Sample records for bay watersheds usa

  1. Supply and dispersal of flood sediment from a steep, tropical watershed: Hanalei Bay, Kaua'i, Hawai'i, USA

    USGS Publications Warehouse

    Draut, A.E.; Bothner, Michael H.; Field, M.E.; Reynolds, R.L.; Cochran, S.A.; Logan, J.B.; Storlazzi, C.D.; Berg, C.J.

    2009-01-01

    In contrast to many small, mountainous watersheds in temperate coastal regions, where fluvial discharge and wave energy commonly coincide, deposition and reworking of tropical flood sediment can be seasonally decoupled, and this has important implications for coral-reef ecosystems. An understanding of the interaction between tropical flood sedimentation and wave climate is essential to identifying and mitigating effects of watershed changes on coral reefs as urbanization and climate change proceed. Sedimentary facies and isotopic properties of sediment in Hanalei Bay, on the island of Kaua'i, Hawai'i, USA, were used to assess deposition and reworking of flood deposits from the Hanalei River in a case study demonstrating the potential ecosystem effects of runoff from a steep, tropical watershed. In Hanalei Bay, the youngest and thickest terrigenous sediment was consistently present near the river mouth and in a bathymetric depression that acted as at least a temporary sediment sink. During this 2 yr study, the largest flood events occurred in late winter and spring 2006; substantial terrestrial sediment delivered by those floods still remained in the bay as of June 2006 because oceanic conditions were not sufficiently energetic to transport all of the sediment offshore. Additional sediment was deposited in the bay by a summer 2006 flood that coincided with seasonal low wave energy. In most years, flood sediment accumulating in the bay and on its fringing reefs would be remobilized and advected out of the bay during winter, when the wave climate is energetic. Turbidity and sedimentation on corals resulting from late spring and summer floods during low wave energy could have a greater impact on coral-reef ecosystems than floods in other seasons, an effect that could be exacerbated if the incidence and sediment load of tropical summer floods increase due to urbanization and climate change. ?? 2008 Geological Society of America.

  2. 75 FR 11837 - Chesapeake Bay Watershed Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Chesapeake Bay Watershed Initiative AGENCY...: Notice of availability of program funds for the Chesapeake Bay Watershed Initiative. SUMMARY: The... through the Chesapeake Bay Watershed Initiative for agricultural producers in the Chesapeake Bay watershed...

  3. Sediment calibration strategies of Phase 5 Chesapeake Bay watershed model

    USGS Publications Warehouse

    Wu, J.; Shenk, G.W.; Raffensperger, Jeff P.; Moyer, D.; Linker, L.C.; ,

    2005-01-01

    Sediment is a primary constituent of concern for Chesapeake Bay due to its effect on water clarity. Accurate representation of sediment processes and behavior in Chesapeake Bay watershed model is critical for developing sound load reduction strategies. Sediment calibration remains one of the most difficult components of watershed-scale assessment. This is especially true for Chesapeake Bay watershed model given the size of the watershed being modeled and complexity involved in land and stream simulation processes. To obtain the best calibration, the Chesapeake Bay program has developed four different strategies for sediment calibration of Phase 5 watershed model, including 1) comparing observed and simulated sediment rating curves for different parts of the hydrograph; 2) analyzing change of bed depth over time; 3) relating deposition/scour to total annual sediment loads; and 4) calculating "goodness-of-fit' statistics. These strategies allow a more accurate sediment calibration, and also provide some insightful information on sediment processes and behavior in Chesapeake Bay watershed.

  4. Retrospective Review of Watershed Characteristics and a Framework for Future Research in the Sarasota Bay Watershed, Florida

    USGS Publications Warehouse

    Kish, George R.; Harrison, Arnell S.; Alderson, Mark

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Sarasota Bay Estuary Program conducted a retrospective review of characteristics of the Sarasota Bay watershed in west-central Florida. This report describes watershed characteristics, surface- and ground-water processes, and the environmental setting of the Sarasota Bay watershed. Population growth during the last 50 years is transforming the Sarasota Bay watershed from rural and agriculture to urban and suburban. The transition has resulted in land-use changes that influence surface- and ground-water processes in the watershed. Increased impervious cover decreases recharge to ground water and increases overland runoff and the pollutants carried in the runoff. Soil compaction resulting from agriculture, construction, and recreation activities also decreases recharge to ground water. Conventional approaches to stormwater runoff have involved conveyances and large storage areas. Low-impact development approaches, designed to provide recharge near the precipitation point-of-contact, are being used increasingly in the watershed. Simple pollutant loading models applied to the Sarasota Bay watershed have focused on large-scale processes and pollutant loads determined from empirical values and mean event concentrations. Complex watershed models and more intensive data-collection programs can provide the level of information needed to quantify (1) the effects of lot-scale land practices on runoff, storage, and ground-water recharge, (2) dry and wet season flux of nutrients through atmospheric deposition, (3) changes in partitioning of water and contaminants as urbanization alters predevelopment rainfall-runoff relations, and (4) linkages between watershed models and lot-scale models to evaluate the effect of small-scale changes over the entire Sarasota Bay watershed. As urbanization in the Sarasota Bay watershed continues, focused research on water-resources issues can provide information needed by water

  5. DEVELOP Chesapeake Bay Watershed Hydrology - UAV Sensor Web

    NASA Astrophysics Data System (ADS)

    Holley, S. D.; Baruah, A.

    2008-12-01

    The Chesapeake Bay is the largest estuary in the United States, with a watershed extending through six states and the nation's capital. Urbanization and agriculture practices have led to an excess runoff of nutrients and sediment into the bay. Nutrients and sediment loading stimulate the growth of algal blooms associated with various problems including localized dissolved oxygen deficiencies, toxic algal blooms and death of marine life. The Chesapeake Bay Program, among other stakeholder organizations, contributes greatly to the restoration efforts of the Chesapeake Bay. These stakeholders contribute in many ways such as monitoring the water quality, leading clean-up projects, and actively restoring native habitats. The first stage of the DEVELOP Chesapeake Bay Coastal Management project, relating to water quality, contributed to the restoration efforts by introducing NASA satellite-based water quality data products to the stakeholders as a complement to their current monitoring methods. The second stage, to be initiated in the fall 2008 internship term, will focus on the impacts of land cover variability within the Chesapeake Bay Watershed. Multiple student led discussions with members of the Land Cover team at the Chesapeake Bay Program Office in the DEVELOP GSFC 2008 summer term uncovered the need for remote sensing data for hydrological mapping in the watershed. The Chesapeake Bay Program expressed in repeated discussions on Land Cover mapping that significant portions of upper river areas, streams, and the land directly interfacing those waters are not accurately depicted in the watershed model. Without such hydrological mapping correlated with land cover data the model will not be useful in depicting source areas of nutrient loading which has an ecological and economic impact in and around the Chesapeake Bay. The fall 2008 DEVELOP team will examine the use of UAV flown sensors in connection with in-situ and Earth Observation satellite data. To maximize the

  6. Water quality functions of riparian forest buffers in Chesapeake bay watersheds

    USGS Publications Warehouse

    Lowrance, R.; Altier, L.S.; Newbold, J.D.; Schnabel, R.R.; Groffman, P.M.; Denver, J.M.; Correll, D.L.; Gilliam, J.W.; Robinson, J.L.; Brinsfield, R.B.; Staver, K.W.; Lucas, W.; Todd, A.H.

    1997-01-01

    Maryland, Virginia, and Pennsylvania, USA, have agreed to reduce nutrient loadings to Chesapeake Bay by 40% by the year 2000. This requires control of nonpoint sources of nutrients much of which comes from agriculture. Riparian forest buffer systems (RFBS) provide effective control of nonpoint source (NPS) pollution in some types of agricultural watersheds. Control of NPS pollution is dependent on the type of pollutant and the hydrologic connection between pollution sources, the RFBS, and the stream. Water quality improvements are most likely in areas of where most of the excess precipitation moves across, in, or near the root zone of the RFBS. In areas such as the Inner Coastal Plain and Piedmont watersheds with thin soils RFBS should retain 50%-90% of the total loading of nitrate in shallow groundwater sediment in surface runoff and total N in born surface runoff and groundwater. Retention of phosphorus is generally much less. In regions with deeper soils and/or greater regional groundwater recharge (such as parts of the Piedmont and the Valley and Ridge), RFBS water quality improvements are probably much less. The expected levels of pollutant control by RFBS are identified for each of nine physiographic provinces of the Chesapeake Bay Watershed. Issues related to of establishment sustainability, and management are also discussed.

  7. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed.

    PubMed

    Grimm, J W; Lynch, J A

    2005-06-01

    Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate.

  8. Chesapeake bay watershed land cover data series

    USGS Publications Warehouse

    Irani, Frederick M.; Claggett, Peter

    2010-01-01

    To better understand how the land is changing and to relate those changes to water quality trends, the USGS EGSC funded the production of a Chesapeake Bay Watershed Land Cover Data Series (CBLCD) representing four dates: 1984, 1992, 2001, and 2006. EGSC will publish land change forecasts based on observed trends in the CBLCD over the coming year. They are in the process of interpreting and publishing statistics on the extent, type and patterns of land cover change for 1984-2006 in the Bay watershed, major tributaries and counties.

  9. Chesapeake Bay Watershed Implementation Plans (WIPs)

    EPA Pesticide Factsheets

    This page provides an overview of Watershed Implementation Plans (WIP) and how they play an important role in restoring the Chesapeake Bay. The page also provides links to each jurisdiction's Phase I, II, and III WIP.

  10. A conceptual hydrologic model for a forested Carolina bay depressional wetland on the Coastal Plain of South Carolina, USA

    Treesearch

    Jennifer E. Pyzoha; Timothy J. Callahan; Ge Sun; Carl C. Trettin; Masato Miwa

    2008-01-01

    This paper describes how climate influences the hydrology of an ephemeral depressional wetland. Surface water and groundwater elevation data were collected for 7 years in a Coastal Plain watershed in South Carolina USA containing depressional wetlands, known as Carolina bays. Rainfall and temperature data were compared with water-table well and piezometer data in and...

  11. A summary report of sediment processes in Chesapeake Bay and watershed

    USGS Publications Warehouse

    Langland, Michael J.; Cronin, Thomas

    2003-01-01

    The Chesapeake Bay, the Nation's largest estuary, has been degraded because of diminished water quality, loss of habitat, and over-harvesting of living resources. Consequently, the bay was listed as an impaired water body due to excess nutrients and sediment. The Chesapeake Bay Program (CBP), a multi-jurisdictional partnership, completed an agreement called "Chesapeake 2000" that revises and establishes new restoration goals through 2010 in the bay and its watershed. The goal of this commitment is the removal of the bay from the list of impaired waterbodies by the year 2010. The CBP is committed to developing sediment and nutrient allocations for major basins within the bay watershed and to the process of examining new and innovative management plans in the estuary itself and along the coastal zones of the bay. However, additional information is required on the sources, transport, and deposition of sediment that affect water clarity. Because the information and data on sediment processes in the bay were not readily accessible to the CBP or to state, and local managers, a Sediment Workgroup (SWGP) was created in 2001.The primary objective of this report, therefore, is to provide a review of the literature on the sources, transport, and delivery of sediment in Chesapeake Bay and its watershed with discussion of potential implications for various management alternatives. The authors of the report have extracted, discussed, and summarized the important aspects of sediment and sedimentation that are most relevant to the CBP and other sediment related-issues with which resources managers are involved. This report summarizes the most relevant studies concerning sediment sources, transport and deposition in the watershed and estuary, sediments and relation to water clarity, and provides an extensive list of references for those wanting more information.

  12. Goddard DEVELOP Students: Using NASA Remote Sensing Technology to Study the Chesapeake Bay Watershed

    NASA Technical Reports Server (NTRS)

    Moore, Rachel

    2011-01-01

    The DEVELOP National Program is an Earth Science research internship, operating under NASA s Applied Sciences Program. Each spring, summer, and fall, DEVELOP interns form teams to investigate Earth Science related issues. Since the Fall of 2003, Goddard Space Flight Center (GSFC) has been home to one of 10 national DEVELOP teams. In past terms, students completed a variety of projects related to the Applied Sciences Applications of National Priority, such as Public Health, Natural Disasters, Water Resources, and Ecological Forecasting. These projects have focused on areas all over the world, including the United States, Africa, and Asia. Recently, Goddard DEVELOP students have turned their attention to a local environment, the Chesapeake Bay Watershed. The Chesapeake Bay Watershed is a complex and diverse ecosystem, spanning approximately 64,000 square miles. The watershed encompasses parts of six states: Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia, as well as the District of Columbia. The Bay itself is the biggest estuary in the United States, with over 100,000 tributaries feeding into it. The ratio of fresh water to salt water varies throughout the Bay, allowing for a variety of habitats. The Bay s wetlands, marshes, forests, reefs, and rivers support more than 3,600 plant and animal species, including birds, mammals, reptiles, amphibians, fish, and crabs. The Bay is also commercially significant. It is ranked third in the nation in fishery catch, and supplies approximately 500 million pounds of seafood annually. In addition to its abundant flora and fauna, the Chesapeake Bay watershed is home to approximately 16.6 million people, who live and work throughout the watershed, and who use its diverse resources for recreational purposes. Over the past several decades, the population throughout the watershed has increased rapidly, resulting in land use changes, and ultimately decreasing the health of the Chesapeake Bay Watershed. Over the

  13. Modeling Historical and Projected Future Atmospheric Nitrogen Loading to the Chesapeake Bay Watershed

    EPA Science Inventory

    Land use and climate change are expected to alter key processes in the Chesapeake Bay watershed and can potentially exacerbate the impact of excess nitrogen. Atmospheric sources are one of the largest loadings of nitrogen to the Chesapeake Bay watershed. In this study, we explore...

  14. San Juan Bay Estuary watershed urban forest inventory

    Treesearch

    Thomas J. Brandeis; Francisco J. Escobedo; Christina L. Staudhammer; David J. Nowak; Wayne C. Zipperer

    2014-01-01

    We present information on the urban forests and land uses within the watershed of Puerto Rico’s 21 658-ha San Juan Bay Estuary based on urban forest inventories undertaken in 2001 and 2011. We found 2548 ha of mangrove and subtropical moist secondary forests covering 11.8 percent of the total watershed area in 2011. Red, black, and white mangroves (Rhizophora...

  15. Comparison of sediment supply to San Francisco Bay from watersheds draining the Bay Area and the Central Valley of California

    USGS Publications Warehouse

    McKee, L.J.; Lewicki, M.; Schoellhamer, D.H.; Ganju, N.K.

    2013-01-01

    Quantifying suspended sediment loads is important for managing the world's estuaries in the context of navigation, pollutant transport, wetland restoration, and coastal erosion. To address these needs, a comprehensive analysis was completed on sediment supply to San Francisco Bay from fluvial sources. Suspended sediment, optical backscatter, velocity data near the head of the estuary, and discharge data obtained from the output of a water balance model were used to generate continuous suspended sediment concentration records and compute loads to the Bay from the large Central Valley watershed. Sediment loads from small tributary watersheds around the Bay were determined using 235 station-years of suspended sediment data from 38 watershed locations, regression analysis, and simple modeling. Over 16 years, net annual suspended sediment load to the head of the estuary from its 154,000 km2 Central Valley watershed varied from 0.13 to 2.58 (mean = 0.89) million metric t of suspended sediment, or an average yield of 11 metric t/km2/yr. Small tributaries, totaling 8145 km2, in the nine-county Bay Area discharged between 0.081 and 4.27 (mean = 1.39) million metric t with a mean yield of 212 metric t/km2/yr. The results indicate that the hundreds of urbanized and tectonically active tributaries adjacent to the Bay, which together account for just 5% of the total watershed area draining to the Bay and provide just 7% of the annual average fluvial flow, supply 61% of the suspended sediment. The small tributary loads are more variable (53-fold between years compared to 21-fold for the inland Central Valley rivers) and dominated fluvial sediment supply to the Bay during 10 out of 16 yr. If San Francisco Bay is typical of other estuaries in active tectonic or climatically variable coastal regimes, managers responsible for water quality, dredging and reusing sediment accumulating in shipping channels, or restoring wetlands in the world's estuaries may need to more carefully

  16. 75 FR 78667 - Cooperative Conservation Partnership Initiative-Chesapeake Bay Watershed

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-16

    ... Corporation Cooperative Conservation Partnership Initiative--Chesapeake Bay Watershed AGENCY: Commodity Credit... Conservation Service (NRCS) through the Cooperative Conservation Partnership Initiative-- Chesapeake Bay... Act of 2008 (2008 Act). CCPI-CBW is a voluntary conservation initiative that enables the use of...

  17. Effectiveness of conservation reserve program buffers in the Chesapeake Bay Watershed: 2017 annual report

    USDA-ARS?s Scientific Manuscript database

    Riparian buffers play an important role in watershed strategies to clean up the Chesapeake Bay, with over 20,000 riparian buffers implemented in the Chesapeake Bay watershed under USDA’S Conservation Reserve Enhancement Program (CREP). This annual report documents an on-going, multi-agency effort to...

  18. Virgin Islands: Coral Bay Watershed Management (A Former EPA CARE Project)

    EPA Pesticide Factsheets

    The Coral Bay Watershed Management is a recipient of the Level II CARE cooperative agreement to continue and expand its collective efforts to stop erosion, sediment, and storm-water pollution of Coral Bay, improve solid waste management,

  19. Eutrophication of Buttermilk Bay, a cape cod coastal embayment: Concentrations of nutrients and watershed nutrient budgets

    NASA Astrophysics Data System (ADS)

    Valiela, Ivan; Costa, Joseph E.

    1988-07-01

    Nutrient concentrations in Buttermilk Bay, a coastal embayment on the northern end of Buzzards Bay, MA, are higher in the nearshore where salinities are lower. This pattern suggests that freshwater sources may contribute significantly to nutrient inputs into Buttermilk Bay. To evaluate the relative importance of the various sources we estimated inputs of nutrients by each major source into the watershed and into the bay itself. Septic systems contributed about 40% of the nitrogen and phosphorus entering the watershed, with precipitation and fertilizer use adding the remainder. Groundwater transported over 85% of the nitrogen and 75% of the phosphorus entering the bay. Most nutrients entering the watershed failed to reach the bay; uptake by forests, soils, denitrification, and adsorption intercepted two-thirds of the nitrogen and nine-tenths of the phosphorus that entered the watershed. The nutrients that did reach the bay most likely originated from subsoil injections into groundwater by septic tanks, plus some leaching of fertilizers. Buttermilk Bay water has relatively low nutrient concentrations, probably because of uptake of nutrients by macrophytes and because of relatively rapid tidal flushing. Annual budgets of nutrients entering the watershed showed a low nitrogen-to-phosphorus ratio of 6, but passage of nutrients through the watershed raised N/P to 23, probably because of adsorption of PO4 during transit. The N/P ratio of water that leaves the watershed and presumably enters the bay is probably high enough to maintain active growth of nitrogenlimited coastal producers. There is a seasonal shift in N/P in the water column of Buttermilk Bay. N/P exceeded the 16∶1 Redfield ratio during midwinter; the remainder of the year N/P fell below 16∶1. This suggests that annual budgets do not provide sufficiently detailed data with which to interpret nutrient-limitation of producers. Further, some idea of water turnover is also needed to evaluate impact of loading

  20. A Combined Modeling Approach to Evaluate Water Quality Benefits of Riparian Buffers in the Jobos Bay Watershed

    USDA-ARS?s Scientific Manuscript database

    The Jobos Bay Watershed, located in south-central Puerto Rico, is a tropical Conservation Effects Assessment Project (CEAP) Special Emphasis Watershed. The purpose of CEAP is to quantify environmental benefits of conservation practices and includes field and watershed modeling. In Jobos Bay, the goa...

  1. Landscape ecological assessment of the Chesapeake Bay watershed.

    PubMed

    Weber, Ted

    2004-06-01

    The Chesapeake Bay Watershed, located in the Mid-Atlantic Region of the United States, is experiencing rapid habitat loss and fragmentation from sprawling low-density development. The bay itself is heavily stressed by excess sediment and nutrient runoff. Three states, the District of Columbia, and the federal government signed an agreement in 2000 to address these problems. The commitments included an assessment of the watershed's resource lands, and targeting the most valued lands for protection. As part of this task, the Resource Lands Assessment identified an ecological network comprised of large contiguous blocks (hubs) of forests, wetlands, and streams, interconnected by corridors to allow animal and plant propagule dispersal and migration. Hubs were prioritized by ecoregion, by analyzing a variety of ecological parameters, including: rare species presence, rarity and population viability; vegetation and vertebrate richness; habitat area, condition, and diversity; intactness and remoteness; connectivity potential; and the nature of the surrounding landscape. I found that much of the watershed was still fairly intact, although this varied dramatically by ecoregion. Current protection also varied, and an assessment of vulnerability will help focus protection efforts among the most valuable hubs and corridors.

  2. Artificial watershed acidification on the Fernow Experimental Forest, USA

    Treesearch

    M.B. Adams; P.J. Edwards; F. Wood; J.N. Kochenderfer

    1993-01-01

    A whole-watershed manipulation project was begun on the Fernow Experimental Forest in West Virginia, USA, in 1987, with the objective of increasing understanding of the effects of acidic deposition on forest ecosystems. Two treatment watersheds (WS9 and WS3) and one control watershed (WS4) were included. Treatments were twice-ambient N and S deposition, applied via NH...

  3. U.S. Geological Survey Chesapeake Bay Studies: Scientific Solutions for a Healthy Bay and Watershed

    USGS Publications Warehouse

    Phillips, Scott

    2006-01-01

    Since the mid-1980s, the USGS has been an active partner in the Chesapeake Bay Program (CBP), a multi-agency partnership led by the U.S. Environmental Protection Agency, working to achieve the restoration goals set forth in the Chesapeake 2000 agreement. This agreement established over 100 restoration commitments to be addressed by 2010. In 2005, which was the mid-point of the agreement, there was growing concern at all levels of government and by the public that ecological conditions in the Bay and its watershed had not significantly improved. The slow rate of improvement, coupled with the projected impact of human-population increase in the Bay watershed (fig. 1), implied that many desired ecological conditions will not be achieved by 2010. To address these challenges, the USGS wrote a new science plan for 2006-2011, and is synthesizing key findings to highlight the accomplishments from science activities for 2000-2005.

  4. Managing manure for sustainable livestock production in the Chesapeake Bay Watershed

    USDA-ARS?s Scientific Manuscript database

    Manure presents one of the greatest challenges to livestock operations in the Chesapeake Bay Watershed. The Chesapeake Bay is threatened by excessive nutrient loadings and, according to the U.S. Environmental Protection Agency, manure is the source of 18% of the nitrogen and 27% of the phosphorus en...

  5. Development of Land Segmentation, Stream-Reach Network, and Watersheds in Support of Hydrological Simulation Program-Fortran (HSPF) Modeling, Chesapeake Bay Watershed, and Adjacent Parts of Maryland, Delaware, and Virginia

    USGS Publications Warehouse

    Martucci, Sarah K.; Krstolic, Jennifer L.; Raffensperger, Jeff P.; Hopkins, Katherine J.

    2006-01-01

    The U.S. Geological Survey, U.S. Environmental Protection Agency Chesapeake Bay Program Office, Interstate Commission on the Potomac River Basin, Maryland Department of the Environment, Virginia Department of Conservation and Recreation, Virginia Department of Environmental Quality, and the University of Maryland Center for Environmental Science are collaborating on the Chesapeake Bay Regional Watershed Model, using Hydrological Simulation Program - FORTRAN to simulate streamflow and concentrations and loads of nutrients and sediment to Chesapeake Bay. The model will be used to provide information for resource managers. In order to establish a framework for model simulation, digital spatial datasets were created defining the discretization of the model region (including the Chesapeake Bay watershed, as well as the adjacent parts of Maryland, Delaware, and Virginia outside the watershed) into land segments, a stream-reach network, and associated watersheds. Land segmentation was based on county boundaries represented by a 1:100,000-scale digital dataset. Fifty of the 254 counties and incorporated cities in the model region were divided on the basis of physiography and topography, producing a total of 309 land segments. The stream-reach network for the Chesapeake Bay watershed part of the model region was based on the U.S. Geological Survey Chesapeake Bay SPARROW (SPAtially Referenced Regressions On Watershed attributes) model stream-reach network. Because that network was created only for the Chesapeake Bay watershed, the rest of the model region uses a 1:500,000-scale stream-reach network. Streams with mean annual streamflow of less than 100 cubic feet per second were excluded based on attributes from the dataset. Additional changes were made to enhance the data and to allow for inclusion of stream reaches with monitoring data that were not part of the original network. Thirty-meter-resolution Digital Elevation Model data were used to delineate watersheds for each

  6. Factors affecting nutrient trends in major rivers of the Chesapeake Bay Watershed

    USGS Publications Warehouse

    Sprague, Lori A.; Langland, M.J.; Yochum, S.E.; Edwards, R.E.; Blomquist, J.D.; Phillips, S.W.; Shenk, G.W.; Preston, S.D.

    2000-01-01

    Trends in nutrient loads and flow-adjusted concentrations in the major rivers entering Chesapeake Bay were computed on the basis of water-quality data collected between 1985 and 1998 at 29 monitoring stations in the Susquehanna, Potomac, James, Rappahannock, York, Patuxent, and Choptank River Basins. Two computer models?the Chesapeake Bay Watershed Model (WSM) and the U.S. Geological Survey?s 'Spatially Referenced Regressions on Watershed attributes' (SPARROW) Model?were used to help explain the major factors affecting the trends. Results from WSM simulations provided information on temporal changes in contributions from major nutrient sources, and results from SPARROW model simulations provided spatial detail on the distribution of nutrient yields in these basins. Additional data on nutrient sources, basin characteristics, implementation of management practices, and ground-water inputs to surface water were analyzed to help explain the trends. The major factors affecting the trends were changes in nutrient sources and natural variations in streamflow. The dominant source of nitrogen and phosphorus from 1985 to 1998 in six of the seven tributary basins to Chesapeake Bay was determined to be agriculture. Because of the predominance of agricultural inputs, changes in agricultural nutrient sources such as manure and fertilizer, combined with decreases in agricultural acreage and implementation of best management practices (BMPs), had the greatest impact on the trends in flow-adjusted nutrient concentrations. Urban acreage and population, however, were noted to be increasing throughout the Chesapeake Bay Watershed, and as a result, delivered loads of nutrients from urban areas increased during the study period. Overall, agricultural nutrient management, in combination with load decreases from point sources due to facility upgrades and the phosphate detergent ban, led to downward trends in flow-adjusted nutrient concentrations atmany of the monitoring stations in the

  7. Status and Trends of Narragansett Bay and its Watershed: A Geographical Approach

    EPA Science Inventory

    The Narragansett Bay Estuary Program developed 24 environmental indicators for its 2017 State of the Bay and its Watershed report with the collaboration of over 50 bi-state and regional partners. A geographical approach was undertaken at different scales using an array of geospat...

  8. Cytochrome P450 and organochlorine contaminants in black-crowned night-herons from the Chesapeake Bay region, USA

    USGS Publications Warehouse

    Rattner, Barnett A.; Melancon, Mark J.; Rice, Clifford P.; Riley, Walter; Eisemann, John D.; Hines, Randy K.

    1997-01-01

    Black-crowned night-heron (Nycticorax nycticorax) offspring were collected from a relatively uncontaminated coastal reference site (next to Chincoteague National Wildlife Refuge, VA, USA) and two sites in the Chesapeake Bay watershed (Baltimore Harbor, MD and Rock Creek Park, Washington, DC, USA). Hepatic microsomal activities of benzyloxyresorufin-O-dealkylase and ethoxyresorufin-O-dealkylase were significantly elevated (up to sixfold and ninefold induction, respectively) in pipping embryos from the Baltimore Harbor colony compared to the reference site, whereas values in embryos from the Rock Creek Park colony were intermediate. Concentrations of organochlorine pesticides and metabolites in pipping embryos from both sites in the Chesapeake watershed were greater than at the reference site but below the known threshold for reproductive impairment. However, concentrations of 10 arylhydrocarbon receptor-active polychlorinated biphenyl (PCB) congeners and estimated toxic equivalents were up to 37-fold greater in embryos collected from these two sites in the Chesapeake Bay region, with values for toxic congeners 77 and 126 exceeding those observed in pipping heron embryos from the Great Lakes. Monooxygenase activity of pipping embryos was associated with concentrations of several organochlorine pesticides, total PCBs, arylhydrocarbon receptor-active PCB congeners, and toxic equivalents (r = 0.30–0.59), providing further evidence of the value of cytochrome P450 as a biomarker of organic contaminant exposure. Organochlorine contaminant levels were greater in 10-d-old nestlings from Baltimore Harbor than the reference site but had no apparent effect on monooxygenase activity or growth. These findings demonstrate induction of cytochrome P450 in pipping black-crowned night-heron embryos in the Chesapeake Bay region, probably by exposure to PCB congeners of local origin, and the accumulation of organochlorine pesticides and metabolites in nestling herons from Baltimore

  9. Temporal and spatial patterns in tumour prevalence in brown bullhead Ameiurus nebulosus (Lesueur) in the tidal Potomac River watershed (USA).

    PubMed

    Pinkney, A E; Harshbarger, J C; Rutter, M A

    2014-10-01

    For two decades, fish tumour surveys have been used to monitor habitat quality in the Chesapeake Bay (USA) watershed. Tributaries with sediments contaminated with polynuclear aromatic hydrocarbons (PAHs), known to cause liver neoplasia, were frequently targeted. Here, we compare surveys in brown bullhead Ameiurus nebulosus conducted in 2009-2011 in the tidal Potomac River watershed (including the Anacostia River) with previous surveys. Using logistic regression, we identified length and sex as covariates for liver and skin tumours. We reported a statistically significant decrease in liver tumour probabilities for standardized 280 mm Anacostia bullheads between the 1996 and 2001 samplings (merged collections: female-77.5%, male-43.0%) and 2009-2011 (female-42.2%, male-13.6%). However, liver tumour prevalence in bullheads from the Anacostia, Potomac River (Washington, DC) and Piscataway Creek (17 km downriver) was significantly higher than that for Chesapeake Bay watershed reference locations. The causes of skin tumours in bullheads are uncertain, requiring further research. The similar liver tumour prevalence in these three locations suggests that the problem is regional rather than restricted to the Anacostia. To monitor habitat quality and the success of pollution control actions, we recommend conducting tumour surveys on a 5-year cycle coordinated with sediment chemistry analyses. © 2014 John Wiley & Sons Ltd.

  10. Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds

    USGS Publications Warehouse

    Sankey, Joel B.; Kreitler, Jason R.; Hawbaker, Todd; McVay, Jason L.; Miller, Mary Ellen; Mueller, Erich R.; Vaillant, Nicole M.; Lowe, Scott E.; Sankey, Temuulen T.

    2017-01-01

    The area burned annually by wildfires is expected to increase worldwide due to climate change. Burned areas increase soil erosion rates within watersheds, which can increase sedimentation in downstream rivers and reservoirs. However, which watersheds will be impacted by future wildfires is largely unknown. Using an ensemble of climate, fire, and erosion models, we show that post-fire sedimentation is projected to increase for nearly nine-tenths of watersheds by > 10% and for more than one-third of watersheds by > 100% by the 2041 to 2050 decade in the western USA. The projected increases are statistically significant for more than eight-tenths of the watersheds. In the western USA, many human communities rely on water from rivers and reservoirs that originates in watersheds where sedimentation is projected to increase. Increased sedimentation could negatively impact water supply and quality for some communities, in addition to affecting stream channel stability and aquatic ecosystems.

  11. Collection and analysis of remotely sensed data from the Rhode River Estuary Watershed. [ecological parameters of Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.

    1972-01-01

    NASA chose the watershed of Rhode River, a small sub-estuary of the Bay, as a representative test area for intensive studies of remote sensing, the results of which could be extrapolated to other estuarine watersheds around the Bay. A broad program of ecological research was already underway within the watershed, conducted by the Smithsonian Institution's Chesapeake Bay Center for Environmental Studies (CBCES) and cooperating universities. This research program offered a unique opportunity to explore potential applications for remote sensing techniques. This led to a joint NASA-CBCES project with two basic objectives: to evaluate remote sensing data for the interpretation of ecological parameters, and to provide essential data for ongoing research at the CBCES. A third objective, dependent upon realization of the first two, was to extrapolate photointerpretive expertise gained at the Rhode River watershed to other portions of the Chesapeake Bay.

  12. Indicators of nitrate export from forested watersheds of the Chesapeake Bay region

    Treesearch

    Karl W. J. Williard

    1997-01-01

    Soil net nitrogen mineralization and nitrification rates were studied on nine relatively undisturbed, forested watersheds in an effort to explain the large variations in nitrate export in streamflow within the Chesapeake Bay region. The primary hypothesis tested was that nitrate export from the watersheds was positively associated with rates of net soil nitrogen...

  13. Using soil surveys to target riparian buffers in the Chesapeake Bay watershed

    Treesearch

    Michael G. Dosskey

    2008-01-01

    The efficacy of vegetative buffers for improving water quality could be enhanced by distinguishing differences in buffer capability across watersheds and accounting for them in buffer planning. A soil survey-based method was applied to riparian areas in the Chesapeake Bay watershed. The method is based on soil attributes that are important in determining buffer...

  14. Ecological risk assessment of copper and cadmium in surface waters of Chesapeake Bay watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, L.W. Jr.; Scott, M.C.; Killen, W.D.

    1998-06-01

    This ecological risk assessment was designed to characterize risk of copper and cadmium exposure in the Chesapeake Bay watershed by comparing the probability distributions of environmental exposure concentrations with the probability distributions of species response data determined from laboratory studies. The overlap of these distributions was a measure of risk to aquatic life. Dissolved copper and cadmium exposure data were available from six primary data sources covering 102 stations in 18 basins in the Chesapeake Bay watershed from 1985 through 1996. Highest environmental concentrations of copper (based on 90th percentiles) were reported in the Chesapeake and Delaware (C and D)more » Canal, Choptank River, Middle River, and Potomac River; the lowest concentrations of copper were reported in the lower and middle mainstem Chesapeake Bay and Nanticoke River. Based on the calculation of 90th percentiles, cadmium concentrations were highest in the C and D Canal, Potomac River, Upper Chesapeake Bay, and West Chesapeake watershed. Lowest environmental concentrations of cadmium were reported in the lower and middle mainstem Chesapeake Bay and Susquehanna River. The ecological effects data used for this risk assessment were derived primarily from acute copper and cadmium laboratory toxicity tests conducted in both fresh water and salt water; chronic data were much more limited. The 10th percentile (concentration protecting 90% of the species) for all species derived from the freshwater acute copper toxicity database was 8.3 {micro}g/L. For acute saltwater copper data, the 10th percentile for all species was 6.3 {micro}g/L copper. The acute 10th percentile for all saltwater species was 31.7 {micro}g/L cadmium. Highest potential ecological risk from copper exposures was reported in the C and D Canal area of the northern Chesapeake Bay watershed.« less

  15. Revised method and outcomes for estimating soil phosphorus losses from agricultural land in the Chesapeake Bay watershed model

    USDA-ARS?s Scientific Manuscript database

    Current restoration efforts for the Chesapeake Bay watershed mandate a timeline for reducing the load of nutrients and sediment to receiving waters. The Chesapeake Bay Watershed Model (WSM) has been used for two decades to simulate hydrology and nutrient and sediment transport; however, spatial limi...

  16. Projections of Atmospheric Nutrient Deposition to the Chesapeake Bay Watershed

    EPA Science Inventory

    Atmospheric deposition remains one of the largest loadings of nutrients to the Chesapeake Bay watershed. The interplay between future land use, climate, and emission changes, however, will cause shifts in the future nutrient deposition regime (e.g., oxidized vs. reduced nitrogen...

  17. The contribution of sediment from forested areas of the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Gellis, A.; Brakebill, J.

    2012-12-01

    Fine-grained sediment is a major pollutant in the Chesapeake Bay and its receiving waters. Sediment budget studies have been conducted in small basins draining to the Bay over the last decade to understand the important sources of fine-grained sediment, quantify erosion rates, and determine sediment yields. Sediment budget approaches include modeling (SPARROW), sediment fingerprinting, and quantifying upland rates of erosion (Cesium-137). SPARROW model results indicate that forests deliver between 2 to 8% of the total sediment to the Bay. Sediment-fingerprinting results from small watershed studies indicate that forests contribute between 13 to 29 % of the sediment. The Cesium-137 technique was used to quantify soil redistribution (erosion and deposition) rates for forested areas in the Linganore Creek (146 km2) watershed which drains the Piedmont Physiographic Province. Average forest erosion rates measured in 2009 for Linganore Creek using Cesium-137 were 2.6 t/ha/yr. With 27% of the Linganore Creek watershed in forest, over 10,300 may be eroded off of forested lands which is more than the average annual suspended-sediment load (8,050 Mg/yr) in Linganore Creek, indicating that much of the eroded forest sediment goes in storage. Most of the forested areas in the Chesapeake Bay watershed were cut down for agriculture between the time of European colonization and the early 20th Century. In the late 20th century forested lands show an increase in areal extent. Although studies have not been conducted to understand why these secondary growth forests are eroding, it may involve that these forests have not fully recovered from deforestation. Soil profiles are thin, and runoff and sediment relations may have been altered, leading to high rates of erosion.

  18. U.S. Geological Survey Science—Improving the value of the Chesapeake Bay watershed

    USGS Publications Warehouse

    Phillips, Scott W.; Hyer, Kenneth; Goldbaum, Elizabeth

    2017-05-05

    IntroductionCongress directed the Federal Government to work with States to restore the Nation’s largest estuary.Chesapeake Bay restoration provides important economic and ecological benefits:18 million people live and work in the Bay watershed and enjoy its benefits.3,600 types of fish, wildlife, and plants underpin the economic value of the Bay ecosystem.Poor water quality and habitat loss threaten restoration and negatively impact the economy.10 Goals to meet by 2025 through the Chesapeake Bay Program, a voluntary partnership.

  19. Digital data used to relate nutrient inputs to water quality in the Chesapeake Bay watershed, version 3.0

    USGS Publications Warehouse

    Brakebill, John W.; Preston, Stephen D.

    2004-01-01

    Chesapeake Bay restoration efforts are focused on improving water quality, living resources, and ecological habitats by 2010. One aspect of the water-quality restoration is the refinement of strategies designed to implement nutrient-reduction practices within the Bay watershed. These strategies are being refined and implemented by resource managers of the Chesapeake Bay Program (CBP), a partnership comprised of various Federal, State, and local agencies that includes jurisdictions within Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia, and the District of Columbia. The U.S. Geological Survey (USGS), an active member of the CBP, provides necessary water-quality information for these Chesapeake Bay nutrient-reduction strategy revisions and evaluations. The formulation and revision of effective nutrient-reduction strategies requires detailed scientific information and an analytical understanding of the sources, transport, and delivery of nutrients to the Chesapeake Bay. The USGS is supporting these strategies by providing scientific information to resource managers that can help them evaluate and understand these processes. One statistical model available to resource managers is a collection of SPAtially Referenced Regressions On Watershed (SPARROW) attributes, which uses a nonlinear regression approach to spatially relate nutrient sources and watershed characteristics to nutrient loads of streams throughout the Chesapeake Bay watershed. Developed by the USGS, information generated by SPARROW can help resource managers determine the geographical distribution and relative contribution of nutrient sources and the factors that affect their transport to the Bay. Nutrient source information representing the late 1990s time period was obtained from several agencies and used to create and compile digital spatial datasets of total nitrogen and total phosphorus contributions that served as input sources to the SPARROW models. These data represent

  20. 77 FR 33194 - Proposed Information Collection; Comment Request; Bay Watershed Education and Training Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Collection; Comment Request; Bay Watershed Education and Training Program National Evaluation System AGENCY... to Bronwen Rice, NOAA Office of Education, (202) 482-6797 or [email protected] . SUPPLEMENTARY INFORMATION: I. Abstract This request is for a new information collection. The NOAA Office of Education's Bay...

  1. Predicting thermal regimes of stream networks across the Chesapeake Bay Watershed: Natural and anthropogenic influences

    EPA Science Inventory

    Thermal regimes are a critical factor in models predicting joint effects of watershed management activities and climate change on fish habitat suitability. We have compiled a database of lotic temperature time series across the Chesapeake Bay Watershed (725 station-year combinat...

  2. Late-Holocene climate andecosystem history from Chesapeake Bay sediment cores, USA

    USGS Publications Warehouse

    Willard, D.A.; Cronin, T. M.; Verardo, S.

    2003-01-01

    Palaeoclimate records from late-Holocene sediments in Chesapeake Bay, the largest estuary in the USA, provide evidence that both decadal to centennial climate variability and European colonization had severe impacts on the watershed and estuary. Using pollen and dinoflagellate cysts as proxies for mid-Atlantic regional precipitation, estuarine salinity and dissolved oxygen (DO) during the last 2300 years, we identified four dry intervals, centred on AD 50 (P1/D1), AD 1000 (P2/D2), AD 1400 (P3) and AD 1600 (P4). Two centennial-scale events, P1/D1 and P2/D2, altered forest composition and led to increased salinity and DO levels in the estuary. Intervals P3 and P4 lasted several decades, leading to decreased production of pine pollen. Periods of dry mid-Atlantic climate correspond to 'megadroughts' identified from tree-ring records in the southeastern and central USA. The observed mid-Atlantic climate variability may be explained by changes in atmospheric circulation resulting in longer-term, perhaps amplified, intervals of meridional flow. After European colonization in the early seventeenth century, forest clearance for agriculture, timber and urbanization altered estuarine water quality, with dinoflagellate assemblages indicating reduced DO and increased turbidity.

  3. Exploring the environmental effects of shale gas development in the Chesapeake Bay watershed

    Treesearch

    Scientific and Technical Committee [STAC] Chesapeake Bay Program

    2013-01-01

    On April 11-12, 2012, the Chesapeake Bay Program's Scientific and Technical Advisory Committee (STAC) convened an expert workshop to investigate the environmental effects of shale gas development in the Chesapeake Bay Watershed. The purpose of this workshop was to engage scientists from across the nation in a review of the state-of-the-science regarding shale gas...

  4. Chesapeake Bay Watershed - Protecting the Chesapeake Bay and its rivers through science, restoration, and partnership

    USGS Publications Warehouse

    ,

    2012-01-01

    The Chesapeake Bay, the Nation's largest estuary, has been degraded due to the impact of human-population increase, which has doubled since 1950, resulting in degraded water quality, loss of habitat, and declines in populations of biological communities. Since the mid-1980s, the Chesapeake Bay Program (CBP), a multi-agency partnership which includes the Department of Interior (DOI), has worked to restore the Bay ecosystem. The U.S. Geological Survey (USGS) has the critical role of providing unbiased scientific information that is utilized to document and understand ecosystem change to help assess the effectiveness of restoration strategies in the Bay and its watershed. The USGS revised its Chesapeake Bay science plan for 2006-2011 to address the collective needs of the CBP, DOI, and USGS with a mission to provide integrated science for improved understanding and management of the Bay ecosystem. The USGS science themes for this mission are: Causes and consequences of land-use change; Impact of climate change and associated hazards; Factors affecting water quality and quantity; Ability of habitat to support fish and bird populations; and Synthesis and forecasting to improve ecosystem assessment, conservation, and restoration.

  5. Simulating hydrological and geochemical processes in a karstic watershed of the Upper Chesapeake Bay

    USDA-ARS?s Scientific Manuscript database

    Water quality improvement in the Chesapeake Bay is a grave concern. An initiative to reduce the nutrient loads to the streams in the watershed has been undertaken to attain a target total maximum daily load (TMDL) at Chesapeake Bay. A general guideline with a list of best management practices (BMPs)...

  6. 2017 STATE OF NARRAGANSETT BAY AND ITS WATERSHED – MAPPING DRIVERS OF CHANGE AND VARIATION

    EPA Science Inventory

    The Narragansett Bay Estuary Program (NBEP) developed 24 environmental indicators for its 2017 State of Narragansett Bay and Its Watershed report with the collaboration of over 50 bi-state (MA and RI) and regional partners. The report presents and tracks the 24 indicators in ord...

  7. Estimates of nitrate loads and yields from groundwater to streams in the Chesapeake Bay watershed based on land use and geology

    USGS Publications Warehouse

    Terziotti, Silvia; Capel, Paul D.; Tesoriero, Anthony J.; Hopple, Jessica A.; Kronholm, Scott C.

    2018-03-07

    The water quality of the Chesapeake Bay may be adversely affected by dissolved nitrate carried in groundwater discharge to streams. To estimate the concentrations, loads, and yields of nitrate from groundwater to streams for the Chesapeake Bay watershed, a regression model was developed based on measured nitrate concentrations from 156 small streams with watersheds less than 500 square miles (mi2 ) at baseflow. The regression model has three predictive variables: geologic unit, percent developed land, and percent agricultural land. Comparisons of estimated and actual values within geologic units were closely matched. The coefficient of determination (R2 ) for the model was 0.6906. The model was used to calculate baseflow nitrate concentrations at over 83,000 National Hydrography Dataset Plus Version 2 catchments and aggregated to 1,966 total 12-digit hydrologic units in the Chesapeake Bay watershed. The modeled output geospatial data layers provided estimated annual loads and yields of nitrate from groundwater into streams. The spatial distribution of annual nitrate yields from groundwater estimated by this method was compared to the total watershed yields of all sources estimated from a Chesapeake Bay SPAtially Referenced Regressions On Watershed attributes (SPARROW) water-quality model. The comparison showed similar spatial patterns. The regression model for groundwater contribution had similar but lower yields, suggesting that groundwater is an important source of nitrogen for streams in the Chesapeake Bay watershed.

  8. Bank-derived material dominates fluvial sediment in a suburban Chesapeake Bay watershed

    NASA Astrophysics Data System (ADS)

    Cashman, M. J.; Gellis, A.; Gorman-Sanisaca, L.; Noe, G. B.; Cogliandro, V.; Baker, A.

    2017-12-01

    Excess fine sediment is a leading cause of ecological degradation within the Chesapeake Bay watershed. The Piedmont physiographic province, which includes parts of the Washington, D.C. metro area, has the highest sediment yields in the Chesapeake Bay. In order to effectively employ sediment mitigation measures, it is necessary to identify and quantify the contributions of sediments sources within rapidly urbanizing areas in the Piedmont. This sediment fingerprinting study examines the inputs of various sediment sources to Upper Difficult Run (14.2 km2; 22.6% impervious surface), an urbanized watershed in Fairfax County, Virginia. A source sediment library was constructed from collections of stream bank material, forest soils, and road dust from across the watershed. Target fluvial sediments were collected from fine channel margin deposits and from suspended sediment using an autosampler during 16 storm events from 2008 - 2012. Apportionment of the target samples to the source sediments was performed using Sed_SAT, a publically available toolkit for sediment fingerprinting. Bed sediment was found to be dominated by stream bank sources (mean: 96%), with minor contributions from forest (4%) and no detectable contribution from roads (0%). Suspended fine sediments were also found to predominantly originate from stream bank sources (SSC-weighted mean: 91%), with minor contributions from roads (8%), and negligible contributions from forests (1%). Stream bank sources dominated at all discharges, with the greatest contributions from overland sources found only at low discharges. On the rising limb of the hydrograph and at peak flow, sediment concentrations increased due to increasing contributions of bank material rather than surface erosion caused by overland flow. Results demonstrate that stream bank erosion is responsible for the vast majority of fine sediment occurring in this suburban basin of the Chesapeake Bay watershed. This is likely a consequence of storm

  9. Development, calibration, and analysis of a hydrologic and water-quality model of the Delaware Inland Bays watershed

    USGS Publications Warehouse

    Gutierrez-Magness, Angelica L.; Raffensperger, Jeff P.

    2003-01-01

    Excessive nutrients and sediment are among the most significant environmental stressors in the Delaware Inland Bays (Rehoboth, Indian River, and Little Assawoman Bays). Sources of nutrients, sediment, and other contaminants within the Inland Bays watershed include point-source discharges from industries and wastewater-treatment plants, runoff and infiltration to ground water from agricultural fields and poultry operations, effluent from on-site wastewater disposal systems, and atmospheric deposition. To determine the most effective restoration methods for the Inland Bays, it is necessary to understand the relative distribution and contribution of each of the possible sources of nutrients, sediment, and other contaminants. A cooperative study involving the Delaware Department of Natural Resources and Environmental Control, the Delaware Geological Survey, and the U.S. Geological Survey was initiated in 2000 to develop a hydrologic and water-quality model of the Delaware Inland Bays watershed that can be used as a water-resources planning and management tool. The model code Hydrological Simulation Program - FORTRAN (HSPF) was used. The 719-square-kilometer watershed was divided into 45 model segments, and the model was calibrated using streamflow and water-quality data for January 1999 through April 2000 from six U.S. Geological Survey stream-gaging stations within the watershed. Calibration for some parameters was accomplished using PEST, a model-independent parameter estimator. Model parameters were adjusted systematically so that the discrepancies between the simulated values and the corresponding observations were minimized. Modeling results indicate that soil and aquifer permeability, ditching, dominant land-use class, and land-use practices affect the amount of runoff, the mechanism or flow path (surface flow, interflow, or base flow), and the loads of sediment and nutrients. In general, the edge-of-stream total suspended solids yields in the Inland Bays

  10. Watershed Nitrogen and Mercury Geochemical Fluxes Integrate Landscape Factors in Long-term Research Watersheds at Acadia National Park, Maine, USA

    Treesearch

    J. S. Kahl; S. J. Nelson; I. Fernandez; T. Haines; S. Norton; G. B. Wiersma; G. Jacobson; A. Amirbahman; K. Johnson; M. Schauffler; L. Rustad; K. Tonnessen; R. Lent; M. Bank; J. Elvir; J. Eckhoff; H. Caron; P. Ruck; J. Parker; J. Campbell; D. Manski; R. Breen; K. Sheehan; A. Grygo

    2007-01-01

    This paper is an overview of this special issue devoted to watershed research in Acadia National Park (Acadia NP). The papers address components of an integrated research program on two upland watersheds at Acadia NP, USA (44° 20′ N latitude; 68° 15′ E longitude). These watersheds were instrumented in 1998 to provide a long-term foundation for regional ecological and...

  11. Web-based decision support and visualization tools for water quality management in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Mullinix, C.; Hearn, P.; Zhang, H.; Aguinaldo, J.

    2009-01-01

    Federal, State, and local water quality managers charged with restoring the Chesapeake Bay ecosystem require tools to maximize the impact of their limited resources. To address this need, the U.S. Geological Survey (USGS) and the Environmental Protection Agency's Chesapeake Bay Program (CBP) are developing a suite of Web-based tools called the Chesapeake Online Assessment Support Toolkit (COAST). The goal of COAST is to help CBP partners identify geographic areas where restoration activities would have the greatest effect, select the appropriate management strategies, and improve coordination and prioritization among partners. As part of the COAST suite of tools focused on environmental restoration, a water quality management visualization component called the Nutrient Yields Mapper (NYM) tool is being developed by USGS. The NYM tool is a web application that uses watershed yield estimates from USGS SPAtially Referenced Regressions On Watershed (SPARROW) attributes model (Schwarz et al., 2006) [6] to allow water quality managers to identify important sources of nitrogen and phosphorous within the Chesapeake Bay watershed. The NYM tool utilizes new open source technologies that have become popular in geospatial web development, including components such as OpenLayers and GeoServer. This paper presents examples of water quality data analysis based on nutrient type, source, yield, and area of interest using the NYM tool for the Chesapeake Bay watershed. In addition, we describe examples of map-based techniques for identifying high and low nutrient yield areas; web map engines; and data visualization and data management techniques.

  12. Use of a metolachlor metabolite (MESA) to assess agricultural nitrate-n fate and transport in choptank river watershed, Maryland USA

    USDA-ARS?s Scientific Manuscript database

    A majority of streams in the Chesapeake Bay watershed have been rated as poor or very poor based on biological assessments. The Choptank River estuary, a Bay tributary on the eastern shore, is an example, where crop production in upland areas of the watershed contribute significant loads of nutrien...

  13. Understanding nutrients in the Chesapeake Bay watershed and implications for management and restoration: the Eastern Shore

    USGS Publications Warehouse

    Ator, Scott W.; Denver, Judith M.

    2015-03-12

    The Eastern Shore includes only a small part of the Chesapeake Bay watershed, but contributes disproportionately large loads of the excess nitrogen and phosphorus that have contributed to ecological and economic degradation of the bay in recent decades. Chesapeake Bay is the largest estuary in the United States and a vital ecological and economic resource. The bay and its tributaries have been degraded in recent decades by excessive nitrogen and phosphorus in the water column, however, which cause harmful algal blooms and decreased water clarity, submerged aquatic vegetation, and dissolved oxygen. The disproportionately large nitrogen and phosphorus yields from the Eastern Shore to Chesapeake Bay are attributable to human land-use practices as well as natural hydrogeologic and soil conditions. Applications of nitrogen and phosphorus compounds to the Eastern Shore from human activities are intensive. More than 90 percent of nitrogen and phosphorus reaching the land in the Eastern Shore is applied as part of inorganic fertilizers or manure, or (for nitrogen) fixed directly from the atmosphere in cropland. Also, hydrogeologic and soil conditions promote the movement of these compounds from application areas on the landscape to groundwater and (or) surface waters, and the proximity of much of the Eastern Shore to tidal waters limits opportunities for natural removal of these compounds in the landscape. The Eastern Shore only includes 7 percent of the Chesapeake Bay watershed, but receives nearly twice as much nitrogen and phosphorus applications (per area) as the remainder of the watershed and yields greater nitrogen and phosphorus, on average, to the bay. Nitrogen and phosphorus commonly occur in streams at concentrations that may adversely affect aquatic ecosystems and have increased in recent decades.

  14. Linking Decisions to Stakeholder Values in the Guanica Bay Watershed, Puerto Rico

    EPA Science Inventory

    This presentation lays the foundation for the session by introducing the Structured Decision-Making (SDM) approach that is being used by the Environmental Protection Agency (EPA) in the Guánica Bay watershed of southwestern Puerto Rico. EPA is working with other agencies i...

  15. The distribution of phosphorus in Popes Creek, VA, and in the Pocomoke River, MD: Two watersheds with different land management practices in the Chesapeake Bay Basin

    USGS Publications Warehouse

    Simon, N.S.; Bricker, O.P.; Newell, W.; McCoy, J.; Morawe, R.

    2005-01-01

    This paper compares phosphorus (P) concentrations in sediments from two watersheds, one with, and one without, intensive animal agriculture. The watersheds are in the coastal plain of the Chesapeake Bay and have similar physiographic characteristics. Agriculture in the Pocomoke River, MD, watershed supplied 2.7 percent of all broiler chickens produced in the USA in 1997. Poultry litter is an abundant, local source of manure for crops. Broiler chickens are not produced in the Popes Creek, VA, watershed and poultry manure is, therefore, not a major source of fertilizer. The largest concentrations of P in sediment samples are found in floodplain and main-stem bottom sediment in both watersheds. Concentrations of total P and P extracted with 1N HCl are significantly larger in main-stem bottom sediments from the Pocomoke River than in main-stem bottom sediments from Popes Creek. Larger concentrations of P are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Pocomoke River watershed than are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Popes Creek watershed. Data for P and iron (Fe) concentrations in sediments from the Popes Creek watershed provide a numerical framework (baseline) with which to compare P and Fe concentrations in sediment from the Pocomoke River watershed. ?? Springer 2005.

  16. Report: Saving the Chesapeake Bay Watershed Requires Better Coordination of Environmental and Agricultural Resources

    EPA Pesticide Factsheets

    Report #2007-P-00004, November 20, 2006. Despite significant efforts to improve water quality in the Chesapeake Bay watershed, excess nutrients and sediment continue to impair the Bay’s water quality.

  17. Hydrologic data from urban watersheds in the Tampa Bay area, Florida

    USGS Publications Warehouse

    Lopez, Miguel A.; Michaelis, D.M.

    1979-01-01

    Hydrologic data are being collected in 10 urbanized watersheds located in the Tampa Bay area, Florida. The gaged watersheds have impervious areas that range from 19 percent for a residential watershed in north Tampa to nearly 100 percent for a downtown Tampa watershed. Land-use types, including roads, residential, commercial, industrial, institutional, recreational , and open space, have been determined for each watershed. Rainfall and storm runoff data collected since 1971 for one site and since 1975 for six other sites through September 1976, have been processed. These data are recorded at 5-minute intervals and are stored in the U. S. Geological Survey WATSTORE unit values file. Daily rainfall at 12 sites and daily pan evaporation at one site have been stored in the WATSTORE daily values file. Chemical and biological analyses of storm runoff for six sites, base flow for seven sites, and analyses of bottom material for seven sites are also stored in the WATSTORE water-quality files. Rainfall and storm runoff for selected storms, daily rainfall, and daily pan-evaporation data are summarized in this report. Water-quality analyses of all water-quality samples also are listed. (Woodard-USGS).

  18. An ecological assessment of land use impacts in small watersheds of the Chesapeake Bay

    Treesearch

    Andrew Leight; John Jacobs; Lonnie Gonsalves; Gretchen Messick; Shawn McLaughlin; Jay Lewis; Juliana Brush; Eric Daniels; Matthew Rhodes; Lewis Collier; Robert Wood

    2016-01-01

    The Chesapeake Bay, the nation’s largest estuary, remains in relatively poor condition despite intensive public and scientific attention. In order to better understand the stressors and impacts occurring in the Bay as a result of land management decisions we conducted an assessment of both habitat condition and organismal response in three small watersheds of the upper...

  19. EPA Assessments of the Subwatershed Animal Feeding Operations (AFOs) in the Chesapeake Bay Watershed

    EPA Pesticide Factsheets

    Starting in 2013, EPA is conducting assessments of AFOs within four subwatersheds in the Chesapeake Bay watershed. EPA’s assessments evaluated the compliance with state and federal requirements for reducing nitrogen, phosphorus, and sediment.

  20. Management case study: Tampa Bay, Florida

    USGS Publications Warehouse

    Morrison, G.; Greening, H.S.; Yates, K.K.

    2012-01-01

    Tampa Bay, Florida,USA, is a shallow,subtropical estuary that experienced severe cultural eutrophication between the 1940s and 1980s, a period when the human population of its watershed quadrupled. In response, citizen action led to the formation of a public- and private-sector partnership (the Tampa Bay Estuary Program), which adopted a number of management objectives to support the restoration and protection of the bay’s living resources. These included numeric chlorophyll a and water-clarity targets, as well as long-term goals addressing the spatial extent of sea grasses and other selected habitat types, to support estuarine-dependent faunal guilds.

  1. The evolution of the science of Bear Brook Watershed in Maine, USA.

    PubMed

    Norton, S A; Fernandez, I J; Kahl, J S; Rustad, L E; Navrátil, Tomás; Almquist, H

    2010-12-01

    The Bear Brook Watershed in Maine (BBWM), USA is a paired watershed study with chemical manipulation of one watershed (West Bear = WB) while the other watershed (East Bear = EB) serves as a reference. Characterization of hydrology and chemical fluxes occurred in 1987-1989 and demonstrated the similarity of the ca. 10 ha adjacent forested watersheds. From 1989-2010, we have added 1,800 eq (NH(4))(2)SO(4) ha(-1) y(-1) to WB. EB runoff has slowly acidified even as atmospheric deposition of SO4(-2) has declined. EB acidification included decreasing pH, base cation concentrations, and alkalinity, and increasing inorganic Al concentration, as SO4(-2) declined. Organic Al increased. WB has acidified more rapidly, including a 6-year period of increasing leaching of base cations, followed by a long-term decline of base cations, although still elevated over pretreatment values, as base saturation declined in the soils. Sulfate in WB has not increased to a new steady state because of increased anion adsorption accompanying soil acidification. Dissolved Al has increased dramatically in WB; increased export of particulate Al and P has accompanied the acidification in both watersheds, WB more than EB. Nitrogen retention in EB increased after 3 years of study, as did many watersheds in the northeastern USA. Nitrogen retention in WB still remains at over 80%, in spite of 20+ years of N addition. The 20-year chemical treatment with continuous measurements of critical variables in both watersheds has enabled the identification of decadal-scale processes, including ecosystem response to declining SO4(-2) in ambient precipitation in EB and evolving mechanisms of treatment response in WB. The study has demonstrated soil mechanisms buffering pH, declines in soil base saturation, altered P biogeochemistry, unexpected mechanisms of storage of S, and continuous high retention of treatment N.

  2. Watershed and Hydrodynamic Modeling for Evaluating the Impact of Land Use Change on Submerged Aquatic Vegetation and Seagrasses in Mobile Bay

    NASA Technical Reports Server (NTRS)

    Estes, Maurice G.; Al-Hamdan, Mohammed; Thom, Ron; Quattrochi, Dale; Woodruff, Dana; Judd, Chaeli; Ellism Jean; Watson, Brian; Rodriguez, Hugo; Johnson, Hoyt

    2009-01-01

    There is a continued need to understand how human activities along the northern Gulf of Mexico coast are impacting the natural ecosystems. The gulf coast is experiencing rapid population growth and associated land cover/land use change. Mobile Bay, AL is a designated pilot region of the Gulf of Mexico Alliance (GOMA) and is the focus area of many current NASA and NOAA studies, for example. This is a critical region, both ecologically and economically to the entire United States because it has the fourth largest freshwater inflow in the continental USA, is a vital nursery habitat for commercially and recreational important fisheries, and houses a working waterfront and port that is expanding. Watershed and hydrodynamic modeling has been performed for Mobile Bay to evaluate the impact of land use change in Mobile and Baldwin counties on the aquatic ecosystem. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for land use Scenarios in 1948, 1992, 2001, and 2030. The Prescott Spatial Growth Model was used to project the 2030 land use scenario based on observed trends. All land use scenarios were developed to a common land classification system developed by merging the 1992 and 2001 National Land Cover Data (NLCD). The LSPC model output provides changes in flow, temperature, sediments and general water quality for 22 discharge points into the Bay. These results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment concentrations on a grid with four vertical profiles throughout the Bay s aquatic ecosystems. The models were calibrated using in-situ data collected at sampling stations in and around Mobile bay. This phase of the project has focused on sediment modeling because of its significant influence on light attenuation which is a critical factor in the health of submerged aquatic

  3. Digital data used to relate nutrient inputs to water quality in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, John W.; Preston, Stephen D.

    1999-01-01

    Digital data sets were compiled by the U. S. Geological Survey (USGS) and used as input for a collection of Spatially Referenced Regressions On Watershed attributes for the Chesapeake Bay region. These regressions relate streamwater loads to nutrient sources and the factors that affect the transport of these nutrients throughout the watershed. A digital segmented network based on watershed boundaries serves as the primary foundation for spatially referencing total nitrogen and total phosphorus source and land-surface characteristic data sets within a Geographic Information System. Digital data sets of atmospheric wet deposition of nitrate, point-source discharge locations, land cover, and agricultural sources such as fertilizer and manure were created and compiled from numerous sources and represent nitrogen and phosphorus inputs. Some land-surface characteristics representing factors that affect the transport of nutrients include land use, land cover, average annual precipitation and temperature, slope, and soil permeability. Nutrient input and land-surface characteristic data sets merged with the segmented watershed network provide the spatial detail by watershed segment required by the models. Nutrient stream loads were estimated for total nitrogen, total phosphorus, nitrate/nitrite, amonium, phosphate, and total suspended soilds at as many as 109 sites within the Chesapeake Bay watershed. The total nitrogen and total phosphorus load estimates are the dependent variables for the regressions and were used for model calibration. Other nutrient-load estimates may be used for calibration in future applications of the models.

  4. Trends in Surface-Water Nitrate-N Concentrations and Loads from Predominantly-Forested Watersheds of the Chesapeake Bay Basin

    NASA Astrophysics Data System (ADS)

    Eshleman, K. N.

    2011-12-01

    Water quality monitoring data from streams and rivers provide the "gold standard" by which progress toward achieving real reductions in nutrient loadings to Chesapeake Bay must ultimately be assessed. The most recent trend results posted at the Chesapeake Bay Program (CBP) website reveal that a substantial percentage of tributaries are now showing long-term declines in flow-adjusted concentrations of nutrients and sediments: 22 sites showed statistically significant (p < 0.05) downward trends (1985-2010) in flow-adjusted concentrations, two sites showed upward trends, and eight sites showed no trend. Based on the data, the CBP has drawn the following conclusion: "At many monitored locations, long-term trends indicate that management actions, such as pollution controls for improved wastewater treatment plants and practices to reduce nutrients on farms and suburban lands, have reduced concentrations of nitrogen." But could this conclusion be pre-mature? I recently undertook a comparable analysis of long-term nitrate-N trends for a different group of watersheds (all located in the Chesapeake Bay watershed with long data records); this group includes nine watersheds that are predominantly (i.e., >75%) forested, plus five other Potomac River subwatersheds added for comparison. Based on comparable data and analytical methods to those used by CBP partners and USGS, 13 of the 14 sites-including both Potomac River stations (Chain Bridge at Washington DC and Hancock, Maryland)-showed statistically significant decreasing linear trends in annual flow-weighted nitrate-N concentration. Only one station-the heavily agricultural Upper Monocacy River-did not show a statistically significant (p < 0.05) trend. Five of the predominantly-forested watersheds also showed statistically significant decreasing trends in annual nitrate-N loads, and none of the stations showed a trend in annual runoff presumably due to high inter-annual hydroclimatological variability. While the largest

  5. Eliciting stakeholder values for coral reef management tasks in the Guánica Bay watershed, Puerto Rico

    EPA Science Inventory

    The EPA is developing a valuation protocol for southwest Puerto Rico that will support the US Coral Reef Task Force’s (USCRTF) Partnership Initiative in the Guánica Bay/Rio Loco (GB/RL) Watershed. The GB/RL watershed is located in southwestern Puerto Rico and includes the urbaniz...

  6. Contaminants in sediment, food-chain biota, and bird eggs from the Newport Bay watershed, Orange County, California.

    PubMed

    Santolo, Gary M; Byron, Earl R; Ohlendorf, Harry M

    2016-02-01

    Groundwater-related discharges in the San Diego Creek/Newport Bay watershed in Orange County, California have the potential to adversely affect the surface waters within the watershed and would likely not comply with the established total maximum daily loads (TMDLs) for the watershed. In 2004 and 2005, we studied the concentrations of contaminants of TMDL concern (particularly selenium [Se]) in birds that are at risk of exposure to contaminated food items because they feed and nest in the Newport Bay watershed. Most bioaccumulation is from elevated Se in groundwater downstream of a historic terminal swamp. Se bioaccumulation was observed in all biota tested, and DDE was found in fish and bird egg samples. Effects of contaminants on fish and birds are inconclusive due to the management disturbances in the watershed (e.g., flood control) and lack of bird nesting habitat. Although a significant relationship was observed between DDE concentrations and eggshell thinning in American avocet (Recurvirostra americana) eggs, the shell thinning in avocet and other species examined was not enough to result in hatching failure. Further focused monitoring efforts will be needed to characterize the exposure and risk levels.

  7. Assessments of urban growth in the Tampa Bay watershed using remote sensing data

    USGS Publications Warehouse

    Xian, G.; Crane, M.

    2005-01-01

    Urban development has expanded rapidly in the Tampa Bay area of west-central Florida over the past century. A major effect associated with this population trend is transformation of the landscape from natural cover types to increasingly impervious urban land. This research utilizes an innovative approach for mapping urban extent and its changes through determining impervious surfaces from Landsat satellite remote sensing data. By 2002, areas with subpixel impervious surface greater than 10% accounted for approximately 1800 km2, or 27 percent of the total watershed area. The impervious surface area increases approximately three-fold from 1991 to 2002. The resulting imperviousness data are used with a defined suite of geospatial data sets to simulate historical urban development and predict future urban and suburban extent, density, and growth patterns using SLEUTH model. Also examined is the increasingly important influence that urbanization and its associated imperviousness extent have on the individual drainage basins of the Tampa Bay watershed.

  8. Monitoring wetland inundation dynamics in response to weather variability in the Chesapeake Bay watershed

    USDA-ARS?s Scientific Manuscript database

    Wetlands provide a broad range of ecosystem services, including flood control, water purification, groundwater replenishment, and biodiversity support. The provision of these services, which are especially valued in the Chesapeake Bay Watershed, is largely controlled by varying levels of wetness. ...

  9. Understanding Urban Watersheds through Digital Interactive Maps, San Francisco Bay Area, California

    NASA Astrophysics Data System (ADS)

    Sowers, J. M.; Ticci, M. G.; Mulvey, P.

    2014-12-01

    Dense urbanization has resulted in the "disappearance" of many local creeks in urbanized areas surrounding the San Francisco Bay. Long reaches of creeks now flow in underground pipes. Municipalities and water agencies trying to reduce non-point-source pollution are faced with a public that cannot see and therefore does not understand the interconnected nature of the drainage system or its ultimate discharge to the bay. Since 1993, we have collaborated with the Oakland Museum, the San Francisco Estuary Institute, public agencies, and municipalities to create creek and watershed maps to address the need for public understanding of watershed concepts. Fifteen paper maps are now published (www.museumca.org/creeks), which have become a standard reference for educators and anyone working on local creek-related issues. We now present digital interactive creek and watershed maps in Google Earth. Four maps are completed covering urbanized areas of Santa Clara and Alameda Counties. The maps provide a 3D visualization of the watersheds, with cartography draped over the landscape in transparent colors. Each mapped area includes both Present and Past (circa 1800s) layers which can be clicked on or off by the user. The Present layers include the modern drainage network, watershed boundaries, and reservoirs. The Past layers include the 1800s-era creek systems, tidal marshes, lagoons, and other habitats. All data are developed in ArcGIS software and converted to Google Earth format. To ensure the maps are interesting and engaging, clickable icons pop-up provide information on places to visit, restoration projects, history, plants, and animals. Maps of Santa Clara Valley are available at http://www.valleywater.org/WOW.aspx. Maps of western Alameda County will soon be available at http://acfloodcontrol.org/. Digital interactive maps provide several advantages over paper maps. They are seamless within each map area, and the user can zoom in or out, and tilt, and fly over to explore

  10. Reducing Methylmercury Accumulation in the Food Webs of San Francisco Bay and Its Local Watersheds

    PubMed Central

    Davis, J.A.; Looker, R.E.; Yee, D.; Marvin-DiPasquale, M.; Grenier, J.L.; Austin, C.M.; McKee, L.J.; Greenfield, B.K.; Brodberg, R.; Blum, J.D.

    2013-01-01

    San Francisco Bay (California, USA) and its local watersheds present an interesting case study in estuarine mercury (Hg) contamination. This review focuses on the most promising avenues for attempting to reduce methylmercury (MeHg) contamination in Bay Area aquatic food webs and identifying the scientific information that is most urgently needed to support these efforts. Concern for human exposure to MeHg in the region has led to advisories for consumption of sport fish. Striped bass from the Bay have the highest average Hg concentration measured for this species in USA estuaries, and this degree of contamination has been constant for the past 40 years. Similarly, largemouth bass in some Bay Area reservoirs have some of the highest Hg concentrations observed in the entire US. Bay Area wildlife, particularly birds, face potential impacts to reproduction based on Hg concentrations in the tissues of several Bay species. Source control of Hg is one of the primary possible approaches for reducing MeHg accumulation in Bay Area aquatic food webs. Recent findings (particularly Hg isotope measurements) indicate that the decades-long residence time of particle-associated Hg in the Bay is sufficient to allow significant conversion of even the insoluble forms of Hg into MeHg. Past inputs have been thoroughly mixed throughout this shallow and dynamic estuary. The large pool of Hg already present in the ecosystem dominates the fraction converted to MeHg and accumulating in the food web. Consequently, decreasing external Hg inputs can be expected to reduce MeHg in the food web, but it will likely take many decades to centuries before those reductions are achieved. Extensive efforts to reduce loads from the largest Hg mining source (the historic New Almaden mining district) are underway. Hg is spread widely across the urban landscape, but there are a number of key sources, source areas, and pathways that provide opportunities to capture larger quantities of Hg and reduce loads

  11. Reducing methylmercury accumulation in the food webs of San Francisco Bay and its local watersheds.

    PubMed

    Davis, J A; Looker, R E; Yee, D; Marvin-Di Pasquale, M; Grenier, J L; Austin, C M; McKee, L J; Greenfield, B K; Brodberg, R; Blum, J D

    2012-11-01

    San Francisco Bay (California, USA) and its local watersheds present an interesting case study in estuarine mercury (Hg) contamination. This review focuses on the most promising avenues for attempting to reduce methylmercury (MeHg) contamination in Bay Area aquatic food webs and identifying the scientific information that is most urgently needed to support these efforts. Concern for human exposure to MeHg in the region has led to advisories for consumption of sport fish. Striped bass from the Bay have the highest average Hg concentration measured for this species in USA estuaries, and this degree of contamination has been constant for the past 40 years. Similarly, largemouth bass in some Bay Area reservoirs have some of the highest Hg concentrations observed in the entire US. Bay Area wildlife, particularly birds, face potential impacts to reproduction based on Hg concentrations in the tissues of several Bay species. Source control of Hg is one of the primary possible approaches for reducing MeHg accumulation in Bay Area aquatic food webs. Recent findings (particularly Hg isotope measurements) indicate that the decades-long residence time of particle-associated Hg in the Bay is sufficient to allow significant conversion of even the insoluble forms of Hg into MeHg. Past inputs have been thoroughly mixed throughout this shallow and dynamic estuary. The large pool of Hg already present in the ecosystem dominates the fraction converted to MeHg and accumulating in the food web. Consequently, decreasing external Hg inputs can be expected to reduce MeHg in the food web, but it will likely take many decades to centuries before those reductions are achieved. Extensive efforts to reduce loads from the largest Hg mining source (the historic New Almaden mining district) are underway. Hg is spread widely across the urban landscape, but there are a number of key sources, source areas, and pathways that provide opportunities to capture larger quantities of Hg and reduce loads

  12. Reducing methylmercury accumulation in the food webs of San Francisco Bay and its local watersheds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, J.A., E-mail: jay@sfei.org; Looker, R.E.; Yee, D.

    San Francisco Bay (California, USA) and its local watersheds present an interesting case study in estuarine mercury (Hg) contamination. This review focuses on the most promising avenues for attempting to reduce methylmercury (MeHg) contamination in Bay Area aquatic food webs and identifying the scientific information that is most urgently needed to support these efforts. Concern for human exposure to MeHg in the region has led to advisories for consumption of sport fish. Striped bass from the Bay have the highest average Hg concentration measured for this species in USA estuaries, and this degree of contamination has been constant for themore » past 40 years. Similarly, largemouth bass in some Bay Area reservoirs have some of the highest Hg concentrations observed in the entire US. Bay Area wildlife, particularly birds, face potential impacts to reproduction based on Hg concentrations in the tissues of several Bay species. Source control of Hg is one of the primary possible approaches for reducing MeHg accumulation in Bay Area aquatic food webs. Recent findings (particularly Hg isotope measurements) indicate that the decades-long residence time of particle-associated Hg in the Bay is sufficient to allow significant conversion of even the insoluble forms of Hg into MeHg. Past inputs have been thoroughly mixed throughout this shallow and dynamic estuary. The large pool of Hg already present in the ecosystem dominates the fraction converted to MeHg and accumulating in the food web. Consequently, decreasing external Hg inputs can be expected to reduce MeHg in the food web, but it will likely take many decades to centuries before those reductions are achieved. Extensive efforts to reduce loads from the largest Hg mining source (the historic New Almaden mining district) are underway. Hg is spread widely across the urban landscape, but there are a number of key sources, source areas, and pathways that provide opportunities to capture larger quantities of Hg and reduce

  13. Microplastic contamination in the San Francisco Bay, California, USA.

    PubMed

    Sutton, Rebecca; Mason, Sherri A; Stanek, Shavonne K; Willis-Norton, Ellen; Wren, Ian F; Box, Carolynn

    2016-08-15

    Despite widespread detection of microplastic pollution in marine environments, data describing microplastic abundance in urban estuaries and microplastic discharge via treated municipal wastewater are limited. This study presents information on abundance, distribution, and composition of microplastic at nine sites in San Francisco Bay, California, USA. Also presented are characterizations of microplastic in final effluent from eight wastewater treatment plants, employing varying treatment technologies, that discharge to the Bay. With an average microplastic abundance of 700,000particles/km(2), Bay surface water appears to have higher microplastic levels than other urban waterbodies sampled in North America. Moreover, treated wastewater from facilities that discharge into the Bay contains considerable microplastic contamination. Facilities employing tertiary filtration did not show lower levels of contamination than those using secondary treatment. As textile-derived fibers were more abundant in wastewater, higher levels of fragments in surface water suggest additional pathways of microplastic pollution, such as stormwater runoff. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. FATE & EFFECTS OF AGRICULTURAL PESTICIDES WITHIN WEEKS BAY WATERSHED, A NATIONAL ESTUARINE RESEARCH RESERVE

    EPA Science Inventory

    Lytle, J.S., T.F. Lytle and M.A. Lewis. In press. Fate and Effects of Agricultural Pesticides Within Weeks Bay Watershed, a National Estuarine Research Preserve. To be presented at the 24th Annual Meeting in North America of the Society of Environmental Toxicology and Chemistry: ...

  15. Modeling of Selenium for the San Diego Creek Watershed and Newport Bay, California

    USGS Publications Warehouse

    Presser, Theresa S.; Luoma, Samuel N.

    2009-01-01

    The San Diego Creek watershed and Newport Bay in southern California are contaminated with selenium (Se) as a result of groundwater associated with urban development overlying a historical wetland, the Swamp of the Frogs. The primary Se source is drainage from surrounding seleniferous marine sedimentary formations. An ecosystem-scale model was employed as a tool to assist development of a site-specific Se objective for the region. The model visualizes outcomes of different exposure scenarios in terms of bioaccumulation in predators using partitioning coefficients, trophic transfer factors, and site-specific data for food-web inhabitants and particulate phases. Predicted Se concentrations agreed well with field observations, validating the use of the model as realistic tool for testing exposure scenarios. Using the fish tissue and bird egg guidelines suggested by regulatory agencies, allowable water concentrations were determined for different conditions and locations in the watershed and the bay. The model thus facilitated development of a site-specific Se objective that was locally relevant and provided a basis for step-by-step implementation of source control.

  16. Ecosystem responses to long-term nutrient management in an urban estuary: Tampa Bay, Florida, USA

    NASA Astrophysics Data System (ADS)

    Greening, H.; Janicki, A.; Sherwood, E. T.; Pribble, R.; Johansson, J. O. R.

    2014-12-01

    In subtropical Tampa Bay, Florida, USA, we evaluated restoration trajectories before and after nutrient management strategies were implemented using long-term trends in nutrient loading, water quality, primary production, and seagrass extent. Following citizen demands for action, reduction in wastewater nutrient loading of approximately 90% in the late 1970s lowered external total nitrogen (TN) loading by more than 50% within three years. Continuing nutrient management actions from public and private sectors were associated with a steadily declining TN load rate and with concomitant reduction in chlorophyll-a concentrations and ambient nutrient concentrations since the mid-1980s, despite an increase of more than 1 M people living within the Tampa Bay metropolitan area. Water quality (chlorophyll-a concentration, water clarity as indicated by Secchi disk depth, total nitrogen concentration and dissolved oxygen) and seagrass coverage are approaching conditions observed in the 1950s, before the large increases in human population in the watershed. Following recovery from an extreme weather event in 1997-1998, water clarity increased significantly and seagrass is expanding at a rate significantly different than before the event, suggesting a feedback mechanism as observed in other systems. Key elements supporting the nutrient management strategy and concomitant ecosystem recovery in Tampa Bay include: 1) active community involvement, including agreement about quantifiable restoration goals; 2) regulatory and voluntary reduction in nutrient loadings from point, atmospheric, and nonpoint sources; 3) long-term water quality and seagrass extent monitoring; and 4) a commitment from public and private sectors to work together to attain restoration goals. A shift from a turbid, phytoplankton-based system to a clear water, seagrass-based system that began in the 1980s following comprehensive nutrient loading reductions has resulted in a present-day Tampa Bay which looks and

  17. Links Between Watershed Activities and the Degradation of Coastal, Tidal Salt Marshes in Southern New England USA

    EPA Science Inventory

    Human activities (e.g., land development, wastewater) in coastal watersheds in New England USA are linked with community- and system-level changes in tidal, organic-rich salt marshes. Significant relationships between various indicators of watershed activities and ecosystem stru...

  18. Late Holocene Environmental History of the Los Osos Watershed, Morro Bay, CA

    NASA Astrophysics Data System (ADS)

    Broadman, E.; Reidy, L. M.; Wahl, D.

    2014-12-01

    A comprehensive understanding of past changes in wetland ecosystems is integral for creating policies for modern land use practices. The Morro Bay salt marsh is home to a large wetland that has experienced significant environmental impacts in the last few centuries. In this study, sediment cores from the Morro Bay salt marsh were analyzed to discern changes in environment since the time of European contact, which occurred in 1772. The marsh is fed by two creeks (Chorro and Los Osos) and their associated watersheds. Sediment cores taken from a portion of the marsh fed by Los Osos creek were analyzed and the results compared to those from previous studies on cores taken from the Chorro and Los Osos portions of the marsh. Magnetic susceptibility, loss on ignition, pollen, radiocarbon, and X-ray fluorescence (XRF) analyses were conducted. An age-depth model was established for the Los Osos cores using two radiocarbon dates, as well as Erodium cicutarium as a chronological marker. Preliminary pollen analysis from Chorro marsh cores indicates vegetation shifts at the time of contact, when the salt marsh formed. Magnetic susceptibility and XRF data indicate dramatically increased rates of erosion from the time of contact consistently until the present. Influx of non-carbonate inorganic material also indicates a rapid increase in sedimentation in the marsh starting at the time of contact. Comparison of sedimentation rates between the two creeks suggests that differences in watershed geomorphology and land use practices have had pronounced impacts on erosional processes. Over the last decade, the Morro Bay National Estuary Program (MBNEP) has taken more measures to reduce erosion and sedimentation rates in the Chorro watershed, as is reflected by reduced sedimentation rates in MBNEP data collected within the last few years. Our study helps to elucidate the impacts of anthropogenic land use change on wetland systems, and provides much needed data to policy makers seeking to

  19. Sources of suspended-sediment flux in streams of the chesapeake bay watershed: A regional application of the sparrow model

    USGS Publications Warehouse

    Brakebill, J.W.; Ator, S.W.; Schwarz, G.E.

    2010-01-01

    We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain. ?? 2010 American Water Resources Association. No claim to original U.S. government works.

  20. EVALUATING THE INTEGRITY OF SALT MARSHES IN NARRAGANSETT BAY SUB-ESTUARIES USING A WATERSHED APPROACH

    EPA Science Inventory

    A watershed approach to examine measures of structure and function in salt marshes of similar geomorphology and hydrology in Narragansett Bay is being used to develop a reference system for evaluating salt marsh integrity. We describe integrity as the capability of a salt marsh t...

  1. Quantitative Models for the Narragansett Bay Estuary, Rhode Island/Massachusetts, USA

    EPA Science Inventory

    Multiple drivers, including nutrient loading and climate change, affect the Narragansett Bay ecosystem in Rhode Island/Massachusetts, USA. Managers are interested in understanding the timing and magnitude of these effects, and ecosystem responses to restoration actions. To provid...

  2. Influence of climate change, tidal mixing, and watershed urbanization on historical water quality in Newport Bay, a saltwater wetland and tidal embayment in southern California.

    PubMed

    Pednekar, Abhishek M; Grant, Stanley B; Jeong, Youngsul; Poon, Ying; Oancea, Carmen

    2005-12-01

    Historical coliform measurements (n = 67,269; 32 years) in Newport Bay, a regionally important saltwater wetland and tidal embayment in southern California, have been compiled and analyzed. Coliform concentrations in Newport Bay decrease along an inland-to-ocean gradient, consistent with the hypothesis that this tidal embayment attenuates fecal pollution from inland sources. Nearly 70% of the variability in the coliform record can be attributed to seasonal and interannual variability in local rainfall, implying that stormwater runoff from the surrounding watershed is a primary source of coliform in Newport Bay. The storm loading rate of coliform from the San Diego Creek watershed--the largest watershed draining into Newport Bay--appears to be unaffected by the dramatic shift away from agricultural land-use that occurred in the watershed over the study period. Further, the peak loading of coliform during storms is larger than can be reasonably attributed to sources of human sewage, suggesting that nonhuman fecal pollution and/or bacterial regrowth contribute to the coliform load. Summer time measurements of coliform exhibit interannual trends, but these trends are site specific, apparently due to within-Bay variability in land-use, inputs of dry-weather runoff, and tidal mixing rates. Overall, these results suggest that efforts to improve water quality in Newport Bay will likely have greater efficacy during dry weather summer periods. Water quality during winter storms, on the other hand, appears to be dominated by factors outside of local management control; namely, virtually unlimited nonhuman sources of coliform in the watershed and global climate patterns, such as the El Nino Southern Oscillation, that modulate rainfall and stormwater runoff in southern California.

  3. Holocene climates and connections between the San Francisco Bay Estuary and its watershed: A review

    USGS Publications Warehouse

    Malamud-Roam, F.; Dettinger, M.; Ingram, B. Lynn; Hughes, Malcolm K.; Florsheim, Joan

    2007-01-01

    This review of paleoclimate records reveals a gradual warming and drying in California from about 10,000 years to about 4,000 years before present. During this period, the current Bay and Delta were inundated by rising sea level so that by 4,000 years ago the Bay and Delta had taken on much of their present shape and extent. Between about 4,000 and 2,000 years ago, cooler and wetter conditions prevailed in the watershed, lowering salinity in the Estuary and altering local ecosystems. Those wetter conditions gave way to increasing aridity during the past 2,000 years, a general trend punctuated by occasional prolonged and severe droughts and occasional unusually wet, cool periods. California’s climate since A.D. 1850 has been unusually stable and benign, compared to climate variations during the previous 2,000 or more years. Thus, climate variations in California’s future may be even more (perhaps much more) challenging than those of the past 100 years. To improve our understanding of these past examples of climate variability in California, and of the linkages between watershed climate and estuarine responses, greater emphases on paleoclimate records in and around the Estuary, improved temporal resolutions in several record types, and linked watershed-estuary paleo-modeling capabilities are needed. 

  4. Summary of Optical-Backscatter and Suspended-Sediment Data, Tomales Bay Watershed, California, Water Years 2004, 2005, and 2006

    USGS Publications Warehouse

    Curtis, Jennifer A.

    2007-01-01

    The U.S. Geological Survey, in cooperation with Point Reyes National Seashore, is studying suspended-sediment transport dynamics in the two primary tributaries to Tomales Bay, Lagunitas Creek and Walker Creek. Suspended-sediment samples and continuous optical backscatter (turbidity) data were collected at three locations during water years 2004?06 (October 1, 2003?September 30, 2006): at two sites in the Lagunitas Creek watershed and at one site in the Walker Creek watershed. Sediment samples were analyzed for suspended-sediment concentration, grain size, and turbidity. Data were used to estimate mean daily and annual seasonal suspended-sediment discharge, which were published in U.S. Geological Survey Annual Water-Data Reports. Data were utilized further in this report to develop field-based optical-backscatter calibration equations, which then were used to derive a continuous time series (15-minute interval) of suspended-sediment concentrations. Sensor fouling and aggradation of the channel bed occurred periodically throughout the project period, resulting in data loss. Although periods of data loss occurred, collection of optical sensor data improved our understanding of suspended-sediment dynamics in the Lagunitas Creek and Walker Creek watersheds by providing continuous time-series storm event data that were analyzed to determine durations of elevated sediment concentrations (periods of time when suspended-sediment concentration was greater than 100 mg/L). Data derived from this project contributed baseline suspended-sediment transport information that will be used to develop and implement sediment total maximum daily loads for Tomales Bay and its tributary watersheds, and provides supporting information for additional total maximum daily loads (pathogens, nutrients, and mercury) and restoration efforts for four federally listed aquatic species that are affected directly by sediment loading in the Tomales Bay watershed. In addition, this project provided an

  5. Linking ecosystem service supply to stakeholder concerns on both land and sea: An example from Guánica Bay watershed, Puerto Rico

    EPA Science Inventory

    Policies to protect coastal resources may lead to greater social, economic, and ecological returns when they consider potential co-benefits and trade-offs on land. In Guánica Bay watershed, Puerto Rico, a watershed management plan is being implemented to restore declining ...

  6. Hydrogeologic controls on groundwater discharge and nitrogen loads in a coastal watershed

    USGS Publications Warehouse

    Russoniello, Chrtopher J.; Konikow, Leonard F.; Kroeger, Kevin D.; Fernandez, Cristina; Andres, A. Scott; Michael, Holly A.

    2016-01-01

    Submarine groundwater discharge (SGD) is a small portion of the global water budget, but a potentially large contributor to coastal nutrient budgets due to high concentrations relative to stream discharge. A numerical groundwater flow model of the Inland Bays Watershed, Delaware, USA, was developed to identify the primary hydrogeologic factors that affect groundwater discharge rates and transit times to streams and bays. The distribution of groundwater discharge between streams and bays is sensitive to the depth of the water table below land surface. Higher recharge and reduced hydraulic conductivity raised the water table and increased discharge to streams relative to bays compared to the Reference case (in which 66% of recharge is discharged to streams). Increases to either factor decreased transit times for discharge to both streams and bays compared to the Reference case (in which mean transit times are 56.5 and 94.3 years, respectively), though sensitivity to recharge is greater. Groundwater-borne nitrogen loads were calculated from nitrogen concentrations measured in discharging fresh groundwater and modeled SGD rates. These loads combined with long SGD transit times suggest groundwater-borne nitrogen reductions and estuarine water quality improvements will lag decades behind implementation of efforts to manage nutrient sources. This work enhances understanding of the hydrogeologic controls on and uncertainties in absolute and relative rates and transit times of groundwater discharge to streams and bays in coastal watersheds.

  7. [Regulation framework of watershed landscape pattern for non-point source pollution control based on 'source-sink' theory: A case study in the watershed of Maluan Bay, Xiamen City, China].

    PubMed

    Huang, Ning; Wang, Hong Ying; Lin, Tao; Liu, Qi Ming; Huang, Yun Feng; Li, Jian Xiong

    2016-10-01

    Watershed landscape pattern regulation and optimization based on 'source-sink' theory for non-point source pollution control is a cost-effective measure and still in the exploratory stage. Taking whole watershed as the research object, on the basis of landscape ecology, related theories and existing research results, a regulation framework of watershed landscape pattern for non-point source pollution control was developed at two levels based on 'source-sink' theory in this study: 1) at watershed level: reasonable basic combination and spatial pattern of 'source-sink' landscape was analyzed, and then holistic regulation and optimization method of landscape pattern was constructed; 2) at landscape patch level: key 'source' landscape was taken as the focus of regulation and optimization. Firstly, four identification criteria of key 'source' landscape including landscape pollutant loading per unit area, landscape slope, long and narrow transfer 'source' landscape, pollutant loading per unit length of 'source' landscape along the riverbank were developed. Secondly, nine types of regulation and optimization methods for different key 'source' landscape in rural and urban areas were established, according to three regulation and optimization rules including 'sink' landscape inlay, banding 'sink' landscape supplement, pollutants capacity of original 'sink' landscape enhancement. Finally, the regulation framework was applied for the watershed of Maluan Bay in Xiamen City. Holistic regulation and optimization mode of watershed landscape pattern of Maluan Bay and key 'source' landscape regulation and optimization measures for the three zones were made, based on GIS technology, remote sensing images and DEM model.

  8. Land Use and Climate Alter Carbon Dynamics in Watersheds of Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Kaushal, S.; Duan, S.; Grese, M.; Pennino, M. J.; Belt, K. T.; Findlay, S.; Groffman, P. M.; Mayer, P. M.; Murthy, S.; Blomquist, J.

    2011-12-01

    There have been long-term changes in the quantity of organic carbon in streams and rivers globally. Shifts in the quality of organic carbon due to environmental changes may also impact downstream ecosystem metabolism and fate and transport of contaminants. We investigated long-term impacts of land use and hydrologic variability on organic carbon transport in watersheds of the Baltimore Long-Term Ecological Research (LTER) site and large rivers of the Chesapeake Bay. In small and medium-sized watersheds of the Baltimore LTER site, urban land use increased organic carbon concentrations in streams several-fold compared to forest and agricultural watersheds. Enzymatic activities of stream microbes were significantly altered across watershed land use during a record wet year. During the wet year, short-term bioassays showed that bioavailable dissolved organic carbon varied seasonally, but comprised a substantial proportion of the dissolved organic carbon pool. Similarly, measurements of biochemical oxygen demand across hydrologic variability suggest that reactive organic carbon export from small and medium-sized urban watersheds during storms can be substantial. At a larger regional scale, major tributaries such as the Potomac, Susquehanna, Patuxent, and Choptank rivers also showed similar variability as smaller watersheds in quantity and quality of organic carbon based on land use and climate. There were distinct isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices for rivers influenced by different land uses. Stable isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices showed marked seasonal changes in organic matter quality during spring floods in the Potomac River at Washington D.C. Across watershed size, there appeared to be differences in seasonal cycles of organic carbon quality and this may have been based on the degree of hydrologic connectivity between watersheds and

  9. Water quality mapping of Laguna de Bay and its watershed, Philippines

    NASA Astrophysics Data System (ADS)

    Saito, S.; Nakano, T.; Shin, K.; Maruyama, S.; Miyakawa, C.; Yaota, K.; Kada, R.

    2011-12-01

    Laguna de Bay (or Laguna Lake) is the largest lake in the Philippines, with a surface area of 900 km2 and its watershed area of 2920 km2 (Santos-Borja, 2005). It is located on the southwest part of the Luzon Island and its watershed contains 5 provinces, 49 municipalities and 12 cities, including parts of Metropolitan Manila. The water quality in Laguna de Bay has significantly deteriorated due to pollution from soil erosion, effluents from chemical industries, and household discharges. In this study, we performed multiple element analysis of water samples in the lake and its watersheds for chemical mapping, which allows us to evaluate the regional distribution of elements including toxic heavy metals such as Cd, Pb and As. We collected water samples from 24 locations in Laguna de Bay and 160 locations from rivers in the watersheds. The sampling sites of river are mainly downstreams around the lake, which covers from urbanized areas to rural areas. We also collected well water samples from 17 locations, spring water samples from 10 locations, and tap water samples from 21 locations in order to compare their data with the river and lake samples and to assess the quality of household use waters. The samples were collected in dry season of the study area (March 13 - 17 and May 2 - 9, 2011). The analysis was performed at the Research Institute for Humanity and Nature (RIHN), Japan. The concentrations of the major components (Cl, NO3, SO4, Ca, Mg, Na, and K) dissolved in the samples were determined with ion chromatograph (Dionex Corporation ICS-3000). We also analyzed major and trace elements (Li, B, Na, Mg, Al, Si, P, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn Ga, Ge, As, Se, Rb, Sr, Y, Zr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W, Pb and U) with inductively coupled plasma-mass spectrometry (ICP-MS, Agilent Technologies 7500cx). The element concentrations of rivers are characterized by remarkable regional variations. For

  10. Linking ecosystem service supply to stakeholder concerns on both land and sea: An example from Guánica Bay watershed, Puerto Rico

    EPA Science Inventory

    Policies to protect coastal resources may lead to greater social, economic, and ecological returns when they consider potential co-benefits and trade-offs on land. In Guánica Bay watershed, Puerto Rico, a watershed management plan is being implemented to restore declining quality...

  11. Long-term diameter growth for trees in the Cinnamon Bay Watershed

    Treesearch

    Peter L. Weaver

    2009-01-01

    From 1983 to 2008, the mean annual diameter growth (MAI) for 1,402 surviving stems of 62 species in the Cinnamon Bay watershed was 0.08¡À0.002 cm yr-1. Long-term MAI ranged from 0.02 cm yr-1 for Randia aculeata to 0.23 cm yr-1 for Inga laurina. Of the 30 species with ¡Ý8 surviving stems, eight averaged ¡Ý0.10 cm yr-1. Hurricane Hugo in 1989, Hurricane Marilyn in 1995,...

  12. Evaluating changes in water quality with respect to nonpoint source nutrient management strategies in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Keisman, J.; Sekellick, A.; Blomquist, J.; Devereux, O. H.; Hively, W. D.; Johnston, M.; Moyer, D.; Sweeney, J.

    2014-12-01

    Chesapeake Bay is a eutrophic ecosystem with periodic hypoxia and anoxia, algal blooms, diminished submerged aquatic vegetation, and degraded stocks of marine life. Knowledge of the effectiveness of actions taken across the watershed to reduce nitrogen (N) and phosphorus (P) loads to the bay (i.e. "best management practices" or BMPs) is essential to its restoration. While nutrient inputs from point sources (e.g. wastewater treatment plants and other industrial and municipal operations) are tracked, inputs from nonpoint sources, including atmospheric deposition, farms, lawns, septic systems, and stormwater, are difficult to measure. Estimating reductions in nonpoint source inputs attributable to BMPs requires compilation and comparison of data on water quality, climate, land use, point source discharges, and BMP implementation. To explore the relation of changes in nonpoint source inputs and BMP implementation to changes in water quality, a subset of small watersheds (those containing at least 10 years of water quality monitoring data) within the Chesapeake Watershed were selected for study. For these watersheds, data were compiled on geomorphology, demographics, land use, point source discharges, atmospheric deposition, and agricultural practices such as livestock populations, crop acres, and manure and fertilizer application. In addition, data on BMP implementation for 1985-2012 were provided by the Environmental Protection Agency Chesapeake Bay Program Office (CBPO) and the U.S. Department of Agriculture. A spatially referenced nonlinear regression model (SPARROW) provided estimates attributing N and P loads associated with receiving waters to different nutrient sources. A recently developed multiple regression technique ("Weighted Regressions on Time, Discharge and Season" or WRTDS) provided an enhanced understanding of long-term trends in N and P loads and concentrations. A suite of deterministic models developed by the CBPO was used to estimate expected

  13. Robust Decision Making to Support Water Quality Climate Adaptation: a Case Study in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Fischbach, J. R.; Lempert, R. J.; Molina-Perez, E.

    2017-12-01

    The U.S. Environmental Protection Agency (USEPA), together with state and local partners, develops watershed implementation plans designed to meet water quality standards. Climate uncertainty, along with uncertainty about future land use changes or the performance of water quality best management practices (BMPs), may make it difficult for these implementation plans to meet water quality goals. In this effort, we explored how decision making under deep uncertainty (DMDU) methods such as Robust Decision Making (RDM) could help USEPA and its partners develop implementation plans that are more robust to future uncertainty. The study focuses on one part of the Chesapeake Bay watershed, the Patuxent River, which is 2,479 sq km in area, highly urbanized, and has a rapidly growing population. We simulated the contribution of stormwater contaminants from the Patuxent to the overall Total Maximum Daily Load (TMDL) for the Chesapeake Bay under multiple scenarios reflecting climate and other uncertainties. Contaminants considered included nitrogen, phosphorus, and sediment loads. The assessment included a large set of scenario simulations using the USEPA Chesapeake Bay Program's Phase V watershed model. Uncertainties represented in the analysis included 18 downscaled climate projections (based on 6 general circulation models and 3 emissions pathways), 12 land use scenarios with different population projections and development patterns, and alternative assumptions about BMP performance standards and efficiencies associated with different suites of stormwater BMPs. Finally, we developed cost estimates for each of the performance standards and compared cost to TMDL performance as a key tradeoff for future water quality management decisions. In this talk, we describe how this research can help inform climate-related decision support at USEPA's Chesapeake Bay Program, and more generally how RDM and other DMDU methods can support improved water quality management under climate

  14. Intra- and inter-annual trends in phosphorus loads and comparison with nitrogen loads to Rehoboth Bay, Delaware (USA)

    USGS Publications Warehouse

    Volk, J.A.; Scudlark, J.R.; Savidge, K.B.; Andres, A.S.; Stenger, R.J.; Ullman, W.J.

    2012-01-01

    Monthly phosphorus loads from uplands, atmospheric deposition, and wastewater to Rehoboth Bay (Delaware) were determined from October 1998 to April 2002 to evaluate the relative importance of these three sources of P to the Bay. Loads from a representative subwatershed were determined and used in an areal extrapolation to estimate the upland load from the entire watershed. Soluble reactive phosphorus (SRP) and dissolved organic P (DOP) are the predominant forms of P in baseflow and P loads from the watershed are highest during the summer months. Particulate phosphorus (PP) becomes more significant in stormflow and during periods with more frequent or larger storms. Atmospheric deposition of P is only a minor source of P to Rehoboth Bay. During the period of 1998-2002, wastewater was the dominant external source of P to Rehoboth Bay, often exceeding all other P sources combined. Since 2002, however, due to technical improvements to the sole wastewater plant discharging directly to the Bay, the wastewater contribution of P has been significantly reduced and upland waters are now the principal source of P on an annualized basis. Based on comparison of N and P loads, primary productivity and biomass carrying capacity in Rehoboth Bay should be limited by P availability. However, due to the contrasting spatial and temporal patterns of N and P loading and perhaps internal cycling within the ecosystem, spatial and temporal variations in N and P-limitation within Rehoboth Bay are likely. ?? 2011 Elsevier Ltd.

  15. Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed-An empirical model

    USGS Publications Warehouse

    Ator, Scott W.; Brakebill, John W.; Blomquist, Joel D.

    2011-01-01

    Nutrient fate and transport through the Chesapeake Bay watershed to the bay reflect the diferent physical and chemical properties of nitrogen and phosphorus compounds. Groundwater is an important pathway for nitrogen transport (as nitrate), and TN flux is greatest in areas with greater groundwater flow and in areas of the Piedmont underlain by carbonate rocks. TN flux decreases with increasing vegetative growth (likely indicative of plant uptake) and soil available water capacity (likely indicative of reducing conditions). Phosphorus transport to streams, conversely, is greatest in areas most likely to generate overland runoff and related erosion, including those with less permeable and more erodible soils and greater precipitation. Phosphorus transport also is greater in the Coastal Plain than in other areas, possibly due to saturation of soils with historical phosphorus applications. Both nitrogen and phosphorus are lost within watershed impoundments (lakes, ponds, or reservoirs), and nitrogen is also lost significantly along flowing reaches, particularly in small streams and in larger streams in warmer areas.

  16. Short-term variability of 7Be atmospheric deposition and watershed response in a Pacific coastal stream, Monterey Bay, California, USA.

    PubMed

    Conaway, Christopher H; Storlazzi, Curt D; Draut, Amy E; Swarzenski, Peter W

    2013-06-01

    Beryllium-7 is a powerful and commonly used tracer for environmental processes such as watershed sediment provenance, soil erosion, fluvial and nearshore sediment cycling, and atmospheric fallout. However, few studies have quantified temporal or spatial variability of (7)Be accumulation from atmospheric fallout, and parameters that would better define the uses and limitations of this geochemical tracer. We investigated the abundance and variability of (7)Be in atmospheric deposition in both rain events and dry periods, and in stream surface-water samples collected over a ten-month interval at sites near northern Monterey Bay (37°N, 122°W) on the central California coast, a region characterized by a rainy winters, dry summers, and small mountainous streams with flashy hydrology. The range of (7)Be activity in rainwater samples from the main sampling site was 1.3-4.4 Bq L(-1), with a mean (±standard deviation) of 2.2 ± 0.9 Bq L(-1), and a volume-weighted average of 2.0 Bq L(-1). The range of wet atmospheric deposition was 18-188 Bq m(-2) per rain event, with a mean of 72 ± 53 Bq m(-2). Dry deposition fluxes of (7)Be ranged from less than 0.01 up to 0.45 Bq m(-2) d(-1), with an estimated dry season deposition of 7 Bq m(-2) month(-1). Annualized (7)Be atmospheric deposition was approximately 1900 Bq m(-2) yr(-1), with most deposition via rainwater (>95%) and little via dry deposition. Overall, these activities and deposition fluxes are similar to values found in other coastal locations with comparable latitude and Mediterranean-type climate. Particulate (7)Be values in the surface water of the San Lorenzo River in Santa Cruz, California, ranged from <0.01 Bq g(-1) to 0.6 Bq g(-1), with a median activity of 0.26 Bq g(-1). A large storm event in January 2010 characterized by prolonged flooding resulted in the entrainment of (7)Be-depleted sediment, presumably from substantial erosion in the watershed. There were too few particulate (7)Be data over the storm to

  17. Short-term variability of 7Be atmospheric deposition and watershed response in a Pacific coastal stream, Monterey Bay, California, USA

    USGS Publications Warehouse

    Conaway, Christopher H.; Storlazzi, Curt D.; Draut, Amy E.; Swarzenski, Peter W.

    2013-01-01

    Beryllium-7 is a powerful and commonly used tracer for environmental processes such as watershed sediment provenance, soil erosion, fluvial and nearshore sediment cycling, and atmospheric fallout. However, few studies have quantified temporal or spatial variability of 7Be accumulation from atmospheric fallout, and parameters that would better define the uses and limitations of this geochemical tracer. We investigated the abundance and variability of 7Be in atmospheric deposition in both rain events and dry periods, and in stream surface-water samples collected over a ten-month interval at sites near northern Monterey Bay (37°N, 122°W) on the central California coast, a region characterized by a rainy winters, dry summers, and small mountainous streams with flashy hydrology. The range of 7Be activity in rainwater samples from the main sampling site was 1.3–4.4 Bq L−1, with a mean (±standard deviation) of 2.2 ± 0.9 Bq L−1, and a volume-weighted average of 2.0 Bq L−1. The range of wet atmospheric deposition was 18–188 Bq m−2 per rain event, with a mean of 72 ± 53 Bq m−2. Dry deposition fluxes of 7Be ranged from less than 0.01 up to 0.45 Bq m−2 d−1, with an estimated dry season deposition of 7 Bq m−2 month−1. Annualized 7Be atmospheric deposition was approximately 1900 Bq m−2 yr−1, with most deposition via rainwater (>95%) and little via dry deposition. Overall, these activities and deposition fluxes are similar to values found in other coastal locations with comparable latitude and Mediterranean-type climate. Particulate 7Be values in the surface water of the San Lorenzo River in Santa Cruz, California, ranged from −1 to 0.6 Bq g−1, with a median activity of 0.26 Bq g−1. A large storm event in January 2010 characterized by prolonged flooding resulted in the entrainment of 7Be-depleted sediment, presumably from substantial erosion in the watershed. There were too few particulate 7Be data over the storm to accurately model a 7Be load

  18. Sources, Transport, and Storage of Sediment at Selected Sites in the Chesapeake Bay Watershed

    USGS Publications Warehouse

    Gellis, Allen C.; Hupp, Cliff R.; Pavich, Milan J.; Landwehr, Jurate M.; Banks, William S.L.; Hubbard, Bernard E.; Langland, Michael J.; Ritchie, Jerry C.; Reuter, Joanna M.

    2009-01-01

    The Chesapeake Bay Watershed covers 165,800 square kilometers and is supplied with water and sediment from five major physiographic provinces: Appalachian Plateau, Blue Ridge, Coastal Plain, Piedmont, and the Valley and Ridge. Suspended-sediment loads measured in the Chesapeake Bay Watershed showed that the Piedmont Physiographic Province has the highest rates of modern (20th Century) sediment yields, measured at U.S. Geological Survey streamflow-gaging stations, and the lowest rates of background or geologic rates of erosion (~10,000 years) measured with in situ beryllium-10. In the agricultural and urbanizing Little Conestoga Creek Watershed, a Piedmont watershed, sources of sediment using the 'sediment-fingerprinting' approach showed that streambanks were the most important source (63 percent), followed by cropland (37 percent). Cesium-137 inventories, which quantify erosion rates over a 40-year period, showed average cropland erosion of 19.39 megagrams per hectare per year in the Little Conestoga Creek Watershed. If this erosion rate is extrapolated to the 13 percent of the watershed that is in cropland, then cropland could contribute almost four times the measured suspended-sediment load transported out of the watershed (27,600 megagrams per hectare per year), indicating that much of the eroded sediment is being deposited in channel and upland storage. The Piedmont has had centuries of land-use change, from forest to agriculture, to suburban and urban areas, and in some areas, back to forest. These land-use changes mobilized a large percentage of sediment that was deposited in upland and channel storage, and behind thousands of mill dams. The effects of these land-use changes on erosion and sediment transport are still being observed today as stored sediment in streambanks is a source of sediment. Cropland is also an important source of sediment. The Coastal Plain Physiographic Province has had the lowest sediment yields in the 20th Century and with sandy

  19. Invasive Species Guidebook for Department of Defense Installations in the Chesapeake Bay Watershed: Identification, Control, and Restoration

    DTIC Science & Technology

    2007-11-01

    INSTALLATIONS IN THE CHESAPEAKE BAY WATERSHED IDENTIFICATION AND CONTROL METHODS Cogongrass ( Imperata cylindrica ) Description & Biology – A large...Crown vetch Coronilla varia MD, VA 14 Leafy spurge Euphorbia esula VA 15 Ground ivy Glechoma hederacea DC, MD, PA, VA, WV 17 Cogongrass Imperata

  20. A hydrologic network supporting spatially referenced regression modeling in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, J.W.; Preston, S.D.

    2003-01-01

    The U.S. Geological Survey has developed a methodology for statistically relating nutrient sources and land-surface characteristics to nutrient loads of streams. The methodology is referred to as SPAtially Referenced Regressions On Watershed attributes (SPARROW), and relates measured stream nutrient loads to nutrient sources using nonlinear statistical regression models. A spatially detailed digital hydrologic network of stream reaches, stream-reach characteristics such as mean streamflow, water velocity, reach length, and travel time, and their associated watersheds supports the regression models. This network serves as the primary framework for spatially referencing potential nutrient source information such as atmospheric deposition, septic systems, point-sources, land use, land cover, and agricultural sources and land-surface characteristics such as land use, land cover, average-annual precipitation and temperature, slope, and soil permeability. In the Chesapeake Bay watershed that covers parts of Delaware, Maryland, Pennsylvania, New York, Virginia, West Virginia, and Washington D.C., SPARROW was used to generate models estimating loads of total nitrogen and total phosphorus representing 1987 and 1992 land-surface conditions. The 1987 models used a hydrologic network derived from an enhanced version of the U.S. Environmental Protection Agency's digital River Reach File, and course resolution Digital Elevation Models (DEMs). A new hydrologic network was created to support the 1992 models by generating stream reaches representing surface-water pathways defined by flow direction and flow accumulation algorithms from higher resolution DEMs. On a reach-by-reach basis, stream reach characteristics essential to the modeling were transferred to the newly generated pathways or reaches from the enhanced River Reach File used to support the 1987 models. To complete the new network, watersheds for each reach were generated using the direction of surface-water flow derived

  1. Mobile data buoy system. [water quality measurements in watersheds and Mobile Bay, Alabama

    NASA Technical Reports Server (NTRS)

    Morton, R. A.

    1975-01-01

    The Mobile Data Buoy System was conceived to serve the users requirement for obtaining water quality parameters from two separate watershed systems. In view of the cost constraints of the ERTS program it was obvious that the network of 10 sampling stations required could not be of the fixed installation type; therefore, it was decided to go to a system of battery powered buoys of a size that could be used in one watershed system for a period of time and then moved to another by use of a relatively small 6.7 m (22 foot) boat. The basic idea of the water quality measurement program was to establish the water quality pattern of change from the headwaters of the watersheds to and through the Mobile Bay. This would allow the investigator to develop a good picture of the state's major water resources and the pressures from pollution that are being imposed. At this point in deployment of this mobile system of buoys, it is too early to put a quantitative value on the system, however it appears less expensive than known fixed installations as to first cost. It has a basic advantage in that it can be moved, at very little expense, to alternate sites where it is desired to obtain water quality data. It is to be noted this buoy system which covers a 80 Km (50 mile) stretch of the Black Warrior River and then skips down 483 Km (300 miles) to Mobile Bay for the next measurements would not be feasible unless there is a satellite to collect and relay the data.

  2. Watershed and Hydrodynamic Modeling for Evaluating the Impact of Land Use Change on Submerged Aquatic Vegetation and Seagrasses in Mobile Bay

    DTIC Science & Technology

    2010-06-01

    35805 3 Pacific Northwest National Laboratory 1529 W. Sequim Bay Rd. Sequim , WA 98382 4 University of South Carolina Columbia, SC 5 Tetra...Watershed and Hydrodynamic Modeling for Evaluating the Impact of Land Use Change on Submerged Aquatic Vegetation and Seagrasses in Mobile Bay ...land use change. Mobile Bay , AL is a designated pilot region of the Gulf of Mexico Alliance (GOMA) and is the focus area of many current NASA and

  3. Modeling Land Use Change in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Claire, J. A.; Goetz, S. J.; Bockstael, N.

    2003-12-01

    Low density, decentralized residential and commercial development is increasingly the dominant pattern of exurban land use in many developed countries, particularly the United States. The term "sprawl" is now commonly used to describe this form of development, the environmental and quality-of-life impacts of which are becoming central to debates over land use in urban and suburban areas. Continued poor health of the Chesapeake Bay, located in the Mid-Atlantic region of the United States, is due in part to disruptions in the hydrological system caused by urban and suburban development throughout the 167,000 square kilometer watershed. We present results of a spatial predictive model of land use change based on cellular automata (SLEUTH), which was calibrated using high resolution (30m cell size) maps of the built environment derived from Landsat ETM+ imagery for the period 1986-2000. The model was applied to a 23,740 square kilometer area centered on Washington DC - Baltimore MD, and predictions were made out to 2030 assuming three different policy scenarios (current trends, managed growth, and "sustainable"). Accuracy of the model was assessed at three scales (pixel, watershed and county) and overall strengths and weaknesses of the model are presented, particularly in comparison to other econometric modeling approaches.

  4. USING BROAD-SCALE METRICS TO DEVELOP INDICATORS OF WATERSHED VULNERABILITY IN THE OZARK MOUNTAINS (USA)

    EPA Science Inventory

    Multiple broad-scale landscape metrics were tested as potential indicators of total phosphorus (TP) concentration, total ammonia (TA) concentration, and Escherichia coli (E. coli) bacteria count, among 244 sub-watersheds in the Ozark Mountains (USA). Indicator models were develop...

  5. Occurrence, speciation and transportation of heavy metals in 9 coastal rivers from watershed of Laizhou Bay, China.

    PubMed

    Xu, Li; Wang, Tieyu; Wang, Jihua; Lu, Anxiang

    2017-04-01

    The occurrence, speciation and transport of heavy metals in 9 coastal rivers from watershed of Laizhou Bay were investigated. The largest dissolved concentrations of Cd, Cu and Zn in water were 6.26, 2755.00, 2076.00 μg/L, respectively, much higher than several drinking water guidelines. The greatest concentrations of Cu, Zn, Cr, Ni, Pb and Cd in sediments were 1462, 1602, 196, 67.2, 63.5 and 1.41 mg/kg, dw, respectively. Correlation and principal component analysis was also conducted to determine the extent between the concentrations of metals in water and sediment, as well as relevant parameters. Throughout the river stretch, most of Cr Zn, Cr, Ni and Pb bound to residual fraction, however, Cd was preferentially bound to the exchangeable phase. Among the 9 rivers, Yellow river account for 72.5%, 67.5%, 55.4%, 59.4%, 79.4% and 85.5% for Cr, Ni, Cu, Zn. Cd and Pb, respectively. The combined potential ecological risk indexes were used to evaluate potential risks. The majority of sampling sites from watershed of Laizhou Bay have moderate ecological risk from metals. The government should pay more attention to the ecological risk of river ecosystem which flow to Laizhou Bay. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Modeling selenium bioaccumulation through arthropod food webs in San Francisco Bay, California, USA.

    PubMed

    Schlekat, Christian E; Purkerson, David G; Luoma, Samuel N

    2004-12-01

    Trophic transfer is the main process by which upper trophic level wildlife are exposed to selenium. Transfers through lower levels of a predator's food web thus can be instrumental in determining the threat of selenium in an ecosystem. Little is known about Se transfer through pelagic, zooplankton-based food webs in San Francisco Bay ([SFB], CA, USA), which serve as an energy source for important predators such as striped bass: A dynamic multipathway bioaccumulation model was used to model Se transfer from phytoplankton to pelagic copepods to carnivorous mysids (Neomysis mercedis). Uptake rates of dissolved Se, depuration rates, and assimilation efficiencies (AE) for the model were determined for copepods and mysids in the laboratory. Small (73-250 microm) and large (250-500 microm) herbivorous zooplankton collected from SFB (Oithona/Limnoithona and Acartia sp.) assimilated Se with similar efficiencies (41-52%) from phytoplankton. Mysids assimilated 73% of Se from small herbivorous zooplankton; Se AE was significantly lower (61%) than larger herbivorous zooplankton. Selenium depuration rates were high for both zooplankton and mysids (12-25% d(-1)), especially compared to bivalves (2-3% d(-1)). The model predicted steady state Se concentrations in mysids similar to those observed in the field. The predicted concentration range (1.5-5.4 microg g(-1)) was lower than concentrations of 4.5 to 24 microg g(-1) observed in bivalves from the bay. Differences in efflux between mysids and bivalves were the best explanation for the differences in uptake. The results suggest that the risk of selenium toxicity to predators feeding on N. mercedis would be less than the risk to predators feeding on bivalves. Management of selenium contamination should include food webs analyses to focus on the most important exposure pathways identified for a given watershed.

  7. Modeling selenium bioaccumulation through arthropod food webs in San Francisco Bay, California, USA

    USGS Publications Warehouse

    Schlekat, C.E.; Purkerson, D.G.; Luoma, S.N.

    2004-01-01

    Trophic transfer is the main process by which upper trophic level wildlife are exposed to selenium. Transfers through lower levels of a predator's food web thus can be instrumental in determining the threat of selenium in an ecosystem. Little is known about Se transfer through pelagic, zooplankton-based food webs in San Francisco Bay ([SFB], CA, USA), which serve as an energy source for important predators such as striped bass. A dynamic multipathway bioaccumulation model was used to model Se transfer from phytoplankton to pelagic copepods to carnivorous mysids (Neomysis mercedis). Uptake rates of dissolved Se, depuration rates, and assimilation efficiencies (AE) for the model were determined for copepods and mysids in the laboratory. Small (73-250 ??m) and large (250-500 ??m) herbivorous zooplankton collected from SFB (Oithona/Limnoithona and Acartia sp.) assimilated Se with similar efficiencies (41-52%) from phytoplankton. Mysids assimilated 73% of Se from small herbivorous zooplankton; Se AE was significantly lower (61%) than larger herbivorous zooplankton. Selenium depuration rates were high for both zooplankton and mysids (12-25% d-1), especially compared to bivalves (2-3% d-1). The model predicted steady state Se concentrations in mysids similar to those observed in the field. The predicted concentration range (1.5-5.4 ??g g -1) was lower than concentrations of 4.5 to 24 ??g g-1 observed in bivalves from the bay. Differences in efflux between mysids and bivalves were the best explanation for the differences in uptake. The results suggest that the risk of selenium toxicity to predators feeding on N. mercedis would be less than the risk to predators feeding on bivalves. Management of selenium contamination should include food webs analyses to focus on the most important exposure pathways identified for a given watershed.

  8. Magnitude and frequency of flooding on small urban watersheds in the Tampa Bay area, west-central Florida

    USGS Publications Warehouse

    Lopez, M.A.; Woodham, W.M.

    1983-01-01

    Hydrologic data collected on nine small urban watersheds in the Tampa Bay area of west-central Florida and a method for estimating peak discharges in the study area are described. The watersheds have mixed land use and range in size from 0.34 to 3.45 square miles. Watershed soils, land use, and storm-drainage system data are described. Urban development ranged from a sparsely populated area with open-ditch storm sewers and 19% impervious area to a completely sewered watershed with 61% impervious cover. The U.S. Geological Survey natural-basin and urban-watershed models were calibrated for the nine watersheds using 5-minute interval rainfall data from the Tampa, Florida, National Weather Service rain gage to simulate annual peak discharge for the period 1906-52. A log-Pearson Type III frequency analysis of the simulated annual maximum discharge was used to determine the 2-, 5-, 10-, 25-, 50-, and 100-year flood discharges for each watershed. Flood discharges were related in a multiple-linear regression to drainage area, channel slope, detention storage area, and an urban-development factor determined by the extent of curb and gutter street drainage and storm-sewer system. The average standard error for the regional relations ranged from + or - 32 to + or - 42%. (USGS)

  9. Impact of environmental policies on the adoption of manure management practices in the Chesapeake Bay watershed.

    PubMed

    Savage, Jeff A; Ribaudo, Marc O

    2013-11-15

    Pollution in the Chesapeake Bay is a problem and has been a focus of federal and state initiatives to reduce nutrient pollution from agriculture and other sources since 1983. In 2010 EPA established a TMDL for the watershed. Producers may voluntarily respond to intense and focused policy scrutiny by adopting best management practices. A detailed analysis of water quality best management practices by animal feeding operations inside and outside the watershed yield insight into this relationship. Our findings support the hypothesis that farmers will adopt water quality measures if links are made clear and there is an expectation of future regulations. Published by Elsevier Ltd.

  10. Watershed monitoring and modelling and USA regulatory compliance.

    PubMed

    Turner, B G; Boner, M C

    2004-01-01

    The aim of the Columbus program was to implement a comprehensive watershed monitoring-network including water chemistry, aquatic biology and alternative sensors to establish water environment health and methods for determining future restoration progress and early warning for protection of drinking water supplies. The program was implemented to comply with USA regulatory requirements including Total Maximum Daily Load (TMDL) rules of the Clean Water Act (CWA) and Source Water Assessment and Protection (SWAP) rules under the Safe Drinking Water Act (SDWA). The USEPA Office of Research and Development and the Water Environment Research Foundation provided quality assurance oversight. The results obtained demonstrated that significant wet weather data is necessary to establish relationships between land use, water chemistry, aquatic biology and sensor data. These measurements and relationships formed the basis for calibrating the US EPA BASINS Model, prioritizing watershed health and determination of compliance with water quality standards. Conclusions specify priorities of cost-effective drainage system controls that attenuate stormwater flows and capture flushed pollutants. A network of permanent long-term real-time monitoring using combination of continuous sensor measurements, water column sampling and aquatic biology surveys and a regional organization is prescribed to protect drinking water supplies and measure progress towards water quality targets.

  11. Facilitating adaptive management in the Chesapeake Bay Watershed through the use of online decision support tools

    USGS Publications Warehouse

    Mullinx, Cassandra; Phillips, Scott; Shenk, Kelly; Hearn, Paul; Devereux, Olivia

    2009-01-01

    The Chesapeake Bay Program (CBP) is attempting to more strategically implement management actions to improve the health of the Nation’s largest estuary. In 2007 the U.S. Geological Survey (USGS) and U.S. Environmental Protection Agency (USEPA) CBP office began a joint effort to develop a suite of Internetaccessible decision-support tools and to help meet the needs of CBP partners to improve water quality and habitat conditions in the Chesapeake Bay and its watersheds. An adaptive management framework is being used to provide a structured decision process for information and individual tools needed to implement and assess practices to improve the condition of the Chesapeake Bay ecosystem. The Chesapeake Online Adaptive Support Toolkit (COAST) is a collection of web-based analytical tools and information, organized in an adaptive management framework, intended to aid decisionmakers in protecting and restoring the integrity of the Bay ecosystem. The initial version of COAST is focused on water quality issues. During early and mid- 2008, initial ideas for COAST were shared and discussed with various CBP partners and other potential user groups. At these meetings, test cases were selected to help improve understanding of the types of information and analytical functionality that would be most useful for specific partners’ needs. These discussions added considerable knowledge about the nature of decisionmaking for Federal, State, local and nongovernmental partners. Version 1.0 of COAST, released in early winter of 2008, will be further reviewed to determine improvements needed to address implementation and assessment of water quality practices. Future versions of COAST may address other aspects of ecosystem restoration, including restoration of habitat and living resources and maintaining watershed health.

  12. 77 FR 14011 - Assessment of Potential Large-Scale Mining on the Bristol Bay Watershed of Alaska: Nomination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... Bristol Bay watershed provides habitat for one of the largest wild salmon populations in the world. In... resident fish populations of the Kvichak and Nushagak River drainages, and if these effects are likely to affect wildlife and human populations in the region. Additional information describing the assessment...

  13. Seasonal rainfall-runoff relationships in a lowland forested watershed in the southeastern USA

    Treesearch

    Ileana La Torre Torres; Devendra Amatya; Ge Sun; Timothy Callahan

    2011-01-01

    Hydrological processes of lowland watersheds of the southern USA are not well understood compared to a hilly landscape due to their unique topography, soil compositions, and climate. This study describes the seasonal relationships between rainfall patterns and runoff (sum of storm flow and base flow) using 13 years (1964–1976) of rainfall and stream flow data for a low...

  14. Exploiting the Free Landsat Archive for Operational Monitoring of Ecosystem Condition and Change Across the Chesapeake Bay Watershed

    NASA Technical Reports Server (NTRS)

    BrowndeColstoun, Eric

    2010-01-01

    For the first time, all imagery acquired by the Landsat series of satellites is being made available by the USGS to users at no cost. This represents a key opportunity to use Landsat in a truly operational monitoring framework: large regions of the U.S. such as the Chesapeake Bay Watershed can now be analyzed using "wall-to-wall" imagery at timescales from approximately 1 month to several years. With the future launch of the Landsat Data Continuity Mission (LDCM) and Decadal Survey missions such as the hyperspectral HyspIRI, it is imperative to develop robust processing systems to perform annual ecosystem assessments over large regions such as the Chesapeake Bay. We have been working at NASA's Goddard Space Flight Center (GSFC) to develop an integrative framework for inserting 30m, annual, Landsat based data and derived products into the existing decision support system for the Bay, with a particular focus on ecosystem condition and changes over the entire watershed. The basic goal is to use a 'stack' of Landsat imagery with 40% or less cloud cover to produce multi-date (2005-2009 period), cloud/shadow/gap-free composited surface reflectance products that will support the creation of watershed scale land cover/ use products and the monitoring of ecosystem change across the Bay. Our scientific focus extends beyond the conventional definition of land cover (i.e. a classification of vegetation type) as we propose to monitor both changes in surface type (e.g. forest to urban), vegetation structure (e.g. forest disturbance due to logging or insect damage), as well as winter crop cover. These processes represent a continuum from large, interannual changes in land cover type, to subtler, intra-annual changes associated with short-term disturbance. The free Landsat data are being processed to surface reflectance and composited using the existing Landsat Ecosystem Disturbance Adaptive Processing System here at NASA/ GSFC, and land cover products (type, tree cover

  15. Sedimentary Evidence for Land Use Change in the Narragansett Bay Watershed: Late Woodland period (~500 AD) to the present

    NASA Astrophysics Data System (ADS)

    Salacup, J. M.; Altabet, M. A.; Herbert, T.; Prell, W. L.

    2012-12-01

    In the U.S., the last ~300 years have been a period of progressive and widespread resource exploitation, ecosystem degradation, and habitat destruction. In southern New England, the European Colonists thrived on the spread of slave-based plantation farming, which peaked ~1750 in RI. They produced commodities such as livestock, apples, onions, flax, and dairy. Trees felled to produce the necessary pasture- and farm-land were quickly used as lumber for boards, planks, timber, and barrels. In 1793, Slater Mill, located on the Blackstone River at the head of Narragansett Bay, was the first mill in the U.S to spin yarn using water power, making it the birthplace of the U.S Industrial Revolution. The ensuing urbanization drove the human population of the watershed up from ~50,000 in 1790 to more than 2 million by the year 2000. More recently, the Bay has experienced episodic hypoxic events [1]. These events correlate well with spatial and temporal patterns of nutrients and productivity [2] suggesting that human-induced increases in nutrient nitrogen and phosphorus are responsible for eutrophication-induced oxygen depletion [3]. However, these post-Colonial land use changes have yet to be characterized within the longer context of Native American land use practices, mainly due to the lack of historical records for the period. Additionally, the impact of this ecosystem disturbance on the Bay has not been fully described. Here we present results based on sedimentary profiles of biomarkers diagnostic for soil delivery to marine systems, branched glycerol dialykl glycerol tetraethers, and pollen for disturbance taxa, that suggest land use change began in the Bay's watershed 300 years before European contact. This contradicts long standing ideas regarding the land use practices of local tribes but agrees with new archaeological findings suggesting large semi-permanent settlements and widespread horticulture of maize may have been the norm at this time. We also show results of

  16. Wildfire disturbance impacts on streamflow from western USA watersheds

    NASA Astrophysics Data System (ADS)

    Cadol, D.; Wine, M.; Makhnin, O.

    2017-12-01

    Worldwide rapid changes in climate overlaid on changing land management paradigms have dramatically altered ecological disturbance regimes worldwide including in western North America. Ecological disturbances impacted include woody encroachment, pest pathogen complexes, riparian forest changes, and wildfire. These disturbances impact the hydrologic cycle, though the nature of these impacts has been difficult to quantify. Perhaps the greatest challenge is that most basins worldwide are ungauged. Taking wildfire as a globally relevant example of a key ecological disturbance, even within gauged basins, post-wildfire hydrologic response is spatially and temporally variable, affected by a host of variables including fire frequency, area burned, and recovery trajectory. Hydrologic response to wildfire is further understood to be a non-linear function of watershed characteristics and climate. Here we provide a framework that utilizes remote sensing, statistical modeling, field measurements, and geospatial methods to provide first-order estimates of ecological disturbance hydrologic impacts. We apply this framework to compare ecological disturbance hydrologic impacts amongst selected watersheds in the western USA. Here we show that ecological disturbance impacts on hydrology are highly variable, and in many cases have an effect magnitude similar to that modeled for temperature and precipitation changes.

  17. Application of a Structured Decision Process for Informing Watershed Management Options in Guánica Bay, Puerto Rico

    EPA Science Inventory

    The Guánica Bay watershed has been a priority for research, assessment and management since the 1970s, and since 2008, has been the focus of a U.S. Coral Reef Task Force (USCRTF) research initiative involving multiple agencies assembled to address the effect of land management de...

  18. 77 FR 11111 - Assessment of Potential Large-Scale Mining on the Bristol Bay Watershed of Alaska: Nomination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... populations in the world. In February 2011, EPA began a scientific assessment of the Bristol Bay watershed to... on salmon and resident fish populations of the Kvichak and Nushagak River drainages, and if these effects are likely to affect wildlife and human populations in the region. Additional information...

  19. Watershed factors affecting stream acidification in the White Mountains of New Hampshire, USA

    Treesearch

    Scott W. Bailey; James W. Hornbeck; C. Wayne Martin; Donald C. Buso

    1987-01-01

    The streams tributary to acidic Cone Pond, pH 4.5-4.8, and circumneutral Black Pond, pH 5.3-6.4, in the White Mountains of New Hampshire, USA, were monitored for a year. The watersheds of these two ponds were characterized in terms of geology and stream hydrology. Chemical gradients and patterns in rock weathering and groundwater discharge explain many of the...

  20. DINOFLAGELLATE CYST RECORDS AND HUMAN DISTURBANCE IN TWO NEIGHBORING ESTUARIES, NEW BEDFORD HARBOR AND APPONAGANSETT BAY, MASSACHUSETTS, USA

    EPA Science Inventory

    The dinoflagellate cyst records in sediments from New Bedford Harbor and Apponagansett Bay demonstrate sensitivity to environmental change caused by human activity in the watersheds over the last 500 years. Changes in the species richness, as well as absolute and relative abundan...

  1. Evaluating sulfur dynamics during storm events for three watersheds in the northeastern USA: a combined hydrological, chemical and isotopic approach

    Treesearch

    Myron J. Mitchell; Scott W. Bailey; James B. Shanley; Bernhard. Mayer

    2008-01-01

    Concerns related to climate change have resulted in an increasing interest in the importance of hydrological events such as droughts in affecting biogeochemical responses of watersheds. The effects of an unusually dry summer in 2002 had a marked impact on the biogeochemistry of three watersheds in the north-eastern USA. Chemical, isotopic and hydrological responses...

  2. Simulation of nutrient and sediment concentrations and loads in the Delaware inland bays watershed: Extension of the hydrologic and water-quality model to ungaged segments

    USGS Publications Warehouse

    Gutierrez-Magness, Angelica L.

    2006-01-01

    Rapid population increases, agriculture, and industrial practices have been identified as important sources of excessive nutrients and sediments in the Delaware Inland Bays watershed. The amount and effect of excessive nutrients and sediments in the Inland Bays watershed have been well documented by the Delaware Geological Survey, the Delaware Department of Natural Resources and Environmental Control, the U.S. Environmental Protection Agency's National Estuary Program, the Delaware Center for Inland Bays, the University of Delaware, and other agencies. This documentation and data previously were used to develop a hydrologic and water-quality model of the Delaware Inland Bays watershed to simulate nutrients and sediment concentrations and loads, and to calibrate the model by comparing concentrations and streamflow data at six stations in the watershed over a limited period of time (October 1998 through April 2000). Although the model predictions of nutrient and sediment concentrations for the calibrated segments were fairly accurate, the predictions for the 28 ungaged segments located near tidal areas, where stream data were not available, were above the range of values measured in the area. The cooperative study established in 2000 by the Delaware Department of Natural Resources and Environmental Control, the Delaware Geological Survey, and the U.S. Geological Survey was extended to evaluate the model predictions in ungaged segments and to ensure that the model, developed as a planning and management tool, could accurately predict nutrient and sediment concentrations within the measured range of values in the area. The evaluation of the predictions was limited to the period of calibration (1999) of the 2003 model. To develop estimates on ungaged watersheds, parameter values from calibrated segments are transferred to the ungaged segments; however, accurate predictions are unlikely where parameter transference is subject to error. The unexpected nutrient and

  3. Investigating water use over the Choptank River Watershed using a multisatellite data fusion approach

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Anderson, Martha C.; Gao, Feng; Hain, Christopher; Alfieri, Joseph G.; Sharifi, Amirreza; McCarty, Gregory W.; Yang, Yun; Yang, Yang; Kustas, William P.; McKee, Lynn

    2017-07-01

    The health of the Chesapeake Bay ecosystem has been declining for several decades due to high levels of nutrients and sediments largely tied to agricultural production systems. Therefore, monitoring of agricultural water use and hydrologic connections between crop lands and Bay tributaries has received increasing attention. Remote sensing retrievals of actual evapotranspiration (ET) can provide valuable information in support of these hydrologic modeling efforts, spatially and temporally describing consumptive water use by crops and natural vegetation and quantifying response to expansion of irrigated area occurring with Bay watershed. In this study, a multisensor satellite data fusion methodology, combined with a multiscale ET retrieval algorithm, was applied over the Choptank River watershed located within the Lower Chesapeake Bay region on the Eastern Shore of Maryland, USA to produce daily 30 m resolution ET maps. ET estimates directly retrieved on Landsat satellite overpass dates have high accuracy with relative error (RE) of 9%, as evaluated using flux tower measurements. The fused daily ET time series have reasonable errors of 18% at the daily time step - an improvement from 27% errors using standard Landsat-only interpolation techniques. Annual water consumption by different land cover types was assessed, showing reasonable distributions of water use with cover class. Seasonal patterns in modeled crop transpiration and soil evaporation for dominant crop types were analyzed, and agree well with crop phenology at field scale. Additionally, effects of irrigation occurring during a period of rainfall shortage were captured by the fusion program. These results suggest that the ET fusion system will have utility for water management at field and regional scales over the Eastern Shore. Further efforts are underway to integrate these detailed water use data sets into watershed-scale hydrologic models to improve assessments of water quality and inform best

  4. Spatiotemporal variations in the abundance and composition of bulk and chromophoric dissolved organic matter in seasonally hypoxia-influenced Green Bay, Lake Michigan, USA.

    PubMed

    DeVilbiss, Stephen E; Zhou, Zhengzhen; Klump, J Val; Guo, Laodong

    2016-09-15

    Green Bay, Lake Michigan, USA, is the largest freshwater estuary in the Laurentian Great Lakes and receives disproportional terrestrial inputs as a result of a high watershed to bay surface area ratio. While seasonal hypoxia and the formation of "dead zones" in Green Bay have received increasing attention, there are no systematic studies on the dynamics of dissolved organic matter (DOM) and its linkage to the development of hypoxia. During summer 2014, bulk dissolved organic carbon (DOC) analysis, UV-vis spectroscopy, and fluorescence excitation-emission matrices (EEMs) coupled with PARAFAC analysis were used to quantify the abundance, composition and source of DOM and their spatiotemporal variations in Green Bay, Lake Michigan. Concentrations of DOC ranged from 202 to 571μM-C (average=361±73μM-C) in June and from 279 to 610μM-C (average=349±64μM-C) in August. In both months, absorption coefficient at 254nm (a254) was strongly correlated to bulk DOC and was most abundant in the Fox River, attesting a dominant terrestrial input. Non-chromophoric DOC comprised, on average, ~32% of bulk DOC in June with higher terrestrial DOM and ~47% in August with higher aquagenic DOM, indicating that autochthonous and more degraded DOM is of lower optical activity. PARAFAC modeling on EEM data resulted in four major fluorescent DOM components, including two terrestrial humic-like, one aquagenic humic-like, and one protein-like component. Variations in the abundance of DOM components further supported changes in DOM sources. Mixing behavior of DOM components also indicated that while bulk DOM behaved quasi-conservatively, significant compositional changes occurred during transport from the Fox River to the open bay. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. BACTERIOPLANKTON DYNAMICS IN PENSACOLA BAY, FL, USA: ROLE OF PHYTOPLANKTON AND DETRIAL CARBON SOURCES

    EPA Science Inventory

    Bacterioplankton Dynamics in Pensacola Bay, FL, USA: Role of Phytoplankton and Detrital Carbon Sources (Abstract). To be presented at the16th Biennial Conference of the Estuarine Research Foundation, ERF 2001: An Estuarine Odyssey, 4-8 November 2001, St. Pete Beach, FL. 1 p. (ER...

  6. Chesapeake Bay TMDL

    EPA Pesticide Factsheets

    In 2010 EPA established the Chesapeake Bay TMDL, a comprehensive pollution diet with accountability measures to restore clean water in the bay and local waters. It set limits for nutrients and sediment to meet water quality standards across the watershed

  7. Contaminant exposure of birds nesting in Green Bay, Wisconsin, USA

    USGS Publications Warehouse

    Custer, Thomas W.; Dummer, Paul M.; Custer, Christine M.; Franson, J. Christian; Jones, Michael

    2014-01-01

    In earlier studies, elevated concentrations of polychlorinated biphenyl (PCB) and p,p'-dichlorodiphenyldichloroethylene (DDE) were reported in double-crested cormorant (Phalacrocorax auritus) eggs and tree swallow (Tachycineta bicolor) eggs and nestlings collected from lower Green Bay (WI, USA) in 1994 and 1995 and black-crowned night-heron (Nycticorax nycticorax) eggs collected in 1991. Comparable samples collected in 2010 and 2011 indicated that concentrations of PCBs were 35%, 62%, 70%, and 88% lower than in the early 1990s in tree swallow eggs, tree swallow nestlings, double-crested cormorant eggs, and black-crowned night-heron eggs, respectively; concentrations of DDE were 47%, 43%, 51%, and 80% lower, respectively. These declines are consistent with regional contaminant trends in other species. Concentrations of PCBs were higher in herring gull (Larus argentatus) than in black-crowned night-heron eggs collected from Green Bay in 2010; PCB concentrations in double-crested cormorant and tree swallow eggs were intermediate. The estimated toxicity of the PCB mixture in eggs of the insectivorous tree swallow was the equal to or greater than toxicity in the 3 piscivorous bird species. A multivariate analysis indicated that the composition percentage of lower-numbered PCB congeners was greater in eggs of the insectivorous tree swallow than in eggs of the 3 piscivorous species nesting in Green Bay. Dioxin and furan concentrations and the toxicity of these chemicals were also higher in tree swallows than these other waterbird species nesting in Green Bay.

  8. Contaminant exposure of birds nesting in Green Bay, Wisconsin, USA.

    PubMed

    Custer, Thomas W; Dummer, Paul M; Custer, Christine M; Franson, J Christian; Jones, Michael

    2014-08-01

    In earlier studies, elevated concentrations of polychlorinated biphenyl (PCB) and p,p'-dichlorodiphenyldichloroethylene (DDE) were reported in double-crested cormorant (Phalacrocorax auritus) eggs and tree swallow (Tachycineta bicolor) eggs and nestlings collected from lower Green Bay (WI, USA) in 1994 and 1995 and black-crowned night-heron (Nycticorax nycticorax) eggs collected in 1991. Comparable samples collected in 2010 and 2011 indicated that concentrations of PCBs were 35%, 62%, 70%, and 88% lower than in the early 1990s in tree swallow eggs, tree swallow nestlings, double-crested cormorant eggs, and black-crowned night-heron eggs, respectively; concentrations of DDE were 47%, 43%, 51%, and 80% lower, respectively. These declines are consistent with regional contaminant trends in other species. Concentrations of PCBs were higher in herring gull (Larus argentatus) than in black-crowned night-heron eggs collected from Green Bay in 2010; PCB concentrations in double-crested cormorant and tree swallow eggs were intermediate. The estimated toxicity of the PCB mixture in eggs of the insectivorous tree swallow was the equal to or greater than toxicity in the 3 piscivorous bird species. A multivariate analysis indicated that the composition percentage of lower-numbered PCB congeners was greater in eggs of the insectivorous tree swallow than in eggs of the 3 piscivorous species nesting in Green Bay. Dioxin and furan concentrations and the toxicity of these chemicals were also higher in tree swallows than these other waterbird species nesting in Green Bay. Published 2014 Wiley Periodicals, Inc.

  9. A Regionalized Flow Duration Curve Method to Predict Streamflow for Ungauaged Basins: A Case Study of the Rappahannock Watershed in Virginia, USA

    EPA Science Inventory

    A method to predict streamflow for ungauged basins of the Mid-Atlantic Region, USA was applied to the Rappahannock watershed in Virginia, USA. The method separates streamflow time series into magnitude and time sequence components. It uses the regionalized flow duration curve (RF...

  10. IMPACT OF STORM-WATER OUTFALLS ON SEDIMENT QUALITY IN CORPUS CHRISTI BAY, TEXAS, USA

    EPA Science Inventory

    To determine the quality of sediments and extent of contaminant impacts, a Sediment Quality Triad (SQT) study was conducted at 36 sites in the Corpus Christi Bay, Texas, USA, system. Fifteen of the 36 sites were located near storm-water outfalls, but 13 other sites (i.e., industr...

  11. Water-limiting conditions based on monthly water balances and potential evapotranspiration at Panola Mountain Research Watershed, Georgia, U.S.A

    Treesearch

    Brent Aulenbach; Norman E. Peters; James Freer

    2016-01-01

    Drought and resulting water-limiting conditions can result in negative ecological impacts such as reduced plant growth and increased stress that can make plants more vulnerable to threats such as insect infestations. The long-term dataset at Panola Mountain Research Watershed, a small 0.41-hectare forested watershed near Atlanta, Georgia, U.S.A., was used to better ...

  12. Earliest record of the invasive Foraminifera Trochammina hadai in San Francisco Bay, California, USA

    USGS Publications Warehouse

    McGann, Mary

    2014-01-01

    In 1995, Trochammina hadai, a benthic Foraminifera prevalent in Japanese estuaries, was found in San Francisco Bay, California, USA. Subsequent field investigations determined that the species was also present in nearly all of the major ports and estuaries along the western United States. Because of its widespread colonization, it is of interest to determine when T. hadai first appeared as an invasive in the coastal regions of the North Pacific. In San Francisco Bay, the species was not found in 404 surface samples collected between 1930 and 1981. In 1983, however, a grab sediment sample from one of four sites in the southern portion of the bay contained T. hadai. This site was the most northern of the four and contained 12 specimens of the invasive, comprising 1.5% of the assemblage. This is the earliest appearance on record of T. hadai in San Francisco Bay.

  13. A Summary of 20 Years of Forest Monitoring in Cinnamon Bay Watershed, St. John, U.S. Virgin Islands.

    Treesearch

    Peter L. Weaver

    2006-01-01

    St. John, and probably the Cinnamon Bay watershed, has a history of human use dating to 1700 B.C. The most notable impacts, however, occurred from 1730 to 1780 when sugar cane and cotton production peaked on the island. As agriculture was abandoned, the island regenerated in secondary forest, and in 1956, the Virgin Islands National Park was created. From 1983 to 2003...

  14. Distribution characteristics of volatile methylsiloxanes in Tokyo Bay watershed in Japan: Analysis of surface waters by purge and trap method.

    PubMed

    Horii, Yuichi; Minomo, Kotaro; Ohtsuka, Nobutoshi; Motegi, Mamoru; Nojiri, Kiyoshi; Kannan, Kurunthachalam

    2017-05-15

    Surface waters including river water and effluent from sewage treatment plants (STPs) were collected from Tokyo Bay watershed, Japan, and analyzed for seven cyclic and linear volatile methylsiloxanes (VMSs), i.e., D3, D4, D5, D6, L3, L4, and L5 by an optimized purge and trap extraction method. The total concentrations of seven VMSs (ΣVMS) in river water ranged from <4.9 to 1700ng/L (mean: 220ng/L). The individual mean concentrations of cyclic VMSs in surface waters were; 10ng/L for D3, 13ng/L for D4, 180ng/L for D5, and 18ng/L for D6. The concentrations of ΣVMS determined in STP effluents varied widely from 99 to 2500ng/L and the individual mean concentrations were 21ng/L for D3, 27ng/L for D4, 540ng/L for D5, and 45ng/L for D6. D5, which is widely used in personal-care products, was found to be the most abundant compound in both river water and STP effluent. Linear VMSs were detected at much lower frequency and concentrations than those of cyclic VMSs. The measured concentrations of D4 were below the no-observed effect concentration (NOEC). The annual emission of ΣVMS through STPs into Tokyo Bay watershed was estimated at 2300kg. Our results indicate widespread distribution of VMSs in Tokyo Bay watershed and the influence of domestic wastewater discharges as a source of VMSs in the aquatic environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Persistent organochlorine pollutants in eggs of colonial waterbirds from Galveston Bay and East Texas, USA

    USGS Publications Warehouse

    Frank, D.S.; Mora, M.A.; Sericano, J.L.; Blankenship, Alan L.; Kannan, K.; Giesy, J.P.

    2001-01-01

    Eggs of neotropic cormorants (Phalacrocorax brasilianus), black-crowned night herons (Nycticorax nycticorax), and great egrets (Ardea alba) nesting on several locations in Galveston Bay (TX, USA) and at two control sites outside the bay were collected during April–May 1996 and analyzed for chlorinated pesticides, PCBs, polychlorinated dibenzo-p-dioxins, and polychlor-inated dibenzofurans. Additionally, concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQs) were determined by use of relative potency factors (TEQs) or the H4IIE-luc bioassay TCDD-EQs. Concentrations of 1,1,-dichloro-2,2-bis(p-chlo-rophenyl)ethylene (DDE) were greater in eggs of neotropic cormorants from Alexander Island (mean = 1,040 ng/g wet wt) in the Houston Ship Channel (Houston, TX, USA) and in those from Telfair Island (mean = 1,460 ng/g wet wt), a reference location outside the bay, than in most locations inside the bay (mean range = 119–453 ng/g wet wt). Mean PCB concentrations were greater in eggs of neotropic cormorants from Alexander Island (mean = 5,720 ng/g wet wt) than in eggs of cormorants from areas farther away from the ship channel, including two reference sites outside the bay (mean range = 404–3,140 ng/g wet wt). The TCDD was the main dioxin congener detected in eggs from all locations within Galveston Bay. Instrumental TEQs in eggs ranged from 67 pg/g wet weight at control sites to 452 pg/g wet weight at Alexander Island. Concentrations of TCDD-EQs determined in the H4IIE assay were correlated with instrumental TEQs and were greater in eggs of cormorants from islands within the bay, although these were farther away from the ship channel. Overall, concentrations of DDE, PCBs, TCDD, and TCDD-EQs were less than the threshold levels known to affect reproduction. However, some eggs contained concentrations of total PCBs or DDE greater than what would elicit adverse effects on birds. No identifiable deformities or abnormalities were detected in embryos

  16. Hydrology and water quality of a field and riparian buffer adjacent to a mangrove wetland in Jobos Bay Watershed, Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Models that estimate the effects of agricultural conservation practices on water quantity and quality have become increasingly important tools for short- and long-term assessments. In this study, we simulated the water quality and hydrology of a portion of the Jobos Bay watershed, Puerto Rico using...

  17. Meaningful Watershed Experiences for Middle and High School Students

    NASA Astrophysics Data System (ADS)

    Landry, Melinda; Smith, Cynthia; Greene, Joy

    2014-05-01

    Prince William County Public Schools and George Mason University in Virginia, USA, partnered to provide Meaningful Watershed Educational Experiences (MWEEs) for over 25,000 middle and high school students (11-18 year olds) across 34 schools. This school district, situated in a rapidly growing region 55 km southwest of Washington DC, has over 82,000 K-12 students. As native forest cover has been replaced with farming and urbanization, water quality has significantly degraded in the 166,534 km2 Chesapeake Bay watershed. This project was designed to increase student awareness of their impact on the land and waters of the largest estuary in the United States. MWEE is a long-term comprehensive project that incorporates a classroom preparation phase, a hands-on outdoor field investigation, and a reflection and data-sharing component. Training and technical assistance enhances the capacity of teachers of 6th grade, high school Earth Science and Environmental Science to deliver MWEEs which includes schoolyard stewardship, inquiry driven field study, use of hand-held technology and computer based mapping and analysis, project sharing and outreach. George Mason University researchers worked closely with K-12 science educators to create a comprehensive watershed-focused curriculum. Graduate and undergraduate students with strong interests in environmental science and education were trained to deliver the field investigation component of the MWEE. Representative teachers from each school were provided 3 days of professional development and were responsible for the training of their school's science education team. A comprehensive curriculum provided teachers with activities and tools designed to enhance students' mastery of state science objectives. Watershed concepts were used as the unifying theme to support student understanding of curriculum and STEM objectives including: scientific investigation, data collection and communication, chemistry, energy, erosion, human

  18. Chesapeake Bay recovery and factors affecting trends: Long-termmonitoring, indicators, and insights

    USGS Publications Warehouse

    Tango, Peter J.; Batiuk, Richard A.

    2016-01-01

    Monitoring the outcome of restoration efforts is the only way to identify the status of a recovery and the most effective management strategies. In this paper, we discuss Chesapeake Bay and watershed recovery and factors influencing water quality trends. For over 30 years, the Chesapeake Bay Program Partnership’s long-term tidal and watershed water quality monitoring networks have measured physical, chemical and biological parameters throughout the bay and its surrounding watershed underpinning an adaptive management process to drive ecosystem recovery. There are many natural and anthropogenic factors operating and interacting to affect the watershed and bay water quality recovery responses to management actions. Across habitats and indicators, the bay and its watershed continue to express a diverse spatial and temporal fabric of multiscale conditions, stressors and trends that show a range of health conditions and impairments, as well as evidence of progress and degradation. Recurrent independent reviews of the monitoring program have driven a culture of continued adaptation of the monitoring networks to reflect ever evolving management information needs. The adherence to bay and watershed-wide consistent monitoring protocols provides monitoring data supporting analyses and development of scientific syntheses that underpin indicator and model development, regulatory assessments, targeting of management actions, evaluation of management effectiveness, and directing of priorities and policies.

  19. Water's Way at Sleepers River watershed - revisiting flow generation in a post-glacial landscape, Vermont USA

    Treesearch

    James B. Shanley; Stephen D. Sebestyen; Jeffrey J. McDonnell; Brian L. McGlynn; Thomas Dunne

    2015-01-01

    The Sleepers River Research Watershed (SRRW) in Vermont, USA, has been the site of active hydrologic research since 1959 and was the setting where Dunne and Black demonstrated the importance and controls of saturation-excess overland flow (SOF) on streamflow generation. Here, we review the early studies from the SRRW and show how they guided our conceptual approach to...

  20. CASCO BAY PLAN

    EPA Science Inventory

    Casco Bay lies at the heart of Maine's most populated area. The health of its waters, wetlands, and wildlife depend in large part on the activities of the quarter-million residents who live in its watershed. Less than 30 years ago, portions of Casco Bay were off-limits to recr...

  1. Ecosystem under pressure: ballast water discharge into Galveston Bay, Texas (USA) from 2005 to 2010.

    PubMed

    Steichen, Jamie L; Windham, Rachel; Brinkmeyer, Robin; Quigg, Antonietta

    2012-04-01

    Ballast water exchange processes facilitate the dispersal and unnatural geographic expansion of phytoplankton, including harmful algal bloom species. From 2005 to 2010, over 45,000 vessels (≈ 8000 annually) travelled across Galveston Bay (Texas, USA) to the deep-water ports of Houston (10th largest in the world), Texas City and Galveston. These vessels (primarily tankers and bulkers) discharged ≈ 1.2 × 10(8) metrictons of ballast water; equivalent to ≈ 3.4% of the total volume of the Bay. Over half of the ballast water discharged had a coastwise origin, 96% being from US waters. Galveston Bay has fewer non-indigenous species but receives a higher volume of ballast water discharge, relative to the highly invaded Chesapeake and San Francisco Bays. Given the magnitude of shipping traffic, the role of Galveston Bay, both as a recipient and donor region of non-indigenous phytoplankton species is discussed here in terms of the invasibility risk to this system by way of ballast water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed

    USGS Publications Warehouse

    Lindsey, Bruce D.; Phillips, Scott; Donnelly, Colleen A.; Speiran, Gary K.; Plummer, Niel; Bohlke, John Karl; Focazio, Michael J.; Burton, William C.; Busenberg, Eurybiades

    2003-01-01

    One of the major water-quality problems in the Chesapeake Bay is an overabundance of nutrients from the streams and rivers that discharge to the Bay. Some of these nutrients are from nonpoint sources such as atmospheric deposition, agricultural manure and fertilizer, and septic systems. The effects of efforts to control nonpoint sources, however, can be difficult to quantify because of the lag time between changes at the land surface and the response in the base-flow (ground water) component of streams. To help resource managers understand the lag time between implementation of management practices and subsequent response in the nutrient concentrations in the base-flow component of streamflow, a study of ground-water discharge, residence time, and nitrate transport in springs throughout the Chesapeake Bay Watershed and in four smaller watersheds in selected hydrogeomorphic regions (HGMRs) was conducted. The four watersheds were in the Coastal Plain Uplands, Piedmont crystalline, Valley and Ridge carbonate, and Valley and Ridge siliciclastic HGMRs.A study of springs to estimate an apparent age of the ground water was based on analyses for concentrations of chlorofluorocarbons in water samples collected from 48 springs in the Chesapeake Bay Watershed. Results of the analysis indicate that median age for all the samples was 10 years, with the 25th percentile having an age of 7 years and the 75th percentile having an age of 13 years. Although the number of samples collected in each HGMR was limited, there did not appear to be distinct differences in the ages between the HGMRs. The ranges were similar between the major HGMRs above the Fall Line (modern to about 50 years), with only two HGMRs of small geographic extent (Piedmont carbonate and Mesozoic Lowland) having ranges of modern to about 10 years. The median values of all the HGMRs ranged from 7 to 11 years. Not enough samples were collected in the Coastal Plain for comparison. Spring samples showed slightly younger

  3. Combined and synergistic effects of climate change and urbanization on water quality in the Wolf Bay watershed, southern Alabama.

    PubMed

    Wang, Ruoyu; Kalin, Latif

    2018-02-01

    This study investigated potential changes in flow, total suspended solid (TSS) and nutrient (nitrogen and phosphorous) loadings under future climate change, land use/cover (LULC) change and combined change scenarios in the Wolf Bay watershed, southern Alabama, USA. Four Global Circulation Models (GCMs) under three Special Report Emission Scenarios (SRES) of greenhouse gas were used to assess the future climate change (2016-2040). Three projected LULC maps (2030) were employed to reflect different extents of urbanization in future. The individual, combined and synergistic impacts of LULC and climate change on water quantity/quality were analyzed by the Soil and Water Assessment Tool (SWAT). Under the "climate change only" scenario, monthly distribution and projected variation of TSS are expected to follow a pattern similar to streamflow. Nutrients are influenced both by flow and management practices. The variation of Total Nitrogen (TN) and Total Phosphorous (TP) generally follow the flow trend as well. No evident difference in the N:P ratio was projected. Under the "LULC change only" scenario, TN was projected to decrease, mainly due to the shrinkage of croplands. TP will increase in fall and winter. The N:P ratio shows a strong decreasing potential. Under the "combined change" scenario, LULC and climate change effect were considered simultaneously. Results indicate that if future loadings are expected to increase/decrease under any individual scenario, then the combined change will intensify that trend. Conversely, if their effects are in opposite directions, an offsetting effect occurs. Science-based management practices are needed to reduce nutrient loadings to the Bay. Copyright © 2017. Published by Elsevier B.V.

  4. Geochemical and Sedimentary Record of Urbanization and Industrialization of the Galveston Bay Watershed

    NASA Astrophysics Data System (ADS)

    Al Mukaimi, M. E.; Dellapenna, T.; Williams, J. R.

    2016-02-01

    Galveston Bay (GB) is the second largest estuary in the Gulf of Mexico, with the watershed containing one of the largest concentrations of petroleum and chemical industries globally, particularly within the lower 15 km of the San Jacinto River/Houston Ship Channel (SJR/HSC). Throughout the last century, extensive groundwater extraction to support these industries and an expanding population has resulted in significantly enhanced land subsidence (0.6-3.0 cm yr-1). In order to examine the impacts of these anthropogenic alterations to the system, 22 vibracores were collected throughout the bay and analyzed for 210Pb and 137Cs radioisotope geochronology, X-radiography, grain size, X-Ray Fluorescence, Hg concentration, lignin phenol concentrations, and stable isotopes (δ13C and δ15N). The sedimentation rates from these cores were used to determine historical input of trace metals and organic matter sources. Results indicate sedimentation rates are relatively higher (1.4-1.9 cm yr-1) in areas with elevated Relative Sea Level Rise (RSLR). However, in general, sedimentation rates are lower (as much as 50%) than RSLR, indicating that sediment accumulation has not kept pace with land subsidence. Hg core profiles show significant input of Hg beginning around 1900, with peak concentrations in the 1960-70's, and decrease thereafter. Surficial Hg concentrations were found to be significantly higher proximal to the SJR/HSC, and decrease seaward. Preliminary results of stable isotopes and lignin phenols show there is a significant terrestrial input of organic matter, and the provenance has shifted from being marine to terrestrial dominated. Due to the industrial and residential importance of the GB watershed, these results not only increase our knowledge of the fate and transport of organic biomarkers, Hg, and other particle bound contaminants under varying sedimentation regimes, but aid in local environmental management strategies to minimize impact to public health.

  5. Soil bacterial communities of a calcium-supplemented and a reference watershed at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA

    Treesearch

    Ganapathi Sridevi; Rakesh Minocha; Swathi A. Turlapati; Katherine C. Goldfarb; Eoin L. Brodie; Louis S. Tisa; Subhash C. Minocha

    2012-01-01

    Soil Ca depletion because of acidic deposition-related soil chemistry changes has led to the decline of forest productivity and carbon sequestration in the northeastern USA. In 1999, acidic watershed (WS) 1 at the Hubbard Brook Experimental Forest (HBEF), NH, USA was amended with Ca silicate to restore soil Ca pools. In 2006, soil samples were collected from the Ca-...

  6. DIAGNOSING CAUSES OF NATIVE FISH AND MUSSEL SPECIES DECLINE IN THE CLINCH AND POWELL RIVER WATERSHED, VIRGINIA, USA.

    EPA Science Inventory

    The free-flowing Clinch and Powell watershed in Virginia, USA harbors a high number of endemic mussel and fish species but they are declining or going extinct at an alarming rate. In order to prioritize resource management strategies with respect to these fauna, a Graphical Info...

  7. Examining Reservoir Influences on Fluvial Sediment Supply to Estuaries and Coastal Oceans with Sediment Geochronologies: Example from Conowingo Reservoir (Upper Chesapeake Bay, USA)

    NASA Astrophysics Data System (ADS)

    Palinkas, C. M.; Russ, E.

    2016-12-01

    The flux of fluvial sediment to estuaries and coastal oceans is often interrupted by natural and anthropogenic influences. Here, we focus on river dams, which alter the connection between rivers and their receiving basins via sediment sequestration in their reservoirs. Sediments are effectively trapped until river discharge is high enough to create flow velocities capable of resuspending sediment. Sediment resuspension often varies within the reservoir, driven by morphological features such as channels and islands. Thus, sediment residence times in the reservoir are often highly variable in space and time. This study focuses on reading the sedimentary record in one such system - the reservoir upstream of Conowingo Dam, built in the late 1920s and the last and largest dam on the Susquehanna River (Maryland, USA) before it enters Chesapeake Bay. This study establishes geochronologies of reservoir sedimentation on seasonal to decadal time scales with a variety of techniques (e.g., natural and anthropogenic radioisotopes (7Be, 210Pb, 137Cs), coal from mining in the watershed) to interpret observed down-core sedimentary structures and characteristics (grain size, organic content). These observations reveal spatial and temporal patterns of sediment deposition and/or erosion. Placed within the broader context of reservoir geomorphology, these results can improve predictions of sediment supply to downstream environments, in this case Chesapeake Bay, where it can impact water quality and/or benthic organisms.

  8. Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA)

    NASA Astrophysics Data System (ADS)

    Zgonnik, Viacheslav; Beaumont, Valérie; Deville, Eric; Larin, Nikolay; Pillot, Daniel; Farrell, Kathleen M.

    2015-12-01

    A study of soil gases was made in North Carolina (USA) in and around morphological depressions called "Carolina bays." This type of depression is observed over the Atlantic coastal plains of the USA, but their origin remains debated. Significant concentrations of molecular hydrogen (H2) were detected, notably around the bays. These measurements suggest that Carolina bays are the surficial expression of fluid flow pathways for hydrogen gas moving from depth to the surface. The potential mechanisms of H2 production and transport and the geological controls on the fluid migration pathways are discussed, with reference to the hypothesis that Carolina bays are the result of local collapses caused by the alteration of rock along the deep pathways of H2 migrating towards the surface. The present H2 seepages are comparable to those in similar structures previously observed in the East European craton.

  9. Using Remotely Sensed Data and Watershed and Hydrodynamic Models to Evaluate the Effects of Land Cover Land Use Change on Aquatic Ecosystems in Mobile Bay, AL

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.; Judd, Chaeli; Thom, Ron; Woodruff, Dana; Ellis, Jean T.; Quattrochi, Dale; Watson, Brian; Rodriquez, Hugo; Johnson, Hoyt

    2012-01-01

    Alabama coastal systems have been subjected to increasing pressure from a variety of activities including urban and rural development, shoreline modifications, industrial activities, and dredging of shipping and navigation channels. The impacts on coastal ecosystems are often observed through the use of indicator species. One such indicator species for aquatic ecosystem health is submerged aquatic vegetation (SAV). Watershed and hydrodynamic modeling has been performed to evaluate the impact of land cover land use (LCLU) change in the two counties surrounding Mobile Bay (Mobile and Baldwin) on SAV stressors and controlling factors (temperature, salinity, and sediment) in the Mobile Bay estuary. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for LCLU scenarios in 1948, 1992, 2001, and 2030. Remotely sensed Landsat-derived National Land Cover Data (NLCD) were used in the 1992 and 2001 simulations after having been reclassified to a common classification scheme. The Prescott Spatial Growth Model was used to project the 2030 LCLU scenario based on current trends. The LSPC model simulations provided output on changes in flow, temperature, and sediment for 22 discharge points into the estuary. These results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment on a grid throughout Mobile Bay and adjacent estuaries. The changes in the aquatic ecosystem were used to perform an ecological analysis to evaluate the impact on SAV habitat suitability. This is the key product benefiting the Mobile Bay coastal environmental managers that integrates the influences of temperature, salinity, and sediment due to LCLU driven flow changes with the restoration potential of SAVs. Data products and results are being integrated into NOAA s EcoWatch and Gulf of Mexico Data Atlas online systems for

  10. Using Remotely Sensed Data and Watershed and Hydrodynamic Models to Evaluate the Effects of Land Cover Land Use Change on Aquatic Ecosystems in Mobile Bay, AL

    NASA Astrophysics Data System (ADS)

    Al-Hamdan, M. Z.; Estes, M. G.; Judd, C.; Thom, R.; Woodruff, D.; Ellis, J. T.; Quattrochi, D.; Watson, B.; Rodriguez, H.; Johnson, H.

    2012-12-01

    Alabama coastal systems have been subjected to increasing pressure from a variety of activities including urban and rural development, shoreline modifications, industrial activities, and dredging of shipping and navigation channels. The impacts on coastal ecosystems are often observed through the use of indicator species. One such indicator species for aquatic ecosystem health is submerged aquatic vegetation (SAV). Watershed and hydrodynamic modeling has been performed to evaluate the impact of land cover land use (LCLU) change in the two counties surrounding Mobile Bay (Mobile and Baldwin) on SAV stressors and controlling factors (temperature, salinity, and sediment) in the Mobile Bay estuary. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for LCLU scenarios in 1948, 1992, 2001, and 2030. Remotely sensed Landsat-derived National Land Cover Data (NLCD) were used in the 1992 and 2001 simulations after having been reclassified to a common classification scheme. The Prescott Spatial Growth Model was used to project the 2030 LCLU scenario based on current trends. The LSPC model simulations provided output on changes in flow, temperature, and sediment for 22 discharge points into the estuary. These results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment on a grid throughout Mobile Bay and adjacent estuaries. The changes in the aquatic ecosystem were used to perform an ecological analysis to evaluate the impact on SAV habitat suitability. This is the key product benefiting the Mobile Bay coastal environmental managers that integrates the influences of temperature, salinity, and sediment due to LCLU driven flow changes with the restoration potential of SAVs. Data products and results are being integrated into NOAA's EcoWatch and Gulf of Mexico Data Atlas online systems for

  11. An evaluation of factors controlling the abundance of epiphytes on Zostera marina along an estuarine gradient in Yaquina Bay, Oregon, USA.

    EPA Science Inventory

    Epiphytes on seagrass (Zostera marina) growing in the lower intertidal were examined along an estuarine gradient within Yaquina Bay, Oregon over a period of 4 years. The Yaquina Estuary receives high levels of nutrients from the watershed during the wet season and from the ocean...

  12. Linking the watershed to the schoolshed: teaching sustainable development in K-12 with the Chester RIver Watershed Observatory

    NASA Astrophysics Data System (ADS)

    Trembanis, A. C.; Levin, D.; Seidel, J.

    2012-12-01

    The Chester River has been the subject of ongoing scientific studies in response to both the Clean Water Act and the EPA's Chesapeake Bay Program initiatives. The Upper, Middle, and Lower Chester are on the Maryland Department of Environment's list of "impaired waters". The Chester River Watershed (CRW) Observatory is lead by the Center for Environment & Society at Washington College. Eight clusters representing 22 public and private K-12 schools in the CRW provide the sampling sites distributed throughout the watershed. Weather stations will be installed at these sites allowing monitoring of the watershed's microclimate. Each cluster will be assigned a Basic Observation Buoy (BOB), an easy to assemble inexpensive buoy platform for real-time water column and atmospheric condition measurements. The BOBs are fitted with a data sonde to collect similar data parameters (e.g. salinity, temperature) as the main stem Chesapeake Bay buoys do. These assets will be deployed and the data transmitted to the Chester River Geographic Information System site for archival and visual display. Curriculum already developed for the Chesapeake Bay Interpretive Buoy System by the NOAA Chesapeake Bay Office will be adapted to the Chester River Watershed. Social issues of water sustainability will be introduced using the Watershed Game (Northland NEMO ®). During 2011 NOAA's Chesapeake Bay Office completed curriculum projects including Chesapeake Exploration, Build-a-Buoy (BaBs) and Basic Observation Buoys (BOBs). These engaging projects utilize authentic data and hands-on activities to demonstrate the tools scientists use to understand system interactions in the Bay. Chesapeake Exploration is a collection of online activities that provides teachers and students with unprecedented access to Bay data. Students are guided through a series of tasks that explore topics related to the interrelation between watersheds, land-use, weather, water quality, and living resources. The BaBs and BOBs

  13. A cross-site comparison of factors influencing soil nitrification rates in northeastern USA forested watersheds

    USGS Publications Warehouse

    Ross, D.S.; Wemple, B.C.; Jamison, A.E.; Fredriksen, G.; Shanley, J.B.; Lawrence, G.B.; Bailey, S.W.; Campbell, J.L.

    2009-01-01

    Elevated N deposition is continuing on many forested landscapes around the world and our understanding of ecosystem response is incomplete. Soil processes, especially nitrification, are critical. Many studies of soil N transformations have focused on identifying relationships within a single watershed but these results are often not transferable. We studied 10 small forested research watersheds in the northeastern USA to determine if there were common factors related to soil ammonification and nitrification. Vegetation varied between mixed northern hardwoods and mixed conifers. Watershed surface soils (Oa or A horizons) were sampled at grid or transect points and analyzed for a suite of chemical characteristics. At each sampling point, vegetation and topographic metrics (field and GIS-based) were also obtained. Results were examined by watershed averages (n = 10), seasonal/watershed averages (n = 28), and individual sampling points (n = 608). Using both linear and tree regression techniques, the proportion of conifer species was the single best predictor of nitrification rates, with lower rates at higher conifer dominance. Similar to other studies, the soil C/N ratio was also a good predictor and was well correlated with conifer dominance. Unlike other studies, the presence of Acer saccharum was not by itself a strong predictor, but was when combined with the presence of Betula alleghaniensis. Topographic metrics (slope, aspect, relative elevation, and the topographic index) were not related to N transformation rates across the watersheds. Although found to be significant in other studies, neither soil pH, Ca nor Al was related to nitrification. Results showed a strong relationship between dominant vegetation, soil C, and soil C/N. ?? 2008 Springer Science+Business Media, LLC.

  14. Using Remotely Sensed Data and Watershed and Hydrodynamic Models to Evaluate the Effects of Land Cover Land Use Change on Aquatic Ecosystems in Mobile Bay, AL

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad; Estes, Maurice G., Jr.; Judd, Chaeli; Woodruff, Dana; Ellis, Jean; Quattrochi, Dale; Watson, Brian; Rodriquez, Hugo; Johnson, Hoyt

    2012-01-01

    Alabama coastal systems have been subjected to increasing pressure from a variety of activities including urban and rural development, shoreline modifications, industrial activities, and dredging of shipping and navigation channels. The impacts on coastal ecosystems are often observed through the use of indicator species. One such indicator species for aquatic ecosystem health is submerged aquatic vegetation (SAV). Watershed and hydrodynamic modeling has been performed to evaluate the impact of land cover land use (LCLU) change in the two counties surrounding Mobile Bay (Mobile and Baldwin) on SAV stressors and controlling factors (temperature, salinity, and sediment) in the Mobile Bay estuary. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for LCLU scenarios in 1948, 1992, 2001, and 2030. Remotely sensed Landsat-derived National Land Cover Data (NLCD) were used in the 1992 and 2001 simulations after having been reclassified to a common classification scheme. The Prescott Spatial Growth Model was used to project the 2030 LCLU scenario based on current trends. The LSPC model simulations provided output on changes in flow, temperature, and sediment for 22 discharge points into the estuary. These results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment on a grid throughout Mobile Bay and adjacent estuaries. The changes in the aquatic ecosystem were used to perform an ecological analysis to evaluate the impact on SAV habitat suitability. This is the key product benefiting the Mobile Bay coastal environmental managers that integrates the influences of temperature, salinity, and sediment due to LCLU driven flow changes with the restoration potential of SAVs. Data products and results are being integrated into NOAA s EcoWatch and Gulf of Mexico Data Atlas online systems for

  15. Factors affecting spatial and temporal variability in material exchange between the Southern Everglades wetlands and Florida Bay (USA)

    NASA Astrophysics Data System (ADS)

    Sutula, Martha A.; Perez, Brian C.; Reyes, Enrique; Childers, Daniel L.; Davis, Steve; Day, John W.; Rudnick, David; Sklar, Fred

    2003-08-01

    Physical and biological processes controlling spatial and temporal variations in material concentration and exchange between the Southern Everglades wetlands and Florida Bay were studied for 2.5 years in three of the five major creek systems draining the watershed. Daily total nitrogen (TN), and total phosphorus (TP) fluxes were measured for 2 years in Taylor River, and ten 10-day intensive studies were conducted in this creek to estimate the seasonal flux of dissolved inorganic nitrogen (N), phosphorus (P), total organic carbon (TOC), and suspended matter. Four 10-day studies were conducted simultaneously in Taylor, McCormick, and Trout Creeks to study the spatial variation in concentration and flux. The annual fluxes of TOC, TN, and TP from the Southern Everglades were estimated from regression equations. The Southern Everglades watershed, a 460-km 2 area that includes Taylor Slough and the area south of the C-111 canal, exported 7.1 g C m -2, 0.46 g N m -2, and 0.007 g P m -2, annually. Everglades P flux is three to four orders of magnitude lower than published flux estimates from wetlands influenced by terrigenous sedimentary inputs. These low P flux values reflect both the inherently low P content of Everglades surface water and the efficiency of Everglades carbonate sediments and biota in conserving and recycling this limiting nutrient. The seasonal variation of freshwater input to the watershed was responsible for major temporal variations in N, P, and C export to Florida Bay; approximately 99% of the export occurred during the rainy season. Wind-driven forcing was most important during the later stages of the dry season when low freshwater head coincided with southerly winds, resulting in a net import of water and materials into the wetlands. We also observed an east to west decrease in TN:TP ratio from 212:1 to 127:1. Major spatial gradients in N:P ratios and nutrient concentration and flux among the creek were consistent with the westward decrease in

  16. Assessing development pressure in the Chesapeake Bay watershed: An evaluation of two land-use change models

    USGS Publications Warehouse

    Claggett, Peter; Jantz, Claire A.; Goetz, S.J.; Bisland, C.

    2004-01-01

    Natural resource lands in the Chesapeake Bay watershed are increasingly susceptible to conversion into developed land uses, particularly as the demand for residential development grows. We assessed development pressure in the Baltimore-Washington, DC region, one of the major urban and suburban centers in the watershed. We explored the utility of two modeling approaches for forecasting future development trends and patterns by comparing results from a cellular automata model, SLEUTH (slope, land use, excluded land, urban extent, transportation), and a supply/demand/allocation model, the Western Futures Model. SLEUTH can be classified as a land-cover change model and produces projections on the basis of historic trends of changes in the extent and patterns of developed land and future land protection scenarios. The Western Futures Model derives forecasts from historic trends in housing units, a U.S. Census variable, and exogenously supplied future population projections. Each approach has strengths and weaknesses, and combining the two has advantages and limitations. ?? 2004 Kluwer Academic Publishers.

  17. Assessing development pressure in the Chesapeake Bay watershed: an evaluation of two land-use change models.

    PubMed

    Claggett, Peter R; Jantz, Claire A; Goetz, Scott J; Bisland, Carin

    2004-06-01

    Natural resource lands in the Chesapeake Bay watershed are increasingly susceptible to conversion into developed land uses, particularly as the demand for residential development grows. We assessed development pressure in the Baltimore-Washington, DC region, one of the major urban and suburban centers in the watershed. We explored the utility of two modeling approaches for forecasting future development trends and patterns by comparing results from a cellular automata model, SLEUTH (slope, land use, excluded land, urban extent, transportation), and a supply/demand/allocation model, the Western Futures Model. SLEUTH can be classified as a land-cover change model and produces projections on the basis of historic trends of changes in the extent and patterns of developed land and future land protection scenarios. The Western Futures Model derives forecasts from historic trends in housing units, a U.S. Census variable, and exogenously supplied future population projections. Each approach has strengths and weaknesses, and combining the two has advantages and limitations.

  18. A COMPARISON OF THE SALINITY REGIME ALONG THE TEXAS COAST WITH TERRESTRIAL VEGETATION GREENNESS AND WATER USE IN THE GALVESTON BAY WATERSHED USING REMOTING SENSING

    EPA Science Inventory

    Variability in vegetation greenness was determined for the Galveston Bay watershed using biweekly Normalized Difference Vegetation Index (NDVI) data derived from the Advanced Very High Resolution Radiometer (A VHRR) flown on NOAA satellites. NDVI variability was compared with reg...

  19. Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA (Final)

    EPA Science Inventory

    EPA announced the availability of the final report,Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result o...

  20. Tracking Nonpoint Source Nitrogen and Carbon in Watersheds of Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Kaushal, S.; Pennino, M. J.; Duan, S.; Blomquist, J.

    2012-12-01

    Humans have altered nitrogen and carbon cycles in rivers regionally with important impacts on coastal ecosystems. Nonpoint source nitrogen pollution is a leading contributor to coastal eutrophication and hypoxia. Shifts in sources of carbon impact downstream ecosystem metabolism and fate and transport of contaminants in coastal zones. We used a combination of stable isotopes and optical tracers to investigate fate and transport of nitrogen and carbon sources in tributaries of the largest estuary in the U.S., the Chesapeake Bay. We analyzed isotopic composition of water samples from major tributaries including the Potomac River, Susquehanna River, Patuxent River, and Choptank River during routine and storm event sampling over multiple years. A positive correlation between δ15N-NO3- and δ18O-NO3- in the Potomac River above Washington D.C. suggested denitrification or biological uptake in the watershed was removing agriculturally-derived N during summer months. In contrast, the Patuxent River in Maryland showed elevated δ15N-NO3- (5 - 12 per mil) with no relationship to δ18O-NO3- suggesting the importance of wastewater sources. From the perspective of carbon sources, there were distinct isotopic values of the δ13C-POM of particulate organic matter and fluorescence excitation emission matrices (EEMS) for rivers influenced by their dominant watershed land use. EEMS showed that there were increases in the humic and fulvic fractions of dissolved organic matter during spring floods, particularly in the Potomac River. Stable isotopic values of δ13C-POM also showed rapid depletion suggesting terrestrial carbon "pulses" in the Potomac River each spring. The δ15N-POM peaked to 10 - 15 per mil each spring suggested a potential manure source or result of biological processing within the watershed. Overall, there were considerable changes in sources and transformations of nitrogen and carbon that varied across rivers and that contribute to nitrogen and carbon loads

  1. Tidally generated sea-floor lineations in Bristol Bay, Alaska, USA

    USGS Publications Warehouse

    Marlow, M. S.; Stevenson, A.J.; Chezar, H.; McConnaughey, R.A.

    1999-01-01

    Highly reflective linear features occur in water depths of 20-30 m in northern Bristol Bay (Alaska, USA) and are, in places, over 600 m in length. Their length-to-width ratio is over 100:1. The lineations are usually characterized by large transverse ripples with wavelengths of 1-2 m. The lineations trend about N60??E, and are spaced between 20 and 350 m. Main tidal directions near the lineations are N60??E (flood) and S45??W (ebb), which are parallel to subparallel to the lineations. They suggest that the lineations may be tidally generated. The lineations may be bright sonar reflections from a winnowed lag concentrate of coarse sand.

  2. [Simulation on area threshold of urban building land based on water environmental response in watersheds.

    PubMed

    He, Zhi Chao; Huang, Shuo; Guo, Qing Hai; Xiao, Li Shan; Yang, De Wei; Wang, Ying; Yang, Yi Fu

    2016-08-01

    Urban sprawl has impacted increasingly on water environment quality in watersheds. Based on water environmental response, the simulation and prediction of expanding threshold of urban building land could provide an alternative reference for urban construction planning. Taking three watersheds (i.e., Yundang Lake at complete urbanization phase, Maluan Bay at peri-urbanization phase and Xinglin Bay at early urbanization phase) with 2009-2012 observation data as example, we calculated the upper limit of TN and TP capacity in three watersheds and identified the threshold value of urban building land in watersheds using the regional nutrient management (ReNuMa) model, and also predicted the water environmental effects associated with the changes of urban landscape pattern. Results indicated that the upper limit value of TN was 12900, 42800 and 43120 kg, while that of TP was 340, 420 and 450 kg for Yundang, Maluan and Xinglin watershed, respectively. In reality, the environment capacity of pollutants in Yundang Lake was not yet satura-ted, and annual pollutant loads in Maluan Bay and Xinglin Bay were close to the upper limit. How-ever, an obvious upward trend of annual TN and TP loads was observed in Xinglin Bay. The annual pollutant load was not beyond the annual upper limit in three watersheds under Scenario 1, while performed oppositely under Scenario 3. Under Scenario 2, the annual pollutant load in Yundang Lake was under-saturation, and the TN and TP in Maluan Bay were over their limits. The area thresholds of urban building land were 1320, 5600 and 4750 hm 2 in Yundang Lake, Maluan Bay and Xinglin Bay, respectively. This study could benefit the regulation on urban landscape planning.

  3. Watershed export of fine sediment, organic carbon, and chlorophyll-a to Chesapeake Bay: Spatial and temporal patterns in 1984-2016.

    PubMed

    Zhang, Qian; Blomquist, Joel D

    2018-04-01

    Chesapeake Bay has long experienced nutrient enrichment and water clarity deterioration. This study provides new quantification of loads and yields for sediment (fine and coarse grained), organic carbon (total, dissolved, and particulate), and chlorophyll-a from the monitored nontidal Chesapeake Bay watershed (MNTCBW), all of which are expected to drive estuarine water clarity. We conducted an integrated analysis of nine major tributaries to the Bay to understand spatial and temporal export patterns over the last thirty years (1984-2016). In terms of spatial pattern, export of these constituents from the MNTCBW was strongly dominated (~90%) by the three largest tributaries (i.e., Susquehanna, Potomac, and James). Among the nine tributaries, the ranking of constituent export generally follows the order of their watershed sizes, with other factors such as land use and reservoir playing important roles in some exceptions. In terms of partitioning, suspended sediment (SS) export was dominated by fine-grained sediment (SS fine ) in all nine tributaries; overall, ~90% of the MNTCBW SS is SS fine . Total organic carbon (TOC) export was dominated by dissolved organic carbon (DOC) in all tributaries except Potomac River; overall, ~60% of the MNTCBW TOC is DOC. A comparison with literature shows that the MNTCBW SS and TOC yields were ~80% and ~60% of the respective medians of worldwide watersheds. In terms of temporal pattern, flow-normalized yields from the MNTCBW show overall increases in SS (both long-term [1984-2016] and short-term [2004-2016]), SS fine (long-term and short-term), TOC (long-term), and chlorophyll-a (short-term). The rises in SS, SS fine , and TOC were largely driven by Susquehanna River where Conowingo Reservoir's trapping efficiency has greatly diminished in the last twenty years. Overall, these new results on the status and trends of sediment, organic carbon, and chlorophyll-a provide the foundation for building potential linkages between riverine

  4. Soil bacterial communities of a calcium-supplemented and a reference watershed at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA.

    PubMed

    Sridevi, Ganapathi; Minocha, Rakesh; Turlapati, Swathi A; Goldfarb, Katherine C; Brodie, Eoin L; Tisa, Louis S; Minocha, Subhash C

    2012-03-01

    Soil Ca depletion because of acidic deposition-related soil chemistry changes has led to the decline of forest productivity and carbon sequestration in the northeastern USA. In 1999, acidic watershed (WS) 1 at the Hubbard Brook Experimental Forest (HBEF), NH, USA was amended with Ca silicate to restore soil Ca pools. In 2006, soil samples were collected from the Ca-amended (WS1) and reference watershed (WS3) for comparison of bacterial community composition between the two watersheds. The sites were about 125 m apart and were known to have similar stream chemistry and tree populations before Ca amendment. Ca-amended soil had higher Ca and P, and lower Al and acidity as compared with the reference soils. Analysis of bacterial populations by PhyloChip revealed that the bacterial community structure in the Ca-amended and the reference soils was significantly different and that the differences were more pronounced in the mineral soils. Overall, the relative abundance of 300 taxa was significantly affected. Numbers of detectable taxa in families such as Acidobacteriaceae, Comamonadaceae, and Pseudomonadaceae were lower in the Ca-amended soils, while Flavobacteriaceae and Geobacteraceae were higher. The other functionally important groups, e.g. ammonia-oxidizing Nitrosomonadaceae, had lower numbers of taxa in the Ca-amended organic soil but higher in the mineral soil. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  5. San Francisco and Bay Area, CA, USA

    NASA Image and Video Library

    1991-06-14

    STS040-152-100 (5-14 June 1991) --- Although clouds obscure part of the city of San Francisco and the mouth of San Francisco Bay, development and physiographic features in the immediate vicinity of the bay are well displayed. The photograph clearly shows the eastern part of the city, including the Embarcadero, the Bay Bridge, which was damaged in the 1989 earthquake, and Candlestick Park, San Mateo, and Dumbarton Bridges, cross the southern portion of the bay. Vari-colored salt ponds also rim the southern Bay near Moffett Field. Highway 280 runs along the San Andreas fault south of the city. On the eastern margin of the bay are Berkeley the Sacramento River and the Haywood and Calaveras faults.

  6. Bristol Bay Assessment - Final Report (2014)

    EPA Pesticide Factsheets

    This is the final Bristol Bay assessment developed and peer reviewed by the Office of Research and Development in EPA. The purpose of this assessment is to provide a characterization of the biological and mineral resources of the Bristol Bay watershed.

  7. Tumor prevalence and biomarkers of exposure in brown bullheads (Ameiurus nebulosus) from the tidal Potomac River, USA, watershed.

    PubMed

    Pinkney, A E; Harshbarger, J C; May, E B; Melancon, M J

    2001-06-01

    Associations between contaminant exposure and liver and skin tumor prevalence were evaluated in brown bullheads (Ameiurus nebulosus) from the tidal Potomac River, USA, watershed. Thirty bullheads (> or = age 3) were collected from Quantico embayment, near a Superfund site that released organochlorine contaminants; Neabsco Creek, a tributary with petroleum inputs from runoff and marinas; and Anacostia River (spring and fall), an urban tributary designated as a Chesapeake Bay region of concern, that was contaminated with polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides. Fish were collected from the Tuckahoe River, as a reference. Cytochrome P450 activity, bile PAH metabolites, and muscle organochlorine pesticide and PCB concentrations were measured in randomly selected individuals and sediment contaminants were analyzed. We found statistically significant differences in liver tumor prevalences: Anacostia (spring), 50%; Anacostia (fall), 60%; Neabsco, 17%; Quantico, 7%; and Tuckahoe, 10%. Skin tumor prevalences were significantly different: Anacostia (spring), 37%; Anacostia (fall), 10%; Neabsco, 3%; Quantico, 3%; and Tuckahoe, 0%. Tumor prevalence in Anacostia bullheads warrants concern and was similar to those at highly contaminated sites in the Great Lakes. Evidence was found of higher PAH exposure in Anacostia fish but a cause-effect linkage could not be established. Fish tumor surveys, with histopathologic examination of internal and external organs, are recommended for monitoring the status of regions of concern.

  8. Tumor prevalence and biomarkers of exposure in brown bullheads (Ameiurus nebulosus) from the tidal Potomac River, USA, watershed

    USGS Publications Warehouse

    Pinkney, A.E.; Harshbarger, J.C.; May, E.B.; Melancon, M.J.

    2001-01-01

    Associations between contaminant exposure and liver and skin tumor prevalence were evaluated in brown bullheads (Ameiurus nebulosus) from the tidal Potomac River, USA, watershed. Thirty bullheads (>age 3) were collected from Quantico embayment near a Superfund site that released organochlorine contaminants; Neabsco Creek, a tributary with petroleum inputs from runoff and marinas; and Anacostia River (spring and fall), an urban tributary designated as a Chesapeake Bay region of concern, that was contaminated with polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides. Fish were collected from the Tuckahoe River, as a reference. Cytochrome P450 activity, bile PAH metabolites, and muscle organochlorine pesticide and PCB concentrations were measured in randomly selected individuals and sediment contaminants were analyzed. We found statistically significant differences in liver tumor prevalences: Anacostia (spring), 50%, Anacostia (fall), 60%, Neabsco, 17%, Quantico, 7%, and Tuckahoe, 10%. Skin tumor prevalences were significantly different: Anacostia (spring), 37%, Anacostia (fall), 10%, Neabsco, 3%, Quantico, 3%, and Tuckahoe, 0%. Tumor prevalences in Anacostia bullheads warrants concern and was similar to those as highly contaminated sites in the Great Lakes. Evidence was found of higher PAH exposure in Anacostia fish but a cause-effect linkage could not be established. Fish tumor surveys, with histopathologic examination of internal and external organs are recommended for monitoring the status of regions of concern.

  9. INTENSIVE WATERSHED STUDY: THE PATUXENT RIVER BASIN

    EPA Science Inventory

    This study was one of five intensive watershed studies designed by the Chesapeake Bay Program's Eutrophication Work Group to provide detailed nonpoint source loading rates and ambient water quality data within the Chesapeake Bay drainage area. The study was conducted within the P...

  10. Funding Opportunities in the Chesapeake Bay Watershed

    EPA Pesticide Factsheets

    This page provides links to financial assistance opportunities to help the Chesapeake Bay jurisdictions (Delaware, District of Columbia, Maryland, New York, Pennsylvania, Virginia, and West Virginia) restore the Chesapeake Bay.

  11. Carbonate system biogeochemistry in a subterranean estuary - Waquoit Bay, USA

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Charette, Matthew A.; Breier, Crystaline F.; Henderson, Paul B.; McCorkle, Daniel C.; Martin, William; Dai, Minhan

    2017-04-01

    Quantifying carbon fluxes associated with submarine groundwater discharge (SGD) remains challenging due to the complex biogeochemistry of the carbonate system in the subterranean estuary (STE). Here we conducted time series measurements of total alkalinity (TAlk) and dissolved inorganic carbon (DIC) in a well-studied coastal aquifer (Waquoit Bay, Massachusetts, USA). Groundwater samples were collected monthly from May 2009 to June 2010 across the freshwater-saltwater mixing zone of the Waquoit Bay (WB) STE. The concentrations of both TAlk and DIC in zero-salinity groundwater were variable, but were lower than those in the bay water (S ∼ 28). DIC underwent slightly non-conservative mixing between low and intermediate salinities while there was an apparent additional DIC source at high salinity (>20) in all seasons. TAlk concentrations exhibited even stronger variations, with evidence of both production and consumption in high salinity zones, and consistent TAlk consumption at intermediate salinity in summer and fall (June-December, 2009). The increases in DIC and TAlk at high salinity were attributed to aerobic respiration and denitrification in WB sediments during bay water recharge of the STE. We infer that the loss of TAlk at intermediate salinity reflects H+ production as reduced compounds (e.g. Fe2+) are oxidized within the STE. In terms of impacts on surface water inorganic carbon budgets, the SGD-derived DIC flux was mainly controlled by seasonal changes in SGD while a combination of TAlk concentration variability and SGD drove the TAlk flux. SGD-derived DIC, aqueous CO2, and H+ fluxes to the bay were ∼40-50% higher in summer vs. in winter, a result of enhanced marine groundwater flux and significant TAlk removal (proton addition) during periods of high seawater intrusion. Furthermore, the SGD-derived DIC flux was consistently greater than TAlk flux regardless of season, indicating that SGD serves to reduce the CO2 buffering capacity of surface water. Our

  12. Assessing climate change impacts on winter cover crop nitrate uptake efficiency on the coastal plain of the Chesapeake Bay watershed using the SWAT model

    USDA-ARS?s Scientific Manuscript database

    Climate change is expected to exacerbate water quality degradation in the Chesapeake Bay watershed (CBW). Winter cover crops (WCCs) have been widely implemented in this region owing to their high effectiveness at reducing nitrate loads. However, little is known about climate change impacts on the ef...

  13. Drivers and evolution of episodic acidification at the Bear Brook Watershed in Maine, USA.

    PubMed

    Laudon, Hjalmar; Norton, Stephen A

    2010-12-01

    Despite decades of research about episodic acidification in many regions of the world, the understanding of what controls the transient changes in stream water chemistry occurring during rain and snow melt events is still limited. Here, we use 20 years of hydrological and stream chemical data from the paired watershed study at Bear Brook Watershed in Maine (BBWM), USA to improve the understanding of the effects of acid deposition on the causes, drivers, and evolution of episodic acidification. The long-term experimental study at BBWM includes 18 years of chemical treatment of the West Bear Brook (WB) watershed with (NH(4))(2)SO(4). East Bear Brook (EB) serves as reference. The treatment started in 1989 following a 2-year pretreatment period. We analyzed 212 hydrological episodes using an episode model that can separate and quantify individual drivers of the transient change in acid-neutralizing capacity (ANC) during hydrological events. The results suggest that 18 years of N and S addition have not affected the natural drivers of episodic acidification of base-cation dilution, marine sea salt episodes, or organic acidity during rain and snow melt events. The contribution of SO4(2-) to the ANC decline in WB has been increasing linearly since the beginning of watershed treatment, while the role of NO3- has remained relatively constant after an initial increase. This is contradictory to many previous shorter-term studies and illustrates the need for a more mechanistic understanding of the causes and drivers of episodic acidification during rain- and snow melt-driven hydrological events.

  14. Probability-based estimates of site-specific copper water quality criteria for the Chesapeake Bay, USA.

    PubMed

    Arnold, W Ray; Warren-Hicks, William J

    2007-01-01

    The object of this study was to estimate site- and region-specific dissolved copper criteria for a large embayment, the Chesapeake Bay, USA. The intent is to show the utility of 2 copper saltwater quality site-specific criteria estimation models and associated region-specific criteria selection methods. The criteria estimation models and selection methods are simple, efficient, and cost-effective tools for resource managers. The methods are proposed as potential substitutes for the US Environmental Protection Agency's water effect ratio methods. Dissolved organic carbon data and the copper criteria models were used to produce probability-based estimates of site-specific copper saltwater quality criteria. Site- and date-specific criteria estimations were made for 88 sites (n = 5,296) in the Chesapeake Bay. The average and range of estimated site-specific chronic dissolved copper criteria for the Chesapeake Bay were 7.5 and 5.3 to 16.9 microg Cu/L. The average and range of estimated site-specific acute dissolved copper criteria for the Chesapeake Bay were 11.7 and 8.3 to 26.4 microg Cu/L. The results suggest that applicable national and state copper criteria can increase in much of the Chesapeake Bay and remain protective. Virginia Department of Environmental Quality copper criteria near the mouth of the Chesapeake Bay, however, need to decrease to protect species of equal or greater sensitivity to that of the marine mussel, Mytilus sp.

  15. The U.S. Geological Survey and the Chesapeake Bay; the role of science in environmental restoration

    USGS Publications Warehouse

    Phillips, Scott

    2002-01-01

    The Chesapeake Bay is the Nation's largest estuary and historically supported one of the most productive fisheries in the world. In addition to supporting aquatic communities and wildlife, the bay's watershed serves the economic and recreational needs of 15 million people. The fertile soils of the watershed support significant agricultural production. Unfortunately, the commercial, economic, and recreational value of the bay and its watershed has been degraded by poor water quality, loss of habitat, and overharvesting of living resources. Since the early 1980's, the Chesapeake Bay Program, which is a partnership among Maryland, Virginia, Pennsylvania, the District of Columbia, the Federal Government, and the Chesapeake Bay Commission, has been formulating and implementing restoration goals to restore living resources, minimize habitat loss, and reduce the amount of nutrients, sediment, and toxic substances entering the bay. The U.S. Geological Survey has the critical role of providing unbiased scientific information to be used in helping to formulate, implement, and assess the effectiveness of restoration goals in the bay and its watershed.

  16. Effects of contaminants on Double-crested Cormorant reproduction in Green Bay, Wisconsin, USA

    USGS Publications Warehouse

    Custer, T.W.; Custer, Christine M.; Stromborg, K.L.; Melancon, M.J.; Adams, N.J.; Slotow, R.H.

    1998-01-01

    In 1994 and 1995, Double-crested Cormorants Phalacrocorax auritus were monitored from egg-laying through 12 days of age at Cat Island, Green Bay, Wisconsin, USA. Sample eggs at hatching were analysed for organochlorines (including total PCBs, PCB congeners, and DDE), hepatic microsomal ethoxyresorufin-O-dealkylase (EROD) activity in livers of embryos, and eggshell thickness. The number of eggs per nest that hatched and survived to i 2 days of age was estimated to be 2.2 in 1994 and 2.0 in 1995. Hatching success of eggs was not correlated with PCBs, the toxicity of PCBs based on congeners, or EROD activity. Hatching success was correlated with eggshell thickness and negatively correlated with DDE concentrations. Even though the insecticide DDT was banned in the early 1970s, we suggest that DDE concentrations in cormorant eggs in Green Bay are still having an affect on reproduction in this species.

  17. Effects of contaminants on Double-crested Cormorant reproduction in Green Bay, Wisconsin, USA

    USGS Publications Warehouse

    Custer, T.W.; Custer, Christine M.; Stromborg, K.L.; Melancon, M.J.; Adams, N.J.; Slotow, R.H.

    1999-01-01

    In 1994 and 1995, Double-crested Cormorants Phalacrocorax auritus were monitored from egg-laying through 12 days of age at Cat Island, Green Bay, Wisconsin, USA. Sample eggs at hatching were analysed for organochlorines (including total PCBs, PCB congeners, and DDE), hepatic microsomal ethoxyresorufin-O-dealkylase (EROD) activity in livers of embryos, and eggshell thickness. The number of eggs per nest that hatched and survived to i 2 days of age was estimated to be 2.2 in 1994 and 2.0 in 1995. Hatching success of eggs was not correlated with PCBs, the toxicity of PCBs based on congeners, or EROD activity. Hatching success was correlated with eggshell thickness and negatively correlated with DDE concentrations. Even though the insecticide DDT was banned in the early 1970s, we suggest that DDE concentrations in cormorant eggs in Green Bay are still having an affect on reproduction in this species.

  18. Hydrologic Responses to Projected Climate Change in Ecologically-Vulnerable Watersheds of the Gulf Coast, USA

    NASA Astrophysics Data System (ADS)

    Neupane, R. P.; Ficklin, D. L.; Knouft, J.

    2017-12-01

    Climate change is likely to have significant effects on the water cycle of the Gulf Coast watersheds in the United States, which contain some of the highest levels of biodiversity of all freshwater systems in North America. Understanding potential hydrologic responses to continued climate change in these watersheds is important for management of water resources and to sustain ecological diversity. We used the Soil and Water Assessment Tool (SWAT) to simulate hydrologic processes and estimate the potential hydrological changes for the mid-21st century (2050s) and the late-21st century (2080s) in the Mobile River, Apalachicola River, and Suwannee River watersheds located in the Gulf Coast, USA. These estimates were based on downscaled future climate projections from 20 Global Circulation Models (GCMs) under two Representative Concentration Pathways (RCPs 4.5 and 8.5). Models were calibrated and validated using observed data from 58, 19, and 14 streamflow gauges in the Mobile River, Apalachicola River, and Suwannee River watersheds, respectively. Evaluation indices including the Nash-Sutcliffe efficiency (NSE), coefficient of determination (R2), and refined index of agreement (dr) were used to assess model quality. The mean values derived during calibration (NSE=0.68, R2=0.77, and dr=0.73) and validation (NSE=0.70, R2=0.78, and dr=0.74) of all watersheds indicated that the models performed well at simulating monthly streamflow. Our simulation results indicated an overall increase in mean annual streamflow for all the watersheds with a maximum increase in discharge of 28.6% for the Suwannee River watershed for RCP 4.5 during the 2080s, which is associated with a 6.8% increase in precipitation during the same time period. We observed an overall warming (4.2oC) with an increase in future precipitation (3.8%) in all watersheds during the 2080s under the worst-case RCP 8.5 scenario compared to the historical time period. Despite an increase in future precipitation, surface

  19. Sensitivity analysis of the DRAINWAT model applied to an agricultural watershed in the lower coastal plain, North Carolina, USA

    Treesearch

    Hyunwoo Kim; Devendra M. Amatya; Stephen W. Broome; Dean L. Hesterberg; Minha Choi

    2011-01-01

    The DRAINWAT, DRAINmod for WATershed model, was selected for hydrological modelling to obtain water table depths and drainage outflows at Open Grounds Farm in Carteret County, North Carolina, USA. Six simulated storm events from the study period were compared with the measured data and analysed. Simulation results from the whole study period and selected rainfall...

  20. Spatial and temporal trends in runoff at long-term streamgages within and near the Chesapeake Bay Watershed

    USGS Publications Warehouse

    Rice, Karen C.; Hirsch, Robert M.

    2012-01-01

    Long-term streamflow data within the Chesapeake Bay watershed and surrounding area were analyzed in an attempt to identify trends in streamflow. Data from 30 streamgages near and within the Chesapeake Bay watershed were selected from 1930 through 2010 for analysis. Streamflow data were converted to runoff and trend slopes in percent change per decade were calculated. Trend slopes for three runoff statistics (the 7-day minimum, the mean, and the 1-day maximum) were analyzed annually and seasonally. The slopes also were analyzed both spatially and temporally. The spatial results indicated that trend slopes in the northern half of the watershed were generally greater than those in the southern half. The temporal analysis was done by splitting the 80-year flow record into two subsets; records for 28 streamgages were analyzed for 1930 through 1969 and records for 30 streamgages were analyzed for 1970 through 2010. The mean of the data for all sites for each year were plotted so that the following datasets were analyzed: the 7-day minimum runoff for the north, the 7-day minimum runoff for the south, the mean runoff for the north, the mean runoff for the south, the 1-day maximum runoff for the north, and the 1-day maximum runoff for the south. Results indicated that the period 1930 through 1969 was statistically different from the period 1970 through 2010. For the 7-day minimum runoff and the mean runoff, the latter period had significantly higher streamflow than did the earlier period, although within those two periods no significant linear trends were identified. For the 1-day maximum runoff, no step trend or linear trend could be shown to be statistically significant for the north, although the south showed a mixture of an upward step trend accompanied by linear downtrends within the periods. In no case was a change identified that indicated an increasing rate of change over time, and no general pattern was identified of hydrologic conditions becoming "more extreme

  1. Isotope hydrology and baseflow geochemistry in natural and human-altered watersheds in the Inland Pacific Northwest, USA

    Treesearch

    Ricardo Sanchez-Murillo; Erin S. Brooks; William J. Elliot; Jan Boll

    2015-01-01

    This study presents a stable isotope hydrology and geochemical analysis in the inland Pacific Northwest (PNW) of the USA. Isotope ratios were used to estimate mean transit times (MTTs) in natural and human-altered watersheds using the FLOWPC program. Isotope ratios in precipitation resulted in a regional meteoric water line of ä2H = 7.42·ä18O + 0.88 (n = 316; r2 = 0.97...

  2. Interferometric Sidescan Bathymetry, Sediment and Foraminiferal Analyses; a New Look at Tomales Bay, California

    USGS Publications Warehouse

    Anima, Roberto J.; Chin, John L.; Finlayson, David P.; McGann, Mary; Wong, Florence L.

    2008-01-01

    The United States Geological Survey (USGS) in collaboration with Point Reyes National Sea Shore (PRNS), and the Tomales Bay Watershed Council [http://www.tomalesbaywatershed.org/] has completed a detailed bathymetric survey, and sediment and foraminiferal analyses of the floor of Tomales Bay, California. The study goals are to detail the submarine morphology, the sediment distribution, sedimentary features, and distribution of foraminifera to provide a framework for future studies. The USGS collected swath bathymetric data with a SEA SWATHplus interferometric sidescan sonar system (2004, 2005) and an echo sounder system (2006). The data were processed into continuous mosaic images that show bathymetric detail of the bay floor with 0.2-m vertical and 4.0-m horizontal resolution. Acoustic backscatter data from the 2004 and 2005 surveys were processed into 2-m resolution grids. In addition, 27 sediment samples were collected from various parts of the bay for grain size analyses and a comprehensive study of the distribution of foraminifera in Tomales Bay. The foraminiferal analysis determined that the invasive foraminifera Trochammina hadai from Japan was present in Tomales Bay. The project was conducted in response to a request from the National Park Service, and the Tomales Bay Watershed Council who voiced a need to look at the environmental impacts of human input to the surrounding watersheds that ultimately flow into the bay. The mapping, sediment, and foraminiferal data establish a baseline survey for future comparisons of possible geologic and anthropogenic changes that might occur due to changes in land use or development in the surrounding watershed. These data may also aid in determining the possible pathways of pollutants entering the bay from the surrounding watersheds.

  3. ACIDIFICATION TRENDS AND THE EVOLUTION OF NEUTRALIZATION MECHANISMS THROUGH TIME AT THE BEAR BROOK WATERSHED IN MAINE (BBWM), U.S.A.

    EPA Science Inventory

    The paired catchment study at the forested Bear Brook Watershed in Maine (BBWM) U.S.A. documents interactions among short- to long-term processes of acidification. In 1987-1989, runoff from the two catchments was nearly identical in quality and quantity. Ammonium sulfate has been...

  4. EMERGY-based environmental systems assessment of a multi-purpose temperate mixed-forest watershed of the southern Appalachian Mountains, USA

    Treesearch

    David Rogers Tilley; Wayne T. Swank

    2003-01-01

    Emergy (with an 'm') synthesis was used to assess the balance between nature and humanity and the equity among forest outcomes of a US Forest Service ecosystem management demonstration project on the Wine Spring Creek watershed, a high-elevation (1600 m), temperate forest located in the southern Appalachian mountains of North Carolina, USA. EM embraces a...

  5. Alameda Creeks Healthy Watersheds Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Alameda Creeks Healthy Watersheds Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resour

  6. Scientific and technical advisory committee review of the nutrient inputs to the watershed model

    USDA-ARS?s Scientific Manuscript database

    The following is a report by a STAC Review Team concerning the methods and documentation used by the Chesapeake Bay Partnership for evaluation of nutrient inputs to Phase 6 of the Chesapeake Bay Watershed Model. The “STAC Review of the Nutrient Inputs to the Watershed Model” (previously referred to...

  7. Linking Watershed Nitrogen Sources with Nitrogen Dynamics in Rivers of Western Oregon, USA

    NASA Astrophysics Data System (ADS)

    Sobota, D. J.; Compton, J.; Goodwin, K. E.

    2012-12-01

    We constructed contemporary nitrogen (N) budgets for 25 river basins in the Willamette River Basin (WRB) of western Oregon, USA, to improve the understanding of how recent trends in human-driven N loading have influenced riverine N dynamics in the region. Nearly 20% of WRB stream length is currently in fair or poor condition because of high N concentrations. Additionally, nitrate contamination of drinking water affects at least 8,000 people in the WRB. We hypothesized that 1) the majority of N inputs in the WRB would originate from agricultural activities in lowland portions of watersheds, 2) annual riverine N yield (kg/ha/yr) would correspond to annual per area watershed N inputs, and 3) riverine N yields would be seasonal and highest during winter due to the region's Mediterranean climate. We calculated average annual N inputs for each study basin by summing newly available datasets describing spatially explicit N inputs of synthetic fertilizer, atmospheric deposition, crop biological N2 fixation, biological N2 fixation by red alder (Alnus rubra Bong.), livestock manure, and point sources for the period 1996 - 2007. Annual and seasonal riverine N exports were estimated with the USGS model LOADEST calibrated to N concentration data collected during the study period. We estimated that two-thirds of total N input to the WRB study basins in the 2000s came from synthetic fertilizer application. Nearly all fertilizer application occurred on the lowlands near watershed mouths. We found a wide range of riverine N yields from the study basins, ranging from one to 70 kg N/ha/yr. Across the study basins, N export was more strongly correlated to fertilizer application rates than to percent of agricultural area in the watershed. Low watershed N yields reflected a high proportion of watershed area in the forested Cascade Mountain Range, which received low N inputs mainly from atmospheric deposition. N yields from study basins were strongly seasonal, with at least 50%, and

  8. Chesapeake Bay Tributary Strategies

    EPA Pesticide Factsheets

    Chesapeake Bay Tributary Strategies were developed by the seven watershed jurisdictions and outlined the river basin-specific implementation activities to reduce nutrient and sediment pollutant loads from point and nonpoint sources.

  9. Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay Watersheds using SWAT model

    USDA-ARS?s Scientific Manuscript database

    Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrat...

  10. Using Remote Sensing Data to Evaluate Habitat Loss in the Mobile, Galveston, and Tampa Bay Watersheds

    NASA Technical Reports Server (NTRS)

    Steffen, Morgan; Estes, Maurice G.; Al-Hamdan, Mohammad

    2010-01-01

    The Gulf of Mexico has experienced dramatic wetland habitat area losses over the last two centuries. These losses not only damage species diversity, but contribute to water quality, flood control, and aspects of the Gulf coast economy. Overall wetland losses since the 1950s were examined using land cover/land use (LCLU) change analysis in three Gulf coast watershed regions: Mobile Bay, Galveston Bay, and Tampa Bay. Two primary causes of this loss, LCLU change and climate change, were then assessed using LCLU maps, U.S. census population data, and available current and historical climate data from NOAA. Sea level rise, precipitation, and temperature effects were addressed, with emphasis on analysis of the effects of sea level rise on salt marsh degradation. Ecological impacts of wetland loss, including fishery depletion, eutrophication, and hypoxia were addressed using existing literature and data available from NOAA. These ecological consequences in turn have had an affect on the Gulf coast economy, which was analyzed using fishery data and addressing public health impacts of changes in the environment caused by wetland habitat loss. While recent federal and state efforts to reduce wetland habitat loss have been relatively successful, this study implies a need for more aggressive action in the Gulf coast area, as the effects of wetland loss reach far beyond individual wetland systems themselves to the Gulf of Mexico as a whole.

  11. Derivation of habitat-specific dissolved oxygen criteria for Chesapeake Bay and its tidal tributaries

    USGS Publications Warehouse

    Batiuk, Richard A.; Breitburg, Denise L.; Diaz, Robert J.; Cronin, Thomas M.; Secor, David H.; Thursby, Glen

    2009-01-01

    The Chesapeake 2000 Agreement committed its state and federal signatories to “define the water quality conditions necessary to protect aquatic living resources” in the Chesapeake Bay (USA) and its tidal tributaries. Hypoxia is one of the key water quality issues addressed as a result of the above Agreement. This paper summarizes the protection goals and specific criteria intended to achieve those goals for addressing hypoxia. The criteria take into account the variety of Bay habitats and the tendency towards low dissolved oxygen in some areas of the Bay. Stressful dissolved oxygen conditions were characterized for a diverse array of living resources of the Chesapeake Bay by different aquatic habitats: migratory fish spawning and nursery, shallow-water, open-water, deep-water, and deep-channel. The dissolved oxygen criteria derived for each of these habitats are intended to protect against adverse effects on survival, growth, reproduction and behavior. The criteria accommodate both spatial and temporal aspects of low oxygen events, and have been adopted into the Chesapeake Bay states – Maryland, Virginia, and Delaware – and the District of Columbia's water quality standards regulations. These criteria, now in the form of state regulatory standards, are driving an array of land-based and wastewater pollution reduction actions across the six-watershed.

  12. Temporal and spatial change in coastal ecosystems using remote sensing: Example with Florida Bay, USA, emphasizing AVHRR imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stumpf, R.P.; Frayer, M.L.

    1997-06-01

    Florida Bay, at the southern tip of Florida, USA, has undergone dramatic changes in recent years. Following seagrass dieoffs starting in the late 1980`s, both algal blooms and high turbidity (the latter from resuspended sediments) have been reported as more common in the Bay. Remotely sensed data, particularly from the AVHRR (advanced very high resolution radiometer), can provide information on conditions prior to the start of monitoring programs as well as provide additional spatial detail on water clarity and particulate loads in this estuary . The AVHRR record currently available to us consists of over 600 usable scenes from December,more » 1989. Comparisons with field data have provided relationships with light attenuation, total suspended solids, and other turbidity measures. The imagery shows the seasonal change in turbidity resulting from high winds associated with winter cold fronts. Over the seven-year record, areas of clear water have decreased in the north-central Bay, while expanding in the southwestern Bay.« less

  13. Downscaling future climate projections to the watershed scale: A north San Francisco Bay estuary case study

    USGS Publications Warehouse

    Micheli, Elisabeth; Flint, Lorraine; Flint, Alan; Weiss, Stuart; Kennedy, Morgan

    2012-01-01

    We modeled the hydrology of basins draining into the northern portion of the San Francisco Bay Estuary (North San Pablo Bay) using a regional water balance model (Basin Characterization Model; BCM) to estimate potential effects of climate change at the watershed scale. The BCM calculates water balance components, including runoff, recharge, evapotranspiration, soil moisture, and stream flow, based on climate, topography, soils and underlying geology, and the solar-driven energy balance. We downscaled historical and projected precipitation and air temperature values derived from weather stations and global General Circulation Models (GCMs) to a spatial scale of 270 m. We then used the BCM to estimate hydrologic response to climate change for four scenarios spanning this century (2000–2100). Historical climate patterns show that Marin’s coastal regions are typically on the order of 2 °C cooler and receive five percent more precipitation compared to the inland valleys of Sonoma and Napa because of marine influences and local topography. By the last 30 years of this century, North Bay scenarios project average minimum temperatures to increase by 1.0 °C to 3.1 °C and average maximum temperatures to increase by 2.1 °C to 3.4 °C (in comparison to conditions experienced over the last 30 years, 1981–2010). Precipitation projections for the 21st century vary between GCMs (ranging from 2 to 15% wetter than the 20th-century average). Temperature forcing increases the variability of modeled runoff, recharge, and stream discharge, and shifts hydrologic cycle timing. For both high- and low-rainfall scenarios, by the close of this century warming is projected to amplify late-season climatic water deficit (a measure of drought stress on soils) by 8% to 21%. Hydrologic variability within a single river basin demonstrated at the scale of subwatersheds may prove an important consideration for water managers in the face of climate change. Our results suggest that in arid

  14. Defining a data management strategy for USGS Chesapeake Bay studies

    USGS Publications Warehouse

    Ladino, Cassandra

    2013-01-01

    The mission of U.S. Geological Survey’s (USGS) Chesapeake Bay studies is to provide integrated science for improved understanding and management of the Chesapeake Bay ecosystem. Collective USGS efforts in the Chesapeake Bay watershed began in the 1980s, and by the mid-1990s the USGS adopted the watershed as one of its national place-based study areas. Great focus and effort by the USGS have been directed toward Chesapeake Bay studies for almost three decades. The USGS plays a key role in using “ecosystem-based adaptive management, which will provide science to improve the efficiency and accountability of Chesapeake Bay Program activities” (Phillips, 2011). Each year USGS Chesapeake Bay studies produce published research, monitoring data, and models addressing aspects of bay restoration such as, but not limited to, fish health, water quality, land-cover change, and habitat loss. The USGS is responsible for collaborating and sharing this information with other Federal agencies and partners as described under the President’s Executive Order 13508—Strategy for Protecting and Restoring the Chesapeake Bay Watershed signed by President Obama in 2009. Historically, the USGS Chesapeake Bay studies have relied on national USGS databases to store only major nationally available sources of data such as streamflow and water-quality data collected through local monitoring programs and projects, leaving a multitude of other important project data out of the data management process. This practice has led to inefficient methods of finding Chesapeake Bay studies data and underutilization of data resources. Data management by definition is “the business functions that develop and execute plans, policies, practices and projects that acquire, control, protect, deliver and enhance the value of data and information.” (Mosley, 2008a). In other words, data management is a way to preserve, integrate, and share data to address the needs of the Chesapeake Bay studies to better

  15. Changing ecosystem response to nitrogen load into Buzzards Bay, MA

    NASA Astrophysics Data System (ADS)

    Williamson, S.; Rheuban, J. E.; Costa, J. E.; Glover, D. M.; Doney, S. C.

    2016-02-01

    Nitrogen (N) and chlorophyll-a (Chla) concentration in estuarine systems often correlate positively with increased N inputs. Evaluation of a long-term water quality data set (1992 -2013) for Buzzards Bay, MA, however reveals that ecosystem response to N inputs may be changing over time, as represented by increased yield of Chla per unit total nitrogen (TN) from 1992-2013. To determine if this change is caused by changes in nitrogen sources, we estimate nitrogen input from 28 watersheds. Combining parcel specific waste water disposal, land use, and atmospheric deposition data, we estimated N loads into Buzzards Bay from 1985-2013 using a previously verified Nitrogen Loading Model. Of the 28 watersheds analyzed, the six largest watersheds released the largest absolute N loads into receiving estuaries ranging from approximately 50,000-220,000 kg N yr-1. Normalizing N loads by watershed and estuarine areas revealed that smaller watersheds release some of the greatest relative loads into estuaries making these watersheds more vulnerable to increases in N load. A linear regression analysis of N load through time revealed decreasing N loads for most watersheds on the western side of Buzzards Bay which we believe is reflecting decreased atmospheric N from 1985-2013. Out of the ten sub-watersheds on the eastern side, increases in human waste, driven primarily by increased parcels on septic have resulted in overall N load increases for 9 watersheds. Comparison of in situ TN and Chla concentrations with N load estimates for several watersheds and adjoining estuaries suggest that varied ecosystem responses to N load may be reflecting differences in physical stressors such as estuarine morphology, residence time, and climate change. Results of this study also reveal the importance of watershed specific mitigation efforts to best accommodate dominant N sources which may be influenced regionally (atmospheric N) and locally (fertilizer and human waste).

  16. Hydrologic Impacts of Developing Forest-based Bioenergy Feedstock in Wisconsin, USA and Entre Rios, Argentina Watersheds

    NASA Astrophysics Data System (ADS)

    Heidari, A.; Mayer, A. S.; Watkins, D. W., Jr.

    2017-12-01

    Growing demand for biomass-derived fuels has resulted in an increase in bioenergy projects across the Americas in recent years, a trend that is expected to continue. However, the expansion of bioenergy feedstock production might cause unintended environmental consequences. Accordingly, the goal of this research is to investigate how forest-based bioenergy development across the Americas may affect hydrological systems on a watershed scale. This study focuses on biofuel feedstock production with hybrid poplar cultivation in a snow-dominated watershed in northern Wisconsin, USA, and eucalyptus cultivation in a warm and temperate watershed in Entre Rios, Argentina. The Soil and Water Assessment Tool (SWAT), calibrated and validated for the two watersheds, is used to evaluate the effects of land use change corresponding to a range of biofuel development scenarios. The land use change scenarios include rules for limiting the location of the biofuel feedstock, and rotation time. These variables in turn impact the magnitude and timing of runoff and evapotranspiration. In Wisconsin, long term daily streamflow simulations indicate that planting poplar will increase evapotranspiration and decrease water yield, primarily through reduced baseflow contributions to streamflow. Results are also presented in terms of changes in flow relative to biomass production, to understand the sensitivity of potential biofuel generation to hydrologic impacts, and vice versa. In the end, alternative management practices were evaluated to mitigate the impacts. Keywords: Biofuel; Soil and Water Assessment Tool; Poplar; Baseflow; Evapotranspiration

  17. Narragansett Bay

    EPA Science Inventory

    Narragansett Bay, situated on the eastern side of Rhode Island, comprises about 15% of the State’s total area. Ninety-five percent of the Bay’s surface area is in Rhode Island with the remainder in southeastern Massachusetts; 60% of the Bay’s watershed is in Massachusetts. At the...

  18. Nutrient and suspended-sediment trends, loads, and yields and development of an indicator of streamwater quality at nontidal sites in the Chesapeake Bay watershed, 1985-2010

    USGS Publications Warehouse

    Langland, Michael; Blomquist, Joel; Moyer, Douglas; Hyer, Kenneth

    2012-01-01

    The U.S. Geological Survey (USGS) updates information on loads of, and trends in, nutrients and sediment annually to help the Chesapeake Bay Program (CBP) investigators assess progress toward improving water-quality conditions in the Chesapeake Bay and its watershed. CBP scientists and managers have worked since 1983 to improve water quality in the bay. In 2010, the U.S. Environmental Protection Agency (USEPA) established a Total Maximum Daily Load (TMDL) for the Chesapeake Bay. The TMDL specifies nutrient and sediment load allocations that need to be achieved in the watershed to improve dissolved oxygen, water-clarity, and chlorophyll conditions in the bay. The USEPA, USGS, and state and local jurisdictions in the watershed operate a CBP nontidal water-quality monitoring network and associated database that are used to update load and trend information to help assess progress toward reducing nutrient and sediment inputs to the bay. Data collected from the CBP nontidal network were used to estimate loads and trends for two time periods: a long-term period (1985-2010) at 31 "primary" sites (with storm sampling) and a 10-year period (2001-10) at 33 primary sites and 16 "secondary" sites (without storm sampling). In addition, loads at 64 primary sites were estimated for the period 2006 to 2010. Results indicate improving flow-adjusted trends for nitrogen and phosphorus for 1985 to 2010 at most of the sites in the network. For nitrogen, 21 of the 31 sites showed downward (improving) trends, whereas 2 sites showed upward (degrading) trends, and 8 sites showed no trends. The results for phosphorus were similar: 22 sites showed improving trends, 4 sites showed degrading trends, and 5 sites indicated no trends. For sediment, no trend was found at 40 percent of the sites, with 10 sites showing improving trends and 8 sites showing degrading trends. The USGS, working with CBP partners, developed a new water-quality indicator that combines the results of the 10-year trend

  19. Evaluating relative sensitivity of SWAT-simulated nitrogen discharge to projected climate and land cover changes for two watersheds in North Carolina, USA

    EPA Science Inventory

    We investigated how projected changes in land cover and climate affected simulated nitrate (NO3−) and organic nitrogen (ORGN) discharge for two watersheds within the Neuse River Basin North Carolina, USA for years 2010 to 2070. We applied the Soil and Water Assessment Tool ...

  20. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    PubMed

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M; McCarty, Gregory W; Hively, W Dean; Lang, Megan W

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  1. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region

    PubMed Central

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, W. Dean; Lang, Megan W.

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  2. ABUNDANCE OF SEAGRASS (ZOSTERA MARINA L.) AND MACROALGAE IN RELATION TO THE SALINITY-TEMPERATURE GRADIENT IN YAQUINA BAY, OREGON, USA

    EPA Science Inventory

    The distribution and abundance of the seagrass, Zostera marina, and the associated macroalgae are described for Yaquina Bay, Oregon, U.S.A. Possible relationships between plant abundance and physical-chemical characteristics of the water column were also explored. Study sites w...

  3. Couplings of watersheds and coastal waters: Sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valiela, I.; Foreman, K.; LaMontagne, M.

    1992-12-01

    Human activities on coastal watersheds provide the major sources of nutrients entering shallow coastal ecosystems. Nutrient loadings from watersheds alter structure and function of receiving aquatic ecosystems. To investigate this coupling of land to marine systems, a series of subwatersheds of Waquoit Bay differing in degree of urbanization and with widely different nutrient loading rates was studied. The subwatersheds differ in septic tanks numbers and forest acreage. Ground water is the major mechanism that transports nutrients to coastal waters. Some attenuation of nutrient concentrations within the aquifer or at the sediment-water interface, but significant increases in the nutrient content ofmore » groundwater arriving at the shore's edge are in urbanized areas. The groundwater flows through the sediment-water boundary, and sufficient groundwater-borne nutrients (nitrogen in particular) traverse the sediment-water boundary to cause significant changes in the aquatic ecosystem. These loading-dependent alterations include increased nutrients in water, greater primary production by phytoplankton, and increased macroalgal biomass and growth. The increased macroalgal biomass dominates the bay ecosystem through second- or third-order effects such as alterations of nutrient status of water columns and increasing frequency of anoxic events. The increases in seaweeds have decreased the areas covered by eelgrass habitats. The change in habitat type, plus the increased frequency of anoxic events, change the composition of the benthic fauna. The importance of bottom-up control in shallow coastal food webs is evident. The coupling of land to sea by groundwater-borne nutrient transport is mediated by a complex series of steps, making it unlikely to find a one-to-one relation between land use and conditions in the aquatic ecosystem. Appropriate models may provide a way to deal with the complexities of the coupling. 22 refs., 14 figs., 5 tabs.« less

  4. Synthesis of nutrient and sediment export patterns in the Chesapeake Bay watershed: Complex and non-stationary concentration-discharge relationships.

    PubMed

    Zhang, Qian

    2018-03-15

    Derived from river monitoring data, concentration-discharge (C-Q) relationships are useful indicators of riverine export dynamics. A top-down synthesis of C-Q patterns was conducted for suspended sediment (SS), total phosphorus (TP), and total nitrogen (TN) for nine major tributaries (15 monitoring sites) to Chesapeake Bay, which represent diverse characteristics in terms of land use, physiography, and hydrological settings. Model coefficients from the recently-developed Weighted Regressions on Time, Discharge, and Season (WRTDS) method were used to make informative interpretation of C-Q relationships. Unlike many previous C-Q studies that focused on stormflow conditions, this approach allows simultaneous examination of various discharge conditions within an uncertainty framework. This synthesis on WRTDS coefficients (i.e., the sensitivity of concentration to discharge) has offered new insights on the complexity of watershed function. Results show that watershed export has been dominated by mobilization patterns for SS and TP (particulate-dominated species) and chemostasis patterns for TN (dissolved-dominated species) under many river discharge conditions. Among nine possible modalities of low-flow vs. high-flow patterns, the three most frequent modalities are mobilization vs. mobilization (17 cases), chemostasis vs. mobilization (13 cases), and chemostasis vs. chemostasis (7 cases), representing 82% of all 45 watershed-constituent pairs. The general lack of dilution patterns may suggest that none of these constituents has been supply-limited in these watersheds. For many watershed-constituent combinations, results show clear temporal non-stationarity in C-Q relationships under selected time-invariant discharges, reflecting major changes in dominant watershed sources due to anthropogenic actions. These results highlight the potential pitfalls of assuming fixed C-Q relationships in the record. Overall, this work demonstrates the utility of WRTDS model coefficients

  5. Temporal and spatial patterns of phytoplankton production in Tomales Bay, California, U.S.A.

    USGS Publications Warehouse

    Cole, B.E.

    1989-01-01

    Primary productivity in the water column was measured 14 times between April 1985 and April 1986 at three sites in Tomales Bay, California, USA The conditions at these three stations encompassed the range of hydrographic conditions, phytoplankton biomass, phytoplankton community composition, and turbidity typical of this coastal embayment. Linear regression of the measured daily carbon uptake against the composite parameter B Zp Io (where B is the average phytoplankton biomass in the photic zone; Zp is the photic depth; and Io is the daily surface insolation) indicates that 90% of the variability in primary productivity is explained by variations in phytoplankton biomass and light availability. The linear function derived using Tomales Bay data is essentially the same as that which explains more than 80% of the variation in productivity in four other estuarine systems. Using the linear function and measured values for B, Zp, and Io, the daily photic-zone productivity was estimated for 10 sites at monthly intervals over the annual period. The average daily photic-zone productivity for the 10 sites ranged from 0??2 to 2??2 g C m-2. The bay-wide average annual primary productivity in the water column was 400 g C m-2, with most of the uptake occuring in spring and early summer. Spatial and temporal variations in primary productivity were similar to variations in phytoplankton biomass. Productivity was highest in the seaward and central regions of the bay and lowest in the shallow landward region. ?? 1989.

  6. The Bear Brook Watershed, Maine (BBWM), USA

    USGS Publications Warehouse

    Norton, S.; Kahl, J.; Fernandez, I.; Haines, T.; Rustad, L.; Nodvin, S.; Scofield, J.; Strickland, T.; Erickson, H.; Wigington, P.; Lee, J.

    1999-01-01

    The Bear Brook Watershed Manipulation project in Maine is a paired calibrated watershed study funded by the U.S. EPA. The research program is evaluating whole ecosystem response to elevated inputs of acidifying chemicals. The consists of a 2.5 year calibration period (1987-1989), nine years of chemical additions of (NH4)2SO4 (15N- and 34S-enriched for several years) to West Bear watershed (1989-1998), followed by a recovery period. The other watershed, East Bear, serves as a reference. Dosing is in six equal treatments/yr of 1800 eq SO4 and NH4/ha/yr, a 200% increase over 1988 loading (wet plus dry) for SO4 300% for N (wet NO3 + NH4). The experimental and reference watersheds are forested with mixed hard- and softwoods, and have thin acidic soils, areas of 10.2 and 10.7 ha and relief of 210 m. Thin till of variable composition is underlain by metasedimentary pelitic rocks and calc-silicate gneiss intruded by granite dikes and sills. For the period 1987-1995, precipitation averaged 1.4 m/yr, had a mean pH of 4.5, with SO4, NO3, and NH4 concentrations of 26, 14, and 7 ??eq/L, respectively. The nearly perrenial streams draining each watershed have discharges ranging from 0 (East Bear stops flowing for one to two months per year) to 150 L/sec. Prior to manipulation, East Bear and West Bear had a volume weighted annual mean pH of approximately 5.4, alkalinity = 0 to 4 ??eq/L, total base cations = 184 ??eq/L (sea-salt corrected = 118 ??eq/L), and SO4 = 100 to 111 ??eq/L. Nitrate ranged from 0 to 30 ??eq/L with an annual mean of 6 to 25 ??eq/L; dissolved organic carbon (DOC) ranged from 1 to 7 mg/L but was typically less than 3. Episodic acidification occurred at high discharge and was caused by dilution of cations, slightly increased DOC, significantly higher NO3, and the sea-salt effect. Depressions in pH were accompanied by increases in inorganic Al. The West Bear catchment responded to the chemical additions with increased export of base cations, Al, SO4, NO3, and

  7. The contribution of wetlands to stream nitrogen load in the Loch Vale Watershed, Colorado, USA

    USGS Publications Warehouse

    Jian-hui, Huang; Baron, Jill S.; Binkley, Dan

    1996-01-01

    We explored the difference between the concentrations of different N forms and other chemical properties between stream water and riparian zone wetland soil water in the Loch Vale Watershed which is located on the eastern slope of the Continental Divide in Rocky Mountain National Park, Colorado, USA. The nitrate N concentration in stream water were significantly higher than in soil water of the three wetlands, while no significant difference appeared in ammonium N. The pH values were higher and conductivity values were lower in stream water than in wetland soil water. However, significant difference also appeared between nitrate N concentrations, pH and conductivity values in the water sampled from different positions of streams. The stream tributary water had higher nitrate N concentrations, higher pH and higher conducitity values. We also conducted experiments to compare the difference between the productivity, total N concentrations in biomass and soil of upper layers. At the end, we concluded that the wetlands distributed along the streams in Loch Vale Watershed had little effect on the nitrogen load of the stream water there.

  8. Contemporary Land Change Alters Fish Communities in a San Francisco Bay Watershed, California, U.S.A.

    PubMed Central

    Cervantes-Yoshida, Kristina; Leidy, Robert A.; Carlson, Stephanie M.

    2015-01-01

    Urbanization is one of the leading threats to freshwater biodiversity, and urban regions continue to expand globally. Here we examined the relationship between recent urbanization and shifts in stream fish communities. We sampled fishes at 32 sites in the Alameda Creek Watershed, near San Francisco, California, in 1993–1994 and again in 2009, and we quantified univariate and multivariate changes in fish communities between the sampling periods. Sampling sites were classified into those downstream of a rapidly urbanizing area (“urbanized sites”), and those found in less impacted areas (“low-impacted sites”). We calculated the change from non-urban to urban land cover between 1993 and 2009 at two scales for each site (the total watershed and a 3km buffer zone immediately upstream of each site). Neither the mean relative abundance of native fish nor nonnative species richness changed significantly between the survey periods. However, we observed significant changes in fish community composition (as measured by Bray-Curtis dissimilarity) and a decrease in native species richness between the sampling periods at urbanized sites, but not at low-impacted sites. Moreover, the relative abundance of one native cyprinid (Lavinia symmetricus) decreased at the urbanized sites but not at low-impacted sites. Increased urbanization was associated with changes in the fish community, and this relationship was strongest at the smaller (3km buffer) scale. Our results suggest that ongoing land change alters fish communities and that contemporary resurveys are an important tool for examining how freshwater taxa are responding to recent environmental change. PMID:26580560

  9. Comparison of mineral weathering and biomass nutrient uptake in two small forested watersheds underlain by quartzite bedrock, Catoctin Mountain, Maryland, USA

    USGS Publications Warehouse

    Rice, Karen; Price, Jason R.

    2014-01-01

    To quantify chemical weathering and biological uptake, mass-balance calculations were performed on two small forested watersheds located in the Blue Ridge Physiographic Province in north-central Maryland, USA. Both watersheds, Bear Branch (BB) and Fishing Creek Tributary (FCT), are underlain by relatively unreactive quartzite bedrock. Such unreactive bedrock and associated low chemical-weathering rates offer the opportunity to quantify biological processes operating within the watershed. Hydrologic and stream-water chemistry data were collected from the two watersheds for the 9-year period from June 1, 1990 to May 31, 1999. Of the two watersheds, FCT exhibited both higher chemical-weathering rates and biomass nutrient uptake rates, suggesting that forest biomass aggradation was limited by the rate of chemical weathering of the bedrock. Although the chemical-weathering rate in the FCT watershed was low relative to the global average, it masked the influence of biomass base-cation uptake on stream-water chemistry. Any differences in bedrock mineralogy between the two watersheds did not exert a significant influence on the overall weathering stoichiometry. The difference in chemical-weathering rates between the two watersheds is best explained by a larger proportion of reactive phyllitic layers within the bedrock of the FCT watershed. Although the stream gradient of BB is about two-times greater than that of FCT, its influence on chemical weathering appears to be negligible. The findings of this study support the biomass nutrient uptake stoichiometry of K1.0Mg1.1Ca0.97 previously determined for the study site. Investigations of the chemical weathering of relatively unreactive quartzite bedrock may provide insight into critical zone processes.

  10. FROM LANDSCAPE ECOLOGY OF WATERSHEDS TO BENTHIC ECOLOGY OF ESTUARIES

    EPA Science Inventory

    Do land use/cover characteristics of watersheds associated with small estuaries (<260 km2) have a strong enough signal to make landscape metrics useful for finding impaired bottom communities? We tested this idea with 58 pairs of small estuaries and watersheds from Delaware Bay t...

  11. Long-term effects of high intensity prescribed fire on vegetation dynamics in the Wine Spring Creek Watershed, Western North Carolina, USA

    Treesearch

    Katherine Elliott; James Vose; Ronald Hendrick

    2009-01-01

    We examined the long-term effects of a prescribed fire in a southern Appalachian watershed in Nantahala National Forest, western North Carolina, USA. Fire was prescribed in 1995 on this site by forest managers to restore a degraded pine (Pinus spp.)-hardwood community, specifically to stimulate forage production, promote pine and oak (Quercus spp.) regeneration, and...

  12. Watershed Outreach Professionals' Behavior Change Practices, Challenges, and Needs

    ERIC Educational Resources Information Center

    Kelly, Meghan; Little, Samuel; Phelps, Kaitlin; Roble, Carrie; Zint, Michaela

    2012-01-01

    This study investigated the practices, challenges, and needs of Chesapeake Bay watershed outreach professionals, as related to behavior change strategies and best outreach practices. Data were collected through a questionnaire e-mailed to applicants to the Chesapeake Bay Trust's environmental outreach grant program (n = 108, r = 56%). Almost all…

  13. Tree response to experimental watershed acidification

    Treesearch

    N.K. Jensen; E.J. Holzmueller; P.J. Edwards; M. Thomas-Van Gundy; D.R. DeWalle; K.W.J. Williard

    2014-01-01

    Forest ecosystems in the Eastern USA are threatened by acid deposition rates that have increased dramatically since industrialization. We utilized two watersheds at the Fernow Experimental Forest in West Virginia to examine long-term effects of acidification on ecological processes. One watershed has been treated with ammonium sulfate (approximately twice the ambient...

  14. Prioritization of Ecosystem Services Research: Tampa Bay Demonstration Project.

    EPA Science Inventory

    The Tampa Bay Ecosystem Services Demonstration Project (TBESDP) is a component of the U.S. Environmental Protection Agency’s Ecosystem Services Research Program. The principal objectives of TBESDP are (1) to quantify the ecosystem services of the Tampa Bay watershed, (2) to deter...

  15. Predicting watershed sediment yields after wildland fire with the InVEST sediment retention model at large geographic extent in the western USA: accuracy and uncertainties

    NASA Astrophysics Data System (ADS)

    Sankey, J. B.; Kreitler, J.; McVay, J.; Hawbaker, T. J.; Vaillant, N.; Lowe, S. E.

    2014-12-01

    Wildland fire is a primary threat to watersheds that can impact water supply through increased sedimentation, water quality decline, and change the timing and amount of runoff leading to increased risk from flood and sediment natural hazards. It is of great societal importance in the western USA and throughout the world to improve understanding of how changing fire frequency, extent, and location, in conjunction with fuel treatments will affect watersheds and the ecosystem services they supply to communities. In this work we assess the utility of the InVEST Sediment Retention Model to accurately characterize vulnerability of burned watersheds to erosion and sedimentation. The InVEST tools are GIS-based implementations of common process models, engineered for high-end computing to allow the faster simulation of larger landscapes and incorporation into decision-making. The InVEST Sediment Retention Model is based on common soil erosion models (e.g., RUSLE -Revised Universal Soil Loss Equation) and determines which areas of the landscape contribute the greatest sediment loads to a hydrological network and conversely evaluate the ecosystem service of sediment retention on a watershed basis. We evaluate the accuracy and uncertainties for InVEST predictions of increased sedimentation after fire, using measured post-fire sedimentation rates available for many watersheds in different rainfall regimes throughout the western USA from an existing, large USGS database of post-fire sediment yield [synthesized in Moody J, Martin D (2009) Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States. International Journal of Wildland Fire 18: 96-115]. The ultimate goal of this work is to calibrate and implement the model to accurately predict variability in post-fire sediment yield as a function of future landscape heterogeneity predicted by wildfire simulations, and future landscape fuel treatment scenarios, within watersheds.

  16. Comparison of forest area data in the Chesapeake Bay Watershed

    Treesearch

    Tonya W. Lister; Andrew J. Lister

    2012-01-01

    The Chesapeake Bay, the largest estuary in the United States, has been designated by executive order as a national treasure. There is much interest in monitoring the status and trends in forest area within the bay, especially since maintaining forest cover is key to bay restoration efforts. The Chesapeake Bay Land Cover Data Series (CBLCD), a Landsat-based, multi-...

  17. Evaluating Local and Regional Sources of Trace Element Contamination in a Rural Sub Estuary of the Upper Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Krahforst, C.; Hartman, S.; Sherman, L.; Kehm, K.

    2014-12-01

    The distribution of trace elements (V, Cr, Co, Ni, Cu, Zn, As, Ag, Cd, Sn, Ba, W, Pb and U) along with Al and Fe and other sediment characteristics in surface sediment and sediment cores from the Chester River - a sub estuary of the Chesapeake Bay located in a predominantly agricultural watershed of Maryland's upper Eastern Shore, USA - have been determined in order to add to the understanding of contaminant transport and fate and inform management strategies designed to maintain or improve the ecological condition of estuaries. These analyses coupled with the comparison of elemental analysis of 210Pb - dated sediment cores, main stem water quality surveys, and a review of recent EPA National Coastal Condition Assessment sediment data from Chesapeake Bay provide added information about the roles of local and region scale processes on ecosystem condition. The high amount of suspended sediment in the Chester River (5-20 mg L-1) is an important factor controlling water quality conditions of the Chester River and a prime focus for environmental management of this system. Sources of suspended matter include local runoff, atmospheric deposition, local resuspension, and exchange with the Chesapeake Bay. In principle, each of these sources could be distinguished on the basis of chemical composition of surface sediment. Preliminary results from multivariate analytic models indicate that many of the elements investigated display significant covariance with Al (and other predominantly crustal signatures) which may indicate limited exogenic sources of contamination for sediments of this watershed. For example total Pb concentrations are mostly below the NOAA's low toxic effects level and lower than the median value of NCCA data for the upper Chesapeake suggesting that sediments have significant sources from within the watershed. Further, significant higher concentrations of Sn and Cu coincide with sediment collected in or near marinas and point to localized anthropogenic

  18. Rising air and stream-water temperatures in Chesapeake Bay region, USA

    USGS Publications Warehouse

    Rice, Karen C.; Jastram, John D.

    2015-01-01

    Monthly mean air temperature (AT) at 85 sites and instantaneous stream-water temperature (WT) at 129 sites for 1960–2010 are examined for the mid-Atlantic region, USA. Temperature anomalies for two periods, 1961–1985 and 1985–2010, relative to the climate normal period of 1971–2000, indicate that the latter period was statistically significantly warmer than the former for both mean AT and WT. Statistically significant temporal trends across the region of 0.023 °C per year for AT and 0.028 °C per year for WT are detected using simple linear regression. Sensitivity analyses show that the irregularly sampled WT data are appropriate for trend analyses, resulting in conservative estimates of trend magnitude. Relations between 190 landscape factors and significant trends in AT-WT relations are examined using principal components analysis. Measures of major dams and deciduous forest are correlated with WT increasing slower than AT, whereas agriculture in the absence of major dams is correlated with WT increasing faster than AT. Increasing WT trends are detected despite increasing trends in streamflow in the northern part of the study area. Continued warming of contributing streams to Chesapeake Bay likely will result in shifts in distributions of aquatic biota and contribute to worsened eutrophic conditions in the bay and its estuaries.

  19. Relationships between watershed emergy flow and coastal New England salt marsh structure, function, and condition.

    PubMed

    Brandt-Williams, Sherry; Wigand, Cathleen; Campbell, Daniel E

    2013-02-01

    This study evaluated the link between watershed activities and salt marsh structure, function, and condition using spatial emergy flow density (areal empower density) in the watershed and field data from 10 tidal salt marshes in Narragansett Bay, RI, USA. The field-collected data were obtained during several years of vegetation, invertebrate, soil, and water quality sampling. The use of emergy as an accounting mechanism allowed disparate factors (e.g., the amount of building construction and the consumption of electricity) to be combined into a single landscape index while retaining a uniform quantitative definition of the intensity of landscape development. It expanded upon typical land use percentage studies by weighting each category for the intensity of development. At the RI salt marsh sites, an impact index (watershed emergy flow normalized for marsh area) showed significant correlations with mudflat infauna species richness, mussel density, plant species richness, the extent and density of dominant plant species, and denitrification potential within the high salt marsh. Over the 4-year period examined, a loading index (watershed emergy flow normalized for watershed area) showed significant correlations with nitrite and nitrate concentrations, as well as with the nitrogen to phosphorus ratios in stream discharge into the marshes. Both the emergy impact and loading indices were significantly correlated with a salt marsh condition index derived from intensive field-based assessments. Comparison of the emergy indices to calculated nitrogen loading estimates for each watershed also produced significant positive correlations. These results suggest that watershed emergy flow is a robust index of human disturbance and a potential tool for rapid assessment of coastal wetland condition.

  20. Using tracer-derived groundwater transit times to assess storage within a high-elevation watershed of the upper Colorado River Basin, USA

    NASA Astrophysics Data System (ADS)

    Georgek, Jennifer L.; Kip Solomon, D.; Heilweil, Victor M.; Miller, Matthew P.

    2018-03-01

    Previous watershed assessments have relied on annual baseflow to evaluate the groundwater contribution to streams. To quantify the volume of groundwater in storage, additional information such as groundwater mean transit time (MTT) is needed. This study determined the groundwater MTT in the West Fork Duchesne watershed in Utah (USA) with lumped-parameter modeling of environmental tracers (SF6, CFCs, and 3H/3He) from 21 springs. Approximately 30% of the springs exhibited an exponential transit time distribution (TTD); the remaining 70% were best characterized by a piston-flow TTD. The flow-weighted groundwater MTT for the West Fork watershed is about 40 years with approximately 20 years in the unsaturated zone. A cumulative distribution of these ages revealed that most of the groundwater is between 30 and 50 years old, suggesting that declining recharge associated with 5-10-year droughts is less likely to have a profound effect on this watershed compared with systems with shorter MTTs. The estimated annual baseflow of West Fork stream flow based on chemical hydrograph separation is 1.7 × 107 m3/year, a proxy for groundwater discharge. Using both MTT and groundwater discharge, the volume of mobile groundwater stored in the watershed was calculated to be 6.5 × 108 m3, or 20 m thickness of active groundwater storage and recharge of 0.09 m/year (assuming porosity = 15%). Future watershed-scale assessments should evaluate groundwater MTT, in addition to annual baseflow, to quantify groundwater storage and more accurately assess watershed susceptibility to drought, groundwater extraction, and land-use change.

  1. Application of geologic map information to water quality issues in the southern part of the Chesapeake Bay watershed, Maryland and Virginia, eastern United States

    USGS Publications Warehouse

    McCartan, L.; Peper, J.D.; Bachman, L.J.; Horton, J. Wright

    1999-01-01

    Geologic map units contain much information about the mineralogy, chemistry, and physical attributes of the rocks mapped. This paper presents information from regional-scale geologic maps in Maryland and Virginia, which are in the southern part of the Chesapeake Bay watershed in the eastern United States. The geologic map information is discussed and analyzed in relation to water chemistry data from shallow wells and stream reaches in the area. Two environmental problems in the Chesapeake Bay watershed are used as test examples. The problems, high acidity and high nitrate concentrations in streams and rivers, tend to be mitigated by some rock and sediment types and not by others. Carbonate rocks (limestone, dolomite, and carbonate-cemented rocks) have the greatest capacity to neutralize acidic ground water and surface water in contact with them. Rocks and sediments having high carbon or sulfur contents (such as peat and black shale) potentially contribute the most toward denitrification of ground water and surface water in contact with them. Rocks and sediments that are composed mostly of quartz, feldspar, and light-colored clay (rocks such as granite and sandstone, sediments such as sand and gravel) tend not to alter the chemistry of waters that are in contact with them. The testing of relationships between regionally mapped geologic units and water chemistry is in a preliminary stage, and initial results are encouraging.Geologic map units contain much information about the mineralogy, chemistry, and physical attributes of the rocks mapped. This paper presents information from regional-scale geologic maps in Maryland and Virginia, which are in the southern part of the Chesapeake Bay watershed in the eastern United States. The geologic map information is discussed and analyzed in relation to water chemistry data from shallow wells and stream reaches in the area. Two environmental problems in the Chesapeake Bay watershed are used as test examples. The problems, high

  2. KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility Bay 1, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (right) are briefed by a USA technician (center) on Shuttle processing in the payload bay of orbiter Atlantis. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility Bay 1, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (right) are briefed by a USA technician (center) on Shuttle processing in the payload bay of orbiter Atlantis. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  3. Preliminary estimates of residence times and apparent ages of ground water in the Chesapeake Bay watershed, and water-quality data from a survey of springs

    USGS Publications Warehouse

    Focazio, Michael J.; Plummer, Niel; Bohlke, John K.; Busenberg, Eurybiades; Bachman, L. Joseph; Powars, David S.

    1998-01-01

    Knowledge of the residence times of the ground-water systems in Chesapeake Bay watershed helps resource managers anticipate potential delays between implementation of land-management practices and any improve-ments in river and estuary water quality. This report presents preliminary estimates of ground-water residence times and apparent ages of water in the shallow aquifers of the Chesapeake Bay watershed. A simple reservoir model, published data, and analyses of spring water were used to estimate residence times and apparent ages of ground-water discharge. Ranges of aquifer hydraulic characteristics throughout the Bay watershed were derived from published literature and were used to estimate ground-water residence times on the basis of a simple reservoir model. Simple combinations of rock type and physiographic province were used to delineate hydrogeomorphic regions (HGMR?s) for the study area. The HGMR?s are used to facilitate organization and display of the data and analyses. Illustrations depicting the relation of aquifer characteristics and associated residence times as a continuum for each HGMR were developed. In this way, the natural variation of aquifer characteristics can be seen graphically by use of data from selected representative studies. Water samples collected in September and November 1996, from 46 springs throughout the watershed were analyzed for chlorofluorocarbons (CFC?s) to estimate the apparent age of ground water. For comparison purposes, apparent ages of water from springs were calculated assuming piston flow. Additi-onal data are given to estimate apparent ages assuming an exponential distribution of ages in spring discharge. Additionally, results from previous studies of CFC-dating of ground water from other springs and wells in the watershed were compiled. The CFC data, and the data on major ions, nutrients, and nitrogen isotopes in the water collected from the 46 springs are included in this report. The apparent ages of water

  4. Response of aquatic macrophytes to human land use perturbations in the watersheds of Wisconsin lakes, U.S.A.

    USGS Publications Warehouse

    Sass, Laura L.; Bozek, Michael A.; Hauxwell, Jennifer A.; Wagner, Kelly; Knight, Susan

    2010-01-01

    Aquatic macrophyte communities were assessed in 53 lakes in Wisconsin, U.S.A. along environmental and land use development gradients to determine effects human land use perturbations have on aquatic macrophytes at the watershed and riparian development scales. Species richness and relative frequency were surveyed in lakes from two ecoregions: the Northern Lakes and Forests Ecoregion and the Southeastern Wisconsin Till Plain Ecoregion. Lakes were selected along a gradient of watershed development ranging from undeveloped (i.e., forested), to agricultural to urban development. Land uses occurring in the watershed and in perimeters of different width (0–100, 0–200, 0–500, and 0–1000 m from shore, in the watershed) were used to assess effects on macrophyte communities. Snorkel and SCUBA were used to survey aquatic macrophyte species in 18 quadrats of 0.25 m2 along 14 transects placed perpendicular to shore in each lake. Effects of watershed development (e.g., agriculture and/or urban) were tested at whole-lake (entire littoral zone) and near-shore (within 7 m of shore) scales using canonical correspondence analysis (CCA) and linear regression. Overall, species richness was negatively related to watershed development, while frequencies of individual species and groups differed in level of response to different land use perturbations. Effects of land use in the perimeters on macrophytes, with a few exceptions, did not provide higher correlations compared to land use at the watershed scale. In lakes with higher total watershed development levels, introduced species, particularly Myriophyllumspicatum, increased in abundance and native species, especially potamids, isoetids, and floating-leaved plants, declined in abundance. Correlations within the northern and southeastern ecoregions separately were not significant. Multivariate analyses suggested species composition is driven by environmental responses as well as human development pressures. Both water

  5. Tracing Nitrate Contributions to Streams During Varying Flow Regimes at the Sleepers River Research Watershed, Vermont, USA

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Ohte, N.; Doctor, D. H.; Kendall, C.

    2003-12-01

    Quantifying sources and transformations of nitrate in headwater catchments is fundamental to understanding the movement of nitrogen to streams. At the Sleepers River Research Watershed in northeastern Vermont (USA), we are using multiple chemical tracer and mixing model approaches to quantify sources and transport of nitrate to streams under varying flow regimes. We sampled streams, lysimeters, and wells at nested locations from the headwaters to the outlet of the 41 ha W-9 watershed under the entire range of flow regimes observed throughout 2002-2003, including baseflow and multiple events (stormflow and snowmelt). Our results suggest that nitrogen sources, and consequently stream nitrate concentrations, are rapidly regenerated during several weeks of baseflow and nitrogen is flushed from the watershed by stormflow events that follow baseflow periods. Both basic chemistry data (anions, cations, & dissolved organic carbon) and isotopic data (nitrate, dissolved organic carbon, and dissolved inorganic carbon) indicate that nitrogen source contributions vary depending upon the extent of saturation in the watershed, the initiation of shallow subsurface water inputs, and other hydrological processes. Stream nitrate concentrations typically peak with discharge and are higher on the falling than the rising limb of the hydrograph. Our data also indicate the importance of terrestrial and aquatic biogeochemical processes, in addition to hydrological connectivity in controlling how nitrate moves from the terrestrial landscape to streams. Our detailed sampling data from multiple flow regimes are helping to identify and quantify the "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nitrogen fluxes in streams.

  6. The areal extent of brown shrimp habitat suitability in Mobile Bay, Alabama, USA: Targeting vegetated habitat restoration

    USGS Publications Warehouse

    Smith, L.M.; Nestlerode, J.A.; Harwell, L.C.; Bourgeois, P.

    2010-01-01

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the USA. Protection and management of these vital GOM habitats are critical to sustainable shrimp fisheries. Brown shrimp (Farfantepenaeus aztecus) are a major component of GOM fisheries. We present an approach for estimating the areal extent of suitable habitat for post-larval and juvenile brown shrimp in Mobile Bay, Alabama, using an existing habitat suitability index model for the northern GOM calculated from probabilistic survey of water quality and sediment data, land cover data, and submerged aquatic vegetation coverages. This estuarine scale approach is intended to support targeted protection and restoration of these habitats. These analyses indicate that approximately 60% of the area of Mobile Bay is categorized as suitable to near optimal for post-larval and juvenile shrimp and 38% of the area is marginally to minimally suitable. We identify potential units within Mobile Bay for targeted restoration to improve habitat suitability. ?? 2010 Springer Science+Business Media B.V.

  7. Use of Principal Components Analysis to Explain Controls on Nutrient Fluxes to the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Rice, K. C.; Mills, A. L.

    2017-12-01

    The Chesapeake Bay watershed, on the east coast of the United States, encompasses about 166,000-square kilometers (km2) of diverse land use, which includes a mixture of forested, agricultural, and developed land. The watershed is now managed under a Total Daily Maximum Load (TMDL), which requires implementation of management actions by 2025 that are sufficient to reduce nitrogen, phosphorus, and suspended-sediment fluxes to the Chesapeake Bay and restore the bay's water quality. We analyzed nutrient and sediment data along with land-use and climatic variables in nine sub watersheds to better understand the drivers of flux within the watershed and to provide relevant management implications. The nine sub watersheds range in area from 300 to 30,000 km2, and the analysis period was 1985-2014. The 31 variables specific to each sub watershed were highly statistically significantly correlated, so Principal Components Analysis was used to reduce the dimensionality of the dataset. The analysis revealed that about 80% of the variability in the whole dataset can be explained by discharge, flux, and concentration of nutrients and sediment. The first two principal components (PCs) explained about 68% of the total variance. PC1 loaded strongly on discharge and flux, and PC2 loaded on concentration. The PC scores of both PC1 and PC2 varied by season. Subsequent analysis of PC1 scores versus PC2 scores, broken out by sub watershed, revealed management implications. Some of the largest sub watersheds are largely driven by discharge, and consequently large fluxes. In contrast, some of the smaller sub watersheds are more variable in nutrient concentrations than discharge and flux. Our results suggest that, given no change in discharge, a reduction in nutrient flux to the streams in the smaller watersheds could result in a proportionately larger decrease in fluxes of nutrients down the river to the bay, than in the larger watersheds.

  8. Spatial and temporal relationships among watershed mining, water quality, and freshwater mussel status in an eastern USA river.

    PubMed

    Zipper, Carl E; Donovan, Patricia F; Jones, Jess W; Li, Jing; Price, Jennifer E; Stewart, Roger E

    2016-01-15

    The Powell River of southwestern Virginia and northeastern Tennessee, USA, drains a watershed with extensive coal surface mining, and it hosts exceptional biological richness, including at-risk species of freshwater mussels, downstream of mining-disturbed watershed areas. We investigated spatial and temporal patterns of watershed mining disturbance; their relationship to water quality change in the section of the river that connects mining areas to mussel habitat; and relationships of mining-related water constituents to measures of recent and past mussel status. Freshwater mussels in the Powell River have experienced significant declines over the past 3.5 decades. Over that same period, surface coal mining has influenced the watershed. Water-monitoring data collected by state and federal agencies demonstrate that dissolved solids and associated constituents that are commonly influenced by Appalachian mining (specific conductance, pH, hardness and sulfates) have experienced increasing temporal trends from the 1960s through ~2008; but, of those constituents, only dissolved solids concentrations are available widely within the Powell River since ~2008. Dissolved solids concentrations have stabilized in recent years. Dissolved solids, specific conductance, pH, and sulfates also exhibited spatial patterns that are consistent with dilution of mining influence with increasing distance from mined areas. Freshwater mussel status indicators are correlated negatively with dissolved solids concentrations, spatially and temporally, but the direct causal mechanisms responsible for mussel declines remain unknown. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Preliminary lithogeochemical map showing near-surface rock types in the Chesapeake Bay watershed, Virginia and Maryland

    USGS Publications Warehouse

    Peper, John D.; McCartan, Lucy; Horton, J. Wright; Reddy, James E.

    2001-01-01

    This preliminary experimental lithogeochemical map shows the distribution of rock types in the Virginia and Maryland parts of the Chesapeake Bay watershed. The map was produced digitally by classifying geologic-map units according to composition, mineralogy, and texture; rather than by age and stratigraphic relationships as shown on traditional geologic maps. This map differs from most lithologic maps in that the lithogeochemical unit classification distinguishes those rock units having key water-reactive minerals that may induce acid neutralization, or reduction, of hosted water at the weathering interface. The validity of these rock units, however, is independent of water chemistry, because the rock units are derived from geologic maps and rock descriptions. Areas of high soil carbon content, and sulfide metal deposits are also shown. Water-reactive minerals and their weathering reactions yield five lithogeochemical unit classes: 1) carbonate rock and calcareous rocks and sediments, the most acid-neutralizing; 2)carbonaceous-sulfidic rocks and sediments, oxygen-depleting and reducing; 3) quartzofeldspathic rocks and siliciclastic sediments, relatively weakly reactive with water; 4) mafic silicate rocks/sediments, oxygen consuming and high solute-load delivering; and, 5) the rarer calcareous-sulfidic (carbonaceous) rocks, neutralizing and reducing. Earlier studies in some parts of the map area have related solute loads in ground and stream waters to some aspects of bedrock lithology. More recent preliminary tests of relationships between four of the classes of mapped lithogeochemical units and ground water chemistry, in the Mid-Atlantic area using this map, have focused on and verified the nitrate-reducing and acid-neutralizing properties of some bedrock and unconsolidated aquifer rock types. Sulfide mineral deposits and their mine-tailings effects on waters are beginning to be studied by others. Additional testing of relationships among the lithogeochemical units

  10. Educating the Community: A Watershed Model Project.

    ERIC Educational Resources Information Center

    Perryess, C. S.

    2001-01-01

    Focuses on the construction and use of a schoolyard model of the Morrow Bay watershed in California. Describes the design and use of materials that include styrofoam insulation, crushed granite, cement, and stucco. (DDR)

  11. Mercury concentrations and loads in a large river system tributary to San Francisco Bay, California, USA

    USGS Publications Warehouse

    David, N.; McKee, L.J.; Black, F.J.; Flegal, A.R.; Conaway, C.H.; Schoellhamer, D.H.; Ganju, N.K.

    2009-01-01

    In order to estimate total mercury (HgT) loads entering San Francisco Bay, USA, via the Sacramento-San Joaquin River system, unfiltered water samples were collected between January 2002 and January 2006 during high flow events and analyzed for HgT. Unfiltered HgT concentrations ranged from 3.2 to 75 ng/L and showed a strong correlation (r2 = 0.8, p < 0.001, n = 78) to suspended sediment concentrations (SSC). During infrequent large floods, HgT concentrations relative to SSC were approximately twice as high as observed during smaller floods. This difference indicates the transport of more Hg-contaminated particles during high discharge events. Daily HgT loads in the Sacramento-San Joaquin River at Mallard Island ranged from below the limit of detection to 35 kg. Annual HgT loads varied from 61 ?? 22 kg (n = 5) in water year (WY) 2002 to 470 ?? 170 kg (n = 25) in WY 2006. The data collected will assist in understanding the long-term recovery of San Francisco Bay from Hg contamination and in implementing the Hg total maximum daily load, the long-term cleanup plan for Hg in the Bay. ?? 2009 SETAC.

  12. Section 905(B) WRDA 86, Reconnaissance Study of Ecosystem Restoration for the Clinton River and Anchor Bay Watersheds, Macomb County and St. Clair County, Michigan

    DTIC Science & Technology

    2012-07-01

    water quality, potential for growth of invasive species , and fish and wildlife habitat . Clinton River and Anchor Bay Watersheds Reconnaissance...However, the study area provides important habitat for many rare species , with the most abundant being wooded areas. In addition, the study area features...animal life and provide spawning grounds for fish. These areas provide habitat for numerous species , including rare species such as black- crowned

  13. Hydrogeological constraints on riparian buffers for reduction of diffuse pollution: examples from the Bear Creek watershed in Iowa, USA.

    PubMed

    Simpkins, W W; Wineland, T R; Andress, R J; Johnston, D A; Caron, G C; Isenhart, T M; Schultz, R C

    2002-01-01

    Riparian Management Systems (RiMS) have been proposed to minimize the impacts of agricultural production and improve water quality in Iowa in the Midwestern USA. As part of RiMS, multispecies riparian buffers have been shown to decrease nutrient, pesticide, and sediment concentrations in runoff from adjacent crop fields. However, their effect on nutrients and pesticides moving in groundwater beneath buffers has been discussed only in limited and idealized hydrogeologic settings. Studies in the Bear Creek watershed of central Iowa show the variability inherent in hydrogeologic systems at the watershed scale, some of which may be favorable or unfavorable to future implementation of buffers. Buffers may be optimized by choosing hydrogeologic systems where a shallow groundwater flow system channels water directly through the riparian buffer at velocities that allow for processes such as denitrification to occur.

  14. Assessing wetland loss impacts on watershed hydrology using an improved modeling approach

    USDA-ARS?s Scientific Manuscript database

    Despite the importance of wetland impacts on water cycling, the Chesapeake Bay Watershed (CBW) has experienced significant wetland losses. The resultant environmental degradation has not been fully characterized. Our aim is to assess wetland loss impacts on watershed hydrology for an agricultural wa...

  15. A Decision Framework to Protect Coral Reefs in Guánica Bay, Puerto Rico

    EPA Science Inventory

    A Watershed Management Plan (WMP) for Guánica Bay, Puerto Rico, was introduced in 2008 by a nonprofit organization, the Center for Watershed Protection, with the intent of protecting coral reefs from damage related to watershed discharges. The plan was initially generated with th...

  16. Hydrological processes of reference watersheds in Experimental Forests, USA

    Treesearch

    Devendra Amatya; John Campbell; Pete Wohlgemuth; Kelly Elder; Stephen Sebestyen; Sherri Johnson; Elizabeth Keppeler; Mary Beth Adams; Peter Caldwell; D. Misra

    2016-01-01

    Long-term research at small, gauged, forested watersheds within the USDA Forest Service, Experimental Forest and Range network (USDA-EFR) has contributed substantially to our current understanding of relationships between forests and streamflow (Vose et al., 2014). Many of these watershed studies were established in the early to mid-20th century and have been used to...

  17. A GIS and statistical approach to identify variables that control water quality in hydrothermally altered and mineralized watersheds, Silverton, Colorado, USA

    USGS Publications Warehouse

    Yager, Douglas B.; Johnson, Raymond H.; Rockwell, Barnaby W.; Caine, Jonathan S.; Smith, Kathleen S.

    2013-01-01

    Hydrothermally altered bedrock in the Silverton mining area, southwest Colorado, USA, contains sulfide minerals that weather to produce acidic and metal-rich leachate that is toxic to aquatic life. This study utilized a geographic information system (GIS) and statistical approach to identify watershed-scale geologic variables in the Silverton area that influence water quality. GIS analysis of mineral maps produced using remote sensing datasets including Landsat Thematic Mapper, advanced spaceborne thermal emission and reflection radiometer, and a hybrid airborne visible infrared imaging spectrometer and field-based product enabled areas of alteration to be quantified. Correlations between water quality signatures determined at watershed outlets, and alteration types intersecting both total watershed areas and GIS-buffered areas along streams were tested using linear regression analysis. Despite remote sensing datasets having varying watershed area coverage due to vegetation cover and differing mineral mapping capabilities, each dataset was useful for delineating acid-generating bedrock. Areas of quartz–sericite–pyrite mapped by AVIRIS have the highest correlations with acidic surface water and elevated iron and aluminum concentrations. Alkalinity was only correlated with area of acid neutralizing, propylitically altered bedrock containing calcite and chlorite mapped by AVIRIS. Total watershed area of acid-generating bedrock is more significantly correlated with acidic and metal-rich surface water when compared with acid-generating bedrock intersected by GIS-buffered areas along streams. This methodology could be useful in assessing the possible effects that alteration type area has in either generating or neutralizing acidity in unmined watersheds and in areas where new mining is planned.

  18. DIAGNOSING THE CAUSES OF BIOLOGICAL IMPAIRMENT IN MOBILE BAY, ALABAMA

    EPA Science Inventory

    Mobile Bay is the fourth largest estuary in the conterminous U.S. with a watershed of more than 43,000 square miles. Biological condition in Mobile Bay has been assessed annually since 2000 through the National Coastal Assessment, a monitoring collaboration between US EPA and Al...

  19. Polyphosphate Accumulation in Benthic Biofilms in an Agricultural Watershed (Pennsylvania, USA)

    NASA Astrophysics Data System (ADS)

    Taylor, S.

    2015-12-01

    Nutrient loading has contributed to eutrophication in rivers and downstream systems throughout the mid-Atlantic region, USA. It is known that biofilms can be assessed to determine the amount of phosphorus (P) pollution in a system and the agricultural impacts it has on stream health. Polyphosphates are a storage system in algal cells and can be used to reflect the degree of nutrient loading to stream ecosystems. An ISES (in situ enrichment system) experiment was deployed in four flumes of a USDA maintained stream watershed for a 12-day period. In July-August of 2014, experimental vials of agar were enriched with six levels of P loading from 0.0 to 1,540.8 μg PO4-3/day under consistently N enriched conditions. At the end of this period natural growing biofilms were scraped off tiles established in each site and analyzed for chlorophyll, total P, and polyphosphate. While there were no significant differences found in biomass growth between each treatment (two-way ANOVA; F= 3.387, p>0.042), there were significant increases in P storage with increased P provided (F= 148.853, p<0.001). We measured consistent uptake patterns throughout the watershed, suggesting that uptake was a consistent feature of biofilms throughout the landscape (F= 4.172, p>0.05). A large percentage of total P was also stored as polyphosphate in the treatments with added P in relation to the ambient tiles collected. Given these findings, we propose that polyphosphate storage in stream biofilms are an important, early warning indicator for changing trophic status in streams compared with biomass metrics (e.g., chlorophyll); therefore, P storage in stream algae reflects loading from throughout the terrestrial landscape.

  20. Long-term Watershed Database for the Ridge and Valley Physiographic Province: Mahantango Creek Watershed, Pennsylvania, USA

    USDA-ARS?s Scientific Manuscript database

    Understanding agricultural effects on water quality in rivers and estuaries requires understanding of hydrometeorology and geochemical cycling at various scales over time. The USDA-ARS initiated a hydrologic research program at the Mahantango Creek Watershed (MCW) in 1968, a research watershed at t...

  1. A SIMPLIFIED MODELING OF FLUSHING AND RESIDENCE TIME IN 42 EMBAYMENTS IN NEW ENGLAND, USA, WITH SPECIAL ATTENTION TO GRENWICH BAY, RHODE ISLAND

    EPA Science Inventory

    A simplified protocol has been developed to meet the need for modeling hydrodynamics and transport in large numbers of embayments quickly and reliably. The procedure is illustrated with 42 embayments in southern New England, USA, giving special attention to Greenwich Bay, RI. The...

  2. Polychlorinated Biphenyls (PCBs) and Polybrominated Diphenol Ethers (PBDEs) in Current and Historical Samples of Avian Eggs from Nesting Sites in Buzzards Bay, MA, USA

    EPA Science Inventory

    We measured concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in eggs from breeding colonies in Buzzards Bay, MA, USA. Eggs from two piscivorous bird species, common (Sterna hirundo) and roseate (Sterna dougallii) terns, were collected...

  3. Removing Mercury in the Guadalupe River Watershed Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Removing Mercury in the Guadalupe River Watershed Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  4. Willingness to Pay Survey for Chesapeake Bay Total ...

    EPA Pesticide Factsheets

    A stated preference survey to collect data on households’ use of Chesapeake Bay and its watershed, and of their preferences for a variety of water quality improvements likely to follow from pollution reduction programs. The goal of the project is to obtain valuation estimates that can be used to evaluate alternative policies and approaches to improving water in the Chesapeake Bay.

  5. Coastal and wetland ecosystems of the Chesapeake Bay watershed: Applying palynology to understand impacts of changing climate, sea level, and land use

    USGS Publications Warehouse

    Willard, Debra A.; Bernhardt, Christopher E.; Hupp, Cliff R.; Newell, Wayne L.

    2015-01-01

    The mid-Atlantic region and Chesapeake Bay watershed have been influenced by fluctuations in climate and sea level since the Cretaceous, and human alteration of the landscape began ~12,000 years ago, with greatest impacts since colonial times. Efforts to devise sustainable management strategies that maximize ecosystem services are integrating data from a range of scientific disciplines to understand how ecosystems and habitats respond to different climatic and environmental stressors. Palynology has played an important role in improving understanding of the impact of changing climate, sea level, and land use on local and regional vegetation. Additionally, palynological analyses have provided biostratigraphic control for surficial mapping efforts and documented agricultural activities of both Native American populations and European colonists. This field trip focuses on sites where palynological analyses have supported efforts to understand the impacts of changing climate and land use on the Chesapeake Bay ecosystem.

  6. Total nutrient and sediment loads, trends, yields, and nontidal water-quality indicators for selected nontidal stations, Chesapeake Bay Watershed, 1985–2011

    USGS Publications Warehouse

    Langland, Michael J.; Blomquist, Joel D.; Moyer, Douglas; Hyer, Kenneth; Chanat, Jeffrey G.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Chesapeake Bay Program (CBP) partners, routinely reports long-term concentration trends and monthly and annual constituent loads for stream water-quality monitoring stations across the Chesapeake Bay watershed. This report documents flow-adjusted trends in sediment and total nitrogen and phosphorus concentrations for 31 stations in the years 1985–2011 and for 32 stations in the years 2002–2011. Sediment and total nitrogen and phosphorus yields for 65 stations are presented for the years 2006–2011. A combined nontidal water-quality indicator (based on both trends and yields) indicates there are more stations classified as “improving water-quality trend and a low yield” than “degrading water-quality trend and a high yield” for total nitrogen. The same type of 2-way classification for total phosphorus and sediment results in equal numbers of stations in each indicator class.

  7. Organic Carbon and Trace Element Cycling in a River-Dominated Tidal Coastal Wetland System (Tampa Bay, FL, USA)

    NASA Astrophysics Data System (ADS)

    Moyer, R. P.; Smoak, J. M.; Engelhart, S. E.; Powell, C. E.; Chappel, A. R.; Gerlach, M. J.; Kemp, A.; Breithaupt, J. L.

    2016-02-01

    Tampa Bay is the largest open water, river-fed estuary in Florida (USA), and is characterized by the presence of both mangrove and salt marsh ecosystems. Both coastal wetland systems, and small rivers such as the ones draining into Tampa Bay have historically been underestimated in terms of their role in the global carbon and elemental cycles. Climate change and sea-level rise (SLR) are major threats in Tampa Bay and stand to disrupt hydrologic cycles, compromising sediment accumulation and the rate of organic carbon (OC) burial. This study evaluates organic carbon content, sediment accumulation, and carbon burial rates in salt marsh and mangrove ecosystems, along with measurements of fluxes of dissolved OC (DOC) and trace elements in the water column of the Little Manatee River (LMR) in Tampa Bay. The characterization of OC and trace elements in tidal rivers and estuaries is critical for quantitatively constraining these systems in local-to-regional scale biogeochemical budgets, and provide insight into biogeochemical processes occurring with the estuary and adjacent tidal wetlands. Material fluxes of DOC and trace elements were tied to discharge irrespective of season, and the estuarine habitats removed 15-65% of DOC prior to export to Tampa Bay and the Gulf of Mexico. Thus, material is available for cycling and burial within marsh and mangrove peats, however, LMR mangrove peats have higher OC content and burial rates than adjacent salt marsh peats. Sedimentary accretion rates in LMR marshes are not currently keeping pace with SLR, thus furthering the rapid marsh-to-mangrove conversions that have been seen in Tampa Bay over the past half-century. Additionally, wetlands in Tampa Bay tend to have a lower rate of carbon burial than other Florida tidal wetlands, demonstrating their high sensitivity to climate change and SLR.

  8. Importance of Dissolved Organic Nitrogen to Water Quality in Narragansett Bay

    EPA Science Inventory

    This preliminary analysis of the importance of the dissolved organic nitrogen (DON) pool in Narragansett Bay is being conducted as part of a five-year study of Narragansett Bay and its watershed. This larger study includes water quality and ecological modeling components that foc...

  9. Planning Targets for Phase II Watershed Implementation Plans

    EPA Pesticide Factsheets

    On August 1, 2011, EPA provided planning targets for nitrogen, phosphorus and sediment for the Phase II Watershed Implementation Plans (WIPs) of the Chesapeake Bay TMDL. This page provides the letters containing those planning targets.

  10. Chesapeake Bay Critters

    ERIC Educational Resources Information Center

    Mackay-Atha, Lynne

    2005-01-01

    When students enter the author's classroom on the first day of school, they are greeted with live crabs scuttling around in large bins. The crabs are her way of grabbing students' attention and launching the unit on the Chesapeake Bay watershed. She chooses to start the year with this unit because, despite the fact that the Potomac River can be…

  11. Selenium bioaccumulation and body condition in shorebirds and terns breeding in San Francisco Bay, California, USA

    USGS Publications Warehouse

    Ackerman, Joshua T.; Eagles-Smith, Collin A.

    2009-01-01

    The present study evaluated Se bioaccumulation in four waterbird species (n = 206 birds) that breed within San Francisco Bay, California, USA: American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), Forster's terns (Sterna forsteri), and Caspian terns (Hydroprogne caspia). Selenium concentrations were variable and influenced by several factors, including species, region, reproductive stage, age, and sex. Adult Se concentrations (μg/g dry wt) in livers ranged from 3.07 to 48.70 in avocets (geometric mean ± standard error, 7.92 ± 0.64), 2.28 to 41.10 in stilts (5.29 ± 0.38), 3.73 to 14.50 in Forster's terns (7.13 ± 0.38), and 4.77 to 14.40 in Caspian terns (6.73 ± 0.78). Avocets had higher Se concentrations in the North Bay compared to the South Bay, whereas stilt Se concentrations were similar between these regions and Forster's terns had lower Se concentrations in the North Bay compared to the South Bay. Female avocets had higher Se concentrations than male avocets, but this was not the case for stilts and Forster's terns. Of the factors assessed, reproductive stage had the most consistent effect among species. Prebreeding birds tended to have higher liver Se concentrations than breeding birds, but this trend was statistically significant only for Forster's terns. Forster's tern chicks had lower Se concentrations than Forster's tern adults, whereas avocet and stilt adults and chicks were similar. Additionally, body condition was negatively related to liver Se concentrations in Forster's tern adults but not in avocet, stilt, or Caspian tern adults and chicks. These variable results illustrate the complexity of Se bioaccumulation and highlight the need to sample multiple species and examine several factors to assess the impact of Se on wildlife.

  12. The Lower Chesapeake Bay LTAR: A coastal urban-agricultural region

    NASA Astrophysics Data System (ADS)

    Mccarty, G.; Alfieri, J. G.; Cavigelli, M.; Cosh, M. H.; Hapeman, C. J.; Kustas, W. P.; Maul, J.; Mirsky, S.; Pooler, M.; Sadeghi, A. M.; Schomberg, H.; Timlin, D. J.; Rice, C. P.

    2015-12-01

    The Chesapeake Bay, located in the mid-Atlantic region of the U.S., is the largest estuary in North America. The watershed area includes six states from New York to Virginia and is nearly 167,000 km2 in size with more than 150 rivers and streams entering the 300-km Bay main stem. Forested and agricultural lands make up 58 and 22 percent of the land use, respectively. Nearly 9 percent is urban and suburban use, and the watershed is home to over 17 million people. However, the population is expected to reach 19 million by 2025, raising the potential for conflict between the agricultural and urban communities over land and water use and in protecting natural resources, especially in the lower portion of the Chesapeake Bay watershed. The Lower Chesapeake Bay study area, part of the USDA-ARS Long-Term Agroecosystem Research (LTAR) network, will provide much-needed data to support decisions at this critical agriculture-urban interface. Current long-term projects seek to assess the economic, production, and environmental performance of conventional and organic cropping systems and to evaluate the resilience of these systems to climate change. Large-scale studies are being conducted to examine the effects of land-use and landscape characteristics on ecosystem services and on energy, water, nutrient, carbon, and pest dynamics within watersheds. New in-situ measurement and remote sensor technologies are being considered with the expectancy that the data streams will be available on-line and for use in modeling. Results and outcomes of these research efforts will greatly benefit the national LTAR network and will be applicable to other US coastal urban-agricultural regions.

  13. Agricultural costs of the Chesapeake Bay total maximum daily load.

    PubMed

    Kaufman, Zach; Abler, David; Shortle, James; Harper, Jayson; Hamlett, James; Feather, Peter

    2014-12-16

    This study estimates costs to agricultural producers of the Watershed Implementation Plans (WIPs) developed by states in the Chesapeake Bay Watershed to comply with the Chesapeake Bay total maximum daily load (TMDL) and potential cost savings that could be realized by a more efficient selection of agricultural Best Management Practices (BMPs) and spatial targeting of BMP implementation. The cost of implementing the WIPs between 2011 and 2025 is estimated to be about $3.6 billion (in 2010 dollars). The annual cost associated with full implementation of all WIP BMPs from 2025 onward is about $900 million. Significant cost savings can be realized through careful and efficient BMP selection and spatial targeting. If retiring up to 25% of current agricultural land is included as an option, Bay-wide cost savings of about 60% could be realized compared to the WIPs.

  14. Modeling the impact of watershed management policies on marine ecosystem services with application to Hood Canal, WA, USA

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Kim, C.; Marsik, M.; Spiridonov, G.; Toft, J.; Ruckelshaus, M.; Guerry, A.; Plummer, M.

    2011-12-01

    Humans obtain numerous benefits from marine ecosystems, including fish to eat; mitigation of storm damage; nutrient and water cycling and primary production; and cultural, aesthetic and recreational values. However, managing these benefits, or ecosystem services, in the marine world relies on an integrated approach that accounts for both marine and watershed activities. Here we present the results of a set of simple, physically-based, and spatially-explicit models that quantify the effects of terrestrial activities on marine ecosystem services. Specifically, we model the circulation and water quality of Hood Canal, WA, USA, a fjord system in Puget Sound where multiple human uses of the nearshore ecosystem (e.g., shellfish aquaculture, recreational Dungeness crab and shellfish harvest) can be compromised when water quality is poor (e.g., hypoxia, excessive non-point source pollution). Linked to the estuarine water quality model is a terrestrial hydrology model that simulates streamflow and nutrient loading, so land cover and climate changes in watersheds can be reflected in the marine environment. In addition, a shellfish aquaculture model is linked to the water quality model to test the sensitivity of the ecosystem service and its value to both terrestrial and marine activities. The modeling framework is general and will be publicly available, allowing easy comparisons of watershed impacts on marine ecosystem services across multiple scales and regions.

  15. Assessment of multiple sources of anthropogenic and natural chemical inputs to a morphologically complex basin, Lake Mead, USA

    USGS Publications Warehouse

    Rosen, Michael R.; Van Metre, P.C.

    2010-01-01

    Lakes with complex morphologies and with different geologic and land-use characteristics in their sub-watersheds could have large differences in natural and anthropogenic chemical inputs to sub-basins in the lake. Lake Mead in southern Nevada and northern Arizona, USA, is one such lake. To assess variations in chemical histories from 1935 to 1998 for major sub-basins of Lake Mead, four sediment cores were taken from three different parts of the reservoir (two from Las Vegas Bay and one from the Overton Arm and Virgin Basin) and analyzed for major and trace elements, radionuclides, and organic compounds. As expected, anthropogenic contaminant inputs are greatest to Las Vegas Bay reflecting inputs from the Las Vegas urban area, although concentrations are low compared to sediment quality guidelines and to other USA lakes. One exception to this pattern was higher Hg in the Virgin Basin core. The Virgin Basin core is located in the main body of the lake (Colorado River channel) and is influenced by the hydrology of the Colorado River, which changed greatly with completion of Glen Canyon Dam upstream in 1963. Major and trace elements in the core show pronounced shifts in the early 1960s and, in many cases, gradually return to concentrations more typical of pre-1960s by the 1980s and 1990s, after the filling of Lake Powell. The Overton Arm is the sub-basin least effected by anthropogenic contaminant inputs but has a complex 137Cs profile with a series of large peaks and valleys over the middle of the core, possibly reflecting fallout from nuclear tests in the 1950s at the Nevada Test Site. The 137Cs profile suggests a much greater sedimentation rate during testing which we hypothesize results from greatly increased dust fall on the lake and Virgin and Muddy River watersheds. The severe drought in the southwestern USA during the 1950s might also have played a role in variations in sedimentation rate in all of the cores. ?? 2009.

  16. Characterization of organic chemical contaminants in sediments from Jobos Bay, Puerto Rico.

    PubMed

    Pait, Anthony S; Whitall, David R; Dieppa, Angel; Newton, Sarah E; Brune, Lia; Caldow, Chris; Mason, Andrew L; Apeti, Dennis A; Christensen, John D

    2012-08-01

    Jobos Bay, located on the southeastern coast of Puerto Rico, contains a variety of habitats including mangroves, seagrass meadows, and coral reefs. The watershed surrounding the bay includes a number of towns, agricultural areas, and the Jobos Bay National Estuarine Research Reserve (NERR). Jobos Bay and the surrounding watershed are part of a Conservation Effects Assessment Project (CEAP), involving the Jobos Bay NERR, the US Department of Agriculture, and the National Oceanic and Atmospheric Administration (NOAA) to assess the benefits of agricultural best management practices (BMPs) on the terrestrial and marine environments. As part of the Jobos Bay CEAP, NOAA collected sediment samples in May 2008 to characterize over 130 organic chemical contaminants. This paper presents the results of the organic contaminant analysis. The organic contaminants detected in the sediments included polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, and the pesticide DDT. PAHs at one site in the inner bay near a boat yard were significantly elevated; however, all organic contaminant classes measured were below NOAA sediment quality guidelines that would have indicated that impacts were likely. The results of this work provide an important baseline assessment of the marine environment that will assist in understanding the benefits of implementing BMPs on water quality in Jobos Bay.

  17. Geomorphic controls on mercury accumulation in soils from a historically mined watershed, Central California Coast Range, USA

    USGS Publications Warehouse

    Holloway, J.M.; Goldhaber, M.B.; Morrison, J.M.

    2009-01-01

    Historic Hg mining in the Cache Creek watershed in the Central California Coast Range has contributed to the downstream transport of Hg to the San Francisco Bay-Delta. Different aspects of Hg mobilization in soils, including pedogenesis, fluvial redistribution of sediment, volatilization and eolian transport were considered. The greatest soil concentrations (>30 mg Hg kg-1) in Cache Creek are associated with mineralized serpentinite, the host rock for Hg deposits. Upland soils with non-mineralized serpentine and sedimentary parent material also had elevated concentrations (0.9-3.7 mg Hg kg-1) relative to the average concentration in the region and throughout the conterminous United States (0.06 mg kg-1). Erosion of soil and destabilized rock and mobilization of tailings and calcines into surrounding streams have contributed to Hg-rich alluvial soil forming in wetlands and floodplains. The concentration of Hg in floodplain sediment shows sediment dispersion from low-order catchments (5.6-9.6 mg Hg kg-1 in Sulphur Creek; 0.5-61 mg Hg kg-1 in Davis Creek) to Cache Creek (0.1-0.4 mg Hg kg-1). These sediments, deposited onto the floodplain during high-flow storm events, yield elevated Hg concentrations (0.2-55 mg Hg kg-1) in alluvial soils in upland watersheds. Alluvial soils within the Cache Creek watershed accumulate Hg from upstream mining areas, with concentrations between 0.06 and 0.22 mg Hg kg-1 measured in soils ~90 km downstream from Hg mining areas. Alluvial soils have accumulated Hg released through historic mining activities, remobilizing this Hg to streams as the soils erode.

  18. Status and trends of dissolved oxygen in Corpus Christi Bay, Texas, U.S.A.

    PubMed

    Applebaum, Sally; Montagna, Paul A; Ritter, Christine

    2005-08-01

    The purpose of this study was to determine status and long-term trends of dissolved oxygen concentrations (DO) in Corpus Christi Bay, Texas, U.S.A. A 20-year record of randomized stations was used to determine the trend of surface water DO, salinity, and temperature over space and time. A 13-year record of two fixed stations was used to determine the temporal nutrient trends. A 10-year record of fixed stations in the southeastern region of Corpus Christi Bay was used to determine the status of disturbance caused by low DO in bottom waters. From 1982 to 2002, there was a significant decrease in surface water DO at a rate of 0.06 mg L(-1) yr(-1) and a significant increase in surface water temperature at a rate of 0.07 degrees C yr(-1). The southeastern region of Corpus Christi Bay had the lowest average DO, and during July and August, DO are steadily declining at a rate of 0.09 mg L(-1) yr(-1). It is not likely that eutrophication is causing hypoxia, because freshwater inflow rates have significantly decreased since 1941 and nutrient levels have not changed from 1987 to 2000. Even though long-term trends indicate that average surface DO is decreasing, disturbance by hypoxia appears to be stable, but this may be due to just eight years of data. In fact, if the current trend continues, surface water DO will not meet exceptional aquatic life standards (< or = 5 mg L(-1)) in 2032.

  19. Spatial analysis of land use and shallow groundwater vulnerability in the watershed adjacent to Assateague Island National Seashore, Maryland and Virginia, USA

    USGS Publications Warehouse

    LaMotte, A.E.; Greene, E.A.

    2007-01-01

    Spatial relations between land use and groundwater quality in the watershed adjacent to Assateague Island National Seashore, Maryland and Virginia, USA were analyzed by the use of two spatial models. One model used a logit analysis and the other was based on geostatistics. The models were developed and compared on the basis of existing concentrations of nitrate as nitrogen in samples from 529 domestic wells. The models were applied to produce spatial probability maps that show areas in the watershed where concentrations of nitrate in groundwater are likely to exceed a predetermined management threshold value. Maps of the watershed generated by logistic regression and probability kriging analysis showing where the probability of nitrate concentrations would exceed 3 mg/L (>0.50) compared favorably. Logistic regression was less dependent on the spatial distribution of sampled wells, and identified an additional high probability area within the watershed that was missed by probability kriging. The spatial probability maps could be used to determine the natural or anthropogenic factors that best explain the occurrence and distribution of elevated concentrations of nitrate (or other constituents) in shallow groundwater. This information can be used by local land-use planners, ecologists, and managers to protect water supplies and identify land-use planning solutions and monitoring programs in vulnerable areas. ?? 2006 Springer-Verlag.

  20. Drivers of phytoplankton dynamics in old Tampa Bay, FL (USA), a subestuary lagging in ecosystem recovery

    NASA Astrophysics Data System (ADS)

    Corcoran, Alina A.; Wolny, Jennifer; Leone, Erin; Ivey, James; Murasko, Susan

    2017-02-01

    In the past four decades, consistent and coordinated management actions led to the recovery of Tampa Bay, FL (USA) - an estuary that was declared dead in the 1970s. An exception to this success story is Old Tampa Bay, the northernmost subestuary of the system. Compared to the other bay segments, Old Tampa Bay is characterized by poorer water quality and spring and summer blooms of cyanobacteria, picoplankton, diatoms, and the saxitoxin-producing dinoflagellate Pyrodinium bahamense. Together, these blooms contribute to light attenuation and lagging recovery of seagrass beds. Yet, studies of phytoplankton dynamics within Old Tampa Bay have been limited - both in number and in their spatiotemporal resolution. In this study, we used field sampling and continuous monitoring to (1) characterize temporal and spatial variability in phytoplankton biomass and community composition and (2) identify key drivers of the different phytoplankton blooms in Old Tampa Bay. Overall, temporal variability in phytoplankton biomass (using chlorophyll a as a proxy) and community composition surpassed spatial variability of these parameters. We found a base community of small diatoms and flagellates, as well as certain dinoflagellates, that persisted year round in the system. Seasonally, freshwater runoff stimulated phytoplankton growth, specifically that of chlorophytes, cyanobacteria and other dinoflagellates - consistent with predictions based on ecological theory. On shorter time scales, salinity, visibility, and freshwater inflows were important predictors of phytoplankton biomass. With respect to P. bahamense, environmental drivers including salinity, temperature and dissolved nutrient concentrations explained ∼24% of the variability in cell abundance, indicating missing explanatory parameters in our study for this taxon, such as cyst density and location of cyst beds. Spatially, we found differences in community trajectories across north-south and west-east gradients, with the

  1. Quantifying groundwater’s role in delaying improvements to Chesapeake Bay water quality

    USGS Publications Warehouse

    Sanford, Ward E.; Pope, Jason P.

    2013-01-01

    A study has been undertaken to determine the time required for the effects of nitrogen-reducing best management practices (BMPs) implemented at the land surface to reach the Chesapeake Bay via groundwater transport to streams. To accomplish this, a nitrogen mass-balance regression (NMBR) model was developed and applied to seven watersheds on the Delmarva Peninsula. The model included the distribution of groundwater return times obtained from a regional groundwater-flow (GWF) model, the history of nitrogen application at the land surface over the last century, and parameters that account for denitrification. The model was (1) able to reproduce nitrate concentrations in streams and wells over time, including a recent decline in the rate at which concentrations have been increasing, and (2) used to forecast future nitrogen delivery from the Delmarva Peninsula to the Bay given different scenarios of nitrogen load reduction to the water table. The relatively deep porous aquifers of the Delmarva yield longer groundwater return times than those reported earlier for western parts of the Bay watershed. Accordingly, several decades will be required to see the full effects of current and future BMPs. The magnitude of this time lag is critical information for Chesapeake Bay watershed managers and stakeholders.

  2. Interpreting Beryllium-7 and Lead-210 fluxes and ratios for age dating fluvial sediments in Difficult Run Watershed, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Karwan, D. L.; Pizzuto, J. E.; Skalak, K.; Benthem, A.

    2016-12-01

    The sources and transport of suspended sediments within watersheds of varying sizes remain an important area of study within the geosciences. Short term fallout radionuclides, such as Beryllium-7 (7Be) and Lead-210 (210Pb), and their ratios can be a valuable tool for gaining insight into suspended sediment transport dynamics. We use these techniques in combination with other sediment exchange and transport models to estimate residence and transport time of suspended sediment in nested reaches of the Difficult Run watershed (Virginia, USA) on timescales from storm events to centuries and longer. During several winter and spring 2015-2016 precipitation events, Beryllium-7 to excess Lead-210 ratios vary from 0.4 - 2.5 in direct channel precipitation and 0.2 - 1 on suspended sediment. Previously published age dating models would suggest that the suspended sediments were originally "tagged" by, or in contact with wet fallout of, by Beryllium7 fallout approximately 20-80 days before sampling. Sediments at the upstream reach (watershed size 14 km2) tend to be older ( 75 days), while sediments at the downstream reach (watershed size 117 km2) tend to be newer ( 20 days). We use multiple sediment transport models and hypothesize that fluvial sediments are tagged with direct channel precipitation between the upstream and downstream reach, explaining their apparently younger age. Our analysis includes error propagation as well as a comparison of radioisotope gamma analyses from different labs across multiple institutions.

  3. Flow and geochemistry of groundwater beneath a back-barrier lagoon: The subterranean estuary at Chincoteague Bay, Maryland, USA

    USGS Publications Warehouse

    Bratton, J.F.; Böhlke, J.K.; Krantz, D.E.; Tobias, C.R.

    2009-01-01

    To better understand large-scale interactions between fresh and saline groundwater beneath an Atlantic coastal estuary, an offshore drilling and sampling study was performed in a large barrier-bounded lagoon, Chincoteague Bay, Maryland, USA. Groundwater that was significantly fresher than overlying bay water was found in shallow plumes up to 8??m thick extending more than 1700??m offshore. Groundwater saltier than bay surface water was found locally beneath the lagoon and the barrier island, indicating recharge by saline water concentrated by evaporation prior to infiltration. Steep salinity and nutrient gradients occur within a few meters of the sediment surface in most locations studied, with buried peats and estuarine muds acting as confining units. Groundwater ages were generally more than 50??years in both fresh and brackish waters as deep as 23??m below the bay bottom. Water chemistry and isotopic data indicate that freshened plumes beneath the estuary are mixtures of water originally recharged on land and varying amounts of estuarine surface water that circulated through the bay floor, possibly at some distance from the sampling location. Ammonium is the dominant fixed nitrogen species in saline groundwater beneath the estuary at the locations sampled. Isotopic and dissolved-gas data from one location indicate that denitrification within the subsurface flow system removed terrestrial nitrate from fresh groundwater prior to discharge along the western side of the estuary. Similar situations, with one or more shallow semi-confined flow systems where groundwater geochemistry is strongly influenced by circulation of surface estuary water through organic-rich sediments, may be common on the Atlantic margin and elsewhere.

  4. Passive Sampling Provides Evidence for Neward Bay as a Source of Polychlorinated Dibenzo-p-Dioxins and Furans to the New York/New Jersey, USA, Atmosphere

    EPA Science Inventory

    Freely dissolved and gas phase polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were measured in the water column and atmosphere at five locations within Newark Bay (New Jersey, USA) from May 2008 to August 2009 with polyethylene (PE) passive ...

  5. Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): Field data and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Spiteri, Claudette; Slomp, Caroline P.; Charette, Matthew A.; Tuncay, Kagan; Meile, Christof

    2008-07-01

    A two-dimensional (2D) reactive transport model is used to investigate the controls on nutrient ( NO3-, NH4+, PO 4) dynamics in a coastal aquifer. The model couples density-dependent flow to a reaction network which includes oxic degradation of organic matter, denitrification, iron oxide reduction, nitrification, Fe 2+ oxidation and sorption of PO 4 onto iron oxides. Porewater measurements from a well transect at Waquoit Bay, MA, USA indicate the presence of a reducing plume with high Fe 2+, NH4+, DOC (dissolved organic carbon) and PO 4 concentrations overlying a more oxidizing NO3--rich plume. These two plumes travel nearly conservatively until they start to overlap in the intertidal coastal sediments prior to discharge into the bay. In this zone, the aeration of the surface beach sediments drives nitrification and allows the precipitation of iron oxide, which leads to the removal of PO 4 through sorption. Model simulations suggest that removal of NO3- through denitrification is inhibited by the limited overlap between the two freshwater plumes, as well as by the refractory nature of terrestrial DOC. Submarine groundwater discharge is a significant source of NO3- to the bay.

  6. Relationships Between Watershed Emergy Flow and Coastal New England Salt Marsh Structure, Function, and Condition

    EPA Science Inventory

    This study evaluated the link between watershed activities and salt marsh structure, function, and condition using spatial emergy flow density (areal empower density) in the watershed and field data from 10 tidal salt marshes in Narragansett Bay, RI. The field-collected data wer...

  7. The Lower Chesapeake Bay LTAR: A coastal urban-agricultural region

    USDA-ARS?s Scientific Manuscript database

    The Chesapeake Bay, located in the mid-Atlantic region of the U.S., is the largest estuary in North America. The watershed area includes six states from New York to Virginia and is nearly 167,000 km2 in size with more than 150 rivers and streams entering the 300-km Bay main stem. Forested and agricu...

  8. Riverine discharges to Chesapeake Bay: Analysis of long-term (1927–2014) records and implications for future flows in the Chesapeake Bay basin

    USGS Publications Warehouse

    Rice, Karen; Moyer, Douglas; Mills, Aaron L.

    2017-01-01

    The Chesapeake Bay (CB) basin is under a total maximum daily load (TMDL) mandate to reduce nitrogen, phosphorus, and sediment loads to the bay. Identifying shifts in the hydro-climatic regime may help explain observed trends in water quality. To identify potential shifts, hydrologic data (1927–2014) for 27 watersheds in the CB basin were analyzed to determine the relationships among long-term precipitation and stream discharge trends. The amount, frequency, and intensity of precipitation increased from 1910 to 1996 in the eastern U.S., with the observed increases greater in the northeastern U.S. than the southeastern U.S. The CB watershed spans the north-to-south gradient in precipitation increases, and hydrologic differences have been observed in watersheds north relative to watersheds south of the Pennsylvania—Maryland (PA-MD) border. Time series of monthly mean precipitation data specific to each of 27 watersheds were derived from the Precipitation-elevation Regression on Independent Slopes Model (PRISM) dataset, and monthly mean stream-discharge data were obtained from U.S. Geological Survey streamgage records. All annual precipitation trend slopes in the 18 watersheds north of the PA-MD border were greater than or equal to those of the nine south of that border. The magnitude of the trend slopes for 1927–2014 in both precipitation and discharge decreased in a north-to-south pattern. Distributions of the monthly precipitation and discharge datasets were assembled into percentiles for each year for each watershed. Multivariate correlation of precipitation and discharge within percentiles among the groups of northern and southern watersheds indicated only weak associations. Regional-scale average behaviors of trends in the distribution of precipitation and discharge annual percentiles differed between the northern and southern watersheds. In general, the linkage between precipitation and discharge was weak, with the linkage weaker in the northern watersheds

  9. Temporal variation in spatial sources of discharge in a large watershed

    EPA Science Inventory

    We examined how the spatial configuration of source areas for runoff varied over time in a watershed contaminated with mercury in order to understand processes governing material loading to rivers. Source areas within the Fox River watershed (Wisconsin, USA) were mapped for indiv...

  10. Investigating water use over the Choptank River Watershed using a multi-satellite data fusion approach

    USDA-ARS?s Scientific Manuscript database

    The health of the Chesapeake Bay ecosystem has been declining for several decades due to high levels of nutrients and sediments largely tied to agricultural production systems within the Bay watershed. Therefore, monitoring of crop production, agricultural water use and hydrologic connections betwee...

  11. Restoring a stream, restoring a community-urban watershed restoration fosters community improvement

    USGS Publications Warehouse

    Thomas, Catherine Cullinane; Myrick, Elizabeth

    2013-01-01

    The Anacostia Watershed lies within the Chesapeake By drainage basin, and is one of the most urban watersheds within the basin. According to the Fish and Wildlife Service, the watershed spans over 175 square miles\tbetween Maryland and the District of Columbia and is considered by many to be one of the most\tdegraded waterways in the United States. Watts Branch is a tributary stream\tof the Anacostia River, and flows\tinto the Potomac River which eventually\tempties into the Chesapeake Bay

  12. Predicted impact of transgenic, herbicidetolerant corn on drinking water quality in vulnerable watersheds of the mid-western USA.

    PubMed

    Wauchope, R Don; Estes, Tammara L; Allen, Richard; Baker, James L; Hornsby, Arthur G; Jones, Russell L; Richards, R Peter; Gustafson, David I

    2002-02-01

    In the intensely farmed corn-growing regions of the mid-western USA, surface waters have often been contaminated by herbicides, principally as a result of rainfall runoff occurring shortly after application of these to corn and other crops. In some vulnerable watersheds, water quality criteria for chronic human exposure through drinking water are occasionally exceeded. We selected three settings representative of vulnerable corn-region watersheds, and used the PRZM-EXAMS model with the Index Reservoir scenario to predict corn herbicide concentrations in the reservoirs as a function of herbicide properties and use pattern, site characteristics and weather in the watersheds. We compared herbicide application scenarios, including broadcast surface pre-plant atrazine and alachlor applications with a glyphosate pre-plant application, scenarios in which losses of herbicides were mitigated by incorporation or banding, and scenarios in which only glyphosate or glufosinate post-emergent herbicides were used with corn genetically modified to be resistant to them. In the absence of drift, in almost all years a single runoff event dominates the input into the reservoir. As a result, annual average pesticide concentrations are highly correlated with annual maximum daily values. The modeled concentrations were generally higher than those derived from monitoring data, even for no-drift model scenarios. Because of their lower post-emergent application rates and greater soil sorptivity, glyphosate and glufosinate loads in runoff were generally one-fifth to one-tenth those of atrazine and alachlor. These model results indicate that the replacement of pre-emergent corn herbicides with the post-emergent herbicides allowed by genetic modification of crops would dramatically reduce herbicide concentrations in vulnerable watersheds. Given the significantly lower chronic mammalian toxicity of these compounds, and their vulnerability to breakdown in the drinking water treatment process

  13. Expanded USGS science in the Chesapeake Bay restoration

    USGS Publications Warehouse

    Phillips, Scott

    2010-01-01

    In May 2009, the President issued Executive Order (EO) 13508 for Chesapeake Bay Protection and Restoration. For the first time since the creation of the Chesapeake Bay Program (CBP) in 1983, the full weight of the Federal Government will be used to address the challenges facing the Chesapeake Bay. The EO directs the U.S. Department of the Interior (DOI), represented by the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), and the U.S. Geological Survey (USGS), to expand its efforts and increase leadership to restore the Bay and its watershed. A Federal Leadership Committee (FLC) was established to ensure coordination of Federal activities and consult with states and stakeholders to align restoration efforts.

  14. Enhanced land subsidence in Galveston Bay, Texas: Interaction between sediment accumulation rates and relative sea level rise

    NASA Astrophysics Data System (ADS)

    Al Mukaimi, Mohammad E.; Dellapenna, Timothy M.; Williams, Joshua R.

    2018-07-01

    Galveston Bay is the second largest estuary along the northern Gulf of Mexico coast, with a watershed containing one of largest concentrations of petroleum and chemical industries globally, as well as Houston, the fifth largest metropolitan area in the USA. Throughout the last century, extensive groundwater extraction to support these industries and an expanding population has resulted in significantly enhanced land subsidence (0.6-3.0 cm yr-1). The highest subsidence rates observed in the bay are within the lower 15 km of the San Jacinto River/Houston Ship Channel region (SJR/HSC), with distal areas in East and West Galveston Bays having subsidence rates on the order of 0.2 cm yr-1. In order to investigate the impacts of subsidence on sedimentation, a series of 22 vibracores were collected throughout the bay, and 210Pb and 137Cs radioisotope geochronologies and grain size distributions were determined. Sediment accumulation rates are highest (1.9 ± 0.5 cm yr-1) in the SJR/HSC, and decrease (<0.6 cm yr-1) both seaward and towards low subsidence regions. These results indicate sedimentation rates are significantly (p < 0.01) higher in areas with elevated Relative Sea Level Rise (RSLR). However, throughout most of Galveston Bay sedimentation rates are lower (as much as 50%) than estimated RSLR, indicating a sediment accretionary deficit. In areas (e.g., Scott Bay) within the SJR/HSC, the bay has deepened by more than 1.5 m, suggesting that sediment accumulation cannot keep pace with RSLR. Ultimately, this has resulted in a loss of coastal wetlands and a conversion of marine habitats from relatively shallow to deeper water settings.

  15. Water quality and hydrology of the Silver River Watershed, Baraga County, Michigan, 2005-08

    USGS Publications Warehouse

    Weaver, Thomas L.; Sullivan, Daniel J.; Rachol, Cynthia M.; Ellis, James M.

    2010-01-01

    The Silver River Watershed comprises about 69 square miles and drains part of northeastern Baraga County, Michigan. For generations, tribal members of the Keweenaw Bay Indian Community have hunted and fished in the watershed. Tribal government and members of Keweenaw Bay Indian Community are concerned about the effect of any development within the watershed, which is rural, isolated, and lightly populated. For decades, the area has been explored for various minerals. Since 2004, several mineral-exploration firms have been actively investigating areas within the watershed; property acquisition, road construction, and subsurface drilling have taken place close to tributary streams of the Silver River. The U.S. Geological Survey, in cooperation with Keweenaw Bay Indian Community, conducted a multi-year water-resources investigation of the Silver River Watershed during 2005-08. Methods of investigation included analyses of streamflow, water-quality sampling, and ecology at eight discrete sites located throughout the watershed. In addition, three continuous-record streamgages located within the watershed provided stage, discharge, specific conductance, and water-temperature data on an hourly basis. Water quality of the Silver River Watershed is typical of many streams in undeveloped areas of Upper Michigan. Concentrations of most analytes typically were low, although several exceeded applicable surface-water-quality standards. Seven samples had concentrations of copper that exceeded the Michigan Department of Environmental Quality standards for wildlife, and one sample had concentrations of cyanide that exceeded the same standards. Concentrations of total mercury at all eight sampling sites exceeded the Great Lakes Basin water-quality standard, but the ratio of methylmercury to total mercury was similar to the 5 to 10 percent found in most natural waters. Concentrations of arsenic and chromium in bed sediments were near the threshold-effect concentration. A qualitative

  16. Phosphorus export across an urban to rural gradient in the Chesapeake Bay watershed

    Treesearch

    Shuiwang Duan; Sujay S. Kaushal; Peter Groffman; Lawrence E. Band; Kenneth Belt

    2012-01-01

    Watershed export of phosphorus (P) from anthropogenic sources has contributed to eutrophication in freshwater and coastal ecosystems. We explore impacts of watershed urbanization on the magnitude and export flow distribution of P along an urban-rural gradient in eight watersheds monitored as part of the Baltimore Ecosystem Study Long-Term Ecological Research site....

  17. Investigating the Sources and Dynamics of Dissolved Organic Matter in an Agricultural Watershed in California (U.S.A.)

    NASA Astrophysics Data System (ADS)

    Dyda, R. Y.; Hernes, P. J.; Spencer, R. G.; Ingrum, T. D.; Pellerin, B. A.; Bergamaschi, B. A.

    2007-12-01

    Dissolved organic matter (DOM) is ubiquitous and plays critical roles in nutrient cycling, aquatic food webs and numerous other biogeochemical processes. Furthermore, various factors control the quality and quantity of DOM, including land use, soil composition, in situ production, microbial uptake and assimilation and hydrology. As a component of DOM, dissolved organic carbon (DOC) has been recently identified as a drinking water constituent of concern due to its propensity to form EPA-regulated carcinogenic compounds when disinfected for drinking water purposes. Therefore, understanding the sources, cycling and modification of DOC across various landscapes is of direct relevance to a wide range of studies. The Willow Slough watershed is located in the Central Valley of California (U.S.A.) and is characterized by both diverse geomorphology as well as land use. The watershed drains approximately 425 km2 and is bordered by Cache and Putah Creeks to the north and south. The study area in the watershed includes the eastern portion of the foothills of the inner Coast Range and the alluvial plain and encompasses diverse land uses, including orchards, viticulture, dairy, pasture and natural grasslands. The Willow Slough watershed represents a unique opportunity to examine DOC dynamics through multiple land uses and hydrologic flow paths that are common throughout California. Preliminary data show that DOC concentrations at the watershed mouth peak during winter storms and also increase gradually throughout the summer months during the agricultural irrigation season. The increasing DOC concentrations during the summer months may result from agricultural runoff and/or primary production in channel. In addition, initial results using the chromophoric DOM (CDOM) absorption coefficient and spectral slope parameters indicate seasonal differences in the composition of the DOM. Spectral slopes decreased during both the summer irrigation season and winter storms relative to winter

  18. Estuary 2100 Project, Phase 2: Building Partnerships for Resilient Watersheds

    EPA Pesticide Factsheets

    Information about the SFBWQP Estuary 2100 Project, Phase 2: Building Partnerships for Resilient Watersheds, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquat

  19. Factors Influencing Watershed Average Erosion Rates Calculated from Reservoir Sedimentation in Eastern USA

    NASA Astrophysics Data System (ADS)

    Ahamed, A.; Snyder, N. P.; David, G. C.

    2014-12-01

    The Reservoir Sedimentation Database (ResSed), a catalogue of reservoirs and depositional data that has recently become publically available, allows for rapid calculation of sedimentation rates and rates of capacity loss over short (annual to decadal) timescales. This study is a statistical investigation of factors controlling watershed average erosion rates (E) in eastern United States watersheds. We develop an ArcGIS-based model that delineates watersheds upstream of ResSed dams and calculate drainage areas to determine E for 191 eastern US watersheds. Geomorphic, geologic, regional, climatic, and land use variables are quantified within study watersheds using GIS. Erosion rates exhibit a large amount of scatter, ranging from 0.001 to 1.25 mm/yr. A weak inverse power law relationship between drainage area (A) and E (R2 = 0.09) is evident, similar to other studies (e.g. Milliman and Syvitski, 1992; Koppes and Montgomery, 2009). Linear regressions reveal no relationship between mean watershed slope (S) and E, possibly due to the relatively low relief of the region (mean S for all watersheds is 6°). Analysis of Variance shows that watersheds in formerly glaciated regions exhibit a statistically significant lower mean E (0.06 mm/year) than watersheds in unglaciated regions (0.12 mm/year), but that watersheds with different dam purposes show no significant differences in mean E. Linear regressions reveal no relationships between E and land use parameters like percent agricultural land and percent impervious surfaces (I), but classification and regression trees indicate that watersheds in highly developed regions (I > 34%) exhibit mean E (0.36 mm/year) that is four times higher than watersheds in less developed (I < 34%) regions (0.09 mm/year). Further, interactions between land use variables emerge in formerly glaciated regions, where increased agricultural land results in higher rates of annual capacity loss in reservoirs (R2 = 0.56). Plots of E versus timescale of

  20. Using Watershed Boundaries to Map Adverse Health Outcomes: Examples From Nebraska, USA

    PubMed Central

    Corley, Brittany; Bartelt-Hunt, Shannon; Rogan, Eleanor; Coulter, Donald; Sparks, John; Baccaglini, Lorena; Howell, Madeline; Liaquat, Sidra; Commack, Rex; Kolok, Alan S

    2018-01-01

    In 2009, a paper was published suggesting that watersheds provide a geospatial platform for establishing linkages between aquatic contaminants, the health of the environment, and human health. This article is a follow-up to that original article. From an environmental perspective, watersheds segregate landscapes into geospatial units that may be relevant to human health outcomes. From an epidemiologic perspective, the watershed concept places anthropogenic health data into a geospatial framework that has environmental relevance. Research discussed in this article includes information gathered from the literature, as well as recent data collected and analyzed by this research group. It is our contention that the use of watersheds to stratify geospatial information may be both environmentally and epidemiologically valuable. PMID:29398918

  1. An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska (Final Report)

    EPA Science Inventory

    The Bristol Bay watershed in southwestern Alaska supports the largest sockeye salmon fishery in the world, is home to 25 federally recognized tribal governments, and contains large mineral resources. The potential for large-scale mining activities in the watershed has raised conc...

  2. Groundwater flow and its effect on salt dissolution in Gypsum Canyon watershed, Paradox Basin, southeast Utah, USA

    NASA Astrophysics Data System (ADS)

    Reitman, Nadine G.; Ge, Shemin; Mueller, Karl

    2014-09-01

    Groundwater flow is an important control on subsurface evaporite (salt) dissolution. Salt dissolution can drive faulting and associated subsidence on the land surface and increase salinity in groundwater. This study aims to understand the groundwater flow system of Gypsum Canyon watershed in the Paradox Basin, Utah, USA, and whether or not groundwater-driven dissolution affects surface deformation. The work characterizes the groundwater flow and solute transport systems of the watershed using a three-dimensional (3D) finite element flow and transport model, SUTRA. Spring samples were analyzed for stable isotopes of water and total dissolved solids. Spring water and hydraulic conductivity data provide constraints for model parameters. Model results indicate that regional groundwater flow is to the northwest towards the Colorado River, and shallow flow systems are influenced by topography. The low permeability obtained from laboratory tests is inconsistent with field observed discharges, supporting the notion that fracture permeability plays a significant role in controlling groundwater flow. Model output implies that groundwater-driven dissolution is small on average, and cannot account for volume changes in the evaporite deposits that could cause surface deformation, but it is speculated that dissolution may be highly localized and/or weaken evaporite deposits, and could lead to surface deformation over time.

  3. CASCO BAY PLAN | Science Inventory | US EPA

    EPA Pesticide Factsheets

    Casco Bay lies at the heart of Maine's most populated area. The health of its waters, wetlands, and wildlife depend in large part on the activities of the quarter-million residents who live in its watershed. Less than 30 years ago, portions of Casco Bay were off-limits to recreation, fishing, and clamming. The lower Presumpscot River was devoid of fish, and paint peeling off nearby homes was attributed to the strong odor of chemicals emanating from the river. Back Cove and the Fore River were

  4. Bridging the gap between uncertainty analysis for complex watershed models and decision-making for watershed-scale water management

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Han, F.; Wu, B.

    2013-12-01

    Process-based, spatially distributed and dynamic models provide desirable resolutions to watershed-scale water management. However, their reliability in solving real management problems has been seriously questioned, since the model simulation usually involves significant uncertainty with complicated origins. Uncertainty analysis (UA) for complex hydrological models has been a hot topic in the past decade, and a variety of UA approaches have been developed, but mostly in a theoretical setting. Whether and how a UA could benefit real management decisions remains to be critical questions. We have conducted a series of studies to investigate the applicability of classic approaches, such as GLUE and Markov Chain Monte Carlo (MCMC) methods, in real management settings, unravel the difficulties encountered by such methods, and tailor the methods to better serve the management. Frameworks and new algorithms, such as Probabilistic Collocation Method (PCM)-based approaches, were also proposed for specific management issues. This presentation summarize our past and ongoing studies on the role of UA in real water management. Challenges and potential strategies to bridge the gap between UA for complex models and decision-making for management will be discussed. Future directions for the research in this field will also be suggested. Two common water management settings were examined. One is the Total Maximum Daily Loads (TMDLs) management for surface water quality protection. The other is integrated water resources management for watershed sustainability. For the first setting, nutrients and pesticides TMDLs in the Newport Bay Watershed (Orange Country, California, USA) were discussed. It is a highly urbanized region with a semi-arid Mediterranean climate, typical of the western U.S. For the second setting, the water resources management in the Zhangye Basin (the midstream part of Heihe Baisn, China), where the famous 'Silk Road' came through, was investigated. The Zhangye

  5. Sediment and discharge yields within a minimally disturbed, headwater watershed in North Central Pennsylvania, USA, with an emphasis on Superstorm Sandy

    USGS Publications Warehouse

    Maloney, Kelly O.; Shull, Dustin R.

    2015-01-01

    We estimated discharge and suspended sediment (SS) yield in a minimally disturbed watershed in North Central Pennsylvania, USA, and compared a typical storm (September storm, 4.80 cm) to a large storm (Superstorm Sandy, 7.47 cm rainfall). Depending on branch, Sandy contributed 9.7–19.9 times more discharge and 11.5–37.4 times more SS than the September storm. During the September storm, the upper two branches accounted for 60.6% of discharge and 88.8% of SS at Lower Branch; during Sandy these percentages dropped to 36.1% for discharge and 30.1% for SS. The branch with close proximity roads had over two-three times per area SS yield than the branch without such roads. Hysteresis loops showed typical clockwise patterns for the September storm and more complicated patterns for Sandy, reflecting the multipeak event. Estimates of SS and hysteresis in minimally disturbed watersheds provide useful information that can be compared spatially and temporally to facilitate management.

  6. Small watershed response to porous rock check dams in a semiarid watershed

    NASA Astrophysics Data System (ADS)

    Nichols, Mary; Polyakov, Viktor; Nearing, Mark

    2016-04-01

    Rock check dams are used throughout the world as technique for mitigating erosion problems on degraded lands. Increasingly, they are being used in restoration efforts on rangelands in the southwestern US, however, their impact on watershed response and channel morphology is not well quantified. In 2008, 37 porous rock structures were built on two small (4.0 and 3.1 ha) instrumented watersheds on an alluvial fan at the base of the Santa Rita Mountains in southern Arizona, USA. 35 years of historical rainfall and runoff, and sediment data are available to compare with 7 years of data collected after check dam construction. In addition, post construction measurements of channel geometry and longitudinal channel profiles were compared with pre-construction measurements to characterize the impact of check dams on sediment retention and channel morphology. The primary impact of the check dams is was retention of channel sediment and reduction in channel gradient; however response varied between the proximal watersheds with 80% of the check dams on one of the watersheds filled to 100% of their capacity after 7 runoff seasons. In addition, initial impact on precipitation runoff ratios is was not persistent. The contrasting watershed experiences lower sediment yields and only 20% of the check dams on this watershed are were filled to capacity and continue to influence runoff during small events. Within the watersheds the mean gradient of the channel reach immediately upstream of the structures has been reduced by 35% (from 0.061 to 0.039) and 34% on (from 0.071 to 0.047).

  7. San Francisco and Bay Area, CA, USA

    NASA Image and Video Library

    1991-05-06

    STS039-89-053 (28 April-6 May 1991) --- A 70mm, infrared frame of the city of San Francisco, taken on a clear day. The gray areas represent urban regions, and the red areas are vegetated. Within the city of San Francisco, parks like Golden Gate park and the Presidio at the base of the Golden Gate Bridge easily stand out from the well-developed parts of the city. Major thoroughfares and bridges (Golden Gate and Bay Bridges) are seen as are other landmarks such as Candlestick Park and Alcatraz. The trace of the San Andreas faults show as a straight valley running northerly along the San Francisco peninsula. Good detail is visible in the turbid waters of San Francisco Bay.

  8. Notes on a Mesodinium rubrum red tide in San Francisco Bay (California, USA)

    USGS Publications Warehouse

    Cloern, James E.; Cole, Brian E.; Hager, Stephen W.

    1994-01-01

    Discrete red patches of water were observed in South San Francisco Bay (USA) on 30 April 1993, and examination of live samples showed that this red tide was caused by surface accumulations of the pigmented ciliate Mesodinium rubrum . Vertical profiles showed strong salinity and temperature stratification in the upper 5 m, peak chlorophyll fluorescence in the upper meter, and differences in the small-scale density structure and fluorescence distribution among red patches. Events preceding this Mesodinium red tide included: (i) heavy precipitation and run-off, allowing for strong salinity stratification; (ii) a spring diatom bloom where the chlorophyll a concentration reached 50 mg m −3 ; (ii) depletions of dissolved inorganic N and Si in the photic zone; and (iv) several days of rapid warming and stabilization of the upper surface layer. These conditions may be general prerequisites for M.rubrum blooms in temperate estuaries.

  9. Organochlorine contaminants and reproductive success of double-crested cormorants from Green Bay, Wisconsin, USA

    USGS Publications Warehouse

    Custer, T.W.; Custer, Christine M.; Hines, R.K.; Gutreuter, S.; Stromborg, K.L.; Allen, P. David; Melancon, M.J.

    1999-01-01

    In 1994 and 1995, nesting success of double-crested cormorants (Phalacrocorax auritus) was measured at Cat Island, in southern Green Bay, Lake Michigan, Wisconsin, USA. Sample eggs at pipping and unhatched eggs were collected and analyzed for organochlorines (including total polychlorinated biphenyls [PCBs] and DDE), hepatic microsomal ethoxyresorufin-O-dealkylase (EROD) activity in embryos, and eggshell thickness. Of 1,570 eggs laid, 32% did not hatch and 0.4% had deformed embryos. Of 632 chicks monitored from hatching to 12 d of age, 9% were missing or found dead; no deformities were observed. The PCB concentrations in sample eggs from clutches with deformed embryos (mean = 10.2 μg/g wet weight) and dead embryos (11.4 μg/g) were not significantly higher than concentrations in sample eggs from nests where all eggs hatched (12.1 μg/g). A logistic regression of hatching success versus DDE, dieldrin, and PCB concentrations in sibling eggs identified DDE and not dieldrin or PCBs as a significant risk factor. A logistic regression of hatching success versus DDE and eggshell thickness implicated DDE and not eggshell thickness as a significant risk factor. Even though the insecticide DDT was banned in the early 1970s, we suggest that DDE concentrations in double-crested cormorant eggs in Green Bay are still having an effect on reproduction in this species.

  10. Integrating science and resource management in Tampa Bay, Florida

    USGS Publications Warehouse

    Yates, Kimberly K.; Greening, Holly; Morrison, Gerold

    2011-01-01

    Tampa Bay is recognized internationally for its remarkable progress towards recovery since it was pronounced "dead" in the late 1970s. Due to significant efforts by local governments, industries and private citizens throughout the watershed, water clarity in Tampa Bay is now equal to what it was in 1950, when population in the watershed was less than one-quarter of what it is today. Seagrass extent has increased by more than 8,000 acres since the mid-1980s, and fish and wildlife populations are increasing. Central to this successful turn-around has been the Tampa Bay resource management community's long-term commitment to development and implementation of strong science-based management strategies. Research institutions and agencies, including Eckerd College, the Florida Wildlife Commission Fish and Wildlife Research Institute, Mote Marine Laboratory, National Oceanic and Atmospheric Administration, the Southwest Florida Water Management District, University of South Florida, U.S. Environmental Protection Agency, U.S. Geological Survey, local and State governments, and private companies contribute significantly to the scientific basis of our understanding of Tampa Bay's structure and ecological function. Resource management agencies, including the Tampa Bay Regional Planning Council's Agency on Bay Management, the Southwest Florida Water Management District's Surface Water Improvement and Management Program, and the Tampa Bay Estuary Program, depend upon this scientific basis to develop and implement regional adaptive management programs. The importance of integrating science with management has become fully recognized by scientists and managers throughout the region, State and Nation. Scientific studies conducted in Tampa Bay over the past 10–15 years are increasingly diverse and complex, and resource management programs reflect our increased knowledge of geology, hydrology and hydrodynamics, ecology and restoration techniques. However, a synthesis of this

  11. Evaluating the influence of septic systems and watershed characteristics on stream faecal pollution in suburban watersheds in Georgia, USA.

    PubMed

    Sowah, R; Zhang, H; Radcliffe, D; Bauske, E; Habteselassie, M Y

    2014-11-01

    To determine the impact of septic systems on water quality and in so doing identify watershed level characteristics that influence septic system impact. Water samples were collected from streams in 24 well-characterized watersheds during baseflow to analyse for the levels of faecal indicators Escherichia coli and enterococci. The watersheds represent a gradient of land-use conditions from low to high density of septic systems, as well as developed to undeveloped uses. Our findings indicate statistically significant interaction between septic density and season for enterococci count (P = 0·005) and stream yield (P = 0·04). Seasonal variations in bacterial count and stream yield were also observed, with significant differences between spring-winter and summer-winter. Results from multiple linear regression models suggest that watershed characteristics (septic system density, median distance of septic systems to stream, per cent developed area and forest cover) and water temperature could explain approximately half (R(2) = 0·50) of the variability in bacterial count and yield in spring and summer. There is a significant positive relationship between septic system density and faecal pollution levels. However, this relationship is season dependent and is influenced by watershed level characteristics such as median distance of septic systems from streams, per cent developed area and forest cover. This study confirms the significant impact of septic systems on faecal pollution during baseflow and provides the tools that will enable effective pollution monitoring at the watershed scale. © 2014 The Society for Applied Microbiology.

  12. Foraminiferal Evidence for Paleocoastal Environmental Changes Influenced by Holocene Transgression and Varying Storminess in Choctawhatchee Bay, Florida USA.

    NASA Astrophysics Data System (ADS)

    Nanayakkara, N. U.; Ranasinghage, P. N.; Hawkes, A. D.; van Hengstum, P. J.; Donnelly, J. P.

    2016-12-01

    ABSTRACT Evolution of populated, dynamic coastal environments around the Gulf of Mexico is complicated due to the impact of multiple factors such as Holocene sea level changes, and hurricane impacts. The main purpose of the present study is to use foraminifera to create a separate account on coastal environmental changes in the area. For this purpose foraminifera were sampled at 20 cm intervals from an 8.55 m long age dated sediment core ( 8.0 ka) obtained from Choctawhatchee Bay, Florida, USA by Woods Hole Oceanographic Institution. This core was taken by vibracoring. Foraminifera were extracted, identified, counted separately and finally multiple variable analyses (cluster, PCA) were used to identify paleo-environments represented by different species assemblages. Three distinct foraminiferal communities represented by 18 species indicating three biofacies could be recognized. Organic rich protected deltaic marsh/lagoonal environment dominated by Bolivina spp and Buluminella spp existed from bottom of the core ( 8 cal kyr BP). As indicated by dominating Millioids spp., this environment was flooded and transformed to a marine open bay environment around 6 cal kyr BP at rising sea level during the Holocene transgression. Increasing sea level and intensified storminess during this period might have prevented barrier growth .This open bay environment converted to more brackish closed bay environment possibly due to the growth of the Santa Rosa Barrier around 3 kyrs BP and that environment exists till today. Abundance of Ammonia-Elphdium - Bolivina spp provide evidence for this transition. These results are comparable with physical and chemical proxy records of the same core as well as other published regional records.

  13. Evaluation of land use and water quality in an agricultural watershed in the USA indicates multiple sources of bacterial impairment.

    PubMed

    Wittman, Jacob; Weckwerth, Andrew; Weiss, Chelsea; Heyer, Sharon; Seibert, Jacob; Kuennen, Ben; Ingels, Chad; Seigley, Lynette; Larsen, Kirk; Enos-Berlage, Jodi

    2013-12-01

    Pathogens are the number one cause of impairments of assessed rivers and streams in the USA and pose a significant human health hazard. The Dry Run Creek Watershed in Northeast Iowa has been designated as impaired by the State of Iowa because of high levels of Escherichia coli bacteria. To investigate the nature of this impairment, land use and stream bank assessments were coupled with comprehensive water quality monitoring. Physical, chemical, and biological parameters were measured at 13 different sites in the watershed, including pH, temperature, conductivity, dissolved oxygen, turbidity, total Kjeldahl nitrogen, ammonia-N, nitrate + nitrite-N, total phosphorus, and E. coli. In addition, benthic macroinvertebrate communities were analyzed at seven sites, and optical brightener tests were performed late in the season. Results identified segments of the watershed that were more prominent contributors of E. coli, and correlations were observed between levels of E. coli and several chemical parameters, including ammonia-N, total Kjeldahl nitrogen, and total phosphorus. Interestingly, distinct sites emerged as more prominent contributors of these elements during rain vs. non-rain events, suggesting different types of sources. Both the amount of rainfall and the time elapsed between the rain event and the sampling influenced E. coli levels during wet weather conditions. Nitrate + nitrite-N displayed a unique response to rain events compared with the other parameters, suggesting a different delivery route. Analyses of benthic macroinvertebrate communities were consistent with pollution trends. Collectively, these data suggest distinct agriculturally related E. coli contributions, as well as specific areas and practices for water quality improvement strategies. This study can serve as a resource for evaluating agricultural watersheds that are impaired for bacteria.

  14. Evaluating the source of streamwater nitrate using δ15N and δ18O in nitrate in two watersheds in New Hampshire, USA

    USGS Publications Warehouse

    Pardo, Linda H.; Kendall, Carol; Pett-Ridge, Jennifer; Chang, Cecily C.Y.

    2004-01-01

    The natural abundance of nitrogen and oxygen isotopes in nitrate can be a powerful tool for identifying the source of nitrate in streamwater in forested watersheds, because the two main sources of nitrate, atmospheric deposition and microbial nitrification, have distinct δ18O values. Using a simple mixing model, we estimated the relative fractions in streamwater derived from these sources for two forested watersheds with markedly different streamwater nitrate outputs. In this study, we monitored δ15N and δ18O of nitrate biweekly in atmospheric deposition and in streamwater for 20 months at the Hubbard Brook Experimental Forest, New Hampshire, USA (moderate nitrogen export), and monthly in streamwater at the Bowl Research Natural Area, New Hampshire, USA (high nitrogen export). For rain, δ18O values ranged from +47 to +77‰ (mean: +58‰) and δ15N from −5 to +1‰ (mean: −3‰); for snow, δ18O values ranged from +52 to +75‰ (mean: +67‰) and δ15N from −3 to +2‰ (mean: −1‰). Streamwater nitrate, in contrast to deposition, had δ18O values between +12 and +33‰ (mean: +18‰) and δ15N between −3 and +6‰ (mean: 0‰). Since nitrate produced by nitrification typically has δ18O values ranging from −5 to +15‰, our field data suggest that most of the nitrate lost from the watersheds in streamflow was nitrified within the catchment. Our results confirm the importance of microbial nitrogen transformations in regulating nitrogen losses from forested ecosystems and suggest that hydrologic storage may be a factor in controlling catchment nitrate losses.

  15. An assessment of landscape characteristics affecting estuarine nitrogen loading in an urban watershed.

    PubMed

    Yang, Xiaojun

    2012-02-01

    Exploring the quantitative association between landscape characteristics and the ecological conditions of receiving waters has recently become an emerging area for eco-environmental research. While the landscape-water relationship research has largely targeted on inland aquatic systems, there has been an increasing need to develop methods and techniques that can better work with coastal and estuarine ecosystems. In this paper, we present a geospatial approach to examine the quantitative relationship between landscape characteristics and estuarine nitrogen loading in an urban watershed. The case study site is in the Pensacola estuarine drainage area, home of the city of Pensacola, Florida, USA, where vigorous urban sprawling has prompted growing concerns on the estuarine ecological health. Central to this research is a remote sensor image that has been used to extract land use/cover information and derive landscape metrics. Several significant landscape metrics are selected and spatially linked with the nitrogen loading data for the Pensacola bay area. Landscape metrics and nitrogen loading are summarized by equal overland flow-length rings, and their association is examined by using multivariate statistical analysis. And a stepwise model-building protocol is used for regression designs to help identify significant variables that can explain much of the variance in the nitrogen loading dataset. It is found that using landscape composition or spatial configuration alone can explain most of the nitrogen loading variability. Of all the regression models using metrics derived from a single land use/cover class as the independent variables, the one from the low density urban gives the highest adjusted R-square score, suggesting the impact of the watershed-wide urban sprawl upon this sensitive estuarine ecosystem. Measures towards the reduction of non-point source pollution from urban development are necessary in the area to protect the Pensacola bay ecosystem and its

  16. San Francisco and Bay Area, CA, USA

    NASA Image and Video Library

    1973-06-22

    SL2-03-118 (June 1973) --- An infrared photograph of the San Francisco Bay, California area, taken from the Skylab 1/2 space station in Earth orbit. THE PICTURE SHOULD BE HELD WITH THE CLOUDS AND PACIFIC OCEAN ON THE LEFT. This photograph was taken by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment in the Multiple Docking Adapter of the space station. Type 2443 film was used. Note the thickly populated and highly developed area around the bay. Among the cities visible in this photograph are San Francisco, Oakland, Berkeley and San Jose. This view extends eastward to show a portion of the San Joaquin Valley. The S190-A experiment is part of the Skylab Earth Resources Experiment Package (EREP). Photo credit: NASA

  17. Hydrological and biogeochemical investigation of an agricultural watershed, southeast New Hampshire, USA

    NASA Astrophysics Data System (ADS)

    Davis, J. M.; McDowell, W. H.; Campbell, J. E.; Hristov, A. N.

    2010-12-01

    Developing sustainable agricultural practices and policies requires an understanding of the hydrological and biological processes that control nutrient fluxes and how those processes are manifested in nutrient loading of surface water bodies. Groundwater and surface water from the UNH Organic Research Dairy, located in southeast New Hampshire, flow into the Lamprey River and then into the Great Bay, New Hampshire; both are experiencing increasing nutrient loads. The farm hosts approximately 80 Jersey cows (40 milking) and is located on relatively thin (<10m) glacial deposits that include sandy glacial till moraines, an ice-contact delta, and marine silt and clay overlying fractured calcareous quartzite. Recharge of precipitation is the dominant mode through which nutrients are introduced into the hydrologic system. Intensive meteorological, hydrological, and biogeochemical monitoring of a 35 hectare watershed that includes the main farm operation buildings and several pastures has been underway since June 2009. A three-dimensional transient unsaturated-saturated groundwater flow model was developed using LIDAR topography and detailed field mapping. The transient model was calibrated to observed water level and streamflow observations. Model results suggest that summer recharge rates vary considerably across the site and depth to the water table is the dominant control on the recharge flux. Areas having depth to water of 1-2 m experience the greatest recharge (up to 60% of precipitation). Areas with deeper water tables experience greater evapotranspiration from the vadose zone, and shallower water tables experience greater runoff. Water budget calculations suggest that the hydrologic fluxes occur predominately in the shallow groundwater, wetlands, and small surface streams draining the watershed. High dissolved nitrogen (N) concentrations (up to an average concentration of 35 mg N/L) are observed in groundwater immediately downgradient from the main farm operation

  18. The effect of fire on mercury cycling in the soils of forested watersheds: Acadia National Park, Maine, U.S.A

    USGS Publications Warehouse

    Amirbahman, A.; Ruck, P.L.; Fernandez, I.J.; Haines, T.A.; Kahl, J.S.

    2004-01-01

    This study compares mercury (Hg) and methylmercury (MeHg) distribution in the soils of two forested stream watersheds at Acadia National Park, Maine, U.S.A. Cadillac Brook watershed, which burned in 1947, has thin soils and predominantly deciduous vegetation. It was compared to the unburned Hadlock Brook watershed, with thicker soil and predominantly coniferous vegetation. Soils in both watersheds were primarily well drained. The fire had a significant impact on the Cadillac watershed, by raising the soil pH, altering the vegetation, and reducing carbon and Hg pools. Total Hg content was significantly higher (P < 0.05) in Hadlock soils (0.18 kg Hg ha-1) compared to Cadillac soils (0. 13 kg Hg ha-1). Hadlock O horizon had an average Hg concentration of 134??48 ng Hg g-1 dry weight, compared to 103??23 ng Hg g-1 dry weight in Cadillac O horizon. Soil pH was significantly higher in all soil horizons at Cadillac compared to Hadlock soils. This difference was especially significant in the O horizon, where Cadillac soils had an average pH of 3.41??0.22 compared to Hadlock soils with an average pH of 2.99??0.13. To study the mobilization potential of Hg in the O horizons of the two watersheds, batch adsorption experiments were conducted, and the results were modeled using surface complexation modeling. The results of Hg adsorption experiments indicated that the dissolved Hg concentration was controlled by the dissolved organic carbon (DOC) concentration. The adsorption isotherms suggest that Hg is more mobile in the O horizon of the unburned Hadlock watershed because of higher solubility of organic carbon resulting in higher DOC concentrations in that watershed. Methylmercury concentrations, however, were consistently higher in the burned Cadillac O horizon (0.20??0.13 ng Hg g-1 dry weight) than in the unburned Hadlock O horizon (0.07??0.07 ng Hg g-1 dry weight). Similarly, Cadillac soils possessed a higher MeHg content (0.30 g MeHg ha-1) than Hadlock soils (0.16 g Me

  19. CHARACTERIZING THE ORGANIC MATTER IN SURFACE SEDIMENTS FROM THE SAN JUAN BAY ESTUARY.

    EPA Science Inventory

    The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest...

  20. Characterizing the Organic Matter in Surface Sediments from the San Juan Bay Estuary,

    EPA Science Inventory

    The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest...

  1. CHARACTERIZING THE ORGANIC MATTER IN SURFACE SEDIMENTS FROM THE SAN JUAN BAY ESTUARY

    EPA Science Inventory

    The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest...

  2. Estuary 2100 Project, Phase 1: Resilient Watersheds for a Changing Climate

    EPA Pesticide Factsheets

    Information about the SFBWQP Estuary 2100 Project, Phase 1: Resilient Watersheds for a Changing Climate , part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  3. Impact of climate change and climate anomalies on hydrologic and biogeochemical processes in an agricultural catchment of the Chesapeake Bay watershed, USA.

    PubMed

    Wagena, Moges B; Collick, Amy S; Ross, Andrew C; Najjar, Raymond G; Rau, Benjamin; Sommerlot, Andrew R; Fuka, Daniel R; Kleinman, Peter J A; Easton, Zachary M

    2018-05-16

    Nutrient export from agricultural landscapes is a water quality concern and the cause of mitigation activities worldwide. Climate change impacts hydrology and nutrient cycling by changing soil moisture, stoichiometric nutrient ratios, and soil temperature, potentially complicating mitigation measures. This research quantifies the impact of climate change and climate anomalies on hydrology, nutrient cycling, and greenhouse gas emissions in an agricultural catchment of the Chesapeake Bay watershed. We force a calibrated model with seven downscaled and bias-corrected regional climate models and derived climate anomalies to assess their impact on hydrology and the export of nitrate (NO 3 -), phosphorus (P), and sediment, and emissions of nitrous oxide (N 2 O) and di-nitrogen (N 2 ). Model-average (±standard deviation) results indicate that climate change, through an increase in precipitation and temperature, will result in substantial increases in winter/spring flow (10.6 ± 12.3%), NO 3 - (17.3 ± 6.4%), dissolved P (32.3 ± 18.4%), total P (24.8 ± 16.9%), and sediment (25.2 ± 16.6%) export, and a slight increases in N 2 O (0.3 ± 4.8%) and N 2 (0.2 ± 11.8%) emissions. Conversely, decreases in summer flow (-29.1 ± 24.6%) and the export of dissolved P (-15.5 ± 26.4%), total P (-16.3 ± 20.7%), sediment (-20.7 ± 18.3%), and NO 3 - (-29.1 ± 27.8%) are driven by greater evapotranspiration from increasing summer temperatures. Decreases in N 2 O (-26.9 ± 15.7%) and N 2 (-36.6 ± 22.9%) are predicted in the summer and driven by drier soils. While the changes in flow are related directly to changes in precipitation and temperature, the changes in nutrient and sediment export are, to some extent, driven by changes in agricultural management that climate change induces, such as earlier spring tillage and altered nutrient application timing and by alterations to nutrient cycling in the soil. Copyright © 2018

  4. Development and implications of a sediment budget for the upper Elk River watershed, Humboldt County

    Treesearch

    Lee H. MacDonald; Michael W. Miles; Shane Beach; Nicolas M. Harrison; Matthew R. House; Patrick Belmont; Ken L. Ferrier

    2017-01-01

    A number of watersheds on the North Coast of California have been designated as sediment impaired under the Clean Water Act, including the 112 km2 upper Elk River watershed that flows into Humboldt Bay just south of Eureka. The objectives of this paper are to: 1) briefly explain the geomorphic context and anthropogenic uses of the Elk River...

  5. Stream Community Structure: An Analysis of Riparian Forest Buffer Restoration in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Orzetti, L. L.; Jones, R. C.

    2005-05-01

    Forested riparian buffer zones have been proposed as an important aid in curtailing upland sources of pollution before they reach stream surface waters, and enhancing habitat for stream organisms. Our objective was to test the efficacy of restored forest riparian buffers along streams in the Chesapeake Bay watershed by examining the stream macrobenthic community structure. To test our hypothesis, we collected riffle benthic and water samples, and performed habitat evaluations at 30 stream sites in the mid-Atlantic Piedmont, ranging in buffer age from 0 to greater than 50 years of age. Results showed that habitat, water quality, and benthic macroinvertebrate metrics improved with age of restored buffer. Habitat scores were driven mostly by instream substrate availability and width and age of riparian buffer zones. Water quality parameters varied within buffer age groups depending age of surrounding forest vegetation. Benthic invertebrate taxa richness, % EPT, % Plecoptera, % Ephemeroptera, and the FBI all improved with age of buffer zone. Instream habitat quality was the greatest driver of benthic macroinvertebrate community diversity and health, and appeared to plateau within 10-15 years of restoration with noticeable improvements occurring within 5-10 years post restoration.

  6. Sector Growth Demonstration in the Chesapeake Bay Watershed

    EPA Pesticide Factsheets

    EPA continues to work with the Bay states and DC to adress areas of concern identified in the final reports. EPA has asked each state and DC to prepare a Sector Load Growth Demonstration using the Sector Load Growth techical memorandum as a guide.

  7. The Fernow Watershed Acidification Study: ecosystem acidification, nitrogen saturation and base cation leaching

    Treesearch

    Mary Beth Adams; James N. Kochenderfer; Pamela J. Edwards

    2007-01-01

    In 1989, a watershed acidification experiment was begun on the Fernow Experimental Forest in West Virginia, USA. Ammonium sulfate fertilizer (35.5 kg N ha−1 yr−1 and 40.5 kg S ha−1 yr−1) was applied to a forested watershed (WS3) that...

  8. Impact of storm-water outfalls on sediment quallity in corpus Christi Bay, Texas, USA

    USGS Publications Warehouse

    Carr, R. Scott; Montagna, Paul A.; Biedenbach, James M.; Kalke, Rick; Kennicutt, Mahlon C.; Hooten, Russell L.; Cripe, Geraldine

    2000-01-01

    To determine the quality of sediments and extent of contaminant impacts, a Sediment Quality Triad (SQT) study was conducted at 36 sites in the Corpus Christi Bay, Texas, USA, system. Fifteen of the 36 sites were located near storm-water outfalls, but 13 other sites (i.e., industrial and domestic outfalls, oil field–produced water discharges, and dredging activity) and eight reference sites were also evaluated. Sediment samples were collected and analyzed for physical–chemical characteristics, contaminant concentrations (metals, polycyclic aromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], and pesticides), toxicity (amphipod and mysid solid phase and sea urchin pore-water fertilization and embryological development tests), and a benthic index of biotic integrity (BIBI) composed of 10 independent metrics calculated for each site. This large data matrix was reduced using multivariate analysis to create new variables for each component representing overall means and containing most of the variance in the larger data set. The new variables were used to conduct the correlation analysis. Toxicity was significantly correlated with both chemistry and ecological responses, whereas no correlations between the benthic metrics and sediment chemistry were observed. Using the combined information from the SQT, four of the five most degraded sites were storm-water outfall sites. Although estuaries are naturally stressful environments because of salinity and temperature fluctuations, this ecosystem appears to have been compromised by anthropogenic influences similar to what has been observed for other heavily urbanized bay systems along the Texas and Gulf coast.

  9. Trends in nitrogen isotope ratios of juvenile winter flounder reflect changing nitrogen inputs to Rhode Island, USA estuarine systems.

    PubMed

    Pruell, Richard J; Taplin, Bryan K; Miller, Kenneth M

    2017-05-15

    Nitrogen isotope ratios (δ 15 N) in juvenile winter flounder, Pseudopleuronectes americanus, were used to examine changes in nitrogen inputs to several Rhode Island, USA estuarine systems. Fish were collected over two three-year periods with a ten-year interval between sampling periods (2002-2004 and 2012-2014). During that interval numerous changes to nutrient management practices were initiated in the watersheds of these estuarine systems including the upgrade of several major wastewater treatment facilities that discharge to Narragansett Bay, which significantly reduced nitrogen inputs. Following these reductions, the δ 15 N values of flounder in several of the systems decreased as expected; however, isotope ratios in fish from upper Narragansett Bay significantly increased. We believe that low δ 15 N values measured in 2002-2004 were related to concentration-dependent fractionation at this location. Increased δ 15 N values measured between 2012 and 2014 may indicate reduced fractionation or that changes in wastewater treatment processes altered the nitrogen isotopic ratios of the effluents. Published by Elsevier Ltd.

  10. The exotic mute swan (Cygnus olor) in Chesapeake Bay, USA

    USGS Publications Warehouse

    Perry, M.C.; Perry, M.C.

    2002-01-01

    The exotic mute swan (Cygnus olor) has increased its population size in Chesapeake Bay (Maryland and Virginia) to approximately 4,500 since 1962 when five swans were released in the Bay. The Bay population of mute swans now represents 30% of the total Atlantic Flyway population (12,600) and has had a phenomenal increase of 1,200% from 1986 to 1999. Unlike the tundra swans (Cygnus columbianus) that migrate to the Bay for the winter, the mute swan is a year-long resident, and, therefore, reports of conflicts with nesting native waterbirds and the consumption of submerged aquatic vegetation (SAV) have raised concerns among resource managers. Populations of black skimmers (Rynchops niger) and least terns (Sterna antillarum) nesting on beaches and oyster shell bars have been eliminated by molting mute swans. Although data on the reduction of SAV by nesting mute swans and their offspring during the spring and summer are limited, food habits data show that mute swans rely heavily on SAV during these months. Widgeon grass (Ruppia maritima) constituted 56% and eel grass (Zostera marina) constituted 43% of the gullet food of mute swans. Other SAV and invertebrates (including bryozoans, shrimp, and amphipods) formed a much smaller amount of the food percentage (1%). Invertebrates are believed to have been selected accidently within the vegetation eaten by the swans. Corn (Zea mays) fed to swans by Bay residents during the winter probably supplement limited vegetative food resources in late winter. A program to control swan numbers by the addling of eggs and the killing of adult swans has been a contentious issue with some residents of the Bay area. A management plan is being prepared by a diverse group of citizens appointed by the Governor to advise the Maryland Department of Natural Resources on viable and optimum options to manage mute swans in the Maryland portion of Chesapeake Bay. Hopefully, the implementation of the plan will alleviate the existing conflicts to the

  11. Coastal circulation and sediment dynamics in Pelekane and Kawaihae Bays, Hawaii--measurements of waves, currents, temperature, salinity, turbidity, and geochronology: November 2010--March 2011

    USGS Publications Warehouse

    Storlazzi, Curt D.; Field, Michael E.; Presto, M. Katherine; Swarzenski, Peter W.; Logan, Joshua B.; Reiss, Thomas E.; Elfers, Timothy C.; Cochran, Susan A.; Torresan, Michael E.; Chezar, Hank

    2012-01-01

    Coral reef communities on the Island of Hawaii have been heavily affected by the construction of Kawaihae Harbor in the 1950s and by subsequent changes in land use in the adjacent watershed. Sedimentation and other forms of land-based pollution have led to declines in water quality and coral reef health over the past two decades (Tissot, 1998). Erosion mitigation efforts are underway on land, and there is a need to evaluate the impact of these actions on the adjacent coastal ecosystem. The Kohala Center and Kohala Watershed Partnership was awarded $2.69 million from the National Oceanographic and Atmospheric Administration’s (NOAA) Restoration Center as part of the American Recovery and Reinvestment Act of 2009 to stabilize soil and improve land-use practices in the Pelekane Bay watershed. The grant allowed the Kohala Watershed Partnership to implement various upland watershed management activities to reduce land-based sources of pollution into Pelekane Bay. However, a number of questions must be answered in order to: (1) evaluate the effectiveness of the terrestrial watershed remediation efforts; (2) understand the potential of the local marine ecosystem to recover; and (3) understand the potential threat that existing mud deposits in the bay pose to adjacent, relatively pristine coral reef ecosystems. The goal of this experiment was to help address these questions and establish a framework to evaluate the success of the Kohala Watershed Partnership restoration efforts. This research program will also provide resource managers with information relevant to other watershed restoration efforts currently being planned in neighboring watersheds. This project involved an interdisciplinary team of coral reef biologists from the University of Hawaii Coral Reef Assessment and Monitoring Program, who focused on the impact of sedimentation on the biota of Pelekane Bay, and a team of geologists and oceanographers from the U.S. Geological Survey (USGS), who focused on the

  12. Mycobacteriosis-associated mortality in wild striped bass (Morone saxatilis) from Chesapeake Bay, U.S.A.

    PubMed

    Gauthier, D T; Latour, R J; Heisey, D M; Bonzek, C F; Gartland, J; Burge, E J; Vogelbein, W K

    2008-10-01

    The striped bass (Morone saxatilis) is an economically and ecologically important finfish species along the Atlantic seaboard of the United States. Recent stock assessments in Chesapeake Bay (U.S.A.) indicate that non-fishing mortality in striped bass has increased since 1999, concomitant with very high (>50%) prevalence of visceral and dermal disease caused by Mycobacterium spp. Current fishery assessment models do not differentiate between disease and other components of non-fishing mortality (e.g., senescence, predation); therefore, disease impact on the striped bass population has not been established. Specific measurement of mortality associated with mycobacteriosis in wild striped bass is complicated because the disease is chronic and mortality is cryptic. Epidemiological models have been developed to estimate disease-associated mortality from cross-sectional prevalence data and have recently been generalized to represent disease processes more realistically. Here, we used this generalized approach to demonstrate disease-associated mortality in striped bass from Chesapeake Bay. To our knowledge this is the first demonstration of cryptic mortality associated with a chronic infectious disease in a wild finfish. This finding has direct implications for management and stock assessment of striped bass, as it demonstrates population-level negative impacts of a chronic disease. Additionally, this research provides a framework by which disease-associated mortality may be specifically addressed within fisheries models for resource management.

  13. A proposed international watershed research network

    USGS Publications Warehouse

    Osterkamp, W.R.; Gray, J.R.

    2003-01-01

    An “International Watershed Research Network” is to be an initial project of the Sino-U. S. Centers for Soil and Water Conservation and Environmental Protection. The Network will provide a fundamental database for research personnel of the Centers, as well as of the global research community, and is viewed as an important resource for their successful operation. Efforts are under way to (a) identify and select candidate watersheds, (b) develop standards and protocols for data collection and dissemination, and (c) specify other data sources on erosion, sediment transport, hydrology, and ancillary information of probable interest and use to participants of the Centers. The initial focus of the Network will be on water-deficient areas. Candidate watersheds for the Network are yet to be determined although likely selections include the Ansai Research Station, northern China, and the Walnut Gulch Experimental Watershed, Arizona, USA. The Network is to be patterned after the Vigil Network, an open-ended group of global sites and small drainage basins for which Internet-accessible geomorphic, hydrologic, and biological data are periodically collected or updated. Some types of data, using similar instruments and observation methods, will be collected at all watersheds selected for the Network. Other data from the watersheds that may reflect individual watershed characteristics and research objectives will be collected as well.

  14. Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication--A Case Study in the Taihu Lake Basin (China).

    PubMed

    Lin, Chen; Ma, Ronghua; He, Bin

    2015-12-24

    Taihu Lake in China is suffering from severe eutrophication partly due to non-point pollution from the watershed. There is an increasing need to identify the regions within the watershed that most contribute to lake water degradation. The selection of appropriate temporal scales and lake indicators is important to identify sensitive watershed regions. This study selected three eutrophic lake areas, including Meiliang Bay (ML), Zhushan Bay (ZS), and the Western Coastal region (WC), as well as multiple buffer zones next to the lake boundary as the study sites. Soil erosion intensity was designated as a watershed indicator, and the lake algae area was designated as a lake quality indicator. The sensitive watershed region was identified based on the relationship between these two indicators among different lake divisions for a temporal sequence from 2000 to 2012. The results show that the relationship between soil erosion modulus and lake quality varied among different lake areas. Soil erosion from the two bay areas was more closely correlated with water quality than soil erosion from the WC region. This was most apparent at distances of 5 km to 10 km from the lake, where the r² was as high as 0.764. Results indicate that soil erosion could be used as an indicator for identifying key watershed protection areas. Different lake areas need to be considered separately due to differences in geographical features, land use, and the corresponding effects on lake water quality.

  15. Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication—A Case Study in the Taihu Lake Basin (China)

    PubMed Central

    Lin, Chen; Ma, Ronghua; He, Bin

    2015-01-01

    Taihu Lake in China is suffering from severe eutrophication partly due to non-point pollution from the watershed. There is an increasing need to identify the regions within the watershed that most contribute to lake water degradation. The selection of appropriate temporal scales and lake indicators is important to identify sensitive watershed regions. This study selected three eutrophic lake areas, including Meiliang Bay (ML), Zhushan Bay (ZS), and the Western Coastal region (WC), as well as multiple buffer zones next to the lake boundary as the study sites. Soil erosion intensity was designated as a watershed indicator, and the lake algae area was designated as a lake quality indicator. The sensitive watershed region was identified based on the relationship between these two indicators among different lake divisions for a temporal sequence from 2000 to 2012. The results show that the relationship between soil erosion modulus and lake quality varied among different lake areas. Soil erosion from the two bay areas was more closely correlated with water quality than soil erosion from the WC region. This was most apparent at distances of 5 km to 10 km from the lake, where the r2 was as high as 0.764. Results indicate that soil erosion could be used as an indicator for identifying key watershed protection areas. Different lake areas need to be considered separately due to differences in geographical features, land use, and the corresponding effects on lake water quality. PMID:26712772

  16. Willingness to Pay Survey for Chesapeake Bay Total Maximum Daily Load

    EPA Science Inventory

    A stated preference survey to collect data on households’ use of Chesapeake Bay and its watershed, and of their preferences for a variety of water quality improvements likely to follow from pollution reduction programs.

  17. Standardization and application of an index of community integrity for waterbirds in the Chesapeake Bay, USA

    USGS Publications Warehouse

    Prosser, Diann J.; Nagel, Jessica L.; Marban, Paul; Ze, Luo; Day, Daniel D.; Erwin, R. Michael

    2017-01-01

    In recent decades, there has been increasing interest in the application of ecological indices to assess ecosystem condition in response to anthropogenic activities. An Index of Waterbird Community Integrity was previously developed for the Chesapeake Bay, USA. However, the scoring criteria were not defined well enough to generate scores for new species that were not observed in the original study. The goal of this study was to explicitly define the scoring criteria for the existing index and to develop index scores for all waterbirds of the Chesapeake Bay. The standardized index then was applied to a case study investigating the relationship between waterbird community integrity and shoreline development during late summer and late fall (2012–2014) using an alternative approach to survey methodology, which allowed for greater area coverage compared to the approach used in the original study. Index scores for both seasons were negatively related to percentage of developed shorelines. Providing these updated tools using the detailed scoring system will facilitate future application to new species or development of the index in other estuaries worldwide. This methodology allows for consistent cross-study comparisons and can be combined with other community integrity indices, allowing for more effective estuarine management.

  18. Prediction of climate change impacts on agricultural watersheds and the performance of winter cover crops: Case study of the upper region of the Choptank River Watershed

    USDA-ARS?s Scientific Manuscript database

    Elevated CO2 concentration, temperature, and precipitation intensity driven by climate change are expected to cause significant environmental changes in the Chesapeake Bay Watershed (CBW). Although the potential effects of climate change are widely reported, few studies have been conducted to unders...

  19. Relating nutrient and herbicide fate with landscape features and characteristics of 15 subwatersheds in the Choptank River Watershed

    USDA-ARS?s Scientific Manuscript database

    The Choptank River is an estuary and tributary on the eastern shore of the Chesapeake Bay; it drains portions of the Delmarva Peninsula, located within the Mid-Atlantic region of the United States. Its watershed is an ARS Benchmark Watershed in the Conservation Effects Assessment Project (CEAP). M...

  20. Organic carbon and fine sediment production potential from decaying permafrost in a small watershed, Sheldrake River, Eastern coastal region of Hudson Bay

    NASA Astrophysics Data System (ADS)

    Jolivel, M.; Allard, M.

    2010-12-01

    Recent evaluations indicate that large amounts of organic carbon and fine sediment can be released in fluvial and coastal systems because of permafrost degradation, with impacts on ecosystems. In order to estimate the organic carbon and fine sediment potential production from a river basin, we have made a spatiotemporal comparison between 1957 aerial photographs and a 2009 GeoEye satellite image. A gauging station was installed near the river mouth and measurements of the extent and volume of permafrost degradation were made in the watershed where permafrost degradation is very active. The Sheldrake river watershed is located on the eastern coast of Hudson Bay near the Inuit community of Umiujaq, in the discontinuous permafrost zone. The tree line passes across the watershed. Permafrost mounds (palsas, lithalsas) and plateaus are the most abundant permafrost landforms in this area. They developed principally in east-west oriented valleys, in postglacial marine silts of the Tyrrell Sea. Signs of degradation are numerous. Lithalsas and palsas (with peat cover) weather out and collapse. Thermokarst ponds are replacing permafrost mounds and sometimes, eroded clay and peat are remobilized in the drainage network. Moreover, several retrogressive landslides, mudflows and gully erosion are active along the Sheldrake river banks. The first step consisted in mapping the 80 km2 watershed area and representing surface deposits, drainage network and permafrost distribution (1957 and 2009). First results show that 40 to 70% of the 1957 permafrost has disappeared in 2009 in various sector of the watershed. The percentage of permafrost degradation is positively correlated with distance from the sea and the presence of a well-developed drainage network. The second step is to calculate an equation which will allow changing the missing permafrost surface between 1957 and 2009 into a volume. The equation will take into account the average depth of permafrost and active layer, the mean

  1. THE EFFECTS OF LAND-USE/LAND-COVER, GEOMORPHOLOGY AND CLIMATE ON MAGNITUDE AND TIMING OF NUTRIENT EXPORT AND LOADING RATES IN THREE COASTAL PLAIN WATERSHEDS

    EPA Science Inventory

    Watershed nitrogen (N), phosphorus (P), organic carbon (OC), and total suspended sediment (TSS) export rates were determined in 18 sub-basins of three watershed-estuarine systems over two annual cycles (2000 and 2001). The three watersheds all drain to the Mobile Bay estuary and ...

  2. Soil leachate responses during 10 years of induced whole-watershed acidification

    Treesearch

    Pamela J. Edwards; James N. Kochenderfer; Dean W. Coble; Mary Beth Adams

    2002-01-01

    Soil solution was collected from zero-tension lysimeters for 10 yr on two small central Appalachian watersheds in West Virginia, U.S.A. Ammonium sulfate fertilizer was applied to one catchment 3 times per year during each year. The other watershed was used as a reference to account for ambient baseline conditions. Ca and Mg concentrations collected below the A- and B-...

  3. Watershed memory at the Coweeta Hydrologic Laboratory: the effect of past precipitation and storage on hydrologic response

    Treesearch

    Fabian Nippgen; Brian L. McGlynn; Ryan E. Emanuel; James M. Vose

    2016-01-01

    The rainfall-runoff response of watersheds is affected by the legacy of past hydroclimatic conditions. We examined how variability in precipitation affected streamflow using 21 years of daily streamflow and precipitation data from five watersheds at the Coweeta Hydrologic Laboratory in southwestern North Carolina, USA. The gauged watersheds contained both...

  4. Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds

    Treesearch

    Joel B. Sankey; Jason Kreitler; Todd J. Hawbaker; Jason L. McVay; Mary Ellen Miller; Erich R. Mueller; Nicole M. Vaillant; Scott E. Lowe; Temuulen T. Sankey

    2017-01-01

    The area burned annually by wildfires is expected to increase worldwide due to climate change. Burned areas increase soil erosion rates within watersheds, which can increase sedimentation in downstream rivers and reservoirs. However, which watersheds will be impacted by future wildfires is largely unknown. Using an ensemble of climate, fire, and erosion models, we show...

  5. Projected 2050 Model Simulations for the Chesapeake Bay Program

    EPA Science Inventory

    The Chesapeake Bay Program as has been tasked with assessing how changes in climate systems are expected to alter key variables and processes within the Watershed in concurrence with land use changes. EPA’s Office of Research and Development will be conducting historic and...

  6. Flow dynamics of three experimental forested watersheds in coastal South Carolina (USA)

    Treesearch

    Devendra M. Amatya; Artur Radecki-Pawlik

    2008-01-01

    Three first-, second- and third-order experimental forested watersheds located within the Francis Marion National Forest in the lower coastal plain of South Carolina were monitored for rainfall and stream outflows. The largest watershed (WS 78) with some open lands, roads and wetlands gave higher annual water yields compared to the two other smaller ones (WS 79, WS 80...

  7. Urban Effects on Microbial Processes and Food Webs in Coastal Watershed Streams

    EPA Science Inventory

    We conducted a stream survey in the Narragansett Bay Watershed that targeted a gradient of development intensity and examined how associated changes in nutrients, carbon, and stressors affected periphyton and macroinvertebrates. Concentrations of nutrients, cations, and anions we...

  8. San Francisco and Bay Area, CA, USA

    NASA Image and Video Library

    1991-05-06

    STS039-151-181A (28 April-6 May 1991) --- Large format (five-inch) frame of the San Francisco/Oakland Bay Area of northern California. Stratus clouds at 35,000 feet and cumulus clouds at about 15,000 feet are seen over the Pacific Coast, obscuring the Golden Gate Bridge.

  9. Water quality in South San Francisco Bay, California: current condition and potential issues for the South Bay Salt Pond Restoration Project.

    PubMed

    Grenier, J Letitia; Davis, Jay A

    2010-01-01

    The SBSPRP is an extensive tidal wetland restoration project that is underway at the margin of South San Francisco Bay, California. The Project, which aims to restore former salt ponds to tidal marsh and manage other ponds for water bird support, is taking place in the context of a highly urbanized watershed and an Estuary already impacted by chemical contaminants. There is an intimate relationship between water quality in the watershed, the Bay, and the transitional wetland areas where the Project is located. The Project seeks to restore habitat for endangered and endemic species and to provide recreational opportunities for people. Therefore, water quality and bioaccumulation of contaminants in fish and wildlife is an important concern for the success of the Project. Mercury, PCBs, and PBDEs are the persistent contaminants of greatest concern in the region. All of these contaminants are present at elevated concentrations both in the abiotic environment and in wildlife. Dioxins, pyrethroids, PAHs, and selenium are also problematic. Organochlorine insecticides have historically impacted the Bay, and they remain above thresholds for concern in a small proportion of samples. Emerging contaminants, such as PFCs and non-PBDE flame retardants, are also an important water quality issue. Beyond chemical pollutants, other concerns for water quality in South San Francisco Bay exist, and include biological constituents, especially invasive species, and chemical attributes, such as dissolved oxygen and salinity. Future changes, both from within the Project and from the Bay and watershed, are likely to influence water quality in the region. Project actions to restore wetlands could worsen, improve, or not affect the already impaired water quality in South Bay. Accelerated erosion of buried sediment as a consequence of Project restoration actions is a potentially serious regional threat to South Bay water and sediment quality. Furthermore, the planned restoration of salt ponds

  10. Ecology of Buzzards Bay: An Estuarine Profile

    DTIC Science & Technology

    1996-09-01

    bucera Polychaeta Ascophyllum nodosum Phaeophyta Tellina tenera Bivalvia Fucus vesiculosus Phaeophyta Ninoe nigripes Polychaeata Chondrus crispus...Because the current and future environmental health of these types of embayments can be directly influenced by activities within contributing watersheds...restricted coastal embayments, while natural and anthropogenic influences responsible for present and future changes to bay systems are the focus of Chap

  11. Mercury and organic carbon dynamics during runoff episodes from a northeastern USA watershed

    USGS Publications Warehouse

    Schuster, P.F.; Shanley, J.B.; Marvin-DiPasquale, M.; Reddy, M.M.; Aiken, G.R.; Roth, D.A.; Taylor, Howard E.; Krabbenhoft, D.P.; DeWild, J.F.

    2008-01-01

    Mercury and organic carbon concentrations vary dynamically in streamwater at the Sleepers River Research Watershed in Vermont, USA. Total mercury (THg) concentrations ranged from 0.53 to 93.8 ng/L during a 3-year period of study. The highest mercury (Hg) concentrations occurred slightly before peak flows and were associated with the highest organic carbon (OC) concentrations. Dissolved Hg (DHg) was the dominant form in the upland catchments; particulate Hg (PHg) dominated in the lowland catchments. The concentration of hydrophobic acid (HPOA), the major component of dissolved organic carbon (DOC), explained 41-98% of the variability of DHg concentration while DOC flux explained 68-85% of the variability in DHg flux, indicating both quality and quantity of the DOC substantially influenced the transport and fate of DHg. Particulate organic carbon (POC) concentrations explained 50% of the PHg variability, indicating that POC is an important transport mechanism for PHg. Despite available sources of DHg and wetlands in the upland catchments, dissolved methylmercury (DmeHg) concentrations in streamwaters were below detection limit (0.04 ng/L). PHg and particulate methylmercury (PmeHg) had a strong positive correlation (r 2 = 0.84, p < 0.0001), suggesting a common source; likely in-stream or near-stream POC eroded or re-suspended during spring snowmelt and summer storms. Ratios of PmeHg to THg were low and fairly constant despite an apparent higher methylmercury (meHg) production potential in the summer. Methylmercury production in soils and stream sediments was below detection during snowmelt in April and highest in stream sediments (compared to forest and wetland soils) sampled in July. Using the watershed approach, the correlation of the percent of wetland cover to TmeHg concentrations in streamwater indicates that poorly drained wetland soils are a source of meHg and the relatively high concentrations found in stream surface sediments in July indicate these zones are

  12. Connecting Past to Present and Watersheds to Ocean: Modeling 165 Years of Incremental Changes to Flows into the San Francisco Bay Delta System

    NASA Astrophysics Data System (ADS)

    MacVean, L. J.; Thompson, S. E.; Huttom, P. H.; Sivapalan, M.

    2016-02-01

    California's Sacramento-San Joaquin Delta sits at the intersection of vast agricultural and population centers, and supplies fresh water for the diverse and often competing needs of ecosystems, farmers, and millions of Californians. Managing and allocating this resource is a complex feat of economics, politics, and engineering, made increasingly contentious by the ongoing drought. The objective of this research is to augment the scientific foundation of management decisions by addressing the question of how flows into the Delta have evolved in response to human intervention since 1850. In particular, quantifying the dynamic components of water usage through vegetative uptake and evapotranspiration, groundwater recharge, flood conveyance, and water exports at incremental levels of development is a key ambition. This approach emphasizes the built environment, which is subject to the local regulatory framework, rather than climate change, which is generally considered immovable without united global effort. This work encompasses the creation of a hydrologic model representing the watersheds of the San Francisco Bay-Delta system, and quantifies the impacts of changes in land use and the gradual construction of levees, reservoirs, and diversion infrastructure. The model is run using the same climatological forcing at each level of development, thus elucidating the effects of local anthropogenic activity on the Delta and the inflows to the San Francisco Bay estuary. Our results provide a timeline of change, giving decision-makers a scientifically established baseline to aid in the sustainable management of the Bay-Delta system.

  13. Watershed Implications of Sediment and Nutrient Pollution in the Guánica Bay Watershed

    EPA Science Inventory

    The U.S. Coral Reef Task Force (USCRTF), a collaboration of federal, commonwealth, and non-government agencies, recently initiated a program to limit sediment runoff to the coral reefs outside Guánica Bay, Puerto Rico. Municipal and agricultural growth in the Guánic...

  14. The Neoglacial landscape and human history of Glacier Bay, Glacier Bay National Park and Preserve, southeast Alaska, USA

    USGS Publications Warehouse

    Connor, C.; Streveler, G.; Post, A.; Monteith, D.; Howell, W.

    2009-01-01

    The Neoglacial landscape of the Huna Tlingit homeland in Glacier Bay is recreated through new interpretations of the lower Bay's fjordal geomorphology, late Quaternary geology and its ethnographic landscape. Geological interpretation is enhanced by 38 radiocarbon dates compiled from published and unpublished sources, as well as 15 newly dated samples. Neoglacial changes in ice positions, outwash and lake extents are reconstructed for c. 5500?????"200 cal. yr ago, and portrayed as a set of three landscapes at 1600?????"1000, 500?????"300 and 300?????"200 cal. yr ago. This history reveals episodic ice advance towards the Bay mouth, transforming it from a fjordal seascape into a terrestrial environment dominated by glacier outwash sediments and ice-marginal lake features. This extensive outwash plain was building in lower Glacier Bay by at least 1600 cal. yr ago, and had filled the lower bay by 500 cal. yr ago. The geologic landscape evokes the human-described landscape found in the ethnographic literature. Neoglacial climate and landscape dynamism created difficult but endurable environmental conditions for the Huna Tlingit people living there. Choosing to cope with environmental hardship was perhaps preferable to the more severely deteriorating conditions outside of the Bay as well as conflicts with competing groups. The central portion of the outwash plain persisted until it was overridden by ice moving into Icy Strait between AD 1724?????"1794. This final ice advance was very abrupt after a prolonged still-stand, evicting the Huna Tlingit from their Glacier Bay homeland. ?? 2009 SAGE Publications.

  15. Albino mutation rates in red mangroves (Rhizophora mangle L.) as a bioassay of contamination history in Tampa Bay, Florida, USA

    USGS Publications Warehouse

    Proffitt, C.E.; Travis, S.E.

    2005-01-01

    We assessed the sensitivity of a viviparous estuarine tree species, Rhizophora mangle, to historic sublethal mutagenic stress across a fine spatial scale by comparing the frequency of trees producing albino propagules in historically contaminated (n=4) and uncontaminated (n=11) forests in Tampa Bay, Florida, USA. Data from uncontaminated forests were used to provide estimates of background mutation rates. We also determined whether other fitness parameters were negatively correlated with mutagenic stress (e.g., degree of outcrossing and numbers of reproducing trees km-1). Contaminated sites in Tampa Bay had significantly higher frequencies of trees that were heterozygous for albinism per 1000 total reproducing trees (FHT) than uncontaminated forests (mean ?? SE: 11.4 ?? 4.3 vs 4.3 ?? 0.73, P 25 yrs of subsequent recruitment and tree replacement may have allowed an initial elevation in the FHT to decay. Patterns of FHT were not explained by distance from the bay mouth or the degree of urbanization. However, there was a significant positive relationship between tree size and FHT (r=0.83, P<0.018), which suggests that forests with older or larger trees provide a more lasting record of cumulative mutagenic stress. No other fitness parameters correlated with FHT. There was a difference in FHT between two latitudes, as determined by comparing Tampa Bay with literature values for Puerto Rico. The sensitivity of this bioassay for the effects of mutagens will facilitate future monitoring of contamination events and comparisons of bay-wide recovery in future decades. Development of a database of FHT values for a range of subtropical and tropical estuaries is underway that will provide a baseline against which to compare mutational consequences of global change. ?? 2005, The Society of Wetland Scientists.

  16. Science and management in the Hanalei watershed: a trans-disciplinary approach

    USGS Publications Warehouse

    Field, Michael E.; Berg, Carl J.; Cochran, Susan A.

    2007-01-01

    The results of recent studies in the Hanalei watershed are impressive, both in content and breadth. Funded, directed, and/or conducted by investigators from many disciplines from local organizations (the Hanalei Watershed Hui), the University of Hawai‘i, the State of Hawai‘i (Department of Health, Department of Land and Natural Resources), and Federal organizations (U.S. Department of Agriculture, U.S. Geological Survey, Environmental Protection Agency, National Oceanic and Atmospheric Agency), their sum total have contributed markedly to our understanding of processes in the watershed. There has been an overwhelming amount of information that has been collected in the Hanalei Bay Watershed from Mt. Waialeale to the far reefs in just the past 5 years. This workshop was initiated to document our collective understanding, better integrate our results, and identify the salient issues that remain to be studied.

  17. QUANTIFYING SEDIMENT CONTRIBUTIONS TO THE GUÁNICA BAY PUERTO RICO

    EPA Science Inventory

    The island of Puerto Rico faces considerable challenges regarding sustainable land use and effects of land use on adjacent freshwater and marine ecosystem services. In watersheds feeding Guánica Bay (southwestern Puerto Rico), increased soil erosion and sediment loading to strea...

  18. Economics of wild salmon ecosystems: Bristol Bay, Alaska

    Treesearch

    John W. Duffield; Christopher J. Neher; David A. Patterson; Oliver S. Goldsmith

    2007-01-01

    This paper provides an estimate of the economic value of wild salmon ecosystems in the major watershed of Bristol Bay, Alaska. The analysis utilizes both regional economic and social benefit-cost accounting frameworks. Key sectors analyzed include subsistence, commercial fishing, sport fishing, hunting, and nonconsumptive wildlife viewing and tourism. The mixed cash-...

  19. Contrasting residence times and fluxes of water and sulfate in two small forested watersheds in Virginia, USA

    USGS Publications Warehouse

    Böhlke, J.K.; Michel, R.L.

    2009-01-01

    Watershed mass balances for solutes of atmospheric origin may be complicated by the residence times of water and solutes at various time scales. In two small forested headwater catchments in the Appalachian Mountains of Virginia, USA, mean annual export rates of SO4= differ by a factor of 2, and seasonal variations in SO4= concentrations in atmospheric deposition and stream water are out of phase. These features were investigated by comparing 3H, 35S, ??34S, ??2H, ??18O, ??3He, CFC-12, SF6, and chemical analyses of open deposition, throughfall, stream water, and spring water. The concentrations of SO4= and radioactive 35S were about twice as high in throughfall as in open deposition, but the weighted composite values of 35S/S (11.1 and 12.1 ?? 10- 15) and ??34S (+ 3.8 and + 4.1???) were similar. In both streams (Shelter Run, Mill Run), 3H concentrations and ??34S values during high flow were similar to those of modern deposition, ??2H and ??18O values exhibited damped seasonal variations, and 35S/S ratios (0-3 ?? 10- 15) were low throughout the year, indicating inter-seasonal to inter-annual storage and release of atmospheric SO4= in both watersheds. In the Mill Run watershed, 3H concentrations in stream base flow (10-13??TU) were consistent with relatively young groundwater discharge, most ??34S values were approximately the same as the modern atmospheric deposition values, and the annual export rate of SO4= was equal to or slightly greater than the modern deposition rate. In the Shelter Run watershed, 3H concentrations in stream base flow (1-3??TU) indicate that much of the discharging ground water had been deposited prior to the onset of atmospheric nuclear bomb testing in the 1950s, base flow ??34S values (+ 1.6???) were significantly lower than the modern deposition values, and the annual export rate of SO4= was less than the modern deposition rate. Concentrations of 3H and 35S in Shelter Run base flow, and of 3H, 3He, CFC-12, SF6, and 35S in a spring

  20. Tampa Bay, St. Petersburg, Florida, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This photo of the Tampa Bay, St. Petersburg, Florida (28.0N, 82.5W) is one of a pair (see STS049-92-017) to compare the differences between color film and color infrared film. In the color image above, the scene appears as it would to the human eye. The city of St. Petersburg can be seen even though there is atmospheric haze obscuring the image. Color infrared film filters out the haze and portrays vegetation as shades of red or pink.

  1. Tampa Bay, St. Petersburg, Florida, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This photo of the Tampa Bay, St. Petersburg, Florida (28.0N, 82.5W) is one of a pair (see STS049-97-020) to compare the differences between color film and color infrared film. In the color image above, the scene appears as it would to the human eye. The city of St. Petersburg can be seen even though there is atmospheric haze obscuring the image. Color infrared film filters out the haze and portrays vegetation as shades of red or pink.

  2. Multiple stressors threaten the imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA.

    PubMed

    Lefcheck, Jonathan S; Wilcox, David J; Murphy, Rebecca R; Marion, Scott R; Orth, Robert J

    2017-09-01

    Interactions among global change stressors and their effects at large scales are often proposed, but seldom evaluated. This situation is primarily due to lack of comprehensive, sufficiently long-term, and spatially extensive datasets. Seagrasses, which provide nursery habitat, improve water quality, and constitute a globally important carbon sink, are among the most vulnerable habitats on the planet. Here, we unite 31 years of high-resolution aerial monitoring and water quality data to elucidate the patterns and drivers of eelgrass (Zostera marina) abundance in Chesapeake Bay, USA, one of the largest and most valuable estuaries in the world, with an unparalleled history of regulatory efforts. We show that eelgrass area has declined 29% in total since 1991, with wide-ranging and severe ecological and economic consequences. We go on to identify an interaction between decreasing water clarity and warming temperatures as the primary drivers of this trend. Declining clarity has gradually reduced eelgrass cover the past two decades, primarily in deeper beds where light is already limiting. In shallow beds, however, reduced visibility exacerbates the physiological stress of acute warming, leading to recent instances of decline approaching 80%. While degraded water quality has long been known to influence underwater grasses worldwide, we demonstrate a clear and rapidly emerging interaction with climate change. We highlight the urgent need to integrate a broader perspective into local water quality management, in the Chesapeake Bay and in the many other coastal systems facing similar stressors. © 2017 John Wiley & Sons Ltd.

  3. A 200 year chronology of burrowing mayflies (Hexagenia spp.) in Saginaw Bay

    USGS Publications Warehouse

    Schloesser, Donald W.; Robbins, John A.; Matisoff, Gerald; Nalepa, Thomas F.; Morehead, Nancy R.

    2014-01-01

    After an absence of 50 years, burrowing mayflies (Hexagenia spp.) colonized western Lake Erie which led to interest in whether this fauna can be used to measure recovery in nearshore waters throughout the Great Lakes. However, in many areas we do not know if mayflies were native/endemic and thus, whether recovery is a logical measure to assess progress of recovery. In the present study, we construct a chronologic record of relative abundance of burrowing mayflies in Saginaw Bay by the use of mayfly tusks and radionuclides in sediments (i.e., a paleoecologic record) and historic records of mayfly nymphs in the bay. These records reveal that mayflies: (1) were few before 1799, which indicates that nymphs were probably native/endemic in the bay, (2) increased between 1799 and 1807 and remained at relatively high levels between 1807 and 1965, probably in response to increased nutrient run-off from the watershed, (3) declined dramatically between 1965 and 1973, probably as a result of excessive eutrophication in the mid-1950s; and, (4) were few and highly variable between 1973 and 2001, probably as a result of low and unstable abundances of mayfly nymphs. Historic records verify that nymphs disappeared in the bay in the late-1950s to early-1960s which is in agreement with the paleoecologic record. Reoccurrence of low abundances of nymphs in the bay between 1991 and 2008 and comparison of chronologic records of nymphs in Saginaw Bay and western Lake Erie suggest that mayflies may return to Saginaw Bay in the early-21st century. Undoubtedly, watershed conservation and three decades of pollution abatement have set the stage for a recovery of burrowing mayflies in Saginaw Bay, and possibly in other areas of the Great Lakes.

  4. Evaluating the Impact of Land Use Change on Submerged Aquatic Vegetation Stressors in Mobile Bay

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad; Estes, Maurice G., Jr.; Quattrochi, Dale; Thom, Ronald; Woodruff, Dana; Judd, Chaeli; Ellis, Jean; Watson, Brian; Rodriquez, Hugo; Johnson, Hoyt

    2009-01-01

    Alabama coastal systems have been subjected to increasing pressure from a variety of activities including urban and rural development, shoreline modifications, industrial activities, and dredging of shipping and navigation channels. The impacts on coastal ecosystems are often observed through the use of indicator species. One such indicator species for aquatic ecosystem health is submerged aquatic vegetation (SAV). Watershed and hydrodynamic modeling has been performed to evaluate the impact of land use change in Mobile and Baldwin counties on SAV stressors and controlling factors (temperature, salinity, and sediment) in Mobile Bay. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for land use scenarios in 1948, 1992, 2001, and 2030. Landsat-derived National Land Cover Data (NLCD) were used in the 1992 and 2001 simulations after having been reclassified to a common classification scheme. The Prescott Spatial Growth Model was used to project the 2030 land use scenario based on current trends. The LSPC model simulations provided output on changes in flow, temperature, and sediment for 22 discharge points into the Bay. Theses results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment on a grid with four vertical profiles throughout Mobile Bay. The changes in the aquatic ecosystem were used to perform an ecological analysis to evaluate the impact on SAV habitat suitability. This is the key product benefiting the Mobile Bay coastal environmental managers that integrates the influences of temperature, salinity, and sediment due to land use driven flow changes with the restoration potential of SAVs.

  5. WATERSHEED NUTRIENT INPUTS, PHYTOPLANKTON ACCUMULATION, AND C STOCKS IN CHESAPEAKE BAY

    EPA Science Inventory

    Inputs of N and P to Chesapeake Bay have been enhanced by anthropogenic activities. Fertilizers, developed areas, N emissions, and industrial effluents contribute to point and diffuse sources currently 2-20X higher than those from undisturbed watersheds. Enhanced nutrient inputs ...

  6. Contribution of remote sensing to understand the Bay as a system

    NASA Technical Reports Server (NTRS)

    Park, A. B.; Anderson, D.; Bohn, C. G.; Chen, W. T.; Johnson, R. W.

    1978-01-01

    The natural resource management information system concept designed specifically for use with remote sensing is discussed in terms of understanding and studying the Chesapeake Bay as a total system. The Bay is defined as a system comprising the lithosphere, the hydrosphere, and the biosphere, that is the vertical profile encompassed by the systems and a two dimensional plane defining the total watershed of the Bay from the headwaters of its tributaries to a distance in the ocean defined by ten tidal cycles. The Chesapeake Bay system is assumed to be the ecosystem in the largest sense. Ecological partitioning, a methodology resulting from studies of land systems for partitioning the land into geobotanical landscape units, is included along with a breakdown of LANDSAT investigations according to subject area.

  7. Application of Watershed Deposition Tool to Estimate from CMAQ Simulations of the Atmospheric Deposition of Nitrogen to Tampa Bay and Its Watershed

    EPA Science Inventory

    The USEPA has developed Watershed Deposition Tool (WDT) to calculate from the Community Multiscale Air Quality (CMAQ) model output the nitrogen, sulfur, and mercury deposition rates to watersheds and their sub-basins. The CMAQ model simulates from first principles the transport, ...

  8. Relationships of Modeled Nitrogen Loads with Marsh Fish in the Narragansett Bay Estuary, Rhode Island

    EPA Science Inventory

    The human population and associated watershed development has risen steadily since the 1850s in Rhode Island, USA. With these increases, human-derived wastewater has also risen dramatically, resulting in increasing watershed nitrogen loads to estuarine systems. In this study, we...

  9. Linking watershed nitrogen sources with nitrogen dynamics in rivers of western Oregon, USA

    EPA Science Inventory

    We found a wide range of riverine N yields from the study basins, ranging from one to 70 kg N/ha/yr. Across the study basins, N export was more strongly correlated to fertilizer application rates than percent of agricultural area in the watershed. Low watershed N yields reflect...

  10. Gulf of Mexico Integrated Science - Tampa Bay Study: Watershed and Estuary Mapping

    USGS Publications Warehouse

    Hansen, Mark

    2005-01-01

    Tampa Bay, Florida, and its environs have experienced phenomenal urban growth and significant changes in land-use practices over the past 50 years. This trend is expected to continue, with human activity intensifying and affecting a wider geographic region. Urbanization creates impervious surfaces, which increase stormwater runoff and contribute to greater amounts of chemicals flowing into coastal waters. Man-made structures including bridges, a gas pipeline, desalination plant, ports, navigation channels, and extensive sea walls have been built and will continue to be maintained and modified. This task of the Tampa Bay Study aims to provide a better understanding of these and other man-made impacts on the Tampa Bay region.

  11. The effects of a whole-watershed calcium addition on the chemistry of stream storm events at the Hubbard Brook Experimental Forest in NH, USA.

    PubMed

    Cho, Youngil; Driscoll, Charles T; Blum, Joel D

    2009-10-01

    Patterns of storm runoff chemistry from a wollastonite (calcium-silicate mineral, CaSiO(3)) treated watershed (W1) were compared with a reference watershed (W6) at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire (NH), USA to investigate the role of Ca(2+) supply in the acid-base status of stream chemistry. In the summer of 2003, six storm events were studied in W1 and W6 to evaluate the effects of the wollastonite treatment on the episodic acidification of stream waters. Although mean values of Ca(2+) concentrations decreased slightly from 33.8 to 31.7 mumol/L with increasing stream discharge in W1 during the events, the mean value of acid neutralizing capacity (ANC) was positive (1.2 mueq/L) during storm events, compared to negative values (-0.2 mueq/L) in W6. This pattern is presumably due to enhanced Ca(2+) supply in W1 (20.7 to 29.0% of dissolved Ca(2+) derived from the added wollastonite) to stream water as a result of interflow along shallow flowpaths. In addition, the application of wollastonite increased pH and dissolved silica (H(4)SiO(4)) concentrations, and decreased the concentration of inorganic monomeric Al (Al(i)) in W1 in comparison with W6 during storm events. Despite an increase in SO(4)(2-) concentration, likely due to desorption of sulfate from soil after the treatment, the watershed showed an increase in ANC compared to the reference watershed, serving to mitigate episodic acidification.

  12. Optimal hydrograph separation using a recursive digital filter constrained by chemical mass balance, with application to selected Chesapeake Bay watersheds

    USGS Publications Warehouse

    Raffensperger, Jeff P.; Baker, Anna C.; Blomquist, Joel D.; Hopple, Jessica A.

    2017-06-26

    Quantitative estimates of base flow are necessary to address questions concerning the vulnerability and response of the Nation’s water supply to natural and human-induced change in environmental conditions. An objective of the U.S. Geological Survey National Water-Quality Assessment Project is to determine how hydrologic systems are affected by watershed characteristics, including land use, land cover, water use, climate, and natural characteristics (geology, soil type, and topography). An important component of any hydrologic system is base flow, generally described as the part of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways, and more specifically as the volumetric discharge of water, estimated at a measurement site or gage at the watershed scale, which represents groundwater that discharges directly or indirectly to stream reaches and is then routed to the measurement point.Hydrograph separation using a recursive digital filter was applied to 225 sites in the Chesapeake Bay watershed. The recursive digital filter was chosen for the following reasons: it is based in part on the assumption that groundwater acts as a linear reservoir, and so has a physical basis; it has only two adjustable parameters (alpha, obtained directly from recession analysis, and beta, the maximum value of the base-flow index that can be modeled by the filter), which can be determined objectively and with the same physical basis of groundwater reservoir linearity, or that can be optimized by applying a chemical-mass-balance constraint. Base-flow estimates from the recursive digital filter were compared with those from five other hydrograph-separation methods with respect to two metrics: the long-term average fraction of streamflow that is base flow, or base-flow index, and the fraction of days where streamflow is entirely base flow. There was generally good correlation between the methods, with some biased

  13. Mass-balance modeling of mineral weathering rates and CO2 consumption in the forested, metabasaltic Hauver Branch watershed, Catoctin Mountain, Maryland, USA

    USGS Publications Warehouse

    Rice, Karen; Price, Jason R.; Szymanski, David W.

    2013-01-01

    Mineral weathering rates and a forest macronutrient uptake stoichiometry were determined for the forested, metabasaltic Hauver Branch watershed in north-central Maryland, USA. Previous studies of Hauver Branch have had an insufficient number of analytes to permit determination of rates of all the minerals involved in chemical weathering, including biomass. More equations in the mass-balance matrix were added using existing mineralogic information. The stoichiometry of a deciduous biomass term was determined using multi-year weekly to biweekly stream-water chemistry for a nearby watershed, which drains relatively unreactive quartzite bedrock.At Hauver Branch, calcite hosts ~38 mol% of the calcium ion (Ca2+) contained in weathering minerals, but its weathering provides ~90% of the stream water Ca2+. This occurs in a landscape with a regolith residence time of more than several Ka (kiloannum). Previous studies indicate that such old regolith does not typically contain dissolving calcite that affects stream Ca2+/Na+ ratios. The relatively high calcite dissolution rate likely reflects dissolution of calcite in fractures of the deep critical zone.Of the carbon dioxide (CO2) consumed by mineral weathering, calcite is responsible for approximately 27%, with the silicate weathering consumption rate far exceeding that of the global average. The chemical weathering of mafic terrains in decaying orogens thus may be capable of influencing global geochemical cycles, and therefore, climate, on geological timescales. Based on carbon-balance calculations, atmospheric-derived sulfuric acid is responsible for approximately 22% of the mineral weathering occurring in the watershed. Our results suggest that rising air temperatures, driven by global warming and resulting in higher precipitation, will cause the rate of chemical weathering in the Hauver Branch watershed to increase until a threshold temperature is reached. Beyond the threshold temperature, increased recharge would

  14. Successional changes in plant species diversity and composition after clearcutting a Southern Appalachian watershed

    Treesearch

    Katherine J. Elliott; Lindsay R. Boring; Wayne T. Swank; Bruce L. Haines

    1997-01-01

    Watershed 7, a southwest-facing watershed in the Coweeta Basin, western North Carolina, USA, was clearcut in 1977. Twenty-four permanent plots were inventoried in 1974 before cutting and in 1977, 1979, 1984, and 1993 after clearcutting. This study evaluates changes in species diversity during early succesion after clearcutting and differences in overstory tree and...

  15. Above-ground sulfur cycling in adjacent coniferous and deciduous forest and watershed sulfur retention in the Georgia Piedmont, U.S.A.

    USGS Publications Warehouse

    Cappellato, R.; Peters, N.E.; Meyers, T.P.

    1998-01-01

    Atmospheric deposition and above-ground cycling of sulfur (S) were evaluated in adjacent deciduous and coniferous forests at the Panola Mountain Research Watershed (PMRW), Georgia U.S.A. Total atmospheric S deposition (wet plus dry) was 12.9 and 12.7 kg ha-1 yr-1 for the deciduous and coniferous forests, respectively, from October 1987 through November 1989. Dry deposition contributes more than 40% to the total atmospheric S deposition, and SO2 is the major source (~55%) of total dry S deposition. Dry deposition to these canopies is similar to regional estimates suggesting that 60-km proximity to emission sources does not noticeably impact dry deposition at PMRW. Below-canopy S fluxes (throughfall plus stemflow) in each forest are 37% higher annually in the deciduous forest than in the coniferous forest. An excess in below-canopy S flux in the deciduous forest is attributed to leaching and higher dry deposition than in the coniferous forest. Total S deposition to the forest floor by throughfall, stemflow and litterfall was 2.4 and 2.8 times higher in the deciduous and coniferous forests, respectively, than annual S growth requirement for foliage and wood. Although A deposition exceeds growth requirement, more than 95% of the total atmospheric S deposition was retained by the watershed in 1988 and 1989. The S retention at PMRW is primarily due to SO2+4 adsorption by iron oxides and hydroxides in watershed soils. The S content in while oak and loblolly pine boles have increased more than 200% in the last 20 yr, possibly reflecting increases in emissions.

  16. 76 FR 29257 - Accreditation of Intertek USA, Inc., as a Commercial Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... DEPARTMENT OF HOMELAND SECURITY U.S. Customs and Border Protection Accreditation of Intertek USA... Security. ACTION: Notice of accreditation of Intertek USA, Inc., as a commercial laboratory. SUMMARY: Notice is hereby given that, pursuant to 19 CFR 151.12, Intertek USA, Inc., 8500 West Bay Road MS 37...

  17. CHARACTERIZATION OF LAND USE IN RIPARIAN AREAS WITHIN THE CONTENTNEA WATERSHED OF NORTH CAROLINA

    EPA Science Inventory

    Characterization of land use in riparian areas within the Contentnea watershed of North Carolina.

    Wright, C.J.,1 and S.W. Alberty.2 1U.S. Environmental Protection Agency, Athens, GA 30605 USA; 2OAO Corporation, Athens, GA 30605 USA.

    Legislation mandating riparian bu...

  18. Management case study: Tampa Bay, Florida

    USGS Publications Warehouse

    Morrison, Gerold; Greening, Holly; Yates, Kimberly K.; Wolanski, Eric; McLusky, Donald S.

    2011-01-01

    Tampa Bay, Florida, USA, is a shallow, subtropical estuary that experienced severe cultural eutrophication between the 1940s and 1980s, a period when the human population of its watershed quadrupled. In response, citizen action led to the formation of a public- and private-sector partnership (the Tampa Bay Estuary Program), which adopted a number of management objectives to support the restoration and protection of the bay’s living resources. These included numeric chlorophyll a and water-clarity targets, as well as long-term goals addressing the spatial extent of seagrasses and other selected habitat types, to support estuarine-dependent faunal guilds. Over the past three decades, nitrogen controls involving sources such as wastewater treatment plants, stormwater conveyance systems, fertilizer manufacturing and shipping operations, and power plants have been undertaken to meet these and other management objectives. Cumulatively, these controls have resulted in a 60% reduction in annual total nitrogen (TN) loads relative to earlier worse-case (latter 1970s) conditions. As a result, annual water-clarity and chlorophyll a targets are currently met in most years, and seagrass cover measured in 2008 was the highest recorded since 1950. Factors that have contributed to the observed improvements in Tampa Bay over the past several decades include the following: (1) Development of numeric, science-based water-quality targets to meet a long-term goal of restoring seagrass acreage to 1950s levels. Empirical and mechanistic models found that annual average chlorophyll a concentrations were a primary manageable factor affecting light attenuation. The models also quantified relationships between TN loads, chlorophyll a concentrations, light attenuation, and fluctuations in seagrass cover. The availability of long-term monitoring data, and a systematic process for using the data to evaluate the effectiveness of management actions, has allowed managers to track progress and

  19. NUTRIENT SOUIRCES, TRANSPORT, AND FATE IN COUPLED WATERSHED-ESTUARINE SYSTEMS OF COASTAL ALABAMA

    EPA Science Inventory

    The processes regulating sources, transport, and fate of nutrients were studied in 3 coupled watershed-estuarine systems that varied mainly by differences in the dominant land use-land cover (LULC), i.e. Weeks Bay -- agriculture, Dog River -- urban, and Fowl River -- forest. Mea...

  20. A cold phase of the East Pacific triggers new phytoplankton blooms in San Francisco Bay

    USGS Publications Warehouse

    Cloern, J.E.; Jassby, A.D.; Thompson, J.K.; Hieb, K.A.

    2007-01-01

    Ecological observations sustained over decades often reveal abrupt changes in biological communities that signal altered ecosystem states. We report a large shift in the biological communities of San Francisco Bay, first detected as increasing phytoplankton biomass and occurrences of new seasonal blooms that began in 1999. This phytoplankton increase is paradoxical because it occurred in an era of decreasing wastewater nutrient inputs and reduced nitrogen and phosphorus concentrations, contrary to the guiding paradigm that algal biomass in estuaries increases in proportion to nutrient inputs from their watersheds. Coincidental changes included sharp declines in the abundance of bivalve mollusks, the key phytoplankton consumers in this estuary, and record high abundances of several bivalve predators: Bay shrimp, English sole, and Dungeness crab. The phytoplankton increase is consistent with a trophic cascade resulting from heightened predation on bivalves and suppression of their filtration control on phytoplankton growth. These community changes in San Francisco Bay across three trophic levels followed a state change in the California Current System characterized by increased upwelling intensity, amplified primary production, and strengthened southerly flows. These diagnostic features of the East Pacific "cold phase" lead to strong recruitment and immigration of juvenile flatfish and crustaceans into estuaries where they feed and develop. This study, built from three decades of observation, reveals a previously unrecognized mechanism of ocean-estuary connectivity. Interdecadal oceanic regime changes can propagate into estuaries, altering their community structure and efficiency of transforming land-derived nutrients into algal biomass. ?? 2007 by The National Academy of Sciences of the USA.

  1. Automated feature extraction and spatial organization of seafloor pockmarks, Belfast Bay, Maine, USA

    USGS Publications Warehouse

    Andrews, Brian D.; Brothers, Laura L.; Barnhardt, Walter A.

    2010-01-01

    Seafloor pockmarks occur worldwide and may represent millions of m3 of continental shelf erosion, but few numerical analyses of their morphology and spatial distribution of pockmarks exist. We introduce a quantitative definition of pockmark morphology and, based on this definition, propose a three-step geomorphometric method to identify and extract pockmarks from high-resolution swath bathymetry. We apply this GIS-implemented approach to 25 km2 of bathymetry collected in the Belfast Bay, Maine USA pockmark field. Our model extracted 1767 pockmarks and found a linear pockmark depth-to-diameter ratio for pockmarks field-wide. Mean pockmark depth is 7.6 m and mean diameter is 84.8 m. Pockmark distribution is non-random, and nearly half of the field's pockmarks occur in chains. The most prominent chains are oriented semi-normal to the steepest gradient in Holocene sediment thickness. A descriptive model yields field-wide spatial statistics indicating that pockmarks are distributed in non-random clusters. Results enable quantitative comparison of pockmarks in fields worldwide as well as similar concave features, such as impact craters, dolines, or salt pools.

  2. A watershed-scale goals approach to assessing and funding wastewater infrastructure.

    PubMed

    Rahm, Brian G; Vedachalam, Sridhar; Shen, Jerry; Woodbury, Peter B; Riha, Susan J

    2013-11-15

    Capital needs during the next twenty years for public wastewater treatment, piping, combined sewer overflow correction, and storm-water management are estimated to be approximately $300 billion for the USA. Financing these needs is a significant challenge, as Federal funding for the Clean Water Act has been reduced by 70% during the last twenty years. There is an urgent need for new approaches to assist states and other decision makers to prioritize wastewater maintenance and improvements. We present a methodology for performing an integrated quantitative watershed-scale goals assessment for sustaining wastewater infrastructure. We applied this methodology to ten watersheds of the Hudson-Mohawk basin in New York State, USA that together are home to more than 2.7 million people, cover 3.5 million hectares, and contain more than 36,000 km of streams. We assembled data on 183 POTWs treating approximately 1.5 million m(3) of wastewater per day. For each watershed, we analyzed eight metrics: Growth Capacity, Capacity Density, Soil Suitability, Violations, Tributary Length Impacted, Tributary Capital Cost, Volume Capital Cost, and Population Capital Cost. These metrics were integrated into three goals for watershed-scale management: Tributary Protection, Urban Development, and Urban-Rural Integration. Our results demonstrate that the methodology can be implemented using widely available data, although some verification of data is required. Furthermore, we demonstrate substantial differences in character, need, and the appropriateness of different management strategies among the ten watersheds. These results suggest that it is feasible to perform watershed-scale goals assessment to augment existing approaches to wastewater infrastructure analysis and planning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A Creek to Bay Biological Assessment in Oakland, California

    NASA Astrophysics Data System (ADS)

    Ahumada, E.; Ramirez, N.; Lopez, A.; Avila, M.; Ramirez, J.; Arroyo, D.; Bracho, H.; Casanova, A.; Pierson, E.

    2011-12-01

    In 2007, the Surface Water Ambient Monitoring Program (SWAMP) assessed the impact of trash on water quality in the Peralta Creek which is located in the Fruitvale district of Oakland, CA. This 2011 follow-up study will take further steps in evaluating the physical and biological impacts of pollution and human development on Peralta Creek and in the San Leandro Bay, where the Creek empties into the larger San Francisco Bay estuary. This study will utilize two forms of biological assessment in order to determine the level of water quality and ecosystem health of Peralta Creek and San Leandro Bay in Oakland, California. A Rapid Bioassesment Protocal (RBP) will be used as the method of biological assessment for Peralta Creek. RBP uses a biotic index of benthic macroinvertebrates to provide a measure of a water body's health. Larval trematodes found in two mud snails (Ilynassa obsoleta and Cerithidea californica) will be used to evaluate the health of the San Leandro Bay. Due to the complex life cycle of trematodes, the measure of trematode diversity and richness in host species serves as an indicator of estuarine health (Huspeni 2005). We have completed the assessment of one section of Peralta Creek, located at 2465 34th Avenue, Oakland, CA 94601. Abundance results indicate a moderately healthy creek because there were high levels of pollution tolerant benthic macroinvertebrates. The tolerant group of benthic macroinvertebrates includes such organisms as flatworms, leeches, and scuds. This is possibly due to this section of the creek being pumped up to the surface from culverts impacting the macroinvertebrate's life cycle. Another contributing factor to creek health is the amount of organic debris found in the creek, which inhibits the flow and oxygenation of the water, allowing for more pollution tolerant aquatic insects to persist. Further investigation is being conducted to fully assess the Peralta Creek watershed; from the preliminary results one can surmise that

  4. Behaviour of wintering Tundra Swans Cygnus columbianus columbianus at the Eel River delta and Humboldt Bay, California, USA

    USGS Publications Warehouse

    Black, Jeffrey M.; Gress, Carol; Byers, Jacob W.; Jennings, Emily; Ely, Craig R.

    2010-01-01

    Tundra Swan Cygnus columbianus columbinanus phenology and behaviour at the Eel River delta and southern Humboldt Bay in northern California, USA, is described. Counts made each January from 1963 onwards peaked at 1,502 swans in 1988. Monthly counts recorded during the 2006/07 and 2008/09 winters peaked in February, at 1,033 and 772 swans respectively. Swans roosted on ephemeral ponds at the Humboldt Bay National Wildlife Refuge, on ephemeral ponds within grassland pastures in the vicinity of the Refuge, and perhaps also used the Eel River as a roost. Flights between Refuge roosts and the pastures and ponds occurred in the two hours after sunrise and before dark. In winters 2008/09 and 2009/10, the percentage of cygnets in the flocks was 10.6% and 21.4% respectively, and increased to =31% cygnets each year after most swans had departed from the area in March. Average brood size in 2009/10 was 2.1 cygnets. Daily activities consisted of foraging (44.9% of activities recorded), comfort behaviour (22.1%), locomotion (16.2%) and vigilance (15.5%). Eight neck-collared swans identified in the wintering flock were marked at four locations in different parts of Alaska, up to 1,300 km apart.

  5. Evapotranspiration sensitivity to air temperature across a snow-influenced watershed: Space-for-time substitution versus integrated watershed modeling

    NASA Astrophysics Data System (ADS)

    Jepsen, S. M.; Harmon, T. C.; Ficklin, D. L.; Molotch, N. P.; Guan, B.

    2018-01-01

    Changes in long-term, montane actual evapotranspiration (ET) in response to climate change could impact future water supplies and forest species composition. For scenarios of atmospheric warming, predicted changes in long-term ET tend to differ between studies using space-for-time substitution (STS) models and integrated watershed models, and the influence of spatially varying factors on these differences is unclear. To examine this, we compared warming-induced (+2 to +6 °C) changes in ET simulated by an STS model and an integrated watershed model across zones of elevation, substrate available water capacity, and slope in the snow-influenced upper San Joaquin River watershed, Sierra Nevada, USA. We used the Soil Water and Assessment Tool (SWAT) for the watershed modeling and a Budyko-type relationship for the STS modeling. Spatially averaged increases in ET from the STS model increasingly surpassed those from the SWAT model in the higher elevation zones of the watershed, resulting in 2.3-2.6 times greater values from the STS model at the watershed scale. In sparse, deep colluvium or glacial soils on gentle slopes, the SWAT model produced ET increases exceeding those from the STS model. However, watershed areas associated with these conditions were too localized for SWAT to produce spatially averaged ET-gains comparable to the STS model. The SWAT model results nevertheless demonstrate that such soils on high-elevation, gentle slopes will form ET "hot spots" exhibiting disproportionately large increases in ET, and concomitant reductions in runoff yield, in response to warming. Predicted ET responses to warming from STS models and integrated watershed models may, in general, substantially differ (e.g., factor of 2-3) for snow-influenced watersheds exhibiting an elevational gradient in substrate water holding capacity and slope. Long-term water supplies in these settings may therefore be more resilient to warming than STS model predictions would suggest.

  6. Hyperspectral remote sensing and long term monitoring reveal watershed-estuary ecosystem interactions

    NASA Astrophysics Data System (ADS)

    Hestir, E. L.; Schoellhamer, D. H.; Santos, M. J.; Greenberg, J. A.; Morgan-King, T.; Khanna, S.; Ustin, S.

    2016-02-01

    Estuarine ecosystems and their biogeochemical processes are extremely vulnerable to climate and environmental changes, and are threatened by sea level rise and upstream activities such as land use/land cover and hydrological changes. Despite the recognized threat to estuaries, most aspects of how change will affect estuaries are not well understood due to the poorly resolved understanding of the complex physical, chemical and biological processes and their interactions in estuarine systems. Remote sensing technologies such as high spectral resolution optical systems enable measurements of key environmental parameters needed to establish baseline conditions and improve modeling efforts. The San Francisco Bay-Delta is a highly modified estuary system in a state of ecological crisis due to the numerous threats to its sustainability. In this study, we used a combination of hyperspectral remote sensing and long-term in situ monitoring records to investigate how water clarity has been responding to extreme climatic events, anthropogenic watershed disturbances, and submerged aquatic vegetation (SAV) invasions. From the long-term turbidity monitoring record, we found that water clarity underwent significant increasing step changes associated with sediment depletion and El Nino-extreme run-off events. Hyperspectral remote sensing data revealed that invasive submerged aquatic pant species have facultative C3 and C4-like photosynthetic pathways that give them a competitive advantage under the changing water clarity conditions of the Bay-Delta system. We postulate that this adaptation facilitated the rapid expansion of SAV following the significant step changes in increasing water clarity caused by watershed disturbances and the 1982-1983 El Nino events. Using SAV maps from hyperspectral remote sensing, we estimate that SAV-water clarity feedbacks were responsible for 20-70% of the increasing water clarity trend in the Bay-Delta. Ongoing and future developments in airborne and

  7. Concentrations, loads, and yields of total nitrogen and total phosphorus in the Barnegat Bay-Little Egg Harbor watershed, New Jersey, 1989-2011, at multiple spatial scales

    USGS Publications Warehouse

    Baker, Ronald J.; Wieben, Christine M.; Lathrop, Richard G.; Nicholson, Robert S.

    2014-01-01

    Concentrations, loads, and yields of nutrients (total nitrogen and total phosphorus) were calculated for the Barnegat Bay-Little Egg Harbor (BB-LEH) watershed for 1989–2011 at annual and seasonal (growing and nongrowing) time scales. Concentrations, loads, and yields were calculated at three spatial scales: for each of the 81 subbasins specified by 14-digit hydrologic unit codes (HUC-14s); for each of the three BB-LEH watershed segments, which coincide with segmentation of the BB-LEH estuary; and for the entire BB-LEH watershed. Base-flow and runoff values were calculated separately and were combined to provide total values. Available surface-water-quality data for all streams in the BB-LEH watershed for 1980–2011 were compiled from existing datasets and quality assured. Precipitation and streamflow data were used to distinguish between water-quality samples that were collected during base-flow conditions and those that were collected during runoff conditions. Base-flow separation of hydrographs of six streams in the BB-LEH watershed indicated that base flow accounts for about 72 to 94 percent of total flow in streams in the watershed. Base-flow mean concentrations (BMCs) of total nitrogen (TN) and total phosphorus (TP) for each HUC-14 subbasin were calculated from relations between land use and measured base-flow concentrations. These relations were developed from multiple linear regression models determined from water-quality data collected at sampling stations in the BB-LEH watershed under base-flow conditions and land-use percentages in the contributing drainage basins. The total watershed base-flow volume was estimated for each year and season from continuous streamflow records for 1989–2011 and relations between precipitation and streamflow during base-flow conditions. For each year and season, the base-flow load and yield were then calculated for each HUC-14 subbasin from the BMCs, total base-flow volume, and drainage area. The watershed

  8. Relationship between lysosomal membrane destabilization and chemical body burden in eastern oysters (Crassostrea virginica) from Galveston Bay, Texas, USA.

    PubMed

    Hwang, Hyun-Min; Wade, Terry L; Sericano, Jose L

    2002-06-01

    Lysosomal destabilization was measured by using hemocytes of eastern oysters (Crassostrea virginica) collected along a chemical concentration gradient in Galveston Bay, Texas, USA. Results of the lysosomal response were compared to concentrations of organic compounds and trace elements in oyster tissue. Concentrations (on a dry-wt basis) ranged from 288 to 2,390 ng/g for polycyclic aromatic hydrocarbons (PAHs), 38 to 877 ng Sn/g for tri-n-butyltin (TBT), 60 to 562 ng/g for polyclorinated biphenyls (PCBs), and 7 to 71 ng/g for total DDT. Trace element concentrations (on a dry-wt basis) ranged from 1.1 to 4.0 microg/g for Cd, 105 to 229 microg/g for Cu, 212 to 868 microg/g for Al, and 1,200 to 8,180 microg/g for Zn. The percentage of destabilized lysosomes ranged from 34 to 81%. A significant positive correlation (p < 0.05) was observed between lysosomal destabilization and body burden of organic compounds (PAHs, PCBs, TBT, and chlorinated pesticides). No significant correlation was found between metal concentrations and lysosomal destabilization. Based on lysosomal destabilization, the study sites in Galveston Bay can be placed in one of three groups: healthy (Hanna Reef and Confederate Bay), moderately damaged (Offats Bayou and Todd's Dump), and highly damaged (Yacht Club and Ship Channel). Lysosomal destabilization that is consistent with toxic chemical body burdens supports previous observations that lysosomal membranes are damaged by toxic chemicals and indicates that this method can serve as an early screening tool to assess overall ecosystem health by using oysters.

  9. Advancing the Guánica Bay (Puerto Rico) Watershed Management Plan

    EPA Science Inventory

    Consideration of stakeholder values in watershed planning and management is a necessity, but sufficiently eliciting, understanding, and organizing those values can be daunting. Many studies have demonstrated the usefulness of formal decision analysis to integrate expert knowledge...

  10. An historical perspective on eutrophication in the Pensacola Bay Estuary, FL, USA

    EPA Science Inventory

    In this chapter, we provide a brief description of the Pensacola Bay estuary, examining the available historical data for evidence of trends in eutrophication within the estuary. Common to many industrialized estuaries, Pensacola Bay has been subjected to unregulated point source...

  11. Relating stream microbial ecology to land-use in the Choptank River Watershed

    USDA-ARS?s Scientific Manuscript database

    The Choptank River is an estuary and tributary on the Eastern Shore of the Chesapeake Bay whose mouth is a tidal embayment that spans 2057 km2. Approximately 60% of land use in the Choptank River Watershed is agricultural, with large acreages of corn (Zea mays), soybean (Glycine max), wheat (Tritic...

  12. Pesticide Use and Transport Pathways Within a Coastal Watershed in Southeastern Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    In 2007, studies were begun to quantify impacts of agricultural crop production on coastal water quality within the watershed of the Jobos Bay National Estuarine Research Reserve (JBNERR). The reserve is located on Puerto Rico’s southeastern coast and includes sensitive mangrove, sea-grass meadow, a...

  13. Analysis of streamflow distribution of non-point source nitrogen export from long-term urban-rural catchments to guide watershed management in the Chesapeake Bay watershed

    NASA Astrophysics Data System (ADS)

    Duncan, J. M.; Band, L. E.; Groffman, P.

    2017-12-01

    Discharge, land use, and watershed management practices (stream restoration and stormwater control measures) have been found to be important determinants of nitrogen (N) export to receiving waters. We used long-term water quality stations from the Baltimore Ecosystem Study Long-Term Ecological Research (BES LTER) Site to quantify nitrogen export across streamflow conditions at the small watershed scale. We calculated nitrate and total nitrogen fluxes using methodology that allows for changes over time; weighted regressions on time, discharge, and seasonality. Here we tested the hypotheses that a) while the largest N stream fluxes occur during storm events, there is not a clear relationship between N flux and discharge and b) N export patterns are aseasonal in developed watersheds where sources are larger and retention capacity is lower. The goal is to scale understanding from small watersheds to larger ones. Developing a better understanding of hydrologic controls on nitrogen export is essential for successful adaptive watershed management at societally meaningful spatial scales.

  14. BENTHIC MACROFAUNA-HABITAT ASSOCIATIONS IN WILLAPA BAY, WASHINGTON, USA

    EPA Science Inventory

    Estuary-wide benthic macrofauna-habitat associations in Willapa Bay, Washington, United States, were determined for 4 habitats (eelgrass [Zostera marina], Atlantic cordgrass [Spartina alterniflora], mud shrimp [Upogebia pugettensis], ghost shrimp [Neotrypaea californiensis]) in 1...

  15. Contributions of studies on experimental forests to hydrology and watershed management [Chapter 14

    Treesearch

    Gerald J. Gottfried; Peter F. Ffolliott; Kenneth N. Brooks; Randall K. Kolka; Carol B. Raish; Daniel G. Neary

    2014-01-01

    The link between healthy forests and watersheds and healthy streamflow and quality water is universally recognized. The major rivers of the USA originate in the forested mountains of the western and eastern USA and the glaciated regions of the Lake States and Great Plains and produce almost two-thirds of the nation’s clean water supply. Original logging and...

  16. Status, trends, and changes in freshwater inflows to bay systems in the Corpus Christi Bay National Estuary Program study area

    USGS Publications Warehouse

    Asquith, W.H.; Mosier, J. G.; Bush, P.W.

    1997-01-01

    The watershed simulation model Hydrologic Simulation Program—Fortran (HSPF) was used to generate simulated flow (runoff) from the 13 watersheds to the six bay systems because adequate gaged streamflow data from which to estimate freshwater inflows are not available; only about 23 percent of the adjacent contributing watershed area is gaged. The model was calibrated for the gaged parts of three watersheds—that is, selected input parameters (meteorologic and hydrologic properties and conditions) that control runoff were adjusted in a series of simulations until an adequate match between model-generated flows and a set (time series) of gaged flows was achieved. The primary model input is rainfall and evaporation data and the model output is a time series of runoff volumes. After calibration, simulations driven by daily rainfall for a 26-year period (1968–93) were done for the 13 watersheds to obtain runoff under current (1983–93), predevelopment (pre-1940 streamflow and pre-urbanization), and future (2010) land-use conditions for estimating freshwater inflows and for comparing runoff under the three land-use conditions; and to obtain time series of runoff from which to estimate time series of freshwater inflows for trend analysis.

  17. Biogeochemical and Hydrological Controls on Mercury and Methylmercury in First Order Coastal Plain Watersheds of the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Heyes, A.; Gilmour, C. C.; Bell, J. T.; Butera, D.; McBurney, A. W.

    2015-12-01

    Over the past 7 years we made use of the long-term research site at the Smithsonian Environmental Research Center (SERC) in central Maryland to study the fluxes of mercury (Hg) and methylmercury (MeHg) in three small first-order mid-Atlantic coastal plain watersheds. One watershed is entirely forested, one watershed is primarily agriculture with a forested stream buffer, and one watershed is mixed land use but contains a beaver produced wetland pond. Our initial goals were to assess watershed Hg yields in the mid-Atlantic and to establish a baseline prior to implementation of Hg emissions controls. All three studied watersheds produced relatively high yields of Hg, with the greatest yield coming from the forested watershed. Our initial evaluation of three watersheds showed that MeHg production and flux could also be high, but varied dramatically among watersheds and across years and seasons. During each year we observed episodic MeHg production in the spring and sometimes during prolonged high-flow storm events in the fall. The observed spring maxima of MeHg release coincided with development of anoxia in riparian groundwater. MeHg accumulation in riparian groundwater began once nitrate was depleted and either iron accumulation or sulfate depletion of groundwater began. We propose the presence of nitrate was modulating MeHg production through the suppression of sulfate and iron reducers and perhaps methanogens. As sulfate is not limiting in any of the watersheds owing to the sediments marine origin, we hypothesize the depletion of nitrate allows sulfate reducing bacteria to now utilize available carbon. Although wetlands are generally thought of as the primary zones of MeHg production in watersheds, shallow riparian groundwaters very close to the stream appear to play that role in SERC Coastal Plain watersheds. We hypothesize that the balance between nitrate, sulfate and other microbial electron acceptors in watersheds is a major control on MeHg production. Land

  18. 75 FR 62358 - Stakeholder Input on Stormwater Rulemaking Related to the Chesapeake Bay; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... including, but not limited to, nitrogen, phosphorus, and sediment in the Chesapeake Bay Watershed; requiring... specificity of the minimum control measures could include considerations for nitrogen, phosphorus and sediment...

  19. Islands at bay: Rising seas, eroding islands, and waterbird habitat loss in Chesapeake Bay (USA)

    USGS Publications Warehouse

    Erwin, R.M.; Brinker, D.F.; Watts, B.D.; Costanzo, G.R.; Morton, D.D.

    2011-01-01

    Like many resources in the Chesapeake Bay region of the U. S., many waterbird nesting populations have suffered over the past three to four decades. In this study, historic information for the entire Bay and recent results from the Tangier Sound region were evaluated to illustrate patterns of island erosion and habitat loss for 19 breeding species of waterbirds. Aerial imagery and field data collected in the nesting season were the primary sources of data. From 1993/1994 to 2007/2008, a group of 15 islands in Tangier Sound, Virginia were reduced by 21% in area, as most of their small dunes and associated vegetation and forest cover were lost to increased washovers. Concurrently, nesting American black ducks (Anas rubripes) declined by 66%, wading birds (herons-egrets) by 51%, gulls by 72%, common terns (Sterna hirundo) by 96% and black skimmers (Rynchops niger) by about 70% in this complex. The declines noted at the larger Bay-wide scale suggest that this study area maybe symptomatic of a systemic limitation of nesting habitat for these species. The island losses noted in the Chesapeake have also been noted in other Atlantic U. S. coastal states. Stabilization and/or restoration of at least some of the rapidly eroding islands at key coastal areas are critical to help sustain waterbird communities. ?? 2010 US Government.

  20. Horseshoe crab spawning activity in Delaware Bay, USA, after harvest reduction: A mixed-model analysis

    USGS Publications Warehouse

    Smith, David R.; Robinson, Timothy J.

    2015-01-01

    A Delaware Bay, USA, standardized survey of spawning horseshoe crabs, Limulus polyphemus, was carried out in 1999 − 2013 through a citizen science network. Previous trend analyses of the data were at the state (DE or NJ) or bay-wide levels. Here, an alternative mixed-model regression analysis was used to estimate trends in female and male spawning densities at the beach level (n = 26) with the objective of inferring their causes. For females, there was no overall trend and no single explanation applies to the temporal and spatial patterns in their densities. Individual beaches that initially had higher densities tended to experience a decrease, while beaches that initially had lower densities tended to experience an increase. As a result, densities of spawning females at the end of the study period were relatively similar among beaches, suggesting a redistribution of females among the beaches over the study period. For males, there was a positive overall trend in spawning abundance from 1999 to 2013, and this increase occurred broadly among beaches. Moreover, the beaches with below-average initial male density tended to have the greatest increases. Possible explanations for these patterns include harvest reduction, sampling artifact, habitat change, density-dependent habitat selection, or mate selection. The broad and significant increase in male spawning density, which occurred after enactment of harvest controls, is consistent with the harvest reduction explanation, but there is no single explanation for the temporal or spatial pattern in female densities. These results highlight the continued value of a citizen-science-based spawning survey in understanding horseshoe crab ecology and conservation.

  1. Decadal responses in soil N dynamics at the Bear Brook Watershed in Maine, USA

    Treesearch

    Sultana Jefts; Ivan J. Fernandez; Lindwey E. Rustad; D. Bryan Dail

    2004-01-01

    Atmospheric nitrogen deposition to forested ecosystems is a concern because of both geochemical and biological consequences for ecosystem integrity. High levels of prolonged N deposition can lead to "N saturation" of the ecosystem. The Bear Brook Watershed in Maine is a long-term, paired forested watershed experiment with over a decade of experimental N...

  2. Temporal and Spatial Variability in Relative Sea Level from Narragansett Bay, Rhode Island (USA)

    NASA Astrophysics Data System (ADS)

    Halavik, B. T.; Engelhart, S. E.

    2017-12-01

    Geological reconstructions of past relative sea level (RSL) provide observations to compare to instrumental measurements of land-level changes (e.g., GPS) and to provide constraints on Glacial Isostatic Adjustment (GIA) models. Given the importance of the east coast of the United States to our understanding of GIA (due to its proximity and orientation to the collapsing forebulge of the Laurentide ice sheet), we set out to reconstruct the first compaction-free late Holocene RSL record for Rhode Island, USA. We sought to quantify and compare RSL changes at multiple sites within Rhode Island's Narragansett Bay. Previous work suggests Narragansett Bay may span a gradient in GIA. The small tidal range (0.9-1.4m) in Narragansett Bay permits the development of high-resolution sea-level index points that have the potential to identify small differences in RSL between sites. To address our research goals we collected a south to north transect of salt marsh basal peats from four Rhode Island salt marshes at Fox Hill, Nag Creek, Touisset, and Osamequin. We reconstructed paleomarsh elevations utilizing a multi-proxy approach using salt-marsh foraminifera and bulk sediment δ13C. Sample age was determined using accelerated mass spectrometry (AMS) radiocarbon of identifiable in-situ plant macrofossils. Basal peats in Rhode Island typically form within the tidal frame as indicated by foraminifera within close proximity (<5cm) to the underlying glacial deposits. Our current database of RSL consists of 30 new sea-level index points that document changes in RSL since 3200 cal yrs BP. At our southerly Fox Hill site, 12 sea-level index points demonstrate that RSL rose from -3.87 ± 0.24 m at 3,140 ± 69 cal yrs BP. Conversely, at the northerly Touisset site, six sea-level index points demonstrate that salt marshes developed later in this region with RSL rising from -1.65 ± 0.22 m at 1,246 ± 56 cal yrs BP. An additional 12 sea-level index points have been reconstructed from Osamequin

  3. Watershed characterization and analysis using the VELMA ...

    EPA Pesticide Factsheets

    We developed a broadly applicable watershed simulator – VELMA (Visualizing Ecosystem and Land Management Assessments) – to characterize hydrological and ecological processes essential to the healthy functioning of watersheds, and to identify best management practices (BMPs) for restoring ecosystem services such as provisioning of clean water, food and fiber, and habitat for fish and wildlife. VELMA has been applied to agricultural, forest, rangeland and arctic watersheds across North America. Urban applications are under development. This seminar will discuss how VELMA is being used to help inform (1) salmon recovery planning in Puget Sound, and (2) water quality protection in Chesapeake Bay agricultural landscapes. These examples highlight the importance of model validation; how VELMA is being linked with additional models to aid BMP identification; and how the model is being transferred to community groups, tribes, and state and federal agencies engaged in environmental decision making. This invited seminar for the Washington State Department of Ecology will provide an overview of EPA’s VELMA watershed simulator and its applications for identifying best management practices for protecting and restoring vital ecosystem services, such as provisioning of clean water, food and fiber, and habitat for fish and wildlife. After the seminar, the presenter will meet with Department of Ecology staff to discuss the feasibility of including VELMA in their Puget Sound

  4. SEASONAL DOMINANCE OF CYANOBACTERIA IN PENSACOLA BAY, FLORIDA

    EPA Science Inventory

    A study was conducted during 1999-2000 in Pensacola Bay, Florida, USA to characterize the seasonal dynamics of nutrients, phytoplankton, and bacterioplankton. Monthly samples were collected from 5 sites spanning the salinity gradient. Abundances of non-heterocystous chroococcoid...

  5. Characterizing Storm Event Dynamics of a Forested Watershed in the Lower Atlantic Coastal Plain, South Carolina USA

    NASA Astrophysics Data System (ADS)

    Latorre Torres, I. B.; Amatya, D. M.; Callahan, T. J.; Levine, N. S.

    2007-12-01

    Hydrology research in the Southeast U.S. has primarily focused on upland mountainous areas; however, much less is known about hydrological processes in Lower Coastal Plain (LCP) watersheds. Such watersheds are difficult to characterize due to shallow water table conditions, low topographic gradient, complex surface- subsurface water interaction, and lack of detailed soil information. Although opportunities to conduct long term monitoring in relatively undeveloped watersheds are often limited, stream flow and rainfall in the Turkey Creek watershed (third-order watershed, about 7200 ha in the Francis Marion National Forest near Charleston, SC) have been monitored since 1964. In this study, event runoff-rainfall ratios have been determined for 51 storm events using historical data from 1964-1973. One of our objectives was to characterize relationships between seasonal event rainfall and storm outflow in this watershed. To this end, observed storm event data were compared with values predicted by established hydrological methods such as the Soil Conservation Service runoff curve number (SCS-CN) and the rational method integrated within a Geographical Information System (GIS), to estimate total event runoff and peak discharge, respectively. Available 1:15000 scale aerial images were digitized to obtain land uses, which were used with the SCS soil hydrologic groups to obtain the runoff coefficients (C) for the rational method and the CN values for the SCS-CN method. These methods are being tested with historical storm event responses in the Turkey Creek watershed scale, and then will be used to predict event runoff in Quinby Creek, an ungauged third-order watershed (8700 ha) adjacent to Turkey Creek. Successful testing with refinement of parameters in the rational method and SCS-CN method, both designed for small urban and agricultural dominated watersheds, may allow widespread application of these methods for studying the event rainfall-runoff dynamics for similar

  6. Changes in Chesapeake Bay Hypoxia over the Past Century

    NASA Astrophysics Data System (ADS)

    Friedrichs, M. A.; Kaufman, D. E.; Najjar, R.; Tian, H.; Zhang, B.; Yao, Y.

    2016-02-01

    The Chesapeake Bay, one of the world's largest estuaries, is among the many coastal systems where hypoxia is a major concern and where dissolved oxygen thus represents a critical factor in determining the health of the Bay's ecosystem. Over the past century, the population of the Chesapeake Bay region has almost quadrupled, greatly modifying land cover and management practices within the watershed. Simultaneously, the Chesapeake Bay has been experiencing a high degree of climate change, including increases in temperature, precipitation, and precipitation intensity. Together, these changes have resulted in significantly increased riverine nutrient inputs to the Bay. In order to examine how interdecadal changes in riverine nitrogen input affects biogeochemical cycling and dissolved oxygen concentrations in Chesapeake Bay, a land-estuarine-ocean biogeochemical modeling system has been developed for this region. Riverine inputs of nitrogen to the Bay are computed from a terrestrial ecosystem model (the Dynamic Land Ecosystem Model; DLEM) that resolves riverine discharge variability on scales of days to years. This temporally varying discharge is then used as input to the estuarine-carbon-biogeochemical model embedded in the Regional Modeling System (ROMS), which provides estimates of the oxygen concentrations and nitrogen fluxes within the Bay as well as advective exports from the Bay to the adjacent Mid-Atlantic Bight shelf. Simulation results from this linked modeling system for the present (early 2000s) have been extensively evaluated with in situ and remotely sensed data. Longer-term simulations are used to isolate the effect of increased riverine nitrogen loading on dissolved oxygen concentrations and biogeochemical cycling within the Chesapeake Bay.

  7. Targeting Urban Watershed Stressor Gradients: Stream Survey Design, Ecological Responses, and Implications of Land Cover Resolution

    EPA Science Inventory

    We conducted a stream survey in the Narragansett Bay Watershed designed to target a gradient of development intensity, and to examine how associated changes in nutrients, carbon, and stressors affect periphyton and macroinvertebrates. Concentrations of nutrients, cations, and ani...

  8. NET ANTHROPOGENIC PHOSPHORUS INPUTS; SPATIAL AND TEMPORAL VARIABILITY IN THE CHESAPEAKE BAY REGION

    EPA Science Inventory

    Coastal watershed eutrophication has increasingly become a regional and global issue as larger proportions of the earth’s human population settle in coastal areas. Human activities on the land have severely impacted the water resources of the Chesapeake Bay, one of the world’s l...

  9. Pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in transport in two Atlantic coastal plain tributaries and loadings to Chesapeake Bay

    USGS Publications Warehouse

    Foster, G.D.; Miller, C.V.; Huff, T.B.; Roberts, E.

    2003-01-01

    Concentrations of current-use pesticides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine (OC) insecticides were determined above the reach of tide in the Chesterville Branch and Nanticoke River on the eastern shore of Chesapeake Bay during base-flow and storm-flow hydrologic regimes to evaluate mass transport to Chesapeake Bay. The two rivers monitored showed relatively high concentrations of atrazine, simazine, alachlor, and metolachlor in comparison to previously investigated western shore tributaries, and reflected the predominant agricultural land use in the eastern shore watersheds. The four current use pesticides showed the greatest seasonal contribution to annual loadings to tidal waters of Chesapeake Bay from the two rivers, and the relative order of annual loadings for the other contaminant classes was PAHs > PCBs > OC insecticides. Annual loadings normalized to the landscape areas of selected Chesapeake Bay watersheds showed correlations to identifiable source areas, with the highest pesticide yields (g/km2/yr) occurring in eastern shore agricultural landscapes, and the highest PAH yields derived from urban regions.

  10. Summary and Synthesis of Mercury Studies in the Cache Creek Watershed, California, 2000-01

    USGS Publications Warehouse

    Domagalski, Joseph L.; Slotton, Darell G.; Alpers, Charles N.; Suchanek, Thomas H.; Churchill, Ronald; Bloom, Nicolas; Ayers, Shaun M.; Clinkenbeard, John

    2004-01-01

    This report summarizes the principal findings of the Cache Creek, California, components of a project funded by the CALFED Bay?Delta Program entitled 'An Assessment of Ecological and Human Health Impacts of Mercury in the Bay?Delta Watershed.' A companion report summarizes the key findings of other components of the project based in the San Francisco Bay and the Delta of the Sacramento and San Joaquin Rivers. These summary documents present the more important findings of the various studies in a format intended for a wide audience. For more in-depth, scientific presentation and discussion of the research, a series of detailed technical reports of the integrated mercury studies is available at the following website: .

  11. Isotope hydrology and baseflow geochemistry in natural and human-altered watersheds in the Inland Pacific Northwest, USA.

    PubMed

    Sánchez-Murillo, Ricardo; Brooks, Erin S; Elliot, William J; Boll, Jan

    2015-01-01

    This study presents a stable isotope hydrology and geochemical analysis in the inland Pacific Northwest (PNW) of the USA. Isotope ratios were used to estimate mean transit times (MTTs) in natural and human-altered watersheds using the FLOWPC program. Isotope ratios in precipitation resulted in a regional meteoric water line of δ(2)H = 7.42·δ(18)O + 0.88 (n = 316; r(2) = 0.97). Isotope compositions exhibited a strong temperature-dependent seasonality. Despite this seasonal variation, the stream δ(18)O variation was small. A significant regression (τ = 0.11D(-1.09); r(2) = 0.83) between baseflow MTTs and the damping ratio was found. Baseflow MTTs ranged from 0.4 to 0.6 years (human-altered), 0.7 to 1.7 years (mining-altered), and 0.7 to 3.2 years (forested). Greater MTTs were represented by more homogenous aqueous chemistry whereas smaller MTTs resulted in more dynamic compositions. The isotope and geochemical data presented provide a baseline for future hydrological modelling in the inland PNW.

  12. Management of Urban Stormwater Runoff in the Chesapeake Bay Watershed

    USGS Publications Warehouse

    Hogan, Dianna M.

    2008-01-01

    Urban and suburban development is associated with elevated nutrients, sediment, and other pollutants in stormwater runoff, impacting the physical and environmental health of area streams and downstream water bodies such as the Chesapeake Bay. Stormwater management facilities, also known as Best Management Practices (BMPs), are increasingly being used in urban areas to replace functions, such as flood protection and water quality improvement, originally performed by wetlands and riparian areas. Scientists from the U.S. Geological Survey (USGS) have partnered with local, academic, and other Federal agency scientists to better understand the effectiveness of different stormwater management systems with respect to Chesapeake Bay health. Management of stormwater runoff is necessary in urban areas to address flooding and water quality concerns. Improving our understanding of what stormwater management actions may be best suited for different types of developed areas could help protect the environmental health of downstream water bodies that ultimately receive runoff from urban landscapes.

  13. Bristol Bay Assessment – Supplemental Peer Review Reports ...

    EPA Pesticide Factsheets

    These reports represent the results of independent peer reviews of several technical reports submitted to the public docket for the May 2012 draft of the Bristol Bay Assessment, An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska. Background In May 2012, the U.S. Environmental Protection Agency (USEPA) released the draft assessment entitled An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska, or the Bristol Bay Assessment. The purpose of the assessment is to provide a characterization of the biological and mineral resources of the Bristol Bay watershed, increase understanding of the potential impacts of large-scale mining on the region’s fish resources, and inform future governmental decisions. During the public comment period for the May 2012 draft, numerous technical reports were submitted to the public docket. The USEPA identified several of these reports as providing information about issues raised by the peer reviewers, but the reports did not show evidence of prior peer review. The USEPA made arrangements for a contractor to conduct independent peer reviews of seven such reports. The reports and the results of these supplemental peer reviews are provided here to document that the reports are of

  14. Sediment and nutrients transport in watershed and their impact on coastal environment

    PubMed Central

    Ikeda, Syunsuke; Osawa, Kazutoshi; Akamatsu, Yoshihisa

    2009-01-01

    Sediment and nutrients yields especially from farmlands were studied in a watershed in Ishigaki island, Okinawa, Japan. The transport processes of these materials in rivers, mangrove, lagoon and coastal zones were studied by using various observation methods including stable isotope analysis. They were simulated by using a WEPP model which was modified to be applicable to such small islands by identifying several factors from the observations. The model predicts that a proper combination of civil engineering countermeasure and change of farming method can reduce the sediment yield from the watershed by 74%. Observations of water quality and coral recruitment test in Nagura bay indicate that the water is eutrophicated and the corals cannot grow for a long time. Based on these observations, a quantitative target of the reduction of sediment and nutrients yield in watershed can be decided rationally. PMID:19907124

  15. Seventy years of stream‐fish collections reveal invasions and native range contractions in an Appalachian (USA) watershed

    USGS Publications Warehouse

    Buckwalter, Joseph D.; Frimpong, Emmanuel A.; Angermeier, Paul L.; Barney, Jacob N.

    2018-01-01

    AimKnowledge of expanding and contracting ranges is critical for monitoring invasions and assessing conservation status, yet reliable data on distributional trends are lacking for most freshwater species. We developed a quantitative technique to detect the sign (expansion or contraction) and functional form of range‐size changes for freshwater species based on collections data, while accounting for possible biases due to variable collection effort. We applied this technique to quantify stream‐fish range expansions and contractions in a highly invaded river system.LocationUpper and middle New River (UMNR) basin, Appalachian Mountains, USA.MethodsWe compiled a 77‐year stream‐fish collections dataset partitioned into ten time periods. To account for variable collection effort among time periods, we aggregated the collections into 100 watersheds and expressed a species’ range size as detections per watershed (HUC) sampled (DPHS). We regressed DPHS against time by species and used an information‐theoretic approach to compare linear and nonlinear functional forms fitted to the data points and to classify each species as spreader, stable or decliner.ResultsWe analysed changes in range size for 74 UMNR fishes, including 35 native and 39 established introduced species. We classified the majority (51%) of introduced species as spreaders, compared to 31% of natives. An exponential functional form fits best for 84% of spreaders. Three natives were among the most rapid spreaders. All four decliners were New River natives.Main conclusionsOur DPHS‐based approach facilitated quantitative analyses of distributional trends for stream fishes based on collections data. Partitioning the dataset into multiple time periods allowed us to distinguish long‐term trends from population fluctuations and to examine nonlinear forms of spread. Our framework sets the stage for further study of drivers of stream‐fish invasions and declines in the UMNR and is widely transferable to

  16. Integrating terrestrial LiDAR and stereo photogrammetry to map the Tolay lakebed in northern San Francisco Bay

    USGS Publications Warehouse

    Woo, Isa; Storesund,; Takekawa, John Y.; Gardiner, Rachel J.; Ehret,

    2009-01-01

    The Tolay Creek Watershed drains approximately 3,520 ha along the northern edge of San Francisco Bay. Surrounded by a mosaic of open space conservation easements and public wildlife areas, it is one of the only watersheds in this urbanized estuary that is protected from its headwaters to the bay. Tolay Lake is a seasonal, spring-fed lake found in the upper watershed that historically extended over 120 ha. Although the lakebed was farmed since the early 1860s, the majority of the lakebed was recently acquired by the Sonoma County Regional Parks Department to restore its natural habitat values. As part of the restoration planning process, we produced a digital elevation model (DEM) of the historic extent of Tolay Lake by integrating terrestrial LiDAR (light detection and ranging) and stereo photogrammetry datasets, and real-time kinematic (RTK) global positioning system (GPS) surveys. We integrated the data, generated a DEM of the lakebed and upland areas, and analyzed errors. The accuracy of the composite DEM was verified using spot elevations obtained from the RTK GPS. Thus, we found that by combining photogrammetry, terrestrial LiDAR, and RTK GPS, we created an accurate baseline elevation map to use in watershed restoration planning and design.

  17. Prioritizing watersheds for conservation actions in the southeastern coastal plain ecoregion.

    PubMed

    Jang, Taeil; Vellidis, George; Kurkalova, Lyubov A; Boll, Jan; Hyman, Jeffrey B

    2015-03-01

    The aim of this study was to apply and evaluate a recently developed prioritization model which uses the synoptic approach to geographically prioritize watersheds in which Best Management Practices (BMPs) can be implemented to reduce water quality problems resulting from erosion and sedimentation. The model uses a benefit-cost framework to rank candidate watersheds within an ecoregion or river basin so that BMP implementation within the highest ranked watersheds will result in the most water quality improvement per conservation dollar invested. The model was developed to prioritize BMP implementation efforts in ecoregions containing watersheds associated with the USDA-NRCS Conservation Effects Assessment Project (CEAP). We applied the model to HUC-8 watersheds within the southeastern Coastal Plain ecoregion (USA) because not only is it an important agricultural area but also because it contains a well-studied medium-sized CEAP watershed which is thought to be representative of the ecoregion. The results showed that the three HUC-8 watersheds with the highest rankings (most water quality improvement expected per conservation dollar invested) were located in the southern Alabama, northern Florida, and eastern Virginia. Within these watersheds, measures of community attitudes toward conservation practices were highly ranked, and these indicators seemed to push the watersheds to the top of the rankings above other similar watersheds. The results, visualized as maps, can be used to screen and reduce the number of watersheds that need further assessment by managers and decision-makers within the study area. We anticipate that this model will allow agencies like USDA-NRCS to geographically prioritize BMP implementation efforts.

  18. Evaluation of Soil Moisture, Storm Characteristics, and Their Influence on Storm Runoff and Water Yield at the Panola Mountain Research Watershed, Georgia, U.S.A.

    NASA Astrophysics Data System (ADS)

    Riley, J. W.; Aulenbach, B. T.

    2015-12-01

    Understanding the factors that control runoff processes is important for many aspects of water supply and ecosystem protection, especially during climatic extremes that result in flooding or droughts; potentially impacting human safety. Furthermore, having knowledge of the conditions during which runoff occurs contributes to the conceptual understanding of the hydrologic cycle and may improve parameterization of hydrologic models. We evaluated soil moisture, storm characteristics, and the subsequent runoff and water yield for 297 storms over an eight-year period at Panola Mountain Research Watershed to better understand runoff generation processes. Panola Mountain Research Watershed is a small (41-hectare), relatively undisturbed forested watershed near Atlanta, GA, U.S.A. Strong relations were observed between total precipitation for a given storm, deep (70 cm below surface) antecedent soil moisture content and the volume of runoff. However, the strength of the relations varied based on occurrence during the growing (April - September; 172 storms) or dormant (October - March; 125 storms) period. In general, soil moisture responded at a minimum of 15 cm depth for all but 18 events. In addition, we found storms that initiated a response of deep soil moisture (70 cm below surface) to be an important factor relating to storm runoff and water yield. Seventy percent of the dormant period storms generated a response at 70 cm depth compared to 58% of growing period storms. A stronger relation between soil moisture and water yield was noted during the dormant period and indicated that all storms that produced a water yield >12% occurred when deep pre-event soil moisture was >20%. Similar patterns were also present during the growing season with occasional intense thunderstorms also generating higher water yields even in the absence of high soil moisture. The importance of deep soil moisture likely reflects the overall status of watershed storage conditions.

  19. Impacts of social indicators on assessing the recovery potential of impaired watersheds.

    PubMed

    Sinshaw, Tadesse A; Surbeck, Cristiane Q

    2018-05-09

    An analysis was carried out to understand how watersheds' potential for restoration was impacted by social indicators. This study employed the USEPA Recovery Potential Screening tool, a decision support system, to compare 51 watersheds in the state of Mississippi, USA, using ecological, stressor, and social indices, and the recovery potential integrated (RPI) index. An in-depth analysis was performed on four watersheds in the Delta region of Mississippi (Lake Washington, Harris Bayou, Steele Bayou, and Coldwater River), each impaired by sediments and nutrients. Sixteen social indicators were categorized into three subcategories: Socio-Economic, Organizational, and Informational. Watersheds with lower social indices had lower RPI scores. In the particular watersheds studied, the Socio-Economic subcategory was observed to be the most impactful to the overall recovery potential when compared to the other two social subcategories. As a sensitivity analysis, a "what if" simulation was performed to explore alternatives to upgrade a watershed's social index and, consequently, the relative recovery potential of the watershed to a target level. This analysis is useful for understanding how particular social indicators of a community impact the relative potential for recovering a watershed, beyond just the ecological and stressor conditions. It also sheds light on assessing which social indicators can be improved. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Diagnosis of potential stressors adversely affecting benthic invertebrate communities in Greenwich Bay, Rhode Island, USA.

    PubMed

    Pelletier, Marguerite; Ho, Kay; Cantwell, Mark; Perron, Monique; Rocha, Kenneth; Burgess, Robert M; Johnson, Roxanne; Perez, Kenneth; Cardin, John; Charpentier, Michael A

    2017-02-01

    Greenwich Bay is an urbanized embayment of Narragansett Bay potentially impacted by multiple stressors. The present study identified the important stressors affecting Greenwich Bay benthic fauna. First, existing data and information were used to confirm that the waterbody was impaired. Second, the presence of source, stressor, and effect were established. Then linkages between source, stressor, and effect were developed. This allows identification of probable stressors adversely affecting the waterbody. Three pollutant categories were assessed: chemicals, nutrients, and suspended sediments. This weight of evidence approach indicated that Greenwich Bay was primarily impacted by eutrophication-related stressors. The sediments of Greenwich Bay were carbon enriched and low dissolved oxygen concentrations were commonly seen, especially in the western portions of Greenwich Bay. The benthic community was depauperate, as would be expected under oxygen stress. Although our analysis indicated that contaminant loads in Greenwich Bay were at concentrations where adverse effects might be expected, no toxicity was observed, as a result of high levels of organic carbon in these sediments reducing contaminant bioavailability. Our analysis also indicated that suspended sediment impacts were likely nonexistent for much of the Bay. This analysis demonstrates that the diagnostic procedure was useful to organize and assess the potential stressors impacting the ecological well-being of Greenwich Bay. This diagnostic procedure is useful for management of waterbodies impacted by multiple stressors. Environ Toxicol Chem 2017;36:449-462. © 2016 SETAC. © 2016 SETAC.

  1. EVALUATING THE INTEGRITY OF SALT MARSHES IN NARRAGANSETT BAY SUBESTUARIES USING A WATESHED APPROACH

    EPA Science Inventory

    A watershed approach to examine measures of structure and function in salt marshes of similar geomorphology and hydrology in Narragansett Bay was used to develop a reference system for evaluating salt marsh integrity. We describe integrity as the capability of a salt marsh to pro...

  2. Water quality dynamics in an urbanizing subtropical estuary(Oso Bay, Texas).

    PubMed

    Wetz, Michael S; Hayes, Kenneth C; Fisher, Kelsey V B; Price, Lynn; Sterba-Boatwright, Blair

    2016-03-15

    Results are presented from a study of water quality dynamics in a shallow subtropical estuary, Oso Bay, Texas, which has a watershed that has undergone extensive urbanization in recent decades. High inorganic nutrient, dissolved organic matter and chlorophyll concentrations, as well as low pH (<8), were observed in a region of Oso Bay that receives wastewater effluent. Despite being shallow (<1 m) and subjected to strong winds on a regular basis, this region also exhibited episodic hypoxia/anoxia. The low oxygen and pH conditions are likely to impose significant stress on benthic organisms and nekton in the affected area. Signatures of eutrophied water were occasionally observed at the mouth of Oso Bay, suggesting that it may be exported to adjacent Corpus Christi Bay and contribute to seasonal hypoxia development in that system as well. These results argue for wastewater nutrient input reductions in order to alleviate the symptoms of eutrophication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. ORGANIC POLLUTANT DEPOSITION TO THE SIERRA NEVADA (CALIFORNIA, USA) SNOWPACK AND ASSOCIATED LAKE AND STREAM ECOSYSTEM

    EPA Science Inventory

    High elevation ecosystems in the western USA and Canada are receiving deposition of persistent organic pollutants (POPs) that presumably originate in the USA as well as outside its borders. In April 1992 we obtained paired snowpack samples from each of two watersheds located in t...

  4. Acid-base characteristics of the Grass Pond watershed in the Adirondack Mountains of New York State, USA: interactions among soil, vegetation and surface waters

    NASA Astrophysics Data System (ADS)

    McEathron, K. M.; Mitchell, M. J.; Zhang, L.

    2013-07-01

    Grass Pond watershed is located within the southwestern Adirondack Mountain region of New York State, USA. This region receives some of the highest rates of acidic deposition in North America and is particularly sensitive to acidic inputs due to many of its soils having shallow depths and being generally base poor. Differences in soil chemistry and tree species between seven subwatersheds were examined in relation to acid-base characteristics of the seven major streams that drain into Grass Pond. Mineral soil pH, stream water BCS (base-cation surplus) and pH exhibited a positive correlation with sugar maple basal area (p = 0.055; 0.48 and 0.39, respectively). Black cherry basal area was inversely correlated with stream water BCS, ANC (acid neutralizing capacity)c and NO3- (p = 0.23; 0.24 and 0.20, respectively). Sugar maple basal areas were positively associated with watershed characteristics associated with the neutralization of atmospheric acidic inputs while in contrast, black cherry basal areas showed opposite relationships to these same watershed characteristics. Canonical correspondence analysis indicated that black cherry had a distinctive relationship with forest floor chemistry apart from the other tree species, specifically a strong positive association with forest floor NH4, while sugar maple had a distinctive relationship with stream chemistry variables, specifically a strong positive association with stream water ANCc, BCS and pH. Our results provide evidence that sugar maple is acid-intolerant or calciphilic tree species and also demonstrate that black cherry is likely an acid-tolerant tree species.

  5. Best management practices for reducing nutrient loads in a sub-watershed of Chesapeake Bay

    USDA-ARS?s Scientific Manuscript database

    Water quality improvement in the Chesapeake Bay is a grave concern. An initiative to reduce the nutrient loads to stream has been undertaken to attain a target total maximum daily load (TMDL) at Chesapeake Bay. A general guideline with a set of best management practices (BMPs) has been in place for ...

  6. Diagnosis of potential stressors adversely affecting benthic invertebrate communities in Greenwich Bay, Rhode Island, USA

    EPA Science Inventory

    Greenwich Bay is an urbanized embayment of Narragansett Bay potentially impacted by multiple stressors. The present study identified the important stressors affecting Greenwich Bay benthic fauna. First, existing data and information were used to confirm that the waterbody was imp...

  7. Dynamic modeling of Tampa Bay urban development using parallel computing

    USGS Publications Warehouse

    Xian, G.; Crane, M.; Steinwand, D.

    2005-01-01

    Urban land use and land cover has changed significantly in the environs of Tampa Bay, Florida, over the past 50 years. Extensive urbanization has created substantial change to the region's landscape and ecosystems. This paper uses a dynamic urban-growth model, SLEUTH, which applies six geospatial data themes (slope, land use, exclusion, urban extent, transportation, hillside), to study the process of urbanization and associated land use and land cover change in the Tampa Bay area. To reduce processing time and complete the modeling process within an acceptable period, the model is recoded and ported to a Beowulf cluster. The parallel-processing computer system accomplishes the massive amount of computation the modeling simulation requires. SLEUTH calibration process for the Tampa Bay urban growth simulation spends only 10 h CPU time. The model predicts future land use/cover change trends for Tampa Bay from 1992 to 2025. Urban extent is predicted to double in the Tampa Bay watershed between 1992 and 2025. Results show an upward trend of urbanization at the expense of a decline of 58% and 80% in agriculture and forested lands, respectively.

  8. Guide to the littoral zone vascular flora of Carolina bay lakes (U.S.A.)

    PubMed Central

    Howell, Nathan; Braham, Richard R

    2016-01-01

    Abstract Background Carolina bays are elliptic, directionally aligned basins of disputed origin that occur on the Atlantic Coastal Plain from the Delmarva Peninsula to southern Georgia. In southeastern North Carolina, several large, natural, lacustrine systems (i.e., Carolina bay lakes) exist within the geomorphological features known as Carolina bays. Within the current distribution of Carolina bays, Bladen and Columbus counties (North Carolina) contain the only known examples of Carolina bay lakes. The Carolina bay lakes can be split into two major divisions, the “Bladen Lakes Group” which is characterized as being relatively unproductive (dystrophic – oligotrophic), and Lake Waccamaw, which stands alone in Columbus County and is known for its high productivity and species richness. Although there have been several studies conducted on these unique lentic systems, none have documented the flora comprehensively. New information Over the 2013−2014 growing seasons, the littoral zone flora of Carolina bay lakes was surveyed and vouchered. Literature reviews and herbarium crawls complemented this fieldwork to produce an inventory of the vascular plant species. This survey detected 205 taxa (species/subspecies and varieties) in 136 genera and 80 vascular plant families. Thirty-one species (15.2%) are of conservation concern. Lake Waccamaw exhibited the highest species richness with 145 catalogued taxa and 26 species of conservation concern. Across all sites, the Cyperaceae (25 spp.), Poaceae (21 spp.), Asteraceae (13 spp.), Ericaceae (8 spp.), Juncaceae (8 spp.), and Lentibulariaceae (6 spp.) were the six most species-rich vascular plant families encountered. A guide to the littoral zone flora of Carolina bay lakes is presented herein, including dichotomous keys, species accounts (including abundance, habitat, phenology, and exsiccatae), as well as images of living species and vouchered specimens. PMID:27350764

  9. Emerging coral diseases in Kāne'ohe Bay, O'ahu, Hawai'i (USA): two major disease outbreaks of acute Montipora white syndrome

    USGS Publications Warehouse

    Aeby, Greta S.; Callahan, Sean; Cox, Evelyn F.; Runyon, Christina M.; Smith, Ashley; Stanton, Frank G.; Ushijima, Blake; Work, Thierry M.

    2016-01-01

    In March 2010 and January 2012, we documented 2 widespread and severe coral disease outbreaks on reefs throughout Kāne‘ohe Bay, Hawai‘i (USA). The disease, acute Montipora white syndrome (aMWS), manifested as acute and progressive tissue loss on the common reef coral M. capitata. Rapid visual surveys in 2010 revealed 338 aMWS-affected M. capitata colonies with a disease abundance of (mean ± SE) 0.02 ± 0.01 affected colonies per m of reef surveyed. In 2012, disease abundance was significantly higher (1232 aMWS-affected colonies) with 0.06 ± 0.02 affected colonies m-1. Prior surveys found few acute tissue loss lesions in M. capitata in Kāne‘ohe Bay; thus, the high number of infected colonies found during these outbreaks would classify this as an emerging disease. Disease abundance was highest in the semi-enclosed region of south Kāne‘ohe Bay, which has a history of nutrient and sediment impacts from terrestrial runoff and stream discharge. In 2010, tagged colonies showed an average tissue loss of 24% after 1 mo, and 92% of the colonies continued to lose tissue in the subsequent month but at a slower rate (chronic tissue loss). The host-specific nature of this disease (affecting only M. capitata) and the apparent spread of lesions between M. capitatacolonies in the field suggest a potential transmissible agent. The synchronous appearance of affected colonies on multiple reefs across Kāne‘ohe Bay suggests a common underlying factor. Both outbreaks occurred during the colder, rainy winter months, and thus it is likely that some parameter(s) associated with winter environmental conditions are linked to the emergence of disease outbreaks on these reefs.

  10. Emerging coral diseases in Kāne'ohe Bay, O'ahu, Hawai'i (USA): two major disease outbreaks of acute Montipora white syndrome.

    PubMed

    Aeby, Greta S; Callahan, Sean; Cox, Evelyn F; Runyon, Christina; Smith, Ashley; Stanton, Frank G; Ushijima, Blake; Work, Thierry M

    2016-05-26

    In March 2010 and January 2012, we documented 2 widespread and severe coral disease outbreaks on reefs throughout Kāne'ohe Bay, Hawai'i (USA). The disease, acute Montipora white syndrome (aMWS), manifested as acute and progressive tissue loss on the common reef coral M. capitata. Rapid visual surveys in 2010 revealed 338 aMWS-affected M. capitata colonies with a disease abundance of (mean ± SE) 0.02 ± 0.01 affected colonies per m of reef surveyed. In 2012, disease abundance was significantly higher (1232 aMWS-affected colonies) with 0.06 ± 0.02 affected colonies m(-1). Prior surveys found few acute tissue loss lesions in M. capitata in Ka¯ne'ohe Bay; thus, the high number of infected colonies found during these outbreaks would classify this as an emerging disease. Disease abundance was highest in the semi-enclosed region of south Kāne'ohe Bay, which has a history of nutrient and sediment impacts from terrestrial runoff and stream discharge. In 2010, tagged colonies showed an average tissue loss of 24% after 1 mo, and 92% of the colonies continued to lose tissue in the subsequent month but at a slower rate (chronic tissue loss). The host-specific nature of this disease (affecting only M. capitata) and the apparent spread of lesions between M. capitata colonies in the field suggest a potential transmissible agent. The synchronous appearance of affected colonies on multiple reefs across Kāne'ohe Bay suggests a common underlying factor. Both outbreaks occurred during the colder, rainy winter months, and thus it is likely that some parameter(s) associated with winter environmental conditions are linked to the emergence of disease outbreaks on these reefs.

  11. EUTROPHICATION OF CHESAPEAKE BAY: HISTORICAL TRENDS AND ECOLOGICAL INTERACTIONS

    EPA Science Inventory

    This review provides an integrated synthesis with timelines and evaluations of ecological responses to eutrophication in Chesapeake Bay, the largest estuary in the USA. Analyses of dated sediment cores reveal initial evidence of organic enrichment in approximately 200 y-old strat...

  12. Developing Oxidized Nitrogen Atmospheric Deposition Source Attribution from CMAQ for Air-Water Trading for Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Dennis, R. L.; Napelenok, S. L.; Linker, L. C.; Dudek, M.

    2012-12-01

    Estuaries are adversely impacted by excess reactive nitrogen, Nr, from many point and nonpoint sources, including atmospheric deposition to the watershed and the estuary itself as a nonpoint source. For effective mitigation, trading among sources of Nr is being considered. The Chesapeake Bay Program is working to bring air into its trading scheme, which requires some special air computations. Airsheds are much larger than watersheds; thus, wide-spread or national emissions controls are put in place to achieve major reductions in atmospheric Nr deposition. The tributary nitrogen load reductions allocated to the states to meet the TMDL target for Chesapeake Bay are large and not easy to attain via controls on water point and nonpoint sources. It would help the TMDL process to take advantage of air emissions reductions that would occur with State Implementation Plans that go beyond the national air rules put in place to help meet national ambient air quality standards. There are still incremental benefits from these local or state-level controls on atmospheric emissions. The additional air deposition reductions could then be used to offset water quality controls (air-water trading). What is needed is a source to receptor transfer function that connects air emissions from a state to deposition to a tributary. There is a special source attribution version of the Community Multiscale Air Quality model, CMAQ, (termed DDM-3D) that can estimate the fraction of deposition contributed by labeled emissions (labeled by source or region) to the total deposition across space. We use the CMAQ DDM-3D to estimate simplified state-level delta-emissions to delta-atmospheric-deposition transfer coefficients for each major emission source sector within a state, since local air regulations are promulgated at the state level. The CMAQ 4.7.1 calculations are performed at a 12 km grid size over the airshed domain covering Chesapeake Bay for 2020 CAIR emissions. For results, we first present

  13. The simulated effects of wastewater-management actions on the hydrologic system and nitrogen-loading rates to wells and ecological receptors, Popponesset Bay Watershed, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.

    2013-01-01

    The discharge of excess nitrogen into Popponesset Bay, an estuarine system on western Cape Cod, has resulted in eutrophication and the loss of eel grass habitat within the estuaries. Septic-system return flow in residential areas within the watershed is the primary source of nitrogen. Total Maximum Daily Loads (TMDLs) for nitrogen have been assigned to the six estuaries that compose the system, and local communities are in the process of implementing the TMDLs by the partial sewering, treatment, and disposal of treated wastewater at wastewater-treatment facilities (WTFs). Loads of waste-derived nitrogen from both current (1997–2001) and future sources can be estimated implicitly from parcel-scale water-use data and recharge areas delineated by a groundwater-flow model. These loads are referred to as “instantaneous” loads because it is assumed that the nitrogen from surface sources is delivered to receptors instantaneously and that there is no traveltime through the aquifer. The use of a solute-transport model to explicitly simulate the transport of mass through the aquifer from sources to receptors can improve implementation of TMDLs by (1) accounting for traveltime through the aquifer, (2) avoiding limitations associated with the estimation of loads from static recharge areas, (3) accounting more accurately for the effect of surface waters on nitrogen loads, and (4) determining the response of waste-derived nitrogen loads to potential wastewater-management actions. The load of nitrogen to Popponesset Bay on western Cape Cod, which was estimated by using current sources as input to a solute-transport model based on a steady-state flow model, is about 50 percent of the instantaneous load after about 7 years of transport (loads to estuary are equal to loads discharged from sources); this estimate is consistent with simulated advective traveltimes in the aquifer, which have a median of 5 years. Model-calculated loads originating from recharge areas reach 80

  14. Salinity Tolerance of Early-Stage Oyster Larvae in the Choptank River, Chesapeake Bay, USA

    NASA Astrophysics Data System (ADS)

    Scharping, R. J.; North, E. W.; Plough, L. V.

    2016-02-01

    The eastern oyster (Crassostrea virginica) is ecologically and economically important to the Chesapeake Bay, Maryland, USA. Its population, however, is currently estimated to be less than one percent of what it was historically. To restore oyster populations, techniques such as larval transport modeling are being implemented to aid the selection of sanctuary locations. These models can incorporate biological factors such as salinity-induced mortality, but no data from low-salinity areas such as the oligohaline Choptank River, a major focus of oyster restoration in the Chesapeake, exist. The purpose of our study was to generate salinity-induced mortality data for oyster larvae from the Choptank River and compare their tolerances to those of oysters from different salinity regimes. We performed three experiments looking at the effect of salinities from 3 to 26 on the survival of larvae from 4 to 48 hrs post-fertilization. While overall survival differed across experiments, we found a consistent minimum survival threshold between 5-7 and peak survival window between 9-16. These salinity values were about 7 lower than those of oysters from the polyhaline Long Island Sound (threshold: 12.5-15; peak: 17.5-27). This research has direct application to oyster restoration in the Choptank River and similar low-salinity areas by improving larval transport model predictions.

  15. Identifying sources of stream water sulfate after a summer drought in the Sleepers River watershed (Vermont, USA) using hydrological, chemical, and isotopic techniques

    USGS Publications Warehouse

    Mayer, B.; Shanley, J.B.; Bailey, S.W.; Mitchell, M.J.

    2010-01-01

    In many forested headwater catchments, peak SO42 - concentrations in stream water occur in the late summer or fall following drought potentially resulting in episodic stream acidification. The sources of highly elevated stream water SO42 - concentrations were investigated in a first order stream at the Sleepers River watershed (Vermont, USA) after the particularly dry summer of 2001 using a combination of hydrological, chemical and isotopic approaches. Throughout the summer of 2001 SO42 - concentrations in stream water doubled from ???130 to 270 ??eq/L while flows decreased. Simultaneously increasing Na+ and Ca2+ concentrations and ??34S values increasing from +7??? towards those of bedrock S (???+10.5???) indicated that chemical weathering involving hydrolysis of silicates and oxidation of sulfide minerals in schists and phyllites was the cause for the initial increase in SO42 - concentrations. During re-wetting of the watershed in late September and early October of 2001, increasing stream flows were accompanied by decreasing Na+ and Ca2+ concentrations, but SO42 - concentrations continued to increase up to 568 ??eq/L, indicating that a major source of SO42 - in addition to bedrock weathering contributed to peak SO42 - concentrations. The further increase in SO42 - concentrations coincided with an abrupt decrease of ??34S values in stream water SO42 - from maximum values near +10??? to minimum values near -3???. Soil investigations revealed that some C-horizons in the Spodsols of the watershed contained secondary sulfide minerals with ??34S values near -22???. The shift to negative ??34S values of stream water SO42 - indicates that secondary sulfides in C-horizons were oxidized to SO42 - during the particularly dry summer of 2001. The newly formed SO42 - was transported to the streams during re-wetting of the watershed contributing ???60% of the SO42 - during peak concentrations in the stream water. Thereafter, the contribution of SO42 - from oxidation of

  16. DINOFLAGELLATE CYST RECORD AND HUMAN DISTURBANCE IN NEW BEDFORD HARBOR, MA AND NARRAGANSETT BAY ESTUARIES

    EPA Science Inventory

    We studied the dinoflagellate cyst records in sediments from New Bedford Harbor and Apponagansett Bay over the last 350 yr provides to determine if cysts are sensitive to environmental change caused by human activity in the watershed. Changes in the total number, and absolute and...

  17. 75 FR 14152 - Executive Order 13508; Chesapeake Bay Protection and Restoration Section 502; Guidance for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... water pollution and requests public comment. The document was prepared pursuant to Executive Order (E.O... Chesapeake Bay watershed describing proven, cost-effective tools and practices that reduce water pollution... top right of the Web page, then follow the online instructions. Mail: Water Docket, Environmental...

  18. Identifying fecal pollution sources using 3M(™) Petrifilm (™) count plates and antibiotic resistance analysis in the Horse Creek Watershed in Aiken County, SC (USA).

    PubMed

    Harmon, S Michele; West, Ryan T; Yates, James R

    2014-12-01

    Sources of fecal coliform pollution in a small South Carolina (USA) watershed were identified using inexpensive methods and commonly available equipment. Samples from the upper reaches of the watershed were analyzed with 3M(™) Petrifilm(™) count plates. We were able to narrow down the study's focus to one particular tributary, Sand River, that was the major contributor of the coliform pollution (both fecal and total) to a downstream reservoir that is heavily used for recreation purposes. Concentrations of total coliforms ranged from 2,400 to 120,333 cfu/100 mL, with sharp increases in coliform counts observed in samples taken after rain events. Positive correlations between turbidity and fecal coliform counts suggested a relationship between fecal pollution and stormwater runoff. Antibiotic resistance analysis (ARA) compared antibiotic resistance profiles of fecal coliform isolates from the stream to those of a watershed-specific fecal source library (equine, waterfowl, canines, and untreated sewage). Known fecal source isolates and unknown isolates from the stream were exposed to six antibiotics at three concentrations each. Discriminant analysis grouped known isolates with an overall average rate of correct classification (ARCC) of 84.3 %. A total of 401 isolates from the first stream location were classified as equine (45.9 %), sewage (39.4 %), waterfowl (6.2 %), and feline (8.5 %). A similar pattern was observed at the second sampling location, with 42.6 % equine, 45.2 % sewage, 2.8 % waterfowl, 0.6 % canine, and 8.8 % feline. While there were slight weather-dependent differences, the vast majority of the coliform pollution in this stream appeared to be from two sources, equine and sewage. This information will contribute to better land use decisions and further justify implementation of low-impact development practices within this urban watershed.

  19. "Streamflow and sediment response to logging, California, USA"

    Treesearch

    Robert R. Ziemer; Jack Lewis; Elizabeth T. Keppeler

    1998-01-01

    Streamflow, suspended sediment, and bedload have been monitored since 1962 in the 473-ha North Fork and the 424-ha South Fork of Caspar Creek. These watersheds are about 7 km from the Pacific Ocean, on the Jackson Demonstration State Forest, 10 km south of Fort Bragg, California, USA (Ziemer et al. 1996)

  20. Optimizing conservation practices in watersheds: Do community preferences matter?

    NASA Astrophysics Data System (ADS)

    Piemonti, Adriana D.; Babbar-Sebens, Meghna; Jane Luzar, E.

    2013-10-01

    This paper focuses on investigating (a) how landowner tenure and attitudes of farming communities affect the preference of individual conservation practices in agricultural watersheds, (b) how spatial distribution of landowner tenure affects the spatial optimization of conservation practices on a watershed scale, and (c) how the different attitudes and preferences of stakeholders can modify the effectiveness of alternatives obtained via classic optimization approaches that do not include the influence of existing social attitudes in a watershed during the search process. Results show that for Eagle Creek Watershed in central Indiana, USA, the most optimal alternatives (i.e., highest benefits for minimum economic costs) are for a scenario when the watershed consists of landowners who operate as farmers on their own land. When a different land-tenure scenario was used for the watershed (e.g., share renters and cash renters), the optimized alternatives had similar nitrate reduction benefits and sediment reduction benefits, but at higher economic costs. Our experiments also demonstrated that social attitudes can lead to alteration of optimized alternatives found via typical optimization approaches. For example, when certain practices were rejected by landowner operators whose attitudes toward practices were driven by economic profits, removal of these practices from the optimized alternatives led to a setback of nitrates reduction by 2-50%, peak flow reductions by 11-98 %, and sediments reduction by 20-77%. In conclusion, this study reveals the potential loss in optimality of optimized alternatives possible, when socioeconomic data on farmer preferences and land tenure are not incorporated within watershed optimization investigations.

  1. Impacts of diverted freshwater on dissolved organic matter and microbial communities in Barataria Bay, Louisiana, U.S.A.

    PubMed

    Bianchi, Thomas S; Cook, Robert L; Perdue, E Michael; Kolic, Paulina E; Green, Nelson; Zhang, Yaoling; Smith, Richard W; Kolker, Alexander S; Ameen, Alex; King, Gary; Ojwang, Loice M; Schneider, Caroline L; Normand, Anna E; Hetland, Robert

    2011-12-01

    Here we present results of an initial assessment of the impacts of a water diversion event on the concentrations and chemical composition of dissolved organic matter (DOM) and bacterioplankton community composition in Barataria Bay, Louisiana U.S.A, an important estuary within the Mississippi River Delta complex. Concentrations and spectral properties of DOM, as reflected by UV/visible absorbance and fluorescence, were strikingly similar at 26 sites sampled along transects near two western and two eastern areas of Barataria Bay in July and September 2010. In September 2010, dissolved organic carbon (DOC) was significantly higher (568.1-1043 μM C, x=755.6+/-117.7 μM C, n=14) than in July 2010 (249.1-577.1 μM C, x=383.7+/-98.31 μM C, n=14); conversely, Abs254 was consistently higher at every site in July (0.105-0.314) than in September (0.080-0.221), averaging 0.24±0.06 in July and 0.15±0.04 in September. Fluorescence data via the fluorescence index (FI450/500) revealed that only 30% (8 of 26) of the July samples had an FI450/500 above 1.36, compared to 96% (25 of 26) for the September samples. This indicates a more terrestrial origin for the July DOM. Bacterioplankton from eastern sites differed in composition from bacterioplankon in western sites in July. These differences appeared to result from reduced salinities caused by the freshwater diversion. Bacterioplankton communities in September differed from those in July, but no spatial structure was observed. Thus, the trends in bacterioplankton and DOM were likely due to changes in water masses (e.g., input of Mississippi River water in July and a return to estuarine waters in September). Discharge of water from the Davis Pond Freshwater Diversion (DPFD) through Barataria Bay may have partially mitigated some adverse effects of the oil spill, inasmuch as DOM is concerned. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Houston, Galveston Bay, Texas, USA

    NASA Image and Video Library

    1985-10-07

    51J-143-126 (5 Oct. 1985) --- The vertical stabilizer of the Earth-orbiting Space Shuttle Atlantis serves to partially frame this scene of Metropolitan Houston. Hold photo with vertical tail at top so that north will be at top. America's fourth largest city, with its radiating highway network, lies at the junction between the East Texas piney woods, containing lakes Conroe and Livingston (near top center and top right, respectively), and the coastal prairie, now largely farmland (left side of frame). The coast stretches from the left at Freeport and the mouth of the Brazos River, past Galveston and Texas City, and the circle of the High Island Salt Dome (clearly seen at lower right near the Bolivar Peninsula), to Port Arthur on the Neches River (far right). Patterns of muddy and clear water are particularly well-displayed in Galveston and Trinity Bays, as well as in the Gulf of Mexico. With a close look, the Harris County Domed Stadium (Astrodome) can be recognized on Houston's south side. The NASA Johnson Space Center (JSC) and the Clear Lake City area are easily delineated some 25 miles southeast of downtown Houston. The scene was recorded on film by one of the STS-51J crewmembers using a handheld Hasselblad camera and 70mm film.

  3. Effects of Climate Variability and Accelerated Forest Thinning on Watershed-Scale Runoff in Southwestern USA Ponderosa Pine Forests

    PubMed Central

    Robles, Marcos D.; Marshall, Robert M.; O'Donnell, Frances; Smith, Edward B.; Haney, Jeanmarie A.; Gori, David F.

    2014-01-01

    The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0–3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide. PMID

  4. Effects of climate variability and accelerated forest thinning on watershed-scale runoff in southwestern USA ponderosa pine forests.

    PubMed

    Robles, Marcos D; Marshall, Robert M; O'Donnell, Frances; Smith, Edward B; Haney, Jeanmarie A; Gori, David F

    2014-01-01

    The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0-3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide.

  5. SEDIMENT AND PERIPHYTON ASSESSMENT AS INDICATORS OF ENVIRONMENTAL CONDITION IN THE FLORIDA BAY-EVERGLADES TRANSITIONAL ZONE

    EPA Science Inventory

    Florida Bay and its watershed are currently the focus of numerous investigations designed to assess the extent and cause of deterioration in environmental quality observed during recent years. Periphyton and sediment bioassessment were used in a multiyear study to compare the rel...

  6. "Hydrologic effects of forest harvest in northwestern California, USA"

    Treesearch

    Robert Ziemer

    2000-01-01

    Streamflow, suspended sediment, and bedload have been monitored since 1962 in the 473-ha North Fork and 424-ha South Fork of Caspar Creek. These watersheds are about 7 km from the Pacific Ocean, on the Jackson Demonstation State Forest, 10 km south of Fort Bragg, California, USA

  7. Quantifying fish responses to forestry—lessons from the trask watershed study

    Treesearch

    Jason Dunham; Douglas Bateman; David Hockman-Wert; Nathan Chelgren; David Leer

    2013-01-01

    We describe demographic processes and species interactions that infl uence Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) in small streams that are part of an eff ort designed to evaluate forest harvest impacts in the Trask Watershed, an industrial forest located in northwest Oregon, USA. Spatial variation in recruitment, individual growth...

  8. Current and estimated future atmospheric nitrogen loads to the Chesapeake Bay Watershed

    EPA Science Inventory

    Nitrogen deposition for CMAQ scenarios in 2011, 2017, 2023, 2028, and a 2048-2050 RCP 4.5 climate scenario will be presented for the watershed and tidal waters. Comparisons will be made with the 2017 Airshed Model to the previous 2010 Airshed Model estimates. In addition, atmosph...

  9. Heavy-mineral provenance in an estuarine environment, Willapa Bay, Washington, USA: palaeogeographic implications and estuarine evolution

    USGS Publications Warehouse

    Luepke Bynum, Gretchen

    2007-01-01

    Modern sediments from representative localities in Willapa Bay, Washington, comprise two principal heavy-mineral suites. One contains approximately equivalent amounts of hornblende, orthopyroxene, and clinopyroxene; this is derived from the Columbia River, which discharges into the Pacific Ocean a short distance south of the bay. The other suite, dominated by clinopyroxene, is restricted to sands of rivers flowing into the bay from the east. The heavy-mineral distributions within the bay suggest that sand discharged from the Columbia River, borne north by longshore transport and carried into the bay by tidal currents, accounts for nearly all of the sand within the interior of Willapa Bay today. Pleistocene deposits on the east side of the bay contain three heavy-mineral assemblages, two of which are identical to the modern assemblages described above. These assemblages reflect the relative influence of tidal and fluvial processes on the Late Pleistocene deposits (100,000–200,000 BP. Amino acid racemization in Quaternary shell deposits at Willapa Bay, Washington. Geochimica et Cosmochimica Acta 43, 1505–1520). They are also consistent with those processes inferred on the basis of sedimentary structures and stratigraphic relations in about two-thirds of the samples examined. Anomalies can be explained by recycling of sand from older deposits. The persistence of the two heavy-mineral suites suggests that the pattern of estuarine sedimentation in Late Pleistocene deposits closely resembled that of the modern bay. The third heavy-mineral suite is enriched in epidote and occurs in a few older Pleistocene units. On the north side of the bay, the association of this suite with southwest-directed foresets in cross-bedded gravel indicates derivation from the northeast, perhaps from an area of glacial outwash. The presence of this suite in ancient estuarine sands exposed on the northeast side of the bay suggests that input from this northerly source may have

  10. Biogeochemistry of the Penobscot River watershed, Maine, USA: nutrient export patterns for carbon, nitrogen, and phosphorus.

    PubMed

    Cronan, Christopher S

    2012-07-01

    Watershed exports of carbon, nitrogen, phosphorus, major solutes, and suspended sediments were examined during five water years in the Penobscot River basin, which forms part of the Gulf of Maine watershed. Mean annual exports of dissolved organic carbon (DOC) in the Penobscot River were 58 kg C ha(-1) year(-1), whereas cumulative yearly watershed flux of DOC during the study period ranged from 8.6 to 16.1 × 10(10) g C year(-1) and averaged 11.7 × 10(10) g C year(-1). Watershed exports of total soluble N (TN) and total soluble P in the Penobscot River averaged 1.9 and 0.02 kg ha(-1) year(-1), respectively. Companion studies in two other major Maine rivers indicated that mean annual exports of DOC and TN in the Androscoggin River were 40 kg C ha(-1) year(-1) and 2.0 kg N ha(-1) year(-1), whereas exports in the Kennebec River were 43 kg C ha(-1) year(-1) and 2.2 kg N ha(-1) year(-1). Extrapolation of results from this investigation and a previous complementary study indicates that estuaries and coastal waters in the Gulf of Maine receive at least 1.0 × 10(10) g N year(-1) and 2.5 × 10(11) g C year(-1) in combined runoff from the four largest Maine river basins. Soluble exports of Ca + Mg + Na minus wet deposition inputs of cations in the Penobscot system were approximately 1,840 mol(c) ha(-1) year(-1), which represents a minimum estimate of cation denudation from the watershed. Based on its low N and P export rates, the Penobscot River watershed represents an example of reference conditions for use as a benchmark in ecological assessments of river water quality restoration or impairment. In addition, the biogeochemical metrics from this study provide an historical baseline for analysis of future trends in nutrient exports from the Penobscot watershed as a function of changing climatic and land use patterns.

  11. Chloride cycling in two forested lake watersheds in the west-central Adirondack Mountains, New York, U.S.A.

    USGS Publications Warehouse

    Peters, N.E.

    1991-01-01

    The chemistry of precipitation, throughfall, soil water, ground water, and surface water was evaluated in two forested lake-watersheds over a 4-yr period to assess factors controlling C1- cycling. Results indicate that C1- cycling in these watersheds is more complex than the generally held view of the rapid transport of atmospherically derived C1- through the ecosystem. The annual throughfall Cl- flux for individual species in the northern hardwood forest was 2 to 5 times that of precipitation (56 eq ha-1), whereas the Na+ throughfall flux, in general, was similar to the precipitation flux. Concentrations of soil-water Cl- sampled from ceramic tension lysimeters at 20 cm below land surface generally exceeded the Na+ concentrations and averaged 31 ??eq L-1, the highest of any waters sampled in the watersheds, except throughfall under red spruce which averaged 34 ??eq L-1. Chloride was concentrated prior to storms and mobilized rapidly during storms as suggested by increases in streamwater Cl- concentrations with increasing flow. Major sources of Cl- in both watersheds are the forest floor and hornblende weathering in the soils and till. In the Panther Lake watershed, which contains mainly thick deposits of till( > 3 m), hornblende weathering results in a net Cl- flux 3 times greater than that in the Woods Lake watershed, which contains mainly thin deposits of till. The estimated accumulation rate of Cl- in the biomass of the two watersheds was comparable to the precipitation Cl- flux.The chemistry of precipitation, throughfall, soil water, ground water, and surface water was evaluated in two forested lake-watersheds over a 4-yr period to assess factors controlling Cl- cycling. Results indicate that Cl- cycling in these watersheds is more complex than the generally held view of the rapid transport of atmospherically derived Cl- through the excosystem. The annual throughfall Cl- flux for individual species in the northern hardwood forest was 2 to 5 times that of

  12. Representation of regional urban development conditions using a watershed-based gradient study design

    USGS Publications Warehouse

    Terziotti, Silvia; McMahon, Gerard; Bell, Amanda H.

    2012-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment Program, the effects of urbanization on stream ecosystems (EUSE) have been intensively investigated in nine metropolitan areas in the United States, including Boston, Massachusetts; Atlanta, Georgia; Birmingham, Alabama; Raleigh, North Carolina; Salt Lake City, Utah; Denver, Colorado; Dallas–Fort Worth, Texas; Portland, Oregon; and Milwaukee–Green Bay, Wisconsin. Each of the EUSE study area watersheds was associated with one ecological region of the United States. This report evaluates whether each metropolitan area can be generalized across the ecological regions (ecoregions) within which the EUSE study watersheds are located. Seven characteristics of the EUSE watersheds that affect stream ecosystems were examined to determine the similarities in the same seven characteristics of the watersheds in the entire ecoregion. Land cover (percentage developed, forest and shrubland, and herbaceous and cultivated classes), average annual temperature, average annual precipitation, average surface elevation, and average percentage slope were selected as human-influenced, climate, and topography characteristics. Three findings emerged from this comparison that have implications for the use of EUSE data in models used to predict stream ecosystem condition. One is that the predominant or "background" land-cover type (either forested or agricultural land) in each ecoregion also is the predominant land-cover type within the associated EUSE study watersheds. The second finding is that in all EUSE study areas, the watersheds account for the range of developed land conditions that exist in the corresponding ecoregion watersheds. However, six of the nine EUSE study area watersheds have significantly different distributions of developed land from the ecoregion watersheds. Finally, in seven of the nine EUSE/ecoregion comparisons, the distributions of the values of climate variables in the EUSE watersheds are

  13. Modeling watershed-scale impacts of stormwater management with traditional versus low impact development design

    USGS Publications Warehouse

    Sparkman, Stephanie A.; Hogan, Dianna; Hopkins, Kristina G.; Loperfido, J. V.

    2017-01-01

    Stormwater runoff and associated pollutants from urban areas in the greater Chesapeake Bay Watershed (CBW) impair local streams and downstream ecosystems, despite urbanized land comprising only 7% of the CBW area. More recently, stormwater best management practices (BMPs) have been implemented in a low impact development (LID) manner to treat stormwater runoff closer to its source. This approach included the development of a novel BMP model to compare traditional and LID design, pioneering the use of comprehensively digitized storm sewer infrastructure and BMP design connectivity with spatial patterns in a geographic information system at the watershed scale. The goal was to compare total watershed pollutant removal efficiency in two study watersheds with differing spatial patterns of BMP design (traditional and LID), by quantifying the improved water quality benefit of LID BMP design. An estimate of uncertainty was included in the modeling framework by using ranges for BMP pollutant removal efficiencies that were based on the literature. Our model, using Monte Carlo analysis, predicted that the LID watershed removed approximately 78 kg more nitrogen, 3 kg more phosphorus, and 1,592 kg more sediment per square kilometer as compared with the traditional watershed on an annual basis. Our research provides planners a valuable model to prioritize watersheds for BMP design based on model results or in optimizing BMP selection.

  14. Concurrent Exposure of Bottlenose Dolphins (Tursiops truncatus) to Multiple Algal Toxins in Sarasota Bay, Florida, USA

    PubMed Central

    Twiner, Michael J.; Fire, Spencer; Schwacke, Lori; Davidson, Leigh; Wang, Zhihong; Morton, Steve; Roth, Stephen; Balmer, Brian; Rowles, Teresa K.; Wells, Randall S.

    2011-01-01

    Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health. PMID:21423740

  15. Reclamation of Bay wetlands and disposal of dredge spoils: meeting two goals simultaneously

    USGS Publications Warehouse

    Hostettler, Frances D.; Pereira, Wilfred E.; Kvenvolden, Keith A.; Jones, David R.; Murphy, Fred

    1997-01-01

    San Francisco Bay is one of the world's largest urbanized estuarine systems with a watershed that drains about 40 percent of the State of California. Its freshwater and saltwater marshes comprise approximately 125 square kilometers (48 square miles), compared to 2,200 square kilometers (850 square miles) before California began rapid development in 1850. This staggering reduction in tidal wetlands of approximately 95 percent has resulted in significant loss . of habitat for many species of fish and wildlife. The need for wetlands is well documented- healthy and adequate wetlands are critical to the proper functioning of an estuarine ecosystem like San Francisco Bay.

  16. Surrounding the consequences of watershed disasters in the periphery of the Indian triangle

    Treesearch

    Rohan Ekanayake

    1991-01-01

    The watershed of the 'Indian Triangle' is formed by the flow of two mighty rivers which emanate from the Himalaya. The Ganges and teh Brahmaputra embrace the lands and the peoples of Nepal*, India* and Bangladesh* before emptying in the Bay of Bengal. A recent monsoon submerged two thirds of the low-lying Bangladesh rendering 23 million people homeless. can...

  17. Modeling drivers of phosphorus loads in Chesapeake Bay tributaries and inferences about long-term change

    USGS Publications Warehouse

    Ryberg, Karen R.; Blomquist, Joel; Sprague, Lori A.; Sekellick, Andrew J.; Keisman, Jennifer

    2018-01-01

    Causal attribution of changes in water quality often consists of correlation, qualitative reasoning, listing references to the work of others, or speculation. To better support statements of attribution for water-quality trends, structural equation modeling was used to model the causal factors of total phosphorus loads in the Chesapeake Bay watershed. By transforming, scaling, and standardizing variables, grouping similar sites, grouping some causal factors into latent variable models, and using methods that correct for assumption violations, we developed a structural equation model to show how causal factors interact to produce total phosphorus loads. Climate (in the form of annual total precipitation and the Palmer Hydrologic Drought Index) and anthropogenic inputs are the major drivers of total phosphorus load in the Chesapeake Bay watershed. Increasing runoff due to natural climate variability is offsetting purposeful management actions that are otherwise decreasing phosphorus loading; consequently, management actions may need to be reexamined to achieve target reductions in the face of climate variability.

  18. Effect of subsurface drainage on runoff and sediment yield from an agricultural watershed in western Oregon, U.S.A.

    NASA Astrophysics Data System (ADS)

    Istok, J. D.; Kling, G. F.

    1983-09-01

    Rainfall, watershed runoff and suspended-sediment concentrations for three small watersheds (0.46, 1.4 and 6.0 ha in size) were measured continuously for four winter rainfall seasons. The watersheds were fall-planted to winter wheat and were located on the hilly western margins of the Willamette Valley, Oregon. Following two rainfall seasons of data collection, a subsurface drainage system (consisting of a patterned arrangement of 10-cm plastic tubing at a depth of 1.0 m and a spacing of 12 m) was installed on the 1.4-ha watershed (watershed 2). Perched water tables were lowered and seepage was reduced on watershed 2 following the installation of the drainage system. The reductions were quantified with a water-table index (cumulative integrated excess). Watershed runoff and sediment yield from watershed 2 were decreased by ˜65 and ˜55%, respectively. These reductions were estimated from double mass curves and by statistical regression on a set of hydrograph variables. Maximum flow and average flow rates were decreased and the time from the beginning of a storm to the peak flow (lag time) increased. It is concluded that subsurface drainage can be an effective management practice for erosion control in western Oregon.

  19. Water-quality characteristics of urban runoff and estimates of annual loads in the Tampa Bay area, Florida, 1975-80

    USGS Publications Warehouse

    Lopez, M.A.; Giovannelli, R.F.

    1984-01-01

    Rainfall, runoff, and water quality data were collected at nine urban watersheds in the Tampa Bay area from 1975 to 1980. Watershed drainage area ranged from 0.34 to 0.45 sq mi. Land use was mixed. Development ranged from a mostly residential watershed with a 19% impervious surface, to a commercial-residential watershed with a 61% impervious surface. Average biochemical oxygen demand concentrations of base flow at two sites and of stormwater runoff at five sites exceeded treated sewage effluent standards. Average coliform concentrations of stormwater runoff at all sites were several orders of magnitude greater than standards for Florida Class III receiving water (for recreation or propagation and management of fish and wildlife). Average concentrations of lead and zinc in stormwater runoff were consistently higher than Class III standards. Stormwater-runoff loads and base-flow concentrations of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus, and lead were related to runoff volume, land use, urban development, and antecedent daily rainfall by multiple linear regression. Stormwater-runoff volume was related to pervious area, hydraulically connected impervious surfaces, storm rainfall, and soil-infiltration index. Base-flow daily discharge was related to drainage area and antecedent daily rainfall. The flow regression equations of this report were used to compute 1979 water-year loads of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus , and total lead for the nine Tampa Bay area urban watersheds. (Lantz-PTT)

  20. Houston/Galveston, Texas, USA

    NASA Image and Video Library

    1991-09-18

    In this view of Houston/Galveston, Texas, USA (29.5N, 95.5W), heavy spring rains emphasize the several bodies of water in the area. Even though partially cloud covered, the progressive nature of the Houston highway and freeway system can easily be observed in this highly detailed view. To the south, the NASA, Clear Lake area just off of Galveston Bay can easily be seen. In the center, is the downtown business district.

  1. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) are briefed on the use of a cold plate in Orbiter Processing Facility Bay 2 by a USA technician (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) are briefed on the use of a cold plate in Orbiter Processing Facility Bay 2 by a USA technician (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  2. Ecological periodic tables for benthic macrofaunal usage of estuarine habitats: Insights from a case study in Tillamook Bay, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Ferraro, Steven P.; Cole, Faith A.

    2012-05-01

    This study validates the ecological relevance of estuarine habitat types to the benthic macrofaunal community and, together with previous similar studies, suggests they can serve as elements in ecological periodic tables of benthic macrofaunal usage in the bioregion. We compared benthic macrofaunal Bray-Curtis similarity and the means of eight benthic macrofaunal community measures across seven habitat types in Tillamook Bay, Oregon, USA: intertidal eelgrass (Zostera marina), dwarf eelgrass (Zostera japonica), oyster (Crassostrea gigas) ground culture, burrowing mud shrimp (Upogebia pugettensis), burrowing ghost shrimp (Neotrypaea californiensis), sand and subtidal. Benthic macrofaunal Bray-Curtis similarity differed among all the habitats except ghost shrimp and sand. The habitat rank order on mean benthic macrofaunal species richness, abundance and biomass was dwarf eelgrass ≈ oyster ≥ mud shrimp ≈ eelgrass > sand ≈ ghost shrimp ≈ subtidal. The benthic macrofaunal habitat usage pattern in Tillamook Bay was, with a few exceptions, similar to that in two other US Pacific Northwest estuaries. The exceptions indicate variants of eelgrass and ghost shrimp habitat that differ in benthic macrofaunal usage perhaps due to differences in the coarseness of the sand fraction of the sediments in which they live. The similarities indicate periodic benthic macrofaunal usage patterns across the other habitat types extend over a wider geographic scale and range of environmental conditions than previously known.

  3. Integrated ecosystem services assessment: Valuation of changes due to sea level rise in Galveston Bay, Texas, USA.

    PubMed

    Yoskowitz, David; Carollo, Cristina; Pollack, Jennifer Beseres; Santos, Carlota; Welder, Kathleen

    2017-03-01

    The goal of the present study was to identify the potential changes in ecosystem service values provided by wetlands in Galveston Bay, Texas, USA, under the Intergovernmental Panel on Climate Change (IPCC) A1B max (0.69 m) sea level rise scenario. Built exclusively upon the output produced during the Sea Level Affecting Marshes Model 6 (SLAMM 6) exercise for the Galveston Bay region, this study showed that fresh marsh and salt marsh present a steady decline from 2009 (initial condition) to 2100. Fresh marsh was projected to undergo the biggest changes, with the loss of approximately 21% of its extent between 2009 and 2100 under the A1B max scenario. The percentages of change for salt marsh were less prominent at approximately 12%. This trend was also shown in the values of selected ecosystem services (disturbance regulation, waste regulation, recreation, and aesthetics) provided by these habitats. An ordinary least squares regression was used to calculate the monetary value of the selected ecosystem services provided by salt marsh and fresh marsh in 2009, and in 2050 and 2100 under the A1B max scenario. The value of the selected services showed potential monetary losses in excess of US$40 million annually in 2100, compared to 2009 for fresh marsh and more than $11 million for salt marsh. The estimates provided here are only small portions of what can be lost due to the decrease in habitat extent, and they highlight the need for protecting not only built infrastructure but also natural resources from sea level rise. Integr Environ Assess Manag 2017;13:431-443. © 2016 SETAC. © 2016 SETAC.

  4. Pesticide fate and transport from farm fields adjacent to the Jobos Bay National Estuarine Research Reserve

    USDA-ARS?s Scientific Manuscript database

    Agriculture is a primary land-use in the Jobos Bay National Estuarine Research Reserve (JBNERR) watershed located on Puerto Rico's southeast coast. Crop production in near-shore areas depends on pesticides for weed, disease and insect control. There are continuing concerns about their potential fo...

  5. Evaluation of stream chemistry trends in US Geological Survey reference watersheds, 1970-2010.

    PubMed

    Mast, M Alisa

    2013-11-01

    The Hydrologic Benchmark Network (HBN) is a long-term monitoring program established by the US Geological Survey in the 1960s to track changes in the streamflow and stream chemistry in undeveloped watersheds across the USA. Trends in stream chemistry were tested at 15 HBN stations over two periods (1970-2010 and 1990-2010) using the parametric Load Estimator (LOADEST) model and the nonparametric seasonal Kendall test. Trends in annual streamflow and precipitation chemistry also were tested to help identify likely drivers of changes in stream chemistry. At stations in the northeastern USA, there were significant declines in stream sulfate, which were consistent with declines in sulfate deposition resulting from the reductions in SO₂ emissions mandated under the Clean Air Act Amendments. Sulfate declines in stream water were smaller than declines in deposition suggesting sulfate may be accumulating in watershed soils and thereby delaying the stream response to improvements in deposition. Trends in stream chemistry at stations in other part of the country generally were attributed to climate variability or land disturbance. Despite declines in sulfate deposition, increasing stream sulfate was observed at several stations and appeared to be linked to periods of drought or declining streamflow. Falling water tables might have enhanced oxidation of organic matter in wetlands or pyrite in mineralized bedrock thereby increasing sulfate export in surface water. Increasing sulfate and nitrate at a station in the western USA were attributed to release of soluble salts and nutrients from soils following a large wildfire in the watershed.

  6. Evaluation of stream chemistry trends in US Geological Survey reference watersheds, 1970-2010

    USGS Publications Warehouse

    Mast, M. Alisa

    2013-01-01

    The Hydrologic Benchmark Network (HBN) is a long-term monitoring program established by the US Geological Survey in the 1960s to track changes in the streamflow and stream chemistry in undeveloped watersheds across the USA. Trends in stream chemistry were tested at 15 HBN stations over two periods (1970–2010 and 1990–2010) using the parametric Load Estimator (LOADEST) model and the nonparametric seasonal Kendall test. Trends in annual streamflow and precipitation chemistry also were tested to help identify likely drivers of changes in stream chemistry. At stations in the northeastern USA, there were significant declines in stream sulfate, which were consistent with declines in sulfate deposition resulting from the reductions in SO2 emissions mandated under the Clean Air Act Amendments. Sulfate declines in stream water were smaller than declines in deposition suggesting sulfate may be accumulating in watershed soils and thereby delaying the stream response to improvements in deposition. Trends in stream chemistry at stations in other part of the country generally were attributed to climate variability or land disturbance. Despite declines in sulfate deposition, increasing stream sulfate was observed at several stations and appeared to be linked to periods of drought or declining streamflow. Falling water tables might have enhanced oxidation of organic matter in wetlands or pyrite in mineralized bedrock thereby increasing sulfate export in surface water. Increasing sulfate and nitrate at a station in the western USA were attributed to release of soluble salts and nutrients from soils following a large wildfire in the watershed.

  7. Development and application of a comprehensive simulation model to evaluate impacts of watershed structures and irrigation water use on streamflow and groundwater: The case of Wet Walnut Creek Watershed, Kansas, USA

    USGS Publications Warehouse

    Ramireddygari, S.R.; Sophocleous, M.A.; Koelliker, J.K.; Perkins, S.P.; Govindaraju, R.S.

    2000-01-01

    This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west-central Kansas. The main objective of this study was to assess the impacts of watershed structures and irrigation water use on streamflow and groundwater levels, which in turn affect availability of water for the Cheyenne Bottoms Wildlife Refuge Management area. The surface-water flow model, POTYLDR, and the groundwater flow model, MODFLOW, were combined into an integrated, watershed-scale, continuous simulation model. Major revisions and enhancements were made to the POTYLDR and MODFLOW models for simulating the detailed hydrologic budget for the Wet Walnut Creek Watershed. The computer simulation model was calibrated and verified using historical streamflow records (at Albert and Nekoma gaging stations), reported irrigation water use, observed water-level elevations in watershed structure pools, and groundwater levels in the alluvial aquifer system. To assess the impact of watershed structures and irrigation water use on streamflow and groundwater levels, a number of hypothetical management scenarios were simulated under various operational criteria for watershed structures and different annual limits on water use for irrigation. A standard 'base case' was defined to allow comparative analysis of the results of different scenarios. The simulated streamflows showed that watershed structures decrease both streamflows and groundwater levels in the watershed. The amount of water used for irrigation has a substantial effect on the total simulated streamflow and groundwater levels, indicating that irrigation is a major budget item for managing water resources in the watershed. (C) 2000 Elsevier Science B.V.This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west

  8. A HABITAT SUITABILITY INDEX FOR THE BAY SCALLOP ARGOPECTEN IRRADIANS

    EPA Science Inventory

    Platform Presentation at a Scientific Meeting. A survey of Lagoon Pond, Martha's Vineyard, MA, USA was conducted in September 2005 to determine the combination of habitat factors most highly correlated with bay scallop (Argopecten irradians) abundance. A stratified random samplin...

  9. Atmospheric Nitrogen Deposition Loadings to the Chesapeake Bay: An Initial Analysis of the Cost Effectiveness of Control Options (1996)

    EPA Pesticide Factsheets

    This report examines the cost effectiveness of control options which reduce nitrate deposition to the Chesapeake watershed and to the tidal Bay. The report analyzes current estimates of the reductions expected in the ozone transport region.

  10. Development of An Empirical Water Quality Model for Stormwater Based on Watershed Land Use in Puget Sound

    DTIC Science & Technology

    2007-03-29

    Development of An Empirical Water Quality Model for Stormwater Based on Watershed Land Use in Puget Sound Valerie I. Cullinan, Christopher W. May...Systems Center, Bremerton, WA) Introduction The Sinclair and Dyes Inlet watershed is located on the west side of Puget Sound in Kitsap County...Washington, U.S.A. (Figure 1). The Puget Sound Naval Shipyard (PSNS), U.S Environmental Protection Agency (USEPA), the Washington State Department of

  11. Use of Land Use Land Cover Change Mapping Products in Aiding Coastal Habitat Conservation and Restoration Efforts of the Mobile Bay NEP

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Swann, Roberta; Smooth, James

    2010-01-01

    The Mobile Bay region has undergone significant land use land cover change (LULC) over the last 35 years, much of which is associated with urbanization. These changes have impacted the region s water quality and wildlife habitat availability. In addition, much of the region is low-lying and close to the Gulf, which makes the region vulnerable to hurricanes, climate change (e.g., sea level rise), and sometimes man-made disasters such as the Deepwater Horizon (DWH) oil spill. Land use land cover change information is needed to help coastal zone managers and planners to understand and mitigate the impacts of environmental change on the region. This presentation discusses selective results of a current NASA-funded project in which Landsat data over a 34-year period (1974-2008) is used to produce, validate, refine, and apply land use land cover change products to aid coastal habitat conservation and restoration needs of the Mobile Bay National Estuary Program (MB NEP). The project employed a user defined classification scheme to compute LULC change mapping products for the entire region, which includes the majority of Mobile and Baldwin counties. Additional LULC change products have been computed for select coastal HUC-12 sub-watersheds adjacent to either Mobile Bay or the Gulf of Mexico, as part of the MB NEP watershed profile assessments. This presentation will include results of additional analyses of LULC change for sub-watersheds that are currently high priority areas, as defined by MB NEP. Such priority sub-watersheds include those that are vulnerable to impacts from the DWH oil spill, as well as sub-watersheds undergoing urbanization. Results demonstrating the nature and permanence of LULC change trends for these higher priority sub-watersheds and results characterizing change for the entire 34-year period and at approximate 10-year intervals across this period will also be presented. Future work will include development of value-added coastal habitat quality

  12. ASSESSING THE ECOLOGICAL CONDITION OF A COASTAL PLAIN WATERSHED USING A PROBABILISTIC SURVEY DESIGN

    EPA Science Inventory

    Using a probabilistic survey design, we assessed the ecological condition of the Florida (USA) portion of the Escambia River watershed using selected environmental and benthic macroinvertebrate data. Macroinvertebrates were sampled at 28 sites during July-August 1996, and 3414 i...

  13. Best management practices for reducing nutrient loads in a sub-watershed of Chesapeake Bay area

    USDA-ARS?s Scientific Manuscript database

    Water quality improvement in the Chesapeake Bay is a grave concern. An initiative to reduce the nutrient loads to stream has been undertaken to attain a target total maximum daily load (TMDL) at Chesapeake Bay. A general guideline with a set of best management practices (BMPs) has been in place for ...

  14. Soil Net Nitrification Rates and Exchangeable Calcium in Ten Small Upland Watersheds of the Northeastern USA

    NASA Astrophysics Data System (ADS)

    Ross, D.; Bailey, S.; Shanley, J.; Fredriksen, G.; Jamison, A.

    2004-05-01

    Possible links have been suggested between soil nitrification rates, soil calcium concentrations and tree species composition (e.g. sugar maple). We are measuring soil nitrification rates and stream nitrate export in ten watersheds in Vermont, New Hampshire and New York. These include relatively Ca-poor sites at Cone Pond NH and Ca-rich sites at Sleepers River, VT. Our objectives are to determine the relationship between nitrification rates and watershed characteristics (e.g. vegetation, soils, topography), and to explore the link between these rates and watershed nitrate export. Net nitrification rates are highly variable both within and among the eight sites and are related to the soil C/N ratio and vegetation characteristics at some, but not all, sites. Our preliminary results show distinct differences in exchangeable Ca concentrations among watersheds. Although some locations are enriched in Ca and high in sugar maple density, we have not found a good overall relationship between Ca and net nitrification rates. High rates can be found in Ca-enriched sites that are also relatively high in pH.

  15. USING HISTORICAL BIOLOGICAL DATA TO EVALUATE STATUS AND TRENDS IN THE BIG DARBY CREEK WATERSHED (OHIO, USA)

    EPA Science Inventory

    Assessment of watershed ecological status and trends is challenging for managers who lack randomly or consistently sampled data, or monitoring programs developed from a watershed perspective. This study investigated analytical approaches for assessment of status and trends using ...

  16. Integrating sentinel watershed-systems into the monitoring and assessment of Minnesota's (USA) waters quality.

    PubMed

    Magner, J A; Brooks, K N

    2008-03-01

    Section 303(d) of the Clean Water Act requires States and Tribes to list waters not meeting water quality standards. A total maximum daily load must be prepared for waters identified as impaired with respect to water quality standards. Historically, the management of pollution in Minnesota has been focused on point-source regulation. Regulatory effort in Minnesota has improved water quality over the last three decades. Non-point source pollution has become the largest driver of conventional 303(d) listings in the 21st century. Conventional pollutants, i.e., organic, sediment and nutrient imbalances can be identified with poor land use management practices. However, the cause and effect relationship can be elusive because of natural watershed-system influences that vary with scale. Elucidation is complex because the current water quality standards in Minnesota were designed to work best with water quality permits to control point sources of pollution. This paper presents a sentinel watershed-systems approach (SWSA) to the monitoring and assessment of Minnesota waterbodies. SWSA integrates physical, chemical, and biological data over space and time using advanced technologies at selected small watersheds across Minnesota to potentially improve understanding of natural and anthropogenic watershed processes and the management of point and non-point sources of pollution. Long-term, state-of-the-art monitoring and assessment is needed to advance and improve water quality standards. Advanced water quality or ecologically-based standards that integrate physical, chemical, and biological numeric criteria offer the potential to better understand, manage, protect, and restore Minnesota's waterbodies.

  17. Bed composition generation for morphodynamic modeling: Case study of San Pablo Bay in California, USA

    USGS Publications Warehouse

    van der Wegen, M.; Dastgheib, A.; Jaffe, B.E.; Roelvink, D.

    2011-01-01

    Applications of process-based morphodynamic models are often constrained by limited availability of data on bed composition, which may have a considerable impact on the modeled morphodynamic development. One may even distinguish a period of "morphodynamic spin-up" in which the model generates the bed level according to some ill-defined initial bed composition rather than describing the realistic behavior of the system. The present paper proposes a methodology to generate bed composition of multiple sand and/or mud fractions that can act as the initial condition for the process-based numerical model Delft3D. The bed composition generation (BCG) run does not include bed level changes, but does permit the redistribution of multiple sediment fractions over the modeled domain. The model applies the concept of an active layer that may differ in sediment composition above an underlayer with fixed composition. In the case of a BCG run, the bed level is kept constant, whereas the bed composition can change. The approach is applied to San Pablo Bay in California, USA. Model results show that the BCG run reallocates sand and mud fractions over the model domain. Initially, a major sediment reallocation takes place, but development rates decrease in the longer term. Runs that take the outcome of a BCG run as a starting point lead to more gradual morphodynamic development. Sensitivity analysis shows the impact of variations in the morphological factor, the active layer thickness, and wind waves. An important but difficult to characterize criterion for a successful application of a BCG run is that it should not lead to a bed composition that fixes the bed so that it dominates the "natural" morphodynamic development of the system. Future research will focus on a decadal morphodynamic hindcast and comparison with measured bathymetries in San Pablo Bay so that the proposed methodology can be tested and optimized. ?? 2010 The Author(s).

  18. Changing hydrology under a changing climate for a Coastal Plain Watershed

    USDA-ARS?s Scientific Manuscript database

    Analysis of climate data from the Little River Experimental Watershed near Tifton, Georgia, in the South Atlantic Coastal Plain of the U.S.A. indicate air temperatures will increase (0.15 to 0.41°C decade-1) along with a slight increase in total annual precipitation in the 21st century. The greates...

  19. Watershed reliability, resilience and vulnerability analysis under uncertainty using water quality data.

    PubMed

    Hoque, Yamen M; Tripathi, Shivam; Hantush, Mohamed M; Govindaraju, Rao S

    2012-10-30

    A method for assessment of watershed health is developed by employing measures of reliability, resilience and vulnerability (R-R-V) using stream water quality data. Observed water quality data are usually sparse, so that a water quality time-series is often reconstructed using surrogate variables (streamflow). A Bayesian algorithm based on relevance vector machine (RVM) was employed to quantify the error in the reconstructed series, and a probabilistic assessment of watershed status was conducted based on established thresholds for various constituents. As an application example, observed water quality data for several constituents at different monitoring points within the Cedar Creek watershed in north-east Indiana (USA) were utilized. Considering uncertainty in the data for the period 2002-2007, the R-R-V analysis revealed that the Cedar Creek watershed tends to be in compliance with respect to selected pesticides, ammonia and total phosphorus. However, the watershed was found to be prone to violations of sediment standards. Ignoring uncertainty in the water quality time-series led to misleading results especially in the case of sediments. Results indicate that the methods presented in this study may be used for assessing the effects of different stressors over a watershed. The method shows promise as a management tool for assessing watershed health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Coastal circulation and sediment dynamics in Maunalua Bay, Oahu, Hawaii, measurements of waves, currents, temperature, salinity, and turbidity; November 2008-February 2009

    USGS Publications Warehouse

    Storlazzi, Curt D.; Presto, M. Katherine; Logan, Joshua B.; Field, Michael E.

    2010-01-01

    High-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity were made in Maunalua Bay, southern Oahu, Hawaii, during the 2008-2009 winter to better understand coastal circulation, water-column properties, and sediment dynamics during a range of conditions (trade winds, kona storms, relaxation of trade winds, and south swells). A series of bottom-mounted instrument packages were deployed in water depths of 20 m or less to collect long-term, high-resolution measurements of waves, currents, water levels, temperature, salinity, and turbidity. These data were supplemented with a series of profiles through the water column to characterize the vertical and spatial variability in water-column properties within the bay. These measurements support the ongoing process studies being done as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Pacific Coral Reef Project; the ultimate goal of these studies is to better understand the transport mechanisms of sediment, larvae, pollutants, and other particles in coral reef settings. Project Objectives The objective of this study was to understand the temporal variations in currents, waves, tides, temperature, salinity and turbidity within a coral-lined embayment that receives periodic discharges of freshwater and sediment from multiple terrestrial sources in the Maunalua Bay. Instrument packages were deployed for a three-month period during the 2008-2009 winter and a series of vertical profiles were collected in November 2008, and again in February 2009, to characterize water-column properties within the bay. Measurements of flow and water-column properties in Maunalua Bay provided insight into the potential fate of terrestrial sediment, nutrient, or contaminant delivered to the marine environment and coral larval transport within the embayment. Such data are useful for providing baseline information for future watershed decisions and for establishing guidelines for

  1. APPARENT 85KRYPTON AGES OF GROUNDWATER WITHIN THE ROYAL WATERSHED, MAINE, USA

    EPA Science Inventory

    85Kr activities were determined in 264 domestic and municipal wells from 2002-2004 in the Royal watershed (361 km2), Maine. Gas extraction for 85Kr from wells was effected directly via a well-head methodology permitting efficient widespread analys...

  2. Ecosystem Services Approaches to Restoring a Sustainable Chesapeake Bay and its Tributary Watersheds

    EPA Science Inventory

    Within this set of reports and papers, the authors developed an optimization framework to examine how incorporating selected co-benefits (carbon sequestration, recreation/hunting, air quality) of nutrient reductions alters their optimal distribution in the watershed. They used th...

  3. Sediment geochemistry of Corte Madera Marsh, San Francisco Bay, California: have local inputs changed, 1830-2010?

    USGS Publications Warehouse

    Takesue, Renee K.; Jaffe, Bruce E.

    2013-01-01

    Large perturbations since the mid-1800s to the supply and source of sediment entering San Francisco Bay have disturbed natural processes for more than 150 years. Only recently have sediment inputs through the Sacramento-San Joaquin Delta (the Delta) decreased to what might be considered pre-disturbance levels. Declining sediment inputs to San Francisco Bay raise concern about continued tidal marsh accretion, particularly if sea level rise accelerates in the future. The aim of this study is to explore whether the relative amount of local-watershed sediment accumulating in a tidal marsh has changed as sediment supply from the Sacramento-San Joaquin Rivers has decreased. To address this question, sediment geochemical indicators, or signatures, in the fine fraction (silt and clay) of Sacramento River, San Joaquin River, San Francisco Bay, and Corte Madera Creek sediment were identified and applied in sediment recovered from Corte Madera Marsh, one of the few remaining natural marshes in San Francisco Bay. Total major, minor, trace, and rare earth element (REE) contents of fine sediment were determined by inductively coupled plasma mass and atomic emission spectroscopy. Fine sediment from potential source areas had the following geochemical signatures: Sacramento River sediment downstream of the confluence of the American River was characterized by enrichments in chromium, zirconium, and heavy REE; San Joaquin River sediment at Vernalis and Lathrop was characterized by enrichments in thorium and total REE content; Corte Madera Creek sediment had elevated nickel contents; and the composition of San Francisco Bay mud proximal to Corte Madera Marsh was intermediate between these sources. Most sediment geochemical signatures were relatively invariant for more than 150 years, suggesting that the composition of fine sediment in Corte Madera Marsh is not very sensitive to changes in the magnitude, timing, or source of sediment entering San Francisco Bay through the Delta. Nor

  4. Is Soil Development Controlling Ecohydrologic Response to Climate Change in the Southern Cascade and Sierra Nevada Watersheds, CA, USA?

    NASA Astrophysics Data System (ADS)

    Devine, S.; O'Geen, A. T.; Dahlke, H. E.

    2016-12-01

    Understanding climate change impacts on hydrology is especially relevant to areas already dealing with water scarcity, common in Mediterranean regions such as California (CA). For instance, warming is expected to drive up evapotranspiration (ET) fluxes from vegetation, which could impact runoff (Q) and water supply by up to 30% from CA's Sierra Nevadas by 2100. In this study, we hypothesize that the 1-2 oC increase during the 20th and early 21st centuries should have resulted in a trend of decreasing Q for a given amount of precipitation (P) due to increasing ET through time. We also hypothesize that any observed differences in watershed ET response to warming could be explained by soil controls, since Mediterranean biomes require soil moisture storage to endure dry summers. We analyzed unimpaired runoff from 10 major CA watersheds relative to P over a 110 year record and found trends of increasing P minus Q in the northern watersheds, supporting the hypothesis of mountain Q vulnerability to warming but not in the central and southern watersheds. This may be partly due to the faster rates of summertime warming we observed in the northern watersheds when potential ET is highest. Analysis of several soil investigations in the study area on bioclimosequences suggests that these inter-watershed differences in P minus Q may also be due to soils. Soils formed from volcanic rocks, which are more prevalent in the northern watersheds, tend to have higher clay contents and water holding capacity. Moreover, the higher elevation central and southern watersheds were more widely glaciated throughout the Pleistocene, resulting in a wider extent of scoured landscapes and soils shallow to hard bedrock. Thus, the northern watershed ET flux could have previously been temperature constrained with untapped soil moisture storage. Going forward, an analysis is planned to quantify the extent of various soil-vegetation-climate zones. For each zone, we will build simple water balance models

  5. DENITRIFICATION ENZYME ACTIVITY OF FRINGE SALT MARSHES IN NEW ENGLAND (USA)

    EPA Science Inventory

    Coastal salt marshes are a buffer between the uplands and adjacent coastal waters in New England (USA). With increasing N loads from developed watersheds, salt marshes could play an important role in the water quality maintenance of coastal waters. In this study we examined seaso...

  6. EMERGY-based environmental systems assessment of a multi-purpose temperate mixed-forest watershed of the southern Appalachian Mountains, USA.

    PubMed

    Tilley, David Rogers; Swank, Wayne T

    2003-11-01

    Emergy (with an 'm') synthesis was used to assess the balance between nature and humanity and the equity among forest outcomes of a US Forest Service ecosystem management demonstration project on the Wine Spring Creek watershed, a high-elevation (1600 m), temperate forest located in the southern Appalachian mountains of North Carolina, USA. EM embraces a holistic perspective, accounting for the multiple temporal and spatial scales of forest processes and public interactions, to balance the ecological, economic, and social demands placed on land resources. Emergy synthesis is a modeling tool that allows the structure and function of forest ecosystems to be quantified in common units (solar emergy-joules, sej) for easy and meaningful comparison, determining 'system-value' for forcing factors, components, and processes based on the amount of resources required to develop and sustain them, whether they are money, material, energy, or information. The Environmental Loading Ratio (ELR), the units of solar emergy imported into the watershed via human control per unit of indigenous, natural solar emergy, was determined to be 0.42, indicating that the load on the natural environment was not ecologically damaging and that excess ecological capacity existed for increasing non-ecological activities (e.g. timbering, recreation) to achieve an ELR of 1.0 (perfect ecological-economic balance). Three forest outcomes selected to represent the three categories of desired sustainability (ecological, economic, and social) were evaluated in terms of their solar emergy flow to measure outcome equity. Direct economic contribution was an order of magnitude less (224 x 10(12)solar emergy-joules (sej) ha(-1)) than the ecological and social contributions, which were provided at annual rates of 3083 and 2102 x 10(12)sejha(-1), respectively. Emergy synthesis was demonstrated to holistically integrate and quantify the interconnections of a coupled nature-human system allowing the goals of

  7. Mercury correlations among six tissues for four waterbird species breeding in San Francisco Bay, California, USA

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Ackerman, Joshua T.; Adelsbach, T.L.; Takekawa, John Y.; Miles, A.K.; Keister, R.A.

    2008-01-01

    Despite a large body of research concerning mercury (Hg) in birds, no single tissue has been used consistently to assess Hg exposure, and this has hampered comparisons across studies. We evaluated the relationships of Hg concentrations among tissues in four species of waterbirds (American avocets [Recurvirostra americana], black-necked stilts [Himantopus mexicanus], Caspian terns [Hydroprogne caspia; formerly Sterna caspia], and Forster's terns [Sterna forsteri]) and across three life stages (prebreeding adults, breeding adults, and chicks) in San Francisco Bay, California, USA. Across species and life stages, Hg concentrations (least square mean ?? standard error) were highest in head feathers (6.45 ?? 0.31 ??g/g dry wt) and breast feathers (5.76 ?? 0.28 ??g/g dry wt), followed by kidney (4.54 ?? 0.22 ??g/g dry wt), liver (4.43 ?? 0.21 ??g/g dry wt), blood (3.10 ?? 0.15 ??g/g dry wt), and muscle (1.67 ?? 0.08 ??g/g dry wt). Relative Hg distribution among tissues, however, differed by species and life stage. Mercury concentrations were highly correlated among internal tissues (r 2 ??? 0.89). Conversely, the relationships between Hg in feathers and internal tissues were substantially weaker (r2 ??? 0.42). Regression slopes sometimes differed among species and life stages, indicating that care must be used when predicting Hg concentrations in one tissue based on those in another. However, we found good agreement between predictions made using a general tissue-prediction equation and more specific equations developed for each species and life stage. Finally, our results suggest that blood is an excellent, nonlethal predictor of Hg concentrations in internal tissues but that feathers are relatively poor indicators of Hg concentrations in internal tissues. ?? 2008 SETAC Printed in the USA.

  8. Geospatial techniques for developing a sampling frame of watersheds across a region

    USGS Publications Warehouse

    Gresswell, Robert E.; Bateman, Douglas S.; Lienkaemper, George; Guy, T.J.

    2004-01-01

    Current land-management decisions that affect the persistence of native salmonids are often influenced by studies of individual sites that are selected based on judgment and convenience. Although this approach is useful for some purposes, extrapolating results to areas that were not sampled is statistically inappropriate because the sampling design is usually biased. Therefore, in recent investigations of coastal cutthroat trout (Oncorhynchus clarki clarki) located above natural barriers to anadromous salmonids, we used a methodology for extending the statistical scope of inference. The purpose of this paper is to apply geospatial tools to identify a population of watersheds and develop a probability-based sampling design for coastal cutthroat trout in western Oregon, USA. The population of mid-size watersheds (500-5800 ha) west of the Cascade Range divide was derived from watershed delineations based on digital elevation models. Because a database with locations of isolated populations of coastal cutthroat trout did not exist, a sampling frame of isolated watersheds containing cutthroat trout had to be developed. After the sampling frame of watersheds was established, isolated watersheds with coastal cutthroat trout were stratified by ecoregion and erosion potential based on dominant bedrock lithology (i.e., sedimentary and igneous). A stratified random sample of 60 watersheds was selected with proportional allocation in each stratum. By comparing watershed drainage areas of streams in the general population to those in the sampling frame and the resulting sample (n = 60), we were able to evaluate the how representative the subset of watersheds was in relation to the population of watersheds. Geospatial tools provided a relatively inexpensive means to generate the information necessary to develop a statistically robust, probability-based sampling design.

  9. Eutrophication and carbon sources in Chesapeake Bay over the last 2700 yr: Human impacts in context

    USGS Publications Warehouse

    Bratton, J.F.; Colman, Steven M.; Seal, R.R.

    2003-01-01

    To compare natural variability and trends in a developed estuary with human-influenced patterns, stable isotope ratios (δ13C and δ15N) were measured in sediments from five piston cores collected in Chesapeake Bay. Mixing of terrestrial and algal carbon sources primarily controls patterns of δ13Corg profiles, so this proxy shows changes in estuary productivity and in delivery of terrestrial carbon to the bay. Analyses of δ15N show periods when oxygen depletion allowed intense denitrification and nutrient recycling to develop in the seasonally stratified water column, in addition to recycling taking place in surficial sediments. These conditions produced 15N-enriched (heavy) nitrogen in algal biomass, and ultimately in sediment. A pronounced increasing trend in δ15N of +4‰ started in about A.D. 1750 to 1800 at all core sites, indicating greater eutrophication in the bay and summer oxygen depletion since that time. The timing of the change correlates with the advent of widespread land clearing and tillage in the watershed, and associated increases in erosion and sedimentation. Isotope data show that the region has experienced up to 13 wet-dry cycles in the last 2700 yr. Relative sea-level rise and basin infilling have produced a net freshening trend overprinted with cyclic climatic variability. Isotope data also constrain the relative position of the spring productivity maximum in Chesapeake Bay and distinguish local anomalies from sustained changes impacting large regions of the bay. This approach to reconstructing environmental history should be generally applicable to studies of other estuaries and coastal embayments impacted by watershed development.

  10. Survey of carbamate and organophosphorous pesticide export from a south Florida (U.S.A.) agricultural watershed: implications of sampling frequency on ecological risk estimation.

    PubMed

    Wilsont, P Chris; Foos, Jane Ferguson

    2006-11-01

    The objectives of the present study were to characterize the presence of selected carbamate and organophosphorous pesticides in Ten Mile Creek (Fort Pierce, FL, U.S.A.) and to evaluate the implications of sampling frequency on ecological risk estimates. Ten Mile Creek originates in a predominately agricultural watershed that is drained by an extensive network of cross-linked canals. Water samples were collected daily or every other day and were analyzed for azinphos-methyl, chlorpyrifos, diazinon, dimethoate, ethion, fenamiphos, malathion, methidathion, carbaryl, carbofuran, 3-hydroxycarbofuran, methiocarb, methomyl, oxamyl, and propoxur. A total of 457 samples were analyzed for the carbamate suite, and a total of 332 samples were analyzed for the organophosphorous suite. Carbaryl was detected in eight samples; half of these detections occurred on four consecutive days (October 26-29, 2001) at concentrations ranging from 0.33 to 0.95 microg/L. Methomyl was detected in samples collected on five consecutive days (March 30-April 3, 2002) at concentrations ranging from 1.0 to 2.2 microg/L. Oxamyl was detected in four samples, three of which occurred on three consecutive days (February 17-19, 2002) at concentrations ranging from 6.2 to 6.8 microg/L. The carbamates propoxur, 3-hydroxycarbofuran, carbofuran, and methiocarb were not detected. Diazinon and ethion were the only organophosphorous pesticides detected. Diazinon was detected at 0.9 and 0.7 microg/L on January 5, 2002, and on January 6, 2002, respectively. Ethion was detected in 18 consecutive samples (August 3-20, 2001). The mean, maximum, minimum, and median detected concentrations were 0.38, 0.61, 0.30, and 0.33 microg/L, respectively. Results indicate that frequent sampling is necessary to characterize the presence of these pesticides in this intensively drained watershed. This conclusion also may apply to similar canalized watersheds.

  11. Comparative analysis of long-term chlorophyll data with generalized additive model - San Francisco Bay and St. Lucie Estuary

    EPA Science Inventory

    The health of estuarine ecosystems is often influenced by hydraulic and nutrient loading from upstream watersheds. We examined four decades of monitoring data of nutrient export into the Indian River Lagoon and San Francisco Bay, both of which have received considerable attentio...

  12. Telemetric system for hydrology and water quality monitoring in watersheds of northern New Mexico, USA.

    PubMed

    Meyer, Michael L; Huey, Greg M

    2006-05-01

    This study utilized telemetric systems to sample microbes and pathogens in forest, burned forest, rangeland, and urban watersheds to assess surface water quality in northern New Mexico. Four sites included remote mountainous watersheds, prairie rangelands, and a small urban area. The telemetric system was linked to dataloggers with automated event monitoring equipment to monitor discharge, turbidity, electrical conductivity, water temperature, and rainfall during base flow and storm events. Site data stored in dataloggers was uploaded to one of three types of telemetry: 1) radio in rangeland and urban settings; 2) a conventional phone/modem system with a modem positioned at the urban/forest interface; and 3) a satellite system used in a remote mountainous burned forest watershed. The major variables affecting selection of each system were site access, distance, technology, and cost. The systems were compared based on operation and cost. Utilization of telecommunications systems in this varied geographic area facilitated the gathering of hydrologic and water quality data on a timely basis.

  13. MANAGEMENT OF DIFFUSE POLLUTION IN AGRICULTURAL WATERSHEDS: LESSONS FROM THE MINNESOTA RIVER BASIN. (R825290)

    EPA Science Inventory

    Abstract

    The Minnesota River (Minnesota, USA) receives large non-point source pollutant loads. Complex interactions between agricultural, state agency, environmental groups, and issues of scale make watershed management difficult. Subdividing the basin's 12 major water...

  14. TEMPORAL AND SPATIAL PATTERNS OF METHANE EMISSIONS FROM A RESERVOIR DRAINING AN AGRICULTURAL WATERSHED

    EPA Science Inventory

    We used multiple approaches to characterize temporal and spatial patterns in methane (CH4) emissions from a mid-latitude reservoir (William H. Harsha Lake, Ohio, USA) draining an agricultural watershed. Weekly to monthly monitoring at six sites in the reservoir during a 13 month...

  15. Anthropogenically induced changes in sediment and biogenic silica fluxes in Chesapeake Bay

    USGS Publications Warehouse

    Colman, Steven M.; Bratton, John F.

    2003-01-01

    Sediment cores as long as 20 m, dated by 14C, 210Pb, and 137Cs methods and pollen stratigraphy, provide a history of diatom productivity and sediment-accumulation rates in Chesapeake Bay. We calculated the flux of biogenic silica and total sediment for the past 1500 yr for two high-sedimentation-rate sites in the mesohaline section of the bay. The data show that biogenic silica flux to sediments, an index of diatom productivity in the bay, as well as its variability, were relatively low before European settlement of the Chesapeake Bay watershed. In the succeeding 300–400 yr, the flux of biogenic silica has increased by a factor of 4 to 5. Biogenic silica fluxes still appear to be increasing, despite recent nutrient-reduction efforts. The increase in diatom-produced biogenic silica has been partly masked (in concentration terms) by a similar increase in total sediment flux. This history suggests the magnitude of anthropogenic disturbance of the estuary and indicates that significant changes had occurred long before the twentieth century.

  16. Antropogenically induced changes in sediment and biogenic silica fluxes in Chesapeake Bay

    USGS Publications Warehouse

    Colman, Steven M.; Bratton, J.F.

    2003-01-01

    Sediment cores as long as 20 m, dated by 14C, 210Pb, and 137Cs methods and pollen stratigraphy, provide a history of diatom productivity and sediment-accumulation rates in Chesapeake Bay. We calculated the flux of biogenic silica and total sediment for the past 1500 yr for two high-sedimentation-rate sites in the mesohaline section of the bay. The data show that biogenic silica flux to sediments, an index of diatom productivity in the bay, as well as its variability, were relatively low before European settlement of the Chesapeake Bay watershed. In the succeeding 300-400 yr, the flux of biogenic silica has increased by a factor of 4 to 5. Biogenic silica fluxes still appear to be increasing, despite recent nutrient-reduction efforts. The increase in diatom-produced biogenic silica has been partly masked (in concentration terms) by a similar increase in total sediment flux. This history suggests the magnitude of anthropogenic disturbance of the estuary and indicates that significant changes had occurred long before the twentieth century.

  17. Predicting the Impacts of Climate Change on Runoff and Sediment Processes in Agricultural Watersheds: A Case Study from the Sunflower Watershed in the Lower Mississippi Basin

    NASA Astrophysics Data System (ADS)

    Elkadiri, R.; Momm, H.; Yasarer, L.; Armour, G. L.

    2017-12-01

    Climatic conditions play a major role in physical processes impacting soil and agrochemicals detachment and transportation from/in agricultural watersheds. In addition, these climatic conditions are projected to significantly vary spatially and temporally in the 21st century, leading to vast uncertainties about the future of sediment and non-point source pollution transport in agricultural watersheds. In this study, we selected the sunflower basin in the lower Mississippi River basin, USA to contribute in the understanding of how climate change affects watershed processes and the transport of pollutant loads. The climate projections used in this study were retrieved from the archive of World Climate Research Programme's (WCRP) Coupled Model Intercomparison Phase 5 (CMIP5) project. The CMIP5 dataset was selected because it contains the most up-to-date spatially downscaled and bias corrected climate projections. A subset of ten GCMs representing a range in projected climate were spatially downscaled for the sunflower watershed. Statistics derived from downscaled GCM output representing the 2011-2040, 2041-2070 and 2071-2100 time periods were used to generate maximum/minimum temperature and precipitation on a daily time step using the USDA Synthetic Weather Generator, SYNTOR. These downscaled climate data were then utilized as inputs to run in the Annualized Agricultural Non-Point Source (AnnAGNPS) pollution watershed model to estimate time series of runoff, sediment, and nutrient loads produced from the watershed. For baseline conditions a validated simulation of the watershed was created and validated using historical data from 2000 until 2015.

  18. Predicting watershed post-fire sediment yield with the InVEST sediment retention model: Accuracy and uncertainties

    USGS Publications Warehouse

    Sankey, Joel B.; McVay, Jason C.; Kreitler, Jason R.; Hawbaker, Todd J.; Vaillant, Nicole; Lowe, Scott

    2015-01-01

    Increased sedimentation following wildland fire can negatively impact water supply and water quality. Understanding how changing fire frequency, extent, and location will affect watersheds and the ecosystem services they supply to communities is of great societal importance in the western USA and throughout the world. In this work we assess the utility of the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) Sediment Retention Model to accurately characterize erosion and sedimentation of burned watersheds. InVEST was developed by the Natural Capital Project at Stanford University (Tallis et al., 2014) and is a suite of GIS-based implementations of common process models, engineered for high-end computing to allow the faster simulation of larger landscapes and incorporation into decision-making. The InVEST Sediment Retention Model is based on common soil erosion models (e.g., USLE – Universal Soil Loss Equation) and determines which areas of the landscape contribute the greatest sediment loads to a hydrological network and conversely evaluate the ecosystem service of sediment retention on a watershed basis. In this study, we evaluate the accuracy and uncertainties for InVEST predictions of increased sedimentation after fire, using measured postfire sediment yields available for many watersheds throughout the western USA from an existing, published large database. We show that the model can be parameterized in a relatively simple fashion to predict post-fire sediment yield with accuracy. Our ultimate goal is to use the model to accurately predict variability in post-fire sediment yield at a watershed scale as a function of future wildfire conditions.

  19. Mass balances of mercury and nitrogen in burned and unburned forested watersheds at Acadia National Park, Maine, USA.

    PubMed

    Nelson, S J; Johnson, K B; Kahl, J S; Haines, T A; Fernandez, I J

    2007-03-01

    Precipitation and streamwater samples were collected from 16 November 1999 to 17 November 2000 in two watersheds at Acadia National Park, Maine, and analyzed for mercury (Hg) and dissolved inorganic nitrogen (DIN, nitrate plus ammonium). Cadillac Brook watershed burned in a 1947 fire that destroyed vegetation and soil organic matter. We hypothesized that Hg deposition would be higher at Hadlock Brook (the reference watershed, 10.2 microg/m(2)/year) than Cadillac (9.4 microg/m(2)/year) because of the greater scavenging efficiency of the softwood vegetation in Hadlock. We also hypothesized the Hg and DIN export from Cadillac Brook would be lower than Hadlock Brook because of elemental volatilization during the fire, along with subsequently lower rates of atmospheric deposition in a watershed with abundant bare soil and bedrock, and regenerating vegetation. Consistent with these hypotheses, Hg export was lower from Cadillac Brook watershed (0.4 microg/m(2)/year) than from Hadlock Brook watershed (1.3 microg/m(2)/year). DIN export from Cadillac Brook (11.5 eq/ha/year) was lower than Hadlock Brook (92.5 eq/ha/year). These data show that approximately 50 years following a wildfire there was lower atmospheric deposition due to changes in forest species composition, lower soil pools, and greater ecosystem retention for both Hg and DIN.

  20. Mass balances of mercury and nitrogen in burned and unburned forested watersheds at Acadia National Park, Maine, USA

    USGS Publications Warehouse

    Nelson, S.J.; Johnson, K.B.; Kahl, J.S.; Haines, T.A.; Fernandez, I.J.

    2007-01-01

    Precipitation and streamwater samples were collected from 16 November 1999 to 17 November 2000 in two watersheds at Acadia National Park, Maine, and analyzed for mercury (Hg) and dissolved inorganic nitrogen (DIN, nitrate plus ammonium). Cadillac Brook watershed burned in a 1947 fire that destroyed vegetation and soil organic matter. We hypothesized that Hg deposition would be higher at Hadlock Brook (the reference watershed, 10.2 ??g/m2/year) than Cadillac (9.4 ??g/m2/year) because of the greater scavenging efficiency of the softwood vegetation in Hadlock. We also hypothesized the Hg and DIN export from Cadillac Brook would be lower than Hadlock Brook because of elemental volatilization during the fire, along with subsequently lower rates of atmospheric deposition in a watershed with abundant bare soil and bedrock, and regenerating vegetation. Consistent with these hypotheses, Hg export was lower from Cadillac Brook watershed (0.4 ??g/m2/year) than from Hadlock Brook watershed (1.3 ??g/m2/year). DIN export from Cadillac Brook (11.5 eq/ ha/year) was lower than Hadlock Brook (92.5 eq/ha/year). These data show that ??50 years following a wildfire there was lower atmospheric deposition due to changes in forest species composition, lower soil pools, and greater ecosystem retention for both Hg and DIN. ?? Springer Science + Business Media B.V. 2006.

  1. ASSESSING EFFECTS OF ALTERNATIVE AGRICULTURAL PRACTICES ON WILDLIFE HABITAT IN IOWA, USA

    EPA Science Inventory

    A habitat-change model was used to compare past, present, and future land cover and management practices to assess potential impacts of alternative agricultural practices on wildlife in two agricultural watersheds, Walnut Creek and Buck Creek, in central Iowa, USA. This approach ...

  2. Potential Impacts and Management Implications of Climate Change on Tampa Bay Estuary Critical Coastal Habitats

    NASA Astrophysics Data System (ADS)

    Sherwood, Edward T.; Greening, Holly S.

    2014-02-01

    The Tampa Bay estuary is a unique and valued ecosystem that currently thrives between subtropical and temperate climates along Florida's west-central coast. The watershed is considered urbanized (42 % lands developed); however, a suite of critical coastal habitats still persists. Current management efforts are focused toward restoring the historic balance of these habitat types to a benchmark 1950s period. We have modeled the anticipated changes to a suite of habitats within the Tampa Bay estuary using the sea level affecting marshes model under various sea level rise (SLR) scenarios. Modeled changes to the distribution and coverage of mangrove habitats within the estuary are expected to dominate the overall proportions of future critical coastal habitats. Modeled losses in salt marsh, salt barren, and coastal freshwater wetlands by 2100 will significantly affect the progress achieved in "Restoring the Balance" of these habitat types over recent periods. Future land management and acquisition priorities within the Tampa Bay estuary should consider the impending effects of both continued urbanization within the watershed and climate change. This requires the recognition that: (1) the Tampa Bay estuary is trending towards a mangrove-dominated system; (2) the current management paradigm of "Restoring the Balance" may no longer provide realistic, attainable goals; (3) restoration that creates habitat mosaics will prove more resilient in the future; and (4) establishing subtidal and upslope "refugia" may be a future strategy in this urbanized estuary to allow sensitive habitat types (e.g., seagrass and salt barren) to persist under anticipated climate change and SLR impacts.

  3. Potential impacts and management implications of climate change on Tampa Bay estuary critical coastal habitats.

    PubMed

    Sherwood, Edward T; Greening, Holly S

    2014-02-01

    The Tampa Bay estuary is a unique and valued ecosystem that currently thrives between subtropical and temperate climates along Florida's west-central coast. The watershed is considered urbanized (42 % lands developed); however, a suite of critical coastal habitats still persists. Current management efforts are focused toward restoring the historic balance of these habitat types to a benchmark 1950s period. We have modeled the anticipated changes to a suite of habitats within the Tampa Bay estuary using the sea level affecting marshes model under various sea level rise (SLR) scenarios. Modeled changes to the distribution and coverage of mangrove habitats within the estuary are expected to dominate the overall proportions of future critical coastal habitats. Modeled losses in salt marsh, salt barren, and coastal freshwater wetlands by 2100 will significantly affect the progress achieved in "Restoring the Balance" of these habitat types over recent periods. Future land management and acquisition priorities within the Tampa Bay estuary should consider the impending effects of both continued urbanization within the watershed and climate change. This requires the recognition that: (1) the Tampa Bay estuary is trending towards a mangrove-dominated system; (2) the current management paradigm of "Restoring the Balance" may no longer provide realistic, attainable goals; (3) restoration that creates habitat mosaics will prove more resilient in the future; and (4) establishing subtidal and upslope "refugia" may be a future strategy in this urbanized estuary to allow sensitive habitat types (e.g., seagrass and salt barren) to persist under anticipated climate change and SLR impacts.

  4. 75 FR 27552 - Guidance for Federal Land Management in the Chesapeake Bay Watershed

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... effective tools and practices available to reduce water pollution from a variety of nonpoint sources... describe ``proven cost-effective tools and practices that reduce water pollution'' that are appropriate to...: Katie Flahive, USEPA, Office of Water, Office of Wetlands, Oceans and Watersheds, 1200 Pennsylvania Ave...

  5. An Alexandrium Spp. Cyst Record from Sequim Bay, Washington State, USA, and its Relation to Past Climate Variability(1).

    PubMed

    Feifel, Kirsten M; Moore, Stephanie K; Horner, Rita A

    2012-06-01

    Since the 1970s, Puget Sound, Washington State, USA, has experienced an increase in detections of paralytic shellfish toxins (PSTs) in shellfish due to blooms of the harmful dinoflagellate Alexandrium. Natural patterns of climate variability, such as the Pacific Decadal Oscillation (PDO), and changes in local environmental factors, such as sea surface temperature (SST) and air temperature, have been linked to the observed increase in PSTs. However, the lack of observations of PSTs in shellfish prior to the 1950s has inhibited statistical assessments of longer-term trends in climate and environmental conditions on Alexandrium blooms. After a bloom, Alexandrium cells can enter a dormant cyst stage, which settles on the seafloor and then becomes entrained into the sedimentary record. In this study, we created a record of Alexandrium spp. cysts from a sediment core obtained from Sequim Bay, Puget Sound. Cyst abundances ranged from 0 to 400 cysts · cm(-3) and were detected down-core to a depth of 100 cm, indicating that Alexandrium has been present in Sequim Bay since at least the late 1800s. The cyst record allowed us to statistically examine relationships with available environmental parameters over the past century. Local air temperature and sea surface temperature were positively and significantly correlated with cyst abundances from the late 1800s to 2005; no significant relationship was found between PDO and cyst abundances. This finding suggests that local environmental variations more strongly influence Alexandrium population dynamics in Puget Sound when compared to large-scale changes. © 2012 Phycological Society of America.

  6. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and a USA technician examine cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and a USA technician examine cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  7. KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician briefs NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, USA Vice President and Space Shuttle Program Manager Howard DeCastro, and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik on the use of cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician briefs NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, USA Vice President and Space Shuttle Program Manager Howard DeCastro, and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik on the use of cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  8. Linking Ecosystem Services Supply to Stakeholder Values in Guanica Bay Watershed, Puerto Rico

    EPA Science Inventory

    Policies to protect coastal resources will be more effective when they account for the social and economic concerns of stakeholders in the coastal zone and watershed, and are responsive to potential tradeoffs between benefits offered by both land and sea. We focus on the Gu&aacu...

  9. Tampa Bay as a model estuary for examining the impact of human activities on biogeochemical processes: an introduction

    USGS Publications Warehouse

    Swarzenski, Peter W.; Baskaran, Mark; Henderson, Carl S.; Yates, Kim

    2007-01-01

    Tampa Bay is a shallow, Y-shaped coastal embayment that is located along the center of the Florida Platform – an expansive accumulation of Cretaceous–Tertiary shallow-water carbonates and evaporites that were periodically exposed during glacio–eustatic sea level fluctuations. As a consequence, extensive karstification likely had a controlling impact on the geologic evolution of Tampa Bay. Despite its large aerial size (∼ 1000 km2), Tampa Bay is relatively shallow (mean depth = 4 m) and its watershed (6700 km2) is among the smallest in the Gulf of Mexico. About 85% of all freshwater inflow (mean = 63 m3 s-1) to the bay is carried by four principal tributaries (Orlando et al., 1993). Groundwater makes up an important component of baseflow of these coastal streams and may also be important in delivering nutrients and other constituents to the bay proper by submarine groundwater discharge.

  10. Fresh Water Inflow and Oyster Productivity in Apalachicola Bay, FL (USA)

    EPA Science Inventory

    Apalachicola Bay lies at the mouth of the Apalachicola River, where seasonally variable freshwater inflows and shifting winds support an unusually productive and commercially important oyster fishery. While there is concern that upstream water withdrawals may impact the fishery,...

  11. Synthesis of U.S. Geological Survey science for the Chesapeake Bay ecosystem and implications for environmental management

    USGS Publications Warehouse

    Ator, Scott W.; Blazer, Vicki S.; Brakebill, John W.; Cahoon, Donald R.; Claggett, Peter; Cronin, Thomas M.; Denver, Judith M.; Densmore, Christine L.; Gellis, Allen C.; Hupp, Cliff R.; Landwehr, Jurate M.; Langland, Michael J.; Ottinger, Christopher A.; Pavich, Milan J.; Perry, Matthew C.; Phillips, Scott W.; Preston, Stephen D.; Raffensperger, Jeff P.; Rattner, Barnett A.; Rybicki, Nancy B.; Willard, Debra A.; Phillips, Scott W.

    2007-01-01

    The purpose of this report is to present a synthesis of the USGS Chesapeake Bay science related to the 2001-06 goals and provide implications for environmental management. The report provides USGS findings that address the science needs of the Chesapeake Bay Program (CBP) restoration goals and includes summaries of 1. land-use change; 2. water quality in the watershed, including nutrients, sediment, and contaminants; 3. long-term changes in climate and estuarine water quality; 4. estuary habitats, focusing on submerged aquatic vegetation (SAV) and tidal wetlands; and 5. factors affecting fish and waterbird populations.

  12. Development of Relations of Stream Stage to Channel Geometry and Discharge for Stream Segments Simulated with Hydrologic Simulation Program-Fortran (HSPF), Chesapeake Bay Watershed and Adjacent Parts of Virginia, Maryland, and Delaware

    USGS Publications Warehouse

    Moyer, Douglas; Bennett, Mark

    2007-01-01

    The U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (USEPA), Chesapeake Bay Program (CBP), Interstate Commission for the Potomac River Basin (ICPRB), Maryland Department of the Environment (MDE), Virginia Department of Conservation and Recreation (VADCR), and University of Maryland (UMD) are collaborating to improve the resolution of the Chesapeake Bay Regional Watershed Model (CBRWM). This watershed model uses the Hydrologic Simulation Program-Fortran (HSPF) to simulate the fate and transport of nutrients and sediment throughout the Chesapeake Bay watershed and extended areas of Virginia, Maryland, and Delaware. Information from the CBRWM is used by the CBP and other watershed managers to assess the effectiveness of water-quality improvement efforts as well as guide future management activities. A critical step in the improvement of the CBRWM framework was the development of an HSPF function table (FTABLE) for each represented stream channel. The FTABLE is used to relate stage (water depth) in a particular stream channel to associated channel surface area, channel volume, and discharge (streamflow). The primary tool used to generate an FTABLE for each stream channel is the XSECT program, a computer program that requires nine input variables used to represent channel morphology. These input variables are reach length, upstream and downstream elevation, channel bottom width, channel bankfull width, channel bankfull stage, slope of the floodplain, and Manning's roughness coefficient for the channel and floodplain. For the purpose of this study, the nine input variables were grouped into three categories: channel geometry, Manning's roughness coefficient, and channel and floodplain slope. Values of channel geometry for every stream segment represented in CBRWM were obtained by first developing regional regression models that relate basin drainage area to observed values of bankfull width, bankfull depth, and bottom width at each of the 290 USGS

  13. KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (top) discusses the inner workings of Shuttle Atlantis in Orbiter Processing Facility Bay 1 with a United Space Alliance (USA) technician (bottom). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (top) discusses the inner workings of Shuttle Atlantis in Orbiter Processing Facility Bay 1 with a United Space Alliance (USA) technician (bottom). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  14. KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right) discusses a speed brake on Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (left). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right) discusses a speed brake on Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (left). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  15. Geomorphology controls the trophic base of stream food webs in a boreal watershed .

    PubMed

    Smits, Adrianne P; Schindler, Daniel E; Brett, Michael T

    2015-07-01

    Abstract. Physical attributes of rivers control the quantity and quality of energy sources available to consumers, but it remains untested whether geomorphic conditions of whole watersheds affect the assimilation of different resources by stream organisms. We compared the fatty acid (FA) compositions of two invertebrate taxa (caddisflies, mayflies) collected from 16 streams in southwest Alaska, USA, to assess how assimilation of terrestrial organic matter (OM) and algae varied across a landscape gradient in watershed features. We found relatively higher assimilation of algae in high-gradient streams compared with low-gradient streams, and the opposite pattern for assimilation of terrestrial OM and microbes. The strength of these patterns was more pronounced for caddisflies than mayflies. Invertebrates from low-gradient watersheds had FA markers unique to methane-oxidizing bacteria and sulfate-reducing microbes, indicating a contribution of anaerobic pathways to primary consumers. Diversity of FA composition was highest in watersheds of intermediate slopes that contain both significant terrestrial inputs as well as high algal biomass. By controlling the accumulation rate and processing of terrestrial OM, watershed features influence the energetic base of food webs in boreal streams.

  16. Development of an integrated ecosystem model to determine effectiveness of potential watershed management projects on improving Old Tampa Bay

    Treesearch

    Edward T. Sherwood; Holly Greening; Lizanne Garcia; Kris Kaufman; Tony Janicki; Ray Pribble; Brett Cunningham; Steve Peene; Jim Fitzpatrick; Kellie Dixon; Mike Wessel

    2016-01-01

    The Tampa Bay estuary has undergone a remarkable ecosystem recovery since the 1980s despite continued population growth within the region. However during this time, the Old Tampa Bay (OTB) segment has lagged behind the rest of the Bay’s recovery relative to improvements in overall water quality and seagrass coverage. In 2011, the Tampa Bay Estuary Program, in...

  17. MODELING FISH AND SHELLFISH DISTRIBUTIONS IN THE MOBILE BAY ESTUARY, USA

    EPA Science Inventory

    Estuaries in the Gulf of Mexico provide rich habitat for many fish and shellfish, including those that have been identified as economically and ecologically important. For the Mobile Bay estuary, we developed statistical models to relate distributions of individual species and sp...

  18. Estimating Historical Nitrogen Loading Rates to Great Bay Estuary, NH USA

    EPA Science Inventory

    The state of New Hampshire is developing nutrient criteria for the Great Bay Estuary (GBE). Threshold values were proposed for total nitrogen concentration, chlorophyll-a, and light attenuation to be protective of aquatic life uses related to hypoxia and seagrass habitat. A previ...

  19. The hidden treasures of long-term paired watershed monitoring in the forests and grasslands of Arizona, USA

    Treesearch

    B. Poff; D. G. Neary; V. Henderson; A. Tecle

    2012-01-01

    Beginning in the 1950s, researchers of the United States Department of Agriculture Forest Service established a series of paired watershed studies throughout north-central and eastern Arizona. A total of nine experimental watershed areas were established in the pinyon-juniper and chaparral woodlands, as well as the ponderosa pine and mixed conifer forests. While most...

  20. Radioisotopic data of sediment collected in Mobile and Bon Secour Bays, Alabama

    USGS Publications Warehouse

    Marot, Marci E.; Smith, Christopher G.

    2012-01-01

    The focus of this study was to determine the extent of natural and (or) anthropogenic impacts on the sedimentary records of Mobile and Bon Secour Bays, Alabama during the last 150 years. These bays are unique in that anthropogenic activities are generally widespread and span both the eastern and western shorelines. However, there is a clear distinction in the types of human development and infrastructure between the western and eastern shorelines. These activities and the differences in land-use and -change influence the overall supply and remobilization of sediment to and within the bay. These factors could subsequently threaten the health and integrity of these environments and their ability to mitigate against long-term processes associated with climate change. In an attempt to characterize long-term accretion rates within the Mobile Bay Estuarine System (MBES), seven box cores were collected and analyzed for excess lead-210 (210Pbxs, the difference between total and supported 210Pb) and cesium-137 (137Cs) activities. The MBES receives sediment and water from the Alabama and Tombigbee River watersheds, which converge into the Mobile-Tensaw River (MTR) system just prior to discharging into Mobile Bay. Riverine discharge from the MTR system to the bay is second only to the Mississippi River discharge to the Gulf of Mexico for the conterminous United States.