In order to develop higher power and energy density batteries, innovative electrode materials that provide increased storage capacity, greater rate capabilities, and good cyclability must be developed. Nanostructured materials are gaining increased attention because of their potential to mitigate current electrode limitations. Here we report on the use of vertically aligned multi-walled carbon nanotubes (VA-MWNTs) as the active electrode material in lithium-ion batteries. At low specific currents, these VA-MWNTs have shown high reversible specific capacities (up to 782 mAh g -1 at 57 mA g -1). This value is twice that of the theoretical maximum for graphite and ten times more than their non-aligned equivalent. Interestingly, at very high discharge rates, the VA-MWNT electrodes retain a moderate specific capacity due to their aligned nature (166 mAh g -1 at 26 A g -1). These results suggest that VA-MWNTs are good candidates for lithium-ion battery electrodes which require high rate capability and capacity.
NASA Astrophysics Data System (ADS)
Schwenke, A. M.; Janoschka, T.; Stolze, C.; Martin, N.; Hoeppener, S.; Schubert, U. S.
2016-12-01
A simple and fast microwave-assisted protocol to functionalize commercially available graphite felts (GFs) with carbon nanofibers (CNFs) for the application as electrode materials in redox-flow batteries (RFB) is demonstrated. As catalyst for the CNF synthesis nickel acetate is applied and ethanol serves as the carbon source. By the in-situ growth of CNFs, the active surface of the electrodes is increased by a factor of 50, which is determined by the electrochemical double layer capacities of the obtained materials. Furthermore, the morphology of the CNF-coating is investigated by scanning electron microscopy. Subsequently, the functionalized electrodes are applied in a polymer-based redox-flow battery (pRFB) using a TEMPO- and a viologen polymer as active materials. Due to the increased surface area as compared to an untreated graphite felt electrode, the current rating is improved by about 45% at 80 mA cm-2 and, furthermore, a decrease in overpotentials is observed. Thus, using this microwave-assisted synthesis approach, CNF-functionalized composite electrodes are prepared with a very simple protocol suitable for real life applications and an improvement of the overall performance of the polymer-based redox-flow battery is demonstrated.
NASA Astrophysics Data System (ADS)
Faulkner, Ankita Shah
As the demand for clean energy sources increases, large investments have supported R&D programs aimed at developing high power lithium ion batteries for electric vehicles, military, grid storage and space applications. State of the art lithium ion technology cannot meet power demands for these applications due to high internal resistances in the cell. These resistances are mainly comprised of ionic and electronic resistance in the electrode and electrolyte. Recently, much attention has been focused on the use of nanoscale lithium ion active materials on the premise that these materials shorten the diffusion length of lithium ions and increase the surface area for electrochemical charge transfer. While, nanomaterials have allowed significant improvements in the power density of the cell, they are not a complete solution for commercial batteries. Due to their large surface area, they introduce new challenges such as a poor electrode packing densities, high electrolyte reactivity, and expensive synthesis procedures. Since greater than 70% of the cost of the electric vehicle is due to the cost of the battery, a cost-efficient battery design is most critical. To address the limitations of nanomaterials, efficient transport pathways must be engineered in the bulk electrode. As a part of nanomanufacturing research being conducted the Center for High-rate Nanomanufacturing at Northeastern University, the first aim of the proposed work is to develop electrode architectures that enhance electronic and ionic transport pathways in large and small area lithium ion electrodes. These architectures will utilize the unique electronic and mechanical properties of carbon nanotubes to create robust electrode scaffolding that improves electrochemical charge transfer. Using extensive physical and electrochemical characterization, the second aim is to investigate the effect of electrode parameters on electrochemical performance and evaluate the performance against standard commercial electrodes. These parameters include surface morphology, electrode composition, electrode density, and operating temperature. Finally, the third aim is to investigate commercial viability of the electrode architecture. This will be accomplished by developing pouch cell prototypes using a high-rate and low cost scale-up process. Through this work, we aim to realize a commercially viable high-power electrode technology.
Organometallic-inorganic hybrid electrodes for lithium-ion batteries
Huang, Qian; Lemmon, John P.; Choi, Daiwon; Cosimbescu, Lelia
2016-09-13
Disclosed are embodiments of active materials for organometallic and organometallic-inorganic hybrid electrodes and particularly active materials for organometallic and organometallic-inorganic hybrid cathodes for lithium-ion batteries. In certain embodiments the organometallic material comprises a ferrocene polymer.
A method for making an alkaline battery electrode plate
NASA Technical Reports Server (NTRS)
Chida, K.; Ezaki, T.
1983-01-01
A method is described for making an alkaline battery electrode plate where the desired active substances are filled into a nickel foam substrate. In this substrate an electrolytic oxidation reduction occurs in an alkaline solution containing lithium hydroxide.
Secondary battery containing zinc electrode with modified separator and method
Poa, David S.; Yao, Neng-Ping
1985-01-01
A battery containing a zinc electrode with a porous separator between the anode and cathode. The separator is a microporous substrate carrying therewith an organic solvent of benzene, toluene or xylene with a tertiary organic amine therein, wherein the tertiary amine has three carbon chains each containing from six to eight carbon atoms. The separator reduces the rate of zinc dentrite growth in the separator during battery operation prolonging battery life by preventing short circuits. A method of making the separator is also disclosed.
Secondary battery containing zinc electrode with modified separator and method
Poa, D.S.
1984-02-16
A battery containing a zinc electrode with a porous separator between the anode and cathode. The separator is a microporous substrate carrying therewith an organic solvent of benzene, toluene or xylene with a tertiary organic amine therein, wherein the tertiary amine has three carbon chains each containing from six to eight carbon atoms. The separator reduces the rate of zinc dentrite growth in the separator during battery operation prolonging battery life by preventing short circuits. A method of making the separator is also disclosed.
Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries
NASA Astrophysics Data System (ADS)
Ludwig, Brandon; Zheng, Zhangfeng; Shou, Wan; Wang, Yan; Pan, Heng
2016-03-01
Lithium ion battery electrodes were manufactured using a new, completely dry powder painting process. The solvents used for conventional slurry-cast electrodes have been completely removed. Thermal activation time has been greatly reduced due to the time and resource demanding solvent evaporation process needed with slurry-cast electrode manufacturing being replaced by a hot rolling process. It has been found that thermal activation time to induce mechanical bonding of the thermoplastic polymer to the remaining active electrode particles is only a few seconds. Removing the solvent and drying process allows large-scale Li-ion battery production to be more economically viable in markets such as automotive energy storage systems. By understanding the surface energies of various powders which govern the powder mixing and binder distribution, bonding tests of the dry-deposited particles onto the current collector show that the bonding strength is greater than slurry-cast electrodes, 148.8 kPa as compared to 84.3 kPa. Electrochemical tests show that the new electrodes outperform conventional slurry processed electrodes, which is due to different binder distribution.
NASA Astrophysics Data System (ADS)
Li, Jing; Shangguan, Enbo; Guo, Dan; Li, Quanmin; Chang, Zhaorong; Yuan, Xiao-Zi; Wang, Haijiang
2014-10-01
In this paper, a novel additive, calcium metaborate (CMB), is proposed to improve the high-temperature characteristics of the nickel electrodes for nickel-metal hydride batteries. As a soluble calcium salt, CMB can easily and uniformly be dispersed in the nickel electrodes. The effects of CMB on the nickel electrode are investigated via a combination of cyclability, capacity retention, electrochemical impedance spectroscopy, scanning electron microscope and X-ray diffraction. Compared with conventional nickel electrodes, the electrode containing 0.5 wt.% CMB exhibits superior electrode properties including enhanced discharge capacity, improved high-rate discharge ability and excellent cycle stability at an elevated temperature (70 °C). The improved cell performance of the nickel electrode containing CMB additives can be attributable to the increased oxygen evolution overvoltage and slower oxygen evolution rate. Compared with insoluble calcium salts, such as Ca(OH)2, CaCO3, and CaF2, CMB is more effective as a cathode additive to improve the high-temperature performance of Ni-MH batteries.
Jiang, Rongzhong
2007-07-01
An electrochemical cell array was designed that contains a common air electrode and 16 microanodes for high throughput screening of both fuel cells (based on polymer electrolyte membrane) and metal/air batteries (based on liquid electrolyte). Electrode materials can easily be coated on the anodes of the electrochemical cell array and screened by switching a graphite probe from one cell to the others. The electrochemical cell array was used to study direct methanol fuel cells (DMFCs), including high throughput screening of electrode catalysts and determination of optimum operating conditions. For screening of DMFCs, there is about 6% relative standard deviation (percentage of standard deviation versus mean value) for discharge current from 10 to 20 mAcm(2). The electrochemical cell array was also used to study tin/air batteries. The effect of Cu content in the anode electrode on the discharge performance of the tin/air battery was investigated. The relative standard deviations for screening of metal/air battery (based on zinc/air) are 2.4%, 3.6%, and 5.1% for discharge current at 50, 100, and 150 mAcm(2), respectively.
NASA Astrophysics Data System (ADS)
Sharma, N.; Yu, D. H.; Zhu, Y.; Wu, Y.; Peterson, V. K.
2017-02-01
In operando NPD data of electrodes in lithium-ion batteries reveal unusual LiFePO4 phase evolution after the application of a thermal step and at high current. At low current under ambient conditions the LiFePO4 to FePO4 two-phase reaction occurs during the charge process, however, following a thermal step and at higher current this reaction appears at the end of charge and continues into the next electrochemical step. The same behavior is observed for the FePO4 to LiFePO4 transition, occurring at the end of discharge and continuing into the following electrochemical step. This suggests that the bulk (or the majority of the) electrode transformation is dependent on the battery's history, current, or temperature. Such information concerning the non-equilibrium evolution of an electrode allows a direct link between the electrode's functional mechanism that underpins lithium-ion battery behavior and the real-life operating conditions of the battery, such as variable temperature and current, to be made.
NASA Astrophysics Data System (ADS)
Yazami, Rachid
This paper reviews the main areas of research performed at different Laboratories of the Institut National Polytechnique de Grenoble (INPG) over the past 20 years, specifically on cabonaceous materials for electrode applications in lithium batteries. The most significant event was the discovery in the early 1980s of reversible lithium intercalation into graphite in polymer electrolytes, which led to the use of this material in today's lithium-ion batteries. Important work was also carried out on positive electrode for primary and secondary batteries, especially graphite oxide and graphite fluoride. Most of these results were presented at the 10 IMLB series Symposia, which started in Rome in 1982 and were back to Como, Italy, in 2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, P.A.; Yao, N.P.; Steunenberg, R.K.
1977-04-01
These batteries are being developed for electric vehicle propulsion and for stationary energy storage applications. The present battery cells, which operate at 400 to 450/sup 0/C, are of a vertically oriented, prismatic design with a central positive electrode of FeS or FeS/sub 2/, two facing negative electrodes of lithium--aluminum alloy, and an electrolyte of molten LiCl--KCl. Testing and evaluation of industrially fabricated cells is continuing. During this period, Li--Al/FeS and Li--Al/FeS/sub 2/ cells from Eagle-Picher Industries were tested, and tests of Li--Al/FeS cells from Gould Inc. were initiated. The cells are tested individually and in parallel and series battery configurations.more » These tests provide information on the effects of cell design modifications and alternative materials. Improved electrode and cell designs are being developed and tested at ANL, and the more promising designs are incorporated in the industrially fabricated cells. Among the concepts receiving major attention are carbon-bonded positive electrodes, scaled-up stationary energy storage cell designs, additives to extend electrode lifetime, and alternative electrode separators. The materials development efforts include the development of a new lightweight electrical feedthrough; investigations of new separator materials (e.g.,Y/sub 2/O/sub 3/ powder, Y/sub 2/O/sub 3/ felt, and porous, rigid ceramics); corrosion tests of materials for cell components; and postoperative examinations of cells. The cell chemistry studies were directed to discharge mechanisms of FeS electrodes, emf measurements of the LiAl/FeS/sub 2/ couple at various states of discharge, and studies of other transition-metal sulfides as positive-electrode materials. The advanced battery effort mainly concerned the use of calcium alloys for negative electrode and transition metal sulfides or oxides for the positive electrode. 13 figures, 18 tables.« less
2015-05-07
6 1.6 Lithium - Ion Batteries Based on Vertically-Aligned Carbon Nanotube Electrodes and Ionic...Cl, Br, or I) Prepared by Ball-Milling and Used as Anode Materials for Lithium - Ion Batteries ……………....................23 3.4 Well-Defined Two...9 1.6 Lithium - Ion Batteries Based on Vertically-Aligned Carbon Nanotube Electrodes and Ionic Liquid Electrolytes
Zhao, Hui; Yang, Qing; Yuca, Neslihan; ...
2016-06-23
Control over porous electrode microstructure is critical for the continued improvement of electrochemical performance of lithium ion batteries. This paper describes a convenient and economical method for controlling electrode porosity, thereby enhancing material loading and stabilizing the cycling performance. Sacrificial NaCl is added to a Si-based electrode, which demonstrates an areal capacity of ~4 mAh/cm 2 at a C/10 rate (0.51 mA/cm 2) and an areal capacity of 3 mAh/cm 2 at a C/3 rate (1.7 mA/cm 2), one of the highest material loadings reported for a Si-based anode at such a high cycling rate. X-ray microtomography confirmed the improvedmore » porous architecture of the SiO electrode with NaCl. The method developed here is expected to be compatible with the state-of-the-art lithium ion battery industrial fabrication processes and therefore holds great promise as a practical technique for boosting the electrochemical performance of lithium ion batteries without changing material systems.« less
Li, M M; Yang, C C; Wang, C C; Wen, Z; Zhu, Y F; Zhao, M; Li, J C; Zheng, W T; Lian, J S; Jiang, Q
2016-06-07
Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world's dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials-hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g(-1), which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.
Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.
2016-01-01
Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g−1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles. PMID:27270184
NASA Astrophysics Data System (ADS)
Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.
2016-06-01
Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g-1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.
Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland
2014-02-04
Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.
Polymeric metallic electrodes for rechargeable battery applications
NASA Technical Reports Server (NTRS)
Somoano, R.
1982-01-01
A review is presented on the status of plastic metal electrodes, emphasizing the use of polyacetylene as a prototype polymeric material. The electrochemical characteristics of polyacetylene are examined; and the potential use of this material, as well as other types of plastic metal electrodes, in batteries is evaluated. Several problem areas which must be solved before polyacetylene can be widely used in battery applications are discussed, including the problem of electrolyte stability, the problem that the depth of discharge and the energy density is limited by the metal-semiconductor transition, and also the poor electrochemical performance of impure material.
Thermal management for high-capacity large format Li-ion batteries
Wang, Hsin; Kepler, Keith Douglas; Pannala, Sreekanth; Allu, Srikanth
2017-05-30
A lithium ion battery includes a cathode in electrical and thermal connection with a cathode current collector. The cathode current collector has an electrode tab. A separator is provided. An anode is in electrical and thermal connection with an anode current collector. The anode current collector has an electrode tab. At least one of the cathode current collector and the anode current collector comprises a thermal tab for heat transfer with the at least one current collector. The thermal tab is separated from the electrode tab. A method of operating a battery is also disclosed.
Flight Weight Design Nickel-Hydrogen Cells Using Lightweight Nickel Fiber Electrodes
NASA Technical Reports Server (NTRS)
Britton, Doris L.; Willis, Bob; Pickett, David F.
2003-01-01
The goal of this program is to develop a lightweight nickel electrode for advanced aerospace nickel-hydrogen cells and batteries with improved specific energy and specific volume. The lightweight nickel electrode will improve the specific energy of a nickel-hydrogen cell by >50%. These near-term advanced batteries will reduce power system mass and volume, while decreasing the cost, thus increasing mission capabilities and enabling small spacecraft missions. This development also offers a cost savings over the traditional sinter development methods for fabrication. The technology has been transferred to Eagle-Picher, a major aerospace battery manufacturer, who has scaled up the process developed at NASA GRC and fabricated electrodes for incorporation into flight-weight nickel-hydrogen cells.
What Can We Learn from Solid State NMR on the Electrode-Electrolyte Interface?
Haber, Shira; Leskes, Michal
2018-06-11
Rechargeable battery cells are composed of two electrodes separated by an ion-conducting electrolyte. While the energy density of the cell is mostly determined by the redox potential of the electrodes and amount of charge they can store, the processes at the electrode-electrolyte interface govern the battery's lifetime and performance. Viable battery cells rely on unimpeded ion transport across this interface, which depends on its composition and structure. These properties are challenging to determine as interfacial phases are thin, disordered, heterogeneous, and can be very reactive. The recent developments and applications of solid state NMR spectroscopy in the study of interfacial phenomena in rechargeable batteries based on lithium and sodium chemistries are reviewed. The different NMR interactions are surveyed and how these are used to shed light on the chemical composition and architecture of interfacial phases as well as directly probe ion transport across them is described. By combining new methods in solid state NMR spectroscopy with other analytical tools, a holistic description of the electrode-electrolyte interface can be obtained. This will enable the design of improved interfaces for developing battery cells with high energy, high power, and longer lifetime. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Short-range contacts govern the performance of industry-relevant battery cathodes
NASA Astrophysics Data System (ADS)
Morelly, Samantha L.; Alvarez, Nicolas J.; Tang, Maureen H.
2018-05-01
Fundamental understanding of how processing affects composite battery electrode structure and performance is still lacking, especially for industry-relevant electrodes with low fractions of inactive material. This work combines rheology, electronic conductivity measurements, and battery rate capability tests to prove that short-range electronic contacts are more important to cathode rate capability than either ion transport or long-range electronic conductivity. LiNi0.33Mn0.33Co0.33O2, carbon black, and polyvinylidene difluoride in 1-methyl-2-pyrrolidinone represent a typical commercial electrode with <5.5 wt% inactive material. Dry-mixing carbon black with active material decreases the relative fraction of bulk (free) carbon, as shown by small angle oscillatory shear and microscopy. More free carbon leads to a stronger gel network (more long-range particle contacts) and higher electronic conductivity of the dried films. Improvements in battery rate capability at constant electrode porosity do not correlate to electronic conductivity, but rather show an optimum fraction of free carbon. Simple comparison of rate capability in electrodes with increased total carbon loading (3 wt%) shows improvement for all fractions of free carbon. These results clearly indicate that ion transport cannot be limiting and highlight the critical importance of short-range electronic contacts for controlling battery performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bin; Xu, Wu; Tao, Jinhui
Although the rechargeable lithium-oxygen (Li-O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon-based air-electrode, Li metal anode, and electrolytes towards reduced oxygen species. Here we demonstrate a simple one-step in-situ electrochemical pre-charging strategy to generate thin protective films on both carbon nanotubes (CNTs) air-electrode and Li metal anode simultaneously under an inert atmosphere. Li-O2 cells after such pre-treatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity-limited protocol of 1000 mAh g-1 and 500 mAh g-1, respectively, which is far more thanmore » those without pre-treatment. The thin-films formed from decomposition of electrolyte during in-situ electrochemical pre-charging process in an inert environment can protect both CNTs air-electrode and Li metal anode prior to conventional Li-O2 discharge/charge cycling where reactive reduced oxygen species are formed. This work provides a new approach for protections of carbon-based air-electrode and Li metal anode in practical Li-O2 batteries, and may also be applied to other battery systems.« less
NASA Astrophysics Data System (ADS)
Xu, Qian-Ting; Li, Jia-Chuang; Xue, Huai-Guo; Guo, Sheng-Ping
2018-03-01
Effective utilization of energy requires the storage and conversion device with high ability. For well-developed lithium ion batteries (LIBs) and highly developing sodium ion batteries (SIBs), this ability especially denotes to high energy and power densities. It's believed that the capacity of a full cell is mainly contributed by anode materials. So, to develop inexpensive anode materials with high capacity are meaningful for various rechargeable batteries' better applications. Iron is a productive element in the crust, and its oxides, sulfides, fluorides, and oxygen acid salts are extensively investigated as electrode materials for batteries. In view of the importance of electrode materials containing iron, this review summarizes the recent achievements on various binary iron sulfides (FeS, FeS2, Fe3S4, and Fe7S8)-type electrodes for batteries. The contents are mainly focused on their crystal structures, synthetic methods, and electrochemical performance. Moreover, the challenges and some improvement strategies are also discussed.
Hybrid anodes for redox flow batteries
Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.
2015-12-15
RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.
Lithium-titanium-oxide anodes for lithium batteries
Vaughey, John T.; Thackeray, Michael M.; Kahaian, Arthur J.; Jansen, Andrew N.; Chen, Chun-hua
2001-01-01
A spinel-type structure with the general formula Li[Ti.sub.1.67 Li.sub.0.33-y M.sub.y ]O.sub.4, for 0
Zhang, Huang; Jeong, Sangsik; Qin, Bingsheng; Vieira Carvalho, Diogo; Buchholz, Daniel; Passerini, Stefano
2018-04-25
Aqueous Na-ion batteries may offer a solution to the cost and safety issues of high-energy batteries. However, substantial challenges remain in the development of electrode materials and electrolytes enabling high performance and long cycle life. Herein, we report the characterization of a symmetric Na-ion battery with a NASICON-type Na 2 VTi(PO 4 ) 3 electrode material in conventional aqueous and "water-in-salt" electrolytes. Extremely stable cycling performance for 1000 cycles at a high rate (20 C) is found with the highly concentrated aqueous electrolytes owing to the formation of a resistive but protective interphase between the electrode and electrolyte. These results provide important insight for the development of aqueous Na-ion batteries with stable long-term cycling performance for large-scale energy storage. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Yang; Fu, Jing; Zhang, Yining; Li, Matthew; Hassan, Fathy Mohamed; Li, Guang; Chen, Zhongwei
2017-10-26
Exploring highly efficient bifunctional electrocatalysts toward the oxygen reduction and evolution reactions is essential for the realization of high-performance rechargeable zinc-air batteries. Herein, a novel nanofibrous bifunctional electrocatalyst film, consisting of metallic manganese sulfide and cobalt encapsulated by nitrogen-doped carbon nanofibers (CMS/NCNF), is prepared through a continuous electrospinning method followed by carbonization treatment. The CMS/NCNF bifunctional catalyst shows both comparable ORR and OER performances to those of commercial precious metal-based catalysts. Furthermore, the free-standing CMS/NCNF fibrous thin film is directly used as the air electrode in a solid-state zinc-air battery, which exhibits superior flexibility while retaining stable battery performance at different bending angles. This study provides a versatile design route for the rational design of free-standing bifunctional catalysts for direct use as the air electrode in rechargeable zinc-air batteries.
The thermodynamic origin of hysteresis in insertion batteries
NASA Astrophysics Data System (ADS)
Dreyer, Wolfgang; Jamnik, Janko; Guhlke, Clemens; Huth, Robert; Moškon, Jože; Gaberšček, Miran
2010-05-01
Lithium batteries are considered the key storage devices for most emerging green technologies such as wind and solar technologies or hybrid and plug-in electric vehicles. Despite the tremendous recent advances in battery research, surprisingly, several fundamental issues of increasing practical importance have not been adequately tackled. One such issue concerns the energy efficiency. Generally, charging of 1010-1017 electrode particles constituting a modern battery electrode proceeds at (much) higher voltages than discharging. Most importantly, the hysteresis between the charge and discharge voltage seems not to disappear as the charging/discharging current vanishes. Herein we present, for the first time, a general explanation of the occurrence of inherent hysteretic behaviour in insertion storage systems containing multiple particles. In a broader sense, the model also predicts the existence of apparent equilibria in battery electrodes, the sequential particle-by-particle charging/discharging mechanism and the disappearance of two-phase behaviour at special experimental conditions.
Re-building Daniell Cell with a Li-ion exchange Film
Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao
2014-01-01
Daniell cell (i.e. Zn-Cu battery) is widely used in chemistry curricula to illustrate how batteries work, although it has been supplanted in the late 19th century by more modern battery designs because of Cu2+-crossover-induced self-discharge and un-rechargeable characteristic. Herein, it is re-built by using a ceramic Li-ion exchange film to separate Cu and Zn electrodes for preventing Cu2+-crossover between two electrodes. The re-built Zn-Cu battery can be cycled for 150 times without capacity attenuation and self-discharge, and displays a theoretical energy density of 68.3 Wh kg−1. It is more important that both electrodes of the battery are renewable, reusable, low toxicity and environmentally friendly. Owing to these advantages mentioned above, the re-built Daniell cell can be considered as a promising and green stationary power source for large-scale energy storage. PMID:25369833
Ab initio study of radiation effects on the Li4Ti5O12 electrode used in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Samin, Adib; Kurth, Michael; Cao, Lei
2015-04-01
Lithium-ion batteries are currently in wide use owing to their high energy density and enhanced capabilities. Li4Ti5O12 is a promising anode material for lithium-ion batteries because of its advantageous properties. Lithium-ion batteries could be exposed to radiation occurring in various conditions such as during outer space exploration and nuclear accidents. In this study, we apply density functional theory to explore the effect of radiation damage on this electrode and, ultimately, on the performance of the battery. It was found that radiation could affect the structural stability of the material. Furthermore, the electrode was shown to undergo a transition from insulator to metal, following the defects due to radiation. In addition, the effect of radiation on the intercalation potential was found to be highly dependent on the nature of the defect induced.
The thermodynamic origin of hysteresis in insertion batteries.
Dreyer, Wolfgang; Jamnik, Janko; Guhlke, Clemens; Huth, Robert; Moskon, Joze; Gaberscek, Miran
2010-05-01
Lithium batteries are considered the key storage devices for most emerging green technologies such as wind and solar technologies or hybrid and plug-in electric vehicles. Despite the tremendous recent advances in battery research, surprisingly, several fundamental issues of increasing practical importance have not been adequately tackled. One such issue concerns the energy efficiency. Generally, charging of 10(10)-10(17) electrode particles constituting a modern battery electrode proceeds at (much) higher voltages than discharging. Most importantly, the hysteresis between the charge and discharge voltage seems not to disappear as the charging/discharging current vanishes. Herein we present, for the first time, a general explanation of the occurrence of inherent hysteretic behaviour in insertion storage systems containing multiple particles. In a broader sense, the model also predicts the existence of apparent equilibria in battery electrodes, the sequential particle-by-particle charging/discharging mechanism and the disappearance of two-phase behaviour at special experimental conditions.
Thermally Regenerative Battery with Intercalatable Electrodes and Selective Heating Means
NASA Technical Reports Server (NTRS)
Sharma, Pramod K. (Inventor); Narayanan, Sekharipuram R. (Inventor); Hickey, Gregory S. (Inventor)
2000-01-01
The battery contains at least one electrode such as graphite that intercalates a first species from the electrolyte disposed in a first compartment such as bromine to form a thermally decomposable complex during discharge. The other electrode can also be graphite which supplies another species such as lithium to the electrolyte in a second electrode compartment. The thermally decomposable complex is stable at room temperature but decomposes at elevated temperatures such as 50 C. to 150 C. The electrode compartments are separated by a selective ion permeable membrane that is impermeable to the first species. Charging is effected by selectively heating the first electrode.
Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Zhang, Chao; Xu, Jun; Cao, Lei; Wu, Zenan; Santhanagopalan, Shriram
2017-07-01
The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion and a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. The test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.
Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries
Zhang, Chao; Xu, Jun; Cao, Lei; ...
2017-05-05
The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion andmore » a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. Finally, the test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.« less
Commercial aerospace and terrestrial applications of nickel-hydrogen batteries
NASA Astrophysics Data System (ADS)
Caldwell, Dwight B.; Coates, Dwaine K.; Fox, Chris L.; Miller, Lee E.
1996-03-01
The nickel-hydrogen battery system, used extensively in the aerospace industry to supply electrical power to earth-orbital satellites for communications, observation, and military applications, is being developed for commercial, terrestrial applications. Low-cost components, electrodes, cell designs, and battery designs are currently being tested. Catalytic hydrogen electrodes have been developed which are compatible with commercial nickel battery cost. Prismatic and spiral-wound cell designs have been built and tested. Common pressure vessel and dependent pressure vessel battery designs are also being evaluated. The nickel-hydrogen battery offers potential cycle life unequaled by any other battery system. This makes the battery ideal for many commercial and terrestrial energy storage applications such as telecommunication, remote stand-alone power systems, utility load-leveling, and other applications which require long life and a truly maintenance-free and abuse-tolerant battery system.
Metal chloride cathode for a battery
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V. (Inventor); Distefano, Salvador (Inventor); Bankston, C. Perry (Inventor)
1991-01-01
A method of fabricating a rechargeable battery is disclosed which includes a positive electrode which contains a chloride of a selected metal when the electrode is in its active state. The improvement comprises fabricating the positive electrode by: providing a porous matrix composed of a metal; providing a solution of the chloride of the selected metal; and impregnating the matrix with the chloride from the solution.
High performance positive electrode for a lead-acid battery
NASA Technical Reports Server (NTRS)
Kao, Wen-Hong (Inventor); Bullock, Norma K. (Inventor); Petersen, Ralph A. (Inventor)
1994-01-01
An electrode suitable for use as a lead-acid battery plate is formed of a paste composition which enhances the performance of the plate. The paste composition includes a basic lead sulfate, a persulfate and water. The paste may also include lead oxide and fibers. An electrode according to the invention is characterized by good strength in combination with high power density, porosity and surface area.
Hierarchical Porous Carbon Spheres for High-Performance Na-O2 Batteries.
Sun, Bing; Kretschmer, Katja; Xie, Xiuqiang; Munroe, Paul; Peng, Zhangquan; Wang, Guoxiu
2017-12-01
As a new family member of room-temperature aprotic metal-O 2 batteries, Na-O 2 batteries, are attracting growing attention because of their relatively high theoretical specific energy and particularly their uncompromised round-trip efficiency. Here, a hierarchical porous carbon sphere (PCS) electrode that has outstanding properties to realize Na-O 2 batteries with excellent electrochemical performances is reported. The controlled porosity of the PCS electrode, with macropores formed between PCSs and nanopores inside each PCS, enables effective formation/decomposition of NaO 2 by facilitating the electrolyte impregnation and oxygen diffusion to the inner part of the oxygen electrode. In addition, the discharge product of NaO 2 is deposited on the surface of individual PCSs with an unusual conformal film-like morphology, which can be more easily decomposed than the commonly observed microsized NaO 2 cubes in Na-O 2 batteries. A combination of coulometry, X-ray diffraction, and in situ differential electrochemical mass spectrometry provides compelling evidence that the operation of the PCS-based Na-O 2 battery is underpinned by the formation and decomposition of NaO 2 . This work demonstrates that employing nanostructured carbon materials to control the porosity, pore-size distribution of the oxygen electrodes, and the morphology of the discharged NaO 2 is a promising strategy to develop high-performance Na-O 2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
7Li MRI of Li batteries reveals location of microstructural lithium.
Chandrashekar, S; Trease, Nicole M; Chang, Hee Jung; Du, Lin-Shu; Grey, Clare P; Jerschow, Alexej
2012-02-12
There is an ever-increasing need for advanced batteries for portable electronics, to power electric vehicles and to facilitate the distribution and storage of energy derived from renewable energy sources. The increasing demands on batteries and other electrochemical devices have spurred research into the development of new electrode materials that could lead to better performance and lower cost (increased capacity, stability and cycle life, and safety). These developments have, in turn, given rise to a vigorous search for the development of robust and reliable diagnostic tools to monitor and analyse battery performance, where possible, in situ. Yet, a proven, convenient and non-invasive technology, with an ability to image in three dimensions the chemical changes that occur inside a full battery as it cycles, has yet to emerge. Here we demonstrate techniques based on magnetic resonance imaging, which enable a completely non-invasive visualization and characterization of the changes that occur on battery electrodes and in the electrolyte. The current application focuses on lithium-metal batteries and the observation of electrode microstructure build-up as a result of charging. The methods developed here will be highly valuable in the quest for enhanced battery performance and in the evaluation of other electrochemical devices.
7Li MRI of Li batteries reveals location of microstructural lithium
NASA Astrophysics Data System (ADS)
Chandrashekar, S.; Trease, Nicole M.; Chang, Hee Jung; Du, Lin-Shu; Grey, Clare P.; Jerschow, Alexej
2012-04-01
There is an ever-increasing need for advanced batteries for portable electronics, to power electric vehicles and to facilitate the distribution and storage of energy derived from renewable energy sources. The increasing demands on batteries and other electrochemical devices have spurred research into the development of new electrode materials that could lead to better performance and lower cost (increased capacity, stability and cycle life, and safety). These developments have, in turn, given rise to a vigorous search for the development of robust and reliable diagnostic tools to monitor and analyse battery performance, where possible, in situ. Yet, a proven, convenient and non-invasive technology, with an ability to image in three dimensions the chemical changes that occur inside a full battery as it cycles, has yet to emerge. Here we demonstrate techniques based on magnetic resonance imaging, which enable a completely non-invasive visualization and characterization of the changes that occur on battery electrodes and in the electrolyte. The current application focuses on lithium-metal batteries and the observation of electrode microstructure build-up as a result of charging. The methods developed here will be highly valuable in the quest for enhanced battery performance and in the evaluation of other electrochemical devices.
Lee, Seung-Mi; Kim, Jea-Yeon; Byeon, Jai-Won
2018-09-01
Accidental failures and explosions of lithium-ion batteries have been reported in recent years. To determine the root causes and mechanisms of these failures from the perspective of material degradation, failure analysis was conducted for an intentionally shorted lithium-ion battery. The battery was subjected to electrical overcharging and mechanical pressing to simulate internal short-circuiting. After in situ measurement of the temperature increase during the short-circuiting of the electrodes, the disassembled battery components (i.e., the anode, cathode, and separator) were analyzed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Regardless of the simulated short-circuit method (mechanical or electrical), damage was observed in the shorted batteries. Numerous small cracks and chemical reaction products were observed on the electrode surface, along with pore shielding on the separator. The event of short-circuiting increased the surface temperature of the battery to approximately 90 °C, which prompted the deterioration and decomposition of the electrolyte, thus affecting the overall battery performance; this was attributed to the decomposition of the lithium salt at 60 °C. The gas generation due to the breakdown of the electrolyte causes pressure accumulation inside the cell; therefore, the electrolyte leaks.
Fabrication of polymeric nano-batteries array using anodic aluminum oxide templates.
Zhao, Qiang; Cui, Xiaoli; Chen, Ling; Liu, Ling; Sun, Zhenkun; Jiang, Zhiyu
2009-02-01
Rechargeable nano-batteries were fabricated in the array pores of anodic aluminum oxide (AAO) template, combining template method and electrochemical method. The battery consisted of electropolymerized PPy electrode, porous TiO2 separator, and chemically polymerized PAn electrode was fabricated in the array pores of two-step anodizing aluminum oxide (AAO) membrane, based on three-step assembling method. It performs typical electrochemical battery behavior with good charge-discharge ability, and presents a capacity of 25 nAs. AFM results show the hexagonal array of nano-batteries' top side. The nano-battery may be a promising device for the development of Micro-Electro-Mechanical Systems (MEMS), and Nano-Electro-Mechanical Systems (NEMS).
Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries.
David, Lamuel; Bhandavat, Romil; Barrera, Uriel; Singh, Gurpreet
2016-03-30
Silicon and graphene are promising anode materials for lithium-ion batteries because of their high theoretical capacity; however, low volumetric energy density, poor efficiency and instability in high loading electrodes limit their practical application. Here we report a large area (approximately 15 cm × 2.5 cm) self-standing anode material consisting of molecular precursor-derived silicon oxycarbide glass particles embedded in a chemically-modified reduced graphene oxide matrix. The porous reduced graphene oxide matrix serves as an effective electron conductor and current collector with a stable mechanical structure, and the amorphous silicon oxycarbide particles cycle lithium-ions with high Coulombic efficiency. The paper electrode (mass loading of 2 mg cm(-2)) delivers a charge capacity of ∼588 mAh g(-1)electrode (∼393 mAh cm(-3)electrode) at 1,020th cycle and shows no evidence of mechanical failure. Elimination of inactive ingredients such as metal current collector and polymeric binder reduces the total electrode weight and may provide the means to produce efficient lightweight batteries.
NASA Astrophysics Data System (ADS)
Tran, Hai Yen; Greco, Giorgia; Täubert, Corina; Wohlfahrt-Mehrens, Margret; Haselrieder, Wolfgang; Kwade, Arno
2012-07-01
The electrode manufacturing for lithium-ion batteries is based on a complex process chain with several influencing factors. A proper tailoring of the electrodes can greatly improve both the electrochemical performances and the energy density of the battery. In the present work, some significant parameters during the preparation of LiNi0.8Co0.15Al0.05O2-based cathodes were investigated. The active material was mixed with a PVDF-binder and two conductive additives in different ratios. The electrode thickness, the degree of compacting and the conductive agent type and mixing ratio have proven to have a strong impact on the electrochemical performances of the composite electrodes, especially on their behaviour at high C-rates. Further it has been shown that the compacting has an essential influence on the mechanical properties of NCA coatings, according to their total, ductile and elastic deformation behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knehr, K. W.; West, Alan C.
Here, porous electrode theory is used to conduct case studies for when the addition of a second electrochemically active material can improve the pulse-power performance of an electrode. Case studies are conducted for the positive electrode of a sodium metal-halide battery and the graphite negative electrode of a lithium “rocking chair” battery. The replacement of a fraction of the nickel chloride capacity with iron chloride in a sodium metal-halide electrode and the replacement of a fraction of the graphite capacity with carbon black in a lithium-ion negative electrode were both predicted to increase the maximum pulse power by up tomore » 40%. In general, whether or not a second electrochemically active material increases the pulse power depends on the relative importance of ohmic-to-charge transfer resistances within the porous structure, the capacity fraction of the second electrochemically active material, and the kinetic and thermodynamic parameters of the two active materials.« less
Knehr, K. W.; West, Alan C.
2016-05-26
Here, porous electrode theory is used to conduct case studies for when the addition of a second electrochemically active material can improve the pulse-power performance of an electrode. Case studies are conducted for the positive electrode of a sodium metal-halide battery and the graphite negative electrode of a lithium “rocking chair” battery. The replacement of a fraction of the nickel chloride capacity with iron chloride in a sodium metal-halide electrode and the replacement of a fraction of the graphite capacity with carbon black in a lithium-ion negative electrode were both predicted to increase the maximum pulse power by up tomore » 40%. In general, whether or not a second electrochemically active material increases the pulse power depends on the relative importance of ohmic-to-charge transfer resistances within the porous structure, the capacity fraction of the second electrochemically active material, and the kinetic and thermodynamic parameters of the two active materials.« less
Negative electrodes for lithium cells and batteries
Vaughey, John T.; Fransson, Linda M.; Thackeray, Michael M.
2005-02-15
A negative electrode is disclosed for a non-aqueous electrochemical cell. The electrode has an intermetallic compound as its basic structural unit with the formula M.sub.2 M' in which M and M' are selected from two or more metal elements including Si, and the M.sub.2 M' structure is a Cu.sub.2 Sb-type structure. Preferably M is Cu, Mn and/or Li, and M' is Sb. Also disclosed is a non-aqueous electrochemical cell having a negative electrode of the type described, an electrolyte and a positive electrode. A plurality of cells may be arranged to form a battery.
Polyoxometalate active charge-transfer material for mediated redox flow battery
Anderson, Travis Mark; Hudak, Nicholas; Staiger, Chad; Pratt, Harry
2017-01-17
Redox flow batteries including a half-cell electrode chamber coupled to a current collecting electrode are disclosed herein. In a general embodiment, a separator is coupled to the half-cell electrode chamber. The half-cell electrode chamber comprises a first redox-active mediator and a second redox-active mediator. The first redox-active mediator and the second redox-active mediator are circulated through the half-cell electrode chamber into an external container. The container includes an active charge-transfer material. The active charge-transfer material has a redox potential between a redox potential of the first redox-active mediator and a redox potential of the second redox-active mediator. The active charge-transfer material is a polyoxometalate or derivative thereof. The redox flow battery may be particularly useful in energy storage solutions for renewable energy sources and for providing sustained power to an electrical grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurston, T.R.; Jisrawi, N.M.; Mukerjee, S.
Hard x rays from a synchrotron source were utilized in diffraction experiments which probed the bulk of electrode materials while they were operating {ital in} {ital situ} in battery cells. Two technologically relevant electrode materials were examined; an {ital AB}{sub 2}-type anode in a nickel{endash}metal{endash}hydride cell and a LiMn{sub 2}O{sub 4} cathode in a Li-ion {open_quote}{open_quote}rocking chair{close_quote}{close_quote} cell. Structural features such as lattice expansions and contractions, phase transitions, and the formation of multiple phases were easily observed as either hydrogen or lithium was electrochemically intercalated in and out of the electrode materials. The relevance of this technique for future studiesmore » of battery electrode materials is discussed. {copyright} {ital 1996 American Institute of Physics.}« less
Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klinger, Robert J; Rathke, Jerome W
2013-11-26
The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al.sub.2O.sub.3 wall are available for positive ion coordination (i.e. Li.sup.+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.
Gerald II, Rex E.; Ruscic, Katarina J.; Sears, Devin N.; Smith, Luis J.; Klingler, Robert J.; Rathke, Jerome W.
2012-07-24
The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al2O3 wall are available for positive ion coordination (i.e. Li+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.
Recent advances in nanostructured Nb-based oxides for electrochemical energy storage
NASA Astrophysics Data System (ADS)
Yan, Litao; Rui, Xianhong; Chen, Gen; Xu, Weichuan; Zou, Guifu; Luo, Hongmei
2016-04-01
For the past five years, nanostructured niobium-based oxides have emerged as one of the most prominent materials for batteries, supercapacitors, and fuel cell technologies, for instance, TiNb2O7 as an anode for lithium-ion batteries (LIBs), Nb2O5 as an electrode for supercapacitors (SCs), and niobium-based oxides as chemically stable electrochemical supports for fuel cells. Their high potential window can prevent the formation of lithium dendrites, and their rich redox chemistry (Nb5+/Nb4+, Nb4+/Nb3+) makes them very promising electrode materials. Their unique chemical stability under acid conditions is favorable for practical fuel-cell operation. In this review, we summarized recent progress made concerning the use of niobium-based oxides as electrodes for batteries (LIBs, sodium-ion batteries (SIBs), and vanadium redox flow batteries (VRBs)), SCs, and fuel cell applications. Moreover, crystal structures, charge storage mechanisms in different crystal structures, and electrochemical performances in terms of the specific capacitance/capacity, rate capability, and cycling stability of niobium-based oxides are discussed. Insights into the future research and development of niobium-based oxide compounds for next-generation electrochemical devices are also presented. We believe that this review will be beneficial for research scientists and graduate students who are searching for promising electrode materials for batteries, SCs, and fuel cells.
Recent advances in nanostructured Nb-based oxides for electrochemical energy storage.
Yan, Litao; Rui, Xianhong; Chen, Gen; Xu, Weichuan; Zou, Guifu; Luo, Hongmei
2016-04-28
For the past five years, nanostructured niobium-based oxides have emerged as one of the most prominent materials for batteries, supercapacitors, and fuel cell technologies, for instance, TiNb2O7 as an anode for lithium-ion batteries (LIBs), Nb2O5 as an electrode for supercapacitors (SCs), and niobium-based oxides as chemically stable electrochemical supports for fuel cells. Their high potential window can prevent the formation of lithium dendrites, and their rich redox chemistry (Nb(5+)/Nb(4+), Nb(4+)/Nb(3+)) makes them very promising electrode materials. Their unique chemical stability under acid conditions is favorable for practical fuel-cell operation. In this review, we summarized recent progress made concerning the use of niobium-based oxides as electrodes for batteries (LIBs, sodium-ion batteries (SIBs), and vanadium redox flow batteries (VRBs)), SCs, and fuel cell applications. Moreover, crystal structures, charge storage mechanisms in different crystal structures, and electrochemical performances in terms of the specific capacitance/capacity, rate capability, and cycling stability of niobium-based oxides are discussed. Insights into the future research and development of niobium-based oxide compounds for next-generation electrochemical devices are also presented. We believe that this review will be beneficial for research scientists and graduate students who are searching for promising electrode materials for batteries, SCs, and fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Shidong; Xu, Wu; Zheng, Jianming
Incomplete decomposition of Li2CO3 during charge process is a critical barrier for rechargeable Li-O2 batteries. Here we report complete decomposition of Li2CO3 in Li-O2 batteries using ultrafine iridium-decorated boron carbide (Ir/B4C) nanocomposite as oxygen electrode. The systematic investigation on charging the Li2CO3 preloaded Ir/B4C electrode in an ether-based electrolyte demonstrates that Ir/B4C electrode can decompose Li2CO3 with an efficiency close to 100% at below 4.37 V. In contrast, the bare B4C without Ir electrocatalyst can only decompose 4.7% of preloaded Li2CO3. The reaction mechanism of Li2CO3 decomposition in the presence of Ir/B4C electrocatalyst has been further investigated. A Li-O2 batterymore » using Ir/B4C as oxygen electrode material shows highly enhanced cycling stability than that using bare B4C oxygen electrode. These results clearly demonstrate that Ir/B4C is an effecitive oxygen electrode amterial to completely decompose Li2CO3 at relatively low charge voltages and is of significant importance in improving the cycle performanc of aprotic Li-O2 batteries.« less
NASA Astrophysics Data System (ADS)
Jiang, H. R.; Shyy, W.; Wu, M. C.; Wei, L.; Zhao, T. S.
2017-10-01
The potential of B4C as a metal-free catalyst for vanadium redox reactions is investigated by first-principles calculations. Results show that the central carbon atom of B4C can act as a highly active reaction site for redox reactions, due primarily to the abundant unpaired electrons around it. The catalytic effect is then verified experimentally by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests, both of which demonstrate that B4C nanoparticles can enhance the kinetics for both V2+/V3+ and VO2+/VO2+ redox reactions, indicating a bi-functional effect. The B4C-nanoparticle-modified graphite felt electrodes are finally prepared and tested in vanadium redox flow batteries (VRFBs). It is shown that the batteries with the prepared electrodes exhibit energy efficiencies of 88.9% and 80.0% at the current densities of 80 and 160 mA cm-2, which are 16.6% and 18.8% higher than those with the original graphite felt electrodes. With a further increase in current densities to 240 and 320 mA cm-2, the batteries can still maintain energy efficiencies of 72.0% and 63.8%, respectively. All these results show that the B4C-nanoparticle-modified graphite felt electrode outperforms existing metal-free catalyst modified electrodes, and thus can be promising electrodes for VRFBs.
Calcium-bismuth electrodes for large-scale energy storage (liquid metal batteries)
NASA Astrophysics Data System (ADS)
Kim, Hojong; Boysen, Dane A.; Ouchi, Takanari; Sadoway, Donald R.
2013-11-01
Calcium is an attractive electrode material for use in grid-scale electrochemical energy storage due to its low electronegativity, earth abundance, and low cost. The feasibility of combining a liquid Ca-Bi positive electrode with a molten salt electrolyte for use in liquid metal batteries at 500-700 °C was investigated. Exhibiting excellent reversibility up to current densities of 200 mA cm-2, the calcium-bismuth liquid alloy system is a promising positive electrode candidate for liquid metal batteries. The measurement of low self-discharge current suggests that the solubility of calcium metal in molten salt electrolytes can be sufficiently suppressed to yield high coulombic efficiencies >98%. The mechanisms giving rise to Ca-Bi electrode overpotentials were investigated in terms of associated charge transfer and mass transport resistances. The formation of low density Ca11Bi10 intermetallics at the electrode-electrolyte interface limited the calcium deposition rate capability of the electrodes; however, the co-deposition of barium into bismuth from barium-containing molten salts suppressed Ca-Bi intermetallic formation thereby improving the discharge capacity.
NASA Astrophysics Data System (ADS)
Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn
2014-02-01
This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.
Lightweight nickel electrode for nickel hydrogen cells and batteries
NASA Technical Reports Server (NTRS)
Britton, D. L.
1986-01-01
The nickel electrode was identified as the heaviest component of the nickel hydrogen (NiH2) battery. The NASA Lewis Research Center is developing nickel electrodes for NiH2 battery devices which will be lighter in weight and have higher energy densities when cycled under a low Earth orbit regime at deep depths of discharge. Lightweight plaques are first exposed to 31 percent potassium hydroxide for 3 months to determine their suitability for use as electrode substrates from a chemical corrosion standpoint. Pore size distribution and porosity of the plaques are then measured. The lightweight plaques examined are nickel foam, nickel felt, nickel plastic and nickel plated graphite. Plaques are then electrochemically impregnated in an aqueous solution. Initial characterization tests of the impregnated plaques are performed at five discharge levels, C/2, 1.0 C, 1.37 C, 2.0C, and 2.74 C rates. Electrodes that passed the initial characterization screening test will be life cycle tested. Lightweight electrodes are approximately 30 to 50 percent lighter in weight than the sintered nickel electrode.
Lithium ion batteries and their manufacturing challenges
Daniel, Claus
2015-03-01
There is no single lithium ion battery. With the variety of materials and electrochemical couples available, it is possible to design battery cells specific to their applications in terms of voltage, state of charge use, lifetime needs, and safety. Selection of specific electrochemical couples also facilitates the design of power and energy ratios and available energy. Integration in a large format cell requires optimized roll-to-roll electrode manufacturing and use of active materials. Electrodes are coated on a metal current collector foil in a composite structure of active material, binders, and conductive additives, requiring careful control of colloidal chemistry, adhesion, andmore » solidification. But the added inactive materials and the cell packaging reduce energy density. Furthermore, degree of porosity and compaction in the electrode can affect battery performance.« less
LiCoO2 and SnO2 Thin Film Electrodes for Lithium-Ion Battery Applications
NASA Technical Reports Server (NTRS)
Maranchi, Jeffrey P.; Hepp, Aloysius F.; Kumta, Prashant N.
2004-01-01
There is an increasing need for small dimension, ultra-lightweight, portable power supplies due to the miniaturization of consumer electronic devices. Rechargeable thin film lithium-ion batteries have the potential to fulfill the growing demands for micro-energy storage devices. However, rechargeable battery technology and fabrication processes have not kept paced with the advances made in device technology. Economical fabrication methods lending excellent microstructural and compositional control in the thin film battery electrodes have yet to be fully developed. In this study, spin coating has been used to demonstrate the flexibility of the approach to produce both anode (SnO2) and cathode (LiCoO2) thin films. Results on the microstructure crystal structure and electrochemical properties of the thin film electrodes are described and discussed.
A lithium air battery with a lithiated Al-carbon anode.
Guo, Ziyang; Dong, XiaoLi; Wang, Yonggang; Xia, Yongyao
2015-01-14
A lithiated Al-carbon composite electrode with a uniform SEI film was prepared by an electrochemical method, and was then coupled with an O2 catalytic electrode to form a rechargeable Li-O2 (or air) battery with a LixAl-C anode.
Sodium Sulfur Battery Cell Experiment (NaSBE)
NASA Technical Reports Server (NTRS)
Garner, J. Christopher
1997-01-01
The Ford Motor Company published papers describing new types of secondary battery comprised of: solid, sodium ion conducting electrolyte; liquid metal electrode; redox electrode; operating temperature between 300 and 400 deg. C; specific energy of 150 Wh/kg; and a nominal voltage of 2.0 V.
NASA Astrophysics Data System (ADS)
Wei, L.; Zhao, T. S.; Zeng, L.; Zeng, Y. K.; Jiang, H. R.
2017-02-01
In this work, we prepare a highly catalytic and stabilized titanium nitride (TiN) nanowire array-decorated graphite felt electrode for all vanadium redox flow batteries (VRFBs). Free-standing TiN nanowires are synthesized by a two-step process, in which TiO2 nanowires are first grown onto the surface of graphite felt via a seed-assisted hydrothermal method and then converted to TiN through nitridation reaction. When applied to VRFBs, the prepared electrode enables the electrolyte utilization and energy efficiency to be 73.9% and 77.4% at a high current density of 300 mA cm-2, which are correspondingly 43.3% and 15.4% higher than that of battery assembled with a pristine electrode. More impressively, the present battery exhibits good stability and high capacity retention during the cycle test. The superior performance is ascribed to the significant improvement in the electrochemical kinetics and enlarged active sites toward V3+/V2+ redox reaction.
Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors.
Li, Bing; Zheng, Junsheng; Zhang, Hongyou; Jin, Liming; Yang, Daijun; Lv, Hong; Shen, Chao; Shellikeri, Annadanesh; Zheng, Yiran; Gong, Ruiqi; Zheng, Jim P; Zhang, Cunman
2018-04-01
Among the various energy-storage systems, lithium-ion capacitors (LICs) are receiving intensive attention due to their high energy density, high power density, long lifetime, and good stability. As a hybrid of lithium-ion batteries and supercapacitors, LICs are composed of a battery-type electrode and a capacitor-type electrode and can potentially combine the advantages of the high energy density of batteries and the large power density of capacitors. Here, the working principle of LICs is discussed, and the recent advances in LIC electrode materials, particularly activated carbon and lithium titanate, as well as in electrolyte development are reviewed. The charge-storage mechanisms for intercalative pseudocapacitive behavior, battery behavior, and conventional pseudocapacitive behavior are classified and compared. Finally, the prospects and challenges associated with LICs are discussed. The overall aim is to provide deep insights into the LIC field for continuing research and development of second-generation energy-storage technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Research, development and demonstration of nickel-iron batteries for electric-vehicle propulsion
NASA Astrophysics Data System (ADS)
1982-03-01
Full-size, prototype cell, module and battery fabrication and evaluation, aimed at advancing the technical capabilities of the nickel-iron battery, while simultaneously reducing its potential cost in materials and process areas are discussed. Improved electroprecipitation process nickel electrodes of design thickness (2.5 mm) are now being prepared that display stable capacities for the C/3 drain rate with less than 10% capacity decline for greater than 1000 test cycles. Iron electrodes of the composite-type are delivering 24 Ah at the target thickness (1.0 mm). Iron electrodes also are displaying capacity stability for greater than 1000 test cycles in continuing 3-plate cell tests. Finished cells delivered 57 to 63 Wh/kg at C/3, and have demonstrated cyclic stability up to 1200 cycles at 80 percent depth of discharge profiles. Modules exceeded 580 test cycles and remain on test. Reduction in nickel electrode swelling (and concurrent stack starvation), to improve cycling, continues to be an area of major effort to reach the final battery cycle life objectives.
Polymers for new battery technologies.
NASA Astrophysics Data System (ADS)
Singh, Mohit
2009-03-01
The chemical and electrochemical reactivity of the components comprising today's lithium batteries has severely limited their lifetime and stability, and attempts to push the limits on energy density have exacerbated these stability issues. The weakest link in terms of safety and stability of Li ion systems is the organic liquid electrolyte that facilitates the Li^+ ion transport between the electrodes. The electrolyte is flammable and electrochemically unstable against the graphitic anode. It is the continuous electrochemical degradation of the electrolyte at the electrodes that leads to poor cycle life of the batteries, and in some cases runaway reactions that lead to explosions. Dry polymer electrolytes alleviate the electrochemical stability problem by offering a stable electrode-electrolyte interface. The absence of flammable liquids prevents runaway reactions. The main hurdle that has prevented dry polymer electrolytes from being commercialized is low ionic conductivity, and challenges in interfacing with the electrode materials. We demonstrate a novel approach towards addressing these challenges that renders batteries with excellent cycle lives, and thermal stability.
Xu, Fei; Jin, Shangbin; Zhong, Hui; Wu, Dingcai; Yang, Xiaoqing; Chen, Xiong; Wei, Hao; Fu, Ruowen; Jiang, Donglin
2015-01-01
Organic batteries free of toxic metal species could lead to a new generation of consumer energy storage devices that are safe and environmentally benign. However, the conventional organic electrodes remain problematic because of their structural instability, slow ion-diffusion dynamics, and poor electrical conductivity. Here, we report on the development of a redox-active, crystalline, mesoporous covalent organic framework (COF) on carbon nanotubes for use as electrodes; the electrode stability is enhanced by the covalent network, the ion transport is facilitated by the open meso-channels, and the electron conductivity is boosted by the carbon nanotube wires. These effects work synergistically for the storage of energy and provide lithium-ion batteries with high efficiency, robust cycle stability, and high rate capability. Our results suggest that redox-active COFs on conducting carbons could serve as a unique platform for energy storage and may facilitate the design of new organic electrodes for high-performance and environmentally benign battery devices. PMID:25650133
Xu, Fei; Jin, Shangbin; Zhong, Hui; Wu, Dingcai; Yang, Xiaoqing; Chen, Xiong; Wei, Hao; Fu, Ruowen; Jiang, Donglin
2015-02-04
Organic batteries free of toxic metal species could lead to a new generation of consumer energy storage devices that are safe and environmentally benign. However, the conventional organic electrodes remain problematic because of their structural instability, slow ion-diffusion dynamics, and poor electrical conductivity. Here, we report on the development of a redox-active, crystalline, mesoporous covalent organic framework (COF) on carbon nanotubes for use as electrodes; the electrode stability is enhanced by the covalent network, the ion transport is facilitated by the open meso-channels, and the electron conductivity is boosted by the carbon nanotube wires. These effects work synergistically for the storage of energy and provide lithium-ion batteries with high efficiency, robust cycle stability, and high rate capability. Our results suggest that redox-active COFs on conducting carbons could serve as a unique platform for energy storage and may facilitate the design of new organic electrodes for high-performance and environmentally benign battery devices.
Effective recycling of manganese oxide cathodes for lithium based batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo
Rechargeable lithium ion batteries (LIBs) occupy a prominent consumer presence due to their high cell potential and gravimetric energy density, there are also limited opportunities for electrode recycling. Currently used or proposed cathode recycling processes are multistep procedures which involve sequences of mechanical, thermal, and chemical leaching, where only the base material is recovered and significant processing is required to generate a recycled electrode structure. Another significant issue facing lithium based batteries is capacity fade due to structural degradation of the electroactive material upon extending cycling. Herein, inspired by heterogeneous catalyst thermal regeneration strategies, we present a new facile cathodemore » recycling process, where previously used cathodes are removed from a cell, heat treated, and then inserted into a new cell restoring the delivered capacity and cycle life. An environmentally sustainable manganese based material is employed, where binder-free self-supporting (BFSS) electrodes are prepared using a fibrous, high aspect ratio manganese oxide active material. After 200 discharge–charge cycles, the recycled BFSS electrodes display restored crystallinity and oxidation state of the manganese centers with the resulting electrochemistry (capacity and coulombic efficiency) reminiscent of freshly prepared BFSS cathodes. Of note, the BFSS electrode structure is robust with no degradation during the cell disassembly, electrode recovery, washing, and heat treatment steps; thus no post-processing is required for the recycled electrode. Furthermore, this work shows for the first time that a thermal regeneration method previously employed in catalyst systems can fully restore battery electrochemical performance, demonstrating a novel electrode recycling process which could open up new possibilities for energy storage devices with extended electrode lifecycles.« less
Effective recycling of manganese oxide cathodes for lithium based batteries
Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo; ...
2016-02-29
Rechargeable lithium ion batteries (LIBs) occupy a prominent consumer presence due to their high cell potential and gravimetric energy density, there are also limited opportunities for electrode recycling. Currently used or proposed cathode recycling processes are multistep procedures which involve sequences of mechanical, thermal, and chemical leaching, where only the base material is recovered and significant processing is required to generate a recycled electrode structure. Another significant issue facing lithium based batteries is capacity fade due to structural degradation of the electroactive material upon extending cycling. Herein, inspired by heterogeneous catalyst thermal regeneration strategies, we present a new facile cathodemore » recycling process, where previously used cathodes are removed from a cell, heat treated, and then inserted into a new cell restoring the delivered capacity and cycle life. An environmentally sustainable manganese based material is employed, where binder-free self-supporting (BFSS) electrodes are prepared using a fibrous, high aspect ratio manganese oxide active material. After 200 discharge–charge cycles, the recycled BFSS electrodes display restored crystallinity and oxidation state of the manganese centers with the resulting electrochemistry (capacity and coulombic efficiency) reminiscent of freshly prepared BFSS cathodes. Of note, the BFSS electrode structure is robust with no degradation during the cell disassembly, electrode recovery, washing, and heat treatment steps; thus no post-processing is required for the recycled electrode. Furthermore, this work shows for the first time that a thermal regeneration method previously employed in catalyst systems can fully restore battery electrochemical performance, demonstrating a novel electrode recycling process which could open up new possibilities for energy storage devices with extended electrode lifecycles.« less
Non-aqueous Electrode Processing and Construction of Lithium-ion Coin Cells.
Stein, Malcolm; Chen, Chien-Fan; Robles, Daniel J; Rhodes, Christopher; Mukherjee, Partha P
2016-02-01
Research into new and improved materials to be utilized in lithium-ion batteries (LIB) necessitates an experimental counterpart to any computational analysis. Testing of lithium-ion batteries in an academic setting has taken on several forms, but at the most basic level lies the coin cell construction. In traditional LIB electrode preparation, a multi-phase slurry composed of active material, binder, and conductive additive is cast out onto a substrate. An electrode disc can then be punched from the dried sheet and used in the construction of a coin cell for electrochemical evaluation. Utilization of the potential of the active material in a battery is critically dependent on the microstructure of the electrode, as an appropriate distribution of the primary components are crucial to ensuring optimal electrical conductivity, porosity, and tortuosity, such that electrochemical and transport interaction is optimized. Processing steps ranging from the combination of dry powder, wet mixing, and drying can all critically affect multi-phase interactions that influence the microstructure formation. Electrochemical probing necessitates the construction of electrodes and coin cells with the utmost care and precision. This paper aims at providing a step-by-step guide of non-aqueous electrode processing and coin cell construction for lithium-ion batteries within an academic setting and with emphasis on deciphering the influence of drying and calendaring.
Non-aqueous Electrode Processing and Construction of Lithium-ion Coin Cells
Stein, Malcolm; Chen, Chien-Fan; Robles, Daniel J.; Rhodes, Christopher; Mukherjee, Partha P.
2016-01-01
Research into new and improved materials to be utilized in lithium-ion batteries (LIB) necessitates an experimental counterpart to any computational analysis. Testing of lithium-ion batteries in an academic setting has taken on several forms, but at the most basic level lies the coin cell construction. In traditional LIB electrode preparation, a multi-phase slurry composed of active material, binder, and conductive additive is cast out onto a substrate. An electrode disc can then be punched from the dried sheet and used in the construction of a coin cell for electrochemical evaluation. Utilization of the potential of the active material in a battery is critically dependent on the microstructure of the electrode, as an appropriate distribution of the primary components are crucial to ensuring optimal electrical conductivity, porosity, and tortuosity, such that electrochemical and transport interaction is optimized. Processing steps ranging from the combination of dry powder, wet mixing, and drying can all critically affect multi-phase interactions that influence the microstructure formation. Electrochemical probing necessitates the construction of electrodes and coin cells with the utmost care and precision. This paper aims at providing a step-by-step guide of non-aqueous electrode processing and coin cell construction for lithium-ion batteries within an academic setting and with emphasis on deciphering the influence of drying and calendaring. PMID:26863503
End-of-life Zn-MnO2 batteries: electrode materials characterization.
Cabral, Marta; Pedrosa, F; Margarido, F; Nogueira, C A
2013-01-01
Physical and chemical characterization of several sizes and shapes of alkaline and saline spent Zn-MnO2 batteries was carried out, aiming at contributing for a better definition of the applicable recycling processes. The characterization essays included the mass balance of the components, cathode and anode elemental analysis, the identification of zinc and manganese bearing phases and the morphology analysis of the electrode particles. The electrode materials correspond to 64-79% of the total weigh of the batteries, with the cathodes having clearly the highest contribution (usually more than 50%). The steel components, mainly from the cases, are also important (17-30%). Elemental analysis showed that the electrodes are highly concentrated in zinc (from 48-87% in anodes) and manganese (from 35-50% in cathodes). X-Ray powder diffraction allowed for identifying several phases in the electrodes, namely zinc oxide, in the anodes of all the types of saline and alkaline batteries tested, while zinc hydroxide chloride and ammine zinc chloride only appear in some types of saline batteries. The manganese found in the cathode materials is present as two main phases, MnO x Mn2O3 and ZnO x Mn2O3, the latter corroborating that zinc migration from anode to cathode occurs during the batteries lifespan. A unreacted MnO2 phase was also found presenting a low crystalline level. Leaching trials with diluted HCI solutions of alkaline and saline battery samples showed that all zinc species are reactive attaining easily over than 90% leaching yields, and about 30% of manganese, present as Mn(II/III) forms. The MnO2 phase is less reactive and requires higher temperatures to achieve a more efficient solubilization.
Advances in electrode materials for Li-based rechargeable batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hui; Mao, Chengyu; Li, Jianlin
Rechargeable lithium-ion batteries store energy as chemical energy in electrode materials during charge and can convert the chemical energy into electrical energy when needed. Tremendous attention has been paid to screen electroactive materials, to evaluate their structural integrity and cycling reversibility, and to improve the performance of electrode materials. This review discusses recent advances in performance enhancement of both anode and cathode through nanoengineering active materials and applying surface coatings, in order to effectively deal with the challenges such as large volume variation, instable interface, limited cyclability and rate capability. We also introduce and discuss briefly the diversity and newmore » tendencies in finding alternative lithium storage materials, safe operation enabled in aqueous electrolytes, and configuring novel symmetric electrodes and lithium-based flow batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-10-01
GRIDS Project: USC is developing an iron-air rechargeable battery for large-scale energy storage that could help integrate renewable energy sources into the electric grid. Iron-air batteries have the potential to store large amounts of energy at low cost—iron is inexpensive and abundant, while oxygen is freely obtained from the air we breathe. However, current iron-air battery technologies have suffered from low efficiency and short life spans. USC is working to dramatically increase the efficiency of the battery by placing chemical additives on the battery’s iron-based electrode and restructuring the catalysts at the molecular level on the battery’s air-based electrode. Thismore » can help the battery resist degradation and increase life span. The goal of the project is to develop a prototype iron-air battery at significantly cost lower than today’s best commercial batteries.« less
Technical and economic analysis of solvent-based lithium-ion electrode drying with water and NMP
Wood, David L.; Quass, Jeffrey D.; Li, Jianlin; ...
2017-05-16
Processing lithium-ion battery (LIB) electrode dispersions with water as the solvent during primary drying offers many advantages over N-methylpyrrolidone (NMP). An in-depth analysis of the comparative drying costs of LIB electrodes is discussed for both NMP- and water-based dispersion processing in terms of battery pack $/kWh. Electrode coating manufacturing and capital equipment cost savings are compared for water vs. conventional NMP organic solvent processing. A major finding of this work is that the total electrode manufacturing costs, whether water- or NMP-based, contribute about 8–9% of the total pack cost. However, it was found that up to a 2 × reductionmore » in electrode processing (drying and solvent recovery) cost can be expected along with a $3–6 M savings in associated plant capital equipment (for a plant producing 100,000 10-kWh Plug-in Hybrid Electric Vehicle (PHEV) batteries) using water as the electrode solvent. This paper shows a different perspective in that the most important benefits of aqueous electrode processing actually revolve around capital equipment savings and environmental stewardship and not processing cost savings.« less
NASA Astrophysics Data System (ADS)
Zhang, Xuezeng; Gong, Zhixin; Zhao, Shumei; Geng, Mingming; Wang, Yan; Northwood, Derek O.
The high-temperature charge acceptance of Ni-MH batteries has been improved through the addition of calcium fluoride to the pasted nickel hydroxide electrode made using spherical Co(OH) 2-coated nickel hydroxide powder. The charge acceptance of the Ni-MH battery at 60 °C is over 95% at 1 C charge/discharge rates. The charge acceptance at 60 °C remains at over 90% through 10 cycles. The use of Co(OH) 2-coated Ni(OH) 2 plus a CaF 2 addition to the positive electrode also significantly improved the high-temperature stability in terms of reduced gas evolution.
Rechargeable Al/Cl2 battery with molten AlCl4/-/ electrolyte.
NASA Technical Reports Server (NTRS)
Holleck, G. L.; Giner, J.; Burrows, B.
1972-01-01
A molten salt system based on Al- and Cl2 carbon electrodes, with an AlCl3 alkali chloride eutectic as electrolyte, offers promise as a rechargeable, high energy density battery which can operate at a relatively low temperature. Electrode kinetic studies showed that the electrode reactions at the Al anode were rapid and that the observed passivation phenomena were due to the formation at the electrode surface of a solid salt layer resulting from concentration changes on anodic or cathodic current flow. It was established that carbon electrodes were intrinsically active for chlorine reduction in AlCl3-alkali chloride melts. By means of a rotating vitreous carbon disk electrode, the kinetic parameters were determined.
Transient analysis of intercalation electrodes for parameter estimation
NASA Astrophysics Data System (ADS)
Devan, Sheba
An essential part of integrating batteries as power sources in any application, be it a large scale automotive application or a small scale portable application, is an efficient Battery Management System (BMS). The combination of a battery with the microprocessor based BMS (called "smart battery") helps prolong the life of the battery by operating in the optimal regime and provides accurate information regarding the battery to the end user. The main purposes of BMS are cell protection, monitoring and control, and communication between different components. These purposes are fulfilled by tracking the change in the parameters of the intercalation electrodes in the batteries. Consequently, the functions of the BMS should be prompt, which requires the methodology of extracting the parameters to be efficient in time. The traditional transient techniques applied so far may not be suitable due to reasons such as the inability to apply these techniques when the battery is under operation, long experimental time, etc. The primary aim of this research work is to design a fast, accurate and reliable technique that can be used to extract parameter values of the intercalation electrodes. A methodology based on analysis of the short time response to a sinusoidal input perturbation, in the time domain is demonstrated using a porous electrode model for an intercalation electrode. It is shown that the parameters associated with the interfacial processes occurring in the electrode can be determined rapidly, within a few milliseconds, by measuring the response in the transient region. The short time analysis in the time domain is then extended to a single particle model that involves bulk diffusion in the solid phase in addition to interfacial processes. A systematic procedure for sequential parameter estimation using sensitivity analysis is described. Further, the short time response and the input perturbation are transformed into the frequency domain using Fast Fourier Transform (FFT) to generate impedance spectra to derive immediate qualitative information regarding the nature of the system. The short time analysis technique gives the ability to perform both time domain and frequency domain analysis using data measured within short durations.
Liu, Chunyi; Wang, Xusheng; Deng, Wenjun; Li, Chang; Chen, Jitao; Xue, Mianqi; Li, Rui; Pan, Feng
2018-03-14
The rechargeable aqueous metal-ion battery (RAMB) has attracted considerable attention due to its safety, low costs, and environmental friendliness. Yet the poor-performance electrode materials lead to a low feasibility of practical application. A hybrid aqueous battery (HAB) built from electrode materials with selective cation channels could increase the electrode applicability and thus enlarge the application of RAMB. Herein, we construct a high-voltage K-Na HAB based on K 2 FeFe(CN) 6 cathode and carbon-coated NaTi 2 (PO 4 ) 3 (NTP/C) anode. Due to the unique cation selectivity of both materials and ultrafast ion conduction of NTP/C, the hybrid battery delivers a high capacity of 160 mAh g -1 at a 0.5 C rate. Considerable capacity retention of 94.3 % is also obtained after 1000 cycles at even 60 C rate. Meanwhile, high energy density of 69.6 Wh kg -1 based on the total mass of active electrode materials is obtained, which is comparable and even superior to that of the lead acid, Ni/Cd, and Ni/MH batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molecular Orbital Principles of Oxygen-Redox Battery Electrodes.
Okubo, Masashi; Yamada, Atsuo
2017-10-25
Lithium-ion batteries are key energy-storage devices for a sustainable society. The most widely used positive electrode materials are LiMO 2 (M: transition metal), in which a redox reaction of M occurs in association with Li + (de)intercalation. Recent developments of Li-excess transition-metal oxides, which deliver a large capacity of more than 200 mAh/g using an extra redox reaction of oxygen, introduce new possibilities for designing higher energy density lithium-ion batteries. For better engineering using this fascinating new chemistry, it is necessary to achieve a full understanding of the reaction mechanism by gaining knowledge on the chemical state of oxygen. In this review, a summary of the recent advances in oxygen-redox battery electrodes is provided, followed by a systematic demonstration of the overall electronic structures based on molecular orbitals with a focus on the local coordination environment around oxygen. We show that a π-type molecular orbital plays an important role in stabilizing the oxidized oxygen that emerges upon the charging process. Molecular orbital principles are convenient for an atomic-level understanding of how reversible oxygen-redox reactions occur in bulk, providing a solid foundation toward improved oxygen-redox positive electrode materials for high energy-density batteries.
Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil
2013-05-21
Motivated by new applications including electric vehicles and the smart grid, interest in advanced lithium ion batteries has increased significantly over the past decade. Therefore, research in this field has intensified to produce safer devices with better electrochemical performance. Most research has focused on the development of new electrode materials through the optimization of bulk properties such as crystal structure, ionic diffusivity, and electric conductivity. More recently, researchers have also considered the surface properties of electrodes as critical factors for optimizing performance. In particular, the electrolyte decomposition at the electrode surface relates to both a lithium ion battery's electrochemical performance and safety. In this Account, we give an overview of the major developments in the area of surface chemistry for lithium ion batteries. These ideas will provide the basis for the design of advanced electrode materials. Initially, we present a brief background to lithium ion batteries such as major chemical components and reactions that occur in lithium ion batteries. Then, we highlight the role of surface chemistry in the safety of lithium ion batteries. We examine the thermal stability of cathode materials: For example, we discuss the oxygen generation from cathode materials and describe how cells can swell and heat up in response to specific conditions. We also demonstrate how coating the surfaces of electrodes can improve safety. The surface chemistry can also affect the electrochemistry of lithium ion batteries. The surface coating strategy improved the energy density and cycle performance for layered LiCoO2, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Ni, Co, and their combinations), and LiMn2O4 spinel materials, and we describe a working mechanism for these enhancements. Although coating the surfaces of cathodes with inorganic materials such as metal oxides and phosphates improves the electrochemical performance and safety properties of batteries, the microstructure of the coating layers and the mechanism of action are not fully understood. Therefore, researchers will need to further investigate the surface coating strategy during the development of new lithium ion batteries.
Battery designs with high capacity anode materials and cathode materials
Masarapu, Charan; Anguchamy, Yogesh Kumar; Han, Yongbong; Deng, Haixia; Kumar, Sujeet; Lopez, Herman A.
2017-10-03
Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.
Nb-doped rutile TiO₂: a potential anode material for Na-ion battery.
Usui, Hiroyuki; Yoshioka, Sho; Wasada, Kuniaki; Shimizu, Masahiro; Sakaguchi, Hiroki
2015-04-01
The electrochemical properties of the rutile-type TiO2 and Nb-doped TiO2 were investigated for the first time as Na-ion battery anodes. Ti(1-x)Nb(x)O2 thick-film electrodes without a binder and a conductive additive were prepared using a sol-gel method followed by a gas-deposition method. The TiO2 electrode showed reversible reactions of Na insertion/extraction accompanied by expansion/contraction of the TiO2 lattice. Among the Ti(1-x)Nb(x)O2 electrodes with x = 0-0.18, the Ti(0.94)Nb(0.06)O2 electrode exhibited the best cycling performance, with a reversible capacity of 160 mA h g(-1) at the 50th cycle. As the Li-ion battery anode, this electrode also attained an excellent rate capability, with a capacity of 120 mA h g(-1) even at the high current density of 16.75 A g(-1) (50C). The improvements in the performances are attributed to a 3 orders of magnitude higher electronic conductivity of Ti(0.94)Nb(0.06)O2 compared to that of TiO2. This offers the possibility of Nb-doped rutile TiO2 as a Na-ion battery anode as well as a Li-ion battery anode.
Energy and environmental impacts of electric vehicle battery production and recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaines, L.; Singh, M.
1995-12-31
Electric vehicle batteries use energy and generate environmental residuals when they are produced and recycled. This study estimates, for 4 selected battery types (advanced lead-acid, sodium-sulfur, nickel-cadmium, and nickel-metal hydride), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. For example, although the nickel-cadmium and nickel-metal hydride batteries are similar, energy requirements for production of the cadmium electrodes may be higher than those for the metal hydridemore » electrodes, but the latter may be more difficult to recycle.« less
Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries
NASA Astrophysics Data System (ADS)
Armstrong, A. Robert; Bruce, Peter G.
1996-06-01
RECHARGEABLE lithium batteries can store more than twice as much energy per unit weight and volume as other rechargeable batteries1,2. They contain lithium ions in an electrolyte, which shuttle back and forth between, and are intercalated by, the electrode materials. The first commercially successful rechargeable lithium battery3, introduced by the Sony Corporation in 1990, consists of a carbon-based negative electrode, layered LiCoO2 as the positive electrode, and a non-aqueous liquid electrolyte. The high cost and toxicity of cobalt compounds, however, has prompted a search for alternative materials that intercalate lithium ions. One such is LiMn2O4, which has been much studied as a positive electrode material4-7 the cost of manganese is less than 1% of that of cobalt, and it is less toxic. Here we report the synthesis and electrochemical performance of a new material, layered LiMnO2, which is structurally analogous to LiCoO2. The charge capacity of LiMnO2 (~270mAhg-1) compares well with that of both LiCoO2 and LiMn2O4, and preliminary results indicate good stability over repeated charge-discharge cycles.
ERIC Educational Resources Information Center
Roy, Ken
2010-01-01
Batteries commonly used in flashlights and other household devices produce hydrogen gas as a product of zinc electrode corrosion. The amount of gas produced is affected by the batteries' design and charge rate. Dangerous levels of hydrogen gas can be released if battery types are mixed, batteries are damaged, batteries are of different ages, or…
In Situ Neutron Powder Diffraction Using Custom-made Lithium-ion Batteries
Brant, William R.; Schmid, Siegbert; Du, Guodong; Brand, Helen E. A.; Pang, Wei Kong; Peterson, Vanessa K.; Guo, Zaiping; Sharma, Neeraj
2014-01-01
Li-ion batteries are widely used in portable electronic devices and are considered as promising candidates for higher-energy applications such as electric vehicles.1,2 However, many challenges, such as energy density and battery lifetimes, need to be overcome before this particular battery technology can be widely implemented in such applications.3 This research is challenging, and we outline a method to address these challenges using in situ NPD to probe the crystal structure of electrodes undergoing electrochemical cycling (charge/discharge) in a battery. NPD data help determine the underlying structural mechanism responsible for a range of electrode properties, and this information can direct the development of better electrodes and batteries. We briefly review six types of battery designs custom-made for NPD experiments and detail the method to construct the ‘roll-over’ cell that we have successfully used on the high-intensity NPD instrument, WOMBAT, at the Australian Nuclear Science and Technology Organisation (ANSTO). The design considerations and materials used for cell construction are discussed in conjunction with aspects of the actual in situ NPD experiment and initial directions are presented on how to analyze such complex in situ data. PMID:25406578
In situ neutron powder diffraction using custom-made lithium-ion batteries.
Brant, William R; Schmid, Siegbert; Du, Guodong; Brand, Helen E A; Pang, Wei Kong; Peterson, Vanessa K; Guo, Zaiping; Sharma, Neeraj
2014-11-10
Li-ion batteries are widely used in portable electronic devices and are considered as promising candidates for higher-energy applications such as electric vehicles. However, many challenges, such as energy density and battery lifetimes, need to be overcome before this particular battery technology can be widely implemented in such applications. This research is challenging, and we outline a method to address these challenges using in situ NPD to probe the crystal structure of electrodes undergoing electrochemical cycling (charge/discharge) in a battery. NPD data help determine the underlying structural mechanism responsible for a range of electrode properties, and this information can direct the development of better electrodes and batteries. We briefly review six types of battery designs custom-made for NPD experiments and detail the method to construct the 'roll-over' cell that we have successfully used on the high-intensity NPD instrument, WOMBAT, at the Australian Nuclear Science and Technology Organisation (ANSTO). The design considerations and materials used for cell construction are discussed in conjunction with aspects of the actual in situ NPD experiment and initial directions are presented on how to analyze such complex in situ data.
Luo, Jia-Yan; Cui, Wang-Jun; He, Ping; Xia, Yong-Yao
2010-09-01
Aqueous lithium-ion batteries may solve the safety problem associated with lithium-ion batteries that use highly toxic and flammable organic solvents, and the poor cycling life associated with commercialized aqueous rechargeable batteries such as lead-acid and nickel-metal hydride systems. But all reported aqueous lithium-ion battery systems have shown poor stability: the capacity retention is typically less than 50% after 100 cycles. Here, the stability of electrode materials in an aqueous electrolyte was extensively analysed. The negative electrodes of aqueous lithium-ion batteries in a discharged state can react with water and oxygen, resulting in capacity fading upon cycling. By eliminating oxygen, adjusting the pH values of the electrolyte and using carbon-coated electrode materials, LiTi(2)(PO(4))(3)/Li(2)SO(4)/LiFePO(4) aqueous lithium-ion batteries exhibited excellent stability with capacity retention over 90% after 1,000 cycles when being fully charged/discharged in 10 minutes and 85% after 50 cycles even at a very low current rate of 8 hours for a full charge/discharge offering an energy storage system with high safety, low cost, long cycling life and appropriate energy density.
Mussel-Inspired Coating and Adhesion for Rechargeable Batteries: A Review.
Jeong, You Kyeong; Park, Sung Hyeon; Choi, Jang Wook
2018-03-07
A significant effort is currently being invested to improve the electrochemical performance of classical lithium-ion batteries (LIBs) or to accelerate the advent of new chemistry-based post-LIBs. Regardless of the governing chemistry associated with charge storage, stable electrode-electrolyte interface and wet-adhesion among the electrode particles are universally desired for rechargeable batteries adopting liquid electrolytes. In this regard, recent studies have witnessed the usefulness of mussel-inspired polydopamine or catechol functional group in modifying the key battery components, such as active material, separator, and binder. In particular, the uniform conformal coating capability of polydopamine protects active materials from unwanted side reactions with electrolytes and increases the wettability of separators with electrolytes, both of which significantly contribute to the improvement of key battery properties. The wet-adhesion originating from catechol functional groups also largely increases the cycle lives of emerging high-capacity electrodes accompanied by huge volume expansion. This review summarizes the representative examples of mussel-inspired approaches in rechargeable batteries and offers central design principles of relevant coating and adhesion processes.
Rechargeable solid polymer electrolyte battery cell
Skotheim, Terji
1985-01-01
A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.
Battery electrode growth accommodation
Bowen, Gerald K.; Andrew, Michael G.; Eskra, Michael D.
1992-01-01
An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.
Preliminary investigation of a sealed, remotely activated silver-zinc battery
NASA Technical Reports Server (NTRS)
Wheat, C. G.
1977-01-01
Methods necessary to provide a remotely activated, silver zinc battery capable of an extended activated stand while in a sealed condition were investigated. These requirements were to be accomplished in a battery package demonstrating an energy density of at least 35 watt hours per pound. Several methods of gas suppression were considered in view of the primary nature of this unit and utilized the electroplated dendritic zinc electrode. Amalgamation of the electrode provided the greatest suppression of gas at the zinc electrode. The approach to extending the activated stand capability of the remotely activated battery was through evaluation of three basic methods of remote, multi-cell activation; 1) the electrolyte manifold, 2) the gas manifold and 3) the individual cell. All three methods of activation can be incorporated into units which will meet the minimum energy density requirement.
Das, Susobhan; Li, Jun; Hui, Rongqing
2015-01-01
Micro- and nano-structured electrodes have the potential to improve the performance of Li-ion batteries by increasing the surface area of the electrode and reducing the diffusion distance required by the charged carriers. We report the numerical simulation of Lithium-ion batteries with the anode made of core-shell heterostructures of silicon-coated carbon nanofibers. We show that the energy capacity can be significantly improved by reducing the thickness of the silicon anode to the dimension comparable or less than the Li-ion diffusion length inside silicon. The results of simulation indicate that the contraction of the silicon electrode thickness during the battery discharge process commonly found in experiments also plays a major role in the increase of the energy capacity. PMID:28347120
NASA Technical Reports Server (NTRS)
Abraham, K. M.; Elliot, J. E.
1984-01-01
NiS2 and NiS have been characterized as high energy density rechargeable positive electrodes for moderate-temperature Na batteries of the configuration, Na(1)/beta double prime-Al2O3/NaAlCl4(1), NiSx. The batteries operate in the temperature range 170 - 190 C. Positive electrode reactions during discharge/charge cycles have been characterized. Excellent rechargeability of the batteries has been demonstrated by extended cell cycling. A Na/NiS2 cell, operating at 190 C, exceeded 600 deep discharge/charge cycles with practically no capacity deterioration. The feasibility of secondary Na/NiSx batteries with specific energies equal to or greater than 50 Wh/lb and cycle lifes exceeding 1000 deep discharge/charge cycles has been demonstrated.
Matsuda, Shoichi; Kubo, Yoshimi; Uosaki, Kohei; Nakanishi, Shuji
2017-03-16
Lithium-oxygen system has attracted much attention as a battery with high energy density that could satisfy the demands for electric vehicles. However, because lithium peroxide (Li 2 O 2 ) is formed as an insoluble and insulative discharge product at the positive electrode, Li-O 2 batteries have poor energy capacities. Although Li 2 O 2 deposition on the positive electrode can be avoided by inducing solution-route pathway using electrolytes composed of high donor number (DN) solvents, such systems generally have poor stability. Herein we report that potassium ions promote the solution-route formation of Li 2 O 2 . The present findings suggest that potassium or other monovalent ions have the potential to increase the volumetric energy density and life cycles of Li-O 2 batteries.
Electrospun Nanofiber-Coated Membrane Separators for Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Lee, Hun
Lithium-ion batteries are widely used as a power source for portable electronic devices and hybrid electric vehicles due to their excellent energy and power densities, long cycle life, and enhanced safety. A separator is considered to be the critical component in lithium-ion rechargeable batteries. The separator is placed between the positive and negative electrodes in order to prevent the physical contact of electrodes while allowing the transportation of ions. In most commercial lithium-ion batteries, polyolefin microporous membranes are commonly used as the separator due to their good chemical stability and high mechanical strength. However, some of their intrinsic natures, such as low electrolyte uptake, poor adhesion property to the electrodes, and low ionic conductivity, can still be improved to achieve higher performance of lithium-ion batteries. In order to improve these intrinsic properties, polyolefin microporous membranes can be coated with nanofibers by using electrospinning technique. Electrospinning is a simple and efficient method to prepare nanofibers which can absorb a significant amount of liquid electrolyte to achieve low internal resistance and battery performance. This research presents the preparation and investigation of composite membrane separators prepared by coating nanofibers onto polyolefin microporous membranes via electrospinning technique. Polyvinylidene fluoride polymers and copolymers were used for the preparation of electrospun nanofiber coatings because they have excellent electrochemical stability, good adhesion property, and high temperature resistance. The nanofiber coatings prepared by electrospinning form an interconnected and randomly orientated structure on the surface of the polyolefin microporous membranes. The size of the nanofibers is on a scale that does not interfere with the micropores in the membrane substrates. The resultant nanofiber-coated membranes have the potential to combine advantages of both the polyolefin separator membranes and the nanoscale fibrous polymer coatings. The polyolefin microporous membranes serve as the supporting substrate which provides the required mechanical strength for the assembling process of lithium-ion batteries. The electrospun nanofiber coatings improve the wettability of the composite membrane separators to the liquid electrolyte, which is desirable for the lithium-ion batteries with high kinetics and good cycling performance. The results show that the nanofiber-coated membranes have enhanced adhesion properties to the battery electrode which can help prevent the formation of undesirable gaps between the separators and electrodes during prolonged charge-discharge cycles, especially in large-format batteries. The improvement on adhesive properties of nanofiber-coated membranes was evaluated by peel test. Nanofiber coatings applied to polyolefin membrane substrates improve the adhesion of separator membranes to battery electrodes. Electrolyte uptakes, ionic conductivities and interfacial resistances of the nanofiber-coated membrane separators were studied by soaking the membrane separators with a liquid electrolyte solution of 1 M lithium hexafluorophosphate dissolved in ethylene carbonate/dimethylcarbonate/ethylmethyl carbonate (1:1:1 vol). The nanofiber coatings on the surface of the membrane substrates increase the electrolyte uptake capacity due to the high surface area and capillary effect of nanofibers. The nanofiber-coated membranes soaked in the liquid electrolyte solution exhibit high ionic conductivities and low interfacial resistances to the lithium electrode. The cells containing LiFePO 4 cathode and the nanofiber-coated membranes as the separator show high discharge specific capacities and good cycling stability at room temperature. The nanofiber coatings on the membrane substrates contribute to high ionic conductivity and good electrochemical performance in lithium-ion batteries. Therefore, these nanofiber-coated composite membranes can be directly used as novel battery separators for high performance of lithium-ion batteries. Coating polyolefin microporous membranes with electrospun nanofibers is a promising approach to obtain highperformance separators for advanced lithium-ion batteries.
Microstructure Applications for Battery Design | Transportation Research |
NREL Microstructure Applications for Battery Design Microstructure Applications for Battery Design NREL's Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) work includes simulating physics at the electrode microstructure level and created a virtual design tool for battery
State-of-the-art characterization techniques for advanced lithium-ion batteries
NASA Astrophysics Data System (ADS)
Lu, Jun; Wu, Tianpin; Amine, Khalil
2017-03-01
To meet future needs for industries from personal devices to automobiles, state-of-the-art rechargeable lithium-ion batteries will require both improved durability and lowered costs. To enhance battery performance and lifetime, understanding electrode degradation mechanisms is of critical importance. Various advanced in situ and operando characterization tools developed during the past few years have proven indispensable for optimizing battery materials, understanding cell degradation mechanisms, and ultimately improving the overall battery performance. Here we review recent progress in the development and application of advanced characterization techniques such as in situ transmission electron microscopy for high-performance lithium-ion batteries. Using three representative electrode systems—layered metal oxides, Li-rich layered oxides and Si-based or Sn-based alloys—we discuss how these tools help researchers understand the battery process and design better battery systems. We also summarize the application of the characterization techniques to lithium-sulfur and lithium-air batteries and highlight the importance of those techniques in the development of next-generation batteries.
Development of a nickel/metal hydride battery (Ni/MH) system for EV application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikoma, M.; Hamada, S.; Morishita, N.
1994-12-31
In order to satisfy basic battery characteristics for electric vehicles (EV) such as specific energy, specific power and cycle life that are required for driving on urban streets, the authors have selected the valve-regulated lead acid battery as a conventional battery and the nickel/metal-hydride battery as an advanced battery, and have been studying their development in order to put them into practical use by 1998. Regarding the nickel/metal-hydride battery, excellent nickel positive electrode with high temperature charge efficiency accomplished with additives such as Ca compounds, and an exceedingly good hydrogen absorbing alloy negative electrode with high capacity and long cyclemore » life, achieved by adjustment of alloy composition, surface treatment, and control of binder and conductive additive have been developed to overcome difficulties in the scale-up of battery size. Modular batteries using this technology possess specific energy twice (70 Wh/kg) that of the lead-acid battery, and have superior specific power (160 Wh/kg) and cycle life. 5 refs.« less
Method of preparation of carbon materials for use as electrodes in rechargeable batteries
Doddapaneni, Narayan; Wang, James C. F.; Crocker, Robert W.; Ingersoll, David; Firsich, David W.
1999-01-01
A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.
Zhu, Yizhou; He, Xingfeng; Mo, Yifei
2015-12-11
All-solid-state Li-ion batteries based on ceramic solid electrolyte materials are a promising next-generation energy storage technology with high energy density and enhanced cycle life. The poor interfacial conductance is one of the key limitations in enabling all-solid-state Li-ion batteries. However, the origin of this poor conductance has not been understood, and there is limited knowledge about the solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. In this paper, we performed first principles calculations to evaluate the thermodynamics of the interfaces between solid electrolyte and electrode materials and to identify the chemical and electrochemical stabilities of these interfaces. Our computation results revealmore » that many solid electrolyte–electrode interfaces have limited chemical and electrochemical stability, and that the formation of interphase layers is thermodynamically favorable at these interfaces. These formed interphase layers with different properties significantly affect the electrochemical performance of all-solid-state Li-ion batteries. The mechanisms of applying interfacial coating layers to stabilize the interface and to reduce interfacial resistance are illustrated by our computation. This study demonstrates a computational scheme to evaluate the chemical and electrochemical stability of heterogeneous solid interfaces. Finally, the enhanced understanding of the interfacial phenomena provides the strategies of interface engineering to improve performances of all-solid-state Li-ion batteries.« less
Sodium-sulfur battery flight experiment definition study
NASA Technical Reports Server (NTRS)
Chang, Rebecca; Minck, Robert
1990-01-01
Sodium-sulfur batteries are considered to be one of the most likely battery systems for space applications. Compared with the Ni-H2 or Ni-Co battery systems, Na-S batteries offer a mass reduction by a factor of 2 to 4, representing significant launch cost savings or increased payload mass capabilities. The Na-S battery operates at between 300 and 400 C, using liquid sodium and sulfur/polysulfide electrodes and solid ceramic electrolyte; the transport of the electrode materials to the surface of the electrolyte is through wicking/capillary forces. This paper describes five tests identified for the Na-S battery flight experiment definition study, which include the cell characterization test, the reactant distribution test, the current/temperature distribution test, the freeze/thaw test, and the multicell LEO test. A schematic diagram of Na-S cell is included.
The Li-ion rechargeable battery: a perspective.
Goodenough, John B; Park, Kyu-Sung
2013-01-30
Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the Li(+) transfer across the electrode/electrolyte interface and lowers the cycle life of a battery cell. Moreover, formation of a passivation layer on the anode robs Li from the cathode irreversibly on an initial charge, further lowering the reversible Δt. These problems plus the cost of quality control of manufacturing plague development of Li-ion rechargeable batteries that can compete with the internal combustion engine for powering electric cars and that can provide the needed low-cost storage of electrical energy generated by renewable wind and/or solar energy. Chemists are contributing to incremental improvements of the conventional strategy by investigating and controlling electrode passivation layers, improving the rate of Li(+) transfer across electrode/electrolyte interfaces, identifying electrolytes with larger windows while retaining a Li(+) conductivity σ(Li) > 10(-3) S cm(-1), synthesizing electrode morphologies that reduce the size of the active particles while pinning them on current collectors of large surface area accessible by the electrolyte, lowering the cost of cell fabrication, designing displacement-reaction anodes of higher capacity that allow a safe, fast charge, and designing alternative cathode hosts. However, new strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions (e.g. sulfur) by liquid cathodes that may contain flow-through redox molecules, or by catalysts for air cathodes; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively. Opportunities exist for the chemist to bring together oxide and polymer or graphene chemistry in imaginative morphologies.
Bending Properties of Nickel Electrodes for Nickel-Hydrogen Batteries
NASA Technical Reports Server (NTRS)
Lerch, Brad A.; Wilson, Richard M.; Keller, Dennis; Corner, Ralph
1995-01-01
Recent changes in manufacturing have resulted in nickel-hydrogen batteries that fail prematurely by electrical shorting, This failure is believed to be a result of a blistering problem in the nickel electrodes. In this study the bending properties of nickel electrodes are investigated in an attempt to correlate the bending properties of the electrode with its propensity to blister. Nickel electrodes from three different batches of material were tested in both the as-received and impregnated forms. The effects of specimen curvature and position within the electrode on the bending strength were studied, and within-electrode and batch-to-batch variations were addressed. Two color-imaging techniques were employed to differentiate between the phases within the electrodes. These techniques aided in distinguishing the relative amounts of nickel hyroxide surface loading on each electrode, thereby relating surface loading to bend strength. Bend strength was found to increase with the amount of surface loading.
Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries
David, Lamuel; Bhandavat, Romil; Barrera, Uriel; Singh, Gurpreet
2016-01-01
Silicon and graphene are promising anode materials for lithium-ion batteries because of their high theoretical capacity; however, low volumetric energy density, poor efficiency and instability in high loading electrodes limit their practical application. Here we report a large area (approximately 15 cm × 2.5 cm) self-standing anode material consisting of molecular precursor-derived silicon oxycarbide glass particles embedded in a chemically-modified reduced graphene oxide matrix. The porous reduced graphene oxide matrix serves as an effective electron conductor and current collector with a stable mechanical structure, and the amorphous silicon oxycarbide particles cycle lithium-ions with high Coulombic efficiency. The paper electrode (mass loading of 2 mg cm−2) delivers a charge capacity of ∼588 mAh g−1electrode (∼393 mAh cm−3electrode) at 1,020th cycle and shows no evidence of mechanical failure. Elimination of inactive ingredients such as metal current collector and polymeric binder reduces the total electrode weight and may provide the means to produce efficient lightweight batteries. PMID:27025781
NASA Astrophysics Data System (ADS)
Gur, Sourav; Frantziskonis, George N.; Aifantis, Katerina E.
2017-08-01
Recent experiments illustrate that the morphology of the electrode surface impacts the voltage - capacity curves and long term cycling performance of Li-ion batteries. The present study systematically explores the role of the electrode surface morphology and uncertainties in the reactions that occur during electrochemical cycling, by performing kinetic Monte Carlo (kMC) simulations using the lattice Boltzmann method (LBM). This allows encoding of the inherent stochasticity at discrete microscale reaction events over the deterministic mean field reaction dynamics that occur in Li-ion cells. The electrodes are taken to be dense thin films whose surfaces are patterned with conical, trapezoidal, dome-shaped, or pillar-shaped structures. It is shown that the inherent perturbations in the reactions together with the characteristics of the electrode surface configuration can significantly improve battery performance, mainly because patterned surfaces, as opposed to flat surfaces, result in a smaller voltage drop. The most efficient pattern was the trapezoidal, which is consistent with experimental evidence on Si patterned electrodes.
NASA Astrophysics Data System (ADS)
Mazúr, P.; Mrlík, J.; Beneš, J.; Pocedič, J.; Vrána, J.; Dundálek, J.; Kosek, J.
2018-03-01
In our contribution we study the electrocatalytic effect of oxygen functionalization of thermally treated graphite felt on kinetics of electrode reactions of vanadium redox flow battery. Chemical and morphological changes of the felts are analysed by standard physico-chemical characterization techniques. A complex method four-point method is developed and employed for characterization of the felts in a laboratory single-cell. The method is based on electrochemical impedance spectroscopy and load curves measurements of positive and negative half-cells using platinum wire pseudo-reference electrodes. The distribution of ohmic and faradaic losses within a single-cell is evaluated for both symmetric and asymmetric electrode set-up with respect to the treatment conditions. Positive effect of oxygen functionalization is observed only for negative electrode, whereas kinetics of positive electrode reaction is almost unaffected by the treatment. This is in a contradiction to the results of typically employed cyclovoltammetric characterization which indicate that both electrodes are enhanced by the treatment to a similar extent. The developed four-point characterization method can be further used e.g., for the component screening and in-situ durability studies on single-cell scale redox flow batteries of various chemistries.
NASA Astrophysics Data System (ADS)
Aaron, Doug; Yeom, Sinchul; Kihm, Kenneth D.; Ashraf Gandomi, Yasser; Ertugrul, Tugrul; Mench, Matthew M.
2017-10-01
Addition of carbon-based nanomaterials to operating flow batteries accomplishes vanadium redox flow battery performance improvement. Initial efforts focus on addition of both pristine graphene and vacuum-filtered reduced graphene oxide (rGO) film on carbon paper supporting electrodes. While the former is unable to withstand convective flow through the porous electrode, the latter shows measurable kinetic improvement, particularly when laid on the polymer electrolyte membrane (PEM) side of the electrode; in contrast to the kinetic performance gain, a deleterious impact on mass transport is observed. Based on this tradeoff, further improvement is realized using perforated rGO films placed on the PEM side of the electrodes. Poor mass transport in the dense rGO film prompts identification of a more uniform, passive deposition method. A suspension of rGO flakes or Vulcan carbon black (XC-72R), both boasting two orders-of-magnitude greater specific surface area than that of common carbon electrodes, is added to the electrolyte reservoirs and allowed to passively deposit on the carbon paper or carbon felt supporting electrodes. For common carbon felt electrodes, addition of rGO flakes or XC-72R enables a tripling of current density at the same 80% voltage efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-07-01
BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygenmore » from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.« less
Advanced porous electrodes with flow channels for vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon
2017-02-01
Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhao; Chen-Wiegart, Yu-chen K.; Wang, Jun
Three-phase three-dimensional (3D) microstructural reconstructions of lithium-ion battery electrodes are critical input for 3D simulations of electrode lithiation/delithiation, which provide a detailed understanding of battery operation. In this report, 3D images of a LiCoO 2electrode are achieved using focused ion beam-scanning electron microscopy (FIB-SEM), with clear contrast among the three phases: LiCoO 2particles, carbonaceous phases (carbon and binder) and the electrolyte space. The good contrast was achieved by utilizing an improved FIB-SEM sample preparation method that combined infiltration of the electrolyte space with a low-viscosity silicone resin and triple ion-beam polishing. Morphological parameters quantified include phase volume fraction, surface area,more » feature size distribution, connectivity, and tortuosity. Electrolyte tortuosity was determined using two different geometric calculations that were in good agreement. In conclusion, the electrolyte tortuosity distribution versus position within the electrode was found to be highly inhomogeneous; this will lead to inhomogeneous electrode lithiation/delithiation at high C-rates that could potentially cause battery degradation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhao; Chen-Wiegart, Yu-chen K.; Wang, Jun
Abstract Three-phase three-dimensional (3D) microstructural reconstructions of lithium-ion battery electrodes are critical input for 3D simulations of electrode lithiation/delithiation, which provide a detailed understanding of battery operation. In this report, 3D images of a LiCoO 2electrode are achieved using focused ion beam-scanning electron microscopy (FIB-SEM), with clear contrast among the three phases: LiCoO 2particles, carbonaceous phases (carbon and binder) and the electrolyte space. The good contrast was achieved by utilizing an improved FIB-SEM sample preparation method that combined infiltration of the electrolyte space with a low-viscosity silicone resin and triple ion-beam polishing. Morphological parameters quantified include phase volume fraction, surfacemore » area, feature size distribution, connectivity, and tortuosity. Electrolyte tortuosity was determined using two different geometric calculations that were in good agreement. The electrolyte tortuosity distribution versus position within the electrode was found to be highly inhomogeneous; this will lead to inhomogeneous electrode lithiation/delithiation at high C-rates that could potentially cause battery degradation.« less
Operando analysis of lithium profiles in Li-ion batteries using nuclear microanalysis
NASA Astrophysics Data System (ADS)
Surblé, S.; Paireau, C.; Martin, J.-F.; Tarnopolskiy, V.; Gauthier, M.; Khodja, H.; Daniel, L.; Patoux, S.
2018-07-01
A wide variety of analytical methods are used for studying the behavior of lithium-ion batteries and particularly the lithium ion distribution in the electrodes. However, the development of in situ/operando techniques proved powerful to understand the mechanisms responsible for the lithium trapping and then the aging phenomenon. Herein, we report the design of an electrochemical cell to profile operando lithium concentration in LiFePO4 electrodes using Ion Beam Analysis techniques. The specificity of the cell resides in its ability to not only provide qualitative information about the elements present but above all to measure quantitatively their content in the electrode at different states of charge of the battery. The nuclear methods give direct information about the degradation of the electrolyte and particularly reveal inhomogeneous distributions of lithium and fluorine along the entire thickness of the electrode. Higher concentrations of fluorine is detected near the electrode/electrolyte interface while a depletion of lithium is observed near the current collector at high states of charge.
Positive electrode for a lithium battery
Park, Sang-Ho; Amine, Khalil
2015-04-07
A method for producing a lithium alkali transition metal oxide for use as a positive electrode material for lithium secondary batteries by a precipitation method. The positive electrode material is a lithium alkali transition metal composite oxide and is prepared by mixing a solid state mixed with alkali and transition metal carbonate and a lithium source. The mixture is thermally treated to obtain a small amount of alkali metal residual in the lithium transition metal composite oxide cathode material.
NASA Astrophysics Data System (ADS)
Chye, Matthew B.
2011-12-01
Batteries and asymmetric electrochemical capacitors using nickel-based positive electrodes can provide high currents due to their defect structure and low internal resistance. Nickel-based positive electrodes, therefore, are ideal for high current applications such as power tools and electric vehicles (EVs). The positive electrodes prepared in this research are monolithic graphitic foams electrochemically impregnated with nickel oxyhydroxide active mass and select additives that enhance electrode performance. Carbon foam is a good current collector due to its light-weight, porous, and graphitic nature, which give its good electrical properties and the ability to be used as a current collector. Replacing sintered nickel current collectors in nickel-based batteries with a low cost, readily available material, carbon foam, can reduce the mass of a rechargeable battery. The goal of this research has been to contribute to fundamental science through better understanding of optimizing the deposition and formation processes of the active mass onto carbon foams as well as investigating the active mass behavior under deposition, formation, and cycling conditions. Flooded cells and a PFA sealed asymmetric capacitor have been used. The effects of carbon foam surface pretreatments and how they affect the active material/carbon foam performance are demonstrated. Also the feasibility of this positive electrode as a component in nickel-based batteries, a Ni-Zn cells and an asymmetric capacitor pouch cell, is demonstrated.
Evolution of Reduced Graphene Oxide-SnS2 Hybrid Nanoparticle Electrodes in Li-Ion Batteries.
Modarres, Mohammad H; Lim, Jonathan Hua-Wei; George, Chandramohan; De Volder, Michael
2017-06-22
Hybrid nanomaterials where active battery nanoparticles are synthesized directly onto conductive additives such as graphene hold the promise of improving the cyclability and energy density of conversion and alloying type Li-ion battery electrodes. Here we investigate the evolution of hybrid reduced graphene oxide-tin sulfide (rGO-SnS 2 ) electrodes during battery cycling. These hybrid nanoparticles are synthesized by a one-step solvothermal microwave reaction which allows for simultaneous synthesis of the SnS 2 nanocrystals and reduction of GO. Despite the hybrid architecture of these electrodes, electrochemical impedance spectroscopy shows that the impedance doubles in about 25 cycles and subsequently gradually increases, which may be caused by an irreversible surface passivation of rGO by sulfur enriched conversion products. This surface passivation is further confirmed by post-mortem Raman spectroscopy of the electrodes, which no longer detects rGO peaks after 100 cycles. Moreover, galvanostatic intermittent titration analysis during the 1st and 100th cycles shows a drop in Li-ion diffusion coefficient of over an order of magnitude. Despite reports of excellent cycling performance of hybrid nanomaterials, our work indicates that in certain electrode systems, it is still critical to further address passivation and charge transport issues between the active phase and the conductive additive in order to retain high energy density and cycling performance.
Evolution of Reduced Graphene Oxide–SnS2 Hybrid Nanoparticle Electrodes in Li-Ion Batteries
2017-01-01
Hybrid nanomaterials where active battery nanoparticles are synthesized directly onto conductive additives such as graphene hold the promise of improving the cyclability and energy density of conversion and alloying type Li-ion battery electrodes. Here we investigate the evolution of hybrid reduced graphene oxide–tin sulfide (rGO-SnS2) electrodes during battery cycling. These hybrid nanoparticles are synthesized by a one-step solvothermal microwave reaction which allows for simultaneous synthesis of the SnS2 nanocrystals and reduction of GO. Despite the hybrid architecture of these electrodes, electrochemical impedance spectroscopy shows that the impedance doubles in about 25 cycles and subsequently gradually increases, which may be caused by an irreversible surface passivation of rGO by sulfur enriched conversion products. This surface passivation is further confirmed by post-mortem Raman spectroscopy of the electrodes, which no longer detects rGO peaks after 100 cycles. Moreover, galvanostatic intermittent titration analysis during the 1st and 100th cycles shows a drop in Li-ion diffusion coefficient of over an order of magnitude. Despite reports of excellent cycling performance of hybrid nanomaterials, our work indicates that in certain electrode systems, it is still critical to further address passivation and charge transport issues between the active phase and the conductive additive in order to retain high energy density and cycling performance. PMID:28804530
Wang, Yuesheng; Mu, Linqin; Liu, Jue; ...
2015-08-06
In this study, aqueous sodium-ion batteries have shown desired properties of high safety characteristics and low-cost for large-scale energy storage applications such as smart grid, because of the abundant sodium resources as well as the inherently safer aqueous electrolytes. Among various Na insertion electrode materials, tunnel-type Na 0.44MnO 2 has been widely investigated as a positive electrode for aqueous sodium-ion batteries. However, the low achievable capacity hinders its practical applications. Here we report a novel sodium rich tunnel-type positive material with a nominal composition of Na 0.66[Mn 0.66Ti 0.34]O 2. The tunnel-type structure of Na 0.44MnO 2 obtained for thismore » compound was confirmed by XRD and atomic-scale STEM/EELS. When cycled as positive electrode in full cells using NaTi 2(PO 4) 3/C as negative electrode in 1M Na 2SO 4 aqueous electrolyte, this material shows the highest capacity of 76 mAh g -1 among the Na insertion oxides with an average operating voltage of 1.2 V at a current rate of 2C. These results demonstrate that Na 0.66[Mn 0.66Ti 0.34]O 2 is a promising positive electrode material for rechargeable aqueous sodium-ion batteries.« less
Potassium-Based Dual Ion Battery with Dual-Graphite Electrode.
Fan, Ling; Liu, Qian; Chen, Suhua; Lin, Kairui; Xu, Zhi; Lu, Bingan
2017-08-01
A potassium ion battery has potential applications for large scale electric energy storage systems due to the abundance and low cost of potassium resources. Dual graphite batteries, with graphite as both anode and cathode, eliminate the use of transition metal compounds and greatly lower the overall cost. Herein, combining the merits of the potassium ion battery and dual graphite battery, a potassium-based dual ion battery with dual-graphite electrode is developed. It delivers a reversible capacity of 62 mA h g -1 and medium discharge voltage of ≈3.96 V. The intercalation/deintercalation mechanism of K + and PF 6 - into/from graphite is proposed and discussed in detail, with various characterizations to support. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In situ potential distribution measurement in an all-vanadium flow battery.
Liu, Qinghua; Turhan, Ahmet; Zawodzinski, Thomas A; Mench, Matthew M
2013-07-18
An experimental method for measurement of local redox potential within multilayer electrodes was developed and applied to all-vanadium redox flow batteries (VRFBs). Through-plane measurement at the positive side reveals several important phenomena including potential distribution, concentration distribution of active species and the predominant reaction location within the porous carbon electrodes.
Production of battery grade materials via an oxalate method
Belharouak, Ilias; Amine, Khalil
2016-05-17
An active electrode material for electrochemical devices such as lithium ion batteries includes a lithium transition metal oxide which is free of sodium and sulfur contaminants. The lithium transition metal oxide is prepared by calcining a mixture of a lithium precursor and a transition metal oxalate. Electrochemical devices use such active electrodes.
Production of battery grade materials via an oxalate method
Belharouak, Ilias; Amine, Khalil
2014-04-29
An active electrode material for electrochemical devices such as lithium ion batteries includes a lithium transition metal oxide which is free of sodium and sulfur contaminants. The lithium transition metal oxide is prepared by calcining a mixture of a lithium precursor and a transition metal oxalate. Electrochemical devices use such active electrodes.
Modeling the evolution of lithium-ion particle contact distributions using a fabric tensor approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stershic, A. J.; Simunovic, S.; Nanda, J.
2015-08-25
Electrode microstructure and processing can strongly influence lithium-ion battery performance such as capacity retention, power, and rate. Battery electrodes are multi-phase composite structures wherein conductive diluents and binder bond active material to a current collector. The structure and response of this composite network during repeated electrochemical cycling directly affects battery performance characteristics. We propose the fabric tensor formalism for describing the structure and evolution of the electrode microstructure. Fabric tensors are directional measures of particulate assemblies based on inter-particle connectivity, relating to the structural and transport properties of the electrode. Fabric tensor analysis is applied to experimental data-sets for positivemore » electrode made of lithium nickel manganese cobalt oxide, captured by X-ray tomography for several compositions and consolidation pressures. We show that fabric tensors capture the evolution of inter-particle contact distribution and are therefore good measures for the internal state of and electronic transport within the electrode. The fabric tensor analysis is also applied to Discrete Element Method (DEM) simulations of electrode microstructures using spherical particles with size distributions from the tomography. Furthermore, these results do not follow the experimental trends, which indicates that the particle size distribution alone is not a sufficient measure for the electrode microstructures in DEM simulations.« less
In situ analytical techniques for battery interface analysis.
Tripathi, Alok M; Su, Wei-Nien; Hwang, Bing Joe
2018-02-05
Lithium-ion batteries, simply known as lithium batteries, are distinct among high energy density charge-storage devices. The power delivery of batteries depends upon the electrochemical performances and the stability of the electrode, electrolytes and their interface. Interfacial phenomena of the electrode/electrolyte involve lithium dendrite formation, electrolyte degradation and gas evolution, and a semi-solid protective layer formation at the electrode-electrolyte interface, also known as the solid-electrolyte interface (SEI). The SEI protects electrodes from further exfoliation or corrosion and suppresses lithium dendrite formation, which are crucial needs for enhancing the cell performance. This review covers the compositional, structural and morphological aspects of SEI, both artificially and naturally formed, and metallic dendrites using in situ/in operando cells and various in situ analytical tools. Critical challenges and the historical legacy in the development of in situ/in operando electrochemical cells with some reports on state-of-the-art progress are particularly highlighted. The present compilation pinpoints the emerging research opportunities in advancing this field and concludes on the future directions and strategies for in situ/in operando analysis.
NASA Technical Reports Server (NTRS)
Isaac, Bryan J.
1994-01-01
Electrochemical Impedance Spectroscopy (EIS) is a valuable tool for investigating the chemical and physical processes occurring at electrode surfaces. It offers information about electron transfer at interfaces, kinetics of reactions, and diffusion characteristics of the bulk phase between the electrodes. For battery cells, this technique offers another advantage in that it can be done without taking the battery apart. This non-destructive analysis technique can thus be used to gain a better understanding of the processes occurring within a battery cell. This also raises the possibility of improvements in battery design and identification or prediction of battery characteristics useful in industry and aerospace applications. EIS as a technique is powerful and capable of yielding significant information about the cell, but it also requires that the many parameters under investigation can be resolved. This implies an understanding of the processes occurring in a battery cell. Many battery types were surveyed in this work, but the main emphasis was on nickel/metal hydride batteries.
Yu, Cheng-Fong; Lin, Lu-Yin
2016-11-15
The nickel cobalt sulfide is one of the most attractive electroactive materials for battery-like electrodes with multiple oxidation states for Faradaic reactions. Novel structures of the nickel cobalt sulfide with large surface areas and high conductivities have been proposed to improve the performance of the battery-like electrodes. The hydrothermal reaction is the most common used method for synthesizing nickel cobalt sulfide nanostructures due to the simple and cost-effective features, but the precursor concentration on the morphology and the resulting electrochemical performance is barely discussed. In this study, various Ni to Co ratios are used in the hydrothermal reaction to make nickel cobalt sulfides on the nickel foam, and the Ni to Co ratio is found to play great roles on the morphology and the electrocapacitive performance for the pertinent battery-like electrodes. The sheet-like structures are successfully obtained with large surface area for charge accumulation, and the optimized sample presents the largest nanosheets among all with several wrinkles on the surface. A high specific capacity of 258.2mAh/g measured at the current density of 5A/g and a high-rate charge/discharge capacity are also attended for the optimized battery-like electrodes. The excellent cycling stability of 94.5% retention after 2000 cycles repeated charge/discharge process is also obtained for this system. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhao, Qing; Zhu, Zhiqiang; Chen, Jun
2017-12-01
Organic carbonyl electrode materials that have the advantages of high capacity, low cost and being environmentally friendly, are regarded as powerful candidates for next-generation stationary and redox flow rechargeable batteries (RFBs). However, low carbonyl utilization, poor electronic conductivity and undesired dissolution in electrolyte are urgent issues to be solved. Here, we summarize a molecular engineering approach for tuning the capacity, working potential, concentration of active species, kinetics, and stability of stationary and redox flow batteries, which well resolves the problems of organic carbonyl electrode materials. As an example, in stationary batteries, 9,10-anthraquinone (AQ) with two carbonyls delivers a capacity of 257 mAh g -1 (2.27 V vs Li + /Li), while increasing the number of carbonyls to four with the formation of 5,7,12,14-pentacenetetrone results in a higher capacity of 317 mAh g -1 (2.60 V vs Li + /Li). In RFBs, AQ, which is less soluble in aqueous electrolyte, reaches 1 M by grafting -SO 3 H with the formation of 9,10-anthraquinone-2,7-disulphonic acid, resulting in a power density exceeding 0.6 W cm -2 with long cycling life. Therefore, through regulating substituent groups, conjugated structures, Coulomb interactions, and the molecular weight, the electrochemical performance of carbonyl electrode materials can be rationally optimized. This review offers fundamental principles and insight into designing advanced carbonyl materials for the electrodes of next-generation rechargeable batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Jilei; Wang, Jin; Xu, Chaohe; Jiang, Hao; Li, Chunzhong; Zhang, Lili; Lin, Jianyi; Shen, Ze Xiang
2018-01-01
Tremendous efforts have been dedicated into the development of high-performance energy storage devices with nanoscale design and hybrid approaches. The boundary between the electrochemical capacitors and batteries becomes less distinctive. The same material may display capacitive or battery-like behavior depending on the electrode design and the charge storage guest ions. Therefore, the underlying mechanisms and the electrochemical processes occurring upon charge storage may be confusing for researchers who are new to the field as well as some of the chemists and material scientists already in the field. This review provides fundamentals of the similarities and differences between electrochemical capacitors and batteries from kinetic and material point of view. Basic techniques and analysis methods to distinguish the capacitive and battery-like behavior are discussed. Furthermore, guidelines for material selection, the state-of-the-art materials, and the electrode design rules to advanced electrode are proposed.
Intrinsic borohydride fuel cell/battery hybrid power sources
NASA Astrophysics Data System (ADS)
Hong, Jian; Fang, Bin; Wang, Chunsheng; Currie, Kenneth
The electrochemical oxidation behaviors of NaBH 4 on Zn, Zn-MH, and MH (metal-hydride) electrodes were investigated, and an intrinsic direct borohydride fuel cell (DBFC)/battery hybrid power source using MH (or Zn-MH) as the anode and MnO 2 as the cathode was tested. Borohydride cannot be effectively oxidized on Zn electrodes at the Zn oxidation potential because of the poor electrocatalytic ability of Zn for borohydride oxidation and the high overpotential, even though borohydride has the same oxidation potential of Zn in an alkaline solution. The borohydride can be electrochemically oxidized on Ni and MH electrodes through a 4e reaction at a high overpotential. Simply adding borohydride into an alkaline electrolyte of a Zn/air or MH/air battery can greatly increase the capacity, while an intrinsic DBFC/MH(or Zn)-MnO 2 battery can deliver a higher peak power than regular DBFCs.
Space Electrochemical Research and Technology
NASA Technical Reports Server (NTRS)
Wilson, Richard M. (Compiler)
1996-01-01
Individual papers presented at the conference address the following topics: development of a micro-fiber nickel electrode for nickel-hydrogen cell, high performance nickel electrodes for space power application, bending properties of nickel electrodes for nickel-hydrogen batteries, effect of KOH concentration and anions on the performance of a Ni-H2 battery positive plate, advanced dependent pressure vessel nickel hydrogen spacecraft cell and battery design, electrolyte management considerations in modern nickel hydrogen and nickel cadmium cell and battery design, a novel unitized regenerative proton exchange membrane fuel cell, fuel cell systems for first lunar outpost - reactant storage options, the TMI regenerable solid oxide fuel cell, engineering development program of a closed aluminum-oxygen semi-cell system for an unmanned underwater vehicle, SPE OBOGS on-board oxygen generating system, hermetically sealed aluminum electrolytic capacitor, sol-gel technology and advanced electrochemical energy storage materials, development of electrochemical supercapacitors for EMA applications, and high energy density electrolytic capacitor.
Multi-component intermetallic electrodes for lithium batteries
Thackeray, Michael M; Trahey, Lynn; Vaughey, John T
2015-03-10
Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.
NASA Astrophysics Data System (ADS)
Yang, Dong-Cheol; Jang, In-Su; Jang, Min-Ho; Park, Choong-Nyeon; Park, Chan-Jin; Choi, Jeon
2009-06-01
We optimized the composition of additives for the anode in a Ni-MH battery using the response surface method (RSM) to improve the electrode discharge capacities. When the amount of additives was small, the discharge characteristics of the electrode were degraded by charge-discharge cycling due to the low binding strength among the alloy powders and the resultant separation of the powder from the electrode surface. In contrast, the addition of a large amount of the additives increased the electrical impedance of the electrode. Through a response optimization process, we found an optimum composition range of additives to exhibit the greatest discharge capacity of the electrode.
Hao, Youchen; Xiong, Dongbin; Liu, Wen; Fan, Linlin; Li, Dejun; Li, Xifei
2017-11-22
An interlayer has been regarded as a promising mediator to prolong the life span of lithium sulfur batteries because its excellent absorbability to soluble polysulfide efficiently hinders the shuttle effect. Herein, we designed various interlayers and understand the working mechanism of an interlayer for lithium sulfur batteries in detail. It was found that the electrochemical performance of a S electrode for an interlayer located in cathode side is superior to the pristine one without interlayers. Surprisingly, the performance of the S electrode for an interlayer located in anode side is poorer than that of pristine one. For comparison, glass fibers were also studied as a nonconductive interlayer for lithium sulfur batteries. Unlike the two interlayers above, these nonconductive interlayer did displays significant capacity fading because polysulfides were adsorbed onto insulated interlayer. Thus, the nonconductive interlayer function as a "dead zone" upon cycling. Based on our findings, it was for the first time proposed that a controllably optimized interlayer, with electrical conductivity as well as the absorbability of polysulfides, may function as a "vice-electrode" of the anode or cathode upon cycling. Therefore, the cathodic conductive interlayer can enhance lithium sulfur battery performance, and the anodic conductive interlayer may be helpful for the rational design of 3D networks for the protection of lithium metal.
Mukherjee, Debdyuti; Gowda Y K, Guruprasada; Makri Nimbegondi Kotresh, Harish; Sampath, S
2017-06-14
Organic materials containing active carbonyl groups have attracted considerable attention as electrodes in Li-ion batteries due to their reversible redox activity, ability to retain capacity, and, in addition, their ecofriendly nature. Introduction of porosity will help accommodate as well as store small ions and molecules reversibly. In the present work, we introduce a mesoporous triptycene-related, rigid network polymer with high specific surface area as an electrode material for rechargeable Li-ion battery. The designed polymer with a three-dimensional (3D), rigid porous network allows free movement of ions/electrolyte as well as helps in interacting with the active anhydride moieties (containing two carbonyl groups). Considerable intake of Li + ions giving rise to very high specific capacity of 1100 mA h g -1 at a discharge current of 50 mA g -1 and ∼120 mA h g -1 at a high discharge current of 3 A g -1 are observed with excellent cyclability up to 1000 cycles. This remarkable rate capability, which is one of the highest among the reported organic porous polymers to date, makes the triptycene-related rigid 3D network a very good choice for Li-ion batteries and opens up a new method to design polymer-based electrode materials for metal-ion battery technology.
Membrane-less hybrid flow battery based on low-cost elements
NASA Astrophysics Data System (ADS)
Leung, P. K.; Martin, T.; Shah, A. A.; Mohamed, M. R.; Anderson, M. A.; Palma, J.
2017-02-01
The capital cost of conventional redox flow batteries is relatively high (>USD 200/kWh) due to the use of expensive active materials and ion-exchange membranes. This paper presents a membrane-less hybrid organic-inorganic flow battery based on the low-cost elements zinc (
Yang, Yao; Liu, Wei; Wu, Nian; Wang, Xiaochen; Zhang, Tao; Chen, Linfeng; Zeng, Rui; Wang, Yingming; Lu, Juntao; Fu, Lei; Xiao, Li; Zhuang, Lin
2017-06-14
In this work, a planar model electrode method has been used to investigate the structure-activity relationship of multiple noble and 3d metal catalysts for the cathode reaction of Li-O 2 battery. The result shows that the battery performance (discharge/charge overpotential) strongly depends not only on the type of catalysts but also on the morphology of the discharge product (Li 2 O 2 ). Specifically, according to electrochemical characterization and scanning electron microscopy (SEM) observation, noble metals (Pd, Pt, Ru, Ir, and Au) show excellent battery performance (smaller discharge/charge overpotential), with wormlike Li 2 O 2 particles with size less than 200 nm on their surfaces. On the other hand, 3d metals (Fe, Co, Ni, and Mn) offered poor battery performance (larger discharge/charge overpotential), with much larger Li 2 O 2 particles (1 μm to a few microns) on their surfaces after discharging. Further research shows that a "volcano plot" is found by correlating the discharging/charging plateau voltage with the adsorption energy of LiO 2 on different metals. The metals with better battery performance and worm-like-shaped Li 2 O 2 are closer to the top of the "volcano", indicating adsorption energy of LiO 2 is one of the key characters for the catalyst to reach a good performance for the oxygen electrode of Li-O 2 battery, and it has a strong influence on the morphology of the discharge product on the electrode surface.
Li-air batteries: Importance of singlet oxygen
NASA Astrophysics Data System (ADS)
Luntz, Alan C.; McCloskey, Bryan D.
2017-04-01
The deployment of Li-air batteries is hindered by severe parasitic reactions during battery cycling. Now, the reactive singlet oxygen intermediate is shown to substantially contribute to electrode and electrolyte degradation.
NASA Astrophysics Data System (ADS)
Anani, A.; Huggins, R. A.
The desire to produce high specific energy rechargeable batteries has led to the investigation of ternary alloy systems for use as negative electrode components in lithium-based cells. The addition of a third component to a binary alloy electrode could result in a significant change in the thermodynamic and/or kinetic behavior of the electrode material, depending on the relevant phase diagram and the crystal structures of the phases present. The influence of ternary phase diagram characteristics upon the thermodynamic properties and specific energies of multi-component electrodes is discussed with lithiumsilicon-based systems as an illustration. It is shown that the electrode potentials (and thus specific energies of the ensuing cell) as well as the theoretical lithium capacities of electrodes based on these ternary alloy modifications can be significantly increased with respect to their present day binary counterpart.
Mohanty, D.; Hockaday, E.; Li, J.; ...
2016-02-21
During LIB electrode manufacturing, it is difficult to avoid the certain defects that diminish LIB performance and shorten the life span of the batteries. This study provides a systematic investigation correlating the different plausible defects (agglomeration/blisters, pinholes/divots, metal particle contamination, and non-uniform coating) in a LiNi 0.5Mn 0.3Co 0.2O 2 positive electrode with its electrochemical performance. Additionally, an infrared thermography technique was demonstrated as a nondestructive tool to detect these defects. The findings show that cathode agglomerates aggravated cycle efficiency, and resulted in faster capacity fading at high current density. Electrode pinholes showed substantially lower discharge capacities at higher currentmore » densities than baseline NMC 532 electrodes. Metal particle contaminants have an extremely negative effect on performance, at higher C-rates. The electrodes with more coated and uncoated interfaces (non-uniform coatings) showed poor cycle life compared with electrodes with fewer coated and uncoated interfaces. Further, microstructural investigation provided evidence of presence of carbon-rich region in the agglomerated region and uneven electrode coating thickness in the coated and uncoated interfacial regions that may lead to the inferior electrochemical performance. In conclusion, this study provides the importance of monitoring and early detection of the electrode defects during LIB manufacturing processes to minimize the cell rejection rate after fabrication and testing.« less
Matsushita, Tadashi; Watanabe, Jiro; Nakao, Tatsuya; Yamashita, Seiichi
2014-11-01
For the last decades, the performance of the lithium-ion battery (LIB) has been significantly improved and its applications have been expanding rapidly. However, its performance has yet to be enhanced.In the lithium-ion battery development, it is important to elucidate the electrode structure change in detail during the charge and discharge cycling. In particular, solid electrolyte interface (SEI) formed by decomposition of the electrolytes on the graphite negative electrode surface should play an important role for battery properties. Therefore, it is essential to control the structure and composition of SEI to improve the battery performance. Here, we conducted a scanning electron microscope (SEM) and transmission electron microscope (TEM) study to elucidate the structures of the SEI during the charge and discharge process using LiNi1/3Co1/3Mn1/3O2 [1] cathode and graphite anode. [2] Since SEI is a lithium-containing compound with high activity, it was observed without being exposed to the atmosphere. The electrodes including SEI were sampled after dismantling batteries with cutoff voltages of 3V and 4.2V for the charge process and 3V for the discharge process. Fig.1 shows SEM images of the graphite electrode surface during the charge and discharge process. The change of the SEI structure during the process was clearly observed. Further, TEM images showed that the SEI grew thicker during the charge process and becomes thinner when discharged. These results with regard to the reversible SEI structure could give a new insight for the battery development.jmicro;63/suppl_1/i21/DFU056F1F1DFU056F1Fig. 1.SEM images of the graphite electrode surface:(a) before charge process;(b) with charge-cutoff voltage of 3.0V; (c) with charge-cutoff voltage of 4.2V; (d) with discharge-cutoff voltage of 3.0V. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Method of preparation of carbon materials for use as electrodes in rechargeable batteries
Doddapaneni, N.; Wang, J.C.F.; Crocker, R.W.; Ingersoll, D.; Firsich, D.W.
1999-03-16
A method is described for producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of {approx_equal} 80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere. 4 figs.
NASA Astrophysics Data System (ADS)
Morimoto, Katsuya; Nagashima, Ikuo; Matsui, Masaki; Maki, Hideshi; Mizuhata, Minoru
2018-06-01
The deterioration mechanisms of a Ni-metal hydride (Ni-MH) battery system during operation is investigated. A decrease of the discharge voltage is observed at the early stage of the cycle, which indicates the possible occurrence of an unexpected system shutdown of the battery at low state of charge. Cyclic voltammetry and surface examination are used to investigate the causes of this phenomenon. The elution of elements such as Al and Mn from the metal hydride negative electrodes is shown to affect the oxidation/reduction behavior of Co, the conductive material of the positive electrode. Furthermore, the possible methods to strengthen the conductive network of Co, including pretreatment of the positive electrode, addition of conductive material, and precipitation of the elution elements as insoluble compounds to reduce their effect are also investigated. By combining these strategies, deterioration of the conductive network can be prevented in the early stage.
Facile synthesis of nanostructured transition metal oxides as electrodes for Li-ion batteries
NASA Astrophysics Data System (ADS)
Opra, Denis P.; Gnedenkov, Sergey V.; Sokolov, Alexander A.; Minaev, Alexander N.; Kuryavyi, Valery G.; Sinebryukhov, Sergey L.
2017-09-01
At all times, energy storage is one of the greatest scientific challenge. Recently, Li-ion batteries are under special attention due to high working voltage, long cycle life, low self-discharge, reliability, no-memory effect. However, commercial LIBs usage in medium- and large-scale energy storage are limited by the capacity of lithiated metal oxide cathode and unsafety of graphite anode at high-rate charge. In this way, new electrode materials with higher electrochemical performance should be designed to satisfy a requirement in both energy and power. As it known, nanostructured transition metal oxides are promising electrode materials because of their elevated specific capacity and high potential vs. Li/Li+. In this work, the perspective of an original facile technique of pulsed high-voltage plasma discharge in synthesis of nanostructured transition metal oxides as electrodes for lithium-ion batteries has been demonstrated.
Rupnowski, Przemyslaw; Ulsh, Michael J.; Sopori, Bhushan; ...
2017-08-18
This work focuses on a new technique called active thermal scanning for in-line monitoring of porosity and areal loading of Li-ion battery electrodes. In this technique a moving battery electrode is subjected to thermal excitation and the induced temperature rise is monitored using an infra-red camera. Static and dynamic experiments with speeds up to 1.5 m min -1 are performed on both cathodes and anodes and a combined micro- and macro-scale finite element thermal model of the system is developed. It is shown experimentally and through simulations that during thermal scanning the temperature profile generated in an electrode depends onmore » both coating porosity (or area loading) and thickness. Here, it is concluded that by inverting this relation the porosity (or areal loading) can be determined, if thermal response and thickness are simultaneously measured.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupnowski, Przemyslaw; Ulsh, Michael J.; Sopori, Bhushan
This work focuses on a new technique called active thermal scanning for in-line monitoring of porosity and areal loading of Li-ion battery electrodes. In this technique a moving battery electrode is subjected to thermal excitation and the induced temperature rise is monitored using an infra-red camera. Static and dynamic experiments with speeds up to 1.5 m min -1 are performed on both cathodes and anodes and a combined micro- and macro-scale finite element thermal model of the system is developed. It is shown experimentally and through simulations that during thermal scanning the temperature profile generated in an electrode depends onmore » both coating porosity (or area loading) and thickness. Here, it is concluded that by inverting this relation the porosity (or areal loading) can be determined, if thermal response and thickness are simultaneously measured.« less
NASA Astrophysics Data System (ADS)
Rupnowski, Przemyslaw; Ulsh, Michael; Sopori, Bhushan; Green, Brian G.; Wood, David L.; Li, Jianlin; Sheng, Yangping
2018-01-01
This work focuses on a new technique called active thermal scanning for in-line monitoring of porosity and areal loading of Li-ion battery electrodes. In this technique a moving battery electrode is subjected to thermal excitation and the induced temperature rise is monitored using an infra-red camera. Static and dynamic experiments with speeds up to 1.5 m min-1 are performed on both cathodes and anodes and a combined micro- and macro-scale finite element thermal model of the system is developed. It is shown experimentally and through simulations that during thermal scanning the temperature profile generated in an electrode depends on both coating porosity (or area loading) and thickness. It is concluded that by inverting this relation the porosity (or areal loading) can be determined, if thermal response and thickness are simultaneously measured.
Cai, Weiwei; Zhang, Yunfeng; Li, Jing; Sun, Yubao; Cheng, Hansong
2014-04-01
Conductive processes involving lithium ions are analyzed in detail from a mechanistic perspective, and demonstrate that single ion polymeric electrolyte (SIPE) membranes can be used in lithium-ion batteries with a wide operating temperature range (25-80 °C) through systematic optimization of electrodes and electrode/electrolyte interfaces, in sharp contrast to other batteries equipped with SIPE membranes that display appreciable operability only at elevated temperatures (>60 °C). The performance is comparable to that of batteries using liquid electrolyte of inorganic salt, and the batteries exhibit excellent cycle life and rate performance. This significant widening of battery operation temperatures coupled with the inherent flexibility and robustness of the SIPE membranes makes it possible to develop thin and flexible Li-ion batteries for a broad range of applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pasta, Mauro; Wessells, Colin D; Cui, Yi; La Mantia, Fabio
2012-02-08
Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na(2-x)Mn(5)O(10) nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l(-1) for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (~ 0.2 Wh l(-1)), the most efficient technique presently available. © 2012 American Chemical Society
Advanced screening of electrode couples
NASA Technical Reports Server (NTRS)
Giner, J. D.; Cahill, K.
1980-01-01
The chromium (Cr(3+)/Cr(2+)) redox couple (electrolyte and electrode) was investigated to determine its suitability as negative electrode for the iron (Fe(3+)/Fe(2+))-chromium (Cr(3+)/Cr(2+)) redox flow battery. Literature search and laboratory investigation established that the solubility and stability of aqueous acidic solutions of chromium(3) chloride and chromium(2) chloride are sufficient for redox battery application. Four categories of electrode materials were tested; namely, metals and metalloid materials (elements and compounds), alloys, plated materials, and Teflon-bonded materials. In all, the relative performance of 26 candidate electrode materials was evaluated on the basis of slow scan rate linear sweep voltammetry in stirred solution. No single material tested gave both acceptable anodic an acceptable cathodic performance. However, the identification of lead as a good cathodic electrocatalyst and gold as a good anodic electrocatalyst led to the invention of the lead/gold combination electrocatalyst. This type of catalyst can be fabricated in several ways and appears to offer the advantages of each metal without the disadvantages associated with their use as single materials. This lead/gold electrocatalyst was tested by NASA-Lewis Research Center in complete, flowing, redox batteries comprising a stack of several cells. A large improvement in the battery's coulombic and energy efficiency was observed.
A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries
Allu, S.; Kalnaus, S.; Simunovic, S.; ...
2016-06-09
Through this study, we present a three-dimensional computational formulation for electrode-electrolyte-electrode system of Li-Ion batteries. The physical consistency between electrical, thermal and chemical equations is enforced at each time increment by driving the residual of the resulting coupled system of nonlinear equations to zero. The formulation utilizes a rigorous volume averaging approach typical of multiphase formulations used in other fields and recently extended to modeling of supercapacitors [1]. Unlike existing battery modeling methods which use segregated solution of conservation equations and idealized geometries, our unified approach can model arbitrary battery and electrode configurations. The consistency of multi-physics solution also allowsmore » for consideration of a wide array of initial conditions and load cases. The formulation accounts for spatio-temporal variations of material and state properties such as electrode/void volume fractions and anisotropic conductivities. The governing differential equations are discretized using the finite element method and solved using a nonlinearly consistent approach that provides robust stability and convergence. The new formulation was validated for standard Li-ion cells and compared against experiments. Finally, its scope and ability to capture spatio-temporal variations of potential and lithium distribution is demonstrated on a prototypical three-dimensional electrode problem.« less
Wang, Yuesheng; Liu, Jue; Lee, Byungju; ...
2015-03-25
The aqueous sodium-ion battery system is a safe and low-cost solution for large-scale energy storage, due to the abundance of sodium and inexpensive aqueous electrolytes. Although several positive electrode materials, e.g., Na 0.44MnO 2, were proposed, few negative electrode materials, e.g., activated carbon and NaTi 2(PO 4) 3, are available. Here we show that Ti-substituted Na 0.44MnO 2 (Na 0.44[Mn 1-xTi x]O 2) with tunnel structure can be used as a negative electrode material for aqueous sodium-ion batteries. This material exhibits superior cyclability even without the special treatment of oxygen removal from the aqueous solution. Atomic-scale characterizations based on sphericalmore » aberration-corrected electron microscopy and ab initio calculations are utilized to accurately identify the Ti substitution sites and sodium storage mechanism. Ti substitution tunes the charge ordering property and reaction pathway, significantly smoothing the discharge/charge profiles and lowering the storage voltage. Both the fundamental understanding and practical demonstrations suggest that Na 0.44[Mn 1-xTi x]O 2 is a promising negative electrode material for aqueous sodium-ion batteries.« less
NASA Astrophysics Data System (ADS)
Wendt, Christian; Niehoff, Philip; Winter, Martin; Schappacher, Falko M.
2018-07-01
Understanding the mechanical aging of lithium ion batteries influencing the binder stability is of particular interest for enhanced battery life. In this study we present an indentation method to investigate the changes in the elasticity of PVdF in NCM electrodes with high reproducibility. To determine changes in elasticity by calculating the indentation work (ηit), a 50 μm flat punch indenter was used. In addition, a drying procedure for DMC washed samples was evaluated to reduce the effect of the washing procedure on the elasticity due to swelling of the binder. NCM electrodes soaked with electrolyte and electrodes after formation were investigated, showing a significant decrease in elasticity due to the contact with the LiPF6 containing organic carbonate solvent based electrolyte and due to the electrochemical formation procedure. Further electrochemical aging reduced the elasticity to nearly ≈50% compared to the pristine electrode. Method development and the obtained results are discussed in detail. The developed method provides a low standard deviation and high reproducibility. Hence, it is a valid methodology for the quantification of related aging mechanisms taking place in lithium ion batteries.
Leenheer, Andrew J.; Jungjohann, Katherine L.; Zavadil, Kevin R.; ...
2016-05-31
Battery cycle life is directly influenced by the microstructural changes occurring in the electrodes during charge and discharge cycles. In this study, we image in situ the nanoscale phase evolution in negative electrode materials for Li-ion batteries using a fully enclosed liquid cell in a transmission electron microscope (TEM) to reveal early degradation that is not evident in the charge–discharge curves. To compare the electrochemical phase transformation behavior between three model materials, thin films of amorphous Si, crystalline Al, and crystalline Au were lithiated and delithiated at controlled rates while immersed in a commercial liquid electrolyte. This method allowed formore » the direct observation of lithiation mechanisms in nanoscale negative electrodes, revealing that a simplistic model of a surface-to-interior lithiation front is insufficient. For the crystalline films, a lithiation front spread laterally from a few initial nucleation points, with continued grain nucleation along the growing interface. The intermediate lithiated phases were identified using electron diffraction, and high-resolution postmortem imaging revealed the details of the final microstructure. Lastly, our results show that electrochemically induced solid–solid phase transformations can lead to highly concentrated stresses at the laterally propagating phase boundary which should be considered for future designs of nanostructured electrodes for Li-ion batteries.« less
NASA Astrophysics Data System (ADS)
Li, Jing; Zhang, Huamin; Zhang, Yining; Wang, Meiri; Zhang, Fengxiang; Nie, Hongjiao
2013-05-01
A micron-sized honeycomb-like carbon material (MHC) is prepared in a facile way using nano-CaCO3 as a hard template. A novel electrode for lithium-oxygen batteries is fabricated and displays a superior discharge capacity as high as 5862 mA h g-1. The higher electrode space utilization is attributed to its hierarchical pore structure, with intrinsic mesopores in the MHC particles for Li2O2 depositions and macropores among them for oxygen transport.A micron-sized honeycomb-like carbon material (MHC) is prepared in a facile way using nano-CaCO3 as a hard template. A novel electrode for lithium-oxygen batteries is fabricated and displays a superior discharge capacity as high as 5862 mA h g-1. The higher electrode space utilization is attributed to its hierarchical pore structure, with intrinsic mesopores in the MHC particles for Li2O2 depositions and macropores among them for oxygen transport. Electronic supplementary information (ESI) available: Synthesis of the MHC material. Cathode preparation. Material characterization. Assembly of Li-O2 battery cells and performance evaluation. SEM image of the CaCO3-sucrose composite before carbonization. See DOI: 10.1039/c3nr00337j
PEDOT:PSS as multi-functional composite material for enhanced Li-air-battery air electrodes.
Yoon, Dae Ho; Yoon, Seon Hye; Ryu, Kwang-Sun; Park, Yong Joon
2016-01-27
We propose PSS as a multi-functional composite material for an enhanced Li-air-battery air electrode. The PSS layer was coated on the surface of carbon (graphene) using simple method. A electrode containing PSS-coated graphene (PEDOT electrode) could be prepared without binder (such as PVDF) because of high adhesion of PSS. PEDOT electrode presented considerable discharge and charge capacity at all current densities. These results shows that PSS acts as a redox reaction matrix and conducting binder in the air electrode. Moreover, after cycling, the accumulation of reaction products due to side reaction in the electrode was significantly reduced through the use of PSS. This implies that PSS coating layer can suppress the undesirable side reactions between the carbon and electrolyte (and/or Li2O2), which causes enhanced Li-air cell cyclic performance.
Enabling fast charging – A battery technology gap assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; and thermal management and pack designs to accommodate the higher operating voltage.
Enabling fast charging – A battery technology gap assessment
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.; ...
2017-10-23
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; and thermal management and pack designs to accommodate the higher operating voltage.
Organic Materials as Electrodes for Li-ion Batteries
2015-09-04
Various macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries were attempted. Ellagic acid, alizarin and...Various macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries were attempted. Ellagic acid, alizarin and...characterization and subsequent use in lithium - ion batteries have been attempted to. Lithium -based batteries are at the forefront of battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gheytani, Saman; Liang, Yanliang; Wu, Feilong
Multivalent-ion batteries are emerging as low-cost, high energy density, and safe alternatives to Li-ion batteries but are challenged by slow cation diffusion in electrode materials due to the high polarization strength of Mg- and Al-ions. In contrast, Ca-ion has a low polarization strength similar to that of Li-ion, therefore a Ca-ion battery will share the advantages while avoiding the kinetics issues related to multivalent batteries. However, there is no battery known that utilizes the Ca-ion chemistry due to the limited success in Ca-ion storage materials. Here, a safe and low-cost aqueous Ca-ion battery based on a highly reversible polyimide anodemore » and a high-potential open framework copper hexacyanoferrate cathode is demonstrated. The prototype cell shows a stable capacity and high efficiency at both high and low current rates, with an 88% capacity retention and an average 99% coloumbic efficiency after cycling at 10C for 1000 cycles. The Ca-ion storage mechanism for both electrodes as well as the origin of the fast kinetics have been investigated. Finally, additional comparison with a Mg-ion cell with identical electrodes reveals clear kinetics advantages for the Ca-ion system, which is explained by the smaller ionic radii and more facile desolvation of hydrated Ca-ions.« less
Gheytani, Saman; Liang, Yanliang; Wu, Feilong; Jing, Yan; Dong, Hui; Rao, Karun K; Chi, Xiaowei; Fang, Fang; Yao, Yan
2017-12-01
Multivalent-ion batteries are emerging as low-cost, high energy density, and safe alternatives to Li-ion batteries but are challenged by slow cation diffusion in electrode materials due to the high polarization strength of Mg- and Al-ions. In contrast, Ca-ion has a low polarization strength similar to that of Li-ion, therefore a Ca-ion battery will share the advantages while avoiding the kinetics issues related to multivalent batteries. However, there is no battery known that utilizes the Ca-ion chemistry due to the limited success in Ca-ion storage materials. Here, a safe and low-cost aqueous Ca-ion battery based on a highly reversible polyimide anode and a high-potential open framework copper hexacyanoferrate cathode is demonstrated. The prototype cell shows a stable capacity and high efficiency at both high and low current rates, with an 88% capacity retention and an average 99% coloumbic efficiency after cycling at 10C for 1000 cycles. The Ca-ion storage mechanism for both electrodes as well as the origin of the fast kinetics have been investigated. Additional comparison with a Mg-ion cell with identical electrodes reveals clear kinetics advantages for the Ca-ion system, which is explained by the smaller ionic radii and more facile desolvation of hydrated Ca-ions.
Gheytani, Saman; Liang, Yanliang; Wu, Feilong; ...
2017-10-26
Multivalent-ion batteries are emerging as low-cost, high energy density, and safe alternatives to Li-ion batteries but are challenged by slow cation diffusion in electrode materials due to the high polarization strength of Mg- and Al-ions. In contrast, Ca-ion has a low polarization strength similar to that of Li-ion, therefore a Ca-ion battery will share the advantages while avoiding the kinetics issues related to multivalent batteries. However, there is no battery known that utilizes the Ca-ion chemistry due to the limited success in Ca-ion storage materials. Here, a safe and low-cost aqueous Ca-ion battery based on a highly reversible polyimide anodemore » and a high-potential open framework copper hexacyanoferrate cathode is demonstrated. The prototype cell shows a stable capacity and high efficiency at both high and low current rates, with an 88% capacity retention and an average 99% coloumbic efficiency after cycling at 10C for 1000 cycles. The Ca-ion storage mechanism for both electrodes as well as the origin of the fast kinetics have been investigated. Finally, additional comparison with a Mg-ion cell with identical electrodes reveals clear kinetics advantages for the Ca-ion system, which is explained by the smaller ionic radii and more facile desolvation of hydrated Ca-ions.« less
Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode
Gilbert, Marian; Kaun, Thomas D.
1984-01-01
A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Silicon powder is mixed with powdered electroactive material, such as the lithium-aluminum eutectic, to provide an improved electrode and cell.
Volume efficient sodium sulfur battery
Mikkor, Mati
1980-01-01
In accordance with the teachings of this specification, a sodium sulfur battery is formed as follows. A plurality of box shaped sulfur electrodes are provided, the outer surfaces of which are defined by an electrolyte material. Each of the electrodes have length and width dimensions substantially greater than the thicknesses thereof as well as upwardly facing surface and a downwardly facing surface. An electrode structure is contained in each of the sulfur electrodes. A holding structure is provided for holding the plurality of sulfur electrodes in a stacked condition with the upwardly facing surface of one sulfur electrode in facing relationship to the downwardly facing surface of another sulfur electrode thereabove. A small thickness dimension separates each of the stacked electrodes thereby defining between each pair of sulfur electrodes a volume which receives the sodium reactant. A reservoir is provided for containing sodium. A manifold structure interconnects the volumes between the sulfur electrodes and the reservoir. A metering structure controls the flow of sodium between the reservoir and the manifold structure.
Sun, Yige; Tang, Jie; Zhang, Kun; Yuan, Jinshi; Li, Jing; Zhu, Da-Ming; Ozawa, Kiyoshi; Qin, Lu-Chang
2017-02-16
Hydrazine-reduced graphite oxide and graphene oxide were synthesized to compare their performances as anode materials in lithium-ion batteries and sodium-ion batteries. Reduced graphite oxide inherits the layer structure of graphite, with an average spacing between neighboring layers (d-spacing) of 0.374 nm; this exceeds the d-spacing of graphite (0.335 nm). The larger d-spacing provides wider channels for transporting lithium ions and sodium ions in the material. We showed that reduced graphite oxide as an anode in lithium-ion batteries can reach a specific capacity of 917 mA h g -1 , which is about three times of 372 mA h g -1 , the value expected for the LiC 6 structures on the electrode. This increase is consistent with the wider d-spacing, which enhances lithium intercalation and de-intercalation on the electrodes. The electrochemical performance of the lithium-ion batteries and sodium-ion batteries with reduced graphite oxide anodes show a noticeable improvement compared to those with reduced graphene oxide anodes. This improvement indicates that reduced graphite oxide, with larger interlayer spacing, has fewer defects and is thus more stable. In summary, we found that reduced graphite oxide may be a more favorable form of graphene for the fabrication of electrodes for lithium-ion and sodium-ion batteries and other energy storage devices.
A flexible Li-ion battery with design towards electrodes electrical insulation
NASA Astrophysics Data System (ADS)
Vieira, E. M. F.; Ribeiro, J. F.; Sousa, R.; Correia, J. H.; Goncalves, L. M.
2016-08-01
The application of micro electromechanical systems (MEMS) technology in several consumer electronics leads to the development of micro/nano power sources with high power and MEMS integration possibility. This work presents the fabrication of a flexible solid-state Li-ion battery (LIB) (~2.1 μm thick) with a design towards electrodes electrical insulation, using conventional, low cost and compatible MEMS fabrication processes. Kapton® substrate provides flexibility to the battery. E-beam deposited 300 nm thick Ge anode was coupled with LiCoO2/LiPON (cathode/solid-state electrolyte) in a battery system. LiCoO2 and LiPON films were deposited by RF-sputtering with a power source of 120 W and 100 W, respectively. LiCoO2 film was annealed at 400 °C after deposition. The new design includes Si3N4 and LiPO thin-films, providing electrode electrical insulation and a battery chemical stability safeguard, respectively. Microstructure and battery performance were investigated by scanning electron microscopy, electric resistivity and electrochemical measurements (open circuit potential, charge/discharge cycles and electrochemical impedance spectroscopy). A rechargeable thin-film and lightweight flexible LIB using MEMS processing compatible materials and techniques is reported.
NASA Astrophysics Data System (ADS)
Oh, Dahyun; Qi, Jifa; Lu, Yi-Chun; Zhang, Yong; Shao-Horn, Yang; Belcher, Angela M.
2013-11-01
Lithium-oxygen batteries have a great potential to enhance the gravimetric energy density of fully packaged batteries by two to three times that of lithium ion cells. Recent studies have focused on finding stable electrolytes to address poor cycling capability and improve practical limitations of current lithium-oxygen batteries. In this study, the catalyst electrode, where discharge products are deposited and decomposed, was investigated as it has a critical role in the operation of rechargeable lithium-oxygen batteries. Here we report the electrode design principle to improve specific capacity and cycling performance of lithium-oxygen batteries by utilizing high-efficiency nanocatalysts assembled by M13 virus with earth-abundant elements such as manganese oxides. By incorporating only 3-5 wt% of palladium nanoparticles in the electrode, this hybrid nanocatalyst achieves 13,350 mAh g-1c (7,340 mAh g-1c+catalyst) of specific capacity at 0.4 A g-1c and a stable cycle life up to 50 cycles (4,000 mAh g-1c, 400 mAh g-1c+catalyst) at 1 A g-1c.
High discharge rate characteristics of nickel-cadmium batteries for pulse load filtering
NASA Technical Reports Server (NTRS)
Gearing, G. M.; Cimino, M. B.; Fritts, D. H.; Leonard, J. F.; Terzuoli, A. J., Jr.
1985-01-01
Several tests of specially fabricated nickel-cadmium batteries having circular disk type electrodes were considered. These batteries were evaluated as filter elements between a constant current power supply and a five hertz pulsed load demanding approximately twice the power supply current during the load on portion of the cycle. Short tests lasting 10,000 cycles were conducted at up to a 21 C rate and an equivalent energy density of over 40 Joules per pound. In addition, two batteries were subjected to 10 to the 7 charge/discharge cycles, one at a 6.5 C rate and the other at a 13 C rate. Assuming an electrode to battery weight ratio of 0.5, these tests represent an energy density of about 7 and 14 Joules per pound respectively. Energy density, efficiency, capacitance, average voltage, and available capacity were tracked during these tests. After 10 to the 7 cycles, capacity degradation was negligible for one battery and about 20% for the other. Cadmium electrode failure may be the factor limiting lifetime at extremely low depth of discharge cycling. The output was examined and a simple equivalent circuit was proposed.
Superior ionic and electronic properties of ReN2 monolayers for Na-ion battery electrodes.
Zhang, Shi-Hao; Liu, Bang-Gui
2018-08-10
Excellent monolayer electrode materials can be used to design high-performance alkali-metal-ion batteries. Here, we propose two-dimensional ReN 2 monolayers as superior sodium-ion battery materials. Our total energy optimization results in a buckled tetragonal structure for the ReN 2 monolayer, and our phonon spectrum and elastic moduli prove that it is dynamically and mechanically stable. Further investigations show that it is metallic and still keeps its metallic feature after the adsorption of Na or K atoms, and the adsorption of Na (or K) atoms changes the lattice parameters by 3.2% (or 3.8%) at most. Its maximum capacity reaches 751 mA h g -1 for Na-ion batteries or 250 mA h g -1 for K-ion batteries, and the diffusion barrier is only 0.027 eV for the Na atom or 0.127 eV for the K atom. The small lattice changes, high storage capacity, metallic feature, and extremely low ion diffusion barriers make the ReN 2 monolayers a superior electrode material for Na-ion rechargeable batteries with ultrafast charging/discharging processes.
Combination of lightweight elements and nanostructured materials for batteries.
Chen, Jun; Cheng, Fangyi
2009-06-16
In a society that increasingly relies on mobile electronics, demand is rapidly growing for both primary and rechargeable batteries that power devices from cell phones to vehicles. Existing batteries utilize lightweight active materials that use electrochemical reactions of ions such as H(+), OH(-) and Li(+)/Mg(2+) to facilitate energy storage and conversion. Ideal batteries should be inexpensive, have high energy density, and be made from environmentally friendly materials; batteries based on bulk active materials do not meet these requirements. Because of slow electrode process kinetics and low-rate ionic diffusion/migration, most conventional batteries demonstrate huge gaps between their theoretical and practical performance. Therefore, efforts are underway to improve existing battery technologies and develop new electrode reactions for the next generation of electrochemical devices. Advances in electrochemistry, surface science, and materials chemistry are leading to the use of nanomaterials for efficient energy storage and conversion. Nanostructures offer advantages over comparable bulk materials in improving battery performance. This Account summarizes our progress in battery development using a combination of lightweight elements and nanostructured materials. We highlight the benefits of nanostructured active materials for primary zinc-manganese dioxide (Zn-Mn), lithium-manganese dioxide (Li-Mn), and metal (Mg, Al, Zn)-air batteries, as well as rechargeable lithium ion (Li-ion) and nickel-metal hydride (Ni-MH) batteries. Through selected examples, we illustrate the effect of structure, shape, and size on the electrochemical properties of electrode materials. Because of their numerous active sites and facile electronic/ionic transfer and diffusion, nanostructures can improve battery efficiency. In particular, we demonstrate the properties of nanostructured active materials including Mg, Al, Si, Zn, MnO(2), CuV(2)O(6), LiNi(0.8)Co(0.2)O(2), LiFePO(4), Fe(2)O(3), Co(3)O(4), TiS(2), and Ni(OH)(2) in battery applications. Electrochemical investigations reveal that we generally attain larger capacities and improved kinetics for electrode materials as their average particle size decreases. Novel nanostructures such as nanowires, nanotubes, nanourchins, and porous nanospheres show lower activation energy, enhanced reactivity, improved high-rate charge/discharge capability, and more controlled structural flexibility than their bulk counterparts. In particular, anode materials such as Si nanospheres and Fe(2)O(3) nanotubes can deliver reversible capacity exceeding 500 mA.h/g. (Graphite used commercially has a theoretical capacity of 372 mA x h/g.) Nanocomposite cathode materials such as NiP-doped LiFePO(4) and metal hydroxide-coated Ni(OH)(2) nanotubes allow us to integrate functional components, which enhance electrical conductivity and suppress volume expansion. Therefore, shifting from bulk to nanostructured electrode materials could offer a revolutionary opportunity to develop advanced green batteries with large capacity, high energy and power density, and long cycle life.
Lightweight fibrous nickel electrodes for nickel-hydrogen batteries
NASA Technical Reports Server (NTRS)
Britton, Doris L.
1989-01-01
The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen batteries. These electrodes are lighter in weight and have higher energy densities than the heavier state-of-the-art sintered nickel electrodes. Lightweight fibrous materials or plaques are used as conductive supports for the nickel hydroxide active material. These materials are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. Evaluation is performed in half cells structured in the bipolar configuration. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C, 1.37C, 2.0C, and 2.74C. The electrodes that pass the initial tests are life cycle-tested in a low Earth orbit regime at 80 percent depth of discharge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp
2016-07-06
Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.
Operating a redox flow battery with a negative electrolyte imbalance
Pham, Quoc; Chang, On; Durairaj, Sumitha
2015-03-31
Loss of flow battery electrode catalyst layers during self-discharge or charge reversal may be prevented by establishing and maintaining a negative electrolyte imbalance during at least parts of a flow battery's operation. Negative imbalance may be established and/or maintained actively, passively or both. Actively establishing a negative imbalance may involve detecting an imbalance that is less negative than a desired threshold, and processing one or both electrolytes until the imbalance reaches a desired negative level. Negative imbalance may be effectively established and maintained passively within a cell by constructing a cell with a negative electrode chamber that is larger than the cell's positive electrode chamber, thereby providing a larger quantity of negative electrolyte for reaction with positive electrolyte.
Parametric and cycle tests of a 40-A-hr bipolar nickel-hydrogen battery
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1986-01-01
A series of tests was performed to characterize battery performance relating to certain operating parameters which included charge current, discharge current, temperature and pressure. The parameters were varied to confirm battery design concepts and to determine optimal operating conditions. Spacecraft power requirements are constantly increasing. Special spacecraft such as the Space Station and platforms will require energy storage systems of 130 and 25 kWh, respectively. The complexity of these high power systems will demand high reliability, and reduced mass and volume. A system that uses batteries for storage will require a cell count in excess of 400 units. These cell units must then be assembled into several batteries with over 100 cells in a series connected string. In an attempt to simplify the construction of conventional cells and batteries, the NASA Lewis Research Center battery systems group initiated work on a nickel-hydrogen battery in a bipolar configuration in early 1981. Features of the battery with this bipolar construction show promise in improving both volumetric and gravimetric energy densities as well as thermal management. Bipolar construction allows cooling in closer proximity to the cell components, thus heat removal can be accomplished at a higher rejection temperature than conventional cell designs. Also, higher current densities are achievable because of low cell impedance. Lower cell impedance is achieved via current flow perpendicular to the electrode face, thus reducing voltage drops in the electrode grid and electrode terminals tabs.
JLTV - Briefings to Industry, Ground Vehicle Power and Mobility (GVPM)
2009-05-27
lithium ion battery cathodes, separators, and electrolytes. This effort shall also access the...manufacturability of the improved designs using the new materials. PAYOFF: Improved lithium ion battery power density Improved lithium ion battery energy...negative electrodes in lithium-ion batteries. PAYOFF: Better understanding of lithium - ion battery charging limitations Improved safety for
NASA Astrophysics Data System (ADS)
Rahimi, Mohammad; Kim, Taeyoung; Gorski, Christopher A.; Logan, Bruce E.
2018-01-01
Thermally regenerative ammonia batteries (TRABs) have shown great promise as a method to convert low-grade waste heat into electrical power, with power densities an order of magnitude higher than other approaches. However, previous TRABs based on copper electrodes suffered from unbalanced anode dissolution and cathode deposition rates during discharging cycles, limiting practical applications. To produce a TRAB with stable and reversible electrode reactions over many cycles, inert carbon electrodes were used with silver salts. In continuous flow tests, power production was stable over 100 discharging cycles, demonstrating excellent reversibility. Power densities were 23 W m-2-electrode area in batch tests, which was 64% higher than that produced in parallel tests using copper electrodes, and 30 W m-2 (net energy density of 490 Wh m-3-anolyte) in continuous flow tests. While this battery requires the use a precious metal, an initial economic analysis of the system showed that the cost of the materials relative to energy production was 220 per MWh, which is competitive with energy production from other non-fossil fuel sources. A substantial reduction in costs could be obtained by developing less expensive anion exchange membranes.
FINAL REPORT: Transformational electrode drying process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claus Daniel, C.; Wixom, M.
2013-12-19
This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheatingmore » and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.« less
Effects of binders on the electrochemical performance of rechargeable magnesium batteries
NASA Astrophysics Data System (ADS)
Wang, Nan; NuLi, Yanna; Su, Shuojian; Yang, Jun; Wang, Jiulin
2017-02-01
A comparative study on the effects of different binders on the electrochemical performance of rechargeable magnesium batteries with Mo6S8 cathode is conducted for the first time. The selected binders are commercial organic-soluble polyvinylidene fluoride (PVDF), water-soluble poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), gelatin, sodium alginate (SA) and Beta-cyclodextrin (β-CD). The binders significantly affect the physical properties, thus the electrochemical performance of Mo6S8 cathode. Compared with those using traditional PVDF binder, Mo6S8 electrodes with PAA and PVA exhibit enhanced cycling stabilities and rate capabilities, which are attributed to the improved cohesion among the electrode constituents and adhesion between the electrode laminate and the current collector. In addition, the anodic stability of these binders is not only related to the chemical structure of binders, but also to the uniformity of electrode surface. SA binder shows low anodic stability duo to containing easily oxidized groups. Non-uniform electrode surface decreases the anodic stability of PVDF based Mo6S8 electrode. Gelatin can be used as a binder in the formulation of high voltage cathodes for rechargeable magnesium batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bin; Xu, Wu; Yan, Pengfei
2015-10-12
Although lithium-oxygen (Li-O2) batteries have great potential to be used as one of the next generation energy storage systems due to their ultrahigh theoretical specific energy, there are still many significant barriers before their practical applications. These barriers include electrolyte and electrode instability, poor ORR/OER efficiency and cycling capability, etc. Development of a highly efficient catalyst will not only enhance ORR/OER efficiency, it may also improve the stability of electrolyte because the reduced charge voltage. Here we report the synthesis of nano-sheet-assembled ZnCo2O4 spheres/single walled carbon nanotubes (ZCO/SWCNTs) composites as high performance air electrode materials for Li-O2 batteries. The ZCOmore » catalyzed SWCNTs electrodes delivered high discharge capacities, decreased the onset of oxygen evolution reaction by 0.9 V during charge processes, and led to more stable cycling stability. These results indicate that ZCO/SWCNTs composite can be used as highly efficient air electrode for oxygen reduction and evolution reactions. The highly enhanced catalytic activity by uniformly dispersed ZnCo2O4 catalyst on nanostructured electrodes is expected to inspire« less
Towards uniformly dispersed battery electrode composite materials: Characteristics and performance
Yo Han Kwon; Takeuchi, Esther S.; Huie, Matthew M.; ...
2016-01-14
Battery electrodes are complex mesoscale systems comprised of electroactive components, conductive additives, and binders. In this report, methods for processing electrodes with dispersion of the components are described. To investigate the degree of material dispersion, a spin-coating technique was adopted to provide a thin, uniform layer that enabled observation of the morphology. Distinct differences in the distribution profile of the electrode components arising from individual materials physical affinities were readily identified. Hansen solubility parameter (HSP) analysis revealed pertinent surface interactions associated with materials dispersivity. Further studies demonstrated that HSPs can provide an effective strategy to identify surface modification approaches formore » improved dispersions of battery electrode materials. Specifically, introduction of surfactantlike functionality such as oleic acid (OA) capping and P3HT-conjugated polymer wrapping on the surface of nanomaterials significantly enhanced material dispersity over the composite electrode. The approach to the surface treatment on the basis of HSP study can facilitate design of composite electrodes with uniformly dispersed morphology and may contribute to enhancing their electrical and electrochemical behaviors. The conductivity of the composites and their electrochemical performance was also characterized. In conclusion, the study illustrates the importance of considering electronic conductivity, electron transfer, and ion transport in the design of environments incorporating active nanomaterials.« less
Towards uniformly dispersed battery electrode composite materials: Characteristics and performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yo Han Kwon; Takeuchi, Esther S.; Huie, Matthew M.
Battery electrodes are complex mesoscale systems comprised of electroactive components, conductive additives, and binders. In this report, methods for processing electrodes with dispersion of the components are described. To investigate the degree of material dispersion, a spin-coating technique was adopted to provide a thin, uniform layer that enabled observation of the morphology. Distinct differences in the distribution profile of the electrode components arising from individual materials physical affinities were readily identified. Hansen solubility parameter (HSP) analysis revealed pertinent surface interactions associated with materials dispersivity. Further studies demonstrated that HSPs can provide an effective strategy to identify surface modification approaches formore » improved dispersions of battery electrode materials. Specifically, introduction of surfactantlike functionality such as oleic acid (OA) capping and P3HT-conjugated polymer wrapping on the surface of nanomaterials significantly enhanced material dispersity over the composite electrode. The approach to the surface treatment on the basis of HSP study can facilitate design of composite electrodes with uniformly dispersed morphology and may contribute to enhancing their electrical and electrochemical behaviors. The conductivity of the composites and their electrochemical performance was also characterized. In conclusion, the study illustrates the importance of considering electronic conductivity, electron transfer, and ion transport in the design of environments incorporating active nanomaterials.« less
Fabricating solid carbon porous electrodes from powders
Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.
1997-01-01
Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.
Fabricating solid carbon porous electrodes from powders
Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.
1997-06-10
Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.
Molten salt electrolyte battery cell with overcharge tolerance
Kaun, Thomas D.; Nelson, Paul A.
1989-01-01
A molten salt electrolyte battery having an increased overcharge tolerance employs a negative electrode with two lithium alloy phases of different electrochemical potential, one of which allows self-discharge rates which permits battery cell equalization.
PEDOT:PSS as multi-functional composite material for enhanced Li-air-battery air electrodes
Yoon, Dae Ho; Yoon, Seon Hye; Ryu, Kwang-Sun; Park, Yong Joon
2016-01-01
We propose PEDOT:PSS as a multi-functional composite material for an enhanced Li-air-battery air electrode. The PEDOT:PSS layer was coated on the surface of carbon (graphene) using simple method. A electrode containing PEDOT:PSS-coated graphene (PEDOT electrode) could be prepared without binder (such as PVDF) because of high adhesion of PEDOT:PSS. PEDOT electrode presented considerable discharge and charge capacity at all current densities. These results shows that PEDOT:PSS acts as a redox reaction matrix and conducting binder in the air electrode. Moreover, after cycling, the accumulation of reaction products due to side reaction in the electrode was significantly reduced through the use of PEDOT:PSS. This implies that PEDOT:PSS coating layer can suppress the undesirable side reactions between the carbon and electrolyte (and/or Li2O2), which causes enhanced Li-air cell cyclic performance. PMID:26813852
NASA Astrophysics Data System (ADS)
Kumar, S.; Jayanti, S.
2017-08-01
In this paper, we present a study of the effect of electrode intrusion into the flow channel in an all-vanadium redox flow battery. Permeability, pressure drop and electrochemical performance have been measured in a cell with active area 100 cm2and 414 cm2 fitted with a carbon felt electrode of thickness of 3, 6 or 9 mm compressed to 1.5, 2.5 or 4 mm, respectively, during assembly. Results show that the pressure drop is significantly higher than what can be expected in the thick electrode case while its electrochemical performance is lower. Detailed flow analysis using computational fluid dynamics simulations in two different flow fields shows that both these results can be attributed to electrode intrusion into the flow channel leading to increased resistance to electrolyte flow through the electrode. A correlation is proposed to evaluate electrode intrusion depth as a function of compression.
Binder-induced surface structure evolution effects on Li-ion battery performance
NASA Astrophysics Data System (ADS)
Rezvani, S. J.; Pasqualini, M.; Witkowska, A.; Gunnella, R.; Birrozzi, A.; Minicucci, M.; Rajantie, H.; Copley, M.; Nobili, F.; Di Cicco, A.
2018-03-01
A comparative investigation on binder induced chemical and morphological evolution of Li4Ti5O12 electrodes was performed via X-ray photoemission spectroscopy, scanning electron microscopy, and electrochemical measurements. Composite electrodes were obtained using three different binders (PAA, PVdF, and CMC) with 80:10:10 ratio of active material:carbon:binder. The electrochemical performances of the electrodes, were found to be intimately correlated with the evolution of the microstructure of the electrodes, probed by XPS and SEM analysis. Our analysis shows that the surface chemistry, thickness of the passivation layers and the morphology of the electrodes are strongly dependent on the type of binders that significantly influence the electrochemical properties of the electrodes. These results point to a key role played by binders in optimization of the battery performance and improve our understanding of the previously observed and unexplained electrochemical properties of these electrodes.
Mesoscopic modeling and parameter estimation of a lithium-ion battery based on LiFePO4/graphite
NASA Astrophysics Data System (ADS)
Jokar, Ali; Désilets, Martin; Lacroix, Marcel; Zaghib, Karim
2018-03-01
A novel numerical model for simulating the behavior of lithium-ion batteries based on LiFePO4(LFP)/graphite is presented. The model is based on the modified Single Particle Model (SPM) coupled to a mesoscopic approach for the LFP electrode. The model comprises one representative spherical particle as the graphite electrode, and N LFP units as the positive electrode. All the SPM equations are retained to model the negative electrode performance. The mesoscopic model rests on non-equilibrium thermodynamic conditions and uses a non-monotonic open circuit potential for each unit. A parameter estimation study is also carried out to identify all the parameters needed for the model. The unknown parameters are the solid diffusion coefficient of the negative electrode (Ds,n), reaction-rate constant of the negative electrode (Kn), negative and positive electrode porosity (εn&εn), initial State-Of-Charge of the negative electrode (SOCn,0), initial partial composition of the LFP units (yk,0), minimum and maximum resistance of the LFP units (Rmin&Rmax), and solution resistance (Rcell). The results show that the mesoscopic model can simulate successfully the electrochemical behavior of lithium-ion batteries at low and high charge/discharge rates. The model also describes adequately the lithiation/delithiation of the LFP particles, however, it is computationally expensive compared to macro-based models.
Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity.
Liu, Yayuan; Zhou, Guangmin; Liu, Kai; Cui, Yi
2017-12-19
The development of next-generation lithium-based rechargeable batteries with high energy density, low cost, and improved safety is a great challenge with profound technological significance for portable electronics, electric vehicles, and grid-scale energy storage. Specifically, advanced lithium battery chemistries call for a paradigm shift to electrodes with high Li to host ratio based on a conversion or alloying mechanism, where the increased capacity is often accompanied by drastic volumetric changes, significant bond breaking, limited electronic/ionic conductivity, and unstable electrode/electrolyte interphase. Fortunately, the rapid progress of nanotechnology over the past decade has been offering battery researchers effective means to tackle some of the most pressing issues for next-generation battery chemistries. The major applications of nanotechnology in batteries can be summarized as follows: First, by reduction of the dimensions of the electrode materials, the cracking threshold of the material upon lithiation can be overcome, at the same time facilitating electron/ion transport within the electrode. Second, nanotechnology also provides powerful methods to generate various surface-coating and functionalization layers on electrode materials, protecting them from side reactions in the battery environment. Finally, nanotechnology gives people the flexibility to engineer each and every single component within a battery (separator, current collector, etc.), bringing novel functions to batteries that are unachievable by conventional methods. Thus, this Account aims to highlight the crucial role of nanotechnology in advanced battery systems. Because of the limited space, we will mainly assess representative examples of rational nanomaterials design with complexity for silicon and lithium metal anodes, which have shown great promise in constraining their large volume changes and the repeated solid-electrolyte interphase formation during cycling. Noticeably, the roadmap delineating the gradual improvement of silicon anodes with a span of 11 generations of materials designs developed in our group is discussed in order to reflect how nanotechnology could guide battery research step by step toward practical applications. Subsequently, we summarize efforts to construct nanostructured composite sulfur cathodes with improved electronic conductivity and effective soluble species encapsulation for maximizing the utilization of active material, cycle life, and system efficiency. We emphasize carbon-based materials and, importantly, materials with polar surfaces for sulfur entrapment. We then briefly discuss nanomaterials strategies to improve the ionic conductivity of solid polymer electrolytes by means of incorporating high-surface-area and, importantly, high-aspect-ratio secondary-phase fillers for continuous, low-tortuosity ionic transport pathways. Finally, critical innovations that have been brought to the area of grid-scale energy storage and battery safety by nanotechnology are also succinctly reviewed.
Fabrication and demonstration of high energy density lithium ion microbatteries
NASA Astrophysics Data System (ADS)
Sun, Ke
Since their commercialization by Sony two decades ago, Li-ion batteries have only experienced mild improvement in energy and power performance, which remains one of the main hurdles for their widespread implementation in applications outside of powering compact portable devices, such as in electric vehicles. Li-ion batteries must be advanced through a disruptive technological development or a series of incremental improvements in chemistry and design in order to be competitive enough for advanced applications. As it will be introduced in this work, achieving this goal by new chemistries and chemical modifications does not seem to be promising in the short term, so efforts to fully optimize existing systems must be pursued at in parallel. This optimization must be mainly relying on the modification and optimizations of micro and macro structures of current battery systems. This kind of battery architecture study will be even more important when small energy storage devices are desired to power miniaturized and autonomous gadgets, such as MEMs, micro-robots, biomedical sensors, etc. In this regime, the limited space available makes requirements on electrode architecture more stringent and the assembly process more challenging. Therefore, the study of battery assembly strategies for Li-ion microbatteries will benefit not only micro-devices but also the development of more powerful and energetic large scale battery systems based on available chemistries. In chapter 2, preliminary research related to the mechanism for the improved rate capability of cathodes by amorphous lithium phosphate surficial films will be used to motivate the potential for structural optimization of existing commercial lithium ion battery electrode. In the following chapters, novel battery assembly techniques will be explored to achieve new battery architectures. In chapter 3, direct ink writing will be used to fabricate 3D interdigitated microbattery structures that have superior areal energy density on a limited footprint area. In chapter 4, Li-ion batteries based on the LiMn2O4-TiP 2O7 couple are manufactured on flexible paper substrates; where the use of light-weight paper substrates significantly increase the gravimetric energy density of this electrode couple as compared to traditional metal current collectors. In chapter 5, a novel nanowire growth mechanism will be explored to grow interdigitated metal oxide nanowire micro battery electrodes. The growth kinetics of this mechanism is systematically studied to understand how to optimize the growth process to produce electrodes with improved electrochemical properties.
Special Issue: Materials for Electrochemical Capacitors and Batteries.
Wang, Jian-Gan; Wei, Bingqing
2017-04-22
Electrochemical capacitors and rechargeable batteries have received worldwide attention due to their excellent energy storage capability for a variety of applications. The rapid development of these technologies is propelled by the advanced electrode materials and new energy storage systems. It is believed that research efforts can improve the device performance to meet the ever-increasing requirements of high energy density, high power density and long cycle life. This Special Issue aims to provide readers with a glimpse of different kinds of electrode materials for electrochemical capacitors and batteries.
Crash Models for Advanced Automotive Batteries: A Review of the Current State of the Art
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, John A.; Allu, Srikanth; Gorti, Sarma B.
Safety is a critical aspect of lithium-ion (Li-ion) battery design. Impact/crash conditions can trigger a complex interplay of mechanical contact, heat generation and electrical discharge, which can result in adverse thermal events. The cause of these thermal events has been linked to internal contact between the opposite electrodes, i.e. internal short circuit. The severity of the outcome is influenced by the configuration of the internal short circuit and the battery state. Different loading conditions and battery states may lead to micro (soft) shorts where material burnout due to generated heat eliminates contact between the electrodes, or persistent (hard) shorts whichmore » can lead to more significant thermal events and potentially damage the entire battery system and beyond. Experimental characterization of individual battery components for the onset of internal shorts is limited, since it is impractical to canvas all possible variations in battery state of charge, operating conditions, and impact loading in a timely manner. This report provides a survey of modeling and simulation approaches and documents a project initiated and funded by DOT/NHTSA to improve modeling and simulation capabilities in order to design tests that provide leading indicators of failure in batteries. In this project, ORNL has demonstrated a computational infrastructure to conduct impact simulations of Li-ion batteries using models that resolve internal structures and electro-thermo-chemical and mechanical conditions. Initial comparisons to abuse experiments on cells and cell strings conducted at ORNL and Naval Surface Warfare Center (NSWC) at Carderock MD for parameter estimation and model validation have been performed. This research has provided insight into the mechanisms of deformation in batteries (both at cell and electrode level) and their relationship to the safety of batteries.« less
Nickel-metal hydride battery development. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
Rechargeable batteries are used as the power source for a broad range of portable equipment. Key battery selection criteria typically are weight, volume, first cost, life cycle cost, and environmental impact. Rechargeable batteries are favored from a life cycle cost and environmental impact standpoint over primary batteries. The nickel-metal hydride (Ni-MH) battery system has emerged as the battery of choice for many applications based on its superior characteristics when judged on the above criteria against other battery types. In most cases commercial Ni-MH batteries are constructed with coiled electrodes in cylindrical metal containers. Electro Energy, Inc. (EEI) has been developingmore » a novel flat bipolar configuration of the Ni-MH system that offers weight, volume, and cost advantages when compared to cylindrical cells. The unique bipolar approach consists of fabricating individual flat wafer cells in conductive, carbon-filled, plastic face plates. The individual cells contain a nonconductive plastic border which is heat sealed around the perimeter to make a totally sealed unit cell. Multi-cell batteries are fabricated by stacking the individual wafer cells in such a way that the positive face of one cell contacts the negative face of the adjacent cell. The stack is then contained in an outer housing with end contacts. The purpose of this program was to develop, evaluate, and demonstrate the capabilities of the EEI Ni-MH battery system for consumer applications. The work was directed at the development and evaluation of the compact bipolar construction for its potential advantages of high power and energy density. Experimental investigations were performed on various nickel electrode types, hydride electrode formulations, and alternate separator materials. Studies were also directed at evaluating various oxygen recombination techniques for low pressure operation during charge and overcharge.« less
Advanced Characterization Techniques for Sodium-Ion Battery Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadike, Zulipiya; Zhao, Enyue; Zhou, Yong-Ning
Sodium (Na)-ion batteries (NIBs) are considered promising alternative candidates to the well-commercialized lithium-ion batteries, especially for applications in large-scale energy storage systems. The electrochemical performance of NIBs such as the cyclability, rate capability, and voltage profiles are strongly dependent on the structural and morphological evolution, phase transformation, sodium-ion diffusion, and electrode/electrolyte interface reconstruction during charge–discharge cycling. Therefore, in-depth understanding of the structure and kinetics of electrode materials and the electrode/electrolyte interfaces is essential for optimizing current NIB systems and exploring new materials for NIBs. Recently, rapid progress and development in spectroscopic, microscopic, and scattering techniques have provided extensive insight intomore » the nature of structural evolution, morphological changes of electrode materials, and electrode/electrolyte interface in NIBs. Here in this review, a comprehensive overview of both static (ex situ) and real-time (in situ or in operando) techniques for studying the NIBs is provided. Lastly, special focus is placed on how these techniques are applied to the fundamental investigation of NIB systems and what important results are obtained.« less
Ganapathy, Swapna; van Eck, Ernst R H; Kentgens, Arno P M; Mulder, Fokko M; Wagemaker, Marnix
2011-12-23
The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Three-Phase 3D Reconstruction of a LiCoO 2 Cathode via FIB-SEM Tomography
Liu, Zhao; Chen-Wiegart, Yu-chen K.; Wang, Jun; ...
2016-01-14
Three-phase three-dimensional (3D) microstructural reconstructions of lithium-ion battery electrodes are critical input for 3D simulations of electrode lithiation/delithiation, which provide a detailed understanding of battery operation. In this report, 3D images of a LiCoO 2electrode are achieved using focused ion beam-scanning electron microscopy (FIB-SEM), with clear contrast among the three phases: LiCoO 2particles, carbonaceous phases (carbon and binder) and the electrolyte space. The good contrast was achieved by utilizing an improved FIB-SEM sample preparation method that combined infiltration of the electrolyte space with a low-viscosity silicone resin and triple ion-beam polishing. Morphological parameters quantified include phase volume fraction, surface area,more » feature size distribution, connectivity, and tortuosity. Electrolyte tortuosity was determined using two different geometric calculations that were in good agreement. In conclusion, the electrolyte tortuosity distribution versus position within the electrode was found to be highly inhomogeneous; this will lead to inhomogeneous electrode lithiation/delithiation at high C-rates that could potentially cause battery degradation.« less
Doan-Nguyen, Vicky V. T.; Subrahmanyam, Kota S.; Butala, Megan M.; ...
2016-11-09
Sulfur cathodes in conversion reaction batteries offer high gravimetric capacity but suffer from parasitic polysulfide shuttling. We demonstrate here that transition metal chalcogels of approximate formula MoS 3.4 achieve a high gravimetric capacity close to 600 mAh g –1 (close to 1000 mAh g –1 on a sulfur basis) as electrode materials for lithium-ion batteries. Transition metal chalcogels are amorphous and comprise polysulfide chains connected by inorganic linkers. The linkers appear to act as a “glue” in the electrode to prevent polysulfide shuttling. The Mo chalcogels function as electrodes in carbonate- and ether-based electrolytes, which further provides evidence of polysulfidemore » solubility not being a limiting issue. We employ X-ray spectroscopy and operando pair distribution function techniques to elucidate the structural evolution of the electrode. Raman and X-ray photoelectron spectroscopy track the chemical moieties that arise during the anion-redox-driven processes. As a result, we find the redox state of Mo remains unchanged across the electrochemical cycling and, correspondingly, the redox is anion-driven.« less
Advanced Characterization Techniques for Sodium-Ion Battery Studies
Shadike, Zulipiya; Zhao, Enyue; Zhou, Yong-Ning; ...
2018-02-19
Sodium (Na)-ion batteries (NIBs) are considered promising alternative candidates to the well-commercialized lithium-ion batteries, especially for applications in large-scale energy storage systems. The electrochemical performance of NIBs such as the cyclability, rate capability, and voltage profiles are strongly dependent on the structural and morphological evolution, phase transformation, sodium-ion diffusion, and electrode/electrolyte interface reconstruction during charge–discharge cycling. Therefore, in-depth understanding of the structure and kinetics of electrode materials and the electrode/electrolyte interfaces is essential for optimizing current NIB systems and exploring new materials for NIBs. Recently, rapid progress and development in spectroscopic, microscopic, and scattering techniques have provided extensive insight intomore » the nature of structural evolution, morphological changes of electrode materials, and electrode/electrolyte interface in NIBs. Here in this review, a comprehensive overview of both static (ex situ) and real-time (in situ or in operando) techniques for studying the NIBs is provided. Lastly, special focus is placed on how these techniques are applied to the fundamental investigation of NIB systems and what important results are obtained.« less
Kim, Taeyoung; Rahimi, Mohammad; Logan, Bruce E; Gorski, Christopher A
2016-05-10
Mixing entropy batteries (MEBs) are a new approach to generate electricity from salinity differences between two aqueous solutions. To date, MEBs have only been prepared from solutions containing chloride salts, owing to their relevance in natural salinity gradients created from seawater and freshwater. We hypothesized that MEBs could capture energy using ammonium bicarbonate (AmB), a thermolytic salt that can be used to convert waste heat into salinity gradients. We examined six battery electrode materials. Several of the electrodes were unstable in AmB solutions or failed to produce expected voltages. Of the electrode materials tested, a cell containing a manganese oxide electrode and a metallic lead electrode produced the highest power density (6.3 mW m(-2) ). However, this power density is still low relative to previously reported NaCl-based MEBs and heat recovery systems. This proof-of-concept study demonstrated that MEBs could indeed be used to generate electricity from AmB salinity gradients. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility.
Yu, Shicheng; Mertens, Andreas; Tempel, Hermann; Schierholz, Roland; Kungl, Hans; Eichel, Rüdiger-A
2018-06-22
High interfacial resistance between solid electrolyte and electrode of ceramic all-solid-state batteries is a major reason for the reduced performance of these batteries. A solid-state battery using a monolithic all-phosphate concept based on screen printed thick LiTi 2 (PO 4 ) 3 anode and Li 3 V 2 (PO 4 ) 3 cathode composite layers on a densely sintered Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte has been realized with competitive cycling performance. The choice of materials was primarily based on the (electro-)chemical and mechanical matching of the components instead of solely focusing on high-performance of individual components. Thus, the battery utilized a phosphate backbone in combination with tailored morphology of the electrode materials to ensure good interfacial matching for a durable mechanical stability. Moreover, the operating voltage range of the active materials matches with the intrinsic electrochemical window of the electrolyte which resulted in high electrochemical stability. A highly competitive discharge capacity of 63.5 mAh g -1 at 0.39 C after 500 cycles, corresponding to 84% of the initial discharge capacity, was achieved. The analysis of interfacial charge transfer kinetics confirmed the structural and electrical properties of the electrodes and their interfaces with the electrolyte, as evidenced by the excellent cycling performance of the all-phosphate solid-state battery. These interfaces have been studied via impedance analysis with subsequent distribution of relaxation times analysis. Moreover, the prepared solid-state battery could be processed and operated in air atmosphere owing to the low oxygen sensitivity of the phosphate materials. The analysis of electrolyte/electrode interfaces after cycling demonstrates that the interfaces remained stable during cycling.
Nirmale, Trupti C; Kale, Bharat B; Varma, Anjani J
2017-10-01
Lithium ion batteries (LIB) are the most promising energy storage systems for portable electronics and future electric or hybrid-electric vehicles. However making them safer, cost effective and environment friendly is the key challenge. In this regard, replacing petro-derived materials by introducing renewable biomass derived cellulose derivatives and lignin based materials into the battery system is a promising approach for the development of green materials for LIB. These biomaterials introduce sustainability as well as improved safety in the final disposal of LIB batteries. In this review we introduce LIB materials technology in brief and recent developments in electrodes and binders based on cellulose and their derivatives and lignin for lithium ion batteries. Copyright © 2017 Elsevier B.V. All rights reserved.
Hydrogen /Hydride/-air secondary battery
NASA Technical Reports Server (NTRS)
Sarradin, J.; Bronoel, G.; Percheron-Guegan, A.; Achard, J. C.
1979-01-01
The use of metal hydrides as negative electrodes in a hydrogen-air secondary battery seems promising. However, in an unpressurized cell, more stable hydrides that LaNi5H6 must be selected. Partial substitutions of nickel by aluminium or manganese increase the stability of hydrides. Combined with an air reversible electrode, a specific energy close to 100 Wh/kg can be expected.
Hydridable material for the negative electrode in a nickel-metal hydride storage battery
Knosp, Bernard; Bouet, Jacques; Jordy, Christian; Mimoun, Michel; Gicquel, Daniel
1997-01-01
A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##
News and Feature Stories | NREL
insights for lithium-ion (Li-ion) battery electrodes at the microstructural level, that can lead to Lithium-Ion Battery Electrodes" detailing the research and resulting discoveries, is showcased inside 19th annual Middle School Electric Car Competition, where students raced solar and lithium-ion powered
1968-01-01
which forms a conducting medium between the electrodes of a dry cell , storage cell , or electrolytic capacitor. ELECTROMAGNETIC FIELD - A mlagnetic...Dry cel batteries. (2) Vehicular batteries. (3) Hand generators. (4) Gas engine generators. (5) Wet cell batteries. 2-5. NETTING TWO RADIO SETS: To net...1600 meters Power output .. .. .. ..... ..... ..... 5watt Power source. .. .. .. ..... ...... ... dry cell battery flA-270/U Battery lift
NiCd battery electrodes, C-150
NASA Technical Reports Server (NTRS)
Holleck, G.; Turchan, M.; Hopkins, J.
1972-01-01
Electrodes for a nongassing negative limited nickel-cadmium cell are discussed. The key element is the development of cadmium electrodes with high hydrogen overvoltage. For this, the following electrode structures were manufactured and their physical and electrochemical characteristics were evaluated: (1) silver-sinter-based Cd electrodes, (2) Teflon-bonded Cd electrodes, (3) electrodeposited Cd sponge, and (4) Cd-sinter structures.
From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises.
Nayak, Prasant Kumar; Yang, Liangtao; Brehm, Wolfgang; Adelhelm, Philipp
2018-01-02
Mobile and stationary energy storage by rechargeable batteries is a topic of broad societal and economical relevance. Lithium-ion battery (LIB) technology is at the forefront of the development, but a massively growing market will likely put severe pressure on resources and supply chains. Recently, sodium-ion batteries (SIBs) have been reconsidered with the aim of providing a lower-cost alternative that is less susceptible to resource and supply risks. On paper, the replacement of lithium by sodium in a battery seems straightforward at first, but unpredictable surprises are often found in practice. What happens when replacing lithium by sodium in electrode reactions? This review provides a state-of-the art overview on the redox behavior of materials when used as electrodes in lithium-ion and sodium-ion batteries, respectively. Advantages and challenges related to the use of sodium instead of lithium are discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of Thin-Film Battery Powered Transdermal Medical Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, J.B.; Sein, T.
1999-07-06
Research carried out at ORNL has led to the development of solid state thin-film rechargeable lithium and lithium-ion batteries. These unique devices can be fabricated in a variety of shapes and to any required size, large or small, on virtually any type of substrate. Because they have high energies per unit of volume and mass and because they are rechargeable, thin-film lithium batteries have potentially many applications as small power supplies in consumer and special electronic products. Initially, the objective of this project was to develop thin-film battery powered products. Initially, the objective of this project was to develop thin-filmmore » battery powered transdermal electrodes for recording electrocardiograms and electroencephalograms. These ''active'' electrode would eliminate the effect of interference and improve the reliability in diagnosing heart or brain malfunctions. Work in the second phase of this project was directed at the development of thin-film battery powered implantable defibrillators.« less
Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries
Javier, Anna Esmeralda K; Balsara, Nitash Pervez; Patel, Shrayesh Naran; Hallinan, Jr., Daniel T
2013-10-08
Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.
Chung, Sheng-Heng; Han, Pauline; Manthiram, Arumugam
2017-06-07
The viability of employing high-capacity sulfur cathodes in building high-energy-density lithium-sulfur batteries is limited by rapid self-discharge, short shelf life, and severe structural degradation during cell resting (static instability). Unfortunately, the static instability has largely been ignored in the literature. We present in this letter a longterm self-discharge study by quantitatively analyzing the control lithium-sulfur batteries with a conventional cathode configuration, which provides meaningful insights into the cathode failure mechanisms during resting. Lastly, utilizing the understanding obtained with the control cells, we design and present low self-discharge (LSD) lithium-sulfur batteries for investigating the long-term self-discharge effect and electrode stability.
High performance zinc anode for battery applications
NASA Technical Reports Server (NTRS)
Casey, John E., Jr. (Inventor)
1998-01-01
An improved zinc anode for use in a high density rechargeable alkaline battery is disclosed. A process for making the zinc electrode comprises electrolytic loading of the zinc active material from a slightly acidic zinc nitrate solution into a substrate of nickel, copper or silver. The substrate comprises a sintered plaque having very fine pores, a high surface area, and 80-85 percent total initial porosity. The residual porosity after zinc loading is approximately 25-30%. The electrode of the present invention exhibits reduced zinc mobility, shape change and distortion, and demonstrates reduced dendrite buildup cycling of the battery. The disclosed battery is useful for applications requiring high energy density and multiple charge capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Sheng-Heng; Han, Pauline; Manthiram, Arumugam
The viability of employing high-capacity sulfur cathodes in building high-energy-density lithium-sulfur batteries is limited by rapid self-discharge, short shelf life, and severe structural degradation during cell resting (static instability). Unfortunately, the static instability has largely been ignored in the literature. We present in this letter a longterm self-discharge study by quantitatively analyzing the control lithium-sulfur batteries with a conventional cathode configuration, which provides meaningful insights into the cathode failure mechanisms during resting. Lastly, utilizing the understanding obtained with the control cells, we design and present low self-discharge (LSD) lithium-sulfur batteries for investigating the long-term self-discharge effect and electrode stability.
Roll up nanowire battery from silicon chips
Vlad, Alexandru; Reddy, Arava Leela Mohana; Ajayan, Anakha; Singh, Neelam; Gohy, Jean-François; Melinte, Sorin; Ajayan, Pulickel M.
2012-01-01
Here we report an approach to roll out Li-ion battery components from silicon chips by a continuous and repeatable etch-infiltrate-peel cycle. Vertically aligned silicon nanowires etched from recycled silicon wafers are captured in a polymer matrix that operates as Li+ gel-electrolyte and electrode separator and peeled off to make multiple battery devices out of a single wafer. Porous, electrically interconnected copper nanoshells are conformally deposited around the silicon nanowires to stabilize the electrodes over extended cycles and provide efficient current collection. Using the above developed process we demonstrate an operational full cell 3.4 V lithium-polymer silicon nanowire (LIPOSIL) battery which is mechanically flexible and scalable to large dimensions. PMID:22949696
Internally folded expanded metal electrode for battery construction
NASA Technical Reports Server (NTRS)
Pierce, Doug C. (Inventor); Korinek, Paul D. (Inventor); Morgan, Maurice C. (Inventor)
1993-01-01
A battery system is disclosed which includes folded grids of expanded metal inserted through non-conductive substrates and pasted with electrochemically active materials. In the most preferred embodiment, a frame is provided with a plastic insert, and slots are provided in the latter to receive the expanded metal grid. After suitable coinage of the grid and insertion through the plastic film, the grid is sealed and pasted on opposite sides with positive and negative active material. A battery is assembled using one or a plurality of the resulting electrode elements, with separators, to produce a high-power, lead-acid battery. The folded grid provides many of the design benefits of standard bipolar construction.
Enabling fast charging - A battery technology gap assessment
NASA Astrophysics Data System (ADS)
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.; Tanim, Tanvir; Dufek, Eric J.; Pesaran, Ahmad; Burnham, Andrew; Carlson, Richard B.; Dias, Fernando; Hardy, Keith; Keyser, Matthew; Kreuzer, Cory; Markel, Anthony; Meintz, Andrew; Michelbacher, Christopher; Mohanpurkar, Manish; Nelson, Paul A.; Robertson, David C.; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Vijayagopal, Ram; Zhang, Jiucai
2017-11-01
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; measure temperature distributions during fast charge to enable/validate models; and develop thermal management and pack designs to accommodate the higher operating voltage.
Li, Jianlin; Daniel, Claus; Wood, III, David L.; ...
2016-01-11
Removing residual moisture in lithium-ion battery electrodes is essential for desired electrochemical performance. In this manuscript, the residual moisture in LiNi 0.5Mn 0.3Co 0.2O 2 cathodes produced by conventional solvent-based and aqueous processing is characterized and compared. The electrochemical performance has also been investigated for various residual moisture contents. As a result, it has been demonstrated that the residual moisture lowers the first cycle coulombic efficiency, but its effect on short term cycle life is insignificant.
Interaction of CuS and sulfur in Li-S battery system
Sun, Ke; Su, Dong; Zhang, Qing; ...
2015-10-27
Lithium-Sulfur (Li-S) battery has been a subject of intensive research in recent years due to its potential to provide much higher energy density and lower cost than the current state of the art lithiumion battery technology. In this work, we have investigated Cupric Sulfide (CuS) as a capacitycontributing conductive additive to the sulfur electrode in a Li-S battery. Galvanostatic charge/discharge cycling has been used to compare the performance of both sulfur electrodes and S:CuS hybrid electrodes with various ratios. We found that the conductive CuS additive enhanced the utilization of the sulfur cathode under a 1C rate discharge. However, undermore » a C/10 discharge rate, S:CuS hybrid electrodes exhibited lower sulfur utilization in the first discharge and faster capacity decay in later cycles than a pure sulfur electrode due to the dissolution of CuS. The CuS dissolution is found to be the result of strong interaction between the soluble low order polysulfide Li 2S 3 and CuS. As a result, we identified the presence of conductive copper-containing sulfides at the cycled lithium anode surface, which may degrade the effectiveness of the passivation function of the solid-electrolyte-interphase (SEI) layer, accounting for the poor cycling performance of the S:CuS hybrid cells at low rate.« less
Salimi, Pejman; Javadian, Soheila; Norouzi, Omid; Gharibi, Hussein
2017-12-01
The electrochemical performance of lithium ion battery was enhanced by using biochar derived from Cladophora glomerata (C. glomerata) as widespread green macroalgae in most areas of the Iran's Caspian sea coast. By the utilization of the structure of the biochar, micro-/macro-ordered porous carbon with olive-shaped structure was successfully achieved through pyrolysis at 500 °C, which is the optimal temperature for biofuel production, and was activated with HCl. The biochar and HCl treatment biochar (HTB) were applied as anode electrode in lithium ion batteries. Then, electrochemical measurements were conducted on the electrodes via galvanostatic charge-discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) analyses. The electrochemical results indicated a higher specific discharge capacity (700 mAh g -1 ) and good cycling stability for HTB at the current density of 0.1 A g -1 as compared to the biochar. The reason that HTB electrode works better than the biochar could be due to the higher surface area, formation functional groups, removal impurities, and formation some micropores after HCl treatment. The biochar derived from marine biomass and treatment process developed here could provide a promising path for the low-cost, renewable, and environmentally friendly electrode materials. Graphical abstract Algal-biochar into Li-ion Battery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; Chen, Jun; Chen, Zheng
Fast developments and substantial achievements have been shaping the field of wearable electronic devices, resulting in the persistent requirement for stretchable lithium-ion batteries (LIBs). Despite recent progress in stretchable electrodes, stretching full batteries, including electrodes, separator, and sealing material, remains a great challenge. Here, a simple design concept for stretchable LIBs via a wavy structure at the full battery device scale is reported. All components including the package are capable of being reversibly stretched by folding the entire pouch cell into a wavy shape with polydimethylsiloxane filled in each valley region. In addition, the stretchable, sticky, and porous polyurethane/poly(vinylidene fluoride)more » membrane is adopted as a separator for the first time, which can maintain intimate contact between electrodes and separator to continuously secure ion pathway under dynamic state. Commercial cathode, anode, and package can be utilized in this rationally designed wavy battery to enable stretchability. The results indicate good electrochemical performances and long-term stability at repeatable release–stretch cycles. A high areal capacity of 3.6 mA h cm -2 and energy density of up to 172 W h L -1 can be achieved for the wavy battery. The promising results of the cost-effective wavy battery with high stretchability shed light on the development of stretchable energy storages.« less
Liu, Wei; Chen, Jun; Chen, Zheng; ...
2017-07-17
Fast developments and substantial achievements have been shaping the field of wearable electronic devices, resulting in the persistent requirement for stretchable lithium-ion batteries (LIBs). Despite recent progress in stretchable electrodes, stretching full batteries, including electrodes, separator, and sealing material, remains a great challenge. Here, a simple design concept for stretchable LIBs via a wavy structure at the full battery device scale is reported. All components including the package are capable of being reversibly stretched by folding the entire pouch cell into a wavy shape with polydimethylsiloxane filled in each valley region. In addition, the stretchable, sticky, and porous polyurethane/poly(vinylidene fluoride)more » membrane is adopted as a separator for the first time, which can maintain intimate contact between electrodes and separator to continuously secure ion pathway under dynamic state. Commercial cathode, anode, and package can be utilized in this rationally designed wavy battery to enable stretchability. The results indicate good electrochemical performances and long-term stability at repeatable release–stretch cycles. A high areal capacity of 3.6 mA h cm -2 and energy density of up to 172 W h L -1 can be achieved for the wavy battery. The promising results of the cost-effective wavy battery with high stretchability shed light on the development of stretchable energy storages.« less
Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P; Brownrigg, Alex; Wright, Jonathan P; van Dijk, Niels H; Wagemaker, Marnix
2015-09-23
Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is hindering fundamental understanding and progress. Here we use synchrotron microbeam diffraction to disclose the cycling rate-dependent phase transition mechanism within individual particles of LiFePO4, a key Li-ion electrode material. At low (dis)charge rates well-defined nanometer thin plate-shaped domains co-exist and transform much slower and concurrent as compared with the commonly assumed mosaic transformation mechanism. As the (dis)charge rate increases phase boundaries become diffuse speeding up the transformation rates of individual grains. Direct observation of the transformation of individual grains reveals that local current densities significantly differ from what has previously been assumed, giving new insights in the working of Li-ion battery electrodes and their potential improvements.
Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling
Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P.; Brownrigg, Alex; Wright, Jonathan P.; van Dijk, Niels H.; Wagemaker, Marnix
2015-01-01
Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is hindering fundamental understanding and progress. Here we use synchrotron microbeam diffraction to disclose the cycling rate-dependent phase transition mechanism within individual particles of LiFePO4, a key Li-ion electrode material. At low (dis)charge rates well-defined nanometer thin plate-shaped domains co-exist and transform much slower and concurrent as compared with the commonly assumed mosaic transformation mechanism. As the (dis)charge rate increases phase boundaries become diffuse speeding up the transformation rates of individual grains. Direct observation of the transformation of individual grains reveals that local current densities significantly differ from what has previously been assumed, giving new insights in the working of Li-ion battery electrodes and their potential improvements. PMID:26395323
Sun, Fu; Markötter, Henning; Zhou, Dong; Alrwashdeh, Saad Sabe Sulaiman; Hilger, Andre; Kardjilov, Nikolay; Manke, Ingo; Banhart, John
2016-05-10
The lithiation and delithiation mechanisms of multiple-Sn particles in a customized flat radiography cell were investigated by in situ synchrotron radiography. For the first time, four (de)lithiation phenomena in a Sn-electrode battery system are highlighted: 1) the (de)lithiation behavior varies between different Sn particles, 2) the time required to lithiate individual Sn particles is markedly different from the time needed to discharge the complete battery, 3) electrochemical deactivation of originally electrochemically active particles is reported, and 4) a change of electrochemical behavior of individual particles during cycling is found and explained by dynamic changes of (de)lithiation pathways amongst particles within the electrode. These unexpected findings fundamentaly expand the understanding of the underlying (de)lithiation mechanisms inside commercial lithium-ion batteries (LIBs) and would open new design principles for high-performance next-generation LIBs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pathophysiology of esophageal impairment due to button battery ingestion.
Völker, Johannes; Völker, Christine; Schendzielorz, Philipp; Schraven, Sebastian P; Radeloff, Andreas; Mlynski, Robert; Hagen, Rudolf; Rak, Kristen
2017-09-01
The increased use of button batteries with high energy densities in devices of daily life presents a high risk of injury, especially for toddlers and young children. If an accidental ingestion of a button battery occurs, this foreign body can become caught in the constrictions of the esophagus and cause serious damage to the adjacent tissue layers. The consequences can be ulcerations, perforations with fistula formation and damage to the surrounding anatomical structures. In order to gain a better understanding of the pathophysiology after ingestion, we carried out systematic studies on fresh preparations of porcine esophagi. The lithium button battery type CR2032, used most frequently in daily life, was exposed in preparations of porcine esophagi and incubated under the addition of artificial saliva at 37 °C. A total of eight esophagi were analysed by different methods. Measurements of the pH value around the battery electrodes and histological studies of the tissue damage were carried out after 0.5-24 h exposure time. In addition, macroscopic time-lapse images were recorded. Measurements of the battery voltage and the course of the electric current supplemented the experiments. The investigations showed that the batteries caused an electrolysis reaction in the moist environment. The positive electrode formed an acidic and the negative electrode a basic medium. Consequently, a coagulation necrosis at the positive pole, and a deep colliquation necrosis at the minus pole occurred. After an exposure time of 12 h, tissue damage caused by the lye corrosion was observed on the side of the negative electrode up to the lamina muscularis. The corrosion progressed up to the final exposure time of 24 h, but the batteries still had sufficient residual voltage, such that further advancing damage would be expected. Button battery ingestion in humans poses an acute life-threatening danger and immediate endoscopic removal of the foreign body is essential. After only 2 h exposure time, significant damage to the tissue could be detected, which progressed continuously to complete esophageal perforation. The primary prevention of battery ingestion is therefore of particular importance. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.
Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrodemore » surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.« less
Nickel hydrogen bipolar battery electrode design
NASA Technical Reports Server (NTRS)
Puglisi, V. J.; Russell, P.; Verrier, D.; Hall, A.
1985-01-01
The preferred approach of the NASA development effort in nickel hydrogen battery design utilizes a bipolar plate stacking arrangement to obtain the required voltage-capacity configuration. In a bipolar stack, component designs must take into account not only the typical design considerations such as voltage, capacity and gas management, but also conductivity to the bipolar (i.e., intercell) plate. The nickel and hydrogen electrode development specifically relevant to bipolar cell operation is discussed. Nickel oxide electrodes, having variable type grids and in thicknesses up to .085 inch are being fabricated and characterized to provide a data base. A selection will be made based upon a system level tradeoff. Negative (hydrpogen) electrodes are being screened to select a high performance electrode which can function as a bipolar electrode. Present nickel hydrogen negative electrodes are not capable of conducting current through their cross-section. An electrode was tested which exhibits low charge and discharge polarization voltages and at the same time is conductive. Test data is presented.
Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.
The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages overmore » some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.« less
Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy.
Xiao, Jiefeng; Li, Jia; Xu, Zhengming
2017-09-15
The large-batch application of lithium ion batteries leads to the mass production of spent batteries. So the enhancement of disposal ability of spent lithium ion batteries is becoming very urgent. This study proposes an integrated process to handle bulk spent lithium manganese (LiMn 2 O 4 ) batteries to in situ recycle high value-added products without any additives. By mechanical separation, the mixed electrode materials mainly including binder, graphite and LiMn 2 O 4 are firstly obtained from spent batteries. Then, the reaction characteristics for the oxygen-free roasting of mixed electrode materials are analyzed. And the results show that mixed electrode materials can be in situ converted into manganese oxide (MnO) and lithium carbonate (Li 2 CO 3 ) at 1073K for 45min. In this process, the binder is evaporated and decomposed into gaseous products which can be collected to avoid disposal cost. Finally, 91.30% of Li resource as Li 2 CO 3 is leached from roasted powders by water and then high value-added Li 2 CO 3 crystals are further gained by evaporating the filter liquid. The filter residues are burned in air to remove the graphite and the final residues as manganous-manganic oxide (Mn 3 O 4 ) is obtained. Copyright © 2017 Elsevier B.V. All rights reserved.
Drozhzhin, Oleg A; Tereshchenko, Ivan V; Emerich, Hermann; Antipov, Evgeny V; Abakumov, Artem M; Chernyshov, Dmitry
2018-03-01
A new multi-purpose operando electrochemical cell was designed, constructed and tested on the Swiss-Norwegian Beamlines BM01 and BM31 at the European Synchrotron Radiation Facility. Single-crystal sapphire X-ray windows provide a good signal-to-noise ratio, excellent electrochemical contact because of the constant pressure between the electrodes, and perfect electrochemical stability at high potentials due to the inert and non-conductive nature of sapphire. Examination of the phase transformations in the Li 1-x Fe 0.5 Mn 0.5 PO 4 positive electrode (cathode) material at C/2 and 10C charge and discharge rates, and a study of the valence state of the Ni cations in the Li 1-x Ni 0.5 Mn 1.5 O 4 cathode material for Li-ion batteries, revealed the applicability of this novel cell design to diffraction and spectroscopic investigations of high-power/high-voltage electrodes for metal-ion batteries.
Selective crystallization with preferred lithium-ion storage capability of inorganic materials
2012-01-01
Lithium-ion batteries are supposed to be a key method to make a more efficient use of energy. In the past decade, nanostructured electrode materials have been extensively studied and have presented the opportunity to achieve superior performance for the next-generation batteries which require higher energy and power densities and longer cycle life. In this article, we reviewed recent research activities on selective crystallization of inorganic materials into nanostructured electrodes for lithium-ion batteries and discuss how selective crystallization can improve the electrode performance of materials; for example, selective exposure of surfaces normal to the ionic diffusion paths can greatly enhance the ion conductivity of insertion-type materials; crystallization of alloying-type materials into nanowire arrays has proven to be a good solution to the electrode pulverization problem; and constructing conversion-type materials into hollow structures is an effective approach to buffer the volume variation during cycling. The major goal of this review is to demonstrate the importance of crystallization in energy storage applications. PMID:22353373
Kim, Haegyeom; Lim, Hee-Dae; Kim, Sung-Wook; Hong, Jihyun; Seo, Dong-Hwa; Kim, Dae-chul; Jeon, Seokwoo; Park, Sungjin; Kang, Kisuk
2013-01-01
High-performance and cost-effective rechargeable batteries are key to the success of electric vehicles and large-scale energy storage systems. Extensive research has focused on the development of (i) new high-energy electrodes that can store more lithium or (ii) high-power nano-structured electrodes hybridized with carbonaceous materials. However, the current status of lithium batteries based on redox reactions of heavy transition metals still remains far below the demands required for the proposed applications. Herein, we present a novel approach using tunable functional groups on graphene nano-platelets as redox centers. The electrode can deliver high capacity of ~250 mAh g−1, power of ~20 kW kg−1 in an acceptable cathode voltage range, and provide excellent cyclability up to thousands of repeated charge/discharge cycles. The simple, mass-scalable synthetic route for the functionalized graphene nano-platelets proposed in this work suggests that the graphene cathode can be a promising new class of electrode. PMID:23514953
Practical stability limits of magnesium electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipson, Albert L.; Han, Sang -Don; Pan, Baofei
2016-08-13
The development of a Mg ion based energy storage system could provide several benefits relative to today's Li-ion batteries, such as improved energy density. The electrolytes for Mg batteries, which are typically designed to efficiently plate and strip Mg, have not yet been proven to work with high voltage cathode materials that are needed to achieve high energy density. One possibility is that these electrolytes are inherently unstable on porous electrodes. To determine if this is indeed the case, the electrochemical properties of a variety of electrolytes were tested using a porous carbon coating on graphite foil and stainless steelmore » electrodes. It was determined that the oxidative stability limit on these porous electrodes is considerably reduced as compared to those found using polished platinum electrodes. Furthermore, the voltage stability was found to be about 3 V vs. Mg metal for the best performing electrolytes. In conclusion, these results imply the need for further research to improve the stability of Mg electrolytes to enable high voltage Mg batteries.« less
Engineering Redox Potential of Lithium Clusters for Electrode Material in Lithium-Ion Batteries
Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nanda, Jagjit; ...
2017-07-01
Low negative electrode potential and high reactivity makes lithium (Li) ideal candidate for obtaining highest possible energy density among other materials. Here, we show a novel route with which the overall electrode potential could significantly be enhanced through selection of cluster size. In using first principles density functional theory and continuum dielectric model, we studied free energy and redox potential as well as investigated relative stability of Li n (n ≤ 8) clusters in both gas phase and solution. We found that Li 3 has the lowest negative redox potential (thereby highest overall electrode potential) suggesting that cluster based approachmore » could provide a novel way of engineering the next generation battery technology. The microscopic origin of Li 3 cluster’s superior performance is related to two major factors: gas phase ionization and difference between solvation free energy for neutral and positive ion. Taken together, our study provides insight into the engineering of redox potential in battery and could stimulate further work in this direction.« less
Engineering Redox Potential of Lithium Clusters for Electrode Material in Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nanda, Jagjit
Low negative electrode potential and high reactivity makes lithium (Li) ideal candidate for obtaining highest possible energy density among other materials. Here, we show a novel route with which the overall electrode potential could significantly be enhanced through selection of cluster size. In using first principles density functional theory and continuum dielectric model, we studied free energy and redox potential as well as investigated relative stability of Li n (n ≤ 8) clusters in both gas phase and solution. We found that Li 3 has the lowest negative redox potential (thereby highest overall electrode potential) suggesting that cluster based approachmore » could provide a novel way of engineering the next generation battery technology. The microscopic origin of Li 3 cluster’s superior performance is related to two major factors: gas phase ionization and difference between solvation free energy for neutral and positive ion. Taken together, our study provides insight into the engineering of redox potential in battery and could stimulate further work in this direction.« less
NASA Astrophysics Data System (ADS)
Gu, Meng; Xiao, Xing-Cheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D.; Wang, Chong-Min
2014-01-01
Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact.
Bipolar battery with array of sealed cells
Kaun, Thomas D.; Smaga, John A.
1987-01-01
A lithium alloy/metal sulfide battery as a dipolar battery is disclosed with an array of stacked cells with the anode and cathode electrode materials in each cell sealed in a confining structure and separated from one another except across separator material interposed therebetween. The separator material is contained in a module having separate perforated metallic sheets that sandwich opposite sides of the separator material for the cell and an annular insulating spacer that surrounds the separator material beyond the perforations and is also sandwiched between and sealed to the sheets. The peripheral edges of the sheets project outwardly beyond the spacer, traverse the side edges of the adjacent electrode material to form cup-like electrode holders, and are fused to the adjacent current collector or end face members of the array. Electrolyte is infused into the electrolyte cavity through the perforations of one of the metallic sheets with the perforations also functioning to allow ionic conductance across the separator material between the adjacent electrodes. A gas-tight housing provides an enclosure of the array.
Development of a large scale bipolar NiH2 battery
NASA Technical Reports Server (NTRS)
Adler, E.; Perez, F.
1983-01-01
The bipolar battery concept, developed in cooperation with NASA, is described in the context of the advantages afforded by near-term IPV and CVP cell technology. The projected performance, development requirements, and a possible approach to bipolar battery design are outlined. Consideration is given to packaging electrodes within a common hydrophobic plastic frame, electrode technology that involves a photochemically etched 0.1 mm thick nickel substrate coated with a 10 mg/sq cm mixture of platinum powder and TFE30, and an electrode design that eliminates the screen and doubles the electrode thickness (from the currently used 0.8 mm) while retaining the active material loading of 1.6-1.8 gm/cu cm. Also covered are thermal management, and electrolyte and oxygen management. It is concluded that a high voltage, high capacity, bipolar NiH2 cell can be configured with proper development for use in large power systems, and that it can provide considerable weight savings.
Manganese oxide composite electrodes for lithium batteries
Thackeray, Michael M.; Johnson, Christopher S.; Li, Naichao
2007-12-04
An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor of a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0
The Influence of Electrode and Channel Configurations on Flow Battery Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, RM; Perry, ML
2014-05-21
Flow batteries with flow-through porous electrodes are compared to cells with porous electrodes adjacent to either parallel or interdigitated channels. Resistances and pressure drops are measured for different configurations to augment the electrochemical data. Cell tests are done with an electrolyte containing VO2+ and VO2+ in sulfuric acid that is circulated through both anode and cathode from a single reservoir. Performance is found to depend sensitively on the combination of electrode and flow field. Theoretical explanations for this dependence are provided. Scale-up of flow through and interdigitated designs to large active areas is also discussed. (C) 2014 The Electrochemical Society.more » All rights reserved.« less
Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes.
Lin, Yi; Moitoso, Brandon; Martinez-Martinez, Chalynette; Walsh, Evan D; Lacey, Steven D; Kim, Jae-Woo; Dai, Liming; Hu, Liangbing; Connell, John W
2017-05-10
Lithium-oxygen (Li-O 2 ) batteries have the highest theoretical energy density of all the Li-based energy storage systems, but many challenges prevent them from practical use. A major obstacle is the sluggish performance of the air cathode, where both oxygen reduction (discharge) and oxygen evolution (charge) reactions occur. Recently, there have been significant advances in the development of graphene-based air cathode materials with a large surface area and catalytically active for both oxygen reduction and evolution reactions, especially with additional catalysts or dopants. However, most studies reported so far have examined air cathodes with a limited areal mass loading rarely exceeding 1 mg/cm 2 . Despite the high gravimetric capacity values achieved, the actual (areal) capacities of those batteries were far from sufficient for practical applications. Here, we present the fabrication, performance, and mechanistic investigations of high-mass-loading (up to 10 mg/cm 2 ) graphene-based air electrodes for high-performance Li-O 2 batteries. Such air electrodes could be easily prepared within minutes under solvent-free and binder-free conditions by compression-molding holey graphene materials because of their unique dry compressibility associated with in-plane holes on the graphene sheet. Li-O 2 batteries with high air cathode mass loadings thus prepared exhibited excellent gravimetric capacity as well as ultrahigh areal capacity (as high as ∼40 mAh/cm 2 ). The batteries were also cycled at a high curtailing areal capacity (2 mAh/cm 2 ) and showed a better cycling stability for ultrathick cathodes than their thinner counterparts. Detailed post-mortem analyses of the electrodes clearly revealed the battery failure mechanisms under both primary and secondary modes, arising from the oxygen diffusion blockage and the catalytic site deactivation, respectively. These results strongly suggest that the dry-pressed holey graphene electrodes are a highly viable architectural platform for high-capacity, high-performance air cathodes in Li-O 2 batteries of practical significance.
Quantitative Analysis of Three-dimensional Microstructure of Li-ion Battery Electrodes
NASA Astrophysics Data System (ADS)
Liu, Zhao
Li-ion batteries (LIBs) have attracted considerable attention in the past two decades due to their widespread applications in portable electronics, and their growing use in electric vehicles and large-scale grid storage. Increasing battery energy density and powder density while maintaining long life, along with battery safety, are the biggest challenges that limit their further development. Various approaches with materials and chemistry have been employed to improve performance. However, one less-studied aspect that also impacts performance is the electrode microstructure. In particular, three-dimensional (3D) electrode microstructural data for LIB electrodes, which were not widely available prior to this thesis, can provide important input for understanding and improving LIB performance. The focus of this thesis is to apply 3D tomographic techniques, together with electrochemical performance data, to obtain LIB microstructure-performance correlations. Two advanced 3D structural analysis techniques, focused ion beam-scanning electron microscopy (FIB-SEM) and transmission X-ray microscopy (TXM) nanotomography, are used to quantify LIB electrode microstructure. 3D characterization of LIB electrode microstructure is used to obtain a deeper understanding of mechanisms that limit LIB performance. Microstructural characterization before and after cycling is used to explore capacity loss mechanisms. It is hoped that the results can guide electrode microstructures design to improve performance and stability. Two types of commercial electrodes, LiCoO2 and LiCoO 2/Li(Ni1/3Mn1/3Co1/3)O2, are studied using FIB-SEM and TXM. Both methods were found to be applicable to quantifying the oxide particle microstructure, including volume fraction, surface area, and particle size distribution, and results agreed well. However, structural inhomogeneity found in these commercial samples, limited the capability to resolve microstructural changes during cycling. In order to also quantify carbonaceous phases in the electrodes, which strongly correlate with LIB transport properties, a three-phase FIB-SEM method was developed where silicone resin was infiltrated into electrode pores, providing good image contrast with the carbon particles. Structural parameters including phase connectivity and tortuosity are quantified for commercial LiCoO 2 and laboratory-made LiFePO4 electrodes to help understand the transport process in these electrodes. For LiCoO2 electrodes, a heterogeneous tortuosity distribution observed in the electrolyte phase may result in inhomogeneous charge/discharge states, and consequently cause battery degradation. For LiFePO4 electrodes, highly percolated and less tortuous carbon found in a templated electrode explain its better high-C-rate performance. Finally, laboratory-made LiMn2O4 electrodes were electrochemically cycled with different operation parameters, including cycle number, temperature, and operating voltage. Quantitative analyses on 3D TXM data sets indicate particle fracture, mainly due to tetragonal to cubic phase transformations induced by the Jahn-Teller effect, resulting in electrode degradation. Moreover, high temperature operation is found to enhance active material dissolution and can also accelerate cell degradation. This ex-situ method, which combines electrochemical cycling and statistical analysis, proved to be an effective approach to provide insight for the interpretation of complex mechanical and electrochemical interactions within the electrodes.
Cosolvent electrolytes for electrochemical devices
Wessells, Colin Deane; Firouzi, Ali; Motallebi, Shahrokh; Strohband, Sven
2018-01-23
A method for stabilizing electrodes against dissolution and/or hydrolysis including use of cosolvents in liquid electrolyte batteries for three purposes: the extension of the calendar and cycle life time of electrodes that are partially soluble in liquid electrolytes, the purpose of limiting the rate of electrolysis of water into hydrogen and oxygen as a side reaction during battery operation, and for the purpose of cost reduction.
Cosolvent electrolytes for electrochemical devices
Wessells, Colin Deane; Firouzi, Ali; Motallebi, Shahrokh; Strohband, Sven
2018-02-13
A system and method for stabilizing electrodes against dissolution and/or hydrolysis including use of cosolvents in liquid electrolyte batteries for three purposes: the extension of the calendar and cycle life time of electrodes that are partially soluble in liquid electrolytes, the purpose of limiting the rate of electrolysis of water into hydrogen and oxygen as a side reaction during battery operation, and for the purpose of cost reduction.
Cosolvent electrolytes for electrochemical devices
Wessells, Colin Deane; Firouzi, Ali; Motallebi, Shahrokh; Strohband, Sven
2018-05-15
A system and method for stabilizing electrodes against dissolution and/or hydrolysis including use of cosolvents in liquid electrolyte batteries for three purposes: the extension of the calendar and cycle life time of electrodes that are partially soluble in liquid electrolytes, the purpose of limiting the rate of electrolysis of water into hydrogen and oxygen as a side reaction during battery operation, and for the purpose of cost reduction.
Flexible Hybrid Battery/Pseudocapacitor
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Paley, Steven
2015-01-01
Batteries keep devices working by utilizing high energy density, however, they can run down and take tens of minutes to hours to recharge. For rapid power delivery and recharging, high-power density devices, i.e., supercapacitors, are used. The electrochemical processes which occur in batteries and supercapacitors give rise to different charge-storage properties. In lithium ion (Li+) batteries, the insertion of Li+, which enables redox reactions in bulk electrode materials, is diffusion controlled and can be slow. Supercapacitor devices, also known as electrical double-layer capacitors (EDLCs) store charge by adsorption of electrolyte ions onto the surface of electrode materials. No redox reactions are necessary, so the response to changes in potential without diffusion limitations is rapid and leads to high power. However, the charge in EDLCs is confined to the surface, so the energy density is lower than that of batteries.
Recent advances in zinc-air batteries.
Li, Yanguang; Dai, Hongjie
2014-08-07
Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Broad Funding Opportunity Announcement Project: Led by MIT professor Donald Sadoway, the Electroville project team is creating a community-scale electricity storage device using new materials and a battery design inspired by the aluminum production process known as smelting. A conventional battery includes a liquid electrolyte and a solid separator between its 2 solid electrodes. MIT’s battery contains liquid metal electrodes and a molten salt electrolyte. Because metals and salt don’t mix, these 3 liquids of different densities naturally separate into layers, eliminating the need for a solid separator. This efficient design significantly reduces packaging materials, which reduces cost and allowsmore » more space for storing energy than conventional batteries offer. MIT’s battery also uses cheap, earth-abundant, domestically available materials and is more scalable. By using all liquids, the design can also easily be resized according to the changing needs of local communities.« less
Positive electrodes of nickel-cadmium batteries
NASA Technical Reports Server (NTRS)
Wabner, D. W.; Kandler, L.; Krienke, W.
1985-01-01
Ni hydroxide sintered electrodes which are filled electrochemically are superior to chemically treated electrodes. In the electrochemical process, the hydroxide grows on the Ni grains and possesses a well-defined porous structure. Diffusion and conducting mechanisms are therefore facilitated.
Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate
NASA Astrophysics Data System (ADS)
Wu, Shaofei; Wang, Wenxi; Li, Minchan; Cao, Lujie; Lyu, Fucong; Yang, Mingyang; Wang, Zhenyu; Shi, Yang; Nan, Bo; Yu, Sicen; Sun, Zhifang; Liu, Yao; Lu, Zhouguang
2016-11-01
It is a challenge to prepare organic electrodes for sodium-ion batteries with long cycle life and high capacity. The highly reactive radical intermediates generated during the sodiation/desodiation process could be a critical issue because of undesired side reactions. Here we present durable electrodes with a stabilized α-C radical intermediate. Through the resonance effect as well as steric effects, the excessive reactivity of the unpaired electron is successfully suppressed, thus developing an electrode with stable cycling for over 2,000 cycles with 96.8% capacity retention. In addition, the α-radical demonstrates reversible transformation between three states: C=C α-C.radical and α-C- anion. Such transformation provides additional Na+ storage equal to more than 0.83 Na+ insertion per α-C radical for the electrodes. The strategy of intermediate radical stabilization could be enlightening in the design of organic electrodes with enhanced cycling life and energy storage capability.
Nafion coated sulfur-carbon electrode for high performance lithium-sulfur batteries
NASA Astrophysics Data System (ADS)
Tang, Qiwei; Shan, Zhongqiang; Wang, Li; Qin, Xue; Zhu, Kunlei; Tian, Jianhua; Liu, Xuesheng
2014-01-01
In this paper, a nafion coated electrode is prepared to improve the performance of lithium sulfur batteries. It is demonstrated from a series of measurements that the nafion layer is quite effective in reducing shuttle effect and enhancing the stability and the reversibility of the electrode. When measured under the rate of 0.2 C, the initial discharge capacity of the nafion coated electrode can reach 1084 mAh g-1, with a Columbic efficiency of about 100%. After 100 charge/discharge cycles, this electrode can also deliver a reversible capacity of as high as 879 mAh g-1. Significantly, the charge-transfer resistance of the electrode tends to be reducing after coated with an appropriate thickness of nafion film. The cation conductivity as well as anion inconductivity is considered to be the dominant factor for the superior electrochemical properties.
Gradient porous electrode architectures for rechargeable metal-air batteries
Dudney, Nancy J.; Klett, James W.; Nanda, Jagjit; Narula, Chaitanya Kumar; Pannala, Sreekanth
2016-03-22
A cathode for a metal air battery includes a cathode structure having pores. The cathode structure has a metal side and an air side. The porosity decreases from the air side to the metal side. A metal air battery and a method of making a cathode for a metal air battery are also disclosed.
NASA Technical Reports Server (NTRS)
Hassan, Razi A.
1991-01-01
The Solid Rocket Booster Range Safety System (SRBRSS) uses a lithium/poly-carbon monofluoride primary battery as a source of electrical power. After cell fabrication and activation, some battery cells have shown self discharge. One possible source of this cell discharge has been suggested to be the formation and growth of a conducting crystallized chemical compound across the glass bead insulator, electrically shorting the glass bead to the casing. This laboratory has begun an analysis of this compound, the glass seal holding the cathode into place, and the cell electrolyte, using Fast Fourier Transform Infrared (FFTIR) Analysis, Rutherford Backscattering Spectroscopy (RBS), and Nuclear Reaction Microanalysis. Preliminary measurements have confirmed the existence of lithium, nitrogen, fluorine, and oxygen on a reddish-brown deposit covering parts of the glass seal holding the positive electrode in place. Cells using Li metal electrodes, have many advantages over conventional primary batteries. One principal disadvantage of using Li batteries on a commercial basis would be the environmental impact of the fluorocarbon material. Another would be the relatively high expense of (CF)n.
Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa
2016-01-01
We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109
NASA Astrophysics Data System (ADS)
Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa
2016-06-01
We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions.
Lithium metal oxide electrodes for lithium cells and batteries
Thackeray, Michael M [Naperville, IL; Johnson, Christopher S [Naperville, IL; Amine, Khalil [Downers Grove, IL; Kim, Jaekook [Naperville, IL
2004-01-13
A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0
Truong, Quang Duc; Kempaiah Devaraju, Murukanahally; Nguyen, Duc N; Gambe, Yoshiyuki; Nayuki, Keiichiro; Sasaki, Yoshikazu; Tran, Phong D; Honma, Itaru
2016-09-14
Exploring novel electrode materials is critical for the development of a next-generation rechargeable magnesium battery with high volumetric capacity. Here, we showed that a distinct amorphous molybdenum sulfide, being a coordination polymer of disulfide-bridged (Mo3S11) clusters, has great potential as a rechargeable magnesium battery cathode. This material provided good reversible capacity, attributed to its unique structure with high flexibility and capability of deformation upon Mg insertion. Free-terminal disulfide moiety may act as the active site for reversible insertion and extraction of magnesium.
Bipolar Nickel-Metal Hydride Battery Development Project
NASA Technical Reports Server (NTRS)
Cole, John H.
1999-01-01
This paper reviews the development of the Electro Energy, Inc.'s bipolar nickel metal hydride battery. The advantages of the design are that each cell is individually sealed, and that there are no external cell terminals, no electrode current collectors, it is compatible with plastic bonded electrodes, adaptable to heat transfer fins, scalable to large area, capacity and high voltage. The design will allow for automated flexible manufacturing, improved energy and power density and lower cost. The development and testing of the battery's component are described. Graphic presentation of the results of many of the tests are included.
NASA Astrophysics Data System (ADS)
Li, Qinghao; Qiao, Ruimin; Wray, L. Andrew; Chen, Jun; Zhuo, Zengqing; Chen, Yanxue; Yan, Shishen; Pan, Feng; Hussain, Zahid; Yang, Wanli
2016-10-01
Most battery positive electrodes operate with a 3d transition-metal (TM) reaction centre. A direct and quantitative probe of the TM states upon electrochemical cycling is valuable for understanding the detailed cycling mechanism and charge diffusion in the electrodes, which is related with many practical parameters of a battery. This review includes a comprehensive summary of our recent demonstrations of five different types of quantitative analysis of the TM states in battery electrodes based on soft x-ray absorption spectroscopy and multiplet calculations. In LiFePO4, a system of a well-known two-phase transformation type, the TM redox could be strictly determined through a simple linear combination of the two end-members. In Mn-based compounds, the Mn states could also be quantitatively evaluated, but a set of reference spectra with all the three possible Mn valences needs to be deliberately selected and considered in the fitting. Although the fluorescence signals suffer the self-absorption distortion, the multiplet calculations could consider the distortion effect, which allows a quantitative determination of the overall Ni oxidation state in the bulk. With the aid of multiplet calculations, one could also achieve a quasi-quantitative analysis of the Co redox evolution in LiCoO2 based on the energy position of the spectroscopic peak. The benefit of multiplet calculations is more important for studying electrode materials with TMs of mixed spin states, as exemplified by the quantitative analysis of the mixed spin Na2-x Fe2(CN)6 system. At the end, we showcase that such quantitative analysis could provide valuable information for optimizing the electrochemical performance of Na0.44MnO2 electrodes for Na-ion batteries. The methodology summarized in this review could be extended to other energy application systems with TM redox centre for detailed analysis, for example, fuel cell and catalytic materials.
Nanocarbon networks for advanced rechargeable lithium batteries.
Xin, Sen; Guo, Yu-Guo; Wan, Li-Jun
2012-10-16
Carbon is one of the essential elements in energy storage. In rechargeable lithium batteries, researchers have considered many types of nanostructured carbons, such as carbon nanoparticles, carbon nanotubes, graphene, and nanoporous carbon, as anode materials and, especially, as key components for building advanced composite electrode materials. Nanocarbons can form efficient three-dimensional conducting networks that improve the performance of electrode materials suffering from the limited kinetics of lithium storage. Although the porous structure guarantees a fast migration of Li ions, the nanocarbon network can serve as an effective matrix for dispersing the active materials to prevent them from agglomerating. The nanocarbon network also affords an efficient electron pathway to provide better electrical contacts. Because of their structural stability and flexibility, nanocarbon networks can alleviate the stress and volume changes that occur in active materials during the Li insertion/extraction process. Through the elegant design of hierarchical electrode materials with nanocarbon networks, researchers can improve both the kinetic performance and the structural stability of the electrode material, which leads to optimal battery capacity, cycling stability, and rate capability. This Account summarizes recent progress in the structural design, chemical synthesis, and characterization of the electrochemical properties of nanocarbon networks for Li-ion batteries. In such systems, storage occurs primarily in the non-carbon components, while carbon acts as the conductor and as the structural buffer. We emphasize representative nanocarbon networks including those that use carbon nanotubes and graphene. We discuss the role of carbon in enhancing the performance of various electrode materials in areas such as Li storage, Li ion and electron transport, and structural stability during cycling. We especially highlight the use of graphene to construct the carbon conducting network for alloy anodes, such as Si and Ge, to accelerate electron transport, alleviate volume change, and prevent the agglomeration of active nanoparticles. Finally, we describe the power of nanocarbon networks for the next generation rechargeable lithium batteries, including Li-S, Li-O(2), and Li-organic batteries, and provide insights into the design of ideal nanocarbon networks for these devices. In addition, we address the ways in which nanocarbon networks can expand the applications of rechargeable lithium batteries into the emerging fields of stationary energy storage and transportation.
NiH2 Battery Reconditioning for LEO Applications
NASA Technical Reports Server (NTRS)
Armantrout, J. D.; Hafen, D. P.
1997-01-01
This paper summarizes reasons for and benefits of reconditioning nickel-hydrogen (NiH2) batteries used for Low Earth Orbit (LEO) applications. NiH2 battery cells do not have the classic discharge voltage problems more commonly associated with nickel-cadmium (NiCd) cells. This is due, in part, to use of hydrogen electrodes in place of cadmium electrodes. The nickel electrode, however, does have a similar discharge voltage signature for both cell designs. This can have an impact on LEO applications where peak loads at higher relative depths of discharge can impact operations. Periodic reconditioning provides information which can be used for analyzing long term performance trends to predict usable capacity to a specified voltage level. The reconditioning process described herein involves discharging NiH2 batteries at C/20 rates or less, to an average cell voltage of 1.0 volts or less. Recharge is performed at nominal C/5 rates to specified voltage/temperature (V/T) charge levels selected to restore required capacity with minimal overcharge. Reconditioning is a process of restoring reserve capacity lost on cycling, which is commonly called the memory effect in NiCd cells. This effect is characterized by decreases in the discharge voltage curve with operational life and cycling. The end effect of reconditioning NiH2 cells may be hidden in the versatility, of that design over the NiCd cell design and its associated negative electrode fading problem. The process of deep discharge at lower rates by way of reconditioning tends to redistribute electrolyte and water in the NiH2 cell electrode stack, while improving utilization and charge efficiency. NiH2 battery reconditioning effects on life are considered beneficial and may, in fact. extend life based on NiCd experience. In any case, usable capacity data obtained from reconditioning is required for performance evaluation and trend analysis. Characterization and life tests have provided the historical data base used to determine the need for reconditioning in most battery applications. The following sections briefly describe the background of NiH2 battery reconditioning and testing at Lockheed Martin Missiles & Space (LMMS) and other aerospace companies.
NASA Astrophysics Data System (ADS)
Meng, Xiangbo
2015-01-01
Targeted at fueling future transportation and sustaining smart grids, lithium-ion batteries (LIBs) are undergoing intensive investigation for improved durability and energy density. Atomic layer deposition (ALD), enabling uniform and conformal nanofilms, has recently made possible many new advances for superior LIBs. The progress was summarized by Liu and Sun in their latest review [1], offering many insightful views, covering the design of nanostructured battery components (i.e., electrodes and solid electrolytes), and nanoscale modification of electrode/electrolyte interfaces. This work well informs peers of interesting research conducted and it will also further help boost the applications of ALD in next-generation LIBs and other advanced battery technologies.
Electrochemical Energy Storage Technologies and the Automotive Industry
Mark Verbrugge
2017-12-09
The first portion of the lecture will relate global energy challenges to trends in personal transportation. Following this introduction, a short overview of technology associated with lithium ion batteries for traction applications will be provided. Last, I shall present new research results that enable adaptive characterization of lithium ion cells. Experimental and modeling results help to clarify the underlying electrochemistry and system performance. Specifically, through chemical modification of the electrodes, it is possible to place markers within the electrodes that signal the state of charge of a battery through abrupt voltage changes during cell operation, thereby allowing full utilization of the battery in applications. In closing, I shall highlight some promising materials research efforts that are expected to lead to substantially improved battery technology
Block, Jacob; Fan, Xiyun
1998-01-01
An electrode composition for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C.sub.8 -C.sub.15 alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5-4.5 volts.
Block, J.; Fan, X.
1998-10-27
An electrode composition is described for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C{sub 8}-C{sub 15} alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5--4.5 volts.
NASA Astrophysics Data System (ADS)
Mao, Yiyin; Li, Gaoran; Guo, Yi; Li, Zhoupeng; Liang, Chengdu; Peng, Xinsheng; Lin, Zhan
2017-03-01
Lithium-sulfur batteries are promising technologies for powering flexible devices due to their high energy density, low cost and environmental friendliness, when the insulating nature, shuttle effect and volume expansion of sulfur electrodes are well addressed. Here, we report a strategy of using foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for binder-free advanced lithium-sulfur batteries through a facile confinement conversion. The carbon nanotubes interpenetrate through the metal-organic frameworks crystal and interweave the electrode into a stratified structure to provide both conductivity and structural integrity, while the highly porous metal-organic frameworks endow the electrode with strong sulfur confinement to achieve good cyclability. These hierarchical porous interpenetrated three-dimensional conductive networks with well confined S8 lead to high sulfur loading and utilization, as well as high volumetric energy density.
Nanoscale visualization of redox activity at lithium-ion battery cathodes.
Takahashi, Yasufumi; Kumatani, Akichika; Munakata, Hirokazu; Inomata, Hirotaka; Ito, Komachi; Ino, Kosuke; Shiku, Hitoshi; Unwin, Patrick R; Korchev, Yuri E; Kanamura, Kiyoshi; Matsue, Tomokazu
2014-11-17
Intercalation and deintercalation of lithium ions at electrode surfaces are central to the operation of lithium-ion batteries. Yet, on the most important composite cathode surfaces, this is a rather complex process involving spatially heterogeneous reactions that have proved difficult to resolve with existing techniques. Here we report a scanning electrochemical cell microscope based approach to define a mobile electrochemical cell that is used to quantitatively visualize electrochemical phenomena at the battery cathode material LiFePO4, with resolution of ~100 nm. The technique measures electrode topography and different electrochemical properties simultaneously, and the information can be combined with complementary microscopic techniques to reveal new perspectives on structure and activity. These electrodes exhibit highly spatially heterogeneous electrochemistry at the nanoscale, both within secondary particles and at individual primary nanoparticles, which is highly dependent on the local structure and composition.
Electrochemical activity of Fe-MIL-100 as a positive electrode for Na-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sava Gallis, Dorina F.; Pratt III, Harry D.; Anderson, Travis M.
2016-01-01
Here we investigate the electrochemical activity of metal-organic frameworks (MOFs) as positive electrodes for Na-ion batteries in coin cell configurations. The performance of Fe-MIL-100 material is highly dependent on the choice of sodium salt source, and electrolyte system. The overall capacity fades over many cycles, however the high Coulombic efficiency is maintained. This can be correlated with inaccessibility of active sites for Na intercalation, due to the increase of extra carbonaceous material inside the pores. High resolution synchrotron powder X-ray and pair distribution function analyses of the as-made and cycled electrodes reveal the structure maintains the long-range order with progressivemore » cycling. This finding suggests that careful consideration of all variables in battery components, and especially electrolyte selection can lead to greatly improved performances.« less
A mathematical model for the iron/chromium redox battery
NASA Technical Reports Server (NTRS)
Fedkiw, P. S.; Watts, R. W.
1984-01-01
A mathematical model has been developed to describe the isothermal operation of a single anode-separator-cathode unit cell in a redox-flow battery and has been applied to the NASA iron/chromium system. The model, based on porous electrode theory, incorporates redox kinetics, mass transfer, and ohmic effects as well as the parasitic hydrogen reaction which occurs in the chromium electrode. A numerical parameter study was carried out to predict cell performance to aid in the rational design, scale-up, and operation of the flow battery. The calculations demonstrate: (1) an optimum electrode thickness and electrolyte flow rate exist; (2) the amount of hydrogen evolved and, hence, cycle faradaic efficiency, can be affected by cell geometry, flow rate, and charging procedure; (3) countercurrent flow results in enhanced cell performance over cocurrent flow; and (4) elevated temperature operation enhances cell performance.
Mao, Yiyin; Li, Gaoran; Guo, Yi; Li, Zhoupeng; Liang, Chengdu; Peng, Xinsheng; Lin, Zhan
2017-01-01
Lithium–sulfur batteries are promising technologies for powering flexible devices due to their high energy density, low cost and environmental friendliness, when the insulating nature, shuttle effect and volume expansion of sulfur electrodes are well addressed. Here, we report a strategy of using foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for binder-free advanced lithium–sulfur batteries through a facile confinement conversion. The carbon nanotubes interpenetrate through the metal-organic frameworks crystal and interweave the electrode into a stratified structure to provide both conductivity and structural integrity, while the highly porous metal-organic frameworks endow the electrode with strong sulfur confinement to achieve good cyclability. These hierarchical porous interpenetrated three-dimensional conductive networks with well confined S8 lead to high sulfur loading and utilization, as well as high volumetric energy density. PMID:28262801
Direct and continuous strain control of catalysts with tunable battery electrode materials
Wang, Haotian; Xu, Shicheng; Tsai, Charlie; ...
2016-11-24
We report a method for using battery electrode materials to directly and continuously control the lattice strain of platinum (Pt) catalyst and thus tune its catalytic activity for the oxygen reduction reaction (ORR). Whereas the common approach of using metal overlayers introduces ligand effects in addition to strain, by electrochemically switching between the charging and discharging status of battery electrodes the change in volume can be precisely controlled to induce either compressive or tensile strain on supported catalysts. Lattice compression and tension induced by the lithium cobalt oxide substrate of ~5% were directly observed in individual Pt nanoparticles with aberration-correctedmore » transmission electron microscopy. As a result, we observed 90% enhancement or 40% suppression in Pt ORR activity under compression or tension, respectively, which is consistent with theoretical predictions.« less
High capacity electrode materials for batteries and process for their manufacture
Johnson, Christopher S.; Xiong, Hui; Rajh, Tijana; Shevchenko, Elena; Tepavcevic, Sanja
2018-04-03
The present invention provides a nanostructured metal oxide material for use as a component of an electrode in a lithium-ion or sodium-ion battery. The material comprises a nanostructured titanium oxide or vanadium oxide film on a metal foil substrate, produced by depositing or forming a nanostructured titanium dioxide or vanadium oxide material on the substrate, and then charging and discharging the material in an electrochemical cell from a high voltage in the range of about 2.8 to 3.8 V, to a low voltage in the range of about 0.8 to 1.4 V over a period of about 1/30 of an hour or less. Lithium-ion and sodium-ion electrochemical cells comprising electrodes formed from the nanostructured metal oxide materials, as well as batteries formed from the cells, also are provided.
NASA Technical Reports Server (NTRS)
Macdonald, D. D.; Pound, B. G.; Lenhart, S. J.
1989-01-01
Electrochemical impedance spectra of rolled and bonded and sintered porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes for rolled and bonded electrodes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (non-porous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low. Transmission line modeling results suggest that porous rolled and bonded nickel electrodes undergo restructuring during charge/discharge cycling prior to failure.
Metal | polypyrrole battery with the air regenerated positive electrode
NASA Astrophysics Data System (ADS)
Grgur, Branimir N.
2014-12-01
Recharge characteristics of the battery based on the electrochemically synthesized polypyrrole cathode and aluminum, zinc, or magnesium anode in 2 M NH4Cl are investigated. It is shown that polypyrrole electrode can be regenerated by the reoxidation with the dissolved oxygen from the air. Using the polypyrrole synthesized on high surface graphite-felt electrode under modest discharge conditions, stable discharge voltage of 1.1 V is obtained. Such behavior is explained by the complex interaction of polypyrrole and hydrogen peroxide produced by the oxygen reduction reaction. The electrochemical characteristics are compared with the zinc-manganese dioxide and zinc-air systems.
Enabling fast charging – A battery technology gap assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; measure temperature distributions during fast charge to enable/validate models; and develop thermal management and pack designs to accommodate the higher operating voltage.
Enabling fast charging – A battery technology gap assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; measure temperature distributions during fast charge to enable / validate models; and develop thermal management and pack designs to accommodate the higher operating voltage.
Chemical overcharge protection of lithium and lithium-ion secondary batteries
Abraham, Kuzhikalail M.; Rohan, James F.; Foo, Conrad C.; Pasquariello, David M.
1999-01-01
This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).
Chemical overcharge protection of lithium and lithium-ion secondary batteries
Abraham, K.M.; Rohan, J.F.; Foo, C.C.; Pasquariello, D.M.
1999-01-12
This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn{sub 2}O{sub 4} positive electrode (cathode). 8 figs.
Li, Na; Du, Yi; Feng, Qing-Ping; Huang, Gui-Wen; Xiao, Hong-Mei; Fu, Shao-Yun
2017-12-27
The sharp proliferation of high power electronics and electrical vehicles has promoted growing demands for power sources with both high energy and power densities. Under these circumstances, battery-supercapacitor hybrid devices are attracting considerable attention as they combine the advantages of both batteries and supercapacitors. Here, a novel type of hybrid device based on a carbon skeleton/Mg 2 Ni free-standing electrode without the traditional nickel foam current collector is reported, which has been designed and fabricated through a dispersing-freeze-drying method by employing reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs) as a hybrid skeleton. As a result, the Mg 2 Ni alloy is able to deliver a high discharge capacity of 644 mAh g -1 and, more importantly, a high cycling stability with a retention of over 78% after 50 charge/discharge cycles have been achieved, which exceeds almost all the results ever reported on the Mg 2 Ni alloy. Simultaneously, the electrode could also exhibit excellent supercapacitor performances including high specific capacities (296 F g -1 ) and outstanding cycling stability (100% retention after 100 cycles). Moreover, the hybrid device can switch between battery and supercapacitor modes immediately as needed during application. These features make the C skeleton/alloy electrode a highly promising candidate for battery-supercapacitor hybrid devices with high power/energy density and favorable cycling stability.
Lead-oxygen closed-loop battery system
NASA Technical Reports Server (NTRS)
Britz, W. J.; Boshers, W. A.; Kaufmann, J. J.
1975-01-01
Calculations show that battery can deliver up to 35 watt-hours per pound, conventional lead-acid batteries deliver 10 to 15 watt-hours per pound. Weight reduction is due to replacement of solid lead-peroxide electrodes with metal current-collector screen, catalyst, and Teflon membrane.
CNT Sheet Air Electrode for the Development of Ultra-High Cell Capacity in Lithium-Air Batteries
Nomura, Akihiro; Ito, Kimihiko; Kubo, Yoshimi
2017-01-01
Lithium-air batteries (LABs) are expected to provide a cell with a much higher capacity than ever attained before, but their prototype cells present a limited areal cell capacity of no more than 10 mAh cm−2, mainly due to the limitation of their air electrodes. Here, we demonstrate the use of flexible carbon nanotube (CNT) sheets as a promising air electrode for developing ultra-high capacity in LAB cells, achieving areal cell capacities of up to 30 mAh cm−2, which is approximately 15 times higher than the capacity of cells with lithium-ion battery (LiB) technology (~2 mAh cm−2). During discharge, the CNT sheet electrode experienced enormous swelling to a thickness of a few millimeters because of the discharge product deposition of lithium peroxide (Li2O2), but the sheet was fully recovered after being fully charged. This behavior results from the CNT sheet characteristics of the flexible and fibrous conductive network and suggests that the CNT sheet is an effective air electrode material for developing a commercially available LAB cell with an ultra-high cell capacity. PMID:28378746
NASA Astrophysics Data System (ADS)
Yang, Dan; Ni, Wei; Cheng, Jianli; Wang, Zhuanpei; Wang, Ting; Guan, Qun; Zhang, Yun; Wu, Hao; Li, Xiaodong; Wang, Bin
2017-08-01
Three-dimensional (3D) flexible electrodes of stringed hollow nitrogen-doped (N-doped) carbon nanospheres as graded sulfur reservoirs and conductive frameworks were elaborately designed via a combination of the advantages of hollow structures, 3D electrodes and flexible devices. The as-prepared electrodes by a synergistic method of electrospinning, template sacrificing and activation for Li-S batteries without any binder or conductive additives but a 3D interconnected conductive network offered multiple transport paths for electrons and improved sulfur utilization and facilitated an easy access to Li+ ingress/egress. With the increase of density of hollow carbon spheres in the strings, the self-supporting composite electrode reveals an enhanced synergistic mechanism for sulfur confinement and displays a better cycling stability and rate performance. It delivers a high initial specific capacity of 1422.6 mAh g-1 at the current rate of 0.2C with the high sulfur content of 76 wt.%, and a much higher energy density of 754 Wh kg-1 and power density of 1901 Wh kg-1, which greatly improve the energy/power density of traditional lithium-sulfur batteries and will be promising for further commercial applications.
Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries
NASA Astrophysics Data System (ADS)
Piwko, Markus; Kuntze, Thomas; Winkler, Sebastian; Straach, Steffen; Härtel, Paul; Althues, Holger; Kaskel, Stefan
2017-05-01
Silicon is a promising anode material for next generation lithium secondary batteries. To significantly increase the energy density of state of the art batteries with silicon, new concepts have to be developed and electrode structuring will become a key technology. Structuring is essential to reduce the macroscopic and microscopic electrode deformation, caused by the volume change during cycling. We report pulsed laser structuring for the generation of hierarchical columnar silicon films with outstanding high areal capacities up to 7.5 mAh cm-2 and good capacity retention. Unstructured columnar electrodes form a micron-sized block structure during the first cycle to compensate the volume expansion leading to macroscopic electrode deformation. At increased silicon loading, without additional structuring, pronounced distortion and the formation of cracks through the current collector causes cell failure. Pulsed laser ablation instead is demonstrated to avoid macroscopic electrode deformation by initial formation of the block structure. A full cell with lithiated silicon versus a carbon-sulfur cathode is assembled with only 15% overbalanced anode and low electrolyte amount (8 μl mgsulfur-1). While the capacity retention over 50 cycles is identical to a cell with high excess lithium anode, the volumetric energy density could be increased by 30%.
Carbon Cathodes in Rechargeable Lithium-Oxygen Batteries Based on Double-Lithium-Salt Electrolytes.
Yoo, Eunjoo; Zhou, Haoshen
2016-06-08
The use of carbon materials as air electrodes in lithium-oxygen (Li-O2 ) batteries is known to be advantageous owing to their good conductivity and because they offer sites suitable for the reversible electrode reactions. However, the exact influence of carbon materials on the electrochemical performance of Li-O2 batteries is not clear. In this study the electrochemical performance of four different types of carbon materials (multiwalled carbon nanotubes (MWCNTs), CMK-3, graphene nanosheets (GNSs), and Ketjen Black (KB)) as air electrodes is examined. We find that a Li-O2 cell based on an electrode of multiwalled carbon nanotubes (MWCNTs) demonstrates good rate performance and cycle stability, when using LiNO3 -LiTFSI/DMSO as electrolyte. Li-O2 cells based on such MWCNT electrodes, with a cut-off capacity of 1000 mAh g(-1) at 500 mA g(-1) , can undergo around 90 cycles without obvious losses of capacity. Even when the discharge depth is increased to 2000 mA h g(-1) , stable cycling is maintained for 45 cycles at a charge potential below 4.0 V. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Pietsch, Patrick; Westhoff, Daniel; Feinauer, Julian; Eller, Jens; Marone, Federica; Stampanoni, Marco; Schmidt, Volker; Wood, Vanessa
2016-09-01
Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes.
Yang, Yang; Chen, Dingqiong; Liu, Bo; Zhao, Jinbao
2015-04-15
A binder-free silicon (Si) based electrode for lithium-ion battery was fabricated in an organic solvent through one-step electrophoretic deposition (EPD). The nanosized Si and acetylene black (AB) particles were bonded tightly together to form a homogeneous co-deposited film with 3D porous structure through the EPD process. The 3D porous structure provides buffer spaces to alleviate the mechanical stress due to silicon volume change during the cycling and improves lithium-ion conductivity by shortening ion diffusion length and better ion conducting pathway. The electrode prepared with 5 s deposition duration shows the best cycling performance among electrodes fabricated by EPD method, and thus, it was selected to be compared with the silicon electrode prepared by the conventional method. Our results demonstrate that the Si nanoparticle electrode prepared through EPD exhibits smaller cycling capacity decay rate and better rate capability than the electrode prepared by the conventional method.
Organic Materials as Electrodes for Li-ion Batteries
2015-09-04
given for each class of materials. Various macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries were attempted...macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries have been attempted to. Lithium -based batteries are at the...organic dye can be used for storing reversibly, both lithium and sodium ions for rechargeable battery applications. In the present study, we have
NASA Astrophysics Data System (ADS)
Paxton, William Arthur
Batteries play a pivotal role in the low-carbon society that is required to thwart the effects of climate change. Alternative low-carbon energy sources, such as wind and solar, are often intermittent and unreliable. Batteries are able capture their energy and deliver it later when it is needed. The implementation of battery systems in grid-level and transportation sectors is essential for efficient use of alternative energy sources. Scientists and engineers need better tools to analyze and measure the performance characteristics of batteries. One of the main hindrances in the progress of battery research is that the constituent electrode materials are inaccessible once an electrochemical cell is constructed. This leaves the researcher with a limited number of available feedback mechanisms to assess the cell's performance, e.g., current, voltage, and impedance. These data are limited in their ability to reveal the more-localized smaller-scale structural mechanisms on which the batteries' performance is so dependent. Energy-dispersive x-ray diffraction (EDXRD) is one of the few techniques that can internally probe a sealed battery. By analyzing the structural behavior of battery electrodes, one is able to gain insight to the physical properties on which the battery's performance is dependent. In this dissertation, EDXRD with ultrahigh energy synchrotron radiation is used to probe the electrodes of manufactured primary and secondary lithium batteries under in-situ and operando conditions. The technique is then applied to solve specific challenges facing lithium ion batteries. Diffraction spectra are collected from within a battery at 40 micrometer resolution. Peak-fitting is used to quantitatively estimate the abundance of lithiated and non-lithiated phases. Through mapping the distribution of phases within, structural changes are linked to the battery's galvanic response. A three-dimensional spatial analysis of lithium iron phosphate batteries suggests that evolution of inhomogeneity is linked to the particle connectivity. Despite a non-linear local response, the average of the measured ensemble behaves linearly. The results suggest that inhomogeneity can be difficult to measure and highlights the power of the EDXRD technique. Additional applications of EDXRD are discussed.
Liatard, S; Benhamouda, K; Fournier, A; Ramos, R; Barchasz, C; Dijon, J
2015-05-04
A light-weight, high specific surface current collector made of vertically-aligned carbon nanotubes grown on an aluminum substrate was fabricated and studied as a positive electrode in a semi-liquid lithium/polysulfide battery. This simple system delivered stable capacities over 1000 mA h gS(-1) and 2 mA h cm(-2) with almost no capacity loss over 50 cycles.
NASA Astrophysics Data System (ADS)
Sauerteig, Daniel; Hanselmann, Nina; Arzberger, Arno; Reinshagen, Holger; Ivanov, Svetlozar; Bund, Andreas
2018-02-01
The intercalation and aging induced volume changes of lithium-ion battery electrodes lead to significant mechanical pressure or volume changes on cell and module level. As the correlation between electrochemical and mechanical performance of lithium ion batteries at nano and macro scale requires a comprehensive and multidisciplinary approach, physical modeling accounting for chemical and mechanical phenomena during operation is very useful for the battery design. Since the introduced fully-coupled physical model requires proper parameterization, this work also focuses on identifying appropriate mathematical representation of compressibility as well as the ionic transport in the porous electrodes and the separator. The ionic transport is characterized by electrochemical impedance spectroscopy (EIS) using symmetric pouch cells comprising LiNi1/3Mn1/3Co1/3O2 (NMC) cathode, graphite anode and polyethylene separator. The EIS measurements are carried out at various mechanical loads. The observed decrease of the ionic conductivity reveals a significant transport limitation at high pressures. The experimentally obtained data are applied as input to the electrochemical-mechanical model of a prismatic 10 Ah cell. Our computational approach accounts intercalation induced electrode expansion, stress generation caused by mechanical boundaries, compression of the electrodes and the separator, outer expansion of the cell and finally the influence of the ionic transport within the electrolyte.
Fan, Chao-Ying; Xiao, Pin; Li, Huan-Huan; Wang, Hai-Feng; Zhang, Lin-Lin; Sun, Hai-Zhu; Wu, Xing-Long; Xie, Hai-Ming; Zhang, Jing-Ping
2015-12-23
In this work, the chemical interaction of cathode and lithium polysulfides (LiPSs), which is a more targeted approach for completely preventing the shuttle of LiPSs in lithium-sulfur (Li-S) batteries, has been established on the electrode level. Through simply posttreating the ordinary sulfur cathode in atmospheric environment just for several minutes, the Au nanoparticles (Au NPs) were well-decorated on/in the surface and pores of the electrode composed of commercial acetylene black (CB) and sulfur powder. The Au NPs can covalently stabilize the sulfur/LiPSs, which is advantageous for restricting the shuttle effect. Moreover, the LiPSs reservoirs of Au NPs with high conductivity can significantly control the deposition of the trapped LiPSs, contributing to the uniform distribution of sulfur species upon charging/discharging. The slight modification of the cathode with <3 wt % Au NPs has favorably prospered the cycle capacity and stability of Li-S batteries. Moreover, this cathode exhibited an excellent anti-self-discharge ability. The slight decoration for the ordinary electrode, which can be easily accessed in the industrial process, provides a facile strategy for improving the performance of commercial carbon-based Li-S batteries toward practical application.
Hoshide, Tatsumasa; Zheng, Yuanchuan; Hou, Junyu; Wang, Zhiqiang; Li, Qingwen; Zhao, Zhigang; Ma, Renzhi; Sasaki, Takayoshi; Geng, Fengxia
2017-06-14
Increasing interest has recently been devoted to developing small, rapid, and portable electronic devices; thus, it is becoming critically important to provide matching light and flexible energy-storage systems to power them. To this end, compared with the inevitable drawbacks of being bulky, heavy, and rigid for traditional planar sandwiched structures, linear fiber-shaped lithium-ion batteries (LIB) have become increasingly important owing to their combined superiorities of miniaturization, adaptability, and weavability, the progress of which being heavily dependent on the development of new fiber-shaped electrodes. Here, we report a novel fiber battery electrode based on the most widely used LIB material, titanium oxide, which is processed into two-dimensional nanosheets and assembled into a macroscopic fiber by a scalable wet-spinning process. The titania sheets are regularly stacked and conformally hybridized in situ with reduced graphene oxide (rGO), thereby serving as efficient current collectors, which endows the novel fiber electrode with excellent integrated mechanical properties combined with superior battery performances in terms of linear densities, rate capabilities, and cyclic behaviors. The present study clearly demonstrates a new material-design paradigm toward novel fiber electrodes by assembling metal oxide nanosheets into an ordered macroscopic structure, which would represent the most-promising solution to advanced flexible energy-storage systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qiaobao; Chen, Huixin; Luo, Langli
Advanced composite electrodes containing multiple active components are often used in lithium-ion batteries for practical applications. The performance of such heterogeneous composite electrodes can in principle be enhanced by tailoring the concurrent reaction dynamics in multiple active components for promoting their collective beneficial effects. However, the potential of this design principle has remained uncharted to date. Here we develop a composite anode of Cu/Si/Ge nanowire arrays, where each nanowire consists of a core of Cu segments and a Si/Ge bilayer shell. This unique electrode architecture exhibited a markedly improved electrochemical performance over the reference Cu/Si systems, demonstrating a stable capacitymore » retention (81% after 3000 cycles at 2C) and doubled specific capacity at a rate of 16C (1C = 2 A g1). By using in situ transmission electron microscopy and electrochemical testing, we unravel a novel reaction mechanism of dynamic co-lithiation/co-delithiation in the active Si and Ge bilayer, which is shown to effectively alleviate the electrochemically induced mechanical degradation and thus greatly enhance the long-cycle stability of the electrode. Our findings offer insights into a rational design of high-performance lithium-ion batteries via exploiting the concurrent reaction dynamics in the multiple active components of composite electrodes.A composite anode of Cu/Si/Ge nanowire arrays grown on a porous Ni foam enables the outstanding capacity, rate capability and cycle stability of Li-ion batteries.« less
Fang, Cong; Luo, Jianmin; Jin, Chengbin; Yuan, Huadong; Sheng, Ouwei; Huang, Hui; Gan, Yongping; Xia, Yang; Liang, Chu; Zhang, Jun; Zhang, Wenkui; Tao, Xinyong
2018-05-23
The metal-CO 2 batteries, especially Na-CO 2 , batteries come into sight owing to their high energy density, ability for CO 2 capture, and the abundance of sodium resource. Besides the sluggish electrochemical reactions at the gas cathodes and the instability of the electrolyte at a high voltage, the final discharge product Na 2 CO 3 is a solid and poor conductor of electricity, which may cause the high overpotential and poor cycle performance for the Na-CO 2 batteries. The promotion of decomposition of Na 2 CO 3 should be an efficient strategy to enhance the electrochemical performance. Here, we design a facile Na 2 CO 3 activation experiment to screen the efficient cathode catalyst for the Na-CO 2 batteries. It is found that the Co 2 MnO x nanowire-decorated carbon fibers (CMO@CF) can promote the Na 2 CO 3 decomposition at the lowest voltage among all these metal oxide-decorated carbon fiber structures. After assembling the Na-CO 2 batteries, the electrodes based on CMO@CF show lower overpotential and better cycling performance compared with the electrodes based on pristine carbon fibers and other metal oxide-modified carbon fibers. We believe this catalyst screening method and the freestanding structure of the CMO@CF electrode may provide an important reference for the development of advanced Na-CO 2 batteries.
Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry.
Kasnatscheew, Johannes; Wagner, Ralf; Winter, Martin; Cekic-Laskovic, Isidora
2018-04-18
Energy storage is considered a key technology for successful realization of renewable energies and electrification of the powertrain. This review discusses the lithium ion battery as the leading electrochemical storage technology, focusing on its main components, namely electrode(s) as active and electrolyte as inactive materials. State-of-the-art (SOTA) cathode and anode materials are reviewed, emphasizing viable approaches towards advancement of the overall performance and reliability of lithium ion batteries; however, existing challenges are not neglected. Liquid aprotic electrolytes for lithium ion batteries comprise a lithium ion conducting salt, a mixture of solvents and various additives. Due to its complexity and its role in a given cell chemistry, electrolyte, besides the cathode materials, is identified as most susceptible, as well as the most promising, component for further improvement of lithium ion batteries. The working principle of the most important commercial electrolyte additives is also discussed. With regard to new applications and new cell chemistries, e.g., operation at high temperature and high voltage, further improvements of both active and inactive materials are inevitable. In this regard, theoretical support by means of modeling, calculation and simulation approaches can be very helpful to ex ante pre-select and identify the aforementioned components suitable for a given cell chemistry as well as to understand degradation phenomena at the electrolyte/electrode interface. This overview highlights the advantages and limitations of SOTA lithium battery systems, aiming to encourage researchers to carry forward and strengthen the research towards advanced lithium ion batteries, tailored for specific applications.