Sample records for bayesian decision theory

  1. Bayesian Decision Theoretical Framework for Clustering

    ERIC Educational Resources Information Center

    Chen, Mo

    2011-01-01

    In this thesis, we establish a novel probabilistic framework for the data clustering problem from the perspective of Bayesian decision theory. The Bayesian decision theory view justifies the important questions: what is a cluster and what a clustering algorithm should optimize. We prove that the spectral clustering (to be specific, the…

  2. Bayesian inference and decision theory - A framework for decision making in natural resource management

    USGS Publications Warehouse

    Dorazio, R.M.; Johnson, F.A.

    2003-01-01

    Bayesian inference and decision theory may be used in the solution of relatively complex problems of natural resource management, owing to recent advances in statistical theory and computing. In particular, Markov chain Monte Carlo algorithms provide a computational framework for fitting models of adequate complexity and for evaluating the expected consequences of alternative management actions. We illustrate these features using an example based on management of waterfowl habitat.

  3. Bayesian-information-gap decision theory with an application to CO 2 sequestration

    DOE PAGES

    O'Malley, D.; Vesselinov, V. V.

    2015-09-04

    Decisions related to subsurface engineering problems such as groundwater management, fossil fuel production, and geologic carbon sequestration are frequently challenging because of an overabundance of uncertainties (related to conceptualizations, parameters, observations, etc.). Because of the importance of these problems to agriculture, energy, and the climate (respectively), good decisions that are scientifically defensible must be made despite the uncertainties. We describe a general approach to making decisions for challenging problems such as these in the presence of severe uncertainties that combines probabilistic and non-probabilistic methods. The approach uses Bayesian sampling to assess parametric uncertainty and Information-Gap Decision Theory (IGDT) to addressmore » model inadequacy. The combined approach also resolves an issue that frequently arises when applying Bayesian methods to real-world engineering problems related to the enumeration of possible outcomes. In the case of zero non-probabilistic uncertainty, the method reduces to a Bayesian method. Lastly, to illustrate the approach, we apply it to a site-selection decision for geologic CO 2 sequestration.« less

  4. Hepatitis disease detection using Bayesian theory

    NASA Astrophysics Data System (ADS)

    Maseleno, Andino; Hidayati, Rohmah Zahroh

    2017-02-01

    This paper presents hepatitis disease diagnosis using a Bayesian theory for better understanding of the theory. In this research, we used a Bayesian theory for detecting hepatitis disease and displaying the result of diagnosis process. Bayesian algorithm theory is rediscovered and perfected by Laplace, the basic idea is using of the known prior probability and conditional probability density parameter, based on Bayes theorem to calculate the corresponding posterior probability, and then obtained the posterior probability to infer and make decisions. Bayesian methods combine existing knowledge, prior probabilities, with additional knowledge derived from new data, the likelihood function. The initial symptoms of hepatitis which include malaise, fever and headache. The probability of hepatitis given the presence of malaise, fever, and headache. The result revealed that a Bayesian theory has successfully identified the existence of hepatitis disease.

  5. The image recognition based on neural network and Bayesian decision

    NASA Astrophysics Data System (ADS)

    Wang, Chugege

    2018-04-01

    The artificial neural network began in 1940, which is an important part of artificial intelligence. At present, it has become a hot topic in the fields of neuroscience, computer science, brain science, mathematics, and psychology. Thomas Bayes firstly reported the Bayesian theory in 1763. After the development in the twentieth century, it has been widespread in all areas of statistics. In recent years, due to the solution of the problem of high-dimensional integral calculation, Bayesian Statistics has been improved theoretically, which solved many problems that cannot be solved by classical statistics and is also applied to the interdisciplinary fields. In this paper, the related concepts and principles of the artificial neural network are introduced. It also summarizes the basic content and principle of Bayesian Statistics, and combines the artificial neural network technology and Bayesian decision theory and implement them in all aspects of image recognition, such as enhanced face detection method based on neural network and Bayesian decision, as well as the image classification based on the Bayesian decision. It can be seen that the combination of artificial intelligence and statistical algorithms has always been the hot research topic.

  6. Bayesian Decision Support

    NASA Astrophysics Data System (ADS)

    Berliner, M.

    2017-12-01

    Bayesian statistical decision theory offers a natural framework for decision-policy making in the presence of uncertainty. Key advantages of the approach include efficient incorporation of information and observations. However, in complicated settings it is very difficult, perhaps essentially impossible, to formalize the mathematical inputs needed in the approach. Nevertheless, using the approach as a template is useful for decision support; that is, organizing and communicating our analyses. Bayesian hierarchical modeling is valuable in quantifying and managing uncertainty such cases. I review some aspects of the idea emphasizing statistical model development and use in the context of sea-level rise.

  7. Advances in the Application of Decision Theory to Test-Based Decision Making.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    This paper reviews recent research in the Netherlands on the application of decision theory to test-based decision making about personnel selection and student placement. The review is based on an earlier model proposed for the classification of decision problems, and emphasizes an empirical Bayesian framework. Classification decisions with…

  8. The Bayesian reader: explaining word recognition as an optimal Bayesian decision process.

    PubMed

    Norris, Dennis

    2006-04-01

    This article presents a theory of visual word recognition that assumes that, in the tasks of word identification, lexical decision, and semantic categorization, human readers behave as optimal Bayesian decision makers. This leads to the development of a computational model of word recognition, the Bayesian reader. The Bayesian reader successfully simulates some of the most significant data on human reading. The model accounts for the nature of the function relating word frequency to reaction time and identification threshold, the effects of neighborhood density and its interaction with frequency, and the variation in the pattern of neighborhood density effects seen in different experimental tasks. Both the general behavior of the model and the way the model predicts different patterns of results in different tasks follow entirely from the assumption that human readers approximate optimal Bayesian decision makers. ((c) 2006 APA, all rights reserved).

  9. Probabilistic models in human sensorimotor control

    PubMed Central

    Wolpert, Daniel M.

    2009-01-01

    Sensory and motor uncertainty form a fundamental constraint on human sensorimotor control. Bayesian decision theory (BDT) has emerged as a unifying framework to understand how the central nervous system performs optimal estimation and control in the face of such uncertainty. BDT has two components: Bayesian statistics and decision theory. Here we review Bayesian statistics and show how it applies to estimating the state of the world and our own body. Recent results suggest that when learning novel tasks we are able to learn the statistical properties of both the world and our own sensory apparatus so as to perform estimation using Bayesian statistics. We review studies which suggest that humans can combine multiple sources of information to form maximum likelihood estimates, can incorporate prior beliefs about possible states of the world so as to generate maximum a posteriori estimates and can use Kalman filter-based processes to estimate time-varying states. Finally, we review Bayesian decision theory in motor control and how the central nervous system processes errors to determine loss functions and optimal actions. We review results that suggest we plan movements based on statistics of our actions that result from signal-dependent noise on our motor outputs. Taken together these studies provide a statistical framework for how the motor system performs in the presence of uncertainty. PMID:17628731

  10. A baker's dozen of new particle flows for nonlinear filters, Bayesian decisions and transport

    NASA Astrophysics Data System (ADS)

    Daum, Fred; Huang, Jim

    2015-05-01

    We describe a baker's dozen of new particle flows to compute Bayes' rule for nonlinear filters, Bayesian decisions and learning as well as transport. Several of these new flows were inspired by transport theory, but others were inspired by physics or statistics or Markov chain Monte Carlo methods.

  11. Bayesian Decision Theory Guiding Educational Decision-Making: Theories, Models and Application

    ERIC Educational Resources Information Center

    Pan, Yilin

    2016-01-01

    Given the importance of education and the growing public demand for improving education quality under tight budget constraints, there has been an emerging movement to call for research-informed decisions in educational resource allocation. Despite the abundance of rigorous studies on the effectiveness, cost, and implementation of educational…

  12. Quantum-Like Representation of Non-Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.

    2013-01-01

    This research is related to the problem of "irrational decision making or inference" that have been discussed in cognitive psychology. There are some experimental studies, and these statistical data cannot be described by classical probability theory. The process of decision making generating these data cannot be reduced to the classical Bayesian inference. For this problem, a number of quantum-like coginitive models of decision making was proposed. Our previous work represented in a natural way the classical Bayesian inference in the frame work of quantum mechanics. By using this representation, in this paper, we try to discuss the non-Bayesian (irrational) inference that is biased by effects like the quantum interference. Further, we describe "psychological factor" disturbing "rationality" as an "environment" correlating with the "main system" of usual Bayesian inference.

  13. Applications of Decision Theory to Test-Based Decision Making. Project Psychometric Aspects of Item Banking No. 23. Research Report 87-9.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    The use of Bayesian decision theory to solve problems in test-based decision making is discussed. Four basic decision problems are distinguished: (1) selection; (2) mastery; (3) placement; and (4) classification, the situation where each treatment has its own criterion. Each type of decision can be identified as a specific configuration of one or…

  14. Combining statistical inference and decisions in ecology

    USGS Publications Warehouse

    Williams, Perry J.; Hooten, Mevin B.

    2016-01-01

    Statistical decision theory (SDT) is a sub-field of decision theory that formally incorporates statistical investigation into a decision-theoretic framework to account for uncertainties in a decision problem. SDT provides a unifying analysis of three types of information: statistical results from a data set, knowledge of the consequences of potential choices (i.e., loss), and prior beliefs about a system. SDT links the theoretical development of a large body of statistical methods including point estimation, hypothesis testing, and confidence interval estimation. The theory and application of SDT have mainly been developed and published in the fields of mathematics, statistics, operations research, and other decision sciences, but have had limited exposure in ecology. Thus, we provide an introduction to SDT for ecologists and describe its utility for linking the conventionally separate tasks of statistical investigation and decision making in a single framework. We describe the basic framework of both Bayesian and frequentist SDT, its traditional use in statistics, and discuss its application to decision problems that occur in ecology. We demonstrate SDT with two types of decisions: Bayesian point estimation, and an applied management problem of selecting a prescribed fire rotation for managing a grassland bird species. Central to SDT, and decision theory in general, are loss functions. Thus, we also provide basic guidance and references for constructing loss functions for an SDT problem.

  15. Simultaneous Optimization of Decisions Using a Linear Utility Function.

    ERIC Educational Resources Information Center

    Vos, Hans J.

    1990-01-01

    An approach is presented to simultaneously optimize decision rules for combinations of elementary decisions through a framework derived from Bayesian decision theory. The developed linear utility model for selection-mastery decisions was applied to a sample of 43 first year medical students to illustrate the procedure. (SLD)

  16. Combining statistical inference and decisions in ecology.

    PubMed

    Williams, Perry J; Hooten, Mevin B

    2016-09-01

    Statistical decision theory (SDT) is a sub-field of decision theory that formally incorporates statistical investigation into a decision-theoretic framework to account for uncertainties in a decision problem. SDT provides a unifying analysis of three types of information: statistical results from a data set, knowledge of the consequences of potential choices (i.e., loss), and prior beliefs about a system. SDT links the theoretical development of a large body of statistical methods, including point estimation, hypothesis testing, and confidence interval estimation. The theory and application of SDT have mainly been developed and published in the fields of mathematics, statistics, operations research, and other decision sciences, but have had limited exposure in ecology. Thus, we provide an introduction to SDT for ecologists and describe its utility for linking the conventionally separate tasks of statistical investigation and decision making in a single framework. We describe the basic framework of both Bayesian and frequentist SDT, its traditional use in statistics, and discuss its application to decision problems that occur in ecology. We demonstrate SDT with two types of decisions: Bayesian point estimation and an applied management problem of selecting a prescribed fire rotation for managing a grassland bird species. Central to SDT, and decision theory in general, are loss functions. Thus, we also provide basic guidance and references for constructing loss functions for an SDT problem. © 2016 by the Ecological Society of America.

  17. Robust CO2 Injection: Application of Bayesian-Information-Gap Decision Theory

    NASA Astrophysics Data System (ADS)

    Grasinger, M.; O'Malley, D.; Vesselinov, V. V.; Karra, S.

    2015-12-01

    Carbon capture and sequestration has the potential to reduce greenhouse gasemissions. However, care must be taken when choosing a site for CO2 seques-tration to ensure that the CO2 remains sequestered for many years, and thatthe environment is not harmed in any way. Making a rational decision be-tween potential sites for sequestration is not without its challenges because, asin the case of many environmental and subsurface problems, there is a lot ofuncertainty that exists. A method for making decisions under various typesand severities of uncertainty, Bayesian-Information-Gap Decision Theory (BIGDT), is presented. BIG DT was coupled with a numerical model for CO2 wellinjection and the resulting framework was then applied to a problem of selectingbetween two potential sites for CO2 sequestration. The results of the analysisare presented, followed by a discussion of the decision process.

  18. A Bayesian Approach to Interactive Retrieval

    ERIC Educational Resources Information Center

    Tague, Jean M.

    1973-01-01

    A probabilistic model for interactive retrieval is presented. Bayesian statistical decision theory principles are applied: use of prior and sample information about the relationship of document descriptions to query relevance; maximization of expected value of a utility function, to the problem of optimally restructuring search strategies in an…

  19. Bayesian Nonparametric Prediction and Statistical Inference

    DTIC Science & Technology

    1989-09-07

    Kadane, J. (1980), "Bayesian decision theory and the sim- plification of models," in Evaluation of Econometric Models, J. Kmenta and J. Ramsey , eds...the random model and weighted least squares regression," in Evaluation of Econometric Models, ed. by J. Kmenta and J. Ramsey , Academic Press, 197-217...likelihood function. On the other hand, H. Jeffreys’s theory of hypothesis testing covers the most important situations in which the prior is not diffuse. See

  20. Compromise decision support problems for hierarchical design involving uncertainty

    NASA Astrophysics Data System (ADS)

    Vadde, S.; Allen, J. K.; Mistree, F.

    1994-08-01

    In this paper an extension to the traditional compromise Decision Support Problem (DSP) formulation is presented. Bayesian statistics is used in the formulation to model uncertainties associated with the information being used. In an earlier paper a compromise DSP that accounts for uncertainty using fuzzy set theory was introduced. The Bayesian Decision Support Problem is described in this paper. The method for hierarchical design is demonstrated by using this formulation to design a portal frame. The results are discussed and comparisons are made with those obtained using the fuzzy DSP. Finally, the efficacy of incorporating Bayesian statistics into the traditional compromise DSP formulation is discussed and some pending research issues are described. Our emphasis in this paper is on the method rather than the results per se.

  1. A Compensatory Approach to Optimal Selection with Mastery Scores. Research Report 94-2.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.; Vos, Hans J.

    This paper presents some Bayesian theories of simultaneous optimization of decision rules for test-based decisions. Simultaneous decision making arises when an institution has to make a series of selection, placement, or mastery decisions with respect to subjects from a population. An obvious example is the use of individualized instruction in…

  2. Testing adaptive toolbox models: a Bayesian hierarchical approach.

    PubMed

    Scheibehenne, Benjamin; Rieskamp, Jörg; Wagenmakers, Eric-Jan

    2013-01-01

    Many theories of human cognition postulate that people are equipped with a repertoire of strategies to solve the tasks they face. This theoretical framework of a cognitive toolbox provides a plausible account of intra- and interindividual differences in human behavior. Unfortunately, it is often unclear how to rigorously test the toolbox framework. How can a toolbox model be quantitatively specified? How can the number of toolbox strategies be limited to prevent uncontrolled strategy sprawl? How can a toolbox model be formally tested against alternative theories? The authors show how these challenges can be met by using Bayesian inference techniques. By means of parameter recovery simulations and the analysis of empirical data across a variety of domains (i.e., judgment and decision making, children's cognitive development, function learning, and perceptual categorization), the authors illustrate how Bayesian inference techniques allow toolbox models to be quantitatively specified, strategy sprawl to be contained, and toolbox models to be rigorously tested against competing theories. The authors demonstrate that their approach applies at the individual level but can also be generalized to the group level with hierarchical Bayesian procedures. The suggested Bayesian inference techniques represent a theoretical and methodological advancement for toolbox theories of cognition and behavior.

  3. Quantum Bayesian perspective for intelligence reservoir characterization, monitoring and management

    NASA Astrophysics Data System (ADS)

    Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia; de Jesús Correa, María

    2017-10-01

    The paper starts with a brief review of the literature about uncertainty in geological, geophysical and petrophysical data. In particular, we present the viewpoints of experts in geophysics on the application of Bayesian inference and subjective probability. Then we present arguments that the use of classical probability theory (CP) does not match completely the structure of geophysical data. We emphasize that such data are characterized by contextuality and non-Kolmogorovness (the impossibility to use the CP model), incompleteness as well as incompatibility of some geophysical measurements. These characteristics of geophysical data are similar to the characteristics of quantum physical data. Notwithstanding all this, contextuality can be seen as a major deviation of quantum theory from classical physics. In particular, the contextual probability viewpoint is the essence of the Växjö interpretation of quantum mechanics. We propose to use quantum probability (QP) for decision-making during the characterization, modelling, exploring and management of the intelligent hydrocarbon reservoir. Quantum Bayesianism (QBism), one of the recently developed information interpretations of quantum theory, can be used as the interpretational basis for such QP decision-making in geology, geophysics and petroleum projects design and management. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  4. Predicting Rotator Cuff Tears Using Data Mining and Bayesian Likelihood Ratios

    PubMed Central

    Lu, Hsueh-Yi; Huang, Chen-Yuan; Su, Chwen-Tzeng; Lin, Chen-Chiang

    2014-01-01

    Objectives Rotator cuff tear is a common cause of shoulder diseases. Correct diagnosis of rotator cuff tears can save patients from further invasive, costly and painful tests. This study used predictive data mining and Bayesian theory to improve the accuracy of diagnosing rotator cuff tears by clinical examination alone. Methods In this retrospective study, 169 patients who had a preliminary diagnosis of rotator cuff tear on the basis of clinical evaluation followed by confirmatory MRI between 2007 and 2011 were identified. MRI was used as a reference standard to classify rotator cuff tears. The predictor variable was the clinical assessment results, which consisted of 16 attributes. This study employed 2 data mining methods (ANN and the decision tree) and a statistical method (logistic regression) to classify the rotator cuff diagnosis into “tear” and “no tear” groups. Likelihood ratio and Bayesian theory were applied to estimate the probability of rotator cuff tears based on the results of the prediction models. Results Our proposed data mining procedures outperformed the classic statistical method. The correction rate, sensitivity, specificity and area under the ROC curve of predicting a rotator cuff tear were statistical better in the ANN and decision tree models compared to logistic regression. Based on likelihood ratios derived from our prediction models, Fagan's nomogram could be constructed to assess the probability of a patient who has a rotator cuff tear using a pretest probability and a prediction result (tear or no tear). Conclusions Our predictive data mining models, combined with likelihood ratios and Bayesian theory, appear to be good tools to classify rotator cuff tears as well as determine the probability of the presence of the disease to enhance diagnostic decision making for rotator cuff tears. PMID:24733553

  5. Learning classification trees

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1991-01-01

    Algorithms for learning classification trees have had successes in artificial intelligence and statistics over many years. How a tree learning algorithm can be derived from Bayesian decision theory is outlined. This introduces Bayesian techniques for splitting, smoothing, and tree averaging. The splitting rule turns out to be similar to Quinlan's information gain splitting rule, while smoothing and averaging replace pruning. Comparative experiments with reimplementations of a minimum encoding approach, Quinlan's C4 and Breiman et al. Cart show the full Bayesian algorithm is consistently as good, or more accurate than these other approaches though at a computational price.

  6. A generalized concept for cost-effective structural design. [Statistical Decision Theory applied to aerospace systems

    NASA Technical Reports Server (NTRS)

    Thomas, J. M.; Hawk, J. D.

    1975-01-01

    A generalized concept for cost-effective structural design is introduced. It is assumed that decisions affecting the cost effectiveness of aerospace structures fall into three basic categories: design, verification, and operation. Within these basic categories, certain decisions concerning items such as design configuration, safety factors, testing methods, and operational constraints are to be made. All or some of the variables affecting these decisions may be treated probabilistically. Bayesian statistical decision theory is used as the tool for determining the cost optimum decisions. A special case of the general problem is derived herein, and some very useful parametric curves are developed and applied to several sample structures.

  7. Groundwater Remediation using Bayesian Information-Gap Decision Theory

    NASA Astrophysics Data System (ADS)

    O'Malley, D.; Vesselinov, V. V.

    2016-12-01

    Probabilistic analyses of groundwater remediation scenarios frequently fail because the probability of an adverse, unanticipated event occurring is often high. In general, models of flow and transport in contaminated aquifers are always simpler than reality. Further, when a probabilistic analysis is performed, probability distributions are usually chosen more for convenience than correctness. The Bayesian Information-Gap Decision Theory (BIGDT) was designed to mitigate the shortcomings of the models and probabilistic decision analyses by leveraging a non-probabilistic decision theory - information-gap decision theory. BIGDT considers possible models that have not been explicitly enumerated and does not require us to commit to a particular probability distribution for model and remediation-design parameters. Both the set of possible models and the set of possible probability distributions grow as the degree of uncertainty increases. The fundamental question that BIGDT asks is "How large can these sets be before a particular decision results in an undesirable outcome?". The decision that allows these sets to be the largest is considered to be the best option. In this way, BIGDT enables robust decision-support for groundwater remediation problems. Here we apply BIGDT to in a representative groundwater remediation scenario where different options for hydraulic containment and pump & treat are being considered. BIGDT requires many model runs and for complex models high-performance computing resources are needed. These analyses are carried out on synthetic problems, but are applicable to real-world problems such as LANL site contaminations. BIGDT is implemented in Julia (a high-level, high-performance dynamic programming language for technical computing) and is part of the MADS framework (http://mads.lanl.gov/ and https://github.com/madsjulia/Mads.jl).

  8. Analysing and exemplifying forensic conclusion criteria in terms of Bayesian decision theory.

    PubMed

    Biedermann, A; Bozza, S; Taroni, F

    2018-03-01

    There is ongoing discussion in forensic science and the law about the nature of the conclusions reached based on scientific evidence, and on how such conclusions - and conclusion criteria - may be justified by rational argument. Examples, among others, are encountered in fields such as fingermarks (e.g., 'this fingermark comes from Mr. A's left thumb'), handwriting examinations (e.g., 'the questioned signature is that of Mr. A'), kinship analyses (e.g., 'Mr. A is the father of child C') or anthropology (e.g., 'these are human remains'). Considerable developments using formal methods of reasoning based on, for example (Bayesian) decision theory, are available in literature, but currently such reference principles are not explicitly used in operational forensic reporting and ensuing decision-making. Moreover, applied examples, illustrating the principles, are scarce. A potential consequence of this in practical proceedings, and hence a cause of concern, is that underlying ingredients of decision criteria (such as losses quantifying the undesirability of adverse decision consequences), are not properly dealt with. There is merit, thus, in pursuing the study and discussion of practical examples, demonstrating that formal decision-theoretic principles are not merely conceptual considerations. Actually, these principles can be shown to underpin practical decision-making procedures and existing legal decision criteria, though often not explicitly apparent as such. In this paper, we will present such examples and discuss their properties from a Bayesian decision-theoretic perspective. We will argue that these are essential concepts for an informed discourse on decision-making across forensic disciplines and the development of a coherent view on this topic. We will also emphasize that these principles are of normative nature in the sense that they provide standards against which actual judgment and decision-making may be compared. Most importantly, these standards are justified independently of peoples' observable decision behaviour, and of whether or not one endorses these formal methods of reasoning. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Quantum Bayesian perspective for intelligence reservoir characterization, monitoring and management.

    PubMed

    Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia; de Jesús Correa, María

    2017-11-13

    The paper starts with a brief review of the literature about uncertainty in geological, geophysical and petrophysical data. In particular, we present the viewpoints of experts in geophysics on the application of Bayesian inference and subjective probability. Then we present arguments that the use of classical probability theory (CP) does not match completely the structure of geophysical data. We emphasize that such data are characterized by contextuality and non-Kolmogorovness (the impossibility to use the CP model), incompleteness as well as incompatibility of some geophysical measurements. These characteristics of geophysical data are similar to the characteristics of quantum physical data. Notwithstanding all this, contextuality can be seen as a major deviation of quantum theory from classical physics. In particular, the contextual probability viewpoint is the essence of the Växjö interpretation of quantum mechanics. We propose to use quantum probability (QP) for decision-making during the characterization, modelling, exploring and management of the intelligent hydrocarbon reservoir Quantum Bayesianism (QBism), one of the recently developed information interpretations of quantum theory, can be used as the interpretational basis for such QP decision-making in geology, geophysics and petroleum projects design and management.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).

  10. Decision making with epistemic uncertainty under safety constraints: An application to seismic design

    USGS Publications Warehouse

    Veneziano, D.; Agarwal, A.; Karaca, E.

    2009-01-01

    The problem of accounting for epistemic uncertainty in risk management decisions is conceptually straightforward, but is riddled with practical difficulties. Simple approximations are often used whereby future variations in epistemic uncertainty are ignored or worst-case scenarios are postulated. These strategies tend to produce sub-optimal decisions. We develop a general framework based on Bayesian decision theory and exemplify it for the case of seismic design of buildings. When temporal fluctuations of the epistemic uncertainties and regulatory safety constraints are included, the optimal level of seismic protection exceeds the normative level at the time of construction. Optimal Bayesian decisions do not depend on the aleatory or epistemic nature of the uncertainties, but only on the total (epistemic plus aleatory) uncertainty and how that total uncertainty varies randomly during the lifetime of the project. ?? 2009 Elsevier Ltd. All rights reserved.

  11. A Simultaneous Approach to Optimizing Treatment Assignments with Mastery Scores. Research Report 89-5.

    ERIC Educational Resources Information Center

    Vos, Hans J.

    An approach to simultaneous optimization of assignments of subjects to treatments followed by an end-of-mastery test is presented using the framework of Bayesian decision theory. Focus is on demonstrating how rules for the simultaneous optimization of sequences of decisions can be found. The main advantages of the simultaneous approach, compared…

  12. The anatomy of choice: dopamine and decision-making

    PubMed Central

    Friston, Karl; Schwartenbeck, Philipp; FitzGerald, Thomas; Moutoussis, Michael; Behrens, Timothy; Dolan, Raymond J.

    2014-01-01

    This paper considers goal-directed decision-making in terms of embodied or active inference. We associate bounded rationality with approximate Bayesian inference that optimizes a free energy bound on model evidence. Several constructs such as expected utility, exploration or novelty bonuses, softmax choice rules and optimism bias emerge as natural consequences of free energy minimization. Previous accounts of active inference have focused on predictive coding. In this paper, we consider variational Bayes as a scheme that the brain might use for approximate Bayesian inference. This scheme provides formal constraints on the computational anatomy of inference and action, which appear to be remarkably consistent with neuroanatomy. Active inference contextualizes optimal decision theory within embodied inference, where goals become prior beliefs. For example, expected utility theory emerges as a special case of free energy minimization, where the sensitivity or inverse temperature (associated with softmax functions and quantal response equilibria) has a unique and Bayes-optimal solution. Crucially, this sensitivity corresponds to the precision of beliefs about behaviour. The changes in precision during variational updates are remarkably reminiscent of empirical dopaminergic responses—and they may provide a new perspective on the role of dopamine in assimilating reward prediction errors to optimize decision-making. PMID:25267823

  13. The anatomy of choice: dopamine and decision-making.

    PubMed

    Friston, Karl; Schwartenbeck, Philipp; FitzGerald, Thomas; Moutoussis, Michael; Behrens, Timothy; Dolan, Raymond J

    2014-11-05

    This paper considers goal-directed decision-making in terms of embodied or active inference. We associate bounded rationality with approximate Bayesian inference that optimizes a free energy bound on model evidence. Several constructs such as expected utility, exploration or novelty bonuses, softmax choice rules and optimism bias emerge as natural consequences of free energy minimization. Previous accounts of active inference have focused on predictive coding. In this paper, we consider variational Bayes as a scheme that the brain might use for approximate Bayesian inference. This scheme provides formal constraints on the computational anatomy of inference and action, which appear to be remarkably consistent with neuroanatomy. Active inference contextualizes optimal decision theory within embodied inference, where goals become prior beliefs. For example, expected utility theory emerges as a special case of free energy minimization, where the sensitivity or inverse temperature (associated with softmax functions and quantal response equilibria) has a unique and Bayes-optimal solution. Crucially, this sensitivity corresponds to the precision of beliefs about behaviour. The changes in precision during variational updates are remarkably reminiscent of empirical dopaminergic responses-and they may provide a new perspective on the role of dopamine in assimilating reward prediction errors to optimize decision-making.

  14. Goal-oriented Site Characterization in Hydrogeological Applications: An Overview

    NASA Astrophysics Data System (ADS)

    Nowak, W.; de Barros, F.; Rubin, Y.

    2011-12-01

    In this study, we address the importance of goal-oriented site characterization. Given the multiple sources of uncertainty in hydrogeological applications, information needs of modeling, prediction and decision support should be satisfied with efficient and rational field campaigns. In this work, we provide an overview of an optimal sampling design framework based on Bayesian decision theory, statistical parameter inference and Bayesian model averaging. It optimizes the field sampling campaign around decisions on environmental performance metrics (e.g., risk, arrival times, etc.) while accounting for parametric and model uncertainty in the geostatistical characterization, in forcing terms, and measurement error. The appealing aspects of the framework lie on its goal-oriented character and that it is directly linked to the confidence in a specified decision. We illustrate how these concepts could be applied in a human health risk problem where uncertainty from both hydrogeological and health parameters are accounted.

  15. On the use of Bayesian decision theory for issuing natural hazard warnings

    NASA Astrophysics Data System (ADS)

    Economou, T.; Stephenson, D. B.; Rougier, J. C.; Neal, R. A.; Mylne, K. R.

    2016-10-01

    Warnings for natural hazards improve societal resilience and are a good example of decision-making under uncertainty. A warning system is only useful if well defined and thus understood by stakeholders. However, most operational warning systems are heuristic: not formally or transparently defined. Bayesian decision theory provides a framework for issuing warnings under uncertainty but has not been fully exploited. Here, a decision theoretic framework is proposed for hazard warnings. The framework allows any number of warning levels and future states of nature, and a mathematical model for constructing the necessary loss functions for both generic and specific end-users is described. The approach is illustrated using one-day ahead warnings of daily severe precipitation over the UK, and compared to the current decision tool used by the UK Met Office. A probability model is proposed to predict precipitation, given ensemble forecast information, and loss functions are constructed for two generic stakeholders: an end-user and a forecaster. Results show that the Met Office tool issues fewer high-level warnings compared with our system for the generic end-user, suggesting the former may not be suitable for risk averse end-users. In addition, raw ensemble forecasts are shown to be unreliable and result in higher losses from warnings.

  16. On the use of Bayesian decision theory for issuing natural hazard warnings.

    PubMed

    Economou, T; Stephenson, D B; Rougier, J C; Neal, R A; Mylne, K R

    2016-10-01

    Warnings for natural hazards improve societal resilience and are a good example of decision-making under uncertainty. A warning system is only useful if well defined and thus understood by stakeholders. However, most operational warning systems are heuristic: not formally or transparently defined. Bayesian decision theory provides a framework for issuing warnings under uncertainty but has not been fully exploited. Here, a decision theoretic framework is proposed for hazard warnings. The framework allows any number of warning levels and future states of nature, and a mathematical model for constructing the necessary loss functions for both generic and specific end-users is described. The approach is illustrated using one-day ahead warnings of daily severe precipitation over the UK, and compared to the current decision tool used by the UK Met Office. A probability model is proposed to predict precipitation, given ensemble forecast information, and loss functions are constructed for two generic stakeholders: an end-user and a forecaster. Results show that the Met Office tool issues fewer high-level warnings compared with our system for the generic end-user, suggesting the former may not be suitable for risk averse end-users. In addition, raw ensemble forecasts are shown to be unreliable and result in higher losses from warnings.

  17. On the use of Bayesian decision theory for issuing natural hazard warnings

    PubMed Central

    Stephenson, D. B.; Rougier, J. C.; Neal, R. A.; Mylne, K. R.

    2016-01-01

    Warnings for natural hazards improve societal resilience and are a good example of decision-making under uncertainty. A warning system is only useful if well defined and thus understood by stakeholders. However, most operational warning systems are heuristic: not formally or transparently defined. Bayesian decision theory provides a framework for issuing warnings under uncertainty but has not been fully exploited. Here, a decision theoretic framework is proposed for hazard warnings. The framework allows any number of warning levels and future states of nature, and a mathematical model for constructing the necessary loss functions for both generic and specific end-users is described. The approach is illustrated using one-day ahead warnings of daily severe precipitation over the UK, and compared to the current decision tool used by the UK Met Office. A probability model is proposed to predict precipitation, given ensemble forecast information, and loss functions are constructed for two generic stakeholders: an end-user and a forecaster. Results show that the Met Office tool issues fewer high-level warnings compared with our system for the generic end-user, suggesting the former may not be suitable for risk averse end-users. In addition, raw ensemble forecasts are shown to be unreliable and result in higher losses from warnings. PMID:27843399

  18. Practical differences among probabilities, possibilities, and credibilities

    NASA Astrophysics Data System (ADS)

    Grandin, Jean-Francois; Moulin, Caroline

    2002-03-01

    This paper presents some important differences that exist between theories, which allow the uncertainty management in data fusion. The main comparative results illustrated in this paper are the followings: Incompatibility between decisions got from probabilities and credibilities is highlighted. In the dynamic frame, as remarked in [19] or [17], belief and plausibility of Dempster-Shafer model do not frame the Bayesian probability. This framing can however be obtained by the Modified Dempster-Shafer approach. It also can be obtained in the Bayesian framework either by simulation techniques, or with a studentization. The uncommitted in the Dempster-Shafer way, e.g. the mass accorded to the ignorance, gives a mechanism similar to the reliability in the Bayesian model. Uncommitted mass in Dempster-Shafer theory or reliability in Bayes theory act like a filter that weakens extracted information, and improves robustness to outliners. So, it is logical to observe on examples like the one presented particularly by D.M. Buede, a faster convergence of a Bayesian method that doesn't take into account the reliability, in front of Dempster-Shafer method which uses uncommitted mass. But, on Bayesian masses, if reliability is taken into account, at the same level that the uncommited, e.g. F=1-m, we observe an equivalent rate for convergence. When Dempster-Shafer and Bayes operator are informed by uncertainty, faster or lower convergence can be exhibited on non Bayesian masses. This is due to positive or negative synergy between information delivered by sensors. This effect is a direct consequence of non additivity when considering non Bayesian masses. Unknowledge of the prior in bayesian techniques can be quickly compensated by information accumulated as time goes on by a set of sensors. All these results are presented on simple examples, and developed when necessary.

  19. Evaluating Courses of Actions at the Strategic Planning Level

    DTIC Science & Technology

    2013-03-01

    and statistical decision theory ( Schultz , Borrowman and Small 2011). Nowadays, it is hard to make a decision by ourselves. Modern organizations...Analysis." Lecture Slides, October 2011. Schultz , Martin T., Thomas D. Borrowman, and Mitchell J. Small. Bayesian Networks for Modeling Dredging...www.ukessays.com/essays/business/strategic-analysis-of-procter-and-gamble.php (accessed October 09, 2012). Vego, Milan . Joint Operational Warfare. Vol. Vol 1

  20. A Transferrable Belief Model Representation for Physical Security of Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Gerts

    This work analyzed various probabilistic methods such as classic statistics, Bayesian inference, possibilistic theory, and Dempster-Shafer theory of belief functions for the potential insight offered into the physical security of nuclear materials as well as more broad application to nuclear non-proliferation automated decision making theory. A review of the fundamental heuristic and basic limitations of each of these methods suggested that the Dempster-Shafer theory of belief functions may offer significant capability. Further examination of the various interpretations of Dempster-Shafer theory, such as random set, generalized Bayesian, and upper/lower probability demonstrate some limitations. Compared to the other heuristics, the transferrable beliefmore » model (TBM), one of the leading interpretations of Dempster-Shafer theory, can improve the automated detection of the violation of physical security using sensors and human judgment. The improvement is shown to give a significant heuristic advantage over other probabilistic options by demonstrating significant successes for several classic gedanken experiments.« less

  1. Optimal Sequential Rules for Computer-Based Instruction.

    ERIC Educational Resources Information Center

    Vos, Hans J.

    1998-01-01

    Formulates sequential rules for adapting the appropriate amount of instruction to learning needs in the context of computer-based instruction. Topics include Bayesian decision theory, threshold and linear-utility structure, psychometric model, optimal sequential number of test questions, and an empirical example of sequential instructional…

  2. The Psychological Mechanism of the Slippery Slope Argument

    ERIC Educational Resources Information Center

    Corner, Adam; Hahn, Ulrike; Oaksford, Mike

    2011-01-01

    Slippery slope arguments (SSAs) have a bad philosophical reputation. They seem, however, to be widely used and frequently accepted in many legal, political, and ethical contexts. Hahn and Oaksford (2007) argued that distinguishing strong and weak SSAs may have a rational basis in Bayesian decision theory. In this paper three experiments…

  3. An overview of the essential differences and similarities of system identification techniques

    NASA Technical Reports Server (NTRS)

    Mehra, Raman K.

    1991-01-01

    Information is given in the form of outlines, graphs, tables and charts. Topics include system identification, Bayesian statistical decision theory, Maximum Likelihood Estimation, identification methods, structural mode identification using a stochastic realization algorithm, and identification results regarding membrane simulations and X-29 flutter flight test data.

  4. A decision aid for intensity-modulated radiation-therapy plan selection in prostate cancer based on a prognostic Bayesian network and a Markov model.

    PubMed

    Smith, Wade P; Doctor, Jason; Meyer, Jürgen; Kalet, Ira J; Phillips, Mark H

    2009-06-01

    The prognosis of cancer patients treated with intensity-modulated radiation-therapy (IMRT) is inherently uncertain, depends on many decision variables, and requires that a physician balance competing objectives: maximum tumor control with minimal treatment complications. In order to better deal with the complex and multiple objective nature of the problem we have combined a prognostic probabilistic model with multi-attribute decision theory which incorporates patient preferences for outcomes. The response to IMRT for prostate cancer was modeled. A Bayesian network was used for prognosis for each treatment plan. Prognoses included predicting local tumor control, regional spread, distant metastases, and normal tissue complications resulting from treatment. A Markov model was constructed and used to calculate a quality-adjusted life-expectancy which aids in the multi-attribute decision process. Our method makes explicit the tradeoffs patients face between quality and quantity of life. This approach has advantages over current approaches because with our approach risks of health outcomes and patient preferences determine treatment decisions.

  5. Reliability-based econometrics of aerospace structural systems: Design criteria and test options. Ph.D. Thesis - Georgia Inst. of Tech.

    NASA Technical Reports Server (NTRS)

    Thomas, J. M.; Hanagud, S.

    1974-01-01

    The design criteria and test options for aerospace structural reliability were investigated. A decision methodology was developed for selecting a combination of structural tests and structural design factors. The decision method involves the use of Bayesian statistics and statistical decision theory. Procedures are discussed for obtaining and updating data-based probabilistic strength distributions for aerospace structures when test information is available and for obtaining subjective distributions when data are not available. The techniques used in developing the distributions are explained.

  6. Application and Exploration of Big Data Mining in Clinical Medicine.

    PubMed

    Zhang, Yue; Guo, Shu-Li; Han, Li-Na; Li, Tie-Ling

    2016-03-20

    To review theories and technologies of big data mining and their application in clinical medicine. Literatures published in English or Chinese regarding theories and technologies of big data mining and the concrete applications of data mining technology in clinical medicine were obtained from PubMed and Chinese Hospital Knowledge Database from 1975 to 2015. Original articles regarding big data mining theory/technology and big data mining's application in the medical field were selected. This review characterized the basic theories and technologies of big data mining including fuzzy theory, rough set theory, cloud theory, Dempster-Shafer theory, artificial neural network, genetic algorithm, inductive learning theory, Bayesian network, decision tree, pattern recognition, high-performance computing, and statistical analysis. The application of big data mining in clinical medicine was analyzed in the fields of disease risk assessment, clinical decision support, prediction of disease development, guidance of rational use of drugs, medical management, and evidence-based medicine. Big data mining has the potential to play an important role in clinical medicine.

  7. A Bayesian Tutoring System for Newtonian Mechanics: Can It Adapt to Different Learners?

    ERIC Educational Resources Information Center

    Pek, Peng-Kiat; Poh, Kim-Leng

    2004-01-01

    Newtonian mechanics is a core module in technology courses, but is difficult for many students to learn. Computerized tutoring can assist the teachers to provide individualized instruction. This article presents the application of decision theory to develop a tutoring system, "iTutor", to select optimal tutoring actions under uncertainty of…

  8. PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory.

    PubMed

    Xue, Yu; Li, Ao; Wang, Lirong; Feng, Huanqing; Yao, Xuebiao

    2006-03-20

    As a reversible and dynamic post-translational modification (PTM) of proteins, phosphorylation plays essential regulatory roles in a broad spectrum of the biological processes. Although many studies have been contributed on the molecular mechanism of phosphorylation dynamics, the intrinsic feature of substrates specificity is still elusive and remains to be delineated. In this work, we present a novel, versatile and comprehensive program, PPSP (Prediction of PK-specific Phosphorylation site), deployed with approach of Bayesian decision theory (BDT). PPSP could predict the potential phosphorylation sites accurately for approximately 70 PK (Protein Kinase) groups. Compared with four existing tools Scansite, NetPhosK, KinasePhos and GPS, PPSP is more accurate and powerful than these tools. Moreover, PPSP also provides the prediction for many novel PKs, say, TRK, mTOR, SyK and MET/RON, etc. The accuracy of these novel PKs are also satisfying. Taken together, we propose that PPSP could be a potentially powerful tool for the experimentalists who are focusing on phosphorylation substrates with their PK-specific sites identification. Moreover, the BDT strategy could also be a ubiquitous approach for PTMs, such as sumoylation and ubiquitination, etc.

  9. A product Pearson-type VII density distribution

    NASA Astrophysics Data System (ADS)

    Nadarajah, Saralees; Kotz, Samuel

    2008-01-01

    The Pearson-type VII distributions (containing the Student's t distributions) are becoming increasing prominent and are being considered as competitors to the normal distribution. Motivated by real examples in decision sciences, Bayesian statistics, probability theory and Physics, a new Pearson-type VII distribution is introduced by taking the product of two Pearson-type VII pdfs. Various structural properties of this distribution are derived, including its cdf, moments, mean deviation about the mean, mean deviation about the median, entropy, asymptotic distribution of the extreme order statistics, maximum likelihood estimates and the Fisher information matrix. Finally, an application to a Bayesian testing problem is illustrated.

  10. Bayesian averaging over Decision Tree models for trauma severity scoring.

    PubMed

    Schetinin, V; Jakaite, L; Krzanowski, W

    2018-01-01

    Health care practitioners analyse possible risks of misleading decisions and need to estimate and quantify uncertainty in predictions. We have examined the "gold" standard of screening a patient's conditions for predicting survival probability, based on logistic regression modelling, which is used in trauma care for clinical purposes and quality audit. This methodology is based on theoretical assumptions about data and uncertainties. Models induced within such an approach have exposed a number of problems, providing unexplained fluctuation of predicted survival and low accuracy of estimating uncertainty intervals within which predictions are made. Bayesian method, which in theory is capable of providing accurate predictions and uncertainty estimates, has been adopted in our study using Decision Tree models. Our approach has been tested on a large set of patients registered in the US National Trauma Data Bank and has outperformed the standard method in terms of prediction accuracy, thereby providing practitioners with accurate estimates of the predictive posterior densities of interest that are required for making risk-aware decisions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Quantum-Like Bayesian Networks for Modeling Decision Making

    PubMed Central

    Moreira, Catarina; Wichert, Andreas

    2016-01-01

    In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios. PMID:26858669

  12. An assessment of Gallistel's (2012) rationalistic account of extinction phenomena.

    PubMed

    Miller, Ralph R

    2012-05-01

    Gallistel (2012) asserts that animals use rationalistic reasoning (i.e., information theory and Bayesian inference) to make decisions that underlie select extinction phenomena. Rational processes are presumed to lead to evolutionarily optimal behavior. Thus, Gallistel's model is a type of optimality theory. But optimality theory is only a theory, a theory about an ideal organism, and its predictions frequently deviate appreciably from observed behavior of animals in the laboratory and the real world. That is, behavior of animals is often far from optimal, as is evident in many behavioral phenomena. Hence, appeals to optimality theory to explain, rather than illuminate, actual behavior are misguided. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Essays on inference in economics, competition, and the rate of profit

    NASA Astrophysics Data System (ADS)

    Scharfenaker, Ellis S.

    This dissertation is comprised of three papers that demonstrate the role of Bayesian methods of inference and Shannon's information theory in classical political economy. The first chapter explores the empirical distribution of profit rate data from North American firms from 1962-2012. This chapter address the fact that existing methods for sample selection from noisy profit rate data in the industrial organization field of economics tends to be conditional on a covariate's value that risks discarding information. Conditioning sample selection instead on the profit rate data's structure by means of a two component (signal and noise) Bayesian mixture model we find the the profit rate sample to be time stationary Laplace distributed, corroborating earlier estimates of cross section distributions. The second chapter compares alternative probabilistic approaches to discrete (quantal) choice analysis and examines the various ways in which they overlap. In particular, the work on individual choice behavior by Duncan Luce and the extension of this work to quantal response problems by game theoreticians is shown to be related both to the rational inattention work of Christopher Sims through Shannon's information theory as well as to the maximum entropy principle of inference proposed physicist Edwin T. Jaynes. In the third chapter I propose a model of ``classically" competitive firms facing informational entropy constraints in their decisions to potentially enter or exit markets based on profit rate differentials. The result is a three parameter logit quantal response distribution for firm entry and exit decisions. Bayesian methods are used for inference into the the distribution of entry and exit decisions conditional on profit rate deviations and firm level data from Compustat is used to test these predictions.

  14. Decision theory, reinforcement learning, and the brain.

    PubMed

    Dayan, Peter; Daw, Nathaniel D

    2008-12-01

    Decision making is a core competence for animals and humans acting and surviving in environments they only partially comprehend, gaining rewards and punishments for their troubles. Decision-theoretic concepts permeate experiments and computational models in ethology, psychology, and neuroscience. Here, we review a well-known, coherent Bayesian approach to decision making, showing how it unifies issues in Markovian decision problems, signal detection psychophysics, sequential sampling, and optimal exploration and discuss paradigmatic psychological and neural examples of each problem. We discuss computational issues concerning what subjects know about their task and how ambitious they are in seeking optimal solutions; we address algorithmic topics concerning model-based and model-free methods for making choices; and we highlight key aspects of the neural implementation of decision making.

  15. Goal-directed decision making as probabilistic inference: A computational framework and potential neural correlates

    PubMed Central

    Solway, A.; Botvinick, M.

    2013-01-01

    Recent work has given rise to the view that reward-based decision making is governed by two key controllers: a habit system, which stores stimulus-response associations shaped by past reward, and a goal-oriented system that selects actions based on their anticipated outcomes. The current literature provides a rich body of computational theory addressing habit formation, centering on temporal-difference learning mechanisms. Less progress has been made toward formalizing the processes involved in goal-directed decision making. We draw on recent work in cognitive neuroscience, animal conditioning, cognitive and developmental psychology and machine learning, to outline a new theory of goal-directed decision making. Our basic proposal is that the brain, within an identifiable network of cortical and subcortical structures, implements a probabilistic generative model of reward, and that goal-directed decision making is effected through Bayesian inversion of this model. We present a set of simulations implementing the account, which address benchmark behavioral and neuroscientific findings, and which give rise to a set of testable predictions. We also discuss the relationship between the proposed framework and other models of decision making, including recent models of perceptual choice, to which our theory bears a direct connection. PMID:22229491

  16. The Neural Correlates of Hierarchical Predictions for Perceptual Decisions.

    PubMed

    Weilnhammer, Veith A; Stuke, Heiner; Sterzer, Philipp; Schmack, Katharina

    2018-05-23

    Sensory information is inherently noisy, sparse, and ambiguous. In contrast, visual experience is usually clear, detailed, and stable. Bayesian theories of perception resolve this discrepancy by assuming that prior knowledge about the causes underlying sensory stimulation actively shapes perceptual decisions. The CNS is believed to entertain a generative model aligned to dynamic changes in the hierarchical states of our volatile sensory environment. Here, we used model-based fMRI to study the neural correlates of the dynamic updating of hierarchically structured predictions in male and female human observers. We devised a crossmodal associative learning task with covertly interspersed ambiguous trials in which participants engaged in hierarchical learning based on changing contingencies between auditory cues and visual targets. By inverting a Bayesian model of perceptual inference, we estimated individual hierarchical predictions, which significantly biased perceptual decisions under ambiguity. Although "high-level" predictions about the cue-target contingency correlated with activity in supramodal regions such as orbitofrontal cortex and hippocampus, dynamic "low-level" predictions about the conditional target probabilities were associated with activity in retinotopic visual cortex. Our results suggest that our CNS updates distinct representations of hierarchical predictions that continuously affect perceptual decisions in a dynamically changing environment. SIGNIFICANCE STATEMENT Bayesian theories posit that our brain entertains a generative model to provide hierarchical predictions regarding the causes of sensory information. Here, we use behavioral modeling and fMRI to study the neural underpinnings of such hierarchical predictions. We show that "high-level" predictions about the strength of dynamic cue-target contingencies during crossmodal associative learning correlate with activity in orbitofrontal cortex and the hippocampus, whereas "low-level" conditional target probabilities were reflected in retinotopic visual cortex. Our findings empirically corroborate theorizations on the role of hierarchical predictions in visual perception and contribute substantially to a longstanding debate on the link between sensory predictions and orbitofrontal or hippocampal activity. Our work fundamentally advances the mechanistic understanding of perceptual inference in the human brain. Copyright © 2018 the authors 0270-6474/18/385008-14$15.00/0.

  17. Bayesian techniques for analyzing group differences in the Iowa Gambling Task: A case study of intuitive and deliberate decision-makers.

    PubMed

    Steingroever, Helen; Pachur, Thorsten; Šmíra, Martin; Lee, Michael D

    2018-06-01

    The Iowa Gambling Task (IGT) is one of the most popular experimental paradigms for comparing complex decision-making across groups. Most commonly, IGT behavior is analyzed using frequentist tests to compare performance across groups, and to compare inferred parameters of cognitive models developed for the IGT. Here, we present a Bayesian alternative based on Bayesian repeated-measures ANOVA for comparing performance, and a suite of three complementary model-based methods for assessing the cognitive processes underlying IGT performance. The three model-based methods involve Bayesian hierarchical parameter estimation, Bayes factor model comparison, and Bayesian latent-mixture modeling. We illustrate these Bayesian methods by applying them to test the extent to which differences in intuitive versus deliberate decision style are associated with differences in IGT performance. The results show that intuitive and deliberate decision-makers behave similarly on the IGT, and the modeling analyses consistently suggest that both groups of decision-makers rely on similar cognitive processes. Our results challenge the notion that individual differences in intuitive and deliberate decision styles have a broad impact on decision-making. They also highlight the advantages of Bayesian methods, especially their ability to quantify evidence in favor of the null hypothesis, and that they allow model-based analyses to incorporate hierarchical and latent-mixture structures.

  18. The Development of Bayesian Theory and Its Applications in Business and Bioinformatics

    NASA Astrophysics Data System (ADS)

    Zhang, Yifei

    2018-03-01

    Bayesian Theory originated from an Essay of a British mathematician named Thomas Bayes in 1763, and after its development in 20th century, Bayesian Statistics has been taking a significant part in statistical study of all fields. Due to the recent breakthrough of high-dimensional integral, Bayesian Statistics has been improved and perfected, and now it can be used to solve problems that Classical Statistics failed to solve. This paper summarizes Bayesian Statistics’ history, concepts and applications, which are illustrated in five parts: the history of Bayesian Statistics, the weakness of Classical Statistics, Bayesian Theory and its development and applications. The first two parts make a comparison between Bayesian Statistics and Classical Statistics in a macroscopic aspect. And the last three parts focus on Bayesian Theory in specific -- from introducing some particular Bayesian Statistics’ concepts to listing their development and finally their applications.

  19. Application and Exploration of Big Data Mining in Clinical Medicine

    PubMed Central

    Zhang, Yue; Guo, Shu-Li; Han, Li-Na; Li, Tie-Ling

    2016-01-01

    Objective: To review theories and technologies of big data mining and their application in clinical medicine. Data Sources: Literatures published in English or Chinese regarding theories and technologies of big data mining and the concrete applications of data mining technology in clinical medicine were obtained from PubMed and Chinese Hospital Knowledge Database from 1975 to 2015. Study Selection: Original articles regarding big data mining theory/technology and big data mining's application in the medical field were selected. Results: This review characterized the basic theories and technologies of big data mining including fuzzy theory, rough set theory, cloud theory, Dempster–Shafer theory, artificial neural network, genetic algorithm, inductive learning theory, Bayesian network, decision tree, pattern recognition, high-performance computing, and statistical analysis. The application of big data mining in clinical medicine was analyzed in the fields of disease risk assessment, clinical decision support, prediction of disease development, guidance of rational use of drugs, medical management, and evidence-based medicine. Conclusion: Big data mining has the potential to play an important role in clinical medicine. PMID:26960378

  20. In-situ resource utilization for the human exploration of Mars : a Bayesian approach to valuation of precursor missions

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.

    2006-01-01

    The need for sufficient quantities of oxygen, water, and fuel resources to support a crew on the surface of Mars presents a critical logistical issue of whether to transport such resources from Earth or manufacture them on Mars. An approach based on the classical Wildcat Drilling Problem of Bayesian decision theory was applied to the problem of finding water in order to compute the expected value of precursor mission sample information. An implicit (required) probability of finding water on Mars was derived from the value of sample information using the expected mass savings of alternative precursor missions.

  1. Learning Negotiation Policies Using IB3 and Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Nalepa, Gislaine M.; Ávila, Bráulio C.; Enembreck, Fabrício; Scalabrin, Edson E.

    This paper presents an intelligent offer policy in a negotiation environment, in which each agent involved learns the preferences of its opponent in order to improve its own performance. Each agent must also be able to detect drifts in the opponent's preferences so as to quickly adjust itself to their new offer policy. For this purpose, two simple learning techniques were first evaluated: (i) based on instances (IB3) and (ii) based on Bayesian Networks. Additionally, as its known that in theory group learning produces better results than individual/single learning, the efficiency of IB3 and Bayesian classifier groups were also analyzed. Finally, each decision model was evaluated in moments of concept drift, being the drift gradual, moderate or abrupt. Results showed that both groups of classifiers were able to effectively detect drifts in the opponent's preferences.

  2. Bayesian accounts of covert selective attention: A tutorial review.

    PubMed

    Vincent, Benjamin T

    2015-05-01

    Decision making and optimal observer models offer an important theoretical approach to the study of covert selective attention. While their probabilistic formulation allows quantitative comparison to human performance, the models can be complex and their insights are not always immediately apparent. Part 1 establishes the theoretical appeal of the Bayesian approach, and introduces the way in which probabilistic approaches can be applied to covert search paradigms. Part 2 presents novel formulations of Bayesian models of 4 important covert attention paradigms, illustrating optimal observer predictions over a range of experimental manipulations. Graphical model notation is used to present models in an accessible way and Supplementary Code is provided to help bridge the gap between model theory and practical implementation. Part 3 reviews a large body of empirical and modelling evidence showing that many experimental phenomena in the domain of covert selective attention are a set of by-products. These effects emerge as the result of observers conducting Bayesian inference with noisy sensory observations, prior expectations, and knowledge of the generative structure of the stimulus environment.

  3. Probabilistic Model for Untargeted Peak Detection in LC-MS Using Bayesian Statistics.

    PubMed

    Woldegebriel, Michael; Vivó-Truyols, Gabriel

    2015-07-21

    We introduce a novel Bayesian probabilistic peak detection algorithm for liquid chromatography-mass spectroscopy (LC-MS). The final probabilistic result allows the user to make a final decision about which points in a chromatogram are affected by a chromatographic peak and which ones are only affected by noise. The use of probabilities contrasts with the traditional method in which a binary answer is given, relying on a threshold. By contrast, with the Bayesian peak detection presented here, the values of probability can be further propagated into other preprocessing steps, which will increase (or decrease) the importance of chromatographic regions into the final results. The present work is based on the use of the statistical overlap theory of component overlap from Davis and Giddings (Davis, J. M.; Giddings, J. Anal. Chem. 1983, 55, 418-424) as prior probability in the Bayesian formulation. The algorithm was tested on LC-MS Orbitrap data and was able to successfully distinguish chemical noise from actual peaks without any data preprocessing.

  4. Beyond statistical inference: A decision theory for science

    PubMed Central

    KILLEEN, PETER R.

    2008-01-01

    Traditional null hypothesis significance testing does not yield the probability of the null or its alternative and, therefore, cannot logically ground scientific decisions. The decision theory proposed here calculates the expected utility of an effect on the basis of (1) the probability of replicating it and (2) a utility function on its size. It takes significance tests—which place all value on the replicability of an effect and none on its magnitude—as a special case, one in which the cost of a false positive is revealed to be an order of magnitude greater than the value of a true positive. More realistic utility functions credit both replicability and effect size, integrating them for a single index of merit. The analysis incorporates opportunity cost and is consistent with alternate measures of effect size, such as r2 and information transmission, and with Bayesian model selection criteria. An alternate formulation is functionally equivalent to the formal theory, transparent, and easy to compute. PMID:17201351

  5. Beyond statistical inference: a decision theory for science.

    PubMed

    Killeen, Peter R

    2006-08-01

    Traditional null hypothesis significance testing does not yield the probability of the null or its alternative and, therefore, cannot logically ground scientific decisions. The decision theory proposed here calculates the expected utility of an effect on the basis of (1) the probability of replicating it and (2) a utility function on its size. It takes significance tests--which place all value on the replicability of an effect and none on its magnitude--as a special case, one in which the cost of a false positive is revealed to be an order of magnitude greater than the value of a true positive. More realistic utility functions credit both replicability and effect size, integrating them for a single index of merit. The analysis incorporates opportunity cost and is consistent with alternate measures of effect size, such as r2 and information transmission, and with Bayesian model selection criteria. An alternate formulation is functionally equivalent to the formal theory, transparent, and easy to compute.

  6. A model of adaptive decision-making from representation of information environment by quantum fields.

    PubMed

    Bagarello, F; Haven, E; Khrennikov, A

    2017-11-13

    We present the mathematical model of decision-making (DM) of agents acting in a complex and uncertain environment (combining huge variety of economical, financial, behavioural and geopolitical factors). To describe interaction of agents with it, we apply the formalism of quantum field theory (QTF). Quantum fields are a purely informational nature. The QFT model can be treated as a far relative of the expected utility theory, where the role of utility is played by adaptivity to an environment (bath). However, this sort of utility-adaptivity cannot be represented simply as a numerical function. The operator representation in Hilbert space is used and adaptivity is described as in quantum dynamics. We are especially interested in stabilization of solutions for sufficiently large time. The outputs of this stabilization process, probabilities for possible choices, are treated in the framework of classical DM. To connect classical and quantum DM, we appeal to Quantum Bayesianism. We demonstrate the quantum-like interference effect in DM, which is exhibited as a violation of the formula of total probability, and hence the classical Bayesian inference scheme.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).

  7. A model of adaptive decision-making from representation of information environment by quantum fields

    NASA Astrophysics Data System (ADS)

    Bagarello, F.; Haven, E.; Khrennikov, A.

    2017-10-01

    We present the mathematical model of decision-making (DM) of agents acting in a complex and uncertain environment (combining huge variety of economical, financial, behavioural and geopolitical factors). To describe interaction of agents with it, we apply the formalism of quantum field theory (QTF). Quantum fields are a purely informational nature. The QFT model can be treated as a far relative of the expected utility theory, where the role of utility is played by adaptivity to an environment (bath). However, this sort of utility-adaptivity cannot be represented simply as a numerical function. The operator representation in Hilbert space is used and adaptivity is described as in quantum dynamics. We are especially interested in stabilization of solutions for sufficiently large time. The outputs of this stabilization process, probabilities for possible choices, are treated in the framework of classical DM. To connect classical and quantum DM, we appeal to Quantum Bayesianism. We demonstrate the quantum-like interference effect in DM, which is exhibited as a violation of the formula of total probability, and hence the classical Bayesian inference scheme. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  8. Data Sufficiency Assessment and Pumping Test Design for Groundwater Prediction Using Decision Theory and Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    McPhee, J.; William, Y. W.

    2005-12-01

    This work presents a methodology for pumping test design based on the reliability requirements of a groundwater model. Reliability requirements take into consideration the application of the model results in groundwater management, expressed in this case as a multiobjective management model. The pumping test design is formulated as a mixed-integer nonlinear programming (MINLP) problem and solved using a combination of genetic algorithm (GA) and gradient-based optimization. Bayesian decision theory provides a formal framework for assessing the influence of parameter uncertainty over the reliability of the proposed pumping test. The proposed methodology is useful for selecting a robust design that will outperform all other candidate designs under most potential 'true' states of the system

  9. The decisive future of inflation

    NASA Astrophysics Data System (ADS)

    Hardwick, Robert J.; Vennin, Vincent; Wands, David

    2018-05-01

    How much more will we learn about single-field inflationary models in the future? We address this question in the context of Bayesian design and information theory. We develop a novel method to compute the expected utility of deciding between models and apply it to a set of futuristic measurements. This necessarily requires one to evaluate the Bayesian evidence many thousands of times over, which is numerically challenging. We show how this can be done using a number of simplifying assumptions and discuss their validity. We also modify the form of the expected utility, as previously introduced in the literature in different contexts, in order to partition each possible future into either the rejection of models at the level of the maximum likelihood or the decision between models using Bayesian model comparison. We then quantify the ability of future experiments to constrain the reheating temperature and the scalar running. Our approach allows us to discuss possible strategies for maximising information from future cosmological surveys. In particular, our conclusions suggest that, in the context of inflationary model selection, a decrease in the measurement uncertainty of the scalar spectral index would be more decisive than a decrease in the uncertainty in the tensor-to-scalar ratio. We have incorporated our approach into a publicly available python class, foxi,1 that can be readily applied to any survey optimisation problem.

  10. Quantum mechanics: The Bayesian theory generalized to the space of Hermitian matrices

    NASA Astrophysics Data System (ADS)

    Benavoli, Alessio; Facchini, Alessandro; Zaffalon, Marco

    2016-10-01

    We consider the problem of gambling on a quantum experiment and enforce rational behavior by a few rules. These rules yield, in the classical case, the Bayesian theory of probability via duality theorems. In our quantum setting, they yield the Bayesian theory generalized to the space of Hermitian matrices. This very theory is quantum mechanics: in fact, we derive all its four postulates from the generalized Bayesian theory. This implies that quantum mechanics is self-consistent. It also leads us to reinterpret the main operations in quantum mechanics as probability rules: Bayes' rule (measurement), marginalization (partial tracing), independence (tensor product). To say it with a slogan, we obtain that quantum mechanics is the Bayesian theory in the complex numbers.

  11. Ambiguity and Uncertainty in Probabilistic Inference.

    DTIC Science & Technology

    1984-06-01

    Bulletin, 1967, 68, 29-46. *Rappoport, A., a Wllston, T. S . *individual decision behavior . Annual Review of Psychology, 1972, 23, 131-176. * Savage, L... Behavior and Human Performance, 1973, 10 40-423. Shafer , G. A. A mathematical theory of evidence. Princeton, NJ: Princeton University Press, 1976.- *~-7... S . Comparison of Bayesian and regression approaches to the study of information processing in judgment. Organizational Behavior and Human

  12. Perceptual decision making: drift-diffusion model is equivalent to a Bayesian model

    PubMed Central

    Bitzer, Sebastian; Park, Hame; Blankenburg, Felix; Kiebel, Stefan J.

    2014-01-01

    Behavioral data obtained with perceptual decision making experiments are typically analyzed with the drift-diffusion model. This parsimonious model accumulates noisy pieces of evidence toward a decision bound to explain the accuracy and reaction times of subjects. Recently, Bayesian models have been proposed to explain how the brain extracts information from noisy input as typically presented in perceptual decision making tasks. It has long been known that the drift-diffusion model is tightly linked with such functional Bayesian models but the precise relationship of the two mechanisms was never made explicit. Using a Bayesian model, we derived the equations which relate parameter values between these models. In practice we show that this equivalence is useful when fitting multi-subject data. We further show that the Bayesian model suggests different decision variables which all predict equal responses and discuss how these may be discriminated based on neural correlates of accumulated evidence. In addition, we discuss extensions to the Bayesian model which would be difficult to derive for the drift-diffusion model. We suggest that these and other extensions may be highly useful for deriving new experiments which test novel hypotheses. PMID:24616689

  13. Using Bayesian Networks and Decision Theory to Model Physical Security

    DTIC Science & Technology

    2003-02-01

    Home automation technologies allow a person to monitor and control various activities within a home or office setting. Cameras, sensors and other...components used along with the simple rules in the home automation software provide an environment where the lights, security and other appliances can be...monitored and controlled. These home automation technologies, however, lack the power to reason under uncertain conditions and thus the system can

  14. Open-Universe Theory for Bayesian Inference, Decision, and Sensing (OUTBIDS)

    DTIC Science & Technology

    2014-01-01

    using a novel dynamic programming algorithm [6]. The second allows for tensor data, in which observations at a given time step exhibit...unlimited. 5 We developed a dynamical tensor model that gives far better estimation and system- identification results than the standard vectorization...inference. Third, unlike prior work that learns different pieces of the model independently, use matching between 3D models and 2D views and/or voting

  15. Bayesian just-so stories in psychology and neuroscience.

    PubMed

    Bowers, Jeffrey S; Davis, Colin J

    2012-05-01

    According to Bayesian theories in psychology and neuroscience, minds and brains are (near) optimal in solving a wide range of tasks. We challenge this view and argue that more traditional, non-Bayesian approaches are more promising. We make 3 main arguments. First, we show that the empirical evidence for Bayesian theories in psychology is weak. This weakness relates to the many arbitrary ways that priors, likelihoods, and utility functions can be altered in order to account for the data that are obtained, making the models unfalsifiable. It further relates to the fact that Bayesian theories are rarely better at predicting data compared with alternative (and simpler) non-Bayesian theories. Second, we show that the empirical evidence for Bayesian theories in neuroscience is weaker still. There are impressive mathematical analyses showing how populations of neurons could compute in a Bayesian manner but little or no evidence that they do. Third, we challenge the general scientific approach that characterizes Bayesian theorizing in cognitive science. A common premise is that theories in psychology should largely be constrained by a rational analysis of what the mind ought to do. We question this claim and argue that many of the important constraints come from biological, evolutionary, and processing (algorithmic) considerations that have no adaptive relevance to the problem per se. In our view, these factors have contributed to the development of many Bayesian "just so" stories in psychology and neuroscience; that is, mathematical analyses of cognition that can be used to explain almost any behavior as optimal. 2012 APA, all rights reserved.

  16. PGT: A Statistical Approach to Prediction and Mechanism Design

    NASA Astrophysics Data System (ADS)

    Wolpert, David H.; Bono, James W.

    One of the biggest challenges facing behavioral economics is the lack of a single theoretical framework that is capable of directly utilizing all types of behavioral data. One of the biggest challenges of game theory is the lack of a framework for making predictions and designing markets in a manner that is consistent with the axioms of decision theory. An approach in which solution concepts are distribution-valued rather than set-valued (i.e. equilibrium theory) has both capabilities. We call this approach Predictive Game Theory (or PGT). This paper outlines a general Bayesian approach to PGT. It also presents one simple example to illustrate the way in which this approach differs from equilibrium approaches in both prediction and mechanism design settings.

  17. Neural Mechanisms for Integrating Prior Knowledge and Likelihood in Value-Based Probabilistic Inference

    PubMed Central

    Ting, Chih-Chung; Yu, Chia-Chen; Maloney, Laurence T.

    2015-01-01

    In Bayesian decision theory, knowledge about the probabilities of possible outcomes is captured by a prior distribution and a likelihood function. The prior reflects past knowledge and the likelihood summarizes current sensory information. The two combined (integrated) form a posterior distribution that allows estimation of the probability of different possible outcomes. In this study, we investigated the neural mechanisms underlying Bayesian integration using a novel lottery decision task in which both prior knowledge and likelihood information about reward probability were systematically manipulated on a trial-by-trial basis. Consistent with Bayesian integration, as sample size increased, subjects tended to weigh likelihood information more compared with prior information. Using fMRI in humans, we found that the medial prefrontal cortex (mPFC) correlated with the mean of the posterior distribution, a statistic that reflects the integration of prior knowledge and likelihood of reward probability. Subsequent analysis revealed that both prior and likelihood information were represented in mPFC and that the neural representations of prior and likelihood in mPFC reflected changes in the behaviorally estimated weights assigned to these different sources of information in response to changes in the environment. Together, these results establish the role of mPFC in prior-likelihood integration and highlight its involvement in representing and integrating these distinct sources of information. PMID:25632152

  18. Evidence-based Sensor Tasking for Space Domain Awareness

    NASA Astrophysics Data System (ADS)

    Jaunzemis, A.; Holzinger, M.; Jah, M.

    2016-09-01

    Space Domain Awareness (SDA) is the actionable knowledge required to predict, avoid, deter, operate through, recover from, and/or attribute cause to the loss and/or degradation of space capabilities and services. A main purpose for SDA is to provide decision-making processes with a quantifiable and timely body of evidence of behavior(s) attributable to specific space threats and/or hazards. To fulfill the promise of SDA, it is necessary for decision makers and analysts to pose specific hypotheses that may be supported or refuted by evidence, some of which may only be collected using sensor networks. While Bayesian inference may support some of these decision making needs, it does not adequately capture ambiguity in supporting evidence; i.e., it struggles to rigorously quantify 'known unknowns' for decision makers. Over the past 40 years, evidential reasoning approaches such as Dempster Shafer theory have been developed to address problems with ambiguous bodies of evidence. This paper applies mathematical theories of evidence using Dempster Shafer expert systems to address the following critical issues: 1) How decision makers can pose critical decision criteria as rigorous, testable hypotheses, 2) How to interrogate these hypotheses to reduce ambiguity, and 3) How to task a network of sensors to gather evidence for multiple competing hypotheses. This theory is tested using a simulated sensor tasking scenario balancing search versus track responsibilities.

  19. A dynamic, embodied paradigm to investigate the role of serotonin in decision-making

    PubMed Central

    Asher, Derrik E.; Craig, Alexis B.; Zaldivar, Andrew; Brewer, Alyssa A.; Krichmar, Jeffrey L.

    2013-01-01

    Serotonin (5-HT) is a neuromodulator that has been attributed to cost assessment and harm aversion. In this review, we look at the role 5-HT plays in making decisions when subjects are faced with potential harmful or costly outcomes. We review approaches for examining the serotonergic system in decision-making. We introduce our group’s paradigm used to investigate how 5-HT affects decision-making. In particular, our paradigm combines techniques from computational neuroscience, socioeconomic game theory, human–robot interaction, and Bayesian statistics. We will highlight key findings from our previous studies utilizing this paradigm, which helped expand our understanding of 5-HT’s effect on decision-making in relation to cost assessment. Lastly, we propose a cyclic multidisciplinary approach that may aid in addressing the complexity of exploring 5-HT and decision-making by iteratively updating our assumptions and models of the serotonergic system through exhaustive experimentation. PMID:24319413

  20. Bayesian Just-So Stories in Psychology and Neuroscience

    ERIC Educational Resources Information Center

    Bowers, Jeffrey S.; Davis, Colin J.

    2012-01-01

    According to Bayesian theories in psychology and neuroscience, minds and brains are (near) optimal in solving a wide range of tasks. We challenge this view and argue that more traditional, non-Bayesian approaches are more promising. We make 3 main arguments. First, we show that the empirical evidence for Bayesian theories in psychology is weak.…

  1. A bayesian approach to classification criteria for spectacled eiders

    USGS Publications Warehouse

    Taylor, B.L.; Wade, P.R.; Stehn, R.A.; Cochrane, J.F.

    1996-01-01

    To facilitate decisions to classify species according to risk of extinction, we used Bayesian methods to analyze trend data for the Spectacled Eider, an arctic sea duck. Trend data from three independent surveys of the Yukon-Kuskokwim Delta were analyzed individually and in combination to yield posterior distributions for population growth rates. We used classification criteria developed by the recovery team for Spectacled Eiders that seek to equalize errors of under- or overprotecting the species. We conducted both a Bayesian decision analysis and a frequentist (classical statistical inference) decision analysis. Bayesian decision analyses are computationally easier, yield basically the same results, and yield results that are easier to explain to nonscientists. With the exception of the aerial survey analysis of the 10 most recent years, both Bayesian and frequentist methods indicated that an endangered classification is warranted. The discrepancy between surveys warrants further research. Although the trend data are abundance indices, we used a preliminary estimate of absolute abundance to demonstrate how to calculate extinction distributions using the joint probability distributions for population growth rate and variance in growth rate generated by the Bayesian analysis. Recent apparent increases in abundance highlight the need for models that apply to declining and then recovering species.

  2. Value of Landsat in urban water resources planning

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Ragan, R. M.

    1977-01-01

    The reported investigation had the objective to evaluate the utility of satellite multispectral remote sensing in urban water resources planning. The results are presented of a study which was conducted to determine the economic impact of Landsat data. The use of Landsat data to estimate hydrologic model parameters employed in urban water resources planning is discussed. A decision regarding an employment of the Landsat data has to consider the tradeoff between data accuracy and cost. Bayesian decision theory is used in this connection. It is concluded that computer-aided interpretation of Landsat data is a highly cost-effective method of estimating the percentage of impervious area.

  3. Bayesian Regression with Network Prior: Optimal Bayesian Filtering Perspective

    PubMed Central

    Qian, Xiaoning; Dougherty, Edward R.

    2017-01-01

    The recently introduced intrinsically Bayesian robust filter (IBRF) provides fully optimal filtering relative to a prior distribution over an uncertainty class ofjoint random process models, whereas formerly the theory was limited to model-constrained Bayesian robust filters, for which optimization was limited to the filters that are optimal for models in the uncertainty class. This paper extends the IBRF theory to the situation where there are both a prior on the uncertainty class and sample data. The result is optimal Bayesian filtering (OBF), where optimality is relative to the posterior distribution derived from the prior and the data. The IBRF theories for effective characteristics and canonical expansions extend to the OBF setting. A salient focus of the present work is to demonstrate the advantages of Bayesian regression within the OBF setting over the classical Bayesian approach in the context otlinear Gaussian models. PMID:28824268

  4. A web-based neurological pain classifier tool utilizing Bayesian decision theory for pain classification in spinal cord injury patients

    NASA Astrophysics Data System (ADS)

    Verma, Sneha K.; Chun, Sophia; Liu, Brent J.

    2014-03-01

    Pain is a common complication after spinal cord injury with prevalence estimates ranging 77% to 81%, which highly affects a patient's lifestyle and well-being. In the current clinical setting paper-based forms are used to classify pain correctly, however, the accuracy of diagnoses and optimal management of pain largely depend on the expert reviewer, which in many cases is not possible because of very few experts in this field. The need for a clinical decision support system that can be used by expert and non-expert clinicians has been cited in literature, but such a system has not been developed. We have designed and developed a stand-alone tool for correctly classifying pain type in spinal cord injury (SCI) patients, using Bayesian decision theory. Various machine learning simulation methods are used to verify the algorithm using a pilot study data set, which consists of 48 patients data set. The data set consists of the paper-based forms, collected at Long Beach VA clinic with pain classification done by expert in the field. Using the WEKA as the machine learning tool we have tested on the 48 patient dataset that the hypothesis that attributes collected on the forms and the pain location marked by patients have very significant impact on the pain type classification. This tool will be integrated with an imaging informatics system to support a clinical study that will test the effectiveness of using Proton Beam radiotherapy for treating spinal cord injury (SCI) related neuropathic pain as an alternative to invasive surgical lesioning.

  5. Application of bayesian networks to real-time flood risk estimation

    NASA Astrophysics Data System (ADS)

    Garrote, L.; Molina, M.; Blasco, G.

    2003-04-01

    This paper presents the application of a computational paradigm taken from the field of artificial intelligence - the bayesian network - to model the behaviour of hydrologic basins during floods. The final goal of this research is to develop representation techniques for hydrologic simulation models in order to define, develop and validate a mechanism, supported by a software environment, oriented to build decision models for the prediction and management of river floods in real time. The emphasis is placed on providing decision makers with tools to incorporate their knowledge of basin behaviour, usually formulated in terms of rainfall-runoff models, in the process of real-time decision making during floods. A rainfall-runoff model is only a step in the process of decision making. If a reliable rainfall forecast is available and the rainfall-runoff model is well calibrated, decisions can be based mainly on model results. However, in most practical situations, uncertainties in rainfall forecasts or model performance have to be incorporated in the decision process. The computation paradigm adopted for the simulation of hydrologic processes is the bayesian network. A bayesian network is a directed acyclic graph that represents causal influences between linked variables. Under this representation, uncertain qualitative variables are related through causal relations quantified with conditional probabilities. The solution algorithm allows the computation of the expected probability distribution of unknown variables conditioned to the observations. An approach to represent hydrologic processes by bayesian networks with temporal and spatial extensions is presented in this paper, together with a methodology for the development of bayesian models using results produced by deterministic hydrologic simulation models

  6. A Bayesian approach to estimating variance components within a multivariate generalizability theory framework.

    PubMed

    Jiang, Zhehan; Skorupski, William

    2017-12-12

    In many behavioral research areas, multivariate generalizability theory (mG theory) has been typically used to investigate the reliability of certain multidimensional assessments. However, traditional mG-theory estimation-namely, using frequentist approaches-has limits, leading researchers to fail to take full advantage of the information that mG theory can offer regarding the reliability of measurements. Alternatively, Bayesian methods provide more information than frequentist approaches can offer. This article presents instructional guidelines on how to implement mG-theory analyses in a Bayesian framework; in particular, BUGS code is presented to fit commonly seen designs from mG theory, including single-facet designs, two-facet crossed designs, and two-facet nested designs. In addition to concrete examples that are closely related to the selected designs and the corresponding BUGS code, a simulated dataset is provided to demonstrate the utility and advantages of the Bayesian approach. This article is intended to serve as a tutorial reference for applied researchers and methodologists conducting mG-theory studies.

  7. Searching Algorithm Using Bayesian Updates

    ERIC Educational Resources Information Center

    Caudle, Kyle

    2010-01-01

    In late October 1967, the USS Scorpion was lost at sea, somewhere between the Azores and Norfolk Virginia. Dr. Craven of the U.S. Navy's Special Projects Division is credited with using Bayesian Search Theory to locate the submarine. Bayesian Search Theory is a straightforward and interesting application of Bayes' theorem which involves searching…

  8. Sequential Probability Ratio Test for Collision Avoidance Maneuver Decisions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Markley, F. Landis

    2010-01-01

    When facing a conjunction between space objects, decision makers must chose whether to maneuver for collision avoidance or not. We apply a well-known decision procedure, the sequential probability ratio test, to this problem. We propose two approaches to the problem solution, one based on a frequentist method, and the other on a Bayesian method. The frequentist method does not require any prior knowledge concerning the conjunction, while the Bayesian method assumes knowledge of prior probability densities. Our results show that both methods achieve desired missed detection rates, but the frequentist method's false alarm performance is inferior to the Bayesian method's

  9. Fast and Accurate Learning When Making Discrete Numerical Estimates.

    PubMed

    Sanborn, Adam N; Beierholm, Ulrik R

    2016-04-01

    Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates.

  10. Fast and Accurate Learning When Making Discrete Numerical Estimates

    PubMed Central

    Sanborn, Adam N.; Beierholm, Ulrik R.

    2016-01-01

    Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates. PMID:27070155

  11. Error-based analysis of optimal tuning functions explains phenomena observed in sensory neurons.

    PubMed

    Yaeli, Steve; Meir, Ron

    2010-01-01

    Biological systems display impressive capabilities in effectively responding to environmental signals in real time. There is increasing evidence that organisms may indeed be employing near optimal Bayesian calculations in their decision-making. An intriguing question relates to the properties of optimal encoding methods, namely determining the properties of neural populations in sensory layers that optimize performance, subject to physiological constraints. Within an ecological theory of neural encoding/decoding, we show that optimal Bayesian performance requires neural adaptation which reflects environmental changes. Specifically, we predict that neuronal tuning functions possess an optimal width, which increases with prior uncertainty and environmental noise, and decreases with the decoding time window. Furthermore, even for static stimuli, we demonstrate that dynamic sensory tuning functions, acting at relatively short time scales, lead to improved performance. Interestingly, the narrowing of tuning functions as a function of time was recently observed in several biological systems. Such results set the stage for a functional theory which may explain the high reliability of sensory systems, and the utility of neuronal adaptation occurring at multiple time scales.

  12. A unifying Bayesian account of contextual effects in value-based choice

    PubMed Central

    Friston, Karl J.; Dolan, Raymond J.

    2017-01-01

    Empirical evidence suggests the incentive value of an option is affected by other options available during choice and by options presented in the past. These contextual effects are hard to reconcile with classical theories and have inspired accounts where contextual influences play a crucial role. However, each account only addresses one or the other of the empirical findings and a unifying perspective has been elusive. Here, we offer a unifying theory of context effects on incentive value attribution and choice based on normative Bayesian principles. This formulation assumes that incentive value corresponds to a precision-weighted prediction error, where predictions are based upon expectations about reward. We show that this scheme explains a wide range of contextual effects, such as those elicited by other options available during choice (or within-choice context effects). These include both conditions in which choice requires an integration of multiple attributes and conditions where a multi-attribute integration is not necessary. Moreover, the same scheme explains context effects elicited by options presented in the past or between-choice context effects. Our formulation encompasses a wide range of contextual influences (comprising both within- and between-choice effects) by calling on Bayesian principles, without invoking ad-hoc assumptions. This helps clarify the contextual nature of incentive value and choice behaviour and may offer insights into psychopathologies characterized by dysfunctional decision-making, such as addiction and pathological gambling. PMID:28981514

  13. Inductive reasoning 2.0.

    PubMed

    Hayes, Brett K; Heit, Evan

    2018-05-01

    Inductive reasoning entails using existing knowledge to make predictions about novel cases. The first part of this review summarizes key inductive phenomena and critically evaluates theories of induction. We highlight recent theoretical advances, with a special emphasis on the structured statistical approach, the importance of sampling assumptions in Bayesian models, and connectionist modeling. A number of new research directions in this field are identified including comparisons of inductive and deductive reasoning, the identification of common core processes in induction and memory tasks and induction involving category uncertainty. The implications of induction research for areas as diverse as complex decision-making and fear generalization are discussed. This article is categorized under: Psychology > Reasoning and Decision Making Psychology > Learning. © 2017 Wiley Periodicals, Inc.

  14. Robust Bayesian decision theory applied to optimal dosage.

    PubMed

    Abraham, Christophe; Daurès, Jean-Pierre

    2004-04-15

    We give a model for constructing an utility function u(theta,d) in a dose prescription problem. theta and d denote respectively the patient state of health and the dose. The construction of u is based on the conditional probabilities of several variables. These probabilities are described by logistic models. Obviously, u is only an approximation of the true utility function and that is why we investigate the sensitivity of the final decision with respect to the utility function. We construct a class of utility functions from u and approximate the set of all Bayes actions associated to that class. Then, we measure the sensitivity as the greatest difference between the expected utilities of two Bayes actions. Finally, we apply these results to weighing up a chemotherapy treatment of lung cancer. This application emphasizes the importance of measuring robustness through the utility of decisions rather than the decisions themselves. Copyright 2004 John Wiley & Sons, Ltd.

  15. A critique of statistical hypothesis testing in clinical research

    PubMed Central

    Raha, Somik

    2011-01-01

    Many have documented the difficulty of using the current paradigm of Randomized Controlled Trials (RCTs) to test and validate the effectiveness of alternative medical systems such as Ayurveda. This paper critiques the applicability of RCTs for all clinical knowledge-seeking endeavors, of which Ayurveda research is a part. This is done by examining statistical hypothesis testing, the underlying foundation of RCTs, from a practical and philosophical perspective. In the philosophical critique, the two main worldviews of probability are that of the Bayesian and the frequentist. The frequentist worldview is a special case of the Bayesian worldview requiring the unrealistic assumptions of knowing nothing about the universe and believing that all observations are unrelated to each other. Many have claimed that the first belief is necessary for science, and this claim is debunked by comparing variations in learning with different prior beliefs. Moving beyond the Bayesian and frequentist worldviews, the notion of hypothesis testing itself is challenged on the grounds that a hypothesis is an unclear distinction, and assigning a probability on an unclear distinction is an exercise that does not lead to clarity of action. This critique is of the theory itself and not any particular application of statistical hypothesis testing. A decision-making frame is proposed as a way of both addressing this critique and transcending ideological debates on probability. An example of a Bayesian decision-making approach is shown as an alternative to statistical hypothesis testing, utilizing data from a past clinical trial that studied the effect of Aspirin on heart attacks in a sample population of doctors. As a big reason for the prevalence of RCTs in academia is legislation requiring it, the ethics of legislating the use of statistical methods for clinical research is also examined. PMID:22022152

  16. Reconstructing Constructivism: Causal Models, Bayesian Learning Mechanisms, and the Theory Theory

    ERIC Educational Resources Information Center

    Gopnik, Alison; Wellman, Henry M.

    2012-01-01

    We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework…

  17. Decision theory for computing variable and value ordering decisions for scheduling problems

    NASA Technical Reports Server (NTRS)

    Linden, Theodore A.

    1993-01-01

    Heuristics that guide search are critical when solving large planning and scheduling problems, but most variable and value ordering heuristics are sensitive to only one feature of the search state. One wants to combine evidence from all features of the search state into a subjective probability that a value choice is best, but there has been no solid semantics for merging evidence when it is conceived in these terms. Instead, variable and value ordering decisions should be viewed as problems in decision theory. This led to two key insights: (1) The fundamental concept that allows heuristic evidence to be merged is the net incremental utility that will be achieved by assigning a value to a variable. Probability distributions about net incremental utility can merge evidence from the utility function, binary constraints, resource constraints, and other problem features. The subjective probability that a value is the best choice is then derived from probability distributions about net incremental utility. (2) The methods used for rumor control in Bayesian Networks are the primary way to prevent cycling in the computation of probable net incremental utility. These insights lead to semantically justifiable ways to compute heuristic variable and value ordering decisions that merge evidence from all available features of the search state.

  18. Revealing Neurocomputational Mechanisms of Reinforcement Learning and Decision-Making With the hBayesDM Package

    PubMed Central

    Ahn, Woo-Young; Haines, Nathaniel; Zhang, Lei

    2017-01-01

    Reinforcement learning and decision-making (RLDM) provide a quantitative framework and computational theories with which we can disentangle psychiatric conditions into the basic dimensions of neurocognitive functioning. RLDM offer a novel approach to assessing and potentially diagnosing psychiatric patients, and there is growing enthusiasm for both RLDM and computational psychiatry among clinical researchers. Such a framework can also provide insights into the brain substrates of particular RLDM processes, as exemplified by model-based analysis of data from functional magnetic resonance imaging (fMRI) or electroencephalography (EEG). However, researchers often find the approach too technical and have difficulty adopting it for their research. Thus, a critical need remains to develop a user-friendly tool for the wide dissemination of computational psychiatric methods. We introduce an R package called hBayesDM (hierarchical Bayesian modeling of Decision-Making tasks), which offers computational modeling of an array of RLDM tasks and social exchange games. The hBayesDM package offers state-of-the-art hierarchical Bayesian modeling, in which both individual and group parameters (i.e., posterior distributions) are estimated simultaneously in a mutually constraining fashion. At the same time, the package is extremely user-friendly: users can perform computational modeling, output visualization, and Bayesian model comparisons, each with a single line of coding. Users can also extract the trial-by-trial latent variables (e.g., prediction errors) required for model-based fMRI/EEG. With the hBayesDM package, we anticipate that anyone with minimal knowledge of programming can take advantage of cutting-edge computational-modeling approaches to investigate the underlying processes of and interactions between multiple decision-making (e.g., goal-directed, habitual, and Pavlovian) systems. In this way, we expect that the hBayesDM package will contribute to the dissemination of advanced modeling approaches and enable a wide range of researchers to easily perform computational psychiatric research within different populations. PMID:29601060

  19. Ensemble Bayesian forecasting system Part I: Theory and algorithms

    NASA Astrophysics Data System (ADS)

    Herr, Henry D.; Krzysztofowicz, Roman

    2015-05-01

    The ensemble Bayesian forecasting system (EBFS), whose theory was published in 2001, is developed for the purpose of quantifying the total uncertainty about a discrete-time, continuous-state, non-stationary stochastic process such as a time series of stages, discharges, or volumes at a river gauge. The EBFS is built of three components: an input ensemble forecaster (IEF), which simulates the uncertainty associated with random inputs; a deterministic hydrologic model (of any complexity), which simulates physical processes within a river basin; and a hydrologic uncertainty processor (HUP), which simulates the hydrologic uncertainty (an aggregate of all uncertainties except input). It works as a Monte Carlo simulator: an ensemble of time series of inputs (e.g., precipitation amounts) generated by the IEF is transformed deterministically through a hydrologic model into an ensemble of time series of outputs, which is next transformed stochastically by the HUP into an ensemble of time series of predictands (e.g., river stages). Previous research indicated that in order to attain an acceptable sampling error, the ensemble size must be on the order of hundreds (for probabilistic river stage forecasts and probabilistic flood forecasts) or even thousands (for probabilistic stage transition forecasts). The computing time needed to run the hydrologic model this many times renders the straightforward simulations operationally infeasible. This motivates the development of the ensemble Bayesian forecasting system with randomization (EBFSR), which takes full advantage of the analytic meta-Gaussian HUP and generates multiple ensemble members after each run of the hydrologic model; this auxiliary randomization reduces the required size of the meteorological input ensemble and makes it operationally feasible to generate a Bayesian ensemble forecast of large size. Such a forecast quantifies the total uncertainty, is well calibrated against the prior (climatic) distribution of predictand, possesses a Bayesian coherence property, constitutes a random sample of the predictand, and has an acceptable sampling error-which makes it suitable for rational decision making under uncertainty.

  20. Towards a neuro-computational account of prism adaptation.

    PubMed

    Petitet, Pierre; O'Reilly, Jill X; O'Shea, Jacinta

    2017-12-14

    Prism adaptation has a long history as an experimental paradigm used to investigate the functional and neural processes that underlie sensorimotor control. In the neuropsychology literature, prism adaptation behaviour is typically explained by reference to a traditional cognitive psychology framework that distinguishes putative functions, such as 'strategic control' versus 'spatial realignment'. This theoretical framework lacks conceptual clarity, quantitative precision and explanatory power. Here, we advocate for an alternative computational framework that offers several advantages: 1) an algorithmic explanatory account of the computations and operations that drive behaviour; 2) expressed in quantitative mathematical terms; 3) embedded within a principled theoretical framework (Bayesian decision theory, state-space modelling); 4) that offers a means to generate and test quantitative behavioural predictions. This computational framework offers a route towards mechanistic neurocognitive explanations of prism adaptation behaviour. Thus it constitutes a conceptual advance compared to the traditional theoretical framework. In this paper, we illustrate how Bayesian decision theory and state-space models offer principled explanations for a range of behavioural phenomena in the field of prism adaptation (e.g. visual capture, magnitude of visual versus proprioceptive realignment, spontaneous recovery and dynamics of adaptation memory). We argue that this explanatory framework can advance understanding of the functional and neural mechanisms that implement prism adaptation behaviour, by enabling quantitative tests of hypotheses that go beyond merely descriptive mapping claims that 'brain area X is (somehow) involved in psychological process Y'. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Bayesian Techniques for Plasma Theory to Bridge the Gap Between Space and Lab Plasmas

    NASA Astrophysics Data System (ADS)

    Crabtree, Chris; Ganguli, Gurudas; Tejero, Erik

    2017-10-01

    We will show how Bayesian techniques provide a general data analysis methodology that is better suited to investigate phenomena that require a nonlinear theory for an explanation. We will provide short examples of how Bayesian techniques have been successfully used in the radiation belts to provide precise nonlinear spectral estimates of whistler mode chorus and how these techniques have been verified in laboratory plasmas. We will demonstrate how Bayesian techniques allow for the direct competition of different physical theories with data acting as the necessary arbitrator. This work is supported by the Naval Research Laboratory base program and by the National Aeronautics and Space Administration under Grant No. NNH15AZ90I.

  2. Decision generation tools and Bayesian inference

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Wang, Wenjian; Forrester, Thomas; Kostrzewski, Andrew; Veeris, Christian; Nielsen, Thomas

    2014-05-01

    Digital Decision Generation (DDG) tools are important software sub-systems of Command and Control (C2) systems and technologies. In this paper, we present a special type of DDGs based on Bayesian Inference, related to adverse (hostile) networks, including such important applications as terrorism-related networks and organized crime ones.

  3. Mads.jl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesselinov, Velimir; O'Malley, Daniel; Lin, Youzuo

    2016-07-01

    Mads.jl (Model analysis and decision support in Julia) is a code that streamlines the process of using data and models for analysis and decision support. It is based on another open-source code developed at LANL and written in C/C++ (MADS; http://mads.lanl.gov; LA-CC-11- 035). Mads.jl can work with external models of arbitrary complexity as well as built-in models of flow and transport in porous media. It enables a number of data- and model-based analyses including model calibration, sensitivity analysis, uncertainty quantification, and decision analysis. The code also can use a series of alternative adaptive computational techniques for Bayesian sampling, Monte Carlo,more » and Bayesian Information-Gap Decision Theory. The code is implemented in the Julia programming language, and has high-performance (parallel) and memory management capabilities. The code uses a series of third party modules developed by others. The code development will also include contributions to the existing third party modules written in Julia; this contributions will be important for the efficient implementation of the algorithm used by Mads.jl. The code also uses a series of LANL developed modules that are developed by Dan O'Malley; these modules will be also a part of the Mads.jl release. Mads.jl will be released under GPL V3 license. The code will be distributed as a Git repo at gitlab.com and github.com. Mads.jl manual and documentation will be posted at madsjulia.lanl.gov.« less

  4. Careful with Those Priors: A Note on Bayesian Estimation in Two-Parameter Logistic Item Response Theory Models

    ERIC Educational Resources Information Center

    Marcoulides, Katerina M.

    2018-01-01

    This study examined the use of Bayesian analysis methods for the estimation of item parameters in a two-parameter logistic item response theory model. Using simulated data under various design conditions with both informative and non-informative priors, the parameter recovery of Bayesian analysis methods were examined. Overall results showed that…

  5. A Bayesian Approach to Person Fit Analysis in Item Response Theory Models. Research Report.

    ERIC Educational Resources Information Center

    Glas, Cees A. W.; Meijer, Rob R.

    A Bayesian approach to the evaluation of person fit in item response theory (IRT) models is presented. In a posterior predictive check, the observed value on a discrepancy variable is positioned in its posterior distribution. In a Bayesian framework, a Markov Chain Monte Carlo procedure can be used to generate samples of the posterior distribution…

  6. Under which conditions, additional monitoring data are worth gathering for improving decision making? Application of the VOI theory in the Bayesian Event Tree eruption forecasting framework

    NASA Astrophysics Data System (ADS)

    Loschetter, Annick; Rohmer, Jérémy

    2016-04-01

    Standard and new generation of monitoring observations provide in almost real-time important information about the evolution of the volcanic system. These observations are used to update the model and contribute to a better hazard assessment and to support decision making concerning potential evacuation. The framework BET_EF (based on Bayesian Event Tree) developed by INGV enables dealing with the integration of information from monitoring with the prospect of decision making. Using this framework, the objectives of the present work are i. to propose a method to assess the added value of information (within the Value Of Information (VOI) theory) from monitoring; ii. to perform sensitivity analysis on the different parameters that influence the VOI from monitoring. VOI consists in assessing the possible increase in expected value provided by gathering information, for instance through monitoring. Basically, the VOI is the difference between the value with information and the value without additional information in a Cost-Benefit approach. This theory is well suited to deal with situations that can be represented in the form of a decision tree such as the BET_EF tool. Reference values and ranges of variation (for sensitivity analysis) were defined for input parameters, based on data from the MESIMEX exercise (performed at Vesuvio volcano in 2006). Complementary methods for sensitivity analyses were implemented: local, global using Sobol' indices and regional using Contribution to Sample Mean and Variance plots. The results (specific to the case considered) obtained with the different techniques are in good agreement and enable answering the following questions: i. Which characteristics of monitoring are important for early warning (reliability)? ii. How do experts' opinions influence the hazard assessment and thus the decision? Concerning the characteristics of monitoring, the more influent parameters are the means rather than the variances for the case considered. For the parameters that concern expert setting, the weight attributed to monitoring measurement ω, the mean of thresholds, the economic context and the setting of the decision threshold are very influential. The interest of applying the VOI theory (more precisely the value of imperfect information) in the BET framework was demonstrated as support for helping experts in the setting of the monitoring system or for helping managers to decide the installation of additional monitoring systems. Acknowledgments: This work was carried out in the framework of the project MEDSUV. This project is funded under the call FP7 ENV.2012.6.4-2: Long-term monitoring experiment in geologically active regions of Europe prone to natural hazards: the Supersite concept. Grant agreement n°308665.

  7. Bayesian randomized clinical trials: From fixed to adaptive design.

    PubMed

    Yin, Guosheng; Lam, Chi Kin; Shi, Haolun

    2017-08-01

    Randomized controlled studies are the gold standard for phase III clinical trials. Using α-spending functions to control the overall type I error rate, group sequential methods are well established and have been dominating phase III studies. Bayesian randomized design, on the other hand, can be viewed as a complement instead of competitive approach to the frequentist methods. For the fixed Bayesian design, the hypothesis testing can be cast in the posterior probability or Bayes factor framework, which has a direct link to the frequentist type I error rate. Bayesian group sequential design relies upon Bayesian decision-theoretic approaches based on backward induction, which is often computationally intensive. Compared with the frequentist approaches, Bayesian methods have several advantages. The posterior predictive probability serves as a useful and convenient tool for trial monitoring, and can be updated at any time as the data accrue during the trial. The Bayesian decision-theoretic framework possesses a direct link to the decision making in the practical setting, and can be modeled more realistically to reflect the actual cost-benefit analysis during the drug development process. Other merits include the possibility of hierarchical modeling and the use of informative priors, which would lead to a more comprehensive utilization of information from both historical and longitudinal data. From fixed to adaptive design, we focus on Bayesian randomized controlled clinical trials and make extensive comparisons with frequentist counterparts through numerical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Decision-making when data and inferences are not conclusive: risk-benefit and acceptable regret approach.

    PubMed

    Hozo, Iztok; Schell, Michael J; Djulbegovic, Benjamin

    2008-07-01

    The absolute truth in research is unobtainable, as no evidence or research hypothesis is ever 100% conclusive. Therefore, all data and inferences can in principle be considered as "inconclusive." Scientific inference and decision-making need to take into account errors, which are unavoidable in the research enterprise. The errors can occur at the level of conclusions that aim to discern the truthfulness of research hypothesis based on the accuracy of research evidence and hypothesis, and decisions, the goal of which is to enable optimal decision-making under present and specific circumstances. To optimize the chance of both correct conclusions and correct decisions, the synthesis of all major statistical approaches to clinical research is needed. The integration of these approaches (frequentist, Bayesian, and decision-analytic) can be accomplished through formal risk:benefit (R:B) analysis. This chapter illustrates the rational choice of a research hypothesis using R:B analysis based on decision-theoretic expected utility theory framework and the concept of "acceptable regret" to calculate the threshold probability of the "truth" above which the benefit of accepting a research hypothesis outweighs its risks.

  9. Bayesian belief networks: applications in ecology and natural resource management.

    Treesearch

    R.K. McCann; B.G. Marcot; R. Ellis

    2006-01-01

    We review the use of Bayesian belief networks (BBNs) in natural resource management and ecology. We suggest that BBNs are useful tools for representing expert knowledge of a system, evaluating potential effects of alternative management decisions, and communicating to nonexperts about resource decision issues. BBNs can be used effectively to represent uncertainty in...

  10. A formal model of interpersonal inference

    PubMed Central

    Moutoussis, Michael; Trujillo-Barreto, Nelson J.; El-Deredy, Wael; Dolan, Raymond J.; Friston, Karl J.

    2014-01-01

    Introduction: We propose that active Bayesian inference—a general framework for decision-making—can equally be applied to interpersonal exchanges. Social cognition, however, entails special challenges. We address these challenges through a novel formulation of a formal model and demonstrate its psychological significance. Method: We review relevant literature, especially with regards to interpersonal representations, formulate a mathematical model and present a simulation study. The model accommodates normative models from utility theory and places them within the broader setting of Bayesian inference. Crucially, we endow people's prior beliefs, into which utilities are absorbed, with preferences of self and others. The simulation illustrates the model's dynamics and furnishes elementary predictions of the theory. Results: (1) Because beliefs about self and others inform both the desirability and plausibility of outcomes, in this framework interpersonal representations become beliefs that have to be actively inferred. This inference, akin to “mentalizing” in the psychological literature, is based upon the outcomes of interpersonal exchanges. (2) We show how some well-known social-psychological phenomena (e.g., self-serving biases) can be explained in terms of active interpersonal inference. (3) Mentalizing naturally entails Bayesian updating of how people value social outcomes. Crucially this includes inference about one's own qualities and preferences. Conclusion: We inaugurate a Bayes optimal framework for modeling intersubject variability in mentalizing during interpersonal exchanges. Here, interpersonal representations are endowed with explicit functional and affective properties. We suggest the active inference framework lends itself to the study of psychiatric conditions where mentalizing is distorted. PMID:24723872

  11. Second-hand market as an alternative in reverse logistics

    NASA Astrophysics Data System (ADS)

    Pochampally, Kishore K.; Gupta, Surendra M.

    2004-02-01

    Collectors of discarded products seldom know when those products were bought and why they are discarded. Also, the products do not indicate their remaining life periods. So, it is difficult to decide if it is "sensible" to repair (if necessary) a particular product for subsequent sale on the second-hand market or to disassemble it partially or completely for subsequent remanufacture and/or recycle. To this end, we build an expert system using Bayesian updating process and fuzzy set theory, to aid such decision-making. A numerical example demonstrates the building approach.

  12. Unification of field theory and maximum entropy methods for learning probability densities

    NASA Astrophysics Data System (ADS)

    Kinney, Justin B.

    2015-09-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.

  13. Unification of field theory and maximum entropy methods for learning probability densities.

    PubMed

    Kinney, Justin B

    2015-09-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.

  14. With or without you: predictive coding and Bayesian inference in the brain

    PubMed Central

    Aitchison, Laurence; Lengyel, Máté

    2018-01-01

    Two theoretical ideas have emerged recently with the ambition to provide a unifying functional explanation of neural population coding and dynamics: predictive coding and Bayesian inference. Here, we describe the two theories and their combination into a single framework: Bayesian predictive coding. We clarify how the two theories can be distinguished, despite sharing core computational concepts and addressing an overlapping set of empirical phenomena. We argue that predictive coding is an algorithmic / representational motif that can serve several different computational goals of which Bayesian inference is but one. Conversely, while Bayesian inference can utilize predictive coding, it can also be realized by a variety of other representations. We critically evaluate the experimental evidence supporting Bayesian predictive coding and discuss how to test it more directly. PMID:28942084

  15. Bayesian design of decision rules for failure detection

    NASA Technical Reports Server (NTRS)

    Chow, E. Y.; Willsky, A. S.

    1984-01-01

    The formulation of the decision making process of a failure detection algorithm as a Bayes sequential decision problem provides a simple conceptualization of the decision rule design problem. As the optimal Bayes rule is not computable, a methodology that is based on the Bayesian approach and aimed at a reduced computational requirement is developed for designing suboptimal rules. A numerical algorithm is constructed to facilitate the design and performance evaluation of these suboptimal rules. The result of applying this design methodology to an example shows that this approach is potentially a useful one.

  16. The current state of Bayesian methods in medical product development: survey results and recommendations from the DIA Bayesian Scientific Working Group.

    PubMed

    Natanegara, Fanni; Neuenschwander, Beat; Seaman, John W; Kinnersley, Nelson; Heilmann, Cory R; Ohlssen, David; Rochester, George

    2014-01-01

    Bayesian applications in medical product development have recently gained popularity. Despite many advances in Bayesian methodology and computations, increase in application across the various areas of medical product development has been modest. The DIA Bayesian Scientific Working Group (BSWG), which includes representatives from industry, regulatory agencies, and academia, has adopted the vision to ensure Bayesian methods are well understood, accepted more broadly, and appropriately utilized to improve decision making and enhance patient outcomes. As Bayesian applications in medical product development are wide ranging, several sub-teams were formed to focus on various topics such as patient safety, non-inferiority, prior specification, comparative effectiveness, joint modeling, program-wide decision making, analytical tools, and education. The focus of this paper is on the recent effort of the BSWG Education sub-team to administer a Bayesian survey to statisticians across 17 organizations involved in medical product development. We summarize results of this survey, from which we provide recommendations on how to accelerate progress in Bayesian applications throughout medical product development. The survey results support findings from the literature and provide additional insight on regulatory acceptance of Bayesian methods and information on the need for a Bayesian infrastructure within an organization. The survey findings support the claim that only modest progress in areas of education and implementation has been made recently, despite substantial progress in Bayesian statistical research and software availability. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Testing students' e-learning via Facebook through Bayesian structural equation modeling.

    PubMed

    Salarzadeh Jenatabadi, Hashem; Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad

    2017-01-01

    Learning is an intentional activity, with several factors affecting students' intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods' results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated.

  18. Testing students’ e-learning via Facebook through Bayesian structural equation modeling

    PubMed Central

    Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad

    2017-01-01

    Learning is an intentional activity, with several factors affecting students’ intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods’ results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated. PMID:28886019

  19. Bayesian Decision Support for Adaptive Lung Treatments

    NASA Astrophysics Data System (ADS)

    McShan, Daniel; Luo, Yi; Schipper, Matt; TenHaken, Randall

    2014-03-01

    Purpose: A Bayesian Decision Network will be demonstrated to provide clinical decision support for adaptive lung response-driven treatment management based on evidence that physiologic metrics may correlate better with individual patient response than traditional (population-based) dose and volume-based metrics. Further, there is evidence that information obtained during the course of radiation therapy may further improve response predictions. Methods: Clinical factors were gathered for 58 patients including planned mean lung dose, and the bio-markers IL-8 and TGF-β1 obtained prior to treatment and two weeks into treatment along with complication outcomes for these patients. A Bayesian Decision Network was constructed using Netica 5.0.2 from Norsys linking these clinical factors to obtain a prediction of radiation induced lung disese (RILD) complication. A decision node was added to the network to provide a plan adaption recommendation based on the trade-off between the RILD prediction and complexity of replanning. A utility node provides the weighting cost between the competing factors. Results: The decision node predictions were optimized against the data for the 58 cases. With this decision network solution, one can consider the decision result for a new patient with specific findings to obtain a recommendation to adaptively modify the originally planned treatment course. Conclusions: A Bayesian approach allows handling and propagating probabilistic data in a logical and principled manner. Decision networks provide the further ability to provide utility-based trade-offs, reflecting non-medical but practical cost/benefit analysis. The network demonstrated illustrates the basic concept, but many other factors may affect these decisions and work on building better models are being designed and tested. Acknowledgement: Supported by NIH-P01-CA59827

  20. Prior approval: the growth of Bayesian methods in psychology.

    PubMed

    Andrews, Mark; Baguley, Thom

    2013-02-01

    Within the last few years, Bayesian methods of data analysis in psychology have proliferated. In this paper, we briefly review the history or the Bayesian approach to statistics, and consider the implications that Bayesian methods have for the theory and practice of data analysis in psychology.

  1. Improved Accuracy Using Recursive Bayesian Estimation Based Language Model Fusion in ERP-Based BCI Typing Systems

    PubMed Central

    Orhan, U.; Erdogmus, D.; Roark, B.; Oken, B.; Purwar, S.; Hild, K. E.; Fowler, A.; Fried-Oken, M.

    2013-01-01

    RSVP Keyboard™ is an electroencephalography (EEG) based brain computer interface (BCI) typing system, designed as an assistive technology for the communication needs of people with locked-in syndrome (LIS). It relies on rapid serial visual presentation (RSVP) and does not require precise eye gaze control. Existing BCI typing systems which uses event related potentials (ERP) in EEG suffer from low accuracy due to low signal-to-noise ratio. Henceforth, RSVP Keyboard™ utilizes a context based decision making via incorporating a language model, to improve the accuracy of letter decisions. To further improve the contributions of the language model, we propose recursive Bayesian estimation, which relies on non-committing string decisions, and conduct an offline analysis, which compares it with the existing naïve Bayesian fusion approach. The results indicate the superiority of the recursive Bayesian fusion and in the next generation of RSVP Keyboard™ we plan to incorporate this new approach. PMID:23366432

  2. Bayesian analyses of seasonal runoff forecasts

    NASA Astrophysics Data System (ADS)

    Krzysztofowicz, R.; Reese, S.

    1991-12-01

    Forecasts of seasonal snowmelt runoff volume provide indispensable information for rational decision making by water project operators, irrigation district managers, and farmers in the western United States. Bayesian statistical models and communication frames have been researched in order to enhance the forecast information disseminated to the users, and to characterize forecast skill from the decision maker's point of view. Four products are presented: (i) a Bayesian Processor of Forecasts, which provides a statistical filter for calibrating the forecasts, and a procedure for estimating the posterior probability distribution of the seasonal runoff; (ii) the Bayesian Correlation Score, a new measure of forecast skill, which is related monotonically to the ex ante economic value of forecasts for decision making; (iii) a statistical predictor of monthly cumulative runoffs within the snowmelt season, conditional on the total seasonal runoff forecast; and (iv) a framing of the forecast message that conveys the uncertainty associated with the forecast estimates to the users. All analyses are illustrated with numerical examples of forecasts for six gauging stations from the period 1971 1988.

  3. A cost minimisation and Bayesian inference model predicts startle reflex modulation across species.

    PubMed

    Bach, Dominik R

    2015-04-07

    In many species, rapid defensive reflexes are paramount to escaping acute danger. These reflexes are modulated by the state of the environment. This is exemplified in fear-potentiated startle, a more vigorous startle response during conditioned anticipation of an unrelated threatening event. Extant explanations of this phenomenon build on descriptive models of underlying psychological states, or neural processes. Yet, they fail to predict invigorated startle during reward anticipation and instructed attention, and do not explain why startle reflex modulation evolved. Here, we fill this lacuna by developing a normative cost minimisation model based on Bayesian optimality principles. This model predicts the observed pattern of startle modification by rewards, punishments, instructed attention, and several other states. Moreover, the mathematical formalism furnishes predictions that can be tested experimentally. Comparing the model with existing data suggests a specific neural implementation of the underlying computations which yields close approximations to the optimal solution under most circumstances. This analysis puts startle modification into the framework of Bayesian decision theory and predictive coding, and illustrates the importance of an adaptive perspective to interpret defensive behaviour across species. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  4. Combined target factor analysis and Bayesian soft-classification of interference-contaminated samples: forensic fire debris analysis.

    PubMed

    Williams, Mary R; Sigman, Michael E; Lewis, Jennifer; Pitan, Kelly McHugh

    2012-10-10

    A bayesian soft classification method combined with target factor analysis (TFA) is described and tested for the analysis of fire debris data. The method relies on analysis of the average mass spectrum across the chromatographic profile (i.e., the total ion spectrum, TIS) from multiple samples taken from a single fire scene. A library of TIS from reference ignitable liquids with assigned ASTM classification is used as the target factors in TFA. The class-conditional distributions of correlations between the target and predicted factors for each ASTM class are represented by kernel functions and analyzed by bayesian decision theory. The soft classification approach assists in assessing the probability that ignitable liquid residue from a specific ASTM E1618 class, is present in a set of samples from a single fire scene, even in the presence of unspecified background contributions from pyrolysis products. The method is demonstrated with sample data sets and then tested on laboratory-scale burn data and large-scale field test burns. The overall performance achieved in laboratory and field test of the method is approximately 80% correct classification of fire debris samples. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Using Bayesian belief networks in adaptive management.

    Treesearch

    J.B. Nyberg; B.G. Marcot; R. Sulyma

    2006-01-01

    Bayesian belief and decision networks are relatively new modeling methods that are especially well suited to adaptive-management applications, but they appear not to have been widely used in adaptive management to date. Bayesian belief networks (BBNs) can serve many purposes for practioners of adaptive management, from illustrating system relations conceptually to...

  6. Model Selection and Psychological Theory: A Discussion of the Differences between the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC)

    ERIC Educational Resources Information Center

    Vrieze, Scott I.

    2012-01-01

    This article reviews the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) in model selection and the appraisal of psychological theory. The focus is on latent variable models, given their growing use in theory testing and construction. Theoretical statistical results in regression are discussed, and more important…

  7. Using SAS PROC MCMC for Item Response Theory Models

    PubMed Central

    Samonte, Kelli

    2014-01-01

    Interest in using Bayesian methods for estimating item response theory models has grown at a remarkable rate in recent years. This attentiveness to Bayesian estimation has also inspired a growth in available software such as WinBUGS, R packages, BMIRT, MPLUS, and SAS PROC MCMC. This article intends to provide an accessible overview of Bayesian methods in the context of item response theory to serve as a useful guide for practitioners in estimating and interpreting item response theory (IRT) models. Included is a description of the estimation procedure used by SAS PROC MCMC. Syntax is provided for estimation of both dichotomous and polytomous IRT models, as well as a discussion on how to extend the syntax to accommodate more complex IRT models. PMID:29795834

  8. From axiomatics of quantum probability to modelling geological uncertainty and management of intelligent hydrocarbon reservoirs with the theory of open quantum systems.

    PubMed

    Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia

    2018-04-28

    As was recently shown by the authors, quantum probability theory can be used for the modelling of the process of decision-making (e.g. probabilistic risk analysis) for macroscopic geophysical structures such as hydrocarbon reservoirs. This approach can be considered as a geophysical realization of Hilbert's programme on axiomatization of statistical models in physics (the famous sixth Hilbert problem). In this conceptual paper , we continue development of this approach to decision-making under uncertainty which is generated by complexity, variability, heterogeneity, anisotropy, as well as the restrictions to accessibility of subsurface structures. The belief state of a geological expert about the potential of exploring a hydrocarbon reservoir is continuously updated by outputs of measurements, and selection of mathematical models and scales of numerical simulation. These outputs can be treated as signals from the information environment E The dynamics of the belief state can be modelled with the aid of the theory of open quantum systems: a quantum state (representing uncertainty in beliefs) is dynamically modified through coupling with E ; stabilization to a steady state determines a decision strategy. In this paper, the process of decision-making about hydrocarbon reservoirs (e.g. 'explore or not?'; 'open new well or not?'; 'contaminated by water or not?'; 'double or triple porosity medium?') is modelled by using the Gorini-Kossakowski-Sudarshan-Lindblad equation. In our model, this equation describes the evolution of experts' predictions about a geophysical structure. We proceed with the information approach to quantum theory and the subjective interpretation of quantum probabilities (due to quantum Bayesianism).This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  9. From axiomatics of quantum probability to modelling geological uncertainty and management of intelligent hydrocarbon reservoirs with the theory of open quantum systems

    NASA Astrophysics Data System (ADS)

    Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia

    2018-04-01

    As was recently shown by the authors, quantum probability theory can be used for the modelling of the process of decision-making (e.g. probabilistic risk analysis) for macroscopic geophysical structures such as hydrocarbon reservoirs. This approach can be considered as a geophysical realization of Hilbert's programme on axiomatization of statistical models in physics (the famous sixth Hilbert problem). In this conceptual paper, we continue development of this approach to decision-making under uncertainty which is generated by complexity, variability, heterogeneity, anisotropy, as well as the restrictions to accessibility of subsurface structures. The belief state of a geological expert about the potential of exploring a hydrocarbon reservoir is continuously updated by outputs of measurements, and selection of mathematical models and scales of numerical simulation. These outputs can be treated as signals from the information environment E. The dynamics of the belief state can be modelled with the aid of the theory of open quantum systems: a quantum state (representing uncertainty in beliefs) is dynamically modified through coupling with E; stabilization to a steady state determines a decision strategy. In this paper, the process of decision-making about hydrocarbon reservoirs (e.g. `explore or not?'; `open new well or not?'; `contaminated by water or not?'; `double or triple porosity medium?') is modelled by using the Gorini-Kossakowski-Sudarshan-Lindblad equation. In our model, this equation describes the evolution of experts' predictions about a geophysical structure. We proceed with the information approach to quantum theory and the subjective interpretation of quantum probabilities (due to quantum Bayesianism). This article is part of the theme issue `Hilbert's sixth problem'.

  10. Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition.

    PubMed

    Jones, Matt; Love, Bradley C

    2011-08-01

    The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls that have plagued previous theoretical movements.

  11. Bayesian Dose-Response Modeling in Sparse Data

    NASA Astrophysics Data System (ADS)

    Kim, Steven B.

    This book discusses Bayesian dose-response modeling in small samples applied to two different settings. The first setting is early phase clinical trials, and the second setting is toxicology studies in cancer risk assessment. In early phase clinical trials, experimental units are humans who are actual patients. Prior to a clinical trial, opinions from multiple subject area experts are generally more informative than the opinion of a single expert, but we may face a dilemma when they have disagreeing prior opinions. In this regard, we consider compromising the disagreement and compare two different approaches for making a decision. In addition to combining multiple opinions, we also address balancing two levels of ethics in early phase clinical trials. The first level is individual-level ethics which reflects the perspective of trial participants. The second level is population-level ethics which reflects the perspective of future patients. We extensively compare two existing statistical methods which focus on each perspective and propose a new method which balances the two conflicting perspectives. In toxicology studies, experimental units are living animals. Here we focus on a potential non-monotonic dose-response relationship which is known as hormesis. Briefly, hormesis is a phenomenon which can be characterized by a beneficial effect at low doses and a harmful effect at high doses. In cancer risk assessments, the estimation of a parameter, which is known as a benchmark dose, can be highly sensitive to a class of assumptions, monotonicity or hormesis. In this regard, we propose a robust approach which considers both monotonicity and hormesis as a possibility. In addition, We discuss statistical hypothesis testing for hormesis and consider various experimental designs for detecting hormesis based on Bayesian decision theory. Past experiments have not been optimally designed for testing for hormesis, and some Bayesian optimal designs may not be optimal under a wrong parametric assumption. In this regard, we consider a robust experimental design which does not require any parametric assumption.

  12. Embedding the results of focussed Bayesian fusion into a global context

    NASA Astrophysics Data System (ADS)

    Sander, Jennifer; Heizmann, Michael

    2014-05-01

    Bayesian statistics offers a well-founded and powerful fusion methodology also for the fusion of heterogeneous information sources. However, except in special cases, the needed posterior distribution is not analytically derivable. As consequence, Bayesian fusion may cause unacceptably high computational and storage costs in practice. Local Bayesian fusion approaches aim at reducing the complexity of the Bayesian fusion methodology significantly. This is done by concentrating the actual Bayesian fusion on the potentially most task relevant parts of the domain of the Properties of Interest. Our research on these approaches is motivated by an analogy to criminal investigations where criminalists pursue clues also only locally. This publication follows previous publications on a special local Bayesian fusion technique called focussed Bayesian fusion. Here, the actual calculation of the posterior distribution gets completely restricted to a suitably chosen local context. By this, the global posterior distribution is not completely determined. Strategies for using the results of a focussed Bayesian analysis appropriately are needed. In this publication, we primarily contrast different ways of embedding the results of focussed Bayesian fusion explicitly into a global context. To obtain a unique global posterior distribution, we analyze the application of the Maximum Entropy Principle that has been shown to be successfully applicable in metrology and in different other areas. To address the special need for making further decisions subsequently to the actual fusion task, we further analyze criteria for decision making under partial information.

  13. Bayesian methodology for the design and interpretation of clinical trials in critical care medicine: a primer for clinicians.

    PubMed

    Kalil, Andre C; Sun, Junfeng

    2014-10-01

    To review Bayesian methodology and its utility to clinical decision making and research in the critical care field. Clinical, epidemiological, and biostatistical studies on Bayesian methods in PubMed and Embase from their inception to December 2013. Bayesian methods have been extensively used by a wide range of scientific fields, including astronomy, engineering, chemistry, genetics, physics, geology, paleontology, climatology, cryptography, linguistics, ecology, and computational sciences. The application of medical knowledge in clinical research is analogous to the application of medical knowledge in clinical practice. Bedside physicians have to make most diagnostic and treatment decisions on critically ill patients every day without clear-cut evidence-based medicine (more subjective than objective evidence). Similarly, clinical researchers have to make most decisions about trial design with limited available data. Bayesian methodology allows both subjective and objective aspects of knowledge to be formally measured and transparently incorporated into the design, execution, and interpretation of clinical trials. In addition, various degrees of knowledge and several hypotheses can be tested at the same time in a single clinical trial without the risk of multiplicity. Notably, the Bayesian technology is naturally suited for the interpretation of clinical trial findings for the individualized care of critically ill patients and for the optimization of public health policies. We propose that the application of the versatile Bayesian methodology in conjunction with the conventional statistical methods is not only ripe for actual use in critical care clinical research but it is also a necessary step to maximize the performance of clinical trials and its translation to the practice of critical care medicine.

  14. Uncertainty analysis for effluent trading planning using a Bayesian estimation-based simulation-optimization modeling approach.

    PubMed

    Zhang, J L; Li, Y P; Huang, G H; Baetz, B W; Liu, J

    2017-06-01

    In this study, a Bayesian estimation-based simulation-optimization modeling approach (BESMA) is developed for identifying effluent trading strategies. BESMA incorporates nutrient fate modeling with soil and water assessment tool (SWAT), Bayesian estimation, and probabilistic-possibilistic interval programming with fuzzy random coefficients (PPI-FRC) within a general framework. Based on the water quality protocols provided by SWAT, posterior distributions of parameters can be analyzed through Bayesian estimation; stochastic characteristic of nutrient loading can be investigated which provides the inputs for the decision making. PPI-FRC can address multiple uncertainties in the form of intervals with fuzzy random boundaries and the associated system risk through incorporating the concept of possibility and necessity measures. The possibility and necessity measures are suitable for optimistic and pessimistic decision making, respectively. BESMA is applied to a real case of effluent trading planning in the Xiangxihe watershed, China. A number of decision alternatives can be obtained under different trading ratios and treatment rates. The results can not only facilitate identification of optimal effluent-trading schemes, but also gain insight into the effects of trading ratio and treatment rate on decision making. The results also reveal that decision maker's preference towards risk would affect decision alternatives on trading scheme as well as system benefit. Compared with the conventional optimization methods, it is proved that BESMA is advantageous in (i) dealing with multiple uncertainties associated with randomness and fuzziness in effluent-trading planning within a multi-source, multi-reach and multi-period context; (ii) reflecting uncertainties existing in nutrient transport behaviors to improve the accuracy in water quality prediction; and (iii) supporting pessimistic and optimistic decision making for effluent trading as well as promoting diversity of decision alternatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Characterizing species at risk. II: Using Bayesian belief networks as decision support tools to determine species conservation categories under the Northwest Forest Plan.

    Treesearch

    B.G. Marcot; P.A. Hohenlohe; S. Morey; R. Holmes; R. Molina; M.C. Turley; M.H. Huff; J.A. Laurence

    2006-01-01

    We developed decision-aiding models as Bayesian belief networks (BBNs) that represented evaluation guidelines used to determine the appropriate conservation of hundreds of potentially rare species on federally-administered lands in the Pacific Northwest United States. The models were used in a structured assessment and paneling procedure as part of an adaptive...

  16. Inertia and Decision Making.

    PubMed

    Alós-Ferrer, Carlos; Hügelschäfer, Sabine; Li, Jiahui

    2016-01-01

    Decision inertia is the tendency to repeat previous choices independently of the outcome, which can give rise to perseveration in suboptimal choices. We investigate this tendency in probability-updating tasks. Study 1 shows that, whenever decision inertia conflicts with normatively optimal behavior (Bayesian updating), error rates are larger and decisions are slower. This is consistent with a dual-process view of decision inertia as an automatic process conflicting with a more rational, controlled one. We find evidence of decision inertia in both required and autonomous decisions, but the effect of inertia is more clear in the latter. Study 2 considers more complex decision situations where further conflict arises due to reinforcement processes. We find the same effects of decision inertia when reinforcement is aligned with Bayesian updating, but if the two latter processes conflict, the effects are limited to autonomous choices. Additionally, both studies show that the tendency to rely on decision inertia is positively associated with preference for consistency.

  17. Inertia and Decision Making

    PubMed Central

    Alós-Ferrer, Carlos; Hügelschäfer, Sabine; Li, Jiahui

    2016-01-01

    Decision inertia is the tendency to repeat previous choices independently of the outcome, which can give rise to perseveration in suboptimal choices. We investigate this tendency in probability-updating tasks. Study 1 shows that, whenever decision inertia conflicts with normatively optimal behavior (Bayesian updating), error rates are larger and decisions are slower. This is consistent with a dual-process view of decision inertia as an automatic process conflicting with a more rational, controlled one. We find evidence of decision inertia in both required and autonomous decisions, but the effect of inertia is more clear in the latter. Study 2 considers more complex decision situations where further conflict arises due to reinforcement processes. We find the same effects of decision inertia when reinforcement is aligned with Bayesian updating, but if the two latter processes conflict, the effects are limited to autonomous choices. Additionally, both studies show that the tendency to rely on decision inertia is positively associated with preference for consistency. PMID:26909061

  18. Bayesian Decision Tree for the Classification of the Mode of Motion in Single-Molecule Trajectories

    PubMed Central

    Türkcan, Silvan; Masson, Jean-Baptiste

    2013-01-01

    Membrane proteins move in heterogeneous environments with spatially (sometimes temporally) varying friction and with biochemical interactions with various partners. It is important to reliably distinguish different modes of motion to improve our knowledge of the membrane architecture and to understand the nature of interactions between membrane proteins and their environments. Here, we present an analysis technique for single molecule tracking (SMT) trajectories that can determine the preferred model of motion that best matches observed trajectories. The method is based on Bayesian inference to calculate the posteriori probability of an observed trajectory according to a certain model. Information theory criteria, such as the Bayesian information criterion (BIC), the Akaike information criterion (AIC), and modified AIC (AICc), are used to select the preferred model. The considered group of models includes free Brownian motion, and confined motion in 2nd or 4th order potentials. We determine the best information criteria for classifying trajectories. We tested its limits through simulations matching large sets of experimental conditions and we built a decision tree. This decision tree first uses the BIC to distinguish between free Brownian motion and confined motion. In a second step, it classifies the confining potential further using the AIC. We apply the method to experimental Clostridium Perfingens -toxin (CPT) receptor trajectories to show that these receptors are confined by a spring-like potential. An adaptation of this technique was applied on a sliding window in the temporal dimension along the trajectory. We applied this adaptation to experimental CPT trajectories that lose confinement due to disaggregation of confining domains. This new technique adds another dimension to the discussion of SMT data. The mode of motion of a receptor might hold more biologically relevant information than the diffusion coefficient or domain size and may be a better tool to classify and compare different SMT experiments. PMID:24376584

  19. Interacting agricultural pests and their effect on crop yield: application of a Bayesian decision theory approach to the joint management of Bromus tectorum and Cephus cinctus.

    PubMed

    Keren, Ilai N; Menalled, Fabian D; Weaver, David K; Robison-Cox, James F

    2015-01-01

    Worldwide, the landscape homogeneity of extensive monocultures that characterizes conventional agriculture has resulted in the development of specialized and interacting multitrophic pest complexes. While integrated pest management emphasizes the need to consider the ecological context where multiple species coexist, management recommendations are often based on single-species tactics. This approach may not provide satisfactory solutions when confronted with the complex interactions occurring between organisms at the same or different trophic levels. Replacement of the single-species management model with more sophisticated, multi-species programs requires an understanding of the direct and indirect interactions occurring between the crop and all categories of pests. We evaluated a modeling framework to make multi-pest management decisions taking into account direct and indirect interactions among species belonging to different trophic levels. We adopted a Bayesian decision theory approach in combination with path analysis to evaluate interactions between Bromus tectorum (downy brome, cheatgrass) and Cephus cinctus (wheat stem sawfly) in wheat (Triticum aestivum) systems. We assessed their joint responses to weed management tactics, seeding rates, and cultivar tolerance to insect stem boring or competition. Our results indicated that C. cinctus oviposition behavior varied as a function of B. tectorum pressure. Crop responses were more readily explained by the joint effects of management tactics on both categories of pests and their interactions than just by the direct impact of any particular management scheme on yield. In accordance, a C. cinctus tolerant variety should be planted at a low seeding rate under high insect pressure. However as B. tectorum levels increase, the C. cinctus tolerant variety should be replaced by a competitive and drought tolerant cultivar at high seeding rates despite C. cinctus infestation. This study exemplifies the necessity of accounting for direct and indirect biological interactions occurring within agroecosystems and propagating this information from the statistical analysis stage to the management stage.

  20. Bayesian network modeling applied to coastal geomorphology: lessons learned from a decade of experimentation and application

    NASA Astrophysics Data System (ADS)

    Plant, N. G.; Thieler, E. R.; Gutierrez, B.; Lentz, E. E.; Zeigler, S. L.; Van Dongeren, A.; Fienen, M. N.

    2016-12-01

    We evaluate the strengths and weaknesses of Bayesian networks that have been used to address scientific and decision-support questions related to coastal geomorphology. We will provide an overview of coastal geomorphology research that has used Bayesian networks and describe what this approach can do and when it works (or fails to work). Over the past decade, Bayesian networks have been formulated to analyze the multi-variate structure and evolution of coastal morphology and associated human and ecological impacts. The approach relates observable system variables to each other by estimating discrete correlations. The resulting Bayesian-networks make predictions that propagate errors, conduct inference via Bayes rule, or both. In scientific applications, the model results are useful for hypothesis testing, using confidence estimates to gage the strength of tests while applications to coastal resource management are aimed at decision-support, where the probabilities of desired ecosystems outcomes are evaluated. The range of Bayesian-network applications to coastal morphology includes emulation of high-resolution wave transformation models to make oceanographic predictions, morphologic response to storms and/or sea-level rise, groundwater response to sea-level rise and morphologic variability, habitat suitability for endangered species, and assessment of monetary or human-life risk associated with storms. All of these examples are based on vast observational data sets, numerical model output, or both. We will discuss the progression of our experiments, which has included testing whether the Bayesian-network approach can be implemented and is appropriate for addressing basic and applied scientific problems and evaluating the hindcast and forecast skill of these implementations. We will present and discuss calibration/validation tests that are used to assess the robustness of Bayesian-network models and we will compare these results to tests of other models. This will demonstrate how Bayesian networks are used to extract new insights about coastal morphologic behavior, assess impacts to societal and ecological systems, and communicate probabilistic predictions to decision makers.

  1. Bayesian outcome-based strategy classification.

    PubMed

    Lee, Michael D

    2016-03-01

    Hilbig and Moshagen (Psychonomic Bulletin & Review, 21, 1431-1443, 2014) recently developed a method for making inferences about the decision processes people use in multi-attribute forced choice tasks. Their paper makes a number of worthwhile theoretical and methodological contributions. Theoretically, they provide an insightful psychological motivation for a probabilistic extension of the widely-used "weighted additive" (WADD) model, and show how this model, as well as other important models like "take-the-best" (TTB), can and should be expressed in terms of meaningful priors. Methodologically, they develop an inference approach based on the Minimum Description Length (MDL) principles that balances both the goodness-of-fit and complexity of the decision models they consider. This paper aims to preserve these useful contributions, but provide a complementary Bayesian approach with some theoretical and methodological advantages. We develop a simple graphical model, implemented in JAGS, that allows for fully Bayesian inferences about which models people use to make decisions. To demonstrate the Bayesian approach, we apply it to the models and data considered by Hilbig and Moshagen (Psychonomic Bulletin & Review, 21, 1431-1443, 2014), showing how a prior predictive analysis of the models, and posterior inferences about which models people use and the parameter settings at which they use them, can contribute to our understanding of human decision making.

  2. Bayes multiple decision functions.

    PubMed

    Wu, Wensong; Peña, Edsel A

    2013-01-01

    This paper deals with the problem of simultaneously making many ( M ) binary decisions based on one realization of a random data matrix X . M is typically large and X will usually have M rows associated with each of the M decisions to make, but for each row the data may be low dimensional. Such problems arise in many practical areas such as the biological and medical sciences, where the available dataset is from microarrays or other high-throughput technology and with the goal being to decide which among of many genes are relevant with respect to some phenotype of interest; in the engineering and reliability sciences; in astronomy; in education; and in business. A Bayesian decision-theoretic approach to this problem is implemented with the overall loss function being a cost-weighted linear combination of Type I and Type II loss functions. The class of loss functions considered allows for use of the false discovery rate (FDR), false nondiscovery rate (FNR), and missed discovery rate (MDR) in assessing the quality of decision. Through this Bayesian paradigm, the Bayes multiple decision function (BMDF) is derived and an efficient algorithm to obtain the optimal Bayes action is described. In contrast to many works in the literature where the rows of the matrix X are assumed to be stochastically independent, we allow a dependent data structure with the associations obtained through a class of frailty-induced Archimedean copulas. In particular, non-Gaussian dependent data structure, which is typical with failure-time data, can be entertained. The numerical implementation of the determination of the Bayes optimal action is facilitated through sequential Monte Carlo techniques. The theory developed could also be extended to the problem of multiple hypotheses testing, multiple classification and prediction, and high-dimensional variable selection. The proposed procedure is illustrated for the simple versus simple hypotheses setting and for the composite hypotheses setting through simulation studies. The procedure is also applied to a subset of a microarray data set from a colon cancer study.

  3. A Bayesian approach for incorporating economic factors in sample size design for clinical trials of individual drugs and portfolios of drugs.

    PubMed

    Patel, Nitin R; Ankolekar, Suresh

    2007-11-30

    Classical approaches to clinical trial design ignore economic factors that determine economic viability of a new drug. We address the choice of sample size in Phase III trials as a decision theory problem using a hybrid approach that takes a Bayesian view from the perspective of a drug company and a classical Neyman-Pearson view from the perspective of regulatory authorities. We incorporate relevant economic factors in the analysis to determine the optimal sample size to maximize the expected profit for the company. We extend the analysis to account for risk by using a 'satisficing' objective function that maximizes the chance of meeting a management-specified target level of profit. We extend the models for single drugs to a portfolio of clinical trials and optimize the sample sizes to maximize the expected profit subject to budget constraints. Further, we address the portfolio risk and optimize the sample sizes to maximize the probability of achieving a given target of expected profit.

  4. Privacy-Preserving Patient-Centric Clinical Decision Support System on Naïve Bayesian Classification.

    PubMed

    Liu, Ximeng; Lu, Rongxing; Ma, Jianfeng; Chen, Le; Qin, Baodong

    2016-03-01

    Clinical decision support system, which uses advanced data mining techniques to help clinician make proper decisions, has received considerable attention recently. The advantages of clinical decision support system include not only improving diagnosis accuracy but also reducing diagnosis time. Specifically, with large amounts of clinical data generated everyday, naïve Bayesian classification can be utilized to excavate valuable information to improve a clinical decision support system. Although the clinical decision support system is quite promising, the flourish of the system still faces many challenges including information security and privacy concerns. In this paper, we propose a new privacy-preserving patient-centric clinical decision support system, which helps clinician complementary to diagnose the risk of patients' disease in a privacy-preserving way. In the proposed system, the past patients' historical data are stored in cloud and can be used to train the naïve Bayesian classifier without leaking any individual patient medical data, and then the trained classifier can be applied to compute the disease risk for new coming patients and also allow these patients to retrieve the top- k disease names according to their own preferences. Specifically, to protect the privacy of past patients' historical data, a new cryptographic tool called additive homomorphic proxy aggregation scheme is designed. Moreover, to leverage the leakage of naïve Bayesian classifier, we introduce a privacy-preserving top- k disease names retrieval protocol in our system. Detailed privacy analysis ensures that patient's information is private and will not be leaked out during the disease diagnosis phase. In addition, performance evaluation via extensive simulations also demonstrates that our system can efficiently calculate patient's disease risk with high accuracy in a privacy-preserving way.

  5. A Bayesian Framework for False Belief Reasoning in Children: A Rational Integration of Theory-Theory and Simulation Theory

    PubMed Central

    Asakura, Nobuhiko; Inui, Toshio

    2016-01-01

    Two apparently contrasting theories have been proposed to account for the development of children's theory of mind (ToM): theory-theory and simulation theory. We present a Bayesian framework that rationally integrates both theories for false belief reasoning. This framework exploits two internal models for predicting the belief states of others: one of self and one of others. These internal models are responsible for simulation-based and theory-based reasoning, respectively. The framework further takes into account empirical studies of a developmental ToM scale (e.g., Wellman and Liu, 2004): developmental progressions of various mental state understandings leading up to false belief understanding. By representing the internal models and their interactions as a causal Bayesian network, we formalize the model of children's false belief reasoning as probabilistic computations on the Bayesian network. This model probabilistically weighs and combines the two internal models and predicts children's false belief ability as a multiplicative effect of their early-developed abilities to understand the mental concepts of diverse beliefs and knowledge access. Specifically, the model predicts that children's proportion of correct responses on a false belief task can be closely approximated as the product of their proportions correct on the diverse belief and knowledge access tasks. To validate this prediction, we illustrate that our model provides good fits to a variety of ToM scale data for preschool children. We discuss the implications and extensions of our model for a deeper understanding of developmental progressions of children's ToM abilities. PMID:28082941

  6. A Bayesian Framework for False Belief Reasoning in Children: A Rational Integration of Theory-Theory and Simulation Theory.

    PubMed

    Asakura, Nobuhiko; Inui, Toshio

    2016-01-01

    Two apparently contrasting theories have been proposed to account for the development of children's theory of mind (ToM): theory-theory and simulation theory. We present a Bayesian framework that rationally integrates both theories for false belief reasoning. This framework exploits two internal models for predicting the belief states of others: one of self and one of others. These internal models are responsible for simulation-based and theory-based reasoning, respectively. The framework further takes into account empirical studies of a developmental ToM scale (e.g., Wellman and Liu, 2004): developmental progressions of various mental state understandings leading up to false belief understanding. By representing the internal models and their interactions as a causal Bayesian network, we formalize the model of children's false belief reasoning as probabilistic computations on the Bayesian network. This model probabilistically weighs and combines the two internal models and predicts children's false belief ability as a multiplicative effect of their early-developed abilities to understand the mental concepts of diverse beliefs and knowledge access. Specifically, the model predicts that children's proportion of correct responses on a false belief task can be closely approximated as the product of their proportions correct on the diverse belief and knowledge access tasks. To validate this prediction, we illustrate that our model provides good fits to a variety of ToM scale data for preschool children. We discuss the implications and extensions of our model for a deeper understanding of developmental progressions of children's ToM abilities.

  7. Bayesian Structural Equation Modeling: A More Flexible Representation of Substantive Theory

    ERIC Educational Resources Information Center

    Muthen, Bengt; Asparouhov, Tihomir

    2012-01-01

    This article proposes a new approach to factor analysis and structural equation modeling using Bayesian analysis. The new approach replaces parameter specifications of exact zeros with approximate zeros based on informative, small-variance priors. It is argued that this produces an analysis that better reflects substantive theories. The proposed…

  8. How Recent History Affects Perception: The Normative Approach and Its Heuristic Approximation

    PubMed Central

    Raviv, Ofri; Ahissar, Merav; Loewenstein, Yonatan

    2012-01-01

    There is accumulating evidence that prior knowledge about expectations plays an important role in perception. The Bayesian framework is the standard computational approach to explain how prior knowledge about the distribution of expected stimuli is incorporated with noisy observations in order to improve performance. However, it is unclear what information about the prior distribution is acquired by the perceptual system over short periods of time and how this information is utilized in the process of perceptual decision making. Here we address this question using a simple two-tone discrimination task. We find that the “contraction bias”, in which small magnitudes are overestimated and large magnitudes are underestimated, dominates the pattern of responses of human participants. This contraction bias is consistent with the Bayesian hypothesis in which the true prior information is available to the decision-maker. However, a trial-by-trial analysis of the pattern of responses reveals that the contribution of most recent trials to performance is overweighted compared with the predictions of a standard Bayesian model. Moreover, we study participants' performance in a-typical distributions of stimuli and demonstrate substantial deviations from the ideal Bayesian detector, suggesting that the brain utilizes a heuristic approximation of the Bayesian inference. We propose a biologically plausible model, in which decision in the two-tone discrimination task is based on a comparison between the second tone and an exponentially-decaying average of the first tone and past tones. We show that this model accounts for both the contraction bias and the deviations from the ideal Bayesian detector hypothesis. These findings demonstrate the power of Bayesian-like heuristics in the brain, as well as their limitations in their failure to fully adapt to novel environments. PMID:23133343

  9. Assessing electronic health record systems in emergency departments: Using a decision analytic Bayesian model.

    PubMed

    Ben-Assuli, Ofir; Leshno, Moshe

    2016-09-01

    In the last decade, health providers have implemented information systems to improve accuracy in medical diagnosis and decision-making. This article evaluates the impact of an electronic health record on emergency department physicians' diagnosis and admission decisions. A decision analytic approach using a decision tree was constructed to model the admission decision process to assess the added value of medical information retrieved from the electronic health record. Using a Bayesian statistical model, this method was evaluated on two coronary artery disease scenarios. The results show that the cases of coronary artery disease were better diagnosed when the electronic health record was consulted and led to more informed admission decisions. Furthermore, the value of medical information required for a specific admission decision in emergency departments could be quantified. The findings support the notion that physicians and patient healthcare can benefit from implementing electronic health record systems in emergency departments. © The Author(s) 2015.

  10. Quantifying human behavior uncertainties in a coupled agent-based model for water resources management

    NASA Astrophysics Data System (ADS)

    Hyun, J. Y.; Yang, Y. C. E.; Tidwell, V. C.; Macknick, J.

    2017-12-01

    Modeling human behaviors and decisions in water resources management is a challenging issue due to its complexity and uncertain characteristics that affected by both internal (such as stakeholder's beliefs on any external information) and external factors (such as future policies and weather/climate forecast). Stakeholders' decision regarding how much water they need is usually not entirely rational in the real-world cases, so it is not quite suitable to model their decisions with a centralized (top-down) approach that assume everyone in a watershed follow the same order or pursue the same objective. Agent-based modeling (ABM) uses a decentralized approach (bottom-up) that allow each stakeholder to make his/her own decision based on his/her own objective and the belief of information acquired. In this study, we develop an ABM which incorporates the psychological human decision process by the theory of risk perception. The theory of risk perception quantifies human behaviors and decisions uncertainties using two sequential methodologies: the Bayesian Inference and the Cost-Loss Problem. The developed ABM is coupled with a regulation-based water system model: Riverware (RW) to evaluate different human decision uncertainties in water resources management. The San Juan River Basin in New Mexico (Figure 1) is chosen as a case study area, while we define 19 major irrigation districts as water use agents and their primary decision is to decide the irrigated area on an annual basis. This decision will be affected by three external factors: 1) upstream precipitation forecast (potential amount of water availability), 2) violation of the downstream minimum flow (required to support ecosystems), and 3) enforcement of a shortage sharing plan (a policy that is currently undertaken in the region for drought years). Three beliefs (as internal factors) that correspond to these three external factors will also be considered in the modeling framework. The objective of this study is to use the two-way coupling between ABM and RW to mimic how stakeholders' uncertain decisions that have been made through the theory of risk perception will affect local and basin-wide water uses.

  11. Value of information analysis for interventional and counterfactual Bayesian networks in forensic medical sciences.

    PubMed

    Constantinou, Anthony Costa; Yet, Barbaros; Fenton, Norman; Neil, Martin; Marsh, William

    2016-01-01

    Inspired by real-world examples from the forensic medical sciences domain, we seek to determine whether a decision about an interventional action could be subject to amendments on the basis of some incomplete information within the model, and whether it would be worthwhile for the decision maker to seek further information prior to suggesting a decision. The method is based on the underlying principle of Value of Information to enhance decision analysis in interventional and counterfactual Bayesian networks. The method is applied to two real-world Bayesian network models (previously developed for decision support in forensic medical sciences) to examine the average gain in terms of both Value of Information (average relative gain ranging from 11.45% and 59.91%) and decision making (potential amendments in decision making ranging from 0% to 86.8%). We have shown how the method becomes useful for decision makers, not only when decision making is subject to amendments on the basis of some unknown risk factors, but also when it is not. Knowing that a decision outcome is independent of one or more unknown risk factors saves us from the trouble of seeking information about the particular set of risk factors. Further, we have also extended the assessment of this implication to the counterfactual case and demonstrated how answers about interventional actions are expected to change when some unknown factors become known, and how useful this becomes in forensic medical science. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A novel latent gaussian copula framework for modeling spatial correlation in quantized SAR imagery with applications to ATR

    NASA Astrophysics Data System (ADS)

    Thelen, Brian T.; Xique, Ismael J.; Burns, Joseph W.; Goley, G. Steven; Nolan, Adam R.; Benson, Jonathan W.

    2017-04-01

    With all of the new remote sensing modalities available, and with ever increasing capabilities and frequency of collection, there is a desire to fundamentally understand/quantify the information content in the collected image data relative to various exploitation goals, such as detection/classification. A fundamental approach for this is the framework of Bayesian decision theory, but a daunting challenge is to have significantly flexible and accurate multivariate models for the features and/or pixels that capture a wide assortment of distributions and dependen- cies. In addition, data can come in the form of both continuous and discrete representations, where the latter is often generated based on considerations of robustness to imaging conditions and occlusions/degradations. In this paper we propose a novel suite of "latent" models fundamentally based on multivariate Gaussian copula models that can be used for quantized data from SAR imagery. For this Latent Gaussian Copula (LGC) model, we derive an approximate, maximum-likelihood estimation algorithm and demonstrate very reasonable estimation performance even for the larger images with many pixels. However applying these LGC models to large dimen- sions/images within a Bayesian decision/classification theory is infeasible due to the computational/numerical issues in evaluating the true full likelihood, and we propose an alternative class of novel pseudo-likelihoood detection statistics that are computationally feasible. We show in a few simple examples that these statistics have the potential to provide very good and robust detection/classification performance. All of this framework is demonstrated on a simulated SLICY data set, and the results show the importance of modeling the dependencies, and of utilizing the pseudo-likelihood methods.

  13. Applying Bayesian belief networks in rapid response situations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, William L; Deborah, Leishman, A.; Van Eeckhout, Edward

    2008-01-01

    The authors have developed an enhanced Bayesian analysis tool called the Integrated Knowledge Engine (IKE) for monitoring and surveillance. The enhancements are suited for Rapid Response Situations where decisions must be made based on uncertain and incomplete evidence from many diverse and heterogeneous sources. The enhancements extend the probabilistic results of the traditional Bayesian analysis by (1) better quantifying uncertainty arising from model parameter uncertainty and uncertain evidence, (2) optimizing the collection of evidence to reach conclusions more quickly, and (3) allowing the analyst to determine the influence of the remaining evidence that cannot be obtained in the time allowed.more » These extended features give the analyst and decision maker a better comprehension of the adequacy of the acquired evidence and hence the quality of the hurried decisions. They also describe two example systems where the above features are highlighted.« less

  14. Determining the optimal forensic DNA analysis procedure following investigation of sample quality.

    PubMed

    Hedell, Ronny; Hedman, Johannes; Mostad, Petter

    2018-07-01

    Crime scene traces of various types are routinely sent to forensic laboratories for analysis, generally with the aim of addressing questions about the source of the trace. The laboratory may choose to analyse the samples in different ways depending on the type and quality of the sample, the importance of the case and the cost and performance of the available analysis methods. Theoretically well-founded guidelines for the choice of analysis method are, however, lacking in most situations. In this paper, it is shown how such guidelines can be created using Bayesian decision theory. The theory is applied to forensic DNA analysis, showing how the information from the initial qPCR analysis can be utilized. It is assumed the alternatives for analysis are using a standard short tandem repeat (STR) DNA analysis assay, using the standard assay and a complementary assay, or the analysis may be cancelled following quantification. The decision is based on information about the DNA amount and level of DNA degradation of the forensic sample, as well as case circumstances and the cost for analysis. Semi-continuous electropherogram models are used for simulation of DNA profiles and for computation of likelihood ratios. It is shown how tables and graphs, prepared beforehand, can be used to quickly find the optimal decision in forensic casework.

  15. Bayesian truthing as experimental verification of C4ISR sensors

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Romanov, Volodymyr; Wang, Wenjian; Nielsen, Thomas; Kostrzewski, Andrew

    2015-05-01

    In this paper, the general methodology for experimental verification/validation of C4ISR and other sensors' performance, is presented, based on Bayesian inference, in general, and binary sensors, in particular. This methodology, called Bayesian Truthing, defines Performance Metrics for binary sensors in: physics, optics, electronics, medicine, law enforcement, C3ISR, QC, ATR (Automatic Target Recognition), terrorism related events, and many others. For Bayesian Truthing, the sensing medium itself is not what is truly important; it is how the decision process is affected.

  16. Using Bayesian Networks for Candidate Generation in Consistency-based Diagnosis

    NASA Technical Reports Server (NTRS)

    Narasimhan, Sriram; Mengshoel, Ole

    2008-01-01

    Consistency-based diagnosis relies heavily on the assumption that discrepancies between model predictions and sensor observations can be detected accurately. When sources of uncertainty like sensor noise and model abstraction exist robust schemes have to be designed to make a binary decision on whether predictions are consistent with observations. This risks the occurrence of false alarms and missed alarms when an erroneous decision is made. Moreover when multiple sensors (with differing sensing properties) are available the degree of match between predictions and observations can be used to guide the search for fault candidates. In this paper we propose a novel approach to handle this problem using Bayesian networks. In the consistency- based diagnosis formulation, automatically generated Bayesian networks are used to encode a probabilistic measure of fit between predictions and observations. A Bayesian network inference algorithm is used to compute most probable fault candidates.

  17. Who Dares, Who Errs? Disentangling Cognitive and Motivational Roots of Age Differences in Decisions Under Risk.

    PubMed

    Pachur, Thorsten; Mata, Rui; Hertwig, Ralph

    2017-04-01

    We separate for the first time the roles of cognitive and motivational factors in shaping age differences in decision making under risk. Younger and older adults completed gain, loss, and mixed-domain choice problems as well as measures of cognitive functioning and affect. The older adults' decision quality was lower than the younger adults' in the loss domain, and this age difference was attributable to the older adults' lower cognitive abilities. In addition, the older adults chose the more risky option more often than the younger adults in the gain and mixed domains; this difference in risk aversion was attributable to less pronounced negative affect among the older adults. Computational modeling with a hierarchical Bayesian implementation of cumulative prospect theory revealed that the older adults had higher response noise and more optimistic decision weights for gains than did the younger adults. Moreover, the older adults showed no loss aversion, a finding that supports a positivity-focus (rather than a loss-prevention) view of motivational reorientation in older age.

  18. Bayesian Analysis of Multidimensional Item Response Theory Models: A Discussion and Illustration of Three Response Style Models

    ERIC Educational Resources Information Center

    Leventhal, Brian C.; Stone, Clement A.

    2018-01-01

    Interest in Bayesian analysis of item response theory (IRT) models has grown tremendously due to the appeal of the paradigm among psychometricians, advantages of these methods when analyzing complex models, and availability of general-purpose software. Possible models include models which reflect multidimensionality due to designed test structure,…

  19. Using SAS PROC MCMC for Item Response Theory Models

    ERIC Educational Resources Information Center

    Ames, Allison J.; Samonte, Kelli

    2015-01-01

    Interest in using Bayesian methods for estimating item response theory models has grown at a remarkable rate in recent years. This attentiveness to Bayesian estimation has also inspired a growth in available software such as WinBUGS, R packages, BMIRT, MPLUS, and SAS PROC MCMC. This article intends to provide an accessible overview of Bayesian…

  20. Bayesian theories of conditioning in a changing world.

    PubMed

    Courville, Aaron C; Daw, Nathaniel D; Touretzky, David S

    2006-07-01

    The recent flowering of Bayesian approaches invites the re-examination of classic issues in behavior, even in areas as venerable as Pavlovian conditioning. A statistical account can offer a new, principled interpretation of behavior, and previous experiments and theories can inform many unexplored aspects of the Bayesian enterprise. Here we consider one such issue: the finding that surprising events provoke animals to learn faster. We suggest that, in a statistical account of conditioning, surprise signals change and therefore uncertainty and the need for new learning. We discuss inference in a world that changes and show how experimental results involving surprise can be interpreted from this perspective, and also how, thus understood, these phenomena help constrain statistical theories of animal and human learning.

  1. Modeling Diagnostic Assessments with Bayesian Networks

    ERIC Educational Resources Information Center

    Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego

    2007-01-01

    This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…

  2. Can Bayesian Theories of Autism Spectrum Disorder Help Improve Clinical Practice?

    PubMed

    Haker, Helene; Schneebeli, Maya; Stephan, Klaas Enno

    2016-01-01

    Diagnosis and individualized treatment of autism spectrum disorder (ASD) represent major problems for contemporary psychiatry. Tackling these problems requires guidance by a pathophysiological theory. In this paper, we consider recent theories that re-conceptualize ASD from a "Bayesian brain" perspective, which posit that the core abnormality of ASD resides in perceptual aberrations due to a disbalance in the precision of prediction errors (sensory noise) relative to the precision of predictions (prior beliefs). This results in percepts that are dominated by sensory inputs and less guided by top-down regularization and shifts the perceptual focus to detailed aspects of the environment with difficulties in extracting meaning. While these Bayesian theories have inspired ongoing empirical studies, their clinical implications have not yet been carved out. Here, we consider how this Bayesian perspective on disease mechanisms in ASD might contribute to improving clinical care for affected individuals. Specifically, we describe a computational strategy, based on generative (e.g., hierarchical Bayesian) models of behavioral and functional neuroimaging data, for establishing diagnostic tests. These tests could provide estimates of specific cognitive processes underlying ASD and delineate pathophysiological mechanisms with concrete treatment targets. Written with a clinical audience in mind, this article outlines how the development of computational diagnostics applicable to behavioral and functional neuroimaging data in routine clinical practice could not only fundamentally alter our concept of ASD but eventually also transform the clinical management of this disorder.

  3. Can Bayesian Theories of Autism Spectrum Disorder Help Improve Clinical Practice?

    PubMed Central

    Haker, Helene; Schneebeli, Maya; Stephan, Klaas Enno

    2016-01-01

    Diagnosis and individualized treatment of autism spectrum disorder (ASD) represent major problems for contemporary psychiatry. Tackling these problems requires guidance by a pathophysiological theory. In this paper, we consider recent theories that re-conceptualize ASD from a “Bayesian brain” perspective, which posit that the core abnormality of ASD resides in perceptual aberrations due to a disbalance in the precision of prediction errors (sensory noise) relative to the precision of predictions (prior beliefs). This results in percepts that are dominated by sensory inputs and less guided by top-down regularization and shifts the perceptual focus to detailed aspects of the environment with difficulties in extracting meaning. While these Bayesian theories have inspired ongoing empirical studies, their clinical implications have not yet been carved out. Here, we consider how this Bayesian perspective on disease mechanisms in ASD might contribute to improving clinical care for affected individuals. Specifically, we describe a computational strategy, based on generative (e.g., hierarchical Bayesian) models of behavioral and functional neuroimaging data, for establishing diagnostic tests. These tests could provide estimates of specific cognitive processes underlying ASD and delineate pathophysiological mechanisms with concrete treatment targets. Written with a clinical audience in mind, this article outlines how the development of computational diagnostics applicable to behavioral and functional neuroimaging data in routine clinical practice could not only fundamentally alter our concept of ASD but eventually also transform the clinical management of this disorder. PMID:27378955

  4. Bayesian Forecasting Tool to Predict the Need for Antidote in Acute Acetaminophen Overdose.

    PubMed

    Desrochers, Julie; Wojciechowski, Jessica; Klein-Schwartz, Wendy; Gobburu, Jogarao V S; Gopalakrishnan, Mathangi

    2017-08-01

    Acetaminophen (APAP) overdose is the leading cause of acute liver injury in the United States. Patients with elevated plasma acetaminophen concentrations (PACs) require hepatoprotective treatment with N-acetylcysteine (NAC). These patients have been primarily risk-stratified using the Rumack-Matthew nomogram. Previous studies of acute APAP overdoses found that the nomogram failed to accurately predict the need for the antidote. The objectives of this study were to develop a population pharmacokinetic (PK) model for APAP following acute overdose and evaluate the utility of population PK model-based Bayesian forecasting in NAC administration decisions. Limited APAP concentrations from a retrospective cohort of acute overdosed subjects from the Maryland Poison Center were used to develop the population PK model and to investigate the effect of type of APAP products and other prognostic factors. The externally validated population PK model was used a prior for Bayesian forecasting to predict the individual PK profile when one or two observed PACs were available. The utility of Bayesian forecasted APAP concentration-time profiles inferred from one (first) or two (first and second) PAC observations were also tested in their ability to predict the observed NAC decisions. A one-compartment model with first-order absorption and elimination adequately described the data with single activated charcoal and APAP products as significant covariates on absorption and bioavailability. The Bayesian forecasted individual concentration-time profiles had acceptable bias (6.2% and 9.8%) and accuracy (40.5% and 41.9%) when either one or two PACs were considered, respectively. The sensitivity and negative predictive value of the Bayesian forecasted NAC decisions using one PAC were 84% and 92.6%, respectively. The population PK analysis provided a platform for acceptably predicting an individual's concentration-time profile following acute APAP overdose with at least one PAC, and the individual's covariate profile, and can potentially be used for making early NAC administration decisions. © 2017 Pharmacotherapy Publications, Inc.

  5. Dynamical foundations of the neural circuit for bayesian decision making.

    PubMed

    Morita, Kenji

    2009-07-01

    On the basis of accumulating behavioral and neural evidences, it has recently been proposed that the brain neural circuits of humans and animals are equipped with several specific properties, which ensure that perceptual decision making implemented by the circuits can be nearly optimal in terms of Bayesian inference. Here, I introduce the basic ideas of such a proposal and discuss its implications from the standpoint of biophysical modeling developed in the framework of dynamical systems.

  6. Predicting the Future as Bayesian Inference: People Combine Prior Knowledge with Observations when Estimating Duration and Extent

    ERIC Educational Resources Information Center

    Griffiths, Thomas L.; Tenenbaum, Joshua B.

    2011-01-01

    Predicting the future is a basic problem that people have to solve every day and a component of planning, decision making, memory, and causal reasoning. In this article, we present 5 experiments testing a Bayesian model of predicting the duration or extent of phenomena from their current state. This Bayesian model indicates how people should…

  7. Bayesian models: A statistical primer for ecologists

    USGS Publications Warehouse

    Hobbs, N. Thompson; Hooten, Mevin B.

    2015-01-01

    Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticiansCovers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and moreDeemphasizes computer coding in favor of basic principlesExplains how to write out properly factored statistical expressions representing Bayesian models

  8. Investment appraisal using quantitative risk analysis.

    PubMed

    Johansson, Henrik

    2002-07-01

    Investment appraisal concerned with investments in fire safety systems is discussed. Particular attention is directed at evaluating, in terms of the Bayesian decision theory, the risk reduction that investment in a fire safety system involves. It is shown how the monetary value of the change from a building design without any specific fire protection system to one including such a system can be estimated by use of quantitative risk analysis, the results of which are expressed in terms of a Risk-adjusted net present value. This represents the intrinsic monetary value of investing in the fire safety system. The method suggested is exemplified by a case study performed in an Avesta Sheffield factory.

  9. Reweighting Data in the Spirit of Tukey: Using Bayesian Posterior Probabilities as Rasch Residuals for Studying Misfit

    ERIC Educational Resources Information Center

    Dardick, William R.; Mislevy, Robert J.

    2016-01-01

    A new variant of the iterative "data = fit + residual" data-analytical approach described by Mosteller and Tukey is proposed and implemented in the context of item response theory psychometric models. Posterior probabilities from a Bayesian mixture model of a Rasch item response theory model and an unscalable latent class are expressed…

  10. A Bayesian Attractor Model for Perceptual Decision Making

    PubMed Central

    Bitzer, Sebastian; Bruineberg, Jelle; Kiebel, Stefan J.

    2015-01-01

    Even for simple perceptual decisions, the mechanisms that the brain employs are still under debate. Although current consensus states that the brain accumulates evidence extracted from noisy sensory information, open questions remain about how this simple model relates to other perceptual phenomena such as flexibility in decisions, decision-dependent modulation of sensory gain, or confidence about a decision. We propose a novel approach of how perceptual decisions are made by combining two influential formalisms into a new model. Specifically, we embed an attractor model of decision making into a probabilistic framework that models decision making as Bayesian inference. We show that the new model can explain decision making behaviour by fitting it to experimental data. In addition, the new model combines for the first time three important features: First, the model can update decisions in response to switches in the underlying stimulus. Second, the probabilistic formulation accounts for top-down effects that may explain recent experimental findings of decision-related gain modulation of sensory neurons. Finally, the model computes an explicit measure of confidence which we relate to recent experimental evidence for confidence computations in perceptual decision tasks. PMID:26267143

  11. Semiparametric Thurstonian Models for Recurrent Choices: A Bayesian Analysis

    ERIC Educational Resources Information Center

    Ansari, Asim; Iyengar, Raghuram

    2006-01-01

    We develop semiparametric Bayesian Thurstonian models for analyzing repeated choice decisions involving multinomial, multivariate binary or multivariate ordinal data. Our modeling framework has multiple components that together yield considerable flexibility in modeling preference utilities, cross-sectional heterogeneity and parameter-driven…

  12. Bayesian Approaches to Imputation, Hypothesis Testing, and Parameter Estimation

    ERIC Educational Resources Information Center

    Ross, Steven J.; Mackey, Beth

    2015-01-01

    This chapter introduces three applications of Bayesian inference to common and novel issues in second language research. After a review of the critiques of conventional hypothesis testing, our focus centers on ways Bayesian inference can be used for dealing with missing data, for testing theory-driven substantive hypotheses without a default null…

  13. A Gaussian Approximation Approach for Value of Information Analysis.

    PubMed

    Jalal, Hawre; Alarid-Escudero, Fernando

    2018-02-01

    Most decisions are associated with uncertainty. Value of information (VOI) analysis quantifies the opportunity loss associated with choosing a suboptimal intervention based on current imperfect information. VOI can inform the value of collecting additional information, resource allocation, research prioritization, and future research designs. However, in practice, VOI remains underused due to many conceptual and computational challenges associated with its application. Expected value of sample information (EVSI) is rooted in Bayesian statistical decision theory and measures the value of information from a finite sample. The past few years have witnessed a dramatic growth in computationally efficient methods to calculate EVSI, including metamodeling. However, little research has been done to simplify the experimental data collection step inherent to all EVSI computations, especially for correlated model parameters. This article proposes a general Gaussian approximation (GA) of the traditional Bayesian updating approach based on the original work by Raiffa and Schlaifer to compute EVSI. The proposed approach uses a single probabilistic sensitivity analysis (PSA) data set and involves 2 steps: 1) a linear metamodel step to compute the EVSI on the preposterior distributions and 2) a GA step to compute the preposterior distribution of the parameters of interest. The proposed approach is efficient and can be applied for a wide range of data collection designs involving multiple non-Gaussian parameters and unbalanced study designs. Our approach is particularly useful when the parameters of an economic evaluation are correlated or interact.

  14. Alterations in choice behavior by manipulations of world model.

    PubMed

    Green, C S; Benson, C; Kersten, D; Schrater, P

    2010-09-14

    How to compute initially unknown reward values makes up one of the key problems in reinforcement learning theory, with two basic approaches being used. Model-free algorithms rely on the accumulation of substantial amounts of experience to compute the value of actions, whereas in model-based learning, the agent seeks to learn the generative process for outcomes from which the value of actions can be predicted. Here we show that (i) "probability matching"-a consistent example of suboptimal choice behavior seen in humans-occurs in an optimal Bayesian model-based learner using a max decision rule that is initialized with ecologically plausible, but incorrect beliefs about the generative process for outcomes and (ii) human behavior can be strongly and predictably altered by the presence of cues suggestive of various generative processes, despite statistically identical outcome generation. These results suggest human decision making is rational and model based and not consistent with model-free learning.

  15. Alterations in choice behavior by manipulations of world model

    PubMed Central

    Green, C. S.; Benson, C.; Kersten, D.; Schrater, P.

    2010-01-01

    How to compute initially unknown reward values makes up one of the key problems in reinforcement learning theory, with two basic approaches being used. Model-free algorithms rely on the accumulation of substantial amounts of experience to compute the value of actions, whereas in model-based learning, the agent seeks to learn the generative process for outcomes from which the value of actions can be predicted. Here we show that (i) “probability matching”—a consistent example of suboptimal choice behavior seen in humans—occurs in an optimal Bayesian model-based learner using a max decision rule that is initialized with ecologically plausible, but incorrect beliefs about the generative process for outcomes and (ii) human behavior can be strongly and predictably altered by the presence of cues suggestive of various generative processes, despite statistically identical outcome generation. These results suggest human decision making is rational and model based and not consistent with model-free learning. PMID:20805507

  16. ROC curve analyses of eyewitness identification decisions: An analysis of the recent debate.

    PubMed

    Rotello, Caren M; Chen, Tina

    2016-01-01

    How should the accuracy of eyewitness identification decisions be measured, so that best practices for identification can be determined? This fundamental question is under intense debate. One side advocates for continued use of a traditional measure of identification accuracy, known as the diagnosticity ratio , whereas the other side argues that receiver operating characteristic curves (ROCs) should be used instead because diagnosticity is confounded with response bias. Diagnosticity proponents have offered several criticisms of ROCs, which we show are either false or irrelevant to the assessment of eyewitness accuracy. We also show that, like diagnosticity, Bayesian measures of identification accuracy confound response bias with witnesses' ability to discriminate guilty from innocent suspects. ROCs are an essential tool for distinguishing memory-based processes from decisional aspects of a response; simulations of different possible identification tasks and response strategies show that they offer important constraints on theory development.

  17. Rule groupings in expert systems using nearest neighbour decision rules, and convex hulls

    NASA Technical Reports Server (NTRS)

    Anastasiadis, Stergios

    1991-01-01

    Expert System shells are lacking in many areas of software engineering. Large rule based systems are not semantically comprehensible, difficult to debug, and impossible to modify or validate. Partitioning a set of rules found in CLIPS (C Language Integrated Production System) into groups of rules which reflect the underlying semantic subdomains of the problem, will address adequately the concerns stated above. Techniques are introduced to structure a CLIPS rule base into groups of rules that inherently have common semantic information. The concepts involved are imported from the field of A.I., Pattern Recognition, and Statistical Inference. Techniques focus on the areas of feature selection, classification, and a criteria of how 'good' the classification technique is, based on Bayesian Decision Theory. A variety of distance metrics are discussed for measuring the 'closeness' of CLIPS rules and various Nearest Neighbor classification algorithms are described based on the above metric.

  18. Combining MLC and SVM Classifiers for Learning Based Decision Making: Analysis and Evaluations

    PubMed Central

    Zhang, Yi; Ren, Jinchang; Jiang, Jianmin

    2015-01-01

    Maximum likelihood classifier (MLC) and support vector machines (SVM) are two commonly used approaches in machine learning. MLC is based on Bayesian theory in estimating parameters of a probabilistic model, whilst SVM is an optimization based nonparametric method in this context. Recently, it is found that SVM in some cases is equivalent to MLC in probabilistically modeling the learning process. In this paper, MLC and SVM are combined in learning and classification, which helps to yield probabilistic output for SVM and facilitate soft decision making. In total four groups of data are used for evaluations, covering sonar, vehicle, breast cancer, and DNA sequences. The data samples are characterized in terms of Gaussian/non-Gaussian distributed and balanced/unbalanced samples which are then further used for performance assessment in comparing the SVM and the combined SVM-MLC classifier. Interesting results are reported to indicate how the combined classifier may work under various conditions. PMID:26089862

  19. Combining MLC and SVM Classifiers for Learning Based Decision Making: Analysis and Evaluations.

    PubMed

    Zhang, Yi; Ren, Jinchang; Jiang, Jianmin

    2015-01-01

    Maximum likelihood classifier (MLC) and support vector machines (SVM) are two commonly used approaches in machine learning. MLC is based on Bayesian theory in estimating parameters of a probabilistic model, whilst SVM is an optimization based nonparametric method in this context. Recently, it is found that SVM in some cases is equivalent to MLC in probabilistically modeling the learning process. In this paper, MLC and SVM are combined in learning and classification, which helps to yield probabilistic output for SVM and facilitate soft decision making. In total four groups of data are used for evaluations, covering sonar, vehicle, breast cancer, and DNA sequences. The data samples are characterized in terms of Gaussian/non-Gaussian distributed and balanced/unbalanced samples which are then further used for performance assessment in comparing the SVM and the combined SVM-MLC classifier. Interesting results are reported to indicate how the combined classifier may work under various conditions.

  20. Reference-dependent risk sensitivity as rational inference.

    PubMed

    Denrell, Jerker C

    2015-07-01

    Existing explanations of reference-dependent risk sensitivity attribute it to cognitive imperfections and heuristic choice processes. This article shows that behavior consistent with an S-shaped value function could be an implication of rational inferences about the expected values of alternatives. Theoretically, I demonstrate that even a risk-neutral Bayesian decision maker, who is uncertain about the reliability of observations, should use variability in observed outcomes as a predictor of low expected value for outcomes above a reference level, and as a predictor of high expected value for outcomes below a reference level. Empirically, I show that combining past outcomes using an S-shaped value function leads to accurate predictions about future values. The theory also offers a rationale for why risk sensitivity consistent with an inverse S-shaped value function should occur in experiments on decisions from experience with binary payoff distributions. (c) 2015 APA, all rights reserved).

  1. The idiosyncratic nature of confidence

    PubMed Central

    Navajas, Joaquin; Hindocha, Chandni; Foda, Hebah; Keramati, Mehdi; Latham, Peter E; Bahrami, Bahador

    2017-01-01

    Confidence is the ‘feeling of knowing’ that accompanies decision making. Bayesian theory proposes that confidence is a function solely of the perceived probability of being correct. Empirical research has suggested, however, that different individuals may perform different computations to estimate confidence from uncertain evidence. To test this hypothesis, we collected confidence reports in a task where subjects made categorical decisions about the mean of a sequence. We found that for most individuals, confidence did indeed reflect the perceived probability of being correct. However, in approximately half of them, confidence also reflected a different probabilistic quantity: the perceived uncertainty in the estimated variable. We found that the contribution of both quantities was stable over weeks. We also observed that the influence of the perceived probability of being correct was stable across two tasks, one perceptual and one cognitive. Overall, our findings provide a computational interpretation of individual differences in human confidence. PMID:29152591

  2. A Comparison of General Diagnostic Models (GDM) and Bayesian Networks Using a Middle School Mathematics Test

    ERIC Educational Resources Information Center

    Wu, Haiyan

    2013-01-01

    General diagnostic models (GDMs) and Bayesian networks are mathematical frameworks that cover a wide variety of psychometric models. Both extend latent class models, and while GDMs also extend item response theory (IRT) models, Bayesian networks can be parameterized using discretized IRT. The purpose of this study is to examine similarities and…

  3. The anatomy of choice: active inference and agency.

    PubMed

    Friston, Karl; Schwartenbeck, Philipp; Fitzgerald, Thomas; Moutoussis, Michael; Behrens, Timothy; Dolan, Raymond J

    2013-01-01

    This paper considers agency in the setting of embodied or active inference. In brief, we associate a sense of agency with prior beliefs about action and ask what sorts of beliefs underlie optimal behavior. In particular, we consider prior beliefs that action minimizes the Kullback-Leibler (KL) divergence between desired states and attainable states in the future. This allows one to formulate bounded rationality as approximate Bayesian inference that optimizes a free energy bound on model evidence. We show that constructs like expected utility, exploration bonuses, softmax choice rules and optimism bias emerge as natural consequences of this formulation. Previous accounts of active inference have focused on predictive coding and Bayesian filtering schemes for minimizing free energy. Here, we consider variational Bayes as an alternative scheme that provides formal constraints on the computational anatomy of inference and action-constraints that are remarkably consistent with neuroanatomy. Furthermore, this scheme contextualizes optimal decision theory and economic (utilitarian) formulations as pure inference problems. For example, expected utility theory emerges as a special case of free energy minimization, where the sensitivity or inverse temperature (of softmax functions and quantal response equilibria) has a unique and Bayes-optimal solution-that minimizes free energy. This sensitivity corresponds to the precision of beliefs about behavior, such that attainable goals are afforded a higher precision or confidence. In turn, this means that optimal behavior entails a representation of confidence about outcomes that are under an agent's control.

  4. Evolution in Mind: Evolutionary Dynamics, Cognitive Processes, and Bayesian Inference.

    PubMed

    Suchow, Jordan W; Bourgin, David D; Griffiths, Thomas L

    2017-07-01

    Evolutionary theory describes the dynamics of population change in settings affected by reproduction, selection, mutation, and drift. In the context of human cognition, evolutionary theory is most often invoked to explain the origins of capacities such as language, metacognition, and spatial reasoning, framing them as functional adaptations to an ancestral environment. However, evolutionary theory is useful for understanding the mind in a second way: as a mathematical framework for describing evolving populations of thoughts, ideas, and memories within a single mind. In fact, deep correspondences exist between the mathematics of evolution and of learning, with perhaps the deepest being an equivalence between certain evolutionary dynamics and Bayesian inference. This equivalence permits reinterpretation of evolutionary processes as algorithms for Bayesian inference and has relevance for understanding diverse cognitive capacities, including memory and creativity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Bayesian statistics in medicine: a 25 year review.

    PubMed

    Ashby, Deborah

    2006-11-15

    This review examines the state of Bayesian thinking as Statistics in Medicine was launched in 1982, reflecting particularly on its applicability and uses in medical research. It then looks at each subsequent five-year epoch, with a focus on papers appearing in Statistics in Medicine, putting these in the context of major developments in Bayesian thinking and computation with reference to important books, landmark meetings and seminal papers. It charts the growth of Bayesian statistics as it is applied to medicine and makes predictions for the future. From sparse beginnings, where Bayesian statistics was barely mentioned, Bayesian statistics has now permeated all the major areas of medical statistics, including clinical trials, epidemiology, meta-analyses and evidence synthesis, spatial modelling, longitudinal modelling, survival modelling, molecular genetics and decision-making in respect of new technologies.

  6. Prediction of Sybil attack on WSN using Bayesian network and swarm intelligence

    NASA Astrophysics Data System (ADS)

    Muraleedharan, Rajani; Ye, Xiang; Osadciw, Lisa Ann

    2008-04-01

    Security in wireless sensor networks is typically sacrificed or kept minimal due to limited resources such as memory and battery power. Hence, the sensor nodes are prone to Denial-of-service attacks and detecting the threats is crucial in any application. In this paper, the Sybil attack is analyzed and a novel prediction method, combining Bayesian algorithm and Swarm Intelligence (SI) is proposed. Bayesian Networks (BN) is used in representing and reasoning problems, by modeling the elements of uncertainty. The decision from the BN is applied to SI forming an Hybrid Intelligence Scheme (HIS) to re-route the information and disconnecting the malicious nodes in future routes. A performance comparison based on the prediction using HIS vs. Ant System (AS) helps in prioritizing applications where decisions are time-critical.

  7. Using Bayesian networks to support decision-focused information retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehner, P.; Elsaesser, C.; Seligman, L.

    This paper has described an approach to controlling the process of pulling data/information from distributed data bases in a way that is specific to a persons specific decision making context. Our prototype implementation of this approach uses a knowledge-based planner to generate a plan, an automatically constructed Bayesian network to evaluate the plan, specialized processing of the network to derive key information items that would substantially impact the evaluation of the plan (e.g., determine that replanning is needed), automated construction of Standing Requests for Information (SRIs) which are automated functions that monitor changes and trends in distributed data base thatmore » are relevant to the key information items. This emphasis of this paper is on how Bayesian networks are used.« less

  8. Theory-based Bayesian models of inductive learning and reasoning.

    PubMed

    Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles

    2006-07-01

    Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.

  9. Determining informative priors for cognitive models.

    PubMed

    Lee, Michael D; Vanpaemel, Wolf

    2018-02-01

    The development of cognitive models involves the creative scientific formalization of assumptions, based on theory, observation, and other relevant information. In the Bayesian approach to implementing, testing, and using cognitive models, assumptions can influence both the likelihood function of the model, usually corresponding to assumptions about psychological processes, and the prior distribution over model parameters, usually corresponding to assumptions about the psychological variables that influence those processes. The specification of the prior is unique to the Bayesian context, but often raises concerns that lead to the use of vague or non-informative priors in cognitive modeling. Sometimes the concerns stem from philosophical objections, but more often practical difficulties with how priors should be determined are the stumbling block. We survey several sources of information that can help to specify priors for cognitive models, discuss some of the methods by which this information can be formalized in a prior distribution, and identify a number of benefits of including informative priors in cognitive modeling. Our discussion is based on three illustrative cognitive models, involving memory retention, categorization, and decision making.

  10. Bayesian analysis and classification of two Enzyme-Linked Immunosorbent Assay (ELISA) tests without a gold standard

    PubMed Central

    Zhang, Jingyang; Chaloner, Kathryn; McLinden, James H.; Stapleton, Jack T.

    2013-01-01

    Reconciling two quantitative ELISA tests for an antibody to an RNA virus, in a situation without a gold standard and where false negatives may occur, is the motivation for this work. False negatives occur when access of the antibody to the binding site is blocked. Based on the mechanism of the assay, a mixture of four bivariate normal distributions is proposed with the mixture probabilities depending on a two-stage latent variable model including the prevalence of the antibody in the population and the probabilities of blocking on each test. There is prior information on the prevalence of the antibody, and also on the probability of false negatives, and so a Bayesian analysis is used. The dependence between the two tests is modeled to be consistent with the biological mechanism. Bayesian decision theory is utilized for classification. The proposed method is applied to the motivating data set to classify the data into two groups: those with and those without the antibody. Simulation studies describe the properties of the estimation and the classification. Sensitivity to the choice of the prior distribution is also addressed by simulation. The same model with two levels of latent variables is applicable in other testing procedures such as quantitative polymerase chain reaction tests where false negatives occur when there is a mutation in the primer sequence. PMID:23592433

  11. A Bayesian account of quantum histories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marlow, Thomas

    2006-05-15

    We investigate whether quantum history theories can be consistent with Bayesian reasoning and whether such an analysis helps clarify the interpretation of such theories. First, we summarise and extend recent work categorising two different approaches to formalising multi-time measurements in quantum theory. The standard approach consists of describing an ordered series of measurements in terms of history propositions with non-additive 'probabilities.' The non-standard approach consists of defining multi-time measurements to consist of sets of exclusive and exhaustive history propositions and recovering the single-time exclusivity of results when discussing single-time history propositions. We analyse whether such history propositions can be consistentmore » with Bayes' rule. We show that certain class of histories are given a natural Bayesian interpretation, namely, the linearly positive histories originally introduced by Goldstein and Page. Thus, we argue that this gives a certain amount of interpretational clarity to the non-standard approach. We also attempt a justification of our analysis using Cox's axioms of probability theory.« less

  12. Potential uses of Bayesian networks as tools for synthesis of systematic reviews of complex interventions.

    PubMed

    Stewart, G B; Mengersen, K; Meader, N

    2014-03-01

    Bayesian networks (BNs) are tools for representing expert knowledge or evidence. They are especially useful for synthesising evidence or belief concerning a complex intervention, assessing the sensitivity of outcomes to different situations or contextual frameworks and framing decision problems that involve alternative types of intervention. Bayesian networks are useful extensions to logic maps when initiating a review or to facilitate synthesis and bridge the gap between evidence acquisition and decision-making. Formal elicitation techniques allow development of BNs on the basis of expert opinion. Such applications are useful alternatives to 'empty' reviews, which identify knowledge gaps but fail to support decision-making. Where review evidence exists, it can inform the development of a BN. We illustrate the construction of a BN using a motivating example that demonstrates how BNs can ensure coherence, transparently structure the problem addressed by a complex intervention and assess sensitivity to context, all of which are critical components of robust reviews of complex interventions. We suggest that BNs should be utilised to routinely synthesise reviews of complex interventions or empty reviews where decisions must be made despite poor evidence. Copyright © 2013 John Wiley & Sons, Ltd.

  13. A Bayesian paradigm for decision-making in proof-of-concept trials.

    PubMed

    Pulkstenis, Erik; Patra, Kaushik; Zhang, Jianliang

    2017-01-01

    Decision-making is central to every phase of drug development, and especially at the proof of concept stage where risk and evidence must be weighed carefully, often in the presence of significant uncertainty. The decision to proceed or not to large expensive Phase 3 trials has significant implications to both patients and sponsors alike. Recent experience has shown that Phase 3 failure rates remain high. We present a flexible Bayesian quantitative decision-making paradigm that evaluates evidence relative to achieving a multilevel target product profile. A framework for operating characteristics is provided that allows the drug developer to design a proof-of-concept trial in light of its ability to support decision-making rather than merely achieve statistical significance. Operating characteristics are shown to be superior to traditional p-value-based methods. In addition, discussion related to sample size considerations, application to interim futility analysis and incorporation of prior historical information is evaluated.

  14. Implicit knowledge of visual uncertainty guides decisions with asymmetric outcomes.

    PubMed

    Whiteley, Louise; Sahani, Maneesh

    2008-03-06

    Perception is an "inverse problem," in which the state of the world must be inferred from the sensory neural activity that results. However, this inference is both ill-posed (Helmholtz, 1856; Marr, 1982) and corrupted by noise (Green & Swets, 1989), requiring the brain to compute perceptual beliefs under conditions of uncertainty. Here we show that human observers performing a simple visual choice task under an externally imposed loss function approach the optimal strategy, as defined by Bayesian probability and decision theory (Berger, 1985; Cox, 1961). In concert with earlier work, this suggests that observers possess a model of their internal uncertainty and can utilize this model in the neural computations that underlie their behavior (Knill & Pouget, 2004). In our experiment, optimal behavior requires that observers integrate the loss function with an estimate of their internal uncertainty rather than simply requiring that they use a modal estimate of the uncertain stimulus. Crucially, they approach optimal behavior even when denied the opportunity to learn adaptive decision strategies based on immediate feedback. Our data thus support the idea that flexible representations of uncertainty are pre-existing, widespread, and can be propagated to decision-making areas of the brain.

  15. Modeling Opponents in Adversarial Risk Analysis.

    PubMed

    Rios Insua, David; Banks, David; Rios, Jesus

    2016-04-01

    Adversarial risk analysis has been introduced as a framework to deal with risks derived from intentional actions of adversaries. The analysis supports one of the decisionmakers, who must forecast the actions of the other agents. Typically, this forecast must take account of random consequences resulting from the set of selected actions. The solution requires one to model the behavior of the opponents, which entails strategic thinking. The supported agent may face different kinds of opponents, who may use different rationality paradigms, for example, the opponent may behave randomly, or seek a Nash equilibrium, or perform level-k thinking, or use mirroring, or employ prospect theory, among many other possibilities. We describe the appropriate analysis for these situations, and also show how to model the uncertainty about the rationality paradigm used by the opponent through a Bayesian model averaging approach, enabling a fully decision-theoretic solution. We also show how as we observe an opponent's decision behavior, this approach allows learning about the validity of each of the rationality models used to predict his decision by computing the models' (posterior) probabilities, which can be understood as a measure of their validity. We focus on simultaneous decision making by two agents. © 2015 Society for Risk Analysis.

  16. Bayesian Monte Carlo and Maximum Likelihood Approach for Uncertainty Estimation and Risk Management: Application to Lake Oxygen Recovery Model

    EPA Science Inventory

    Model uncertainty estimation and risk assessment is essential to environmental management and informed decision making on pollution mitigation strategies. In this study, we apply a probabilistic methodology, which combines Bayesian Monte Carlo simulation and Maximum Likelihood e...

  17. Bayesian Estimation Supersedes the "t" Test

    ERIC Educational Resources Information Center

    Kruschke, John K.

    2013-01-01

    Bayesian estimation for 2 groups provides complete distributions of credible values for the effect size, group means and their difference, standard deviations and their difference, and the normality of the data. The method handles outliers. The decision rule can accept the null value (unlike traditional "t" tests) when certainty in the estimate is…

  18. Theory-based Bayesian Models of Inductive Inference

    DTIC Science & Technology

    2010-07-19

    Subjective randomness and natural scene statistics. Psychonomic Bulletin & Review . http://cocosci.berkeley.edu/tom/papers/randscenes.pdf Page 1...in press). Exemplar models as a mechanism for performing Bayesian inference. Psychonomic Bulletin & Review . http://cocosci.berkeley.edu/tom

  19. Bayesian parameter estimation for chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Wesolowski, Sarah; Furnstahl, Richard; Phillips, Daniel; Klco, Natalie

    2016-09-01

    The low-energy constants (LECs) of a chiral effective field theory (EFT) interaction in the two-body sector are fit to observable data using a Bayesian parameter estimation framework. By using Bayesian prior probability distributions (pdfs), we quantify relevant physical expectations such as LEC naturalness and include them in the parameter estimation procedure. The final result is a posterior pdf for the LECs, which can be used to propagate uncertainty resulting from the fit to data to the final observable predictions. The posterior pdf also allows an empirical test of operator redundancy and other features of the potential. We compare results of our framework with other fitting procedures, interpreting the underlying assumptions in Bayesian probabilistic language. We also compare results from fitting all partial waves of the interaction simultaneously to cross section data compared to fitting to extracted phase shifts, appropriately accounting for correlations in the data. Supported in part by the NSF and DOE.

  20. Bayesian truncation errors in chiral effective field theory: model checking and accounting for correlations

    NASA Astrophysics Data System (ADS)

    Melendez, Jordan; Wesolowski, Sarah; Furnstahl, Dick

    2017-09-01

    Chiral effective field theory (EFT) predictions are necessarily truncated at some order in the EFT expansion, which induces an error that must be quantified for robust statistical comparisons to experiment. A Bayesian model yields posterior probability distribution functions for these errors based on expectations of naturalness encoded in Bayesian priors and the observed order-by-order convergence pattern of the EFT. As a general example of a statistical approach to truncation errors, the model was applied to chiral EFT for neutron-proton scattering using various semi-local potentials of Epelbaum, Krebs, and Meißner (EKM). Here we discuss how our model can learn correlation information from the data and how to perform Bayesian model checking to validate that the EFT is working as advertised. Supported in part by NSF PHY-1614460 and DOE NUCLEI SciDAC DE-SC0008533.

  1. Asteroid orbital error analysis: Theory and application

    NASA Technical Reports Server (NTRS)

    Muinonen, K.; Bowell, Edward

    1992-01-01

    We present a rigorous Bayesian theory for asteroid orbital error estimation in which the probability density of the orbital elements is derived from the noise statistics of the observations. For Gaussian noise in a linearized approximation the probability density is also Gaussian, and the errors of the orbital elements at a given epoch are fully described by the covariance matrix. The law of error propagation can then be applied to calculate past and future positional uncertainty ellipsoids (Cappellari et al. 1976, Yeomans et al. 1987, Whipple et al. 1991). To our knowledge, this is the first time a Bayesian approach has been formulated for orbital element estimation. In contrast to the classical Fisherian school of statistics, the Bayesian school allows a priori information to be formally present in the final estimation. However, Bayesian estimation does give the same results as Fisherian estimation when no priori information is assumed (Lehtinen 1988, and reference therein).

  2. Review of Reliability-Based Design Optimization Approach and Its Integration with Bayesian Method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangnan

    2018-03-01

    A lot of uncertain factors lie in practical engineering, such as external load environment, material property, geometrical shape, initial condition, boundary condition, etc. Reliability method measures the structural safety condition and determine the optimal design parameter combination based on the probabilistic theory. Reliability-based design optimization (RBDO) is the most commonly used approach to minimize the structural cost or other performance under uncertainty variables which combines the reliability theory and optimization. However, it cannot handle the various incomplete information. The Bayesian approach is utilized to incorporate this kind of incomplete information in its uncertainty quantification. In this paper, the RBDO approach and its integration with Bayesian method are introduced.

  3. Bayesian Nonlinear Assimilation of Eulerian and Lagrangian Coastal Flow Data

    DTIC Science & Technology

    2015-09-30

    Lagrangian Coastal Flow Data Dr. Pierre F.J. Lermusiaux Department of Mechanical Engineering Center for Ocean Science and Engineering Massachusetts...Develop and apply theory, schemes and computational systems for rigorous Bayesian nonlinear assimilation of Eulerian and Lagrangian coastal flow data...coastal ocean fields, both in Eulerian and Lagrangian forms. - Further develop and implement our GMM-DO schemes for robust Bayesian nonlinear estimation

  4. Exposure Models for the Prior Distribution in Bayesian Decision Analysis for Occupational Hygiene Decision Making

    PubMed Central

    Lee, Eun Gyung; Kim, Seung Won; Feigley, Charles E.; Harper, Martin

    2015-01-01

    This study introduces two semi-quantitative methods, Structured Subjective Assessment (SSA) and Control of Substances Hazardous to Health (COSHH) Essentials, in conjunction with two-dimensional Monte Carlo simulations for determining prior probabilities. Prior distribution using expert judgment was included for comparison. Practical applications of the proposed methods were demonstrated using personal exposure measurements of isoamyl acetate in an electronics manufacturing facility and of isopropanol in a printing shop. Applicability of these methods in real workplaces was discussed based on the advantages and disadvantages of each method. Although these methods could not be completely independent of expert judgments, this study demonstrated a methodological improvement in the estimation of the prior distribution for the Bayesian decision analysis tool. The proposed methods provide a logical basis for the decision process by considering determinants of worker exposure. PMID:23252451

  5. Numerical study on the sequential Bayesian approach for radioactive materials detection

    NASA Astrophysics Data System (ADS)

    Qingpei, Xiang; Dongfeng, Tian; Jianyu, Zhu; Fanhua, Hao; Ge, Ding; Jun, Zeng

    2013-01-01

    A new detection method, based on the sequential Bayesian approach proposed by Candy et al., offers new horizons for the research of radioactive detection. Compared with the commonly adopted detection methods incorporated with statistical theory, the sequential Bayesian approach offers the advantages of shorter verification time during the analysis of spectra that contain low total counts, especially in complex radionuclide components. In this paper, a simulation experiment platform implanted with the methodology of sequential Bayesian approach was developed. Events sequences of γ-rays associating with the true parameters of a LaBr3(Ce) detector were obtained based on an events sequence generator using Monte Carlo sampling theory to study the performance of the sequential Bayesian approach. The numerical experimental results are in accordance with those of Candy. Moreover, the relationship between the detection model and the event generator, respectively represented by the expected detection rate (Am) and the tested detection rate (Gm) parameters, is investigated. To achieve an optimal performance for this processor, the interval of the tested detection rate as a function of the expected detection rate is also presented.

  6. Hilbertian sine as an absolute measure of Bayesian inference in ISR, homeland security, medicine, and defense

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Wang, Wenjian; Hodelin, Juan; Forrester, Thomas; Romanov, Volodymyr; Kostrzewski, Andrew

    2016-05-01

    In this paper, Bayesian Binary Sensing (BBS) is discussed as an effective tool for Bayesian Inference (BI) evaluation in interdisciplinary areas such as ISR (and, C3I), Homeland Security, QC, medicine, defense, and many others. In particular, Hilbertian Sine (HS) as an absolute measure of BI, is introduced, while avoiding relativity of decision threshold identification, as in the case of traditional measures of BI, related to false positives and false negatives.

  7. Distinguishing between statistical significance and practical/clinical meaningfulness using statistical inference.

    PubMed

    Wilkinson, Michael

    2014-03-01

    Decisions about support for predictions of theories in light of data are made using statistical inference. The dominant approach in sport and exercise science is the Neyman-Pearson (N-P) significance-testing approach. When applied correctly it provides a reliable procedure for making dichotomous decisions for accepting or rejecting zero-effect null hypotheses with known and controlled long-run error rates. Type I and type II error rates must be specified in advance and the latter controlled by conducting an a priori sample size calculation. The N-P approach does not provide the probability of hypotheses or indicate the strength of support for hypotheses in light of data, yet many scientists believe it does. Outcomes of analyses allow conclusions only about the existence of non-zero effects, and provide no information about the likely size of true effects or their practical/clinical value. Bayesian inference can show how much support data provide for different hypotheses, and how personal convictions should be altered in light of data, but the approach is complicated by formulating probability distributions about prior subjective estimates of population effects. A pragmatic solution is magnitude-based inference, which allows scientists to estimate the true magnitude of population effects and how likely they are to exceed an effect magnitude of practical/clinical importance, thereby integrating elements of subjective Bayesian-style thinking. While this approach is gaining acceptance, progress might be hastened if scientists appreciate the shortcomings of traditional N-P null hypothesis significance testing.

  8. Ockham's razor and Bayesian analysis. [statistical theory for systems evaluation

    NASA Technical Reports Server (NTRS)

    Jefferys, William H.; Berger, James O.

    1992-01-01

    'Ockham's razor', the ad hoc principle enjoining the greatest possible simplicity in theoretical explanations, is presently shown to be justifiable as a consequence of Bayesian inference; Bayesian analysis can, moreover, clarify the nature of the 'simplest' hypothesis consistent with the given data. By choosing the prior probabilities of hypotheses, it becomes possible to quantify the scientific judgment that simpler hypotheses are more likely to be correct. Bayesian analysis also shows that a hypothesis with fewer adjustable parameters intrinsically possesses an enhanced posterior probability, due to the clarity of its predictions.

  9. A Bayesian Belief Network Approach to Explore Alternative Decisions for Sediment Control and water Storage Capacity at Lago Lucchetti, Puerto Rico

    EPA Science Inventory

    A Bayesian belief network (BBN) was developed to characterize the effects of sediment accumulation on the water storage capacity of Lago Lucchetti (located in southwest Puerto Rico) and to forecast the life expectancy (usefulness) of the reservoir under different management scena...

  10. A Bayesian approach to evaluating habitat for woodland caribou in north-central British Columbia.

    Treesearch

    R.S. McNay; B.G. Marcot; V. Brumovsky; R. Ellis

    2006-01-01

    Woodland caribou (Rangifer tarandus caribou) populations are in decline throughout much of their range. With increasing development of caribou habitat, tools are required to make management decisions to support effective conservation of caribou and their range. We developed a series of Bayesian belief networks to evaluate conservation policy...

  11. Using Discrete Loss Functions and Weighted Kappa for Classification: An Illustration Based on Bayesian Network Analysis

    ERIC Educational Resources Information Center

    Zwick, Rebecca; Lenaburg, Lubella

    2009-01-01

    In certain data analyses (e.g., multiple discriminant analysis and multinomial log-linear modeling), classification decisions are made based on the estimated posterior probabilities that individuals belong to each of several distinct categories. In the Bayesian network literature, this type of classification is often accomplished by assigning…

  12. Potential Uses of Bayesian Networks as Tools for Synthesis of Systematic Reviews of Complex Interventions

    ERIC Educational Resources Information Center

    Stewart, G. B.; Mengersen, K.; Meader, N.

    2014-01-01

    Bayesian networks (BNs) are tools for representing expert knowledge or evidence. They are especially useful for synthesising evidence or belief concerning a complex intervention, assessing the sensitivity of outcomes to different situations or contextual frameworks and framing decision problems that involve alternative types of intervention.…

  13. Predicting Drug Safety and Communicating Risk: Benefits of a Bayesian Approach.

    PubMed

    Lazic, Stanley E; Edmunds, Nicholas; Pollard, Christopher E

    2018-03-01

    Drug toxicity is a major source of attrition in drug discovery and development. Pharmaceutical companies routinely use preclinical data to predict clinical outcomes and continue to invest in new assays to improve predictions. However, there are many open questions about how to make the best use of available data, combine diverse data, quantify risk, and communicate risk and uncertainty to enable good decisions. The costs of suboptimal decisions are clear: resources are wasted and patients may be put at risk. We argue that Bayesian methods provide answers to all of these problems and use hERG-mediated QT prolongation as a case study. Benefits of Bayesian machine learning models include intuitive probabilistic statements of risk that incorporate all sources of uncertainty, the option to include diverse data and external information, and visualizations that have a clear link between the output from a statistical model and what this means for risk. Furthermore, Bayesian methods are easy to use with modern software, making their adoption for safety screening straightforward. We include R and Python code to encourage the adoption of these methods.

  14. On the Origins of Suboptimality in Human Probabilistic Inference

    PubMed Central

    Acerbi, Luigi; Vijayakumar, Sethu; Wolpert, Daniel M.

    2014-01-01

    Humans have been shown to combine noisy sensory information with previous experience (priors), in qualitative and sometimes quantitative agreement with the statistically-optimal predictions of Bayesian integration. However, when the prior distribution becomes more complex than a simple Gaussian, such as skewed or bimodal, training takes much longer and performance appears suboptimal. It is unclear whether such suboptimality arises from an imprecise internal representation of the complex prior, or from additional constraints in performing probabilistic computations on complex distributions, even when accurately represented. Here we probe the sources of suboptimality in probabilistic inference using a novel estimation task in which subjects are exposed to an explicitly provided distribution, thereby removing the need to remember the prior. Subjects had to estimate the location of a target given a noisy cue and a visual representation of the prior probability density over locations, which changed on each trial. Different classes of priors were examined (Gaussian, unimodal, bimodal). Subjects' performance was in qualitative agreement with the predictions of Bayesian Decision Theory although generally suboptimal. The degree of suboptimality was modulated by statistical features of the priors but was largely independent of the class of the prior and level of noise in the cue, suggesting that suboptimality in dealing with complex statistical features, such as bimodality, may be due to a problem of acquiring the priors rather than computing with them. We performed a factorial model comparison across a large set of Bayesian observer models to identify additional sources of noise and suboptimality. Our analysis rejects several models of stochastic behavior, including probability matching and sample-averaging strategies. Instead we show that subjects' response variability was mainly driven by a combination of a noisy estimation of the parameters of the priors, and by variability in the decision process, which we represent as a noisy or stochastic posterior. PMID:24945142

  15. Reasoning and choice in the Monty Hall Dilemma (MHD): implications for improving Bayesian reasoning

    PubMed Central

    Tubau, Elisabet; Aguilar-Lleyda, David; Johnson, Eric D.

    2015-01-01

    The Monty Hall Dilemma (MHD) is a two-step decision problem involving counterintuitive conditional probabilities. The first choice is made among three equally probable options, whereas the second choice takes place after the elimination of one of the non-selected options which does not hide the prize. Differing from most Bayesian problems, statistical information in the MHD has to be inferred, either by learning outcome probabilities or by reasoning from the presented sequence of events. This often leads to suboptimal decisions and erroneous probability judgments. Specifically, decision makers commonly develop a wrong intuition that final probabilities are equally distributed, together with a preference for their first choice. Several studies have shown that repeated practice enhances sensitivity to the different reward probabilities, but does not facilitate correct Bayesian reasoning. However, modest improvements in probability judgments have been observed after guided explanations. To explain these dissociations, the present review focuses on two types of causes producing the observed biases: Emotional-based choice biases and cognitive limitations in understanding probabilistic information. Among the latter, we identify a crucial cause for the universal difficulty in overcoming the equiprobability illusion: Incomplete representation of prior and conditional probabilities. We conclude that repeated practice and/or high incentives can be effective for overcoming choice biases, but promoting an adequate partitioning of possibilities seems to be necessary for overcoming cognitive illusions and improving Bayesian reasoning. PMID:25873906

  16. Clinical Outcome Prediction in Aneurysmal Subarachnoid Hemorrhage Using Bayesian Neural Networks with Fuzzy Logic Inferences

    PubMed Central

    Lo, Benjamin W. Y.; Macdonald, R. Loch; Baker, Andrew; Levine, Mitchell A. H.

    2013-01-01

    Objective. The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH). Methods. The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients). Results. Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs). Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique) denoted cut-off points for poor prognosis at greater than 2.5 clusters. Discussion. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication. PMID:23690884

  17. Building a maintenance policy through a multi-criterion decision-making model

    NASA Astrophysics Data System (ADS)

    Faghihinia, Elahe; Mollaverdi, Naser

    2012-08-01

    A major competitive advantage of production and service systems is establishing a proper maintenance policy. Therefore, maintenance managers should make maintenance decisions that best fit their systems. Multi-criterion decision-making methods can take into account a number of aspects associated with the competitiveness factors of a system. This paper presents a multi-criterion decision-aided maintenance model with three criteria that have more influence on decision making: reliability, maintenance cost, and maintenance downtime. The Bayesian approach has been applied to confront maintenance failure data shortage. Therefore, the model seeks to make the best compromise between these three criteria and establish replacement intervals using Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE II), integrating the Bayesian approach with regard to the preference of the decision maker to the problem. Finally, using a numerical application, the model has been illustrated, and for a visual realization and an illustrative sensitivity analysis, PROMETHEE GAIA (the visual interactive module) has been used. Use of PROMETHEE II and PROMETHEE GAIA has been made with Decision Lab software. A sensitivity analysis has been made to verify the robustness of certain parameters of the model.

  18. Toward a synthesis of cognitive biases: how noisy information processing can bias human decision making.

    PubMed

    Hilbert, Martin

    2012-03-01

    A single coherent framework is proposed to synthesize long-standing research on 8 seemingly unrelated cognitive decision-making biases. During the past 6 decades, hundreds of empirical studies have resulted in a variety of rules of thumb that specify how humans systematically deviate from what is normatively expected from their decisions. Several complementary generative mechanisms have been proposed to explain those cognitive biases. Here it is suggested that (at least) 8 of these empirically detected decision-making biases can be produced by simply assuming noisy deviations in the memory-based information processes that convert objective evidence (observations) into subjective estimates (decisions). An integrative framework is presented to show how similar noise-based mechanisms can lead to conservatism, the Bayesian likelihood bias, illusory correlations, biased self-other placement, subadditivity, exaggerated expectation, the confidence bias, and the hard-easy effect. Analytical tools from information theory are used to explore the nature and limitations that characterize such information processes for binary and multiary decision-making exercises. The ensuing synthesis offers formal mathematical definitions of the biases and their underlying generative mechanism, which permits a consolidated analysis of how they are related. This synthesis contributes to the larger goal of creating a coherent picture that explains the relations among the myriad of seemingly unrelated biases and their potential psychological generative mechanisms. Limitations and research questions are discussed.

  19. Computational mate choice: theory and empirical evidence.

    PubMed

    Castellano, Sergio; Cadeddu, Giorgia; Cermelli, Paolo

    2012-06-01

    The present review is based on the thesis that mate choice results from information-processing mechanisms governed by computational rules and that, to understand how females choose their mates, we should identify which are the sources of information and how they are used to make decisions. We describe mate choice as a three-step computational process and for each step we present theories and review empirical evidence. The first step is a perceptual process. It describes the acquisition of evidence, that is, how females use multiple cues and signals to assign an attractiveness value to prospective mates (the preference function hypothesis). The second step is a decisional process. It describes the construction of the decision variable (DV), which integrates evidence (private information by direct assessment), priors (public information), and value (perceived utility) of prospective mates into a quantity that is used by a decision rule (DR) to produce a choice. We make the assumption that females are optimal Bayesian decision makers and we derive a formal model of DV that can explain the effects of preference functions, mate copying, social context, and females' state and condition on the patterns of mate choice. The third step of mating decision is a deliberative process that depends on the DRs. We identify two main categories of DRs (absolute and comparative rules), and review the normative models of mate sampling tactics associated to them. We highlight the limits of the normative approach and present a class of computational models (sequential-sampling models) that are based on the assumption that DVs accumulate noisy evidence over time until a decision threshold is reached. These models force us to rethink the dichotomy between comparative and absolute decision rules, between discrimination and recognition, and even between rational and irrational choice. Since they have a robust biological basis, we think they may represent a useful theoretical tool for behavioural ecologist interested in integrating proximate and ultimate causes of mate choice. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. The anatomy of choice: active inference and agency

    PubMed Central

    Friston, Karl; Schwartenbeck, Philipp; FitzGerald, Thomas; Moutoussis, Michael; Behrens, Timothy; Dolan, Raymond J.

    2013-01-01

    This paper considers agency in the setting of embodied or active inference. In brief, we associate a sense of agency with prior beliefs about action and ask what sorts of beliefs underlie optimal behavior. In particular, we consider prior beliefs that action minimizes the Kullback–Leibler (KL) divergence between desired states and attainable states in the future. This allows one to formulate bounded rationality as approximate Bayesian inference that optimizes a free energy bound on model evidence. We show that constructs like expected utility, exploration bonuses, softmax choice rules and optimism bias emerge as natural consequences of this formulation. Previous accounts of active inference have focused on predictive coding and Bayesian filtering schemes for minimizing free energy. Here, we consider variational Bayes as an alternative scheme that provides formal constraints on the computational anatomy of inference and action—constraints that are remarkably consistent with neuroanatomy. Furthermore, this scheme contextualizes optimal decision theory and economic (utilitarian) formulations as pure inference problems. For example, expected utility theory emerges as a special case of free energy minimization, where the sensitivity or inverse temperature (of softmax functions and quantal response equilibria) has a unique and Bayes-optimal solution—that minimizes free energy. This sensitivity corresponds to the precision of beliefs about behavior, such that attainable goals are afforded a higher precision or confidence. In turn, this means that optimal behavior entails a representation of confidence about outcomes that are under an agent's control. PMID:24093015

  1. A Bayesian sequential processor approach to spectroscopic portal system decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sale, K; Candy, J; Breitfeller, E

    The development of faster more reliable techniques to detect radioactive contraband in a portal type scenario is an extremely important problem especially in this era of constant terrorist threats. Towards this goal the development of a model-based, Bayesian sequential data processor for the detection problem is discussed. In the sequential processor each datum (detector energy deposit and pulse arrival time) is used to update the posterior probability distribution over the space of model parameters. The nature of the sequential processor approach is that a detection is produced as soon as it is statistically justified by the data rather than waitingmore » for a fixed counting interval before any analysis is performed. In this paper the Bayesian model-based approach, physics and signal processing models and decision functions are discussed along with the first results of our research.« less

  2. Competing risk models in reliability systems, a weibull distribution model with bayesian analysis approach

    NASA Astrophysics Data System (ADS)

    Iskandar, Ismed; Satria Gondokaryono, Yudi

    2016-02-01

    In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range between the true value and the maximum likelihood estimated value lines.

  3. Search asymmetries: parallel processing of uncertain sensory information.

    PubMed

    Vincent, Benjamin T

    2011-08-01

    What is the mechanism underlying search phenomena such as search asymmetry? Two-stage models such as Feature Integration Theory and Guided Search propose parallel pre-attentive processing followed by serial post-attentive processing. They claim search asymmetry effects are indicative of finding pairs of features, one processed in parallel, the other in serial. An alternative proposal is that a 1-stage parallel process is responsible, and search asymmetries occur when one stimulus has greater internal uncertainty associated with it than another. While the latter account is simpler, only a few studies have set out to empirically test its quantitative predictions, and many researchers still subscribe to the 2-stage account. This paper examines three separate parallel models (Bayesian optimal observer, max rule, and a heuristic decision rule). All three parallel models can account for search asymmetry effects and I conclude that either people can optimally utilise the uncertain sensory data available to them, or are able to select heuristic decision rules which approximate optimal performance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. The impact of using informative priors in a Bayesian cost-effectiveness analysis: an application of endovascular versus open surgical repair for abdominal aortic aneurysms in high-risk patients.

    PubMed

    McCarron, C Elizabeth; Pullenayegum, Eleanor M; Thabane, Lehana; Goeree, Ron; Tarride, Jean-Eric

    2013-04-01

    Bayesian methods have been proposed as a way of synthesizing all available evidence to inform decision making. However, few practical applications of the use of Bayesian methods for combining patient-level data (i.e., trial) with additional evidence (e.g., literature) exist in the cost-effectiveness literature. The objective of this study was to compare a Bayesian cost-effectiveness analysis using informative priors to a standard non-Bayesian nonparametric method to assess the impact of incorporating additional information into a cost-effectiveness analysis. Patient-level data from a previously published nonrandomized study were analyzed using traditional nonparametric bootstrap techniques and bivariate normal Bayesian models with vague and informative priors. Two different types of informative priors were considered to reflect different valuations of the additional evidence relative to the patient-level data (i.e., "face value" and "skeptical"). The impact of using different distributions and valuations was assessed in a sensitivity analysis. Models were compared in terms of incremental net monetary benefit (INMB) and cost-effectiveness acceptability frontiers (CEAFs). The bootstrapping and Bayesian analyses using vague priors provided similar results. The most pronounced impact of incorporating the informative priors was the increase in estimated life years in the control arm relative to what was observed in the patient-level data alone. Consequently, the incremental difference in life years originally observed in the patient-level data was reduced, and the INMB and CEAF changed accordingly. The results of this study demonstrate the potential impact and importance of incorporating additional information into an analysis of patient-level data, suggesting this could alter decisions as to whether a treatment should be adopted and whether more information should be acquired.

  5. Inference of emission rates from multiple sources using Bayesian probability theory.

    PubMed

    Yee, Eugene; Flesch, Thomas K

    2010-03-01

    The determination of atmospheric emission rates from multiple sources using inversion (regularized least-squares or best-fit technique) is known to be very susceptible to measurement and model errors in the problem, rendering the solution unusable. In this paper, a new perspective is offered for this problem: namely, it is argued that the problem should be addressed as one of inference rather than inversion. Towards this objective, Bayesian probability theory is used to estimate the emission rates from multiple sources. The posterior probability distribution for the emission rates is derived, accounting fully for the measurement errors in the concentration data and the model errors in the dispersion model used to interpret the data. The Bayesian inferential methodology for emission rate recovery is validated against real dispersion data, obtained from a field experiment involving various source-sensor geometries (scenarios) consisting of four synthetic area sources and eight concentration sensors. The recovery of discrete emission rates from three different scenarios obtained using Bayesian inference and singular value decomposition inversion are compared and contrasted.

  6. Prediction in Health Domain Using Bayesian Networks Optimization Based on Induction Learning Techniques

    NASA Astrophysics Data System (ADS)

    Felgaer, Pablo; Britos, Paola; García-Martínez, Ramón

    A Bayesian network is a directed acyclic graph in which each node represents a variable and each arc a probabilistic dependency; they are used to provide: a compact form to represent the knowledge and flexible methods of reasoning. Obtaining it from data is a learning process that is divided in two steps: structural learning and parametric learning. In this paper we define an automatic learning method that optimizes the Bayesian networks applied to classification, using a hybrid method of learning that combines the advantages of the induction techniques of the decision trees (TDIDT-C4.5) with those of the Bayesian networks. The resulting method is applied to prediction in health domain.

  7. Information theory-based decision support system for integrated design of multivariable hydrometric networks

    NASA Astrophysics Data System (ADS)

    Keum, Jongho; Coulibaly, Paulin

    2017-07-01

    Adequate and accurate hydrologic information from optimal hydrometric networks is an essential part of effective water resources management. Although the key hydrologic processes in the water cycle are interconnected, hydrometric networks (e.g., streamflow, precipitation, groundwater level) have been routinely designed individually. A decision support framework is proposed for integrated design of multivariable hydrometric networks. The proposed method is applied to design optimal precipitation and streamflow networks simultaneously. The epsilon-dominance hierarchical Bayesian optimization algorithm was combined with Shannon entropy of information theory to design and evaluate hydrometric networks. Specifically, the joint entropy from the combined networks was maximized to provide the most information, and the total correlation was minimized to reduce redundant information. To further optimize the efficiency between the networks, they were designed by maximizing the conditional entropy of the streamflow network given the information of the precipitation network. Compared to the traditional individual variable design approach, the integrated multivariable design method was able to determine more efficient optimal networks by avoiding the redundant stations. Additionally, four quantization cases were compared to evaluate their effects on the entropy calculations and the determination of the optimal networks. The evaluation results indicate that the quantization methods should be selected after careful consideration for each design problem since the station rankings and the optimal networks can change accordingly.

  8. Learning a commonsense moral theory.

    PubMed

    Kleiman-Weiner, Max; Saxe, Rebecca; Tenenbaum, Joshua B

    2017-10-01

    We introduce a computational framework for understanding the structure and dynamics of moral learning, with a focus on how people learn to trade off the interests and welfare of different individuals in their social groups and the larger society. We posit a minimal set of cognitive capacities that together can solve this learning problem: (1) an abstract and recursive utility calculus to quantitatively represent welfare trade-offs; (2) hierarchical Bayesian inference to understand the actions and judgments of others; and (3) meta-values for learning by value alignment both externally to the values of others and internally to make moral theories consistent with one's own attachments and feelings. Our model explains how children can build from sparse noisy observations of how a small set of individuals make moral decisions to a broad moral competence, able to support an infinite range of judgments and decisions that generalizes even to people they have never met and situations they have not been in or observed. It also provides insight into the causes and dynamics of moral change across time, including cases when moral change can be rapidly progressive, changing values significantly in just a few generations, and cases when it is likely to move more slowly. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A new framework for modeling decisions about changing information: The Piecewise Linear Ballistic Accumulator model

    PubMed Central

    Heathcote, Andrew

    2016-01-01

    In the real world, decision making processes must be able to integrate non-stationary information that changes systematically while the decision is in progress. Although theories of decision making have traditionally been applied to paradigms with stationary information, non-stationary stimuli are now of increasing theoretical interest. We use a random-dot motion paradigm along with cognitive modeling to investigate how the decision process is updated when a stimulus changes. Participants viewed a cloud of moving dots, where the motion switched directions midway through some trials, and were asked to determine the direction of motion. Behavioral results revealed a strong delay effect: after presentation of the initial motion direction there is a substantial time delay before the changed motion information is integrated into the decision process. To further investigate the underlying changes in the decision process, we developed a Piecewise Linear Ballistic Accumulator model (PLBA). The PLBA is efficient to simulate, enabling it to be fit to participant choice and response-time distribution data in a hierarchal modeling framework using a non-parametric approximate Bayesian algorithm. Consistent with behavioral results, PLBA fits confirmed the presence of a long delay between presentation and integration of new stimulus information, but did not support increased response caution in reaction to the change. We also found the decision process was not veridical, as symmetric stimulus change had an asymmetric effect on the rate of evidence accumulation. Thus, the perceptual decision process was slow to react to, and underestimated, new contrary motion information. PMID:26760448

  10. Integrating Household Risk Mitigation Behavior in Flood Risk Analysis: An Agent-Based Model Approach.

    PubMed

    Haer, Toon; Botzen, W J Wouter; de Moel, Hans; Aerts, Jeroen C J H

    2017-10-01

    Recent studies showed that climate change and socioeconomic trends are expected to increase flood risks in many regions. However, in these studies, human behavior is commonly assumed to be constant, which neglects interaction and feedback loops between human and environmental systems. This neglect of human adaptation leads to a misrepresentation of flood risk. This article presents an agent-based model that incorporates human decision making in flood risk analysis. In particular, household investments in loss-reducing measures are examined under three economic decision models: (1) expected utility theory, which is the traditional economic model of rational agents; (2) prospect theory, which takes account of bounded rationality; and (3) a prospect theory model, which accounts for changing risk perceptions and social interactions through a process of Bayesian updating. We show that neglecting human behavior in flood risk assessment studies can result in a considerable misestimation of future flood risk, which is in our case study an overestimation of a factor two. Furthermore, we show how behavior models can support flood risk analysis under different behavioral assumptions, illustrating the need to include the dynamic adaptive human behavior of, for instance, households, insurers, and governments. The method presented here provides a solid basis for exploring human behavior and the resulting flood risk with respect to low-probability/high-impact risks. © 2016 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  11. Bayesian model selection techniques as decision support for shaping a statistical analysis plan of a clinical trial: An example from a vertigo phase III study with longitudinal count data as primary endpoint

    PubMed Central

    2012-01-01

    Background A statistical analysis plan (SAP) is a critical link between how a clinical trial is conducted and the clinical study report. To secure objective study results, regulatory bodies expect that the SAP will meet requirements in pre-specifying inferential analyses and other important statistical techniques. To write a good SAP for model-based sensitivity and ancillary analyses involves non-trivial decisions on and justification of many aspects of the chosen setting. In particular, trials with longitudinal count data as primary endpoints pose challenges for model choice and model validation. In the random effects setting, frequentist strategies for model assessment and model diagnosis are complex and not easily implemented and have several limitations. Therefore, it is of interest to explore Bayesian alternatives which provide the needed decision support to finalize a SAP. Methods We focus on generalized linear mixed models (GLMMs) for the analysis of longitudinal count data. A series of distributions with over- and under-dispersion is considered. Additionally, the structure of the variance components is modified. We perform a simulation study to investigate the discriminatory power of Bayesian tools for model criticism in different scenarios derived from the model setting. We apply the findings to the data from an open clinical trial on vertigo attacks. These data are seen as pilot data for an ongoing phase III trial. To fit GLMMs we use a novel Bayesian computational approach based on integrated nested Laplace approximations (INLAs). The INLA methodology enables the direct computation of leave-one-out predictive distributions. These distributions are crucial for Bayesian model assessment. We evaluate competing GLMMs for longitudinal count data according to the deviance information criterion (DIC) or probability integral transform (PIT), and by using proper scoring rules (e.g. the logarithmic score). Results The instruments under study provide excellent tools for preparing decisions within the SAP in a transparent way when structuring the primary analysis, sensitivity or ancillary analyses, and specific analyses for secondary endpoints. The mean logarithmic score and DIC discriminate well between different model scenarios. It becomes obvious that the naive choice of a conventional random effects Poisson model is often inappropriate for real-life count data. The findings are used to specify an appropriate mixed model employed in the sensitivity analyses of an ongoing phase III trial. Conclusions The proposed Bayesian methods are not only appealing for inference but notably provide a sophisticated insight into different aspects of model performance, such as forecast verification or calibration checks, and can be applied within the model selection process. The mean of the logarithmic score is a robust tool for model ranking and is not sensitive to sample size. Therefore, these Bayesian model selection techniques offer helpful decision support for shaping sensitivity and ancillary analyses in a statistical analysis plan of a clinical trial with longitudinal count data as the primary endpoint. PMID:22962944

  12. Bayesian model selection techniques as decision support for shaping a statistical analysis plan of a clinical trial: an example from a vertigo phase III study with longitudinal count data as primary endpoint.

    PubMed

    Adrion, Christine; Mansmann, Ulrich

    2012-09-10

    A statistical analysis plan (SAP) is a critical link between how a clinical trial is conducted and the clinical study report. To secure objective study results, regulatory bodies expect that the SAP will meet requirements in pre-specifying inferential analyses and other important statistical techniques. To write a good SAP for model-based sensitivity and ancillary analyses involves non-trivial decisions on and justification of many aspects of the chosen setting. In particular, trials with longitudinal count data as primary endpoints pose challenges for model choice and model validation. In the random effects setting, frequentist strategies for model assessment and model diagnosis are complex and not easily implemented and have several limitations. Therefore, it is of interest to explore Bayesian alternatives which provide the needed decision support to finalize a SAP. We focus on generalized linear mixed models (GLMMs) for the analysis of longitudinal count data. A series of distributions with over- and under-dispersion is considered. Additionally, the structure of the variance components is modified. We perform a simulation study to investigate the discriminatory power of Bayesian tools for model criticism in different scenarios derived from the model setting. We apply the findings to the data from an open clinical trial on vertigo attacks. These data are seen as pilot data for an ongoing phase III trial. To fit GLMMs we use a novel Bayesian computational approach based on integrated nested Laplace approximations (INLAs). The INLA methodology enables the direct computation of leave-one-out predictive distributions. These distributions are crucial for Bayesian model assessment. We evaluate competing GLMMs for longitudinal count data according to the deviance information criterion (DIC) or probability integral transform (PIT), and by using proper scoring rules (e.g. the logarithmic score). The instruments under study provide excellent tools for preparing decisions within the SAP in a transparent way when structuring the primary analysis, sensitivity or ancillary analyses, and specific analyses for secondary endpoints. The mean logarithmic score and DIC discriminate well between different model scenarios. It becomes obvious that the naive choice of a conventional random effects Poisson model is often inappropriate for real-life count data. The findings are used to specify an appropriate mixed model employed in the sensitivity analyses of an ongoing phase III trial. The proposed Bayesian methods are not only appealing for inference but notably provide a sophisticated insight into different aspects of model performance, such as forecast verification or calibration checks, and can be applied within the model selection process. The mean of the logarithmic score is a robust tool for model ranking and is not sensitive to sample size. Therefore, these Bayesian model selection techniques offer helpful decision support for shaping sensitivity and ancillary analyses in a statistical analysis plan of a clinical trial with longitudinal count data as the primary endpoint.

  13. Optimal joint detection and estimation that maximizes ROC-type curves

    PubMed Central

    Wunderlich, Adam; Goossens, Bart; Abbey, Craig K.

    2017-01-01

    Combined detection-estimation tasks are frequently encountered in medical imaging. Optimal methods for joint detection and estimation are of interest because they provide upper bounds on observer performance, and can potentially be utilized for imaging system optimization, evaluation of observer efficiency, and development of image formation algorithms. We present a unified Bayesian framework for decision rules that maximize receiver operating characteristic (ROC)-type summary curves, including ROC, localization ROC (LROC), estimation ROC (EROC), free-response ROC (FROC), alternative free-response ROC (AFROC), and exponentially-transformed FROC (EFROC) curves, succinctly summarizing previous results. The approach relies on an interpretation of ROC-type summary curves as plots of an expected utility versus an expected disutility (or penalty) for signal-present decisions. We propose a general utility structure that is flexible enough to encompass many ROC variants and yet sufficiently constrained to allow derivation of a linear expected utility equation that is similar to that for simple binary detection. We illustrate our theory with an example comparing decision strategies for joint detection-estimation of a known signal with unknown amplitude. In addition, building on insights from our utility framework, we propose new ROC-type summary curves and associated optimal decision rules for joint detection-estimation tasks with an unknown, potentially-multiple, number of signals in each observation. PMID:27093544

  14. Optimal Joint Detection and Estimation That Maximizes ROC-Type Curves.

    PubMed

    Wunderlich, Adam; Goossens, Bart; Abbey, Craig K

    2016-09-01

    Combined detection-estimation tasks are frequently encountered in medical imaging. Optimal methods for joint detection and estimation are of interest because they provide upper bounds on observer performance, and can potentially be utilized for imaging system optimization, evaluation of observer efficiency, and development of image formation algorithms. We present a unified Bayesian framework for decision rules that maximize receiver operating characteristic (ROC)-type summary curves, including ROC, localization ROC (LROC), estimation ROC (EROC), free-response ROC (FROC), alternative free-response ROC (AFROC), and exponentially-transformed FROC (EFROC) curves, succinctly summarizing previous results. The approach relies on an interpretation of ROC-type summary curves as plots of an expected utility versus an expected disutility (or penalty) for signal-present decisions. We propose a general utility structure that is flexible enough to encompass many ROC variants and yet sufficiently constrained to allow derivation of a linear expected utility equation that is similar to that for simple binary detection. We illustrate our theory with an example comparing decision strategies for joint detection-estimation of a known signal with unknown amplitude. In addition, building on insights from our utility framework, we propose new ROC-type summary curves and associated optimal decision rules for joint detection-estimation tasks with an unknown, potentially-multiple, number of signals in each observation.

  15. Dimensions of design space: a decision-theoretic approach to optimal research design.

    PubMed

    Conti, Stefano; Claxton, Karl

    2009-01-01

    Bayesian decision theory can be used not only to establish the optimal sample size and its allocation in a single clinical study but also to identify an optimal portfolio of research combining different types of study design. Within a single study, the highest societal payoff to proposed research is achieved when its sample sizes and allocation between available treatment options are chosen to maximize the expected net benefit of sampling (ENBS). Where a number of different types of study informing different parameters in the decision problem could be conducted, the simultaneous estimation of ENBS across all dimensions of the design space is required to identify the optimal sample sizes and allocations within such a research portfolio. This is illustrated through a simple example of a decision model of zanamivir for the treatment of influenza. The possible study designs include: 1) a single trial of all the parameters, 2) a clinical trial providing evidence only on clinical endpoints, 3) an epidemiological study of natural history of disease, and 4) a survey of quality of life. The possible combinations, samples sizes, and allocation between trial arms are evaluated over a range of cost-effectiveness thresholds. The computational challenges are addressed by implementing optimization algorithms to search the ENBS surface more efficiently over such large dimensions.

  16. Bayesian Probability Theory

    NASA Astrophysics Data System (ADS)

    von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo

    2014-06-01

    Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.

  17. Word Learning as Bayesian Inference

    ERIC Educational Resources Information Center

    Xu, Fei; Tenenbaum, Joshua B.

    2007-01-01

    The authors present a Bayesian framework for understanding how adults and children learn the meanings of words. The theory explains how learners can generalize meaningfully from just one or a few positive examples of a novel word's referents, by making rational inductive inferences that integrate prior knowledge about plausible word meanings with…

  18. Asking better questions: How presentation formats influence information search.

    PubMed

    Wu, Charley M; Meder, Björn; Filimon, Flavia; Nelson, Jonathan D

    2017-08-01

    While the influence of presentation formats have been widely studied in Bayesian reasoning tasks, we present the first systematic investigation of how presentation formats influence information search decisions. Four experiments were conducted across different probabilistic environments, where subjects (N = 2,858) chose between 2 possible search queries, each with binary probabilistic outcomes, with the goal of maximizing classification accuracy. We studied 14 different numerical and visual formats for presenting information about the search environment, constructed across 6 design features that have been prominently related to improvements in Bayesian reasoning accuracy (natural frequencies, posteriors, complement, spatial extent, countability, and part-to-whole information). The posterior variants of the icon array and bar graph formats led to the highest proportion of correct responses, and were substantially better than the standard probability format. Results suggest that presenting information in terms of posterior probabilities and visualizing natural frequencies using spatial extent (a perceptual feature) were especially helpful in guiding search decisions, although environments with a mixture of probabilistic and certain outcomes were challenging across all formats. Subjects who made more accurate probability judgments did not perform better on the search task, suggesting that simple decision heuristics may be used to make search decisions without explicitly applying Bayesian inference to compute probabilities. We propose a new take-the-difference (TTD) heuristic that identifies the accuracy-maximizing query without explicit computation of posterior probabilities. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Hierarchical Bayesian analysis of outcome- and process-based social preferences and beliefs in Dictator Games and sequential Prisoner's Dilemmas.

    PubMed

    Aksoy, Ozan; Weesie, Jeroen

    2014-05-01

    In this paper, using a within-subjects design, we estimate the utility weights that subjects attach to the outcome of their interaction partners in four decision situations: (1) binary Dictator Games (DG), second player's role in the sequential Prisoner's Dilemma (PD) after the first player (2) cooperated and (3) defected, and (4) first player's role in the sequential Prisoner's Dilemma game. We find that the average weights in these four decision situations have the following order: (1)>(2)>(4)>(3). Moreover, the average weight is positive in (1) but negative in (2), (3), and (4). Our findings indicate the existence of strong negative and small positive reciprocity for the average subject, but there is also high interpersonal variation in the weights in these four nodes. We conclude that the PD frame makes subjects more competitive than the DG frame. Using hierarchical Bayesian modeling, we simultaneously analyze beliefs of subjects about others' utility weights in the same four decision situations. We compare several alternative theoretical models on beliefs, e.g., rational beliefs (Bayesian-Nash equilibrium) and a consensus model. Our results on beliefs strongly support the consensus effect and refute rational beliefs: there is a strong relationship between own preferences and beliefs and this relationship is relatively stable across the four decision situations. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Capturing Ecosystem Services, Stakeholders' Preferences and Trade-Offs in Coastal Aquaculture Decisions: A Bayesian Belief Network Application

    PubMed Central

    Schmitt, Laetitia Helene Marie; Brugere, Cecile

    2013-01-01

    Aquaculture activities are embedded in complex social-ecological systems. However, aquaculture development decisions have tended to be driven by revenue generation, failing to account for interactions with the environment and the full value of the benefits derived from services provided by local ecosystems. Trade-offs resulting from changes in ecosystem services provision and associated impacts on livelihoods are also often overlooked. This paper proposes an innovative application of Bayesian belief networks - influence diagrams - as a decision support system for mediating trade-offs arising from the development of shrimp aquaculture in Thailand. Senior experts were consulted (n = 12) and primary farm data on the economics of shrimp farming (n = 20) were collected alongside secondary information on ecosystem services, in order to construct and populate the network. Trade-offs were quantitatively assessed through the generation of a probabilistic impact matrix. This matrix captures nonlinearity and uncertainty and describes the relative performance and impacts of shrimp farming management scenarios on local livelihoods. It also incorporates export revenues and provision and value of ecosystem services such as coastal protection and biodiversity. This research shows that Bayesian belief modeling can support complex decision-making on pathways for sustainable coastal aquaculture development and thus contributes to the debate on the role of aquaculture in social-ecological resilience and economic development. PMID:24155876

  1. Bayesian estimation inherent in a Mexican-hat-type neural network

    NASA Astrophysics Data System (ADS)

    Takiyama, Ken

    2016-05-01

    Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.

  2. A Bayesian model for visual space perception

    NASA Technical Reports Server (NTRS)

    Curry, R. E.

    1972-01-01

    A model for visual space perception is proposed that contains desirable features in the theories of Gibson and Brunswik. This model is a Bayesian processor of proximal stimuli which contains three important elements: an internal model of the Markov process describing the knowledge of the distal world, the a priori distribution of the state of the Markov process, and an internal model relating state to proximal stimuli. The universality of the model is discussed and it is compared with signal detection theory models. Experimental results of Kinchla are used as a special case.

  3. Multiple utility constrained multi-objective programs using Bayesian theory

    NASA Astrophysics Data System (ADS)

    Abbasian, Pooneh; Mahdavi-Amiri, Nezam; Fazlollahtabar, Hamed

    2018-03-01

    A utility function is an important tool for representing a DM's preference. We adjoin utility functions to multi-objective optimization problems. In current studies, usually one utility function is used for each objective function. Situations may arise for a goal to have multiple utility functions. Here, we consider a constrained multi-objective problem with each objective having multiple utility functions. We induce the probability of the utilities for each objective function using Bayesian theory. Illustrative examples considering dependence and independence of variables are worked through to demonstrate the usefulness of the proposed model.

  4. Bayesian analyses of time-interval data for environmental radiation monitoring.

    PubMed

    Luo, Peng; Sharp, Julia L; DeVol, Timothy A

    2013-01-01

    Time-interval (time difference between two consecutive pulses) analysis based on the principles of Bayesian inference was investigated for online radiation monitoring. Using experimental and simulated data, Bayesian analysis of time-interval data [Bayesian (ti)] was compared with Bayesian and a conventional frequentist analysis of counts in a fixed count time [Bayesian (cnt) and single interval test (SIT), respectively]. The performances of the three methods were compared in terms of average run length (ARL) and detection probability for several simulated detection scenarios. Experimental data were acquired with a DGF-4C system in list mode. Simulated data were obtained using Monte Carlo techniques to obtain a random sampling of the Poisson distribution. All statistical algorithms were developed using the R Project for statistical computing. Bayesian analysis of time-interval information provided a similar detection probability as Bayesian analysis of count information, but the authors were able to make a decision with fewer pulses at relatively higher radiation levels. In addition, for the cases with very short presence of the source (< count time), time-interval information is more sensitive to detect a change than count information since the source data is averaged by the background data over the entire count time. The relationships of the source time, change points, and modifications to the Bayesian approach for increasing detection probability are presented.

  5. Bayesian networks in overlay recipe optimization

    NASA Astrophysics Data System (ADS)

    Binns, Lewis A.; Reynolds, Greg; Rigden, Timothy C.; Watkins, Stephen; Soroka, Andrew

    2005-05-01

    Currently, overlay measurements are characterized by "recipe", which defines both physical parameters such as focus, illumination et cetera, and also the software parameters such as algorithm to be used and regions of interest. Setting up these recipes requires both engineering time and wafer availability on an overlay tool, so reducing these requirements will result in higher tool productivity. One of the significant challenges to automating this process is that the parameters are highly and complexly correlated. At the same time, a high level of traceability and transparency is required in the recipe creation process, so a technique that maintains its decisions in terms of well defined physical parameters is desirable. Running time should be short, given the system (automatic recipe creation) is being implemented to reduce overheads. Finally, a failure of the system to determine acceptable parameters should be obvious, so a certainty metric is also desirable. The complex, nonlinear interactions make solution by an expert system difficult at best, especially in the verification of the resulting decision network. The transparency requirements tend to preclude classical neural networks and similar techniques. Genetic algorithms and other "global minimization" techniques require too much computational power (given system footprint and cost requirements). A Bayesian network, however, provides a solution to these requirements. Such a network, with appropriate priors, can be used during recipe creation / optimization not just to select a good set of parameters, but also to guide the direction of search, by evaluating the network state while only incomplete information is available. As a Bayesian network maintains an estimate of the probability distribution of nodal values, a maximum-entropy approach can be utilized to obtain a working recipe in a minimum or near-minimum number of steps. In this paper we discuss the potential use of a Bayesian network in such a capacity, reducing the amount of engineering intervention. We discuss the benefits of this approach, especially improved repeatability and traceability of the learning process, and quantification of uncertainty in decisions made. We also consider the problems associated with this approach, especially in detailed construction of network topology, validation of the Bayesian network and the recipes it generates, and issues arising from the integration of a Bayesian network with a complex multithreaded application; these primarily relate to maintaining Bayesian network and system architecture integrity.

  6. Power in Bayesian Mediation Analysis for Small Sample Research

    PubMed Central

    Miočević, Milica; MacKinnon, David P.; Levy, Roy

    2018-01-01

    It was suggested that Bayesian methods have potential for increasing power in mediation analysis (Koopman, Howe, Hollenbeck, & Sin, 2015; Yuan & MacKinnon, 2009). This paper compares the power of Bayesian credibility intervals for the mediated effect to the power of normal theory, distribution of the product, percentile, and bias-corrected bootstrap confidence intervals at N≤ 200. Bayesian methods with diffuse priors have power comparable to the distribution of the product and bootstrap methods, and Bayesian methods with informative priors had the most power. Varying degrees of precision of prior distributions were also examined. Increased precision led to greater power only when N≥ 100 and the effects were small, N < 60 and the effects were large, and N < 200 and the effects were medium. An empirical example from psychology illustrated a Bayesian analysis of the single mediator model from prior selection to interpreting results. PMID:29662296

  7. Power in Bayesian Mediation Analysis for Small Sample Research.

    PubMed

    Miočević, Milica; MacKinnon, David P; Levy, Roy

    2017-01-01

    It was suggested that Bayesian methods have potential for increasing power in mediation analysis (Koopman, Howe, Hollenbeck, & Sin, 2015; Yuan & MacKinnon, 2009). This paper compares the power of Bayesian credibility intervals for the mediated effect to the power of normal theory, distribution of the product, percentile, and bias-corrected bootstrap confidence intervals at N≤ 200. Bayesian methods with diffuse priors have power comparable to the distribution of the product and bootstrap methods, and Bayesian methods with informative priors had the most power. Varying degrees of precision of prior distributions were also examined. Increased precision led to greater power only when N≥ 100 and the effects were small, N < 60 and the effects were large, and N < 200 and the effects were medium. An empirical example from psychology illustrated a Bayesian analysis of the single mediator model from prior selection to interpreting results.

  8. Construction of monitoring model and algorithm design on passenger security during shipping based on improved Bayesian network.

    PubMed

    Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng

    2014-01-01

    A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping.

  9. Construction of Monitoring Model and Algorithm Design on Passenger Security during Shipping Based on Improved Bayesian Network

    PubMed Central

    Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng

    2014-01-01

    A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping. PMID:25254227

  10. Philosophy and the practice of Bayesian statistics

    PubMed Central

    Gelman, Andrew; Shalizi, Cosma Rohilla

    2015-01-01

    A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework. PMID:22364575

  11. Philosophy and the practice of Bayesian statistics.

    PubMed

    Gelman, Andrew; Shalizi, Cosma Rohilla

    2013-02-01

    A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework. © 2012 The British Psychological Society.

  12. Bayesian Networks for Modeling Dredging Decisions

    DTIC Science & Technology

    2011-10-01

    change scenarios. Arctic Expert elicitation Netica Bacon et al . 2002 Identify factors that might lead to a change in land use from farming to...tree) algorithms developed by Lauritzen and Spiegelhalter (1988) and Jensen et al . (1990). Statistical inference is simply the process of...causality when constructing a Bayesian network (Kjaerulff and Madsen 2008, Darwiche 2009, Marcot et al . 2006). A knowledge representation approach is the

  13. Beyond P Values and Hypothesis Testing: Using the Minimum Bayes Factor to Teach Statistical Inference in Undergraduate Introductory Statistics Courses

    ERIC Educational Resources Information Center

    Page, Robert; Satake, Eiki

    2017-01-01

    While interest in Bayesian statistics has been growing in statistics education, the treatment of the topic is still inadequate in both textbooks and the classroom. Because so many fields of study lead to careers that involve a decision-making process requiring an understanding of Bayesian methods, it is becoming increasingly clear that Bayesian…

  14. Von Neumann was not a Quantum Bayesian.

    PubMed

    Stacey, Blake C

    2016-05-28

    Wikipedia has claimed for over 3 years now that John von Neumann was the 'first quantum Bayesian'. In context, this reads as stating that von Neumann inaugurated QBism, the approach to quantum theory promoted by Fuchs, Mermin and Schack. This essay explores how such a claim is, historically speaking, unsupported. © 2016 The Author(s).

  15. Bayesian Estimation of the Logistic Positive Exponent IRT Model

    ERIC Educational Resources Information Center

    Bolfarine, Heleno; Bazan, Jorge Luis

    2010-01-01

    A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric…

  16. Bayesian Methods and Universal Darwinism

    NASA Astrophysics Data System (ADS)

    Campbell, John

    2009-12-01

    Bayesian methods since the time of Laplace have been understood by their practitioners as closely aligned to the scientific method. Indeed a recent Champion of Bayesian methods, E. T. Jaynes, titled his textbook on the subject Probability Theory: the Logic of Science. Many philosophers of science including Karl Popper and Donald Campbell have interpreted the evolution of Science as a Darwinian process consisting of a `copy with selective retention' algorithm abstracted from Darwin's theory of Natural Selection. Arguments are presented for an isomorphism between Bayesian Methods and Darwinian processes. Universal Darwinism, as the term has been developed by Richard Dawkins, Daniel Dennett and Susan Blackmore, is the collection of scientific theories which explain the creation and evolution of their subject matter as due to the Operation of Darwinian processes. These subject matters span the fields of atomic physics, chemistry, biology and the social sciences. The principle of Maximum Entropy states that Systems will evolve to states of highest entropy subject to the constraints of scientific law. This principle may be inverted to provide illumination as to the nature of scientific law. Our best cosmological theories suggest the universe contained much less complexity during the period shortly after the Big Bang than it does at present. The scientific subject matter of atomic physics, chemistry, biology and the social sciences has been created since that time. An explanation is proposed for the existence of this subject matter as due to the evolution of constraints in the form of adaptations imposed on Maximum Entropy. It is argued these adaptations were discovered and instantiated through the Operations of a succession of Darwinian processes.

  17. An Intelligent Tutoring System for Classifying Students into Instructional Treatments with Mastery Scores. Research Report 94-15.

    ERIC Educational Resources Information Center

    Vos, Hans J.

    As part of a project formulating optimal rules for decision making in computer assisted instructional systems in which the computer is used as a decision support tool, an approach that simultaneously optimizes classification of students into two treatments, each followed by a mastery decision, is presented using the framework of Bayesian decision…

  18. An introduction to Bayesian statistics in health psychology.

    PubMed

    Depaoli, Sarah; Rus, Holly M; Clifton, James P; van de Schoot, Rens; Tiemensma, Jitske

    2017-09-01

    The aim of the current article is to provide a brief introduction to Bayesian statistics within the field of health psychology. Bayesian methods are increasing in prevalence in applied fields, and they have been shown in simulation research to improve the estimation accuracy of structural equation models, latent growth curve (and mixture) models, and hierarchical linear models. Likewise, Bayesian methods can be used with small sample sizes since they do not rely on large sample theory. In this article, we discuss several important components of Bayesian statistics as they relate to health-based inquiries. We discuss the incorporation and impact of prior knowledge into the estimation process and the different components of the analysis that should be reported in an article. We present an example implementing Bayesian estimation in the context of blood pressure changes after participants experienced an acute stressor. We conclude with final thoughts on the implementation of Bayesian statistics in health psychology, including suggestions for reviewing Bayesian manuscripts and grant proposals. We have also included an extensive amount of online supplementary material to complement the content presented here, including Bayesian examples using many different software programmes and an extensive sensitivity analysis examining the impact of priors.

  19. Why cognitive science needs philosophy and vice versa.

    PubMed

    Thagard, Paul

    2009-04-01

    Contrary to common views that philosophy is extraneous to cognitive science, this paper argues that philosophy has a crucial role to play in cognitive science with respect to generality and normativity. General questions include the nature of theories and explanations, the role of computer simulation in cognitive theorizing, and the relations among the different fields of cognitive science. Normative questions include whether human thinking should be Bayesian, whether decision making should maximize expected utility, and how norms should be established. These kinds of general and normative questions make philosophical reflection an important part of progress in cognitive science. Philosophy operates best, however, not with a priori reasoning or conceptual analysis, but rather with empirically informed reflection on a wide range of findings in cognitive science. Copyright © 2009 Cognitive Science Society, Inc.

  20. Deductive Updating Is Not Bayesian

    ERIC Educational Resources Information Center

    Markovits, Henry; Brisson, Janie; de Chantal, Pier-Luc

    2015-01-01

    One of the major debates concerning the nature of inferential reasoning is between counterexample-based theories such as mental model theory and probabilistic theories. This study looks at conclusion updating after the addition of statistical information to examine the hypothesis that deductive reasoning cannot be explained by probabilistic…

  1. Why formal learning theory matters for cognitive science.

    PubMed

    Fulop, Sean; Chater, Nick

    2013-01-01

    This article reviews a number of different areas in the foundations of formal learning theory. After outlining the general framework for formal models of learning, the Bayesian approach to learning is summarized. This leads to a discussion of Solomonoff's Universal Prior Distribution for Bayesian learning. Gold's model of identification in the limit is also outlined. We next discuss a number of aspects of learning theory raised in contributed papers, related to both computational and representational complexity. The article concludes with a description of how semi-supervised learning can be applied to the study of cognitive learning models. Throughout this overview, the specific points raised by our contributing authors are connected to the models and methods under review. Copyright © 2013 Cognitive Science Society, Inc.

  2. A fast combination method in DSmT and its application to recommender system

    PubMed Central

    Liu, Yihai

    2018-01-01

    In many applications involving epistemic uncertainties usually modeled by belief functions, it is often necessary to approximate general (non-Bayesian) basic belief assignments (BBAs) to subjective probabilities (called Bayesian BBAs). This necessity occurs if one needs to embed the fusion result in a system based on the probabilistic framework and Bayesian inference (e.g. tracking systems), or if one needs to make a decision in the decision making problems. In this paper, we present a new fast combination method, called modified rigid coarsening (MRC), to obtain the final Bayesian BBAs based on hierarchical decomposition (coarsening) of the frame of discernment. Regarding this method, focal elements with probabilities are coarsened efficiently to reduce computational complexity in the process of combination by using disagreement vector and a simple dichotomous approach. In order to prove the practicality of our approach, this new approach is applied to combine users’ soft preferences in recommender systems (RSs). Additionally, in order to make a comprehensive performance comparison, the proportional conflict redistribution rule #6 (PCR6) is regarded as a baseline in a range of experiments. According to the results of experiments, MRC is more effective in accuracy of recommendations compared to original Rigid Coarsening (RC) method and comparable in computational time. PMID:29351297

  3. Bayesian Analysis for Risk Assessment of Selected Medical Events in Support of the Integrated Medical Model Effort

    NASA Technical Reports Server (NTRS)

    Gilkey, Kelly M.; Myers, Jerry G.; McRae, Michael P.; Griffin, Elise A.; Kallrui, Aditya S.

    2012-01-01

    The Exploration Medical Capability project is creating a catalog of risk assessments using the Integrated Medical Model (IMM). The IMM is a software-based system intended to assist mission planners in preparing for spaceflight missions by helping them to make informed decisions about medical preparations and supplies needed for combating and treating various medical events using Probabilistic Risk Assessment. The objective is to use statistical analyses to inform the IMM decision tool with estimated probabilities of medical events occurring during an exploration mission. Because data regarding astronaut health are limited, Bayesian statistical analysis is used. Bayesian inference combines prior knowledge, such as data from the general U.S. population, the U.S. Submarine Force, or the analog astronaut population located at the NASA Johnson Space Center, with observed data for the medical condition of interest. The posterior results reflect the best evidence for specific medical events occurring in flight. Bayes theorem provides a formal mechanism for combining available observed data with data from similar studies to support the quantification process. The IMM team performed Bayesian updates on the following medical events: angina, appendicitis, atrial fibrillation, atrial flutter, dental abscess, dental caries, dental periodontal disease, gallstone disease, herpes zoster, renal stones, seizure, and stroke.

  4. Planetary micro-rover operations on Mars using a Bayesian framework for inference and control

    NASA Astrophysics Data System (ADS)

    Post, Mark A.; Li, Junquan; Quine, Brendan M.

    2016-03-01

    With the recent progress toward the application of commercially-available hardware to small-scale space missions, it is now becoming feasible for groups of small, efficient robots based on low-power embedded hardware to perform simple tasks on other planets in the place of large-scale, heavy and expensive robots. In this paper, we describe design and programming of the Beaver micro-rover developed for Northern Light, a Canadian initiative to send a small lander and rover to Mars to study the Martian surface and subsurface. For a small, hardware-limited rover to handle an uncertain and mostly unknown environment without constant management by human operators, we use a Bayesian network of discrete random variables as an abstraction of expert knowledge about the rover and its environment, and inference operations for control. A framework for efficient construction and inference into a Bayesian network using only the C language and fixed-point mathematics on embedded hardware has been developed for the Beaver to make intelligent decisions with minimal sensor data. We study the performance of the Beaver as it probabilistically maps a simple outdoor environment with sensor models that include uncertainty. Results indicate that the Beaver and other small and simple robotic platforms can make use of a Bayesian network to make intelligent decisions in uncertain planetary environments.

  5. Daniel Goodman’s empirical approach to Bayesian statistics

    USGS Publications Warehouse

    Gerrodette, Tim; Ward, Eric; Taylor, Rebecca L.; Schwarz, Lisa K.; Eguchi, Tomoharu; Wade, Paul; Himes Boor, Gina

    2016-01-01

    Bayesian statistics, in contrast to classical statistics, uses probability to represent uncertainty about the state of knowledge. Bayesian statistics has often been associated with the idea that knowledge is subjective and that a probability distribution represents a personal degree of belief. Dr. Daniel Goodman considered this viewpoint problematic for issues of public policy. He sought to ground his Bayesian approach in data, and advocated the construction of a prior as an empirical histogram of “similar” cases. In this way, the posterior distribution that results from a Bayesian analysis combined comparable previous data with case-specific current data, using Bayes’ formula. Goodman championed such a data-based approach, but he acknowledged that it was difficult in practice. If based on a true representation of our knowledge and uncertainty, Goodman argued that risk assessment and decision-making could be an exact science, despite the uncertainties. In his view, Bayesian statistics is a critical component of this science because a Bayesian analysis produces the probabilities of future outcomes. Indeed, Goodman maintained that the Bayesian machinery, following the rules of conditional probability, offered the best legitimate inference from available data. We give an example of an informative prior in a recent study of Steller sea lion spatial use patterns in Alaska.

  6. Exploring complex dynamics in multi agent-based intelligent systems: Theoretical and experimental approaches using the Multi Agent-based Behavioral Economic Landscape (MABEL) model

    NASA Astrophysics Data System (ADS)

    Alexandridis, Konstantinos T.

    This dissertation adopts a holistic and detailed approach to modeling spatially explicit agent-based artificial intelligent systems, using the Multi Agent-based Behavioral Economic Landscape (MABEL) model. The research questions that addresses stem from the need to understand and analyze the real-world patterns and dynamics of land use change from a coupled human-environmental systems perspective. Describes the systemic, mathematical, statistical, socio-economic and spatial dynamics of the MABEL modeling framework, and provides a wide array of cross-disciplinary modeling applications within the research, decision-making and policy domains. Establishes the symbolic properties of the MABEL model as a Markov decision process, analyzes the decision-theoretic utility and optimization attributes of agents towards comprising statistically and spatially optimal policies and actions, and explores the probabilogic character of the agents' decision-making and inference mechanisms via the use of Bayesian belief and decision networks. Develops and describes a Monte Carlo methodology for experimental replications of agent's decisions regarding complex spatial parcel acquisition and learning. Recognizes the gap on spatially-explicit accuracy assessment techniques for complex spatial models, and proposes an ensemble of statistical tools designed to address this problem. Advanced information assessment techniques such as the Receiver-Operator Characteristic curve, the impurity entropy and Gini functions, and the Bayesian classification functions are proposed. The theoretical foundation for modular Bayesian inference in spatially-explicit multi-agent artificial intelligent systems, and the ensembles of cognitive and scenario assessment modular tools build for the MABEL model are provided. Emphasizes the modularity and robustness as valuable qualitative modeling attributes, and examines the role of robust intelligent modeling as a tool for improving policy-decisions related to land use change. Finally, the major contributions to the science are presented along with valuable directions for future research.

  7. Bayesian networks for maritime traffic accident prevention: benefits and challenges.

    PubMed

    Hänninen, Maria

    2014-12-01

    Bayesian networks are quantitative modeling tools whose applications to the maritime traffic safety context are becoming more popular. This paper discusses the utilization of Bayesian networks in maritime safety modeling. Based on literature and the author's own experiences, the paper studies what Bayesian networks can offer to maritime accident prevention and safety modeling and discusses a few challenges in their application to this context. It is argued that the capability of representing rather complex, not necessarily causal but uncertain relationships makes Bayesian networks an attractive modeling tool for the maritime safety and accidents. Furthermore, as the maritime accident and safety data is still rather scarce and has some quality problems, the possibility to combine data with expert knowledge and the easy way of updating the model after acquiring more evidence further enhance their feasibility. However, eliciting the probabilities from the maritime experts might be challenging and the model validation can be tricky. It is concluded that with the utilization of several data sources, Bayesian updating, dynamic modeling, and hidden nodes for latent variables, Bayesian networks are rather well-suited tools for the maritime safety management and decision-making. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Number-Knower Levels in Young Children: Insights from Bayesian Modeling

    ERIC Educational Resources Information Center

    Lee, Michael D.; Sarnecka, Barbara W.

    2011-01-01

    Lee and Sarnecka (2010) developed a Bayesian model of young children's behavior on the Give-N test of number knowledge. This paper presents two new extensions of the model, and applies the model to new data. In the first extension, the model is used to evaluate competing theories about the conceptual knowledge underlying children's behavior. One,…

  9. Psychological Needs, Engagement, and Work Intentions: A Bayesian Multi-Measurement Mediation Approach and Implications for HRD

    ERIC Educational Resources Information Center

    Shuck, Brad; Zigarmi, Drea; Owen, Jesse

    2015-01-01

    Purpose: The purpose of this study was to empirically examine the utility of self-determination theory (SDT) within the engagement-performance linkage. Design/methodology/approach: Bayesian multi-measurement mediation modeling was used to estimate the relation between SDT, engagement and a proxy measure of performance (e.g. work intentions) (N =…

  10. Brief Report: Suboptimal Auditory Localization in Autism Spectrum Disorder--Support for the Bayesian Account of Sensory Symptoms

    ERIC Educational Resources Information Center

    Skewes, Joshua C.; Gebauer, Line

    2016-01-01

    Convergent research suggests that people with ASD have difficulties localizing sounds in space. These difficulties have implications for communication, the development of social behavior, and quality of life. Recently, a theory has emerged which treats perceptual symptoms in ASD as the product of impairments in implicit Bayesian inference; as…

  11. Emphasis on Emotions in Student Learning: Analyzing Relationships between Overexcitabilities and the Learning Approach Using Bayesian MIMIC Modeling

    ERIC Educational Resources Information Center

    De Bondt, Niki; Van Petegem, Peter

    2017-01-01

    The aim of this study is to investigate interrelationships between overexcitability and learning patterns from the perspective of personality development according to Dabrowski's theory of positive disintegration. To this end, Bayesian structural equation modeling (BSEM) is applied which allows for the simultaneous inclusion in the measurement…

  12. Value of Weather Information in Cranberry Marketing Decisions.

    NASA Astrophysics Data System (ADS)

    Morzuch, Bernard J.; Willis, Cleve E.

    1982-04-01

    Econometric techniques are used to establish a functional relationship between cranberry yields and important precipitation, temperature, and sunshine variables. Crop forecasts are derived from the model and are used to establish posterior probabilities to be used in a Bayesian decision context pertaining to leasing space for the storage of the berries.

  13. Decision Making and Learning while Taking Sequential Risks

    ERIC Educational Resources Information Center

    Pleskac, Timothy J.

    2008-01-01

    A sequential risk-taking paradigm used to identify real-world risk takers invokes both learning and decision processes. This article expands the paradigm to a larger class of tasks with different stochastic environments and different learning requirements. Generalizing a Bayesian sequential risk-taking model to the larger set of tasks clarifies…

  14. Reconstructing constructivism: causal models, Bayesian learning mechanisms, and the theory theory.

    PubMed

    Gopnik, Alison; Wellman, Henry M

    2012-11-01

    We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and nontechnical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and the psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists.

  15. Theory Learning as Stochastic Search in the Language of Thought

    ERIC Educational Resources Information Center

    Ullman, Tomer D.; Goodman, Noah D.; Tenenbaum, Joshua B.

    2012-01-01

    We present an algorithmic model for the development of children's intuitive theories within a hierarchical Bayesian framework, where theories are described as sets of logical laws generated by a probabilistic context-free grammar. We contrast our approach with connectionist and other emergentist approaches to modeling cognitive development. While…

  16. Transposed-letter priming of prelexical orthographic representations.

    PubMed

    Kinoshita, Sachiko; Norris, Dennis

    2009-01-01

    A prime generated by transposing two internal letters (e.g., jugde) produces strong priming of the original word (judge). In lexical decision, this transposed-letter (TL) priming effect is generally weak or absent for nonword targets; thus, it is unclear whether the origin of this effect is lexical or prelexical. The authors describe the Bayesian Reader theory of masked priming (D. Norris & S. Kinoshita, 2008), which explains why nonwords do not show priming in lexical decision but why they do in the cross-case same-different task. This analysis is followed by 3 experiments that show that priming in this task is not based on low-level perceptual similarity between the prime and target, or on phonology, to make the case that priming is based on prelexical orthographic representation. The authors then use this task to demonstrate equivalent TL priming effects for nonwords and words. The results are interpreted as the first reliable evidence based on the masked priming procedure that letter position is not coded absolutely within the prelexical, orthographic representation. The implications of the results for current letter position coding schemes are discussed.

  17. Advanced Computational Framework for Environmental Management ZEM, Version 1.x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesselinov, Velimir V.; O'Malley, Daniel; Pandey, Sachin

    2016-11-04

    Typically environmental management problems require analysis of large and complex data sets originating from concurrent data streams with different data collection frequencies and pedigree. These big data sets require on-the-fly integration into a series of models with different complexity for various types of model analyses where the data are applied as soft and hard model constraints. This is needed to provide fast iterative model analyses based on the latest available data to guide decision-making. Furthermore, the data and model are associated with uncertainties. The uncertainties are probabilistic (e.g. measurement errors) and non-probabilistic (unknowns, e.g. alternative conceptual models characterizing site conditions).more » To address all of these issues, we have developed an integrated framework for real-time data and model analyses for environmental decision-making called ZEM. The framework allows for seamless and on-the-fly integration of data and modeling results for robust and scientifically-defensible decision-making applying advanced decision analyses tools such as Bayesian- Information-Gap Decision Theory (BIG-DT). The framework also includes advanced methods for optimization that are capable of dealing with a large number of unknown model parameters, and surrogate (reduced order) modeling capabilities based on support vector regression techniques. The framework is coded in Julia, a state-of-the-art high-performance programing language (http://julialang.org). The ZEM framework is open-source and can be applied to any environmental management site. The framework will be open-source and released under GPL V3 license.« less

  18. Laminar fMRI and computational theories of brain function.

    PubMed

    Stephan, K E; Petzschner, F H; Kasper, L; Bayer, J; Wellstein, K V; Stefanics, G; Pruessmann, K P; Heinzle, J

    2017-11-02

    Recently developed methods for functional MRI at the resolution of cortical layers (laminar fMRI) offer a novel window into neurophysiological mechanisms of cortical activity. Beyond physiology, laminar fMRI also offers an unprecedented opportunity to test influential theories of brain function. Specifically, hierarchical Bayesian theories of brain function, such as predictive coding, assign specific computational roles to different cortical layers. Combined with computational models, laminar fMRI offers a unique opportunity to test these proposals noninvasively in humans. This review provides a brief overview of predictive coding and related hierarchical Bayesian theories, summarises their predictions with regard to layered cortical computations, examines how these predictions could be tested by laminar fMRI, and considers methodological challenges. We conclude by discussing the potential of laminar fMRI for clinically useful computational assays of layer-specific information processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The utility of Bayesian predictive probabilities for interim monitoring of clinical trials

    PubMed Central

    Connor, Jason T.; Ayers, Gregory D; Alvarez, JoAnn

    2014-01-01

    Background Bayesian predictive probabilities can be used for interim monitoring of clinical trials to estimate the probability of observing a statistically significant treatment effect if the trial were to continue to its predefined maximum sample size. Purpose We explore settings in which Bayesian predictive probabilities are advantageous for interim monitoring compared to Bayesian posterior probabilities, p-values, conditional power, or group sequential methods. Results For interim analyses that address prediction hypotheses, such as futility monitoring and efficacy monitoring with lagged outcomes, only predictive probabilities properly account for the amount of data remaining to be observed in a clinical trial and have the flexibility to incorporate additional information via auxiliary variables. Limitations Computational burdens limit the feasibility of predictive probabilities in many clinical trial settings. The specification of prior distributions brings additional challenges for regulatory approval. Conclusions The use of Bayesian predictive probabilities enables the choice of logical interim stopping rules that closely align with the clinical decision making process. PMID:24872363

  20. Bayesian imperfect information analysis for clinical recurrent data

    PubMed Central

    Chang, Chih-Kuang; Chang, Chi-Chang

    2015-01-01

    In medical research, clinical practice must often be undertaken with imperfect information from limited resources. This study applied Bayesian imperfect information-value analysis to realistic situations to produce likelihood functions and posterior distributions, to a clinical decision-making problem for recurrent events. In this study, three kinds of failure models are considered, and our methods illustrated with an analysis of imperfect information from a trial of immunotherapy in the treatment of chronic granulomatous disease. In addition, we present evidence toward a better understanding of the differing behaviors along with concomitant variables. Based on the results of simulations, the imperfect information value of the concomitant variables was evaluated and different realistic situations were compared to see which could yield more accurate results for medical decision-making. PMID:25565853

  1. Decision time and confidence predict choosers' identification performance in photographic showups

    PubMed Central

    Sagana, Anna; Sporer, Siegfried L.; Wixted, John T.

    2018-01-01

    In vast contrast to the multitude of lineup studies that report on the link between decision time, confidence, and identification accuracy, only a few studies looked at these associations for showups, with results varying widely across studies. We therefore set out to test the individual and combined value of decision time and post-decision confidence for diagnosing the accuracy of positive showup decisions using confidence-accuracy characteristic curves and Bayesian analyses. Three-hundred-eighty-four participants viewed a stimulus event and were subsequently presented with two showups which could be target-present or target-absent. As expected, we found a negative decision time-accuracy and a positive post-decision confidence-accuracy correlation for showup selections. Confidence-accuracy characteristic curves demonstrated the expected additive effect of combining both postdictors. Likewise, Bayesian analyses, taking into account all possible target-presence base rate values showed that fast and confident identification decisions were more diagnostic than slow or less confident decisions, with the combination of both being most diagnostic for postdicting accurate and inaccurate decisions. The postdictive value of decision time and post-decision confidence was higher when the prior probability that the suspect is the perpetrator was high compared to when the prior probability that the suspect is the perpetrator was low. The frequent use of showups in practice emphasizes the importance of these findings for court proceedings. Overall, these findings support the idea that courts should have most trust in showup identifications that were made fast and confidently, and least in showup identifications that were made slowly and with low confidence. PMID:29346394

  2. Decision time and confidence predict choosers' identification performance in photographic showups.

    PubMed

    Sauerland, Melanie; Sagana, Anna; Sporer, Siegfried L; Wixted, John T

    2018-01-01

    In vast contrast to the multitude of lineup studies that report on the link between decision time, confidence, and identification accuracy, only a few studies looked at these associations for showups, with results varying widely across studies. We therefore set out to test the individual and combined value of decision time and post-decision confidence for diagnosing the accuracy of positive showup decisions using confidence-accuracy characteristic curves and Bayesian analyses. Three-hundred-eighty-four participants viewed a stimulus event and were subsequently presented with two showups which could be target-present or target-absent. As expected, we found a negative decision time-accuracy and a positive post-decision confidence-accuracy correlation for showup selections. Confidence-accuracy characteristic curves demonstrated the expected additive effect of combining both postdictors. Likewise, Bayesian analyses, taking into account all possible target-presence base rate values showed that fast and confident identification decisions were more diagnostic than slow or less confident decisions, with the combination of both being most diagnostic for postdicting accurate and inaccurate decisions. The postdictive value of decision time and post-decision confidence was higher when the prior probability that the suspect is the perpetrator was high compared to when the prior probability that the suspect is the perpetrator was low. The frequent use of showups in practice emphasizes the importance of these findings for court proceedings. Overall, these findings support the idea that courts should have most trust in showup identifications that were made fast and confidently, and least in showup identifications that were made slowly and with low confidence.

  3. scoringRules - A software package for probabilistic model evaluation

    NASA Astrophysics Data System (ADS)

    Lerch, Sebastian; Jordan, Alexander; Krüger, Fabian

    2016-04-01

    Models in the geosciences are generally surrounded by uncertainty, and being able to quantify this uncertainty is key to good decision making. Accordingly, probabilistic forecasts in the form of predictive distributions have become popular over the last decades. With the proliferation of probabilistic models arises the need for decision theoretically principled tools to evaluate the appropriateness of models and forecasts in a generalized way. Various scoring rules have been developed over the past decades to address this demand. Proper scoring rules are functions S(F,y) which evaluate the accuracy of a forecast distribution F , given that an outcome y was observed. As such, they allow to compare alternative models, a crucial ability given the variety of theories, data sources and statistical specifications that is available in many situations. This poster presents the software package scoringRules for the statistical programming language R, which contains functions to compute popular scoring rules such as the continuous ranked probability score for a variety of distributions F that come up in applied work. Two main classes are parametric distributions like normal, t, or gamma distributions, and distributions that are not known analytically, but are indirectly described through a sample of simulation draws. For example, Bayesian forecasts produced via Markov Chain Monte Carlo take this form. Thereby, the scoringRules package provides a framework for generalized model evaluation that both includes Bayesian as well as classical parametric models. The scoringRules package aims to be a convenient dictionary-like reference for computing scoring rules. We offer state of the art implementations of several known (but not routinely applied) formulas, and implement closed-form expressions that were previously unavailable. Whenever more than one implementation variant exists, we offer statistically principled default choices.

  4. Perceptual learning through optimization of attentional weighting: human versus optimal Bayesian learner

    NASA Technical Reports Server (NTRS)

    Eckstein, Miguel P.; Abbey, Craig K.; Pham, Binh T.; Shimozaki, Steven S.

    2004-01-01

    Human performance in visual detection, discrimination, identification, and search tasks typically improves with practice. Psychophysical studies suggest that perceptual learning is mediated by an enhancement in the coding of the signal, and physiological studies suggest that it might be related to the plasticity in the weighting or selection of sensory units coding task relevant information (learning through attention optimization). We propose an experimental paradigm (optimal perceptual learning paradigm) to systematically study the dynamics of perceptual learning in humans by allowing comparisons to that of an optimal Bayesian algorithm and a number of suboptimal learning models. We measured improvement in human localization (eight-alternative forced-choice with feedback) performance of a target randomly sampled from four elongated Gaussian targets with different orientations and polarities and kept as a target for a block of four trials. The results suggest that the human perceptual learning can occur within a lapse of four trials (<1 min) but that human learning is slower and incomplete with respect to the optimal algorithm (23.3% reduction in human efficiency from the 1st-to-4th learning trials). The greatest improvement in human performance, occurring from the 1st-to-2nd learning trial, was also present in the optimal observer, and, thus reflects a property inherent to the visual task and not a property particular to the human perceptual learning mechanism. One notable source of human inefficiency is that, unlike the ideal observer, human learning relies more heavily on previous decisions than on the provided feedback, resulting in no human learning on trials following a previous incorrect localization decision. Finally, the proposed theory and paradigm provide a flexible framework for future studies to evaluate the optimality of human learning of other visual cues and/or sensory modalities.

  5. A local approach for focussed Bayesian fusion

    NASA Astrophysics Data System (ADS)

    Sander, Jennifer; Heizmann, Michael; Goussev, Igor; Beyerer, Jürgen

    2009-04-01

    Local Bayesian fusion approaches aim to reduce high storage and computational costs of Bayesian fusion which is separated from fixed modeling assumptions. Using the small world formalism, we argue why this proceeding is conform with Bayesian theory. Then, we concentrate on the realization of local Bayesian fusion by focussing the fusion process solely on local regions that are task relevant with a high probability. The resulting local models correspond then to restricted versions of the original one. In a previous publication, we used bounds for the probability of misleading evidence to show the validity of the pre-evaluation of task specific knowledge and prior information which we perform to build local models. In this paper, we prove the validity of this proceeding using information theoretic arguments. For additional efficiency, local Bayesian fusion can be realized in a distributed manner. Here, several local Bayesian fusion tasks are evaluated and unified after the actual fusion process. For the practical realization of distributed local Bayesian fusion, software agents are predestinated. There is a natural analogy between the resulting agent based architecture and criminal investigations in real life. We show how this analogy can be used to improve the efficiency of distributed local Bayesian fusion additionally. Using a landscape model, we present an experimental study of distributed local Bayesian fusion in the field of reconnaissance, which highlights its high potential.

  6. Investigating the Theoretical Structure of the DAS-II Core Battery at School Age Using Bayesian Structural Equation Modeling

    ERIC Educational Resources Information Center

    Dombrowski, Stefan C.; Golay, Philippe; McGill, Ryan J.; Canivez, Gary L.

    2018-01-01

    Bayesian structural equation modeling (BSEM) was used to investigate the latent structure of the Differential Ability Scales-Second Edition core battery using the standardization sample normative data for ages 7-17. Results revealed plausibility of a three-factor model, consistent with publisher theory, expressed as either a higher-order (HO) or a…

  7. Doubly Bayesian Analysis of Confidence in Perceptual Decision-Making.

    PubMed

    Aitchison, Laurence; Bang, Dan; Bahrami, Bahador; Latham, Peter E

    2015-10-01

    Humans stand out from other animals in that they are able to explicitly report on the reliability of their internal operations. This ability, which is known as metacognition, is typically studied by asking people to report their confidence in the correctness of some decision. However, the computations underlying confidence reports remain unclear. In this paper, we present a fully Bayesian method for directly comparing models of confidence. Using a visual two-interval forced-choice task, we tested whether confidence reports reflect heuristic computations (e.g. the magnitude of sensory data) or Bayes optimal ones (i.e. how likely a decision is to be correct given the sensory data). In a standard design in which subjects were first asked to make a decision, and only then gave their confidence, subjects were mostly Bayes optimal. In contrast, in a less-commonly used design in which subjects indicated their confidence and decision simultaneously, they were roughly equally likely to use the Bayes optimal strategy or to use a heuristic but suboptimal strategy. Our results suggest that, while people's confidence reports can reflect Bayes optimal computations, even a small unusual twist or additional element of complexity can prevent optimality.

  8. Bayesian methods for outliers detection in GNSS time series

    NASA Astrophysics Data System (ADS)

    Qianqian, Zhang; Qingming, Gui

    2013-07-01

    This article is concerned with the problem of detecting outliers in GNSS time series based on Bayesian statistical theory. Firstly, a new model is proposed to simultaneously detect different types of outliers based on the conception of introducing different types of classification variables corresponding to the different types of outliers; the problem of outlier detection is converted into the computation of the corresponding posterior probabilities, and the algorithm for computing the posterior probabilities based on standard Gibbs sampler is designed. Secondly, we analyze the reasons of masking and swamping about detecting patches of additive outliers intensively; an unmasking Bayesian method for detecting additive outlier patches is proposed based on an adaptive Gibbs sampler. Thirdly, the correctness of the theories and methods proposed above is illustrated by simulated data and then by analyzing real GNSS observations, such as cycle slips detection in carrier phase data. Examples illustrate that the Bayesian methods for outliers detection in GNSS time series proposed by this paper are not only capable of detecting isolated outliers but also capable of detecting additive outlier patches. Furthermore, it can be successfully used to process cycle slips in phase data, which solves the problem of small cycle slips.

  9. Bayesian classification for the selection of in vitro human embryos using morphological and clinical data.

    PubMed

    Morales, Dinora Araceli; Bengoetxea, Endika; Larrañaga, Pedro; García, Miguel; Franco, Yosu; Fresnada, Mónica; Merino, Marisa

    2008-05-01

    In vitro fertilization (IVF) is a medically assisted reproduction technique that enables infertile couples to achieve successful pregnancy. Given the uncertainty of the treatment, we propose an intelligent decision support system based on supervised classification by Bayesian classifiers to aid to the selection of the most promising embryos that will form the batch to be transferred to the woman's uterus. The aim of the supervised classification system is to improve overall success rate of each IVF treatment in which a batch of embryos is transferred each time, where the success is achieved when implantation (i.e. pregnancy) is obtained. Due to ethical reasons, different legislative restrictions apply in every country on this technique. In Spain, legislation allows a maximum of three embryos to form each transfer batch. As a result, clinicians prefer to select the embryos by non-invasive embryo examination based on simple methods and observation focused on morphology and dynamics of embryo development after fertilization. This paper proposes the application of Bayesian classifiers to this embryo selection problem in order to provide a decision support system that allows a more accurate selection than with the actual procedures which fully rely on the expertise and experience of embryologists. For this, we propose to take into consideration a reduced subset of feature variables related to embryo morphology and clinical data of patients, and from this data to induce Bayesian classification models. Results obtained applying a filter technique to choose the subset of variables, and the performance of Bayesian classifiers using them, are presented.

  10. Accuracy of dengue clinical diagnosis with and without NS1 antigen rapid test: Comparison between human and Bayesian network model decision.

    PubMed

    Sa-Ngamuang, Chaitawat; Haddawy, Peter; Luvira, Viravarn; Piyaphanee, Watcharapong; Iamsirithaworn, Sopon; Lawpoolsri, Saranath

    2018-06-18

    Differentiating dengue patients from other acute febrile illness patients is a great challenge among physicians. Several dengue diagnosis methods are recommended by WHO. The application of specific laboratory tests is still limited due to high cost, lack of equipment, and uncertain validity. Therefore, clinical diagnosis remains a common practice especially in resource limited settings. Bayesian networks have been shown to be a useful tool for diagnostic decision support. This study aimed to construct Bayesian network models using basic demographic, clinical, and laboratory profiles of acute febrile illness patients to diagnose dengue. Data of 397 acute undifferentiated febrile illness patients who visited the fever clinic of the Bangkok Hospital for Tropical Diseases, Thailand, were used for model construction and validation. The two best final models were selected: one with and one without NS1 rapid test result. The diagnostic accuracy of the models was compared with that of physicians on the same set of patients. The Bayesian network models provided good diagnostic accuracy of dengue infection, with ROC AUC of 0.80 and 0.75 for models with and without NS1 rapid test result, respectively. The models had approximately 80% specificity and 70% sensitivity, similar to the diagnostic accuracy of the hospital's fellows in infectious disease. Including information on NS1 rapid test improved the specificity, but reduced the sensitivity, both in model and physician diagnoses. The Bayesian network model developed in this study could be useful to assist physicians in diagnosing dengue, particularly in regions where experienced physicians and laboratory confirmation tests are limited.

  11. The Bayesian boom: good thing or bad?

    PubMed Central

    Hahn, Ulrike

    2014-01-01

    A series of high-profile critiques of Bayesian models of cognition have recently sparked controversy. These critiques question the contribution of rational, normative considerations in the study of cognition. The present article takes central claims from these critiques and evaluates them in light of specific models. Closer consideration of actual examples of Bayesian treatments of different cognitive phenomena allows one to defuse these critiques showing that they cannot be sustained across the diversity of applications of the Bayesian framework for cognitive modeling. More generally, there is nothing in the Bayesian framework that would inherently give rise to the deficits that these critiques perceive, suggesting they have been framed at the wrong level of generality. At the same time, the examples are used to demonstrate the different ways in which consideration of rationality uniquely benefits both theory and practice in the study of cognition. PMID:25152738

  12. Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy

    NASA Astrophysics Data System (ADS)

    Sharma, Sanjib

    2017-08-01

    Markov Chain Monte Carlo based Bayesian data analysis has now become the method of choice for analyzing and interpreting data in almost all disciplines of science. In astronomy, over the last decade, we have also seen a steady increase in the number of papers that employ Monte Carlo based Bayesian analysis. New, efficient Monte Carlo based methods are continuously being developed and explored. In this review, we first explain the basics of Bayesian theory and discuss how to set up data analysis problems within this framework. Next, we provide an overview of various Monte Carlo based methods for performing Bayesian data analysis. Finally, we discuss advanced ideas that enable us to tackle complex problems and thus hold great promise for the future. We also distribute downloadable computer software (available at https://github.com/sanjibs/bmcmc/ ) that implements some of the algorithms and examples discussed here.

  13. When mechanism matters: Bayesian forecasting using models of ecological diffusion

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.

    2017-01-01

    Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.

  14. Bayesian decision analysis as a tool for defining monitoring needs in the field of effects of CSOs on receiving waters.

    PubMed

    Korving, H; Clemens, F

    2002-01-01

    In recent years, decision analysis has become an important technique in many disciplines. It provides a methodology for rational decision-making allowing for uncertainties in the outcome of several possible actions to be undertaken. An example in urban drainage is the situation in which an engineer has to decide upon a major reconstruction of a system in order to prevent pollution of receiving waters due to CSOs. This paper describes the possibilities of Bayesian decision-making in urban drainage. In particular, the utility of monitoring prior to deciding on the reconstruction of a sewer system to reduce CSO emissions is studied. Our concern is with deciding whether a price should be paid for new information and which source of information is the best choice given the expected uncertainties in the outcome. The influence of specific uncertainties (sewer system data and model parameters) on the probability of CSO volumes is shown to be significant. Using Bayes' rule, to combine prior impressions with new observations, reduces the risks linked with the planning of sewer system reconstructions.

  15. The drift diffusion model as the choice rule in reinforcement learning.

    PubMed

    Pedersen, Mads Lund; Frank, Michael J; Biele, Guido

    2017-08-01

    Current reinforcement-learning models often assume simplified decision processes that do not fully reflect the dynamic complexities of choice processes. Conversely, sequential-sampling models of decision making account for both choice accuracy and response time, but assume that decisions are based on static decision values. To combine these two computational models of decision making and learning, we implemented reinforcement-learning models in which the drift diffusion model describes the choice process, thereby capturing both within- and across-trial dynamics. To exemplify the utility of this approach, we quantitatively fit data from a common reinforcement-learning paradigm using hierarchical Bayesian parameter estimation, and compared model variants to determine whether they could capture the effects of stimulant medication in adult patients with attention-deficit hyperactivity disorder (ADHD). The model with the best relative fit provided a good description of the learning process, choices, and response times. A parameter recovery experiment showed that the hierarchical Bayesian modeling approach enabled accurate estimation of the model parameters. The model approach described here, using simultaneous estimation of reinforcement-learning and drift diffusion model parameters, shows promise for revealing new insights into the cognitive and neural mechanisms of learning and decision making, as well as the alteration of such processes in clinical groups.

  16. The drift diffusion model as the choice rule in reinforcement learning

    PubMed Central

    Frank, Michael J.

    2017-01-01

    Current reinforcement-learning models often assume simplified decision processes that do not fully reflect the dynamic complexities of choice processes. Conversely, sequential-sampling models of decision making account for both choice accuracy and response time, but assume that decisions are based on static decision values. To combine these two computational models of decision making and learning, we implemented reinforcement-learning models in which the drift diffusion model describes the choice process, thereby capturing both within- and across-trial dynamics. To exemplify the utility of this approach, we quantitatively fit data from a common reinforcement-learning paradigm using hierarchical Bayesian parameter estimation, and compared model variants to determine whether they could capture the effects of stimulant medication in adult patients with attention-deficit hyper-activity disorder (ADHD). The model with the best relative fit provided a good description of the learning process, choices, and response times. A parameter recovery experiment showed that the hierarchical Bayesian modeling approach enabled accurate estimation of the model parameters. The model approach described here, using simultaneous estimation of reinforcement-learning and drift diffusion model parameters, shows promise for revealing new insights into the cognitive and neural mechanisms of learning and decision making, as well as the alteration of such processes in clinical groups. PMID:27966103

  17. A Framework for Final Drive Simultaneous Failure Diagnosis Based on Fuzzy Entropy and Sparse Bayesian Extreme Learning Machine

    PubMed Central

    Ye, Qing; Pan, Hao; Liu, Changhua

    2015-01-01

    This research proposes a novel framework of final drive simultaneous failure diagnosis containing feature extraction, training paired diagnostic models, generating decision threshold, and recognizing simultaneous failure modes. In feature extraction module, adopt wavelet package transform and fuzzy entropy to reduce noise interference and extract representative features of failure mode. Use single failure sample to construct probability classifiers based on paired sparse Bayesian extreme learning machine which is trained only by single failure modes and have high generalization and sparsity of sparse Bayesian learning approach. To generate optimal decision threshold which can convert probability output obtained from classifiers into final simultaneous failure modes, this research proposes using samples containing both single and simultaneous failure modes and Grid search method which is superior to traditional techniques in global optimization. Compared with other frequently used diagnostic approaches based on support vector machine and probability neural networks, experiment results based on F 1-measure value verify that the diagnostic accuracy and efficiency of the proposed framework which are crucial for simultaneous failure diagnosis are superior to the existing approach. PMID:25722717

  18. Integrating health economics modeling in the product development cycle of medical devices: a Bayesian approach.

    PubMed

    Vallejo-Torres, Laura; Steuten, Lotte M G; Buxton, Martin J; Girling, Alan J; Lilford, Richard J; Young, Terry

    2008-01-01

    Medical device companies are under growing pressure to provide health-economic evaluations of their products. Cost-effectiveness analyses are commonly undertaken as a one-off exercise at the late stage of development of new technologies; however, the benefits of an iterative use of economic evaluation during the development process of new products have been acknowledged in the literature. Furthermore, the use of Bayesian methods within health technology assessment has been shown to be of particular value in the dynamic framework of technology appraisal when new information becomes available in the life cycle of technologies. In this study, we set out a methodology to adapt these methods for their application to directly support investment decisions in a commercial setting from early stages of the development of new medical devices. Starting with relatively simple analysis from the very early development phase and proceeding to greater depth of analysis at later stages, a Bayesian approach facilitates the incorporation of all available evidence and would help companies to make better informed choices at each decision point.

  19. Pattern recognition for passive polarimetric data using nonparametric classifiers

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Saini, Jatinder; Voelz, David G.; Creusere, Charles D.

    2005-08-01

    Passive polarization based imaging is a useful tool in computer vision and pattern recognition. A passive polarization imaging system forms a polarimetric image from the reflection of ambient light that contains useful information for computer vision tasks such as object detection (classification) and recognition. Applications of polarization based pattern recognition include material classification and automatic shape recognition. In this paper, we present two target detection algorithms for images captured by a passive polarimetric imaging system. The proposed detection algorithms are based on Bayesian decision theory. In these approaches, an object can belong to one of any given number classes and classification involves making decisions that minimize the average probability of making incorrect decisions. This minimum is achieved by assigning an object to the class that maximizes the a posteriori probability. Computing a posteriori probabilities requires estimates of class conditional probability density functions (likelihoods) and prior probabilities. A Probabilistic neural network (PNN), which is a nonparametric method that can compute Bayes optimal boundaries, and a -nearest neighbor (KNN) classifier, is used for density estimation and classification. The proposed algorithms are applied to polarimetric image data gathered in the laboratory with a liquid crystal-based system. The experimental results validate the effectiveness of the above algorithms for target detection from polarimetric data.

  20. Application of Bayesian and cost benefit risk analysis in water resources management

    NASA Astrophysics Data System (ADS)

    Varouchakis, E. A.; Palogos, I.; Karatzas, G. P.

    2016-03-01

    Decision making is a significant tool in water resources management applications. This technical note approaches a decision dilemma that has not yet been considered for the water resources management of a watershed. A common cost-benefit analysis approach, which is novel in the risk analysis of hydrologic/hydraulic applications, and a Bayesian decision analysis are applied to aid the decision making on whether or not to construct a water reservoir for irrigation purposes. The alternative option examined is a scaled parabolic fine variation in terms of over-pumping violations in contrast to common practices that usually consider short-term fines. The methodological steps are analytically presented associated with originally developed code. Such an application, and in such detail, represents new feedback. The results indicate that the probability uncertainty is the driving issue that determines the optimal decision with each methodology, and depending on the unknown probability handling, each methodology may lead to a different optimal decision. Thus, the proposed tool can help decision makers to examine and compare different scenarios using two different approaches before making a decision considering the cost of a hydrologic/hydraulic project and the varied economic charges that water table limit violations can cause inside an audit interval. In contrast to practices that assess the effect of each proposed action separately considering only current knowledge of the examined issue, this tool aids decision making by considering prior information and the sampling distribution of future successful audits.

  1. Bayesian decision and mixture models for AE monitoring of steel-concrete composite shear walls

    NASA Astrophysics Data System (ADS)

    Farhidzadeh, Alireza; Epackachi, Siamak; Salamone, Salvatore; Whittaker, Andrew S.

    2015-11-01

    This paper presents an approach based on an acoustic emission technique for the health monitoring of steel-concrete (SC) composite shear walls. SC composite walls consist of plain (unreinforced) concrete sandwiched between steel faceplates. Although the use of SC system construction has been studied extensively for nearly 20 years, little-to-no attention has been devoted to the development of structural health monitoring techniques for the inspection of damage of the concrete behind the steel plates. In this work an unsupervised pattern recognition algorithm based on probability theory is proposed to assess the soundness of the concrete infill, and eventually provide a diagnosis of the SC wall’s health. The approach is validated through an experimental study on a large-scale SC shear wall subjected to a displacement controlled reversed cyclic loading.

  2. Non-medical influences on medical decision-making.

    PubMed

    McKinlay, J B; Potter, D A; Feldman, H A

    1996-03-01

    The influence of non-medical factors on physicians' decision-making has been documented in many observational studies, but rarely in an experimental setting capable of demonstrating cause and effect. We conducted a controlled factorial experiment to assess the influence of non-medical factors on the diagnostic and treatment decisions made by practitioners of internal medicine in two common medical situations. One hundred and ninety-two white male internists individually viewed professionally produced video scenarios in which the actor-patient, presenting with either chest pain or dyspnea, possessed various balanced combinations of sex, race, age, socioeconomic status, and health insurance coverage. Physician subjects were randomly drawn from lists of internists in private practice, hospital-based practice, and HMO's, at two levels of experience. The most frequent diagnoses for both chest pain and dyspnea were psychogenic origin and cardiac problems. Smoking cessation was the most frequent treatment recommendation for both conditions. Younger patients (all other factors being the same) were significantly more likely to receive the psychogenic diagnosis. Older patients were more likely to receive the cardiac diagnosis for chest pain, particularly if they were insured. HMO-based physicians were more likely to recommend a follow-up visit for chest pain. Several interactions of patient and physician factors were significant in addition to the main effects. The variability in decision-making evidenced by physicians in this experiment was not entirely accounted for by strictly rational Bayesian inference (the common prescriptive model for medical decision-making), in-as-much as non-medical factors significantly affected the decisions that they made. There is a need to supplement idealized medical schemata with considerations of social behavior in any comprehensive theory of medical decision-making.

  3. Autistic traits, but not schizotypy, predict increased weighting of sensory information in Bayesian visual integration.

    PubMed

    Karvelis, Povilas; Seitz, Aaron R; Lawrie, Stephen M; Seriès, Peggy

    2018-05-14

    Recent theories propose that schizophrenia/schizotypy and autistic spectrum disorder are related to impairments in Bayesian inference that is, how the brain integrates sensory information (likelihoods) with prior knowledge. However existing accounts fail to clarify: (i) how proposed theories differ in accounts of ASD vs. schizophrenia and (ii) whether the impairments result from weaker priors or enhanced likelihoods. Here, we directly address these issues by characterizing how 91 healthy participants, scored for autistic and schizotypal traits, implicitly learned and combined priors with sensory information. This was accomplished through a visual statistical learning paradigm designed to quantitatively assess variations in individuals' likelihoods and priors. The acquisition of the priors was found to be intact along both traits spectra. However, autistic traits were associated with more veridical perception and weaker influence of expectations. Bayesian modeling revealed that this was due, not to weaker prior expectations, but to more precise sensory representations. © 2018, Karvelis et al.

  4. Context Effects in Multi-Alternative Decision Making: Empirical Data and a Bayesian Model

    ERIC Educational Resources Information Center

    Hawkins, Guy; Brown, Scott D.; Steyvers, Mark; Wagenmakers, Eric-Jan

    2012-01-01

    For decisions between many alternatives, the benchmark result is Hick's Law: that response time increases log-linearly with the number of choice alternatives. Even when Hick's Law is observed for response times, divergent results have been observed for error rates--sometimes error rates increase with the number of choice alternatives, and…

  5. An Engineering Educator's Decision Support Tool for Improving Innovation in Student Design Projects

    ERIC Educational Resources Information Center

    Ozaltin, Nur Ozge; Besterfield-Sacre, Mary; Clark, Renee M.

    2015-01-01

    Learning how to design innovatively is a critical process skill for undergraduate engineers in the 21st century. To this end, our paper discusses the development and validation of a Bayesian network decision support tool that can be used by engineering educators to make recommendations that positively impact the innovativeness of product designs.…

  6. Quantifying falsifiability of scientific theories

    NASA Astrophysics Data System (ADS)

    Nemenman, Ilya

    I argue that the notion of falsifiability, a key concept in defining a valid scientific theory, can be quantified using Bayesian Model Selection, which is a standard tool in modern statistics. This relates falsifiability to the quantitative version of the statistical Occam's razor, and allows transforming some long-running arguments about validity of scientific theories from philosophical discussions to rigorous mathematical calculations.

  7. Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method

    NASA Astrophysics Data System (ADS)

    He, Wei; Williard, Nicholas; Osterman, Michael; Pecht, Michael

    A new method for state of health (SOH) and remaining useful life (RUL) estimations for lithium-ion batteries using Dempster-Shafer theory (DST) and the Bayesian Monte Carlo (BMC) method is proposed. In this work, an empirical model based on the physical degradation behavior of lithium-ion batteries is developed. Model parameters are initialized by combining sets of training data based on DST. BMC is then used to update the model parameters and predict the RUL based on available data through battery capacity monitoring. As more data become available, the accuracy of the model in predicting RUL improves. Two case studies demonstrating this approach are presented.

  8. Statistical comparison of a hybrid approach with approximate and exact inference models for Fusion 2+

    NASA Astrophysics Data System (ADS)

    Lee, K. David; Wiesenfeld, Eric; Gelfand, Andrew

    2007-04-01

    One of the greatest challenges in modern combat is maintaining a high level of timely Situational Awareness (SA). In many situations, computational complexity and accuracy considerations make the development and deployment of real-time, high-level inference tools very difficult. An innovative hybrid framework that combines Bayesian inference, in the form of Bayesian Networks, and Possibility Theory, in the form of Fuzzy Logic systems, has recently been introduced to provide a rigorous framework for high-level inference. In previous research, the theoretical basis and benefits of the hybrid approach have been developed. However, lacking is a concrete experimental comparison of the hybrid framework with traditional fusion methods, to demonstrate and quantify this benefit. The goal of this research, therefore, is to provide a statistical analysis on the comparison of the accuracy and performance of hybrid network theory, with pure Bayesian and Fuzzy systems and an inexact Bayesian system approximated using Particle Filtering. To accomplish this task, domain specific models will be developed under these different theoretical approaches and then evaluated, via Monte Carlo Simulation, in comparison to situational ground truth to measure accuracy and fidelity. Following this, a rigorous statistical analysis of the performance results will be performed, to quantify the benefit of hybrid inference to other fusion tools.

  9. Relating memory to functional performance in normal aging to dementia using hierarchical Bayesian cognitive processing models.

    PubMed

    Shankle, William R; Pooley, James P; Steyvers, Mark; Hara, Junko; Mangrola, Tushar; Reisberg, Barry; Lee, Michael D

    2013-01-01

    Determining how cognition affects functional abilities is important in Alzheimer disease and related disorders. A total of 280 patients (normal or Alzheimer disease and related disorders) received a total of 1514 assessments using the functional assessment staging test (FAST) procedure and the MCI Screen. A hierarchical Bayesian cognitive processing model was created by embedding a signal detection theory model of the MCI Screen-delayed recognition memory task into a hierarchical Bayesian framework. The signal detection theory model used latent parameters of discriminability (memory process) and response bias (executive function) to predict, simultaneously, recognition memory performance for each patient and each FAST severity group. The observed recognition memory data did not distinguish the 6 FAST severity stages, but the latent parameters completely separated them. The latent parameters were also used successfully to transform the ordinal FAST measure into a continuous measure reflecting the underlying continuum of functional severity. Hierarchical Bayesian cognitive processing models applied to recognition memory data from clinical practice settings accurately translated a latent measure of cognition into a continuous measure of functional severity for both individuals and FAST groups. Such a translation links 2 levels of brain information processing and may enable more accurate correlations with other levels, such as those characterized by biomarkers.

  10. Improved representation of situational awareness within a dismounted small combat unit constructive simulation

    NASA Astrophysics Data System (ADS)

    Lee, K. David; Colony, Mike

    2011-06-01

    Modeling and simulation has been established as a cost-effective means of supporting the development of requirements, exploring doctrinal alternatives, assessing system performance, and performing design trade-off analysis. The Army's constructive simulation for the evaluation of equipment effectiveness in small combat unit operations is currently limited to representation of situation awareness without inclusion of the many uncertainties associated with real world combat environments. The goal of this research is to provide an ability to model situation awareness and decision process uncertainties in order to improve evaluation of the impact of battlefield equipment on ground soldier and small combat unit decision processes. Our Army Probabilistic Inference and Decision Engine (Army-PRIDE) system provides this required uncertainty modeling through the application of two critical techniques that allow Bayesian network technology to be applied to real-time applications. (Object-Oriented Bayesian Network methodology and Object-Oriented Inference technique). In this research, we implement decision process and situation awareness models for a reference scenario using Army-PRIDE and demonstrate its ability to model a variety of uncertainty elements, including: confidence of source, information completeness, and information loss. We also demonstrate that Army-PRIDE improves the realism of the current constructive simulation's decision processes through Monte Carlo simulation.

  11. Bayesian paradox in homeland security and homeland defense

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Wang, Wenjian

    2011-06-01

    In this paper we discuss a rather surprising result of Bayesian inference analysis: performance of a broad variety of sensors depends not only on a sensor system itself, but also on CONOPS parameters in such a way that even an excellent sensor system can perform poorly if absolute probabilities of a threat (target) are lower than a false alarm probability. This result, which we call Bayesian paradox, holds not only for binary sensors as discussed in the lead author's previous papers, but also for a more general class of multi-target sensors, discussed also in this paper. Examples include: ATR (automatic target recognition), luggage X-ray inspection for explosives, medical diagnostics, car engine diagnostics, judicial decisions, and many other issues.

  12. Bayesian flood forecasting methods: A review

    NASA Astrophysics Data System (ADS)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been developed and widely applied, but there is still room for improvements. Future research in the context of Bayesian flood forecasting should be on assimilation of various sources of newly available information and improvement of predictive performance assessment methods.

  13. Periodic benefit-risk assessment using Bayesian stochastic multi-criteria acceptability analysis

    PubMed Central

    Li, Kan; Yuan, Shuai Sammy; Wang, William; Wan, Shuyan Sabrina; Ceesay, Paulette; Heyse, Joseph F.; Mt-Isa, Shahrul; Luo, Sheng

    2018-01-01

    Benefit-risk (BR) assessment is essential to ensure the best decisions are made for a medical product in the clinical development process, regulatory marketing authorization, post-market surveillance, and coverage and reimbursement decisions. One challenge of BR assessment in practice is that the benefit and risk profile may keep evolving while new evidence is accumulating. Regulators and the International Conference on Harmonization (ICH) recommend performing periodic benefit-risk evaluation report (PBRER) through the product's lifecycle. In this paper, we propose a general statistical framework for periodic benefit-risk assessment, in which Bayesian meta-analysis and stochastic multi-criteria acceptability analysis (SMAA) will be combined to synthesize the accumulating evidence. The proposed approach allows us to compare the acceptability of different drugs dynamically and effectively and accounts for the uncertainty of clinical measurements and imprecise or incomplete preference information of decision makers. We apply our approaches to two real examples in a post-hoc way for illustration purpose. The proposed method may easily be modified for other pre and post market settings, and thus be an important complement to the current structured benefit-risk assessment (sBRA) framework to improve the transparent and consistency of the decision-making process. PMID:29505866

  14. Constructing a clinical decision-making framework for image-guided radiotherapy using a Bayesian Network

    NASA Astrophysics Data System (ADS)

    Hargrave, C.; Moores, M.; Deegan, T.; Gibbs, A.; Poulsen, M.; Harden, F.; Mengersen, K.

    2014-03-01

    A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific subregions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.

  15. Reconstructing constructivism: Causal models, Bayesian learning mechanisms and the theory theory

    PubMed Central

    Gopnik, Alison; Wellman, Henry M.

    2012-01-01

    We propose a new version of the “theory theory” grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and non-technical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists. PMID:22582739

  16. Bayesian prediction of placebo analgesia in an instrumental learning model

    PubMed Central

    Jung, Won-Mo; Lee, Ye-Seul; Wallraven, Christian; Chae, Younbyoung

    2017-01-01

    Placebo analgesia can be primarily explained by the Pavlovian conditioning paradigm in which a passively applied cue becomes associated with less pain. In contrast, instrumental conditioning employs an active paradigm that might be more similar to clinical settings. In the present study, an instrumental conditioning paradigm involving a modified trust game in a simulated clinical situation was used to induce placebo analgesia. Additionally, Bayesian modeling was applied to predict the placebo responses of individuals based on their choices. Twenty-four participants engaged in a medical trust game in which decisions to receive treatment from either a doctor (more effective with high cost) or a pharmacy (less effective with low cost) were made after receiving a reference pain stimulus. In the conditioning session, the participants received lower levels of pain following both choices, while high pain stimuli were administered in the test session even after making the decision. The choice-dependent pain in the conditioning session was modulated in terms of both intensity and uncertainty. Participants reported significantly less pain when they chose the doctor or the pharmacy for treatment compared to the control trials. The predicted pain ratings based on Bayesian modeling showed significant correlations with the actual reports from participants for both of the choice categories. The instrumental conditioning paradigm allowed for the active choice of optional cues and was able to induce the placebo analgesia effect. Additionally, Bayesian modeling successfully predicted pain ratings in a simulated clinical situation that fits well with placebo analgesia induced by instrumental conditioning. PMID:28225816

  17. How People Use Social Information to Find out What to Want in the Paradigmatic Case of Inter-temporal Preferences

    PubMed Central

    Dolan, Raymond J.

    2016-01-01

    The weight with which a specific outcome feature contributes to preference quantifies a person’s ‘taste’ for that feature. However, far from being fixed personality characteristics, tastes are plastic. They tend to align, for example, with those of others even if such conformity is not rewarded. We hypothesised that people can be uncertain about their tastes. Personal tastes are therefore uncertain beliefs. People can thus learn about them by considering evidence, such as the preferences of relevant others, and then performing Bayesian updating. If a person’s choice variability reflects uncertainty, as in random-preference models, then a signature of Bayesian updating is that the degree of taste change should correlate with that person’s choice variability. Temporal discounting coefficients are an important example of taste–for patience. These coefficients quantify impulsivity, have good psychometric properties and can change upon observing others’ choices. We examined discounting preferences in a novel, large community study of 14–24 year olds. We assessed discounting behaviour, including decision variability, before and after participants observed another person’s choices. We found good evidence for taste uncertainty and for Bayesian taste updating. First, participants displayed decision variability which was better accounted for by a random-taste than by a response-noise model. Second, apparent taste shifts were well described by a Bayesian model taking into account taste uncertainty and the relevance of social information. Our findings have important neuroscientific, clinical and developmental significance. PMID:27447491

  18. Improved prediction of tacrolimus concentrations early after kidney transplantation using theory-based pharmacokinetic modelling.

    PubMed

    Størset, Elisabet; Holford, Nick; Hennig, Stefanie; Bergmann, Troels K; Bergan, Stein; Bremer, Sara; Åsberg, Anders; Midtvedt, Karsten; Staatz, Christine E

    2014-09-01

    The aim was to develop a theory-based population pharmacokinetic model of tacrolimus in adult kidney transplant recipients and to externally evaluate this model and two previous empirical models. Data were obtained from 242 patients with 3100 tacrolimus whole blood concentrations. External evaluation was performed by examining model predictive performance using Bayesian forecasting. Pharmacokinetic disposition parameters were estimated based on tacrolimus plasma concentrations, predicted from whole blood concentrations, haematocrit and literature values for tacrolimus binding to red blood cells. Disposition parameters were allometrically scaled to fat free mass. Tacrolimus whole blood clearance/bioavailability standardized to haematocrit of 45% and fat free mass of 60 kg was estimated to be 16.1 l h−1 [95% CI 12.6, 18.0 l h−1]. Tacrolimus clearance was 30% higher (95% CI 13, 46%) and bioavailability 18% lower (95% CI 2, 29%) in CYP3A5 expressers compared with non-expressers. An Emax model described decreasing tacrolimus bioavailability with increasing prednisolone dose. The theory-based model was superior to the empirical models during external evaluation displaying a median prediction error of −1.2% (95% CI −3.0, 0.1%). Based on simulation, Bayesian forecasting led to 65% (95% CI 62, 68%) of patients achieving a tacrolimus average steady-state concentration within a suggested acceptable range. A theory-based population pharmacokinetic model was superior to two empirical models for prediction of tacrolimus concentrations and seemed suitable for Bayesian prediction of tacrolimus doses early after kidney transplantation.

  19. The Business Case for Automated Software Engineering

    NASA Technical Reports Server (NTRS)

    Menzies, Tim; Elrawas, Oussama; Hihn, Jairus M.; Feather, Martin S.; Madachy, Ray; Boehm, Barry

    2007-01-01

    Adoption of advanced automated SE (ASE) tools would be more favored if a business case could be made that these tools are more valuable than alternate methods. In theory, software prediction models can be used to make that case. In practice, this is complicated by the 'local tuning' problem. Normally. predictors for software effort and defects and threat use local data to tune their predictions. Such local tuning data is often unavailable. This paper shows that assessing the relative merits of different SE methods need not require precise local tunings. STAR 1 is a simulated annealer plus a Bayesian post-processor that explores the space of possible local tunings within software prediction models. STAR 1 ranks project decisions by their effects on effort and defects and threats. In experiments with NASA systems. STARI found one project where ASE were essential for minimizing effort/ defect/ threats; and another project were ASE tools were merely optional.

  20. Maximum entropy perception-action space: a Bayesian model of eye movement selection

    NASA Astrophysics Data System (ADS)

    Colas, Francis; Bessière, Pierre; Girard, Benoît

    2011-03-01

    In this article, we investigate the issue of the selection of eye movements in a free-eye Multiple Object Tracking task. We propose a Bayesian model of retinotopic maps with a complex logarithmic mapping. This model is structured in two parts: a representation of the visual scene, and a decision model based on the representation. We compare different decision models based on different features of the representation and we show that taking into account uncertainty helps predict the eye movements of subjects recorded in a psychophysics experiment. Finally, based on experimental data, we postulate that the complex logarithmic mapping has a functional relevance, as the density of objects in this space in more uniform than expected. This may indicate that the representation space and control strategies are such that the object density is of maximum entropy.

  1. Pixel-based skin segmentation in psoriasis images.

    PubMed

    George, Y; Aldeen, M; Garnavi, R

    2016-08-01

    In this paper, we present a detailed comparison study of skin segmentation methods for psoriasis images. Different techniques are modified and then applied to a set of psoriasis images acquired from the Royal Melbourne Hospital, Melbourne, Australia, with aim of finding the best technique suited for application to psoriasis images. We investigate the effect of different colour transformations on skin detection performance. In this respect, explicit skin thresholding is evaluated with three different decision boundaries (CbCr, HS and rgHSV). Histogram-based Bayesian classifier is applied to extract skin probability maps (SPMs) for different colour channels. This is then followed by using different approaches to find a binary skin map (SM) image from the SPMs. The approaches used include binary decision tree (DT) and Otsu's thresholding. Finally, a set of morphological operations are implemented to refine the resulted SM image. The paper provides detailed analysis and comparison of the performance of the Bayesian classifier in five different colour spaces (YCbCr, HSV, RGB, XYZ and CIELab). The results show that histogram-based Bayesian classifier is more effective than explicit thresholding, when applied to psoriasis images. It is also found that decision boundary CbCr outperforms HS and rgHSV. Another finding is that the SPMs of Cb, Cr, H and B-CIELab colour bands yield the best SMs for psoriasis images. In this study, we used a set of 100 psoriasis images for training and testing the presented methods. True Positive (TP) and True Negative (TN) are used as statistical evaluation measures.

  2. The design of patient decision support interventions: addressing the theory-practice gap.

    PubMed

    Elwyn, Glyn; Stiel, Mareike; Durand, Marie-Anne; Boivin, Jacky

    2011-08-01

    Although an increasing number of decision support interventions for patients (including decision aids) are produced, few make explicit use of theory. We argue the importance of using theory to guide design. The aim of this work was to address this theory-practice gap and to examine how a range of selected decision-making theories could inform the design and evaluation of decision support interventions. We reviewed the decision-making literature and selected relevant theories. We assessed their key principles, theoretical pathways and predictions in order to determine how they could inform the design of two core components of decision support interventions, namely, information and deliberation components and to specify theory-based outcome measures. Eight theories were selected: (1) the expected utility theory; (2) the conflict model of decision making; (3) prospect theory; (4) fuzzy-trace theory; (5) the differentiation and consolidation theory; (6) the ecological rationality theory; (7) the rational-emotional model of decision avoidance; and finally, (8) the Attend, React, Explain, Adapt model of affective forecasting. Some theories have strong relevance to the information design (e.g. prospect theory); some are more relevant to deliberation processes (conflict theory, differentiation theory and ecological validity). None of the theories in isolation was sufficient to inform the design of all the necessary components of decision support interventions. It was also clear that most work in theory-building has focused on explaining or describing how humans think rather than on how tools could be designed to help humans make good decisions. It is not surprising therefore that a large theory-practice gap exists as we consider decision support for patients. There was no relevant theory that integrated all the necessary contributions to the task of making good decisions in collaborative interactions. Initiatives such as the International Patient Decision Aids Standards Collaboration influence standards for the design of decision support interventions. However, this analysis points to the need to undertake more work in providing theoretical foundations for these interventions. © 2010 Blackwell Publishing Ltd.

  3. Bayesian Estimation of Multi-Unidimensional Graded Response IRT Models

    ERIC Educational Resources Information Center

    Kuo, Tzu-Chun

    2015-01-01

    Item response theory (IRT) has gained an increasing popularity in large-scale educational and psychological testing situations because of its theoretical advantages over classical test theory. Unidimensional graded response models (GRMs) are useful when polytomous response items are designed to measure a unified latent trait. They are limited in…

  4. A Memory-Based Theory of Verbal Cognition

    ERIC Educational Resources Information Center

    Dennis, Simon

    2005-01-01

    The syntagmatic paradigmatic model is a distributed, memory-based account of verbal processing. Built on a Bayesian interpretation of string edit theory, it characterizes the control of verbal cognition as the retrieval of sets of syntagmatic and paradigmatic constraints from sequential and relational long-term memory and the resolution of these…

  5. Bayesian or Laplacien inference, entropy and information theory and information geometry in data and signal processing

    NASA Astrophysics Data System (ADS)

    Mohammad-Djafari, Ali

    2015-01-01

    The main object of this tutorial article is first to review the main inference tools using Bayesian approach, Entropy, Information theory and their corresponding geometries. This review is focused mainly on the ways these tools have been used in data, signal and image processing. After a short introduction of the different quantities related to the Bayes rule, the entropy and the Maximum Entropy Principle (MEP), relative entropy and the Kullback-Leibler divergence, Fisher information, we will study their use in different fields of data and signal processing such as: entropy in source separation, Fisher information in model order selection, different Maximum Entropy based methods in time series spectral estimation and finally, general linear inverse problems.

  6. A conceptual model for site-level ecology of the giant gartersnake (Thamnophis gigas) in the Sacramento Valley, California

    USGS Publications Warehouse

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.; Hansen, Eric C.; Scherer, Rick D.; Patterson, Laura C.

    2015-08-14

    Bayesian networks further provide a clear visual display of the model that facilitates understanding among various stakeholders (Marcot and others, 2001; Uusitalo , 2007). Empirical data and expert judgment can be combined, as continuous or categorical variables, to update knowledge about the system (Marcot and others, 2001; Uusitalo , 2007). Importantly, Bayesian network models allow inference from causes to consequences, but also from consequences to causes, so that data can inform the states of nodes (values of different random variables) in either direction (Marcot and others, 2001; Uusitalo , 2007). Because they can incorporate both decision nodes that represent management actions and utility nodes that quantify the costs and benefits of outcomes, Bayesian networks are ideally suited to risk analysis and adaptive management (Nyberg and others, 2006; Howes and others, 2010). Thus, Bayesian network models are useful in situations where empirical data are not available, such as questions concerning the responses of giant gartersnakes to management.

  7. Time-varying nonstationary multivariate risk analysis using a dynamic Bayesian copula

    NASA Astrophysics Data System (ADS)

    Sarhadi, Ali; Burn, Donald H.; Concepción Ausín, María.; Wiper, Michael P.

    2016-03-01

    A time-varying risk analysis is proposed for an adaptive design framework in nonstationary conditions arising from climate change. A Bayesian, dynamic conditional copula is developed for modeling the time-varying dependence structure between mixed continuous and discrete multiattributes of multidimensional hydrometeorological phenomena. Joint Bayesian inference is carried out to fit the marginals and copula in an illustrative example using an adaptive, Gibbs Markov Chain Monte Carlo (MCMC) sampler. Posterior mean estimates and credible intervals are provided for the model parameters and the Deviance Information Criterion (DIC) is used to select the model that best captures different forms of nonstationarity over time. This study also introduces a fully Bayesian, time-varying joint return period for multivariate time-dependent risk analysis in nonstationary environments. The results demonstrate that the nature and the risk of extreme-climate multidimensional processes are changed over time under the impact of climate change, and accordingly the long-term decision making strategies should be updated based on the anomalies of the nonstationary environment.

  8. Bayesian Inference for Source Reconstruction: A Real-World Application

    DTIC Science & Technology

    2014-09-25

    deliberately or acci- dentally . Two examples of operational monitoring sensor networks are the deployment of biological sensor arrays by the Department of...remarkable paper, Cox [16] demonstrated that proba- bility theory, when interpreted as logic, is the only calculus that conforms to a consistent theory...of inference. This demonstration provides the firm logical basis for asserting that probability calculus is the unique quantitative theory of

  9. Results of Bayesian methods depend on details of implementation: An example of estimating salmon escapement goals

    USGS Publications Warehouse

    Adkison, Milo D.; Peterman, R.M.

    1996-01-01

    Bayesian methods have been proposed to estimate optimal escapement goals, using both knowledge about physical determinants of salmon productivity and stock-recruitment data. The Bayesian approach has several advantages over many traditional methods for estimating stock productivity: it allows integration of information from diverse sources and provides a framework for decision-making that takes into account uncertainty reflected in the data. However, results can be critically dependent on details of implementation of this approach. For instance, unintended and unwarranted confidence about stock-recruitment relationships can arise if the range of relationships examined is too narrow, if too few discrete alternatives are considered, or if data are contradictory. This unfounded confidence can result in a suboptimal choice of a spawning escapement goal.

  10. Aminoglycoside Therapy Manager: An Advanced Computer Program for Decision Support for Drug Dosing and Therapeutic Monitoring

    PubMed Central

    Lenert, Leslie; Lurie, Jon; Coleman, Robert; Klosterman, Heidrun; Blaschke, Terrence

    1990-01-01

    In this paper, we will describe an advanced drug dosing program, Aminoglycoside Therapy Manager that reasons using Bayesian pharmacokinetic modeling and symbolic modeling of patient status and drug response. Our design is similar to the design of the Digitalis Therapy Advisor program, but extends previous work by incorporating a Bayesian pharmacokinetic model, a “meta-level” analysis of drug concentrations to identify sampling errors and changes in pharmacokinetics, and including the results of the “meta-level” analysis in reasoning for dosing and therapeutic monitoring recommendations. The program is user friendly and runs on low cost general-purpose hardware. Validation studies show that the program is as accurate in predicting future drug concentrations as an expert using commercial Bayesian forecasting software.

  11. Research implications of science-informed, value-based decision making.

    PubMed

    Dowie, Jack

    2004-01-01

    In 'Hard' science, scientists correctly operate as the 'guardians of certainty', using hypothesis testing formulations and value judgements about error rates and time discounting that make classical inferential methods appropriate. But these methods can neither generate most of the inputs needed by decision makers in their time frame, nor generate them in a form that allows them to be integrated into the decision in an analytically coherent and transparent way. The need for transparent accountability in public decision making under uncertainty and value conflict means the analytical coherence provided by the stochastic Bayesian decision analytic approach, drawing on the outputs of Bayesian science, is needed. If scientific researchers are to play the role they should be playing in informing value-based decision making, they need to see themselves also as 'guardians of uncertainty', ensuring that the best possible current posterior distributions on relevant parameters are made available for decision making, irrespective of the state of the certainty-seeking research. The paper distinguishes the actors employing different technologies in terms of the focus of the technology (knowledge, values, choice); the 'home base' mode of their activity on the cognitive continuum of varying analysis-to-intuition ratios; and the underlying value judgements of the activity (especially error loss functions and time discount rates). Those who propose any principle of decision making other than the banal 'Best Principle', including the 'Precautionary Principle', are properly interpreted as advocates seeking to have their own value judgements and preferences regarding mode location apply. The task for accountable decision makers, and their supporting technologists, is to determine the best course of action under the universal conditions of uncertainty and value difference/conflict.

  12. Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model.

    PubMed

    Sampid, Marius Galabe; Hasim, Haslifah M; Dai, Hongsheng

    2018-01-01

    In this paper, we propose a model for forecasting Value-at-Risk (VaR) using a Bayesian Markov-switching GJR-GARCH(1,1) model with skewed Student's-t innovation, copula functions and extreme value theory. A Bayesian Markov-switching GJR-GARCH(1,1) model that identifies non-constant volatility over time and allows the GARCH parameters to vary over time following a Markov process, is combined with copula functions and EVT to formulate the Bayesian Markov-switching GJR-GARCH(1,1) copula-EVT VaR model, which is then used to forecast the level of risk on financial asset returns. We further propose a new method for threshold selection in EVT analysis, which we term the hybrid method. Empirical and back-testing results show that the proposed VaR models capture VaR reasonably well in periods of calm and in periods of crisis.

  13. When decision heuristics and science collide.

    PubMed

    Yu, Erica C; Sprenger, Amber M; Thomas, Rick P; Dougherty, Michael R

    2014-04-01

    The ongoing discussion among scientists about null-hypothesis significance testing and Bayesian data analysis has led to speculation about the practices and consequences of "researcher degrees of freedom." This article advances this debate by asking the broader questions that we, as scientists, should be asking: How do scientists make decisions in the course of doing research, and what is the impact of these decisions on scientific conclusions? We asked practicing scientists to collect data in a simulated research environment, and our findings show that some scientists use data collection heuristics that deviate from prescribed methodology. Monte Carlo simulations show that data collection heuristics based on p values lead to biases in estimated effect sizes and Bayes factors and to increases in both false-positive and false-negative rates, depending on the specific heuristic. We also show that using Bayesian data collection methods does not eliminate these biases. Thus, our study highlights the little appreciated fact that the process of doing science is a behavioral endeavor that can bias statistical description and inference in a manner that transcends adherence to any particular statistical framework.

  14. Bayesian additive decision trees of biomarker by treatment interactions for predictive biomarker detection and subgroup identification.

    PubMed

    Zhao, Yang; Zheng, Wei; Zhuo, Daisy Y; Lu, Yuefeng; Ma, Xiwen; Liu, Hengchang; Zeng, Zhen; Laird, Glen

    2017-10-11

    Personalized medicine, or tailored therapy, has been an active and important topic in recent medical research. Many methods have been proposed in the literature for predictive biomarker detection and subgroup identification. In this article, we propose a novel decision tree-based approach applicable in randomized clinical trials. We model the prognostic effects of the biomarkers using additive regression trees and the biomarker-by-treatment effect using a single regression tree. Bayesian approach is utilized to periodically revise the split variables and the split rules of the decision trees, which provides a better overall fitting. Gibbs sampler is implemented in the MCMC procedure, which updates the prognostic trees and the interaction tree separately. We use the posterior distribution of the interaction tree to construct the predictive scores of the biomarkers and to identify the subgroup where the treatment is superior to the control. Numerical simulations show that our proposed method performs well under various settings comparing to existing methods. We also demonstrate an application of our method in a real clinical trial.

  15. Combining Bayesian Networks and Agent Based Modeling to develop a decision-support model in Vietnam

    NASA Astrophysics Data System (ADS)

    Nong, Bao Anh; Ertsen, Maurits; Schoups, Gerrit

    2016-04-01

    Complexity and uncertainty in natural resources management have been focus themes in recent years. Within these debates, with the aim to define an approach feasible for water management practice, we are developing an integrated conceptual modeling framework for simulating decision-making processes of citizens, in our case in the Day river area, Vietnam. The model combines Bayesian Networks (BNs) and Agent-Based Modeling (ABM). BNs are able to combine both qualitative data from consultants / experts / stakeholders, and quantitative data from observations on different phenomena or outcomes from other models. Further strengths of BNs are that the relationship between variables in the system is presented in a graphical interface, and that components of uncertainty are explicitly related to their probabilistic dependencies. A disadvantage is that BNs cannot easily identify the feedback of agents in the system once changes appear. Hence, ABM was adopted to represent the reaction among stakeholders under changes. The modeling framework is developed as an attempt to gain better understanding about citizen's behavior and factors influencing their decisions in order to reduce uncertainty in the implementation of water management policy.

  16. Update on Bayesian Blocks: Segmented Models for Sequential Data

    NASA Technical Reports Server (NTRS)

    Scargle, Jeff

    2017-01-01

    The Bayesian Block algorithm, in wide use in astronomy and other areas, has been improved in several ways. The model for block shape has been generalized to include other than constant signal rate - e.g., linear, exponential, or other parametric models. In addition the computational efficiency has been improved, so that instead of O(N**2) the basic algorithm is O(N) in most cases. Other improvements in the theory and application of segmented representations will be described.

  17. A functional-dependencies-based Bayesian networks learning method and its application in a mobile commerce system.

    PubMed

    Liao, Stephen Shaoyi; Wang, Huai Qing; Li, Qiu Dan; Liu, Wei Yi

    2006-06-01

    This paper presents a new method for learning Bayesian networks from functional dependencies (FD) and third normal form (3NF) tables in relational databases. The method sets up a linkage between the theory of relational databases and probabilistic reasoning models, which is interesting and useful especially when data are incomplete and inaccurate. The effectiveness and practicability of the proposed method is demonstrated by its implementation in a mobile commerce system.

  18. MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control

    NASA Astrophysics Data System (ADS)

    Zheng, Mao-Kuan; Ming, Xin-Guo; Zhang, Xian-Yu; Li, Guo-Ming

    2017-09-01

    Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the circumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian network of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly proportionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The integration of bigdata analytics and BN method offers a whole new perspective in manufacturing quality control.

  19. How do practising clinicians and students apply newly learned causal information about mental disorders?

    PubMed

    de Kwaadsteniet, Leontien; Kim, Nancy S; Yopchick, Jennelle E

    2013-02-01

    New causal theories explaining the aetiology of psychiatric disorders continuously appear in the literature. How might such new information directly impact clinical practice, to the degree that clinicians are aware of it and accept it? We investigated whether expert clinical psychologists and students use new causal information about psychiatric disorders according to rationalist norms in their diagnostic reasoning. Specifically, philosophical and Bayesian analyses suggest that it is rational to draw stronger inferences about the presence of a disorder when a client's presenting symptoms are from disparate locations in a causal theory of the disorder than when they are from proximal locations. In a controlled experiment, we presented experienced clinical psychologists and students with recently published causal theories for different disorders; specifically, these theories proposed how the symptoms of each disorder stem from a root cause. Participants viewed hypothetical clients with presenting proximal or diverse symptoms, and indicated either the likelihood that the client has the disorder, or what additional information they would seek out to help inform a diagnostic decision. Clinicians and students alike showed a strong preference for diverse evidence, over proximal evidence, in making diagnostic judgments and in seeking additional information. They did not show this preference in the control condition, in which they gave their own opinions prior to learning the causal information. These findings suggest that experienced clinical psychologists and students are likely to use newly learned causal knowledge in a normative, rational way in diagnostic reasoning. © 2011 Blackwell Publishing Ltd.

  20. Bayesian deterministic decision making: a normative account of the operant matching law and heavy-tailed reward history dependency of choices.

    PubMed

    Saito, Hiroshi; Katahira, Kentaro; Okanoya, Kazuo; Okada, Masato

    2014-01-01

    The decision making behaviors of humans and animals adapt and then satisfy an "operant matching law" in certain type of tasks. This was first pointed out by Herrnstein in his foraging experiments on pigeons. The matching law has been one landmark for elucidating the underlying processes of decision making and its learning in the brain. An interesting question is whether decisions are made deterministically or probabilistically. Conventional learning models of the matching law are based on the latter idea; they assume that subjects learn choice probabilities of respective alternatives and decide stochastically with the probabilities. However, it is unknown whether the matching law can be accounted for by a deterministic strategy or not. To answer this question, we propose several deterministic Bayesian decision making models that have certain incorrect beliefs about an environment. We claim that a simple model produces behavior satisfying the matching law in static settings of a foraging task but not in dynamic settings. We found that the model that has a belief that the environment is volatile works well in the dynamic foraging task and exhibits undermatching, which is a slight deviation from the matching law observed in many experiments. This model also demonstrates the double-exponential reward history dependency of a choice and a heavier-tailed run-length distribution, as has recently been reported in experiments on monkeys.

  1. Support vector machines

    NASA Technical Reports Server (NTRS)

    Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri

    2004-01-01

    Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.

  2. Partial Planning Reinforcement Learning

    DTIC Science & Technology

    2012-08-31

    Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Reinforcement Learning, Bayesian Optimization, Active ... Learning , Action Model Learning, Decision Theoretic Assistance Prasad Tadepalli, Alan Fern Oregon State University Office of Sponsored Programs Oregon State

  3. A Comparative Study to Predict Student’s Performance Using Educational Data Mining Techniques

    NASA Astrophysics Data System (ADS)

    Uswatun Khasanah, Annisa; Harwati

    2017-06-01

    Student’s performance prediction is essential to be conducted for a university to prevent student fail. Number of student drop out is one of parameter that can be used to measure student performance and one important point that must be evaluated in Indonesia university accreditation. Data Mining has been widely used to predict student’s performance, and data mining that applied in this field usually called as Educational Data Mining. This study conducted Feature Selection to select high influence attributes with student performance in Department of Industrial Engineering Universitas Islam Indonesia. Then, two popular classification algorithm, Bayesian Network and Decision Tree, were implemented and compared to know the best prediction result. The outcome showed that student’s attendance and GPA in the first semester were in the top rank from all Feature Selection methods, and Bayesian Network is outperforming Decision Tree since it has higher accuracy rate.

  4. Item Response Theory Equating Using Bayesian Informative Priors.

    ERIC Educational Resources Information Center

    de la Torre, Jimmy; Patz, Richard J.

    This paper seeks to extend the application of Markov chain Monte Carlo (MCMC) methods in item response theory (IRT) to include the estimation of equating relationships along with the estimation of test item parameters. A method is proposed that incorporates estimation of the equating relationship in the item calibration phase. Item parameters from…

  5. Learning a Theory of Causality

    ERIC Educational Resources Information Center

    Goodman, Noah D.; Ullman, Tomer D.; Tenenbaum, Joshua B.

    2011-01-01

    The very early appearance of abstract knowledge is often taken as evidence for innateness. We explore the relative learning speeds of abstract and specific knowledge within a Bayesian framework and the role for innate structure. We focus on knowledge about causality, seen as a domain-general intuitive theory, and ask whether this knowledge can be…

  6. Uncertainty quantification for nuclear density functional theory and information content of new measurements.

    PubMed

    McDonnell, J D; Schunck, N; Higdon, D; Sarich, J; Wild, S M; Nazarewicz, W

    2015-03-27

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. The example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.

  7. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python.

    PubMed

    Wiecki, Thomas V; Sofer, Imri; Frank, Michael J

    2013-01-01

    The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/

  8. The value of foresight: how prospection affects decision-making.

    PubMed

    Pezzulo, Giovanni; Rigoli, Francesco

    2011-01-01

    Traditional theories of decision-making assume that utilities are based on the intrinsic value of outcomes; in turn, these values depend on associations between expected outcomes and the current motivational state of the decision-maker. This view disregards the fact that humans (and possibly other animals) have prospection abilities, which permit anticipating future mental processes and motivational and emotional states. For instance, we can evaluate future outcomes in light of the motivational state we expect to have when the outcome is collected, not (only) when we make a decision. Consequently, we can plan for the future and choose to store food to be consumed when we expect to be hungry, not immediately. Furthermore, similarly to any expected outcome, we can assign a value to our anticipated mental processes and emotions. It has been reported that (in some circumstances) human subjects prefer to receive an unavoidable punishment immediately, probably because they are anticipating the dread associated with the time spent waiting for the punishment. This article offers a formal framework to guide neuroeconomic research on how prospection affects decision-making. The model has two characteristics. First, it uses model-based Bayesian inference to describe anticipation of cognitive and motivational processes. Second, the utility-maximization process considers these anticipations in two ways: to evaluate outcomes (e.g., the pleasure of eating a pie is evaluated differently at the beginning of a dinner, when one is hungry, and at the end of the dinner, when one is satiated), and as outcomes having a value themselves (e.g., the case of dread as a cost of waiting for punishment). By explicitly accounting for the relationship between prospection and value, our model provides a framework to reconcile the utility-maximization approach with psychological phenomena such as planning for the future and dread.

  9. The Value of Foresight: How Prospection Affects Decision-Making

    PubMed Central

    Pezzulo, Giovanni; Rigoli, Francesco

    2011-01-01

    Traditional theories of decision-making assume that utilities are based on the intrinsic value of outcomes; in turn, these values depend on associations between expected outcomes and the current motivational state of the decision-maker. This view disregards the fact that humans (and possibly other animals) have prospection abilities, which permit anticipating future mental processes and motivational and emotional states. For instance, we can evaluate future outcomes in light of the motivational state we expect to have when the outcome is collected, not (only) when we make a decision. Consequently, we can plan for the future and choose to store food to be consumed when we expect to be hungry, not immediately. Furthermore, similarly to any expected outcome, we can assign a value to our anticipated mental processes and emotions. It has been reported that (in some circumstances) human subjects prefer to receive an unavoidable punishment immediately, probably because they are anticipating the dread associated with the time spent waiting for the punishment. This article offers a formal framework to guide neuroeconomic research on how prospection affects decision-making. The model has two characteristics. First, it uses model-based Bayesian inference to describe anticipation of cognitive and motivational processes. Second, the utility-maximization process considers these anticipations in two ways: to evaluate outcomes (e.g., the pleasure of eating a pie is evaluated differently at the beginning of a dinner, when one is hungry, and at the end of the dinner, when one is satiated), and as outcomes having a value themselves (e.g., the case of dread as a cost of waiting for punishment). By explicitly accounting for the relationship between prospection and value, our model provides a framework to reconcile the utility-maximization approach with psychological phenomena such as planning for the future and dread. PMID:21747755

  10. Periodic benefit-risk assessment using Bayesian stochastic multi-criteria acceptability analysis.

    PubMed

    Li, Kan; Yuan, Shuai Sammy; Wang, William; Wan, Shuyan Sabrina; Ceesay, Paulette; Heyse, Joseph F; Mt-Isa, Shahrul; Luo, Sheng

    2018-04-01

    Benefit-risk (BR) assessment is essential to ensure the best decisions are made for a medical product in the clinical development process, regulatory marketing authorization, post-market surveillance, and coverage and reimbursement decisions. One challenge of BR assessment in practice is that the benefit and risk profile may keep evolving while new evidence is accumulating. Regulators and the International Conference on Harmonization (ICH) recommend performing periodic benefit-risk evaluation report (PBRER) through the product's lifecycle. In this paper, we propose a general statistical framework for periodic benefit-risk assessment, in which Bayesian meta-analysis and stochastic multi-criteria acceptability analysis (SMAA) will be combined to synthesize the accumulating evidence. The proposed approach allows us to compare the acceptability of different drugs dynamically and effectively and accounts for the uncertainty of clinical measurements and imprecise or incomplete preference information of decision makers. We apply our approaches to two real examples in a post-hoc way for illustration purpose. The proposed method may easily be modified for other pre and post market settings, and thus be an important complement to the current structured benefit-risk assessment (sBRA) framework to improve the transparent and consistency of the decision-making process. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. [Bayesian approach for the cost-effectiveness evaluation of healthcare technologies].

    PubMed

    Berchialla, Paola; Gregori, Dario; Brunello, Franco; Veltri, Andrea; Petrinco, Michele; Pagano, Eva

    2009-01-01

    The development of Bayesian statistical methods for the assessment of the cost-effectiveness of health care technologies is reviewed. Although many studies adopt a frequentist approach, several authors have advocated the use of Bayesian methods in health economics. Emphasis has been placed on the advantages of the Bayesian approach, which include: (i) the ability to make more intuitive and meaningful inferences; (ii) the ability to tackle complex problems, such as allowing for the inclusion of patients who generate no cost, thanks to the availability of powerful computational algorithms; (iii) the importance of a full use of quantitative and structural prior information to produce realistic inferences. Much literature comparing the cost-effectiveness of two treatments is based on the incremental cost-effectiveness ratio. However, new methods are arising with the purpose of decision making. These methods are based on a net benefits approach. In the present context, the cost-effectiveness acceptability curves have been pointed out to be intrinsically Bayesian in their formulation. They plot the probability of a positive net benefit against the threshold cost of a unit increase in efficacy.A case study is presented in order to illustrate the Bayesian statistics in the cost-effectiveness analysis. Emphasis is placed on the cost-effectiveness acceptability curves. Advantages and disadvantages of the method described in this paper have been compared to frequentist methods and discussed.

  12. Do Bayesian adaptive trials offer advantages for comparative effectiveness research? Protocol for the RE-ADAPT study

    PubMed Central

    Luce, Bryan R; Broglio, Kristine R; Ishak, K Jack; Mullins, C Daniel; Vanness, David J; Fleurence, Rachael; Saunders, Elijah; Davis, Barry R

    2013-01-01

    Background Randomized clinical trials, particularly for comparative effectiveness research (CER), are frequently criticized for being overly restrictive or untimely for health-care decision making. Purpose Our prospectively designed REsearch in ADAptive methods for Pragmatic Trials (RE-ADAPT) study is a ‘proof of concept’ to stimulate investment in Bayesian adaptive designs for future CER trials. Methods We will assess whether Bayesian adaptive designs offer potential efficiencies in CER by simulating a re-execution of the Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) study using actual data from ALLHAT. Results We prospectively define seven alternate designs consisting of various combinations of arm dropping, adaptive randomization, and early stopping and describe how these designs will be compared to the original ALLHAT design. We identify the one particular design that would have been executed, which incorporates early stopping and information-based adaptive randomization. Limitations While the simulation realistically emulates patient enrollment, interim analyses, and adaptive changes to design, it cannot incorporate key features like the involvement of data monitoring committee in making decisions about adaptive changes. Conclusion This article describes our analytic approach for RE-ADAPT. The next stage of the project is to conduct the re-execution analyses using the seven prespecified designs and the original ALLHAT data. PMID:23983160

  13. Fuzzy Naive Bayesian model for medical diagnostic decision support.

    PubMed

    Wagholikar, Kavishwar B; Vijayraghavan, Sundararajan; Deshpande, Ashok W

    2009-01-01

    This work relates to the development of computational algorithms to provide decision support to physicians. The authors propose a Fuzzy Naive Bayesian (FNB) model for medical diagnosis, which extends the Fuzzy Bayesian approach proposed by Okuda. A physician's interview based method is described to define a orthogonal fuzzy symptom information system, required to apply the model. For the purpose of elaboration and elicitation of characteristics, the algorithm is applied to a simple simulated dataset, and compared with conventional Naive Bayes (NB) approach. As a preliminary evaluation of FNB in real world scenario, the comparison is repeated on a real fuzzy dataset of 81 patients diagnosed with infectious diseases. The case study on simulated dataset elucidates that FNB can be optimal over NB for diagnosing patients with imprecise-fuzzy information, on account of the following characteristics - 1) it can model the information that, values of some attributes are semantically closer than values of other attributes, and 2) it offers a mechanism to temper exaggerations in patient information. Although the algorithm requires precise training data, its utility for fuzzy training data is argued for. This is supported by the case study on infectious disease dataset, which indicates optimality of FNB over NB for the infectious disease domain. Further case studies on large datasets are required to establish utility of FNB.

  14. Research on probabilistic information processing

    NASA Technical Reports Server (NTRS)

    Edwards, W.

    1973-01-01

    The work accomplished on probabilistic information processing (PIP) is reported. The research proposals and decision analysis are discussed along with the results of research on MSC setting, multiattribute utilities, and Bayesian research. Abstracts of reports concerning the PIP research are included.

  15. Uncertain deduction and conditional reasoning.

    PubMed

    Evans, Jonathan St B T; Thompson, Valerie A; Over, David E

    2015-01-01

    There has been a paradigm shift in the psychology of deductive reasoning. Many researchers no longer think it is appropriate to ask people to assume premises and decide what necessarily follows, with the results evaluated by binary extensional logic. Most every day and scientific inference is made from more or less confidently held beliefs and not assumptions, and the relevant normative standard is Bayesian probability theory. We argue that the study of "uncertain deduction" should directly ask people to assign probabilities to both premises and conclusions, and report an experiment using this method. We assess this reasoning by two Bayesian metrics: probabilistic validity and coherence according to probability theory. On both measures, participants perform above chance in conditional reasoning, but they do much better when statements are grouped as inferences, rather than evaluated in separate tasks.

  16. Classification of Active Microwave and Passive Optical Data Based on Bayesian Theory and Mrf

    NASA Astrophysics Data System (ADS)

    Yu, F.; Li, H. T.; Han, Y. S.; Gu, H. Y.

    2012-08-01

    A classifier based on Bayesian theory and Markov random field (MRF) is presented to classify the active microwave and passive optical remote sensing data, which have demonstrated their respective advantages in inversion of surface soil moisture content. In the method, the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. And the model is validated for the necessities of integration of TM and ASAR, it shows that, the total precision of classification in this paper is 89.4%. Comparing with the classification with single TM, the accuracy increase 11.5%, illustrating that synthesis of active and passive optical remote sensing data is efficient and potential in classification.

  17. Understanding Short-Term Nonmigrating Tidal Variability in the Ionospheric Dynamo Region from SABER Using Information Theory and Bayesian Statistics

    NASA Astrophysics Data System (ADS)

    Kumari, K.; Oberheide, J.

    2017-12-01

    Nonmigrating tidal diagnostics of SABER temperature observations in the ionospheric dynamo region reveal a large amount of variability on time-scales of a few days to weeks. In this paper, we discuss the physical reasons for the observed short-term tidal variability using a novel approach based on Information theory and Bayesian statistics. We diagnose short-term tidal variability as a function of season, QBO, ENSO, and solar cycle and other drivers using time dependent probability density functions, Shannon entropy and Kullback-Leibler divergence. The statistical significance of the approach and its predictive capability is exemplified using SABER tidal diagnostics with emphasis on the responses to the QBO and solar cycle. Implications for F-region plasma density will be discussed.

  18. REMOTE LAND MINE(FIELD) DETECTION. An Overview of Techniques (DETECTIE VAN LANDMIJNEN EN MIJNENVELDEN OP AFSTAND. Een Overzicht van de technieken),

    DTIC Science & Technology

    1994-09-01

    titel DETECTIE VAN LANDMIJNEN EN MIJNENVELDEN OP AFSTAND, een overzicht van de technieken auteur (s) Drs. J.S. Groot, Ir. Y.H.L. Janssen datum september...functions based on set theory . The fundamental theory is developed in the sixties. This theory was applicable to binary images (black-and-white images...held at TNO-FEL. Various subjects related to fusion techniques: Dempster Shafer theory , Bayesian inference, Kalman filtering, fuzzy logic. [A15], [B4

  19. Multisensor fusion with non-optimal decision rules: the challenges of open world sensing

    NASA Astrophysics Data System (ADS)

    Minor, Christian; Johnson, Kevin

    2014-05-01

    In this work, simple, generic models of chemical sensing are used to simulate sensor array data and to illustrate the impact on overall system performance that specific design choices impart. The ability of multisensor systems to perform multianalyte detection (i.e., distinguish multiple targets) is explored by examining the distinction between fundamental design-related limitations stemming from mismatching of mixture composition to fused sensor measurement spaces, and limitations that arise from measurement uncertainty. Insight on the limits and potential of sensor fusion to robustly address detection tasks in realistic field conditions can be gained through an examination of a) the underlying geometry of both the composition space of sources one hopes to elucidate and the measurement space a fused sensor system is capable of generating, and b) the informational impact of uncertainty on both of these spaces. For instance, what is the potential impact on sensor fusion in an open world scenario where unknown interferants may contaminate target signals? Under complex and dynamic backgrounds, decision rules may implicitly become non-optimal and adding sensors may increase the amount of conflicting information observed. This suggests that the manner in which a decision rule handles sensor conflict can be critical in leveraging sensor fusion for effective open world sensing, and becomes exponentially more important as more sensors are added. Results and design considerations for handling conflicting evidence in Bayes and Dempster-Shafer fusion frameworks are presented. Bayesian decision theory is used to provide an upper limit on detector performance of simulated sensor systems.

  20. Attention in the predictive mind.

    PubMed

    Ransom, Madeleine; Fazelpour, Sina; Mole, Christopher

    2017-01-01

    It has recently become popular to suggest that cognition can be explained as a process of Bayesian prediction error minimization. Some advocates of this view propose that attention should be understood as the optimization of expected precisions in the prediction-error signal (Clark, 2013, 2016; Feldman & Friston, 2010; Hohwy, 2012, 2013). This proposal successfully accounts for several attention-related phenomena. We claim that it cannot account for all of them, since there are certain forms of voluntary attention that it cannot accommodate. We therefore suggest that, although the theory of Bayesian prediction error minimization introduces some powerful tools for the explanation of mental phenomena, its advocates have been wrong to claim that Bayesian prediction error minimization is 'all the brain ever does'. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A Bayesian perspective on magnitude estimation.

    PubMed

    Petzschner, Frederike H; Glasauer, Stefan; Stephan, Klaas E

    2015-05-01

    Our representation of the physical world requires judgments of magnitudes, such as loudness, distance, or time. Interestingly, magnitude estimates are often not veridical but subject to characteristic biases. These biases are strikingly similar across different sensory modalities, suggesting common processing mechanisms that are shared by different sensory systems. However, the search for universal neurobiological principles of magnitude judgments requires guidance by formal theories. Here, we discuss a unifying Bayesian framework for understanding biases in magnitude estimation. This Bayesian perspective enables a re-interpretation of a range of established psychophysical findings, reconciles seemingly incompatible classical views on magnitude estimation, and can guide future investigations of magnitude estimation and its neurobiological mechanisms in health and in psychiatric diseases, such as schizophrenia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Data-driven Modelling for decision making under uncertainty

    NASA Astrophysics Data System (ADS)

    Angria S, Layla; Dwi Sari, Yunita; Zarlis, Muhammad; Tulus

    2018-01-01

    The rise of the issues with the uncertainty of decision making has become a very warm conversation in operation research. Many models have been presented, one of which is with data-driven modelling (DDM). The purpose of this paper is to extract and recognize patterns in data, and find the best model in decision-making problem under uncertainty by using data-driven modeling approach with linear programming, linear and nonlinear differential equation, bayesian approach. Model criteria tested to determine the smallest error, and it will be the best model that can be used.

  3. Space Shuttle RTOS Bayesian Network

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry; Beling, Peter A.

    2001-01-01

    With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores. Using a prioritization of measures from the decision-maker, trade-offs between the scores are used to rank order the available set of RTOS candidates.

  4. The choice of sample size: a mixed Bayesian / frequentist approach.

    PubMed

    Pezeshk, Hamid; Nematollahi, Nader; Maroufy, Vahed; Gittins, John

    2009-04-01

    Sample size computations are largely based on frequentist or classical methods. In the Bayesian approach the prior information on the unknown parameters is taken into account. In this work we consider a fully Bayesian approach to the sample size determination problem which was introduced by Grundy et al. and developed by Lindley. This approach treats the problem as a decision problem and employs a utility function to find the optimal sample size of a trial. Furthermore, we assume that a regulatory authority, which is deciding on whether or not to grant a licence to a new treatment, uses a frequentist approach. We then find the optimal sample size for the trial by maximising the expected net benefit, which is the expected benefit of subsequent use of the new treatment minus the cost of the trial.

  5. Protein construct storage: Bayesian variable selection and prediction with mixtures.

    PubMed

    Clyde, M A; Parmigiani, G

    1998-07-01

    Determining optimal conditions for protein storage while maintaining a high level of protein activity is an important question in pharmaceutical research. A designed experiment based on a space-filling design was conducted to understand the effects of factors affecting protein storage and to establish optimal storage conditions. Different model-selection strategies to identify important factors may lead to very different answers about optimal conditions. Uncertainty about which factors are important, or model uncertainty, can be a critical issue in decision-making. We use Bayesian variable selection methods for linear models to identify important variables in the protein storage data, while accounting for model uncertainty. We also use the Bayesian framework to build predictions based on a large family of models, rather than an individual model, and to evaluate the probability that certain candidate storage conditions are optimal.

  6. Bayesian network modelling of upper gastrointestinal bleeding

    NASA Astrophysics Data System (ADS)

    Aisha, Nazziwa; Shohaimi, Shamarina; Adam, Mohd Bakri

    2013-09-01

    Bayesian networks are graphical probabilistic models that represent causal and other relationships between domain variables. In the context of medical decision making, these models have been explored to help in medical diagnosis and prognosis. In this paper, we discuss the Bayesian network formalism in building medical support systems and we learn a tree augmented naive Bayes Network (TAN) from gastrointestinal bleeding data. The accuracy of the TAN in classifying the source of gastrointestinal bleeding into upper or lower source is obtained. The TAN achieves a high classification accuracy of 86% and an area under curve of 92%. A sensitivity analysis of the model shows relatively high levels of entropy reduction for color of the stool, history of gastrointestinal bleeding, consistency and the ratio of blood urea nitrogen to creatinine. The TAN facilitates the identification of the source of GIB and requires further validation.

  7. Least Squares Distance Method of Cognitive Validation and Analysis for Binary Items Using Their Item Response Theory Parameters

    ERIC Educational Resources Information Center

    Dimitrov, Dimiter M.

    2007-01-01

    The validation of cognitive attributes required for correct answers on binary test items or tasks has been addressed in previous research through the integration of cognitive psychology and psychometric models using parametric or nonparametric item response theory, latent class modeling, and Bayesian modeling. All previous models, each with their…

  8. Designing Cognitively Diagnostic Assessment for Algebraic Content Knowledge and Thinking Skills

    ERIC Educational Resources Information Center

    Zhang, Zhidong

    2018-01-01

    This study explored a diagnostic assessment method that emphasized the cognitive process of algebra learning. The study utilized a design and a theory-driven model to examine the content knowledge. Using the theory driven model, the thinking skills of algebra learning was also examined. A Bayesian network model was applied to represent the theory…

  9. A plea for "variational neuroethology". Comment on "Answering Schrödinger's question: A free-energy formulation" by M.J. Desormeau Ramstead et al.

    NASA Astrophysics Data System (ADS)

    Daunizeau, Jean

    2018-03-01

    What is life? According to Erwin Schrödinger [13], the living cell departs from other physical systems in that it - apparently - resists the second law of thermodynamics by restricting the dynamical repertoire (minimizing the entropy) of its physiological states. This is a physical rephrasing of Claude Bernard's biological notion of homeostasis, namely: the capacity of living systems to self-organize in order to maintain the stability of their internal milieu despite uninterrupted exchanges with an ever-altering external environment [2]. The important point here is that physical systems can neither identify nor prevent a state of high entropy. The Free Energy Principle or FEP was originally proposed as a mathematical description of how the brain actually solves this issue [4]. In line with the Bayesian brain hypothesis, the FEP views the brain as a hierarchical statistical learning machine, endowed with the imperative of minimizing Free Energy, i.e. prediction error. Action prescription under the FEP, however, does not follow standard Bayesian decision theory. Rather, action is assumed to further minimize Free Energy, which makes the active brain a self-fulfilling prophecy machine [6]. This is adaptive, under the assumption that evolution has equipped the brain with innate priors centered on homeostatic set points. In turn, avoiding (surprising) violations of such prior predictions implements homeostatic regulation [10], which becomes increasingly anticipatory as learning unfolds over the course of ontological development [5].

  10. Uncertainty plus prior equals rational bias: an intuitive Bayesian probability weighting function.

    PubMed

    Fennell, John; Baddeley, Roland

    2012-10-01

    Empirical research has shown that when making choices based on probabilistic options, people behave as if they overestimate small probabilities, underestimate large probabilities, and treat positive and negative outcomes differently. These distortions have been modeled using a nonlinear probability weighting function, which is found in several nonexpected utility theories, including rank-dependent models and prospect theory; here, we propose a Bayesian approach to the probability weighting function and, with it, a psychological rationale. In the real world, uncertainty is ubiquitous and, accordingly, the optimal strategy is to combine probability statements with prior information using Bayes' rule. First, we show that any reasonable prior on probabilities leads to 2 of the observed effects; overweighting of low probabilities and underweighting of high probabilities. We then investigate 2 plausible kinds of priors: informative priors based on previous experience and uninformative priors of ignorance. Individually, these priors potentially lead to large problems of bias and inefficiency, respectively; however, when combined using Bayesian model comparison methods, both forms of prior can be applied adaptively, gaining the efficiency of empirical priors and the robustness of ignorance priors. We illustrate this for the simple case of generic good and bad options, using Internet blogs to estimate the relevant priors of inference. Given this combined ignorant/informative prior, the Bayesian probability weighting function is not only robust and efficient but also matches all of the major characteristics of the distortions found in empirical research. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  11. Bayesian stock assessment of Pacific herring in Prince William Sound, Alaska.

    PubMed

    Muradian, Melissa L; Branch, Trevor A; Moffitt, Steven D; Hulson, Peter-John F

    2017-01-01

    The Pacific herring (Clupea pallasii) population in Prince William Sound, Alaska crashed in 1993 and has yet to recover, affecting food web dynamics in the Sound and impacting Alaskan communities. To help researchers design and implement the most effective monitoring, management, and recovery programs, a Bayesian assessment of Prince William Sound herring was developed by reformulating the current model used by the Alaska Department of Fish and Game. The Bayesian model estimated pre-fishery spawning biomass of herring age-3 and older in 2013 to be a median of 19,410 mt (95% credibility interval 12,150-31,740 mt), with a 54% probability that biomass in 2013 was below the management limit used to regulate fisheries in Prince William Sound. The main advantages of the Bayesian model are that it can more objectively weight different datasets and provide estimates of uncertainty for model parameters and outputs, unlike the weighted sum-of-squares used in the original model. In addition, the revised model could be used to manage herring stocks with a decision rule that considers both stock status and the uncertainty in stock status.

  12. Inverse Bayesian inference as a key of consciousness featuring a macroscopic quantum logical structure.

    PubMed

    Gunji, Yukio-Pegio; Shinohara, Shuji; Haruna, Taichi; Basios, Vasileios

    2017-02-01

    To overcome the dualism between mind and matter and to implement consciousness in science, a physical entity has to be embedded with a measurement process. Although quantum mechanics have been regarded as a candidate for implementing consciousness, nature at its macroscopic level is inconsistent with quantum mechanics. We propose a measurement-oriented inference system comprising Bayesian and inverse Bayesian inferences. While Bayesian inference contracts probability space, the newly defined inverse one relaxes the space. These two inferences allow an agent to make a decision corresponding to an immediate change in their environment. They generate a particular pattern of joint probability for data and hypotheses, comprising multiple diagonal and noisy matrices. This is expressed as a nondistributive orthomodular lattice equivalent to quantum logic. We also show that an orthomodular lattice can reveal information generated by inverse syllogism as well as the solutions to the frame and symbol-grounding problems. Our model is the first to connect macroscopic cognitive processes with the mathematical structure of quantum mechanics with no additional assumptions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Bayesian stock assessment of Pacific herring in Prince William Sound, Alaska

    PubMed Central

    Moffitt, Steven D.; Hulson, Peter-John F.

    2017-01-01

    The Pacific herring (Clupea pallasii) population in Prince William Sound, Alaska crashed in 1993 and has yet to recover, affecting food web dynamics in the Sound and impacting Alaskan communities. To help researchers design and implement the most effective monitoring, management, and recovery programs, a Bayesian assessment of Prince William Sound herring was developed by reformulating the current model used by the Alaska Department of Fish and Game. The Bayesian model estimated pre-fishery spawning biomass of herring age-3 and older in 2013 to be a median of 19,410 mt (95% credibility interval 12,150–31,740 mt), with a 54% probability that biomass in 2013 was below the management limit used to regulate fisheries in Prince William Sound. The main advantages of the Bayesian model are that it can more objectively weight different datasets and provide estimates of uncertainty for model parameters and outputs, unlike the weighted sum-of-squares used in the original model. In addition, the revised model could be used to manage herring stocks with a decision rule that considers both stock status and the uncertainty in stock status. PMID:28222151

  14. Bayesian evaluation of budgets for endemic disease control: An example using management changes to reduce milk somatic cell count early in the first lactation of Irish dairy cows.

    PubMed

    Archer, S C; Mc Coy, F; Wapenaar, W; Green, M J

    2014-01-01

    The aim of this research was to determine budgets for specific management interventions to control heifer mastitis in Irish dairy herds as an example of evidence synthesis and 1-step Bayesian micro-simulation in a veterinary context. Budgets were determined for different decision makers based on their willingness to pay. Reducing the prevalence of heifers with a high milk somatic cell count (SCC) early in the first lactation could be achieved through herd level management interventions for pre- and peri-partum heifers, however the cost effectiveness of these interventions is unknown. A synthesis of multiple sources of evidence, accounting for variability and uncertainty in the available data is invaluable to inform decision makers around likely economic outcomes of investing in disease control measures. One analytical approach to this is Bayesian micro-simulation, where the trajectory of different individuals undergoing specific interventions is simulated. The classic micro-simulation framework was extended to encompass synthesis of evidence from 2 separate statistical models and previous research, with the outcome for an individual cow or herd assessed in terms of changes in lifetime milk yield, disposal risk, and likely financial returns conditional on the interventions being simultaneously applied. The 3 interventions tested were storage of bedding inside, decreasing transition yard stocking density, and spreading of bedding evenly in the calving area. Budgets for the interventions were determined based on the minimum expected return on investment, and the probability of the desired outcome. Budgets for interventions to control heifer mastitis were highly dependent on the decision maker's willingness to pay, and hence minimum expected return on investment. Understanding the requirements of decision makers and their rational spending limits would be useful for the development of specific interventions for particular farms to control heifer mastitis, and other endemic diseases. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Nuclear charge radii: density functional theory meets Bayesian neural networks

    NASA Astrophysics Data System (ADS)

    Utama, R.; Chen, Wei-Chia; Piekarewicz, J.

    2016-11-01

    The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. The aim of this study is to explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain.

  16. Bayesian structural equation modeling: a more flexible representation of substantive theory.

    PubMed

    Muthén, Bengt; Asparouhov, Tihomir

    2012-09-01

    This article proposes a new approach to factor analysis and structural equation modeling using Bayesian analysis. The new approach replaces parameter specifications of exact zeros with approximate zeros based on informative, small-variance priors. It is argued that this produces an analysis that better reflects substantive theories. The proposed Bayesian approach is particularly beneficial in applications where parameters are added to a conventional model such that a nonidentified model is obtained if maximum-likelihood estimation is applied. This approach is useful for measurement aspects of latent variable modeling, such as with confirmatory factor analysis, and the measurement part of structural equation modeling. Two application areas are studied, cross-loadings and residual correlations in confirmatory factor analysis. An example using a full structural equation model is also presented, showing an efficient way to find model misspecification. The approach encompasses 3 elements: model testing using posterior predictive checking, model estimation, and model modification. Monte Carlo simulations and real data are analyzed using Mplus. The real-data analyses use data from Holzinger and Swineford's (1939) classic mental abilities study, Big Five personality factor data from a British survey, and science achievement data from the National Educational Longitudinal Study of 1988.

  17. BOP2: Bayesian optimal design for phase II clinical trials with simple and complex endpoints.

    PubMed

    Zhou, Heng; Lee, J Jack; Yuan, Ying

    2017-09-20

    We propose a flexible Bayesian optimal phase II (BOP2) design that is capable of handling simple (e.g., binary) and complicated (e.g., ordinal, nested, and co-primary) endpoints under a unified framework. We use a Dirichlet-multinomial model to accommodate different types of endpoints. At each interim, the go/no-go decision is made by evaluating a set of posterior probabilities of the events of interest, which is optimized to maximize power or minimize the number of patients under the null hypothesis. Unlike other existing Bayesian designs, the BOP2 design explicitly controls the type I error rate, thereby bridging the gap between Bayesian designs and frequentist designs. In addition, the stopping boundary of the BOP2 design can be enumerated prior to the onset of the trial. These features make the BOP2 design accessible to a wide range of users and regulatory agencies and particularly easy to implement in practice. Simulation studies show that the BOP2 design has favorable operating characteristics with higher power and lower risk of incorrectly terminating the trial than some existing Bayesian phase II designs. The software to implement the BOP2 design is freely available at www.trialdesign.org. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Self-evaluation of decision-making: A general Bayesian framework for metacognitive computation.

    PubMed

    Fleming, Stephen M; Daw, Nathaniel D

    2017-01-01

    People are often aware of their mistakes, and report levels of confidence in their choices that correlate with objective performance. These metacognitive assessments of decision quality are important for the guidance of behavior, particularly when external feedback is absent or sporadic. However, a computational framework that accounts for both confidence and error detection is lacking. In addition, accounts of dissociations between performance and metacognition have often relied on ad hoc assumptions, precluding a unified account of intact and impaired self-evaluation. Here we present a general Bayesian framework in which self-evaluation is cast as a "second-order" inference on a coupled but distinct decision system, computationally equivalent to inferring the performance of another actor. Second-order computation may ensue whenever there is a separation between internal states supporting decisions and confidence estimates over space and/or time. We contrast second-order computation against simpler first-order models in which the same internal state supports both decisions and confidence estimates. Through simulations we show that second-order computation provides a unified account of different types of self-evaluation often considered in separate literatures, such as confidence and error detection, and generates novel predictions about the contribution of one's own actions to metacognitive judgments. In addition, the model provides insight into why subjects' metacognition may sometimes be better or worse than task performance. We suggest that second-order computation may underpin self-evaluative judgments across a range of domains. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Self-Evaluation of Decision-Making: A General Bayesian Framework for Metacognitive Computation

    PubMed Central

    2017-01-01

    People are often aware of their mistakes, and report levels of confidence in their choices that correlate with objective performance. These metacognitive assessments of decision quality are important for the guidance of behavior, particularly when external feedback is absent or sporadic. However, a computational framework that accounts for both confidence and error detection is lacking. In addition, accounts of dissociations between performance and metacognition have often relied on ad hoc assumptions, precluding a unified account of intact and impaired self-evaluation. Here we present a general Bayesian framework in which self-evaluation is cast as a “second-order” inference on a coupled but distinct decision system, computationally equivalent to inferring the performance of another actor. Second-order computation may ensue whenever there is a separation between internal states supporting decisions and confidence estimates over space and/or time. We contrast second-order computation against simpler first-order models in which the same internal state supports both decisions and confidence estimates. Through simulations we show that second-order computation provides a unified account of different types of self-evaluation often considered in separate literatures, such as confidence and error detection, and generates novel predictions about the contribution of one’s own actions to metacognitive judgments. In addition, the model provides insight into why subjects’ metacognition may sometimes be better or worse than task performance. We suggest that second-order computation may underpin self-evaluative judgments across a range of domains. PMID:28004960

  20. Bridging groundwater models and decision support with a Bayesian network

    USGS Publications Warehouse

    Fienen, Michael N.; Masterson, John P.; Plant, Nathaniel G.; Gutierrez, Benjamin T.; Thieler, E. Robert

    2013-01-01

    Resource managers need to make decisions to plan for future environmental conditions, particularly sea level rise, in the face of substantial uncertainty. Many interacting processes factor in to the decisions they face. Advances in process models and the quantification of uncertainty have made models a valuable tool for this purpose. Long-simulation runtimes and, often, numerical instability make linking process models impractical in many cases. A method for emulating the important connections between model input and forecasts, while propagating uncertainty, has the potential to provide a bridge between complicated numerical process models and the efficiency and stability needed for decision making. We explore this using a Bayesian network (BN) to emulate a groundwater flow model. We expand on previous approaches to validating a BN by calculating forecasting skill using cross validation of a groundwater model of Assateague Island in Virginia and Maryland, USA. This BN emulation was shown to capture the important groundwater-flow characteristics and uncertainty of the groundwater system because of its connection to island morphology and sea level. Forecast power metrics associated with the validation of multiple alternative BN designs guided the selection of an optimal level of BN complexity. Assateague island is an ideal test case for exploring a forecasting tool based on current conditions because the unique hydrogeomorphological variability of the island includes a range of settings indicative of past, current, and future conditions. The resulting BN is a valuable tool for exploring the response of groundwater conditions to sea level rise in decision support.

  1. Validation workflow for a clinical Bayesian network model in multidisciplinary decision making in head and neck oncology treatment.

    PubMed

    Cypko, Mario A; Stoehr, Matthaeus; Kozniewski, Marcin; Druzdzel, Marek J; Dietz, Andreas; Berliner, Leonard; Lemke, Heinz U

    2017-11-01

    Oncological treatment is being increasingly complex, and therefore, decision making in multidisciplinary teams is becoming the key activity in the clinical pathways. The increased complexity is related to the number and variability of possible treatment decisions that may be relevant to a patient. In this paper, we describe validation of a multidisciplinary cancer treatment decision in the clinical domain of head and neck oncology. Probabilistic graphical models and corresponding inference algorithms, in the form of Bayesian networks, can support complex decision-making processes by providing a mathematically reproducible and transparent advice. The quality of BN-based advice depends on the quality of the model. Therefore, it is vital to validate the model before it is applied in practice. For an example BN subnetwork of laryngeal cancer with 303 variables, we evaluated 66 patient records. To validate the model on this dataset, a validation workflow was applied in combination with quantitative and qualitative analyses. In the subsequent analyses, we observed four sources of imprecise predictions: incorrect data, incomplete patient data, outvoting relevant observations, and incorrect model. Finally, the four problems were solved by modifying the data and the model. The presented validation effort is related to the model complexity. For simpler models, the validation workflow is the same, although it may require fewer validation methods. The validation success is related to the model's well-founded knowledge base. The remaining laryngeal cancer model may disclose additional sources of imprecise predictions.

  2. Lateralization is predicted by reduced coupling from the left to right prefrontal cortex during semantic decisions on written words.

    PubMed

    Seghier, Mohamed L; Josse, Goulven; Leff, Alexander P; Price, Cathy J

    2011-07-01

    Over 90% of people activate the left hemisphere more than the right hemisphere for language processing. Here, we show that the degree to which language is left lateralized is inversely related to the degree to which left frontal regions drive activity in homotopic right frontal regions. Lateralization was assessed in 60 subjects using functional magnetic resonance imaging (fMRI) activation for semantic decisions on verbal (written words) and nonverbal (pictures of objects) stimuli. Regional interactions between left and right ventral and dorsal frontal regions were assessed using dynamic causal modeling (DCM), random-effects Bayesian model selection at the family level, and Bayesian model averaging at the connection level. We found that 1) semantic decisions on words and pictures modulated interhemispheric coupling between the left and right dorsal frontal regions, 2) activation was more left lateralized for words than pictures, and 3) for words only, left lateralization was greater when the coupling from the left to right dorsal frontal cortex was reduced. These results have theoretical implications for understanding how left and right hemispheres communicate with one another during the processing of lateralized functions.

  3. Hypothesis Testing as an Act of Rationality

    NASA Astrophysics Data System (ADS)

    Nearing, Grey

    2017-04-01

    Statistical hypothesis testing is ad hoc in two ways. First, setting probabilistic rejection criteria is, as Neyman (1957) put it, an act of will rather than an act of rationality. Second, physical theories like conservation laws do not inherently admit probabilistic predictions, and so we must use what are called epistemic bridge principles to connect model predictions with the actual methods of hypothesis testing. In practice, these bridge principles are likelihood functions, error functions, or performance metrics. I propose that the reason we are faced with these problems is because we have historically failed to account for a fundamental component of basic logic - namely the portion of logic that explains how epistemic states evolve in the presence of empirical data. This component of Cox' (1946) calculitic logic is called information theory (Knuth, 2005), and adding information theory our hypothetico-deductive account of science yields straightforward solutions to both of the above problems. This also yields a straightforward method for dealing with Popper's (1963) problem of verisimilitude by facilitating a quantitative approach to measuring process isomorphism. In practice, this involves data assimilation. Finally, information theory allows us to reliably bound measures of epistemic uncertainty, thereby avoiding the problem of Bayesian incoherency under misspecified priors (Grünwald, 2006). I therefore propose solutions to four of the fundamental problems inherent in both hypothetico-deductive and/or Bayesian hypothesis testing. - Neyman (1957) Inductive Behavior as a Basic Concept of Philosophy of Science. - Cox (1946) Probability, Frequency and Reasonable Expectation. - Knuth (2005) Lattice Duality: The Origin of Probability and Entropy. - Grünwald (2006). Bayesian Inconsistency under Misspecification. - Popper (1963) Conjectures and Refutations: The Growth of Scientific Knowledge.

  4. Developing Bayesian adaptive methods for estimating sensitivity thresholds (d′) in Yes-No and forced-choice tasks

    PubMed Central

    Lesmes, Luis A.; Lu, Zhong-Lin; Baek, Jongsoo; Tran, Nina; Dosher, Barbara A.; Albright, Thomas D.

    2015-01-01

    Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive methods that estimate the sensitivity threshold—the signal intensity corresponding to a pre-defined sensitivity level (d′ = 1)—in Yes-No (YN) and Forced-Choice (FC) detection tasks. Rather than focus stimulus sampling to estimate a single level of %Yes or %Correct, the current methods sample psychometric functions more broadly, to concurrently estimate sensitivity and decision factors, and thereby estimate thresholds that are independent of decision confounds. Developed for four tasks—(1) simple YN detection, (2) cued YN detection, which cues the observer's response state before each trial, (3) rated YN detection, which incorporates a Not Sure response, and (4) FC detection—the qYN and qFC methods yield sensitivity thresholds that are independent of the task's decision structure (YN or FC) and/or the observer's subjective response state. Results from simulation and psychophysics suggest that 25 trials (and sometimes less) are sufficient to estimate YN thresholds with reasonable precision (s.d. = 0.10–0.15 decimal log units), but more trials are needed for FC thresholds. When the same subjects were tested across tasks of simple, cued, rated, and FC detection, adaptive threshold estimates exhibited excellent agreement with the method of constant stimuli (MCS), and with each other. These YN adaptive methods deliver criterion-free thresholds that have previously been exclusive to FC methods. PMID:26300798

  5. Uncertain deduction and conditional reasoning

    PubMed Central

    Evans, Jonathan St. B. T.; Thompson, Valerie A.; Over, David E.

    2015-01-01

    There has been a paradigm shift in the psychology of deductive reasoning. Many researchers no longer think it is appropriate to ask people to assume premises and decide what necessarily follows, with the results evaluated by binary extensional logic. Most every day and scientific inference is made from more or less confidently held beliefs and not assumptions, and the relevant normative standard is Bayesian probability theory. We argue that the study of “uncertain deduction” should directly ask people to assign probabilities to both premises and conclusions, and report an experiment using this method. We assess this reasoning by two Bayesian metrics: probabilistic validity and coherence according to probability theory. On both measures, participants perform above chance in conditional reasoning, but they do much better when statements are grouped as inferences, rather than evaluated in separate tasks. PMID:25904888

  6. Sizing aerosolized fractal nanoparticle aggregates through Bayesian analysis of wide-angle light scattering (WALS) data

    NASA Astrophysics Data System (ADS)

    Huber, Franz J. T.; Will, Stefan; Daun, Kyle J.

    2016-11-01

    Inferring the size distribution of aerosolized fractal aggregates from the angular distribution of elastically scattered light is a mathematically ill-posed problem. This paper presents a procedure for analyzing Wide-Angle Light Scattering (WALS) data using Bayesian inference. The outcome is probability densities for the recovered size distribution and aggregate morphology parameters. This technique is applied to both synthetic data and experimental data collected on soot-laden aerosols, using a measurement equation derived from Rayleigh-Debye-Gans fractal aggregate (RDG-FA) theory. In the case of experimental data, the recovered aggregate size distribution parameters are generally consistent with TEM-derived values, but the accuracy is impaired by the well-known limited accuracy of RDG-FA theory. Finally, we show how this bias could potentially be avoided using the approximation error technique.

  7. Uncertainty quantification for nuclear density functional theory and information content of new measurements

    DOE PAGES

    McDonnell, J. D.; Schunck, N.; Higdon, D.; ...

    2015-03-24

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squaresmore » optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. In addition, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.« less

  8. Uncertainty quantification for nuclear density functional theory and information content of new measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonnell, J. D.; Schunck, N.; Higdon, D.

    2015-03-24

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squaresmore » optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. As a result, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.« less

  9. Bayesian Image Segmentations by Potts Prior and Loopy Belief Propagation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuyuki; Kataoka, Shun; Yasuda, Muneki; Waizumi, Yuji; Hsu, Chiou-Ting

    2014-12-01

    This paper presents a Bayesian image segmentation model based on Potts prior and loopy belief propagation. The proposed Bayesian model involves several terms, including the pairwise interactions of Potts models, and the average vectors and covariant matrices of Gauss distributions in color image modeling. These terms are often referred to as hyperparameters in statistical machine learning theory. In order to determine these hyperparameters, we propose a new scheme for hyperparameter estimation based on conditional maximization of entropy in the Potts prior. The algorithm is given based on loopy belief propagation. In addition, we compare our conditional maximum entropy framework with the conventional maximum likelihood framework, and also clarify how the first order phase transitions in loopy belief propagations for Potts models influence our hyperparameter estimation procedures.

  10. Inferring Markov chains: Bayesian estimation, model comparison, entropy rate, and out-of-class modeling.

    PubMed

    Strelioff, Christopher C; Crutchfield, James P; Hübler, Alfred W

    2007-07-01

    Markov chains are a natural and well understood tool for describing one-dimensional patterns in time or space. We show how to infer kth order Markov chains, for arbitrary k , from finite data by applying Bayesian methods to both parameter estimation and model-order selection. Extending existing results for multinomial models of discrete data, we connect inference to statistical mechanics through information-theoretic (type theory) techniques. We establish a direct relationship between Bayesian evidence and the partition function which allows for straightforward calculation of the expectation and variance of the conditional relative entropy and the source entropy rate. Finally, we introduce a method that uses finite data-size scaling with model-order comparison to infer the structure of out-of-class processes.

  11. Fast model updating coupling Bayesian inference and PGD model reduction

    NASA Astrophysics Data System (ADS)

    Rubio, Paul-Baptiste; Louf, François; Chamoin, Ludovic

    2018-04-01

    The paper focuses on a coupled Bayesian-Proper Generalized Decomposition (PGD) approach for the real-time identification and updating of numerical models. The purpose is to use the most general case of Bayesian inference theory in order to address inverse problems and to deal with different sources of uncertainties (measurement and model errors, stochastic parameters). In order to do so with a reasonable CPU cost, the idea is to replace the direct model called for Monte-Carlo sampling by a PGD reduced model, and in some cases directly compute the probability density functions from the obtained analytical formulation. This procedure is first applied to a welding control example with the updating of a deterministic parameter. In the second application, the identification of a stochastic parameter is studied through a glued assembly example.

  12. Characterizing the Nash equilibria of three-player Bayesian quantum games

    NASA Astrophysics Data System (ADS)

    Solmeyer, Neal; Balu, Radhakrishnan

    2017-05-01

    Quantum games with incomplete information can be studied within a Bayesian framework. We analyze games quantized within the EWL framework [Eisert, Wilkens, and Lewenstein, Phys Rev. Lett. 83, 3077 (1999)]. We solve for the Nash equilibria of a variety of two-player quantum games and compare the results to the solutions of the corresponding classical games. We then analyze Bayesian games where there is uncertainty about the player types in two-player conflicting interest games. The solutions to the Bayesian games are found to have a phase diagram-like structure where different equilibria exist in different parameter regions, depending both on the amount of uncertainty and the degree of entanglement. We find that in games where a Pareto-optimal solution is not a Nash equilibrium, it is possible for the quantized game to have an advantage over the classical version. In addition, we analyze the behavior of the solutions as the strategy choices approach an unrestricted operation. We find that some games have a continuum of solutions, bounded by the solutions of a simpler restricted game. A deeper understanding of Bayesian quantum game theory could lead to novel quantum applications in a multi-agent setting.

  13. Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception.

    PubMed

    Kutschireiter, Anna; Surace, Simone Carlo; Sprekeler, Henning; Pfister, Jean-Pascal

    2017-08-18

    The robust estimation of dynamical hidden features, such as the position of prey, based on sensory inputs is one of the hallmarks of perception. This dynamical estimation can be rigorously formulated by nonlinear Bayesian filtering theory. Recent experimental and behavioral studies have shown that animals' performance in many tasks is consistent with such a Bayesian statistical interpretation. However, it is presently unclear how a nonlinear Bayesian filter can be efficiently implemented in a network of neurons that satisfies some minimum constraints of biological plausibility. Here, we propose the Neural Particle Filter (NPF), a sampling-based nonlinear Bayesian filter, which does not rely on importance weights. We show that this filter can be interpreted as the neuronal dynamics of a recurrently connected rate-based neural network receiving feed-forward input from sensory neurons. Further, it captures properties of temporal and multi-sensory integration that are crucial for perception, and it allows for online parameter learning with a maximum likelihood approach. The NPF holds the promise to avoid the 'curse of dimensionality', and we demonstrate numerically its capability to outperform weighted particle filters in higher dimensions and when the number of particles is limited.

  14. Approaches in highly parameterized inversion: bgaPEST, a Bayesian geostatistical approach implementation with PEST: documentation and instructions

    USGS Publications Warehouse

    Fienen, Michael N.; D'Oria, Marco; Doherty, John E.; Hunt, Randall J.

    2013-01-01

    The application bgaPEST is a highly parameterized inversion software package implementing the Bayesian Geostatistical Approach in a framework compatible with the parameter estimation suite PEST. Highly parameterized inversion refers to cases in which parameters are distributed in space or time and are correlated with one another. The Bayesian aspect of bgaPEST is related to Bayesian probability theory in which prior information about parameters is formally revised on the basis of the calibration dataset used for the inversion. Conceptually, this approach formalizes the conditionality of estimated parameters on the specific data and model available. The geostatistical component of the method refers to the way in which prior information about the parameters is used. A geostatistical autocorrelation function is used to enforce structure on the parameters to avoid overfitting and unrealistic results. Bayesian Geostatistical Approach is designed to provide the smoothest solution that is consistent with the data. Optionally, users can specify a level of fit or estimate a balance between fit and model complexity informed by the data. Groundwater and surface-water applications are used as examples in this text, but the possible uses of bgaPEST extend to any distributed parameter applications.

  15. Comparison Analysis of Recognition Algorithms of Forest-Cover Objects on Hyperspectral Air-Borne and Space-Borne Images

    NASA Astrophysics Data System (ADS)

    Kozoderov, V. V.; Kondranin, T. V.; Dmitriev, E. V.

    2017-12-01

    The basic model for the recognition of natural and anthropogenic objects using their spectral and textural features is described in the problem of hyperspectral air-borne and space-borne imagery processing. The model is based on improvements of the Bayesian classifier that is a computational procedure of statistical decision making in machine-learning methods of pattern recognition. The principal component method is implemented to decompose the hyperspectral measurements on the basis of empirical orthogonal functions. Application examples are shown of various modifications of the Bayesian classifier and Support Vector Machine method. Examples are provided of comparing these classifiers and a metrical classifier that operates on finding the minimal Euclidean distance between different points and sets in the multidimensional feature space. A comparison is also carried out with the " K-weighted neighbors" method that is close to the nonparametric Bayesian classifier.

  16. Learning Instance-Specific Predictive Models

    PubMed Central

    Visweswaran, Shyam; Cooper, Gregory F.

    2013-01-01

    This paper introduces a Bayesian algorithm for constructing predictive models from data that are optimized to predict a target variable well for a particular instance. This algorithm learns Markov blanket models, carries out Bayesian model averaging over a set of models to predict a target variable of the instance at hand, and employs an instance-specific heuristic to locate a set of suitable models to average over. We call this method the instance-specific Markov blanket (ISMB) algorithm. The ISMB algorithm was evaluated on 21 UCI data sets using five different performance measures and its performance was compared to that of several commonly used predictive algorithms, including nave Bayes, C4.5 decision tree, logistic regression, neural networks, k-Nearest Neighbor, Lazy Bayesian Rules, and AdaBoost. Over all the data sets, the ISMB algorithm performed better on average on all performance measures against all the comparison algorithms. PMID:25045325

  17. A hierarchical, ontology-driven Bayesian concept for ubiquitous medical environments--a case study for pulmonary diseases.

    PubMed

    Maragoudakis, Manolis; Lymberopoulos, Dimitrios; Fakotakis, Nikos; Spiropoulos, Kostas

    2008-01-01

    The present paper extends work on an existing computer-based Decision Support System (DSS) that aims to provide assistance to physicians as regards to pulmonary diseases. The extension deals with allowing for a hierarchical decomposition of the task, at different levels of domain granularity, using a novel approach, i.e. Hierarchical Bayesian Networks. The proposed framework uses data from various networking appliances such as mobile phones and wireless medical sensors to establish a ubiquitous environment for medical treatment of pulmonary diseases. Domain knowledge is encoded at the upper levels of the hierarchy, thus making the process of generalization easier to accomplish. The experimental results were carried out under the Pulmonary Department, University Regional Hospital Patras, Patras, Greece. They have supported our initial beliefs about the ability of Bayesian networks to provide an effective, yet semantically-oriented, means of prognosis and reasoning under conditions of uncertainty.

  18. Bayesian survival analysis in clinical trials: What methods are used in practice?

    PubMed

    Brard, Caroline; Le Teuff, Gwénaël; Le Deley, Marie-Cécile; Hampson, Lisa V

    2017-02-01

    Background Bayesian statistics are an appealing alternative to the traditional frequentist approach to designing, analysing, and reporting of clinical trials, especially in rare diseases. Time-to-event endpoints are widely used in many medical fields. There are additional complexities to designing Bayesian survival trials which arise from the need to specify a model for the survival distribution. The objective of this article was to critically review the use and reporting of Bayesian methods in survival trials. Methods A systematic review of clinical trials using Bayesian survival analyses was performed through PubMed and Web of Science databases. This was complemented by a full text search of the online repositories of pre-selected journals. Cost-effectiveness, dose-finding studies, meta-analyses, and methodological papers using clinical trials were excluded. Results In total, 28 articles met the inclusion criteria, 25 were original reports of clinical trials and 3 were re-analyses of a clinical trial. Most trials were in oncology (n = 25), were randomised controlled (n = 21) phase III trials (n = 13), and half considered a rare disease (n = 13). Bayesian approaches were used for monitoring in 14 trials and for the final analysis only in 14 trials. In the latter case, Bayesian survival analyses were used for the primary analysis in four cases, for the secondary analysis in seven cases, and for the trial re-analysis in three cases. Overall, 12 articles reported fitting Bayesian regression models (semi-parametric, n = 3; parametric, n = 9). Prior distributions were often incompletely reported: 20 articles did not define the prior distribution used for the parameter of interest. Over half of the trials used only non-informative priors for monitoring and the final analysis (n = 12) when it was specified. Indeed, no articles fitting Bayesian regression models placed informative priors on the parameter of interest. The prior for the treatment effect was based on historical data in only four trials. Decision rules were pre-defined in eight cases when trials used Bayesian monitoring, and in only one case when trials adopted a Bayesian approach to the final analysis. Conclusion Few trials implemented a Bayesian survival analysis and few incorporated external data into priors. There is scope to improve the quality of reporting of Bayesian methods in survival trials. Extension of the Consolidated Standards of Reporting Trials statement for reporting Bayesian clinical trials is recommended.

  19. Generalizability of Evidence-Based Assessment Recommendations for Pediatric Bipolar Disorder

    PubMed Central

    Jenkins, Melissa M.; Youngstrom, Eric A.; Youngstrom, Jennifer Kogos; Feeny, Norah C.; Findling, Robert L.

    2013-01-01

    Bipolar disorder is frequently clinically diagnosed in youths who do not actually satisfy DSM-IV criteria, yet cases that would satisfy full DSM-IV criteria are often undetected clinically. Evidence-based assessment methods that incorporate Bayesian reasoning have demonstrated improved diagnostic accuracy, and consistency; however, their clinical utility is largely unexplored. The present study examines the effectiveness of promising evidence-based decision-making compared to the clinical gold standard. Participants were 562 youth, ages 5-17 and predominantly African American, drawn from a community mental health clinic. Research diagnoses combined semi-structured interview with youths’ psychiatric, developmental, and family mental health histories. Independent Bayesian estimates relied on published risk estimates from other samples discriminated bipolar diagnoses, Area Under Curve=.75, p<.00005. The Bayes and confidence ratings correlated rs =.30. Agreement about an evidence-based assessment intervention “threshold model” (wait/assess/treat) had K=.24, p<.05. No potential moderators of agreement between the Bayesian estimates and confidence ratings, including type of bipolar illness, were significant. Bayesian risk estimates were highly correlated with logistic regression estimates using optimal sample weights, r=.81, p<.0005. Clinical and Bayesian approaches agree in terms of overall concordance and deciding next clinical action, even when Bayesian predictions are based on published estimates from clinically and demographically different samples. Evidence-based assessment methods may be useful in settings that cannot routinely employ gold standard assessments, and they may help decrease rates of overdiagnosis while promoting earlier identification of true cases. PMID:22004538

  20. Final Report, DOE Early Career Award: Predictive modeling of complex physical systems: new tools for statistical inference, uncertainty quantification, and experimental design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzouk, Youssef

    Predictive simulation of complex physical systems increasingly rests on the interplay of experimental observations with computational models. Key inputs, parameters, or structural aspects of models may be incomplete or unknown, and must be developed from indirect and limited observations. At the same time, quantified uncertainties are needed to qualify computational predictions in the support of design and decision-making. In this context, Bayesian statistics provides a foundation for inference from noisy and limited data, but at prohibitive computional expense. This project intends to make rigorous predictive modeling *feasible* in complex physical systems, via accelerated and scalable tools for uncertainty quantification, Bayesianmore » inference, and experimental design. Specific objectives are as follows: 1. Develop adaptive posterior approximations and dimensionality reduction approaches for Bayesian inference in high-dimensional nonlinear systems. 2. Extend accelerated Bayesian methodologies to large-scale {\\em sequential} data assimilation, fully treating nonlinear models and non-Gaussian state and parameter distributions. 3. Devise efficient surrogate-based methods for Bayesian model selection and the learning of model structure. 4. Develop scalable simulation/optimization approaches to nonlinear Bayesian experimental design, for both parameter inference and model selection. 5. Demonstrate these inferential tools on chemical kinetic models in reacting flow, constructing and refining thermochemical and electrochemical models from limited data. Demonstrate Bayesian filtering on canonical stochastic PDEs and in the dynamic estimation of inhomogeneous subsurface properties and flow fields.« less

  1. Signal Detection Theory-Based Information Processing for the Detection of Breast Cancer at Microwave Frequencies

    DTIC Science & Technology

    2002-08-01

    the measurement noise, as well as the physical model of the forward scattered electric field. The Bayesian algorithms for the Uncertain Permittivity...received at multiple sensors. In this research project a tissue- model -based signal-detection theory approach for the detection of mammary tumors in the...oriented information processors. In this research project a tissue- model - based signal detection theory approach for the detection of mammary tumors in the

  2. Cognitive Continuum Theory in nursing decision-making.

    PubMed

    Cader, Raffik; Campbell, Steve; Watson, Don

    2005-02-01

    The purpose of this paper is to analyse and evaluate Cognitive Continuum Theory and to provide evidence for its relevance to nurses' decision-making. It is critical that theories used in nursing are evaluated to provide an understanding of their aims, concepts and usefulness. With the advent of evidence-based care, theories on decision-making have acquired increased significance. The criteria identified by Fawcett's framework has been used to analyse and evaluate Hammond's Cognitive Continuum Theory. Findings. There is empirical evidence to support many of the concepts and propositions of Cognitive Continuum Theory. The theory has been applied to the decision-making process of many professionals, including medical practitioners and nurses. Existing evidence suggests that Cognitive Continuum Theory can provide the framework to explain decision-making in nursing. Cognitive Continuum Theory has the potential to make major contributions towards understanding the decision-making process of nurses in the clinical environment. Knowledge of the theory in nursing practice has become crucial.

  3. Bayesian analysis of multi-state data with individual covariates for estimating genetic effects on demography

    USGS Publications Warehouse

    Converse, Sarah J.; Royle, J. Andrew; Urbanek, Richard P.

    2012-01-01

    Inbreeding depression is frequently a concern of managers interested in restoring endangered species. Decisions to reduce the potential for inbreeding depression by balancing genotypic contributions to reintroduced populations may exact a cost on long-term demographic performance of the population if those decisions result in reduced numbers of animals released and/or restriction of particularly successful genotypes (i.e., heritable traits of particular family lines). As part of an effort to restore a migratory flock of Whooping Cranes (Grus americana) to eastern North America using the offspring of captive breeders, we obtained a unique dataset which includes post-release mark-recapture data, as well as the pedigree of each released individual. We developed a Bayesian formulation of a multi-state model to analyze radio-telemetry, band-resight, and dead recovery data on reintroduced individuals, in order to track survival and breeding state transitions. We used studbook-based individual covariates to examine the comparative evidence for and degree of effects of inbreeding, genotype, and genotype quality on post-release survival of reintroduced individuals. We demonstrate implementation of the Bayesian multi-state model, which allows for the integration of imperfect detection, multiple data types, random effects, and individual- and time-dependent covariates. Our results provide only weak evidence for an effect of the quality of an individual's genotype in captivity on post-release survival as well as for an effect of inbreeding on post-release survival. We plan to integrate our results into a decision-analytic modeling framework that can explicitly examine tradeoffs between the effects of inbreeding and the effects of genotype and demographic stochasticity on population establishment.

  4. Bayesian updating in a fault tree model for shipwreck risk assessment.

    PubMed

    Landquist, H; Rosén, L; Lindhe, A; Norberg, T; Hassellöv, I-M

    2017-07-15

    Shipwrecks containing oil and other hazardous substances have been deteriorating on the seabeds of the world for many years and are threatening to pollute the marine environment. The status of the wrecks and the potential volume of harmful substances present in the wrecks are affected by a multitude of uncertainties. Each shipwreck poses a unique threat, the nature of which is determined by the structural status of the wreck and possible damage resulting from hazardous activities that could potentially cause a discharge. Decision support is required to ensure the efficiency of the prioritisation process and the allocation of resources required to carry out risk mitigation measures. Whilst risk assessments can provide the requisite decision support, comprehensive methods that take into account key uncertainties related to shipwrecks are limited. The aim of this paper was to develop a method for estimating the probability of discharge of hazardous substances from shipwrecks. The method is based on Bayesian updating of generic information on the hazards posed by different activities in the surroundings of the wreck, with information on site-specific and wreck-specific conditions in a fault tree model. Bayesian updating is performed using Monte Carlo simulations for estimating the probability of a discharge of hazardous substances and formal handling of intrinsic uncertainties. An example application involving two wrecks located off the Swedish coast is presented. Results show the estimated probability of opening, discharge and volume of the discharge for the two wrecks and illustrate the capability of the model to provide decision support. Together with consequence estimations of a discharge of hazardous substances, the suggested model enables comprehensive and probabilistic risk assessments of shipwrecks to be made. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Confidence set interference with a prior quadratic bound. [in geophysics

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1989-01-01

    Neyman's (1937) theory of confidence sets is developed as a replacement for Bayesian interference (BI) and stochastic inversion (SI) when the prior information is a hard quadratic bound. It is recommended that BI and SI be replaced by confidence set interference (CSI) only in certain circumstances. The geomagnetic problem is used to illustrate the general theory of CSI.

  6. Cultural Geography Model Validation

    DTIC Science & Technology

    2010-03-01

    the Cultural Geography Model (CGM), a government owned, open source multi - agent system utilizing Bayesian networks, queuing systems, the Theory of...referent determined either from theory or SME opinion. 4. CGM Overview The CGM is a government-owned, open source, data driven multi - agent social...HSCB, validation, social network analysis ABSTRACT: In the current warfighting environment , the military needs robust modeling and simulation (M&S

  7. Using the Bayes Factors to Evaluate Person Fit in the Item Response Theory

    ERIC Educational Resources Information Center

    Pan, Tianshu; Yin, Yue

    2017-01-01

    In this article, we propose using the Bayes factors (BF) to evaluate person fit in item response theory models under the framework of Bayesian evaluation of an informative diagnostic hypothesis. We first discuss the theoretical foundation for this application and how to analyze person fit using BF. To demonstrate the feasibility of this approach,…

  8. Decision-Making Under Risk: Integrating Perspectives From Biology, Economics, and Psychology.

    PubMed

    Mishra, Sandeep

    2014-08-01

    Decision-making under risk has been variably characterized and examined in many different disciplines. However, interdisciplinary integration has not been forthcoming. Classic theories of decision-making have not been amply revised in light of greater empirical data on actual patterns of decision-making behavior. Furthermore, the meta-theoretical framework of evolution by natural selection has been largely ignored in theories of decision-making under risk in the human behavioral sciences. In this review, I critically examine four of the most influential theories of decision-making from economics, psychology, and biology: expected utility theory, prospect theory, risk-sensitivity theory, and heuristic approaches. I focus especially on risk-sensitivity theory, which offers a framework for understanding decision-making under risk that explicitly involves evolutionary considerations. I also review robust empirical evidence for individual differences and environmental/situational factors that predict actual risky decision-making that any general theory must account for. Finally, I offer steps toward integrating various theoretical perspectives and empirical findings on risky decision-making. © 2014 by the Society for Personality and Social Psychology, Inc.

  9. Understanding medical decision making in hand surgery.

    PubMed

    Myers, John; McCabe, Steven J

    2005-10-01

    The practice of medicine takes place in an environment of uncertainty. Expected value decision making, prospect theory, and regret theory are three theories of decision making under uncertainty that may be used to help us learn how patients and physicians make decisions. These theories form the underpinnings of decision analysis and provide the opportunity to introduce the broad discipline of decision science. Because decision analysis and economic analysis are underrepresented in upper extremity surgery, the authors believe these are important areas for future research.

  10. Kernel and divergence techniques in high energy physics separations

    NASA Astrophysics Data System (ADS)

    Bouř, Petr; Kůs, Václav; Franc, Jiří

    2017-10-01

    Binary decision trees under the Bayesian decision technique are used for supervised classification of high-dimensional data. We present a great potential of adaptive kernel density estimation as the nested separation method of the supervised binary divergence decision tree. Also, we provide a proof of alternative computing approach for kernel estimates utilizing Fourier transform. Further, we apply our method to Monte Carlo data set from the particle accelerator Tevatron at DØ experiment in Fermilab and provide final top-antitop signal separation results. We have achieved up to 82 % AUC while using the restricted feature selection entering the signal separation procedure.

  11. Combat Wound Initiative Program

    DTIC Science & Technology

    2010-07-01

    Government as part of that person’s official duties. Deliver~~ by Publishing Technology to: Waiter Reed Army Institute of R~l!il>~~vTP:11~1~:S6;!4!B1...develop a predictive model, which could serve as a clinical decision support tool in the management of complex war wounds. Bayesian belief networks...decisions regarding the surgical management of wounds and estimate overall out- come of patients on the basis of casualty-specific factors in wounded

  12. Active inference, evidence accumulation and the urn task

    PubMed Central

    FitzGerald, Thomas HB; Schwartenbeck, Philipp; Moutoussis, Michael; Dolan, Raymond J; Friston, Karl

    2015-01-01

    Deciding how much evidence to accumulate before making a decision is a problem we and other animals often face, but one which is not completely understood. This issue is particularly important because a tendency to sample less information (often known as reflection impulsivity) is a feature in several psychopathologies, such as psychosis. A formal understanding information sampling may therefore clarify the computational anatomy of psychopathology. In this theoretical paper, we consider evidence accumulation in terms of active (Bayesian) inference using a generic model of Markov decision processes. Here, agents are equipped with beliefs about their own behaviour – in this case, that they will make informed decisions. Normative decision-making is then modelled using variational Bayes to minimise surprise about choice outcomes. Under this scheme, different facets of belief updating map naturally onto the functional anatomy of the brain (at least at a heuristic level). Of particular interest is the key role played by the expected precision of beliefs about control, which we have previously suggested may be encoded by dopaminergic neurons in the midbrain. We show that manipulating expected precision strongly affects how much information an agent characteristically samples, and thus provides a possible link between impulsivity and dopaminergic dysfunction. Our study therefore represents a step towards understanding evidence accumulation in terms of neurobiologically plausible Bayesian inference, and may cast light on why this process is disordered in psychopathology. PMID:25514108

  13. Harnessing expert knowledge: Defining a Bayesian network decision model with limited data-Model structure for the vibration qualification problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzo, Davinia B.; Blackburn, Mark R.

    As systems become more complex, systems engineers rely on experts to inform decisions. There are few experts and limited data in many complex new technologies. This challenges systems engineers as they strive to plan activities such as qualification in an environment where technical constraints are coupled with the traditional cost, risk, and schedule constraints. Bayesian network (BN) models provide a framework to aid systems engineers in planning qualification efforts with complex constraints by harnessing expert knowledge and incorporating technical factors. By quantifying causal factors, a BN model can provide data about the risk of implementing a decision supplemented with informationmore » on driving factors. This allows a systems engineer to make informed decisions and examine “what-if” scenarios. This paper discusses a novel process developed to define a BN model structure based primarily on expert knowledge supplemented with extremely limited data (25 data sets or less). The model was developed to aid qualification decisions—specifically to predict the suitability of six degrees of freedom (6DOF) vibration testing for qualification. The process defined the model structure with expert knowledge in an unbiased manner. Finally, validation during the process execution and of the model provided evidence the process may be an effective tool in harnessing expert knowledge for a BN model.« less

  14. Harnessing expert knowledge: Defining a Bayesian network decision model with limited data-Model structure for the vibration qualification problem

    DOE PAGES

    Rizzo, Davinia B.; Blackburn, Mark R.

    2018-03-30

    As systems become more complex, systems engineers rely on experts to inform decisions. There are few experts and limited data in many complex new technologies. This challenges systems engineers as they strive to plan activities such as qualification in an environment where technical constraints are coupled with the traditional cost, risk, and schedule constraints. Bayesian network (BN) models provide a framework to aid systems engineers in planning qualification efforts with complex constraints by harnessing expert knowledge and incorporating technical factors. By quantifying causal factors, a BN model can provide data about the risk of implementing a decision supplemented with informationmore » on driving factors. This allows a systems engineer to make informed decisions and examine “what-if” scenarios. This paper discusses a novel process developed to define a BN model structure based primarily on expert knowledge supplemented with extremely limited data (25 data sets or less). The model was developed to aid qualification decisions—specifically to predict the suitability of six degrees of freedom (6DOF) vibration testing for qualification. The process defined the model structure with expert knowledge in an unbiased manner. Finally, validation during the process execution and of the model provided evidence the process may be an effective tool in harnessing expert knowledge for a BN model.« less

  15. Dyadic Interactions in Service Encounter: Bayesian SEM Approach

    NASA Astrophysics Data System (ADS)

    Sagan, Adam; Kowalska-Musiał, Magdalena

    Dyadic interactions are an important aspects in service encounters. They may be observed in B2B distribution channels, professional services, buying centers, family decision making or WOM communications. The networks consist of dyadic bonds that form dense but weak ties among the actors.

  16. Spatial Bayesian belief networks as a planning decision tool for mapping ecosystem services trade-offs on forested landscapes.

    PubMed

    Gonzalez-Redin, Julen; Luque, Sandra; Poggio, Laura; Smith, Ron; Gimona, Alessandro

    2016-01-01

    An integrated methodology, based on linking Bayesian belief networks (BBN) with GIS, is proposed for combining available evidence to help forest managers evaluate implications and trade-offs between forest production and conservation measures to preserve biodiversity in forested habitats. A Bayesian belief network is a probabilistic graphical model that represents variables and their dependencies through specifying probabilistic relationships. In spatially explicit decision problems where it is difficult to choose appropriate combinations of interventions, the proposed integration of a BBN with GIS helped to facilitate shared understanding of the human-landscape relationships, while fostering collective management that can be incorporated into landscape planning processes. Trades-offs become more and more relevant in these landscape contexts where the participation of many and varied stakeholder groups is indispensable. With these challenges in mind, our integrated approach incorporates GIS-based data with expert knowledge to consider two different land use interests - biodiversity value for conservation and timber production potential - with the focus on a complex mountain landscape in the French Alps. The spatial models produced provided different alternatives of suitable sites that can be used by policy makers in order to support conservation priorities while addressing management options. The approach provided provide a common reasoning language among different experts from different backgrounds while helped to identify spatially explicit conflictive areas. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Scheduling structural health monitoring activities for optimizing life-cycle costs and reliability of wind turbines

    NASA Astrophysics Data System (ADS)

    Hanish Nithin, Anu; Omenzetter, Piotr

    2017-04-01

    Optimization of the life-cycle costs and reliability of offshore wind turbines (OWTs) is an area of immense interest due to the widespread increase in wind power generation across the world. Most of the existing studies have used structural reliability and the Bayesian pre-posterior analysis for optimization. This paper proposes an extension to the previous approaches in a framework for probabilistic optimization of the total life-cycle costs and reliability of OWTs by combining the elements of structural reliability/risk analysis (SRA), the Bayesian pre-posterior analysis with optimization through a genetic algorithm (GA). The SRA techniques are adopted to compute the probabilities of damage occurrence and failure associated with the deterioration model. The probabilities are used in the decision tree and are updated using the Bayesian analysis. The output of this framework would determine the optimal structural health monitoring and maintenance schedules to be implemented during the life span of OWTs while maintaining a trade-off between the life-cycle costs and risk of the structural failure. Numerical illustrations with a generic deterioration model for one monitoring exercise in the life cycle of a system are demonstrated. Two case scenarios, namely to build initially an expensive and robust or a cheaper but more quickly deteriorating structures and to adopt expensive monitoring system, are presented to aid in the decision-making process.

  18. The influence of emotions on cognitive control: feelings and beliefs—where do they meet?

    PubMed Central

    Harlé, Katia M.; Shenoy, Pradeep; Paulus, Martin P.

    2013-01-01

    The influence of emotion on higher-order cognitive functions, such as attention allocation, planning, and decision-making, is a growing area of research with important clinical applications. In this review, we provide a computational framework to conceptualize emotional influences on inhibitory control, an important building block of executive functioning. We first summarize current neuro-cognitive models of inhibitory control and show how Bayesian ideal observer models can help reframe inhibitory control as a dynamic decision-making process. Finally, we propose a Bayesian framework to study emotional influences on inhibitory control, providing several hypotheses that may be useful to conceptualize inhibitory control biases in mental illness such as depression and anxiety. To do so, we consider the neurocognitive literature pertaining to how affective states can bias inhibitory control, with particular attention to how valence and arousal may independently impact inhibitory control by biasing probabilistic representations of information (i.e., beliefs) and valuation processes (e.g., speed-error tradeoffs). PMID:24065901

  19. New tools for evaluating LQAS survey designs

    PubMed Central

    2014-01-01

    Lot Quality Assurance Sampling (LQAS) surveys have become increasingly popular in global health care applications. Incorporating Bayesian ideas into LQAS survey design, such as using reasonable prior beliefs about the distribution of an indicator, can improve the selection of design parameters and decision rules. In this paper, a joint frequentist and Bayesian framework is proposed for evaluating LQAS classification accuracy and informing survey design parameters. Simple software tools are provided for calculating the positive and negative predictive value of a design with respect to an underlying coverage distribution and the selected design parameters. These tools are illustrated using a data example from two consecutive LQAS surveys measuring Oral Rehydration Solution (ORS) preparation. Using the survey tools, the dependence of classification accuracy on benchmark selection and the width of the ‘grey region’ are clarified in the context of ORS preparation across seven supervision areas. Following the completion of an LQAS survey, estimation of the distribution of coverage across areas facilitates quantifying classification accuracy and can help guide intervention decisions. PMID:24528928

  20. New tools for evaluating LQAS survey designs.

    PubMed

    Hund, Lauren

    2014-02-15

    Lot Quality Assurance Sampling (LQAS) surveys have become increasingly popular in global health care applications. Incorporating Bayesian ideas into LQAS survey design, such as using reasonable prior beliefs about the distribution of an indicator, can improve the selection of design parameters and decision rules. In this paper, a joint frequentist and Bayesian framework is proposed for evaluating LQAS classification accuracy and informing survey design parameters. Simple software tools are provided for calculating the positive and negative predictive value of a design with respect to an underlying coverage distribution and the selected design parameters. These tools are illustrated using a data example from two consecutive LQAS surveys measuring Oral Rehydration Solution (ORS) preparation. Using the survey tools, the dependence of classification accuracy on benchmark selection and the width of the 'grey region' are clarified in the context of ORS preparation across seven supervision areas. Following the completion of an LQAS survey, estimation of the distribution of coverage across areas facilitates quantifying classification accuracy and can help guide intervention decisions.

  1. Probabilistic sensitivity analysis for decision trees with multiple branches: use of the Dirichlet distribution in a Bayesian framework.

    PubMed

    Briggs, Andrew H; Ades, A E; Price, Martin J

    2003-01-01

    In structuring decision models of medical interventions, it is commonly recommended that only 2 branches be used for each chance node to avoid logical inconsistencies that can arise during sensitivity analyses if the branching probabilities do not sum to 1. However, information may be naturally available in an unconditional form, and structuring a tree in conditional form may complicate rather than simplify the sensitivity analysis of the unconditional probabilities. Current guidance emphasizes using probabilistic sensitivity analysis, and a method is required to provide probabilistic probabilities over multiple branches that appropriately represents uncertainty while satisfying the requirement that mutually exclusive event probabilities should sum to 1. The authors argue that the Dirichlet distribution, the multivariate equivalent of the beta distribution, is appropriate for this purpose and illustrate its use for generating a fully probabilistic transition matrix for a Markov model. Furthermore, they demonstrate that by adopting a Bayesian approach, the problem of observing zero counts for transitions of interest can be overcome.

  2. A Bayesian hierarchical model for mortality data from cluster-sampling household surveys in humanitarian crises.

    PubMed

    Heudtlass, Peter; Guha-Sapir, Debarati; Speybroeck, Niko

    2018-05-31

    The crude death rate (CDR) is one of the defining indicators of humanitarian emergencies. When data from vital registration systems are not available, it is common practice to estimate the CDR from household surveys with cluster-sampling design. However, sample sizes are often too small to compare mortality estimates to emergency thresholds, at least in a frequentist framework. Several authors have proposed Bayesian methods for health surveys in humanitarian crises. Here, we develop an approach specifically for mortality data and cluster-sampling surveys. We describe a Bayesian hierarchical Poisson-Gamma mixture model with generic (weakly informative) priors that could be used as default in absence of any specific prior knowledge, and compare Bayesian and frequentist CDR estimates using five different mortality datasets. We provide an interpretation of the Bayesian estimates in the context of an emergency threshold and demonstrate how to interpret parameters at the cluster level and ways in which informative priors can be introduced. With the same set of weakly informative priors, Bayesian CDR estimates are equivalent to frequentist estimates, for all practical purposes. The probability that the CDR surpasses the emergency threshold can be derived directly from the posterior of the mean of the mixing distribution. All observation in the datasets contribute to the estimation of cluster-level estimates, through the hierarchical structure of the model. In a context of sparse data, Bayesian mortality assessments have advantages over frequentist ones already when using only weakly informative priors. More informative priors offer a formal and transparent way of combining new data with existing data and expert knowledge and can help to improve decision-making in humanitarian crises by complementing frequentist estimates.

  3. Spatiotemporal dynamics of random stimuli account for trial-to-trial variability in perceptual decision making

    PubMed Central

    Park, Hame; Lueckmann, Jan-Matthis; von Kriegstein, Katharina; Bitzer, Sebastian; Kiebel, Stefan J.

    2016-01-01

    Decisions in everyday life are prone to error. Standard models typically assume that errors during perceptual decisions are due to noise. However, it is unclear how noise in the sensory input affects the decision. Here we show that there are experimental tasks for which one can analyse the exact spatio-temporal details of a dynamic sensory noise and better understand variability in human perceptual decisions. Using a new experimental visual tracking task and a novel Bayesian decision making model, we found that the spatio-temporal noise fluctuations in the input of single trials explain a significant part of the observed responses. Our results show that modelling the precise internal representations of human participants helps predict when perceptual decisions go wrong. Furthermore, by modelling precisely the stimuli at the single-trial level, we were able to identify the underlying mechanism of perceptual decision making in more detail than standard models. PMID:26752272

  4. A Bayesian Belief Network approach to assess the potential of non wood forest products for small scale forest owners

    NASA Astrophysics Data System (ADS)

    Vacik, Harald; Huber, Patrick; Hujala, Teppo; Kurtilla, Mikko; Wolfslehner, Bernhard

    2015-04-01

    It is an integral element of the European understanding of sustainable forest management to foster the design and marketing of forest products, non-wood forest products (NWFPs) and services that go beyond the production of timber. Despite the relevance of NWFPs in Europe, forest management and planning methods have been traditionally tailored towards wood and wood products, because most forest management models and silviculture techniques were developed to ensure a sustained production of timber. Although several approaches exist which explicitly consider NWFPs as management objectives in forest planning, specific models are needed for the assessment of their production potential in different environmental contexts and for different management regimes. Empirical data supporting a comprehensive assessment of the potential of NWFPs are rare, thus making development of statistical models particularly problematic. However, the complex causal relationships between the sustained production of NWFPs, the available ecological resources, as well as the organizational and the market potential of forest management regimes are well suited for knowledge-based expert models. Bayesian belief networks (BBNs) are a kind of probabilistic graphical model that have become very popular to practitioners and scientists mainly due to the powerful probability theory involved, which makes BBNs suitable to deal with a wide range of environmental problems. In this contribution we present the development of a Bayesian belief network to assess the potential of NWFPs for small scale forest owners. A three stage iterative process with stakeholder and expert participation was used to develop the Bayesian Network within the frame of the StarTree Project. The group of participants varied in the stages of the modelling process. A core team, consisting of one technical expert and two domain experts was responsible for the entire modelling process as well as for the first prototype of the network structure, including nodes and relationships. A top-level causal network, was further decomposed to sub level networks. Stakeholder participation including a group of experts from different related subject areas was used in model verification and validation. We demonstrate that BBNs can be used to transfer expert knowledge from science to practice and thus have the ability to contribute to improved problem understanding of non-expert decision makers for a sustainable production of NWFPs.

  5. Bayesian Methods for Effective Field Theories

    NASA Astrophysics Data System (ADS)

    Wesolowski, Sarah

    Microscopic predictions of the properties of atomic nuclei have reached a high level of precision in the past decade. This progress mandates improved uncertainty quantification (UQ) for a robust comparison of experiment with theory. With the uncertainty from many-body methods under control, calculations are now sensitive to the input inter-nucleon interactions. These interactions include parameters that must be fit to experiment, inducing both uncertainty from the fit and from missing physics in the operator structure of the Hamiltonian. Furthermore, the implementation of the inter-nucleon interactions is not unique, which presents the additional problem of assessing results using different interactions. Effective field theories (EFTs) take advantage of a separation of high- and low-energy scales in the problem to form a power-counting scheme that allows the organization of terms in the Hamiltonian based on their expected contribution to observable predictions. This scheme gives a natural framework for quantification of uncertainty due to missing physics. The free parameters of the EFT, called the low-energy constants (LECs), must be fit to data, but in a properly constructed EFT these constants will be natural-sized, i.e., of order unity. The constraints provided by the EFT, namely the size of the systematic uncertainty from truncation of the theory and the natural size of the LECs, are assumed information even before a calculation is performed or a fit is done. Bayesian statistical methods provide a framework for treating uncertainties that naturally incorporates prior information as well as putting stochastic and systematic uncertainties on an equal footing. For EFT UQ Bayesian methods allow the relevant EFT properties to be incorporated quantitatively as prior probability distribution functions (pdfs). Following the logic of probability theory, observable quantities and underlying physical parameters such as the EFT breakdown scale may be expressed as pdfs that incorporate the prior pdfs. Problems of model selection, such as distinguishing between competing EFT implementations, are also natural in a Bayesian framework. In this thesis we focus on two complementary topics for EFT UQ using Bayesian methods--quantifying EFT truncation uncertainty and parameter estimation for LECs. Using the order-by-order calculations and underlying EFT constraints as prior information, we show how to estimate EFT truncation uncertainties. We then apply the result to calculating truncation uncertainties on predictions of nucleon-nucleon scattering in chiral effective field theory. We apply model-checking diagnostics to our calculations to ensure that the statistical model of truncation uncertainty produces consistent results. A framework for EFT parameter estimation based on EFT convergence properties and naturalness is developed which includes a series of diagnostics to ensure the extraction of the maximum amount of available information from data to estimate LECs with minimal bias. We develop this framework using model EFTs and apply it to the problem of extrapolating lattice quantum chromodynamics results for the nucleon mass. We then apply aspects of the parameter estimation framework to perform case studies in chiral EFT parameter estimation, investigating a possible operator redundancy at fourth order in the chiral expansion and the appropriate inclusion of truncation uncertainty in estimating LECs.

  6. A Note on Explaining Away and Paradoxical Results in Multidimensional Item Response Theory. Research Report. ETS RR-12-13

    ERIC Educational Resources Information Center

    van Rijn, Peter W.; Rijmen, Frank

    2012-01-01

    Hooker and colleagues addressed a paradoxical situation that can arise in the application of multidimensional item response theory (MIRT) models to educational test data. We demonstrate that this MIRT paradox is an instance of the explaining-away phenomenon in Bayesian networks, and we attempt to enhance the understanding of MIRT models by placing…

  7. Myths and legends in learning classification rules

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1990-01-01

    A discussion is presented of machine learning theory on empirically learning classification rules. Six myths are proposed in the machine learning community that address issues of bias, learning as search, computational learning theory, Occam's razor, universal learning algorithms, and interactive learning. Some of the problems raised are also addressed from a Bayesian perspective. Questions are suggested that machine learning researchers should be addressing both theoretically and experimentally.

  8. Analogical and category-based inference: a theoretical integration with Bayesian causal models.

    PubMed

    Holyoak, Keith J; Lee, Hee Seung; Lu, Hongjing

    2010-11-01

    A fundamental issue for theories of human induction is to specify constraints on potential inferences. For inferences based on shared category membership, an analogy, and/or a relational schema, it appears that the basic goal of induction is to make accurate and goal-relevant inferences that are sensitive to uncertainty. People can use source information at various levels of abstraction (including both specific instances and more general categories), coupled with prior causal knowledge, to build a causal model for a target situation, which in turn constrains inferences about the target. We propose a computational theory in the framework of Bayesian inference and test its predictions (parameter-free for the cases we consider) in a series of experiments in which people were asked to assess the probabilities of various causal predictions and attributions about a target on the basis of source knowledge about generative and preventive causes. The theory proved successful in accounting for systematic patterns of judgments about interrelated types of causal inferences, including evidence that analogical inferences are partially dissociable from overall mapping quality.

  9. Bayesian learning for spatial filtering in an EEG-based brain-computer interface.

    PubMed

    Zhang, Haihong; Yang, Huijuan; Guan, Cuntai

    2013-07-01

    Spatial filtering for EEG feature extraction and classification is an important tool in brain-computer interface. However, there is generally no established theory that links spatial filtering directly to Bayes classification error. To address this issue, this paper proposes and studies a Bayesian analysis theory for spatial filtering in relation to Bayes error. Following the maximum entropy principle, we introduce a gamma probability model for describing single-trial EEG power features. We then formulate and analyze the theoretical relationship between Bayes classification error and the so-called Rayleigh quotient, which is a function of spatial filters and basically measures the ratio in power features between two classes. This paper also reports our extensive study that examines the theory and its use in classification, using three publicly available EEG data sets and state-of-the-art spatial filtering techniques and various classifiers. Specifically, we validate the positive relationship between Bayes error and Rayleigh quotient in real EEG power features. Finally, we demonstrate that the Bayes error can be practically reduced by applying a new spatial filter with lower Rayleigh quotient.

  10. Asking Better Questions: How Presentation Formats Influence Information Search

    ERIC Educational Resources Information Center

    Wu, Charley M.; Meder, Björn; Filimon, Flavia; Nelson, Jonathan D.

    2017-01-01

    While the influence of presentation formats have been widely studied in Bayesian reasoning tasks, we present the first systematic investigation of how presentation formats influence information search decisions. Four experiments were conducted across different probabilistic environments, where subjects (N = 2,858) chose between 2 possible search…

  11. Decision scenario analysis for addressing sediment accumulation in Lago Lucchetti, Puerto Rico

    EPA Science Inventory

    A Bayesian belief network (BBN) was used to characterize the effects of sediment accumulation on water storage capacity of a reservoir (Lago Lucchetti) in southwest Puerto Rico and the potential of different management options to increase reservoir life expectancy. Water and sedi...

  12. Anhedonia and anxiety underlying depressive symptomatology have distinct effects on reward-based decision-making.

    PubMed

    Harlé, Katia M; Guo, Dalin; Zhang, Shunan; Paulus, Martin P; Yu, Angela J

    2017-01-01

    Depressive pathology, which includes both heightened negative affect (e.g., anxiety) and reduced positive affect (e.g., anhedonia), is known to be associated with sub-optimal decision-making, particularly in uncertain environments. Here, we use a computational approach to quantify and disambiguate how individual differences in these affective measures specifically relate to different aspects of learning and decision-making in reward-based choice behavior. Fifty-three individuals with a range of depressed mood completed a two-armed bandit task, in which they choose between two arms with fixed but unknown reward rates. The decision-making component, which chooses among options based on current expectations about reward rates, is modeled by two different decision policies: a learning-independent Win-stay/Lose-shift (WSLS) policy that ignores all previous experiences except the last trial, and Softmax, which prefers the arm with the higher expected reward. To model the learning component for the Softmax choice policy, we use a Bayesian inference model, which updates estimated reward rates based on the observed history of trial outcomes. Softmax with Bayesian learning better fits the behavior of 55% of the participants, while the others are better fit by a learning-independent WSLS strategy. Among Softmax "users", those with higher anhedonia are less likely to choose the option estimated to be most rewarding. Moreover, the Softmax parameter mediates the inverse relationship between anhedonia and overall monetary gains. On the other hand, among WSLS "users", higher state anxiety correlates with increasingly better ability of WSLS, relative to Softmax, to explain subjects' trial-by-trial choices. In summary, there is significant variability among individuals in their reward-based, exploratory decision-making, and this variability is at least partly mediated in a very specific manner by affective attributes, such as hedonic tone and state anxiety.

  13. Eradicating the grey squirrel Sciurus carolinensis from urban areas: an innovative decision-making approach based on lessons learnt in Italy.

    PubMed

    La Morgia, Valentina; Paoloni, Daniele; Genovesi, Piero

    2017-02-01

    Eradication of invasive alien species supports the recovery of native biodiversity. A new European Union Regulation introduces obligations to eradicate the most harmful invasive species. However, eradications of charismatic mammals may encounter strong opposition. Considering the case study of the eastern grey squirrel (Sciurus carolinensis Gmelin, 1788) in central Italy, we developed a structured decision-making technique based on a Bayesian decision network model and explicitly considering the plurality of environmental values of invasive species management to reduce potential social conflicts. The model identified priority areas for management activities. These areas corresponded to the core of the grey squirrel range, but they also included peripheral zones, where rapid eradication is fundamental to prevent the spread of squirrels. However, when the model was expanded to integrate the attitude of citizens towards the project, the intervention strategy slightly changed. In some areas, the citizens' support was limited, and this resulted in a reduced overall utility of intervention. The suggested approach extends the scientific basis for management decisions, evaluated in terms of technical efficiency, feasibility and social impact. Here, the Bayesian decision network model analysed the potential technical and social consequences of management actions, and it responded to the need for transparency in the decision-making process, but it can easily be extended to consider further issues that are common in many mammal eradication programmes. Owing to its flexibility and comprehensiveness, it provides an innovative example of how to plan rapid eradication or control activities, as required by the new EU Regulation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Epistemic-based investigation of the probability of hazard scenarios using Bayesian network for the lifting operation of floating objects

    NASA Astrophysics Data System (ADS)

    Toroody, Ahmad Bahoo; Abaiee, Mohammad Mahdi; Gholamnia, Reza; Ketabdari, Mohammad Javad

    2016-09-01

    Owing to the increase in unprecedented accidents with new root causes in almost all operational areas, the importance of risk management has dramatically risen. Risk assessment, one of the most significant aspects of risk management, has a substantial impact on the system-safety level of organizations, industries, and operations. If the causes of all kinds of failure and the interactions between them are considered, effective risk assessment can be highly accurate. A combination of traditional risk assessment approaches and modern scientific probability methods can help in realizing better quantitative risk assessment methods. Most researchers face the problem of minimal field data with respect to the probability and frequency of each failure. Because of this limitation in the availability of epistemic knowledge, it is important to conduct epistemic estimations by applying the Bayesian theory for identifying plausible outcomes. In this paper, we propose an algorithm and demonstrate its application in a case study for a light-weight lifting operation in the Persian Gulf of Iran. First, we identify potential accident scenarios and present them in an event tree format. Next, excluding human error, we use the event tree to roughly estimate the prior probability of other hazard-promoting factors using a minimal amount of field data. We then use the Success Likelihood Index Method (SLIM) to calculate the probability of human error. On the basis of the proposed event tree, we use the Bayesian network of the provided scenarios to compensate for the lack of data. Finally, we determine the resulting probability of each event based on its evidence in the epistemic estimation format by building on two Bayesian network types: the probability of hazard promotion factors and the Bayesian theory. The study results indicate that despite the lack of available information on the operation of floating objects, a satisfactory result can be achieved using epistemic data.

  15. Apport de l'information geographique dans l'elaboration d'un indicateur de developpement urbain: Abidjan et l'ile de Montreal

    NASA Astrophysics Data System (ADS)

    Zoro, Emma-Georgina

    The objective of this project is to carry out a comparative analysis of two urban environments with remote sensing and Geographic Informations Systems, integrating multi-source data. The city of Abidjan (Cote d'Ivoire) and Montreal Island (Quebec) were selected. This study lies within the context of the strong demographic and space growths of urban environments. A supervised classification based on the theory of evidence allowed the identification of mixed pixels. However, the accuracy of this method is lower than that of the bayesian theory. Nevertheless, this method showed that the most credible classes (maximum believes in "closed world") are most probable (maximum probabilities) and thus confirms the bayesian maximum-likelihood decision. On the other hand, the contrary is not necessarily true because of the rules of combination. The urban cover map resulting from classification by the maximum likelihood method was then used to determine a relation between the residential surface and the number of inhabitants in a sector. Moreover, the area of green spaces was an input data (environmental component) for the Urban Development Indicator (IDU), the elaborated model for quantifying the quality of life in urban environment. Moreover, this indicator was defined to allow a total and efficient comparison of urban environments. Following a thorough bibliographical review, seven criteria were retained to describe the optimal conditions for the populations well-being. These criteria were then estimated from standardized indices. The choice of these criteria is a function of the availability of the data to be integrated into the GIS. As the criteria selected have not the same importance in the definition of the quality of urban life, one needed to rank by the method of multicriteria hierarchy and to normalize them in order to join them together in only one parameter. The composite indicator IDU thus obtained allowed to establish that Abidjan had an average development in 1995. While Montreal Island had a strong urban development. Moreover, the comparison of the IDUs reveals requirements of health and educational facilities for Abidjan. In addition, from 1989 to 1995, Abidjan developed itself while Montreal Island showed a light decreasing IDU between 1991 and 1996. Theses assertions are confirmed by the studies carried out on these urban communities and validated the relevance of IDU for quantifying and comparing urban development. Such work can be used by decisions makers to establish urban policies for sustainable development.

  16. A dynamic model of reasoning and memory.

    PubMed

    Hawkins, Guy E; Hayes, Brett K; Heit, Evan

    2016-02-01

    Previous models of category-based induction have neglected how the process of induction unfolds over time. We conceive of induction as a dynamic process and provide the first fine-grained examination of the distribution of response times observed in inductive reasoning. We used these data to develop and empirically test the first major quantitative modeling scheme that simultaneously accounts for inductive decisions and their time course. The model assumes that knowledge of similarity relations among novel test probes and items stored in memory drive an accumulation-to-bound sequential sampling process: Test probes with high similarity to studied exemplars are more likely to trigger a generalization response, and more rapidly, than items with low exemplar similarity. We contrast data and model predictions for inductive decisions with a recognition memory task using a common stimulus set. Hierarchical Bayesian analyses across 2 experiments demonstrated that inductive reasoning and recognition memory primarily differ in the threshold to trigger a decision: Observers required less evidence to make a property generalization judgment (induction) than an identity statement about a previously studied item (recognition). Experiment 1 and a condition emphasizing decision speed in Experiment 2 also found evidence that inductive decisions use lower quality similarity-based information than recognition. The findings suggest that induction might represent a less cautious form of recognition. We conclude that sequential sampling models grounded in exemplar-based similarity, combined with hierarchical Bayesian analysis, provide a more fine-grained and informative analysis of the processes involved in inductive reasoning than is possible solely through examination of choice data. PsycINFO Database Record (c) 2016 APA, all rights reserved.

  17. Individual differences in attention influence perceptual decision making.

    PubMed

    Nunez, Michael D; Srinivasan, Ramesh; Vandekerckhove, Joachim

    2015-01-01

    Sequential sampling decision-making models have been successful in accounting for reaction time (RT) and accuracy data in two-alternative forced choice tasks. These models have been used to describe the behavior of populations of participants, and explanatory structures have been proposed to account for between individual variability in model parameters. In this study we show that individual differences in behavior from a novel perceptual decision making task can be attributed to (1) differences in evidence accumulation rates, (2) differences in variability of evidence accumulation within trials, and (3) differences in non-decision times across individuals. Using electroencephalography (EEG), we demonstrate that these differences in cognitive variables, in turn, can be explained by attentional differences as measured by phase-locking of steady-state visual evoked potential (SSVEP) responses to the signal and noise components of the visual stimulus. Parameters of a cognitive model (a diffusion model) were obtained from accuracy and RT distributions and related to phase-locking indices (PLIs) of SSVEPs with a single step in a hierarchical Bayesian framework. Participants who were able to suppress the SSVEP response to visual noise in high frequency bands were able to accumulate correct evidence faster and had shorter non-decision times (preprocessing or motor response times), leading to more accurate responses and faster response times. We show that the combination of cognitive modeling and neural data in a hierarchical Bayesian framework relates physiological processes to the cognitive processes of participants, and that a model with a new (out-of-sample) participant's neural data can predict that participant's behavior more accurately than models without physiological data.

  18. A general framework for updating belief distributions.

    PubMed

    Bissiri, P G; Holmes, C C; Walker, S G

    2016-11-01

    We propose a framework for general Bayesian inference. We argue that a valid update of a prior belief distribution to a posterior can be made for parameters which are connected to observations through a loss function rather than the traditional likelihood function, which is recovered as a special case. Modern application areas make it increasingly challenging for Bayesians to attempt to model the true data-generating mechanism. For instance, when the object of interest is low dimensional, such as a mean or median, it is cumbersome to have to achieve this via a complete model for the whole data distribution. More importantly, there are settings where the parameter of interest does not directly index a family of density functions and thus the Bayesian approach to learning about such parameters is currently regarded as problematic. Our framework uses loss functions to connect information in the data to functionals of interest. The updating of beliefs then follows from a decision theoretic approach involving cumulative loss functions. Importantly, the procedure coincides with Bayesian updating when a true likelihood is known yet provides coherent subjective inference in much more general settings. Connections to other inference frameworks are highlighted.

  19. Applications of Bayesian Procrustes shape analysis to ensemble radar reflectivity nowcast verification

    NASA Astrophysics Data System (ADS)

    Fox, Neil I.; Micheas, Athanasios C.; Peng, Yuqiang

    2016-07-01

    This paper introduces the use of Bayesian full Procrustes shape analysis in object-oriented meteorological applications. In particular, the Procrustes methodology is used to generate mean forecast precipitation fields from a set of ensemble forecasts. This approach has advantages over other ensemble averaging techniques in that it can produce a forecast that retains the morphological features of the precipitation structures and present the range of forecast outcomes represented by the ensemble. The production of the ensemble mean avoids the problems of smoothing that result from simple pixel or cell averaging, while producing credible sets that retain information on ensemble spread. Also in this paper, the full Bayesian Procrustes scheme is used as an object verification tool for precipitation forecasts. This is an extension of a previously presented Procrustes shape analysis based verification approach into a full Bayesian format designed to handle the verification of precipitation forecasts that match objects from an ensemble of forecast fields to a single truth image. The methodology is tested on radar reflectivity nowcasts produced in the Warning Decision Support System - Integrated Information (WDSS-II) by varying parameters in the K-means cluster tracking scheme.

  20. Emotion and decision-making: affect-driven belief systems in anxiety and depression.

    PubMed

    Paulus, Martin P; Yu, Angela J

    2012-09-01

    Emotion processing and decision-making are integral aspects of daily life. However, our understanding of the interaction between these constructs is limited. In this review, we summarize theoretical approaches that link emotion and decision-making, and focus on research with anxious or depressed individuals to show how emotions can interfere with decision-making. We integrate the emotional framework based on valence and arousal with a Bayesian approach to decision-making in terms of probability and value processing. We discuss how studies of individuals with emotional dysfunctions provide evidence that alterations of decision-making can be viewed in terms of altered probability and value computation. We argue that the probabilistic representation of belief states in the context of partially observable Markov decision processes provides a useful approach to examine alterations in probability and value representation in individuals with anxiety and depression, and outline the broader implications of this approach. Copyright © 2012. Published by Elsevier Ltd.

  1. Emotion and decision-making: affect-driven belief systems in anxiety and depression

    PubMed Central

    Paulus, Martin P.; Yu, Angela J.

    2012-01-01

    Emotion processing and decision-making are integral aspects of daily life. However, our understanding of the interaction between these constructs is limited. In this review, we summarize theoretical approaches to the link between emotion and decision-making, and focus on research with anxious or depressed individuals that reveals how emotions can interfere with decision-making. We integrate the emotional framework based on valence and arousal with a Bayesian approach to decision-making in terms of probability and value processing. We then discuss how studies of individuals with emotional dysfunctions provide evidence that alterations of decision-making can be viewed in terms of altered probability and value computation. We argue that the probabilistic representation of belief states in the context of partially observable Markov decision processes provides a useful approach to examine alterations in probability and value representation in individuals with anxiety and depression and outline the broader implications of this approach. PMID:22898207

  2. The Evidential Basis of Decision Making in Plant Disease Management.

    PubMed

    Hughes, Gareth

    2017-08-04

    The evidential basis for disease management decision making is provided by data relating to risk factors. The decision process involves an assessment of the evidence leading to taking (or refraining from) action on the basis of a prediction. The primary objective of the decision process is to identify-at the time the decision is made-the control action that provides the best predicted end-of-season outcome, calculated in terms of revenue or another appropriate metric. Data relating to disease risk factors may take a variety of forms (e.g., continuous, discrete, categorical) on measurement scales in a variety of units. Log 10 -likelihood ratios provide a principled basis for the accumulation of evidence based on such data and allow predictions to be made via Bayesian updating of prior probabilities.

  3. [Reliability theory based on quality risk network analysis for Chinese medicine injection].

    PubMed

    Li, Zheng; Kang, Li-Yuan; Fan, Xiao-Hui

    2014-08-01

    A new risk analysis method based upon reliability theory was introduced in this paper for the quality risk management of Chinese medicine injection manufacturing plants. The risk events including both cause and effect ones were derived in the framework as nodes with a Bayesian network analysis approach. It thus transforms the risk analysis results from failure mode and effect analysis (FMEA) into a Bayesian network platform. With its structure and parameters determined, the network can be used to evaluate the system reliability quantitatively with probabilistic analytical appraoches. Using network analysis tools such as GeNie and AgenaRisk, we are able to find the nodes that are most critical to influence the system reliability. The importance of each node to the system can be quantitatively evaluated by calculating the effect of the node on the overall risk, and minimization plan can be determined accordingly to reduce their influences and improve the system reliability. Using the Shengmai injection manufacturing plant of SZYY Ltd as a user case, we analyzed the quality risk with both static FMEA analysis and dynamic Bayesian Network analysis. The potential risk factors for the quality of Shengmai injection manufacturing were identified with the network analysis platform. Quality assurance actions were further defined to reduce the risk and improve the product quality.

  4. Bayesian molecular dating: opening up the black box.

    PubMed

    Bromham, Lindell; Duchêne, Sebastián; Hua, Xia; Ritchie, Andrew M; Duchêne, David A; Ho, Simon Y W

    2018-05-01

    Molecular dating analyses allow evolutionary timescales to be estimated from genetic data, offering an unprecedented capacity for investigating the evolutionary past of all species. These methods require us to make assumptions about the relationship between genetic change and evolutionary time, often referred to as a 'molecular clock'. Although initially regarded with scepticism, molecular dating has now been adopted in many areas of biology. This broad uptake has been due partly to the development of Bayesian methods that allow complex aspects of molecular evolution, such as variation in rates of change across lineages, to be taken into account. But in order to do this, Bayesian dating methods rely on a range of assumptions about the evolutionary process, which vary in their degree of biological realism and empirical support. These assumptions can have substantial impacts on the estimates produced by molecular dating analyses. The aim of this review is to open the 'black box' of Bayesian molecular dating and have a look at the machinery inside. We explain the components of these dating methods, the important decisions that researchers must make in their analyses, and the factors that need to be considered when interpreting results. We illustrate the effects that the choices of different models and priors can have on the outcome of the analysis, and suggest ways to explore these impacts. We describe some major research directions that may improve the reliability of Bayesian dating. The goal of our review is to help researchers to make informed choices when using Bayesian phylogenetic methods to estimate evolutionary rates and timescales. © 2017 Cambridge Philosophical Society.

  5. The maximum entropy method of moments and Bayesian probability theory

    NASA Astrophysics Data System (ADS)

    Bretthorst, G. Larry

    2013-08-01

    The problem of density estimation occurs in many disciplines. For example, in MRI it is often necessary to classify the types of tissues in an image. To perform this classification one must first identify the characteristics of the tissues to be classified. These characteristics might be the intensity of a T1 weighted image and in MRI many other types of characteristic weightings (classifiers) may be generated. In a given tissue type there is no single intensity that characterizes the tissue, rather there is a distribution of intensities. Often this distributions can be characterized by a Gaussian, but just as often it is much more complicated. Either way, estimating the distribution of intensities is an inference problem. In the case of a Gaussian distribution, one must estimate the mean and standard deviation. However, in the Non-Gaussian case the shape of the density function itself must be inferred. Three common techniques for estimating density functions are binned histograms [1, 2], kernel density estimation [3, 4], and the maximum entropy method of moments [5, 6]. In the introduction, the maximum entropy method of moments will be reviewed. Some of its problems and conditions under which it fails will be discussed. Then in later sections, the functional form of the maximum entropy method of moments probability distribution will be incorporated into Bayesian probability theory. It will be shown that Bayesian probability theory solves all of the problems with the maximum entropy method of moments. One gets posterior probabilities for the Lagrange multipliers, and, finally, one can put error bars on the resulting estimated density function.

  6. A quantum probability framework for human probabilistic inference.

    PubMed

    Trueblood, Jennifer S; Yearsley, James M; Pothos, Emmanuel M

    2017-09-01

    There is considerable variety in human inference (e.g., a doctor inferring the presence of a disease, a juror inferring the guilt of a defendant, or someone inferring future weight loss based on diet and exercise). As such, people display a wide range of behaviors when making inference judgments. Sometimes, people's judgments appear Bayesian (i.e., normative), but in other cases, judgments deviate from the normative prescription of classical probability theory. How can we combine both Bayesian and non-Bayesian influences in a principled way? We propose a unified explanation of human inference using quantum probability theory. In our approach, we postulate a hierarchy of mental representations, from 'fully' quantum to 'fully' classical, which could be adopted in different situations. In our hierarchy of models, moving from the lowest level to the highest involves changing assumptions about compatibility (i.e., how joint events are represented). Using results from 3 experiments, we show that our modeling approach explains 5 key phenomena in human inference including order effects, reciprocity (i.e., the inverse fallacy), memorylessness, violations of the Markov condition, and antidiscounting. As far as we are aware, no existing theory or model can explain all 5 phenomena. We also explore transitions in our hierarchy, examining how representations change from more quantum to more classical. We show that classical representations provide a better account of data as individuals gain familiarity with a task. We also show that representations vary between individuals, in a way that relates to a simple measure of cognitive style, the Cognitive Reflection Test. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Bayesian modelling of the emission spectrum of the Joint European Torus Lithium Beam Emission Spectroscopy system.

    PubMed

    Kwak, Sehyun; Svensson, J; Brix, M; Ghim, Y-C

    2016-02-01

    A Bayesian model of the emission spectrum of the JET lithium beam has been developed to infer the intensity of the Li I (2p-2s) line radiation and associated uncertainties. The detected spectrum for each channel of the lithium beam emission spectroscopy system is here modelled by a single Li line modified by an instrumental function, Bremsstrahlung background, instrumental offset, and interference filter curve. Both the instrumental function and the interference filter curve are modelled with non-parametric Gaussian processes. All free parameters of the model, the intensities of the Li line, Bremsstrahlung background, and instrumental offset, are inferred using Bayesian probability theory with a Gaussian likelihood for photon statistics and electronic background noise. The prior distributions of the free parameters are chosen as Gaussians. Given these assumptions, the intensity of the Li line and corresponding uncertainties are analytically available using a Bayesian linear inversion technique. The proposed approach makes it possible to extract the intensity of Li line without doing a separate background subtraction through modulation of the Li beam.

  8. Modelling Trial-by-Trial Changes in the Mismatch Negativity

    PubMed Central

    Lieder, Falk; Daunizeau, Jean; Garrido, Marta I.; Friston, Karl J.; Stephan, Klaas E.

    2013-01-01

    The mismatch negativity (MMN) is a differential brain response to violations of learned regularities. It has been used to demonstrate that the brain learns the statistical structure of its environment and predicts future sensory inputs. However, the algorithmic nature of these computations and the underlying neurobiological implementation remain controversial. This article introduces a mathematical framework with which competing ideas about the computational quantities indexed by MMN responses can be formalized and tested against single-trial EEG data. This framework was applied to five major theories of the MMN, comparing their ability to explain trial-by-trial changes in MMN amplitude. Three of these theories (predictive coding, model adjustment, and novelty detection) were formalized by linking the MMN to different manifestations of the same computational mechanism: approximate Bayesian inference according to the free-energy principle. We thereby propose a unifying view on three distinct theories of the MMN. The relative plausibility of each theory was assessed against empirical single-trial MMN amplitudes acquired from eight healthy volunteers in a roving oddball experiment. Models based on the free-energy principle provided more plausible explanations of trial-by-trial changes in MMN amplitude than models representing the two more traditional theories (change detection and adaptation). Our results suggest that the MMN reflects approximate Bayesian learning of sensory regularities, and that the MMN-generating process adjusts a probabilistic model of the environment according to prediction errors. PMID:23436989

  9. Using Bayesian Networks to Evaluate Management Alternatives Based on Ecosystem Service Tradeoffs

    EPA Science Inventory

    In 2008, the U.S. Coral Reef Task Force launched a research initiative to address the effects of land management decisions on coastal resources in the Guánica Bay watershed. While municipal and agricultural growth in the Guánica area has provided social and economic...

  10. DASEES: A decision analysis tool with Bayesian networks from the Environmental Protection Agency’s Sustainable and Healthy Communities Research Program

    EPA Science Inventory

    Tackling environmental, economic, and social sustainability issues with community stakeholders will often lead to choices that are costly, complex and uncertain. A formal process with proper guidance is needed to understand the issues, identify sources of disagreement, consider t...

  11. Many faces of rationality: Implications of the great rationality debate for clinical decision-making.

    PubMed

    Djulbegovic, Benjamin; Elqayam, Shira

    2017-10-01

    Given that more than 30% of healthcare costs are wasted on inappropriate care, suboptimal care is increasingly connected to the quality of medical decisions. It has been argued that personal decisions are the leading cause of death, and 80% of healthcare expenditures result from physicians' decisions. Therefore, improving healthcare necessitates improving medical decisions, ie, making decisions (more) rational. Drawing on writings from The Great Rationality Debate from the fields of philosophy, economics, and psychology, we identify core ingredients of rationality commonly encountered across various theoretical models. Rationality is typically classified under umbrella of normative (addressing the question how people "should" or "ought to" make their decisions) and descriptive theories of decision-making (which portray how people actually make their decisions). Normative theories of rational thought of relevance to medicine include epistemic theories that direct practice of evidence-based medicine and expected utility theory, which provides the basis for widely used clinical decision analyses. Descriptive theories of rationality of direct relevance to medical decision-making include bounded rationality, argumentative theory of reasoning, adaptive rationality, dual processing model of rationality, regret-based rationality, pragmatic/substantive rationality, and meta-rationality. For the first time, we provide a review of wide range of theories and models of rationality. We showed that what is "rational" behaviour under one rationality theory may be irrational under the other theory. We also showed that context is of paramount importance to rationality and that no one model of rationality can possibly fit all contexts. We suggest that in context-poor situations, such as policy decision-making, normative theories based on expected utility informed by best research evidence may provide the optimal approach to medical decision-making, whereas in the context-rich circumstances other types of rationality, informed by human cognitive architecture and driven by intuition and emotions such as the aim to minimize regret, may provide better solution to the problem at hand. The choice of theory under which we operate is important as it determines both policy and our individual decision-making. © 2017 The Authors Journal of Evaluation in Clinical Practice Published by John Wiley & Sons Ltd.

  12. A Comparison of the β-Substitution Method and a Bayesian Method for Analyzing Left-Censored Data

    PubMed Central

    Huynh, Tran; Quick, Harrison; Ramachandran, Gurumurthy; Banerjee, Sudipto; Stenzel, Mark; Sandler, Dale P.; Engel, Lawrence S.; Kwok, Richard K.; Blair, Aaron; Stewart, Patricia A.

    2016-01-01

    Classical statistical methods for analyzing exposure data with values below the detection limits are well described in the occupational hygiene literature, but an evaluation of a Bayesian approach for handling such data is currently lacking. Here, we first describe a Bayesian framework for analyzing censored data. We then present the results of a simulation study conducted to compare the β-substitution method with a Bayesian method for exposure datasets drawn from lognormal distributions and mixed lognormal distributions with varying sample sizes, geometric standard deviations (GSDs), and censoring for single and multiple limits of detection. For each set of factors, estimates for the arithmetic mean (AM), geometric mean, GSD, and the 95th percentile (X0.95) of the exposure distribution were obtained. We evaluated the performance of each method using relative bias, the root mean squared error (rMSE), and coverage (the proportion of the computed 95% uncertainty intervals containing the true value). The Bayesian method using non-informative priors and the β-substitution method were generally comparable in bias and rMSE when estimating the AM and GM. For the GSD and the 95th percentile, the Bayesian method with non-informative priors was more biased and had a higher rMSE than the β-substitution method, but use of more informative priors generally improved the Bayesian method’s performance, making both the bias and the rMSE more comparable to the β-substitution method. An advantage of the Bayesian method is that it provided estimates of uncertainty for these parameters of interest and good coverage, whereas the β-substitution method only provided estimates of uncertainty for the AM, and coverage was not as consistent. Selection of one or the other method depends on the needs of the practitioner, the availability of prior information, and the distribution characteristics of the measurement data. We suggest the use of Bayesian methods if the practitioner has the computational resources and prior information, as the method would generally provide accurate estimates and also provides the distributions of all of the parameters, which could be useful for making decisions in some applications. PMID:26209598

  13. Probability, statistics, and computational science.

    PubMed

    Beerenwinkel, Niko; Siebourg, Juliane

    2012-01-01

    In this chapter, we review basic concepts from probability theory and computational statistics that are fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in many variations in genomics applications. In particular, we discuss efficient inference algorithms and methods for learning these models from partially observed data. Several simple examples are given throughout the text, some of which point to models that are discussed in more detail in subsequent chapters.

  14. A Prior for Neural Networks utilizing Enclosing Spheres for Normalization

    NASA Astrophysics Data System (ADS)

    v. Toussaint, U.; Gori, S.; Dose, V.

    2004-11-01

    Neural Networks are famous for their advantageous flexibility for problems when there is insufficient knowledge to set up a proper model. On the other hand this flexibility can cause over-fitting and can hamper the generalization properties of neural networks. Many approaches to regularize NN have been suggested but most of them based on ad-hoc arguments. Employing the principle of transformation invariance we derive a general prior in accordance with the Bayesian probability theory for a class of feedforward networks. Optimal networks are determined by Bayesian model comparison verifying the applicability of this approach.

  15. Universal prescriptivism: traditional moral decision-making theory revisited.

    PubMed

    Crigger, N J

    1994-09-01

    Universal prescriptivism is a recently developed moral decision-making theory that combines utilitarian and Kantian theories with two levels of moral thinking. A combined approach offers a creative solution to the weaknesses inherent in traditional moral theories. The paper describes the theory and discusses important implications for nursing education, practical ethical decision-making, and research. The relationship of an ethical theory of caring to traditional moral theory is discussed.

  16. A Bayesian model averaging method for the derivation of reservoir operating rules

    NASA Astrophysics Data System (ADS)

    Zhang, Jingwen; Liu, Pan; Wang, Hao; Lei, Xiaohui; Zhou, Yanlai

    2015-09-01

    Because the intrinsic dynamics among optimal decision making, inflow processes and reservoir characteristics are complex, functional forms of reservoir operating rules are always determined subjectively. As a result, the uncertainty of selecting form and/or model involved in reservoir operating rules must be analyzed and evaluated. In this study, we analyze the uncertainty of reservoir operating rules using the Bayesian model averaging (BMA) model. Three popular operating rules, namely piecewise linear regression, surface fitting and a least-squares support vector machine, are established based on the optimal deterministic reservoir operation. These individual models provide three-member decisions for the BMA combination, enabling the 90% release interval to be estimated by the Markov Chain Monte Carlo simulation. A case study of China's the Baise reservoir shows that: (1) the optimal deterministic reservoir operation, superior to any reservoir operating rules, is used as the samples to derive the rules; (2) the least-squares support vector machine model is more effective than both piecewise linear regression and surface fitting; (3) BMA outperforms any individual model of operating rules based on the optimal trajectories. It is revealed that the proposed model can reduce the uncertainty of operating rules, which is of great potential benefit in evaluating the confidence interval of decisions.

  17. Do violations of the axioms of expected utility theory threaten decision analysis?

    PubMed

    Nease, R F

    1996-01-01

    Research demonstrates that people violate the independence principle of expected utility theory, raising the question of whether expected utility theory is normative for medical decision making. The author provides three arguments that violations of the independence principle are less problematic than they might first appear. First, the independence principle follows from other more fundamental axioms whose appeal may be more readily apparent than that of the independence principle. Second, the axioms need not be descriptive to be normative, and they need not be attractive to all decision makers for expected utility theory to be useful for some. Finally, by providing a metaphor of decision analysis as a conversation between the actual decision maker and a model decision maker, the author argues that expected utility theory need not be purely normative for decision analysis to be useful. In short, violations of the independence principle do not necessarily represent direct violations of the axioms of expected utility theory; behavioral violations of the axioms of expected utility theory do not necessarily imply that decision analysis is not normative; and full normativeness is not necessary for decision analysis to generate valuable insights.

  18. Leadership Style, Decision Context, and the Poliheuristic Theory of Decision Making: An Experimental Analysis

    ERIC Educational Resources Information Center

    Keller, Jonathan W.; Yang, Yi Edward

    2008-01-01

    The poliheuristic (PH) theory of decision making has made important contributions to our understanding of political decision making but remains silent about certain key aspects of the decision process. Specifically, PH theory contends that leaders screen out politically unacceptable options, but it provides no guidance on (1) the crucial threshold…

  19. Information presentation format moderates the unconscious-thought effect: The role of recollection.

    PubMed

    Abadie, Marlène; Waroquier, Laurent; Terrier, Patrice

    2016-09-01

    The unconscious-thought effect occurs when distraction improves complex decision-making. In two experiments using the unconscious-thought paradigm, we investigated the effect of presentation format of decision information (i) on memory for decision-relevant information and (ii) on the quality of decisions made after distraction, conscious deliberation or immediately. We used the process-dissociation procedure to measure recollection and familiarity. The two studies showed that presenting information blocked per criterion led participants to recollect more decision-relevant details compared to a presentation by option. Moreover, a Bayesian meta-analysis of the two studies provided strong evidence that conscious deliberation resulted in better decisions when the information was presented blocked per criterion and substantial evidence that distraction improved decision quality when the information was presented blocked per option. Finally, Study 2 revealed that the recollection of decision-relevant details mediated the effect of presentation format on decision quality in the deliberation condition. This suggests that recollection contributes to conscious deliberation efficacy.

  20. A decision network account of reasoning about other people's choices

    PubMed Central

    Jern, Alan; Kemp, Charles

    2015-01-01

    The ability to predict and reason about other people's choices is fundamental to social interaction. We propose that people reason about other people's choices using mental models that are similar to decision networks. Decision networks are extensions of Bayesian networks that incorporate the idea that choices are made in order to achieve goals. In our first experiment, we explore how people predict the choices of others. Our remaining three experiments explore how people infer the goals and knowledge of others by observing the choices that they make. We show that decision networks account for our data better than alternative computational accounts that do not incorporate the notion of goal-directed choice or that do not rely on probabilistic inference. PMID:26010559

  1. Myths and legends in learning classification rules

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1990-01-01

    This paper is a discussion of machine learning theory on empirically learning classification rules. The paper proposes six myths in the machine learning community that address issues of bias, learning as search, computational learning theory, Occam's razor, 'universal' learning algorithms, and interactive learnings. Some of the problems raised are also addressed from a Bayesian perspective. The paper concludes by suggesting questions that machine learning researchers should be addressing both theoretically and experimentally.

  2. Following Human Footsteps: Proposal of a Decision Theory Based on Human Behavior

    NASA Technical Reports Server (NTRS)

    Mahmud, Faisal

    2011-01-01

    Human behavior is a complex nature which depends on circumstances and decisions varying from time to time as well as place to place. The way a decision is made either directly or indirectly related to the availability of the options. These options though appear at random nature, have a solid directional way for decision making. In this paper, a decision theory is proposed which is based on human behavior. The theory is structured with model sets that will show the all possible combinations for making a decision, A virtual and simulated environment is considered to show the results of the proposed decision theory

  3. Bayesian methods to estimate urban growth potential

    USGS Publications Warehouse

    Smith, Jordan W.; Smart, Lindsey S.; Dorning, Monica; Dupéy, Lauren Nicole; Méley, Andréanne; Meentemeyer, Ross K.

    2017-01-01

    Urban growth often influences the production of ecosystem services. The impacts of urbanization on landscapes can subsequently affect landowners’ perceptions, values and decisions regarding their land. Within land-use and land-change research, very few models of dynamic landscape-scale processes like urbanization incorporate empirically-grounded landowner decision-making processes. Very little attention has focused on the heterogeneous decision-making processes that aggregate to influence broader-scale patterns of urbanization. We examine the land-use tradeoffs faced by individual landowners in one of the United States’ most rapidly urbanizing regions − the urban area surrounding Charlotte, North Carolina. We focus on the land-use decisions of non-industrial private forest owners located across the region’s development gradient. A discrete choice experiment is used to determine the critical factors influencing individual forest owners’ intent to sell their undeveloped properties across a series of experimentally varied scenarios of urban growth. Data are analyzed using a hierarchical Bayesian approach. The estimates derived from the survey data are used to modify a spatially-explicit trend-based urban development potential model, derived from remotely-sensed imagery and observed changes in the region’s socioeconomic and infrastructural characteristics between 2000 and 2011. This modeling approach combines the theoretical underpinnings of behavioral economics with spatiotemporal data describing a region’s historical development patterns. By integrating empirical social preference data into spatially-explicit urban growth models, we begin to more realistically capture processes as well as patterns that drive the location, magnitude and rates of urban growth.

  4. Real-time prediction of acute cardiovascular events using hardware-implemented Bayesian networks.

    PubMed

    Tylman, Wojciech; Waszyrowski, Tomasz; Napieralski, Andrzej; Kamiński, Marek; Trafidło, Tamara; Kulesza, Zbigniew; Kotas, Rafał; Marciniak, Paweł; Tomala, Radosław; Wenerski, Maciej

    2016-02-01

    This paper presents a decision support system that aims to estimate a patient׳s general condition and detect situations which pose an immediate danger to the patient׳s health or life. The use of this system might be especially important in places such as accident and emergency departments or admission wards, where a small medical team has to take care of many patients in various general conditions. Particular stress is laid on cardiovascular and pulmonary conditions, including those leading to sudden cardiac arrest. The proposed system is a stand-alone microprocessor-based device that works in conjunction with a standard vital signs monitor, which provides input signals such as temperature, blood pressure, pulseoxymetry, ECG, and ICG. The signals are preprocessed and analysed by a set of artificial intelligence algorithms, the core of which is based on Bayesian networks. The paper focuses on the construction and evaluation of the Bayesian network, both its structure and numerical specification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Dissolution curve comparisons through the F(2) parameter, a Bayesian extension of the f(2) statistic.

    PubMed

    Novick, Steven; Shen, Yan; Yang, Harry; Peterson, John; LeBlond, Dave; Altan, Stan

    2015-01-01

    Dissolution (or in vitro release) studies constitute an important aspect of pharmaceutical drug development. One important use of such studies is for justifying a biowaiver for post-approval changes which requires establishing equivalence between the new and old product. We propose a statistically rigorous modeling approach for this purpose based on the estimation of what we refer to as the F2 parameter, an extension of the commonly used f2 statistic. A Bayesian test procedure is proposed in relation to a set of composite hypotheses that capture the similarity requirement on the absolute mean differences between test and reference dissolution profiles. Several examples are provided to illustrate the application. Results of our simulation study comparing the performance of f2 and the proposed method show that our Bayesian approach is comparable to or in many cases superior to the f2 statistic as a decision rule. Further useful extensions of the method, such as the use of continuous-time dissolution modeling, are considered.

  6. Bayesian modeling of cue interaction: bistability in stereoscopic slant perception.

    PubMed

    van Ee, Raymond; Adams, Wendy J; Mamassian, Pascal

    2003-07-01

    Our two eyes receive different views of a visual scene, and the resulting binocular disparities enable us to reconstruct its three-dimensional layout. However, the visual environment is also rich in monocular depth cues. We examined the resulting percept when observers view a scene in which there are large conflicts between the surface slant signaled by binocular disparities and the slant signaled by monocular perspective. For a range of disparity-perspective cue conflicts, many observers experience bistability: They are able to perceive two distinct slants and to flip between the two percepts in a controlled way. We present a Bayesian model that describes the quantitative aspects of perceived slant on the basis of the likelihoods of both perspective and disparity slant information combined with prior assumptions about the shape and orientation of objects in the scene. Our Bayesian approach can be regarded as an overarching framework that allows researchers to study all cue integration aspects-including perceptual decisions--in a unified manner.

  7. Social Information Is Integrated into Value and Confidence Judgments According to Its Reliability.

    PubMed

    De Martino, Benedetto; Bobadilla-Suarez, Sebastian; Nouguchi, Takao; Sharot, Tali; Love, Bradley C

    2017-06-21

    How much we like something, whether it be a bottle of wine or a new film, is affected by the opinions of others. However, the social information that we receive can be contradictory and vary in its reliability. Here, we tested whether the brain incorporates these statistics when judging value and confidence. Participants provided value judgments about consumer goods in the presence of online reviews. We found that participants updated their initial value and confidence judgments in a Bayesian fashion, taking into account both the uncertainty of their initial beliefs and the reliability of the social information. Activity in dorsomedial prefrontal cortex tracked the degree of belief update. Analogous to how lower-level perceptual information is integrated, we found that the human brain integrates social information according to its reliability when judging value and confidence. SIGNIFICANCE STATEMENT The field of perceptual decision making has shown that the sensory system integrates different sources of information according to their respective reliability, as predicted by a Bayesian inference scheme. In this work, we hypothesized that a similar coding scheme is implemented by the human brain to process social signals and guide complex, value-based decisions. We provide experimental evidence that the human prefrontal cortex's activity is consistent with a Bayesian computation that integrates social information that differs in reliability and that this integration affects the neural representation of value and confidence. Copyright © 2017 De Martino et al.

  8. The NIFTy way of Bayesian signal inference

    NASA Astrophysics Data System (ADS)

    Selig, Marco

    2014-12-01

    We introduce NIFTy, "Numerical Information Field Theory", a software package for the development of Bayesian signal inference algorithms that operate independently from any underlying spatial grid and its resolution. A large number of Bayesian and Maximum Entropy methods for 1D signal reconstruction, 2D imaging, as well as 3D tomography, appear formally similar, but one often finds individualized implementations that are neither flexible nor easily transferable. Signal inference in the framework of NIFTy can be done in an abstract way, such that algorithms, prototyped in 1D, can be applied to real world problems in higher-dimensional settings. NIFTy as a versatile library is applicable and already has been applied in 1D, 2D, 3D and spherical settings. A recent application is the D3PO algorithm targeting the non-trivial task of denoising, deconvolving, and decomposing photon observations in high energy astronomy.

  9. A new prior for bayesian anomaly detection: application to biosurveillance.

    PubMed

    Shen, Y; Cooper, G F

    2010-01-01

    Bayesian anomaly detection computes posterior probabilities of anomalous events by combining prior beliefs and evidence from data. However, the specification of prior probabilities can be challenging. This paper describes a Bayesian prior in the context of disease outbreak detection. The goal is to provide a meaningful, easy-to-use prior that yields a posterior probability of an outbreak that performs at least as well as a standard frequentist approach. If this goal is achieved, the resulting posterior could be usefully incorporated into a decision analysis about how to act in light of a possible disease outbreak. This paper describes a Bayesian method for anomaly detection that combines learning from data with a semi-informative prior probability over patterns of anomalous events. A univariate version of the algorithm is presented here for ease of illustration of the essential ideas. The paper describes the algorithm in the context of disease-outbreak detection, but it is general and can be used in other anomaly detection applications. For this application, the semi-informative prior specifies that an increased count over baseline is expected for the variable being monitored, such as the number of respiratory chief complaints per day at a given emergency department. The semi-informative prior is derived based on the baseline prior, which is estimated from using historical data. The evaluation reported here used semi-synthetic data to evaluate the detection performance of the proposed Bayesian method and a control chart method, which is a standard frequentist algorithm that is closest to the Bayesian method in terms of the type of data it uses. The disease-outbreak detection performance of the Bayesian method was statistically significantly better than that of the control chart method when proper baseline periods were used to estimate the baseline behavior to avoid seasonal effects. When using longer baseline periods, the Bayesian method performed as well as the control chart method. The time complexity of the Bayesian algorithm is linear in the number of the observed events being monitored, due to a novel, closed-form derivation that is introduced in the paper. This paper introduces a novel prior probability for Bayesian outbreak detection that is expressive, easy-to-apply, computationally efficient, and performs as well or better than a standard frequentist method.

  10. Psychometric Properties of IRT Proficiency Estimates

    ERIC Educational Resources Information Center

    Kolen, Michael J.; Tong, Ye

    2010-01-01

    Psychometric properties of item response theory proficiency estimates are considered in this paper. Proficiency estimators based on summed scores and pattern scores include non-Bayes maximum likelihood and test characteristic curve estimators and Bayesian estimators. The psychometric properties investigated include reliability, conditional…

  11. Making Decisions about an Educational Game, Simulation or Workshop: A 'Game Theory' Perspective.

    ERIC Educational Resources Information Center

    Cryer, Patricia

    1988-01-01

    Uses game theory to help practitioners make decisions about educational games, simulations, or workshops whose outcomes depend to some extent on chance. Highlights include principles for making decisions involving risk; elementary laws of probability; utility theory; and principles for making decisions involving uncertainty. (eight references)…

  12. Social Influences in Sequential Decision Making

    PubMed Central

    Schöbel, Markus; Rieskamp, Jörg; Huber, Rafael

    2016-01-01

    People often make decisions in a social environment. The present work examines social influence on people’s decisions in a sequential decision-making situation. In the first experimental study, we implemented an information cascade paradigm, illustrating that people infer information from decisions of others and use this information to make their own decisions. We followed a cognitive modeling approach to elicit the weight people give to social as compared to private individual information. The proposed social influence model shows that participants overweight their own private information relative to social information, contrary to the normative Bayesian account. In our second study, we embedded the abstract decision problem of Study 1 in a medical decision-making problem. We examined whether in a medical situation people also take others’ authority into account in addition to the information that their decisions convey. The social influence model illustrates that people weight social information differentially according to the authority of other decision makers. The influence of authority was strongest when an authority's decision contrasted with private information. Both studies illustrate how the social environment provides sources of information that people integrate differently for their decisions. PMID:26784448

  13. Social Influences in Sequential Decision Making.

    PubMed

    Schöbel, Markus; Rieskamp, Jörg; Huber, Rafael

    2016-01-01

    People often make decisions in a social environment. The present work examines social influence on people's decisions in a sequential decision-making situation. In the first experimental study, we implemented an information cascade paradigm, illustrating that people infer information from decisions of others and use this information to make their own decisions. We followed a cognitive modeling approach to elicit the weight people give to social as compared to private individual information. The proposed social influence model shows that participants overweight their own private information relative to social information, contrary to the normative Bayesian account. In our second study, we embedded the abstract decision problem of Study 1 in a medical decision-making problem. We examined whether in a medical situation people also take others' authority into account in addition to the information that their decisions convey. The social influence model illustrates that people weight social information differentially according to the authority of other decision makers. The influence of authority was strongest when an authority's decision contrasted with private information. Both studies illustrate how the social environment provides sources of information that people integrate differently for their decisions.

  14. The probabilistic nature of preferential choice.

    PubMed

    Rieskamp, Jörg

    2008-11-01

    Previous research has developed a variety of theories explaining when and why people's decisions under risk deviate from the standard economic view of expected utility maximization. These theories are limited in their predictive accuracy in that they do not explain the probabilistic nature of preferential choice, that is, why an individual makes different choices in nearly identical situations, or why the magnitude of these inconsistencies varies in different situations. To illustrate the advantage of probabilistic theories, three probabilistic theories of decision making under risk are compared with their deterministic counterparts. The probabilistic theories are (a) a probabilistic version of a simple choice heuristic, (b) a probabilistic version of cumulative prospect theory, and (c) decision field theory. By testing the theories with the data from three experimental studies, the superiority of the probabilistic models over their deterministic counterparts in predicting people's decisions under risk become evident. When testing the probabilistic theories against each other, decision field theory provides the best account of the observed behavior.

  15. Decision making and coping in healthcare: the Coping in Deliberation (CODE) framework.

    PubMed

    Witt, Jana; Elwyn, Glyn; Wood, Fiona; Brain, Kate

    2012-08-01

    To develop a framework of decision making and coping in healthcare that describes the twin processes of appraisal and coping faced by patients making preference-sensitive healthcare decisions. We briefly review the literature for decision making theories and coping theories applicable to preference-sensitive decisions in healthcare settings. We describe first decision making, then coping and finally attempt to integrate these processes by building on current theory. Deliberation in healthcare may be described as a six step process, comprised of the presentation of a health threat, choice, options, preference construction, the decision itself and consolidation post-decision. Coping can be depicted in three stages, beginning with a threat, followed by primary and secondary appraisal and ultimately resulting in a coping effort. Drawing together concepts from prominent decision making theories and coping theories, we propose a multidimensional, interactive framework which integrates both processes and describes coping in deliberation. The proposed framework offers an insight into the complexity of decision making in preference-sensitive healthcare contexts from a patient perspective and may act as theoretical basis for decision support. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. The determinants of response time in a repeated constant-sum game: A robust Bayesian hierarchical dual-process model.

    PubMed

    Spiliopoulos, Leonidas

    2018-03-01

    The investigation of response time and behavior has a long tradition in cognitive psychology, particularly for non-strategic decision-making. Recently, experimental economists have also studied response time in strategic interactions, but with an emphasis on either one-shot games or repeated social-dilemmas. I investigate the determinants of response time in a repeated (pure-conflict) game, admitting a unique mixed strategy Nash equilibrium, with fixed partner matching. Response times depend upon the interaction of two decision models embedded in a dual-process framework (Achtziger and Alós-Ferrer, 2014; Alós-Ferrer, 2016). The first decision model is the commonly used win-stay/lose-shift heuristic and the second the pattern-detecting reinforcement learning model in Spiliopoulos (2013b). The former is less complex and can be executed more quickly than the latter. As predicted, conflict between these two models (i.e., each one recommending a different course of action) led to longer response times than cases without conflict. The dual-process framework makes other qualitative response time predictions arising from the interaction between the existence (or not) of conflict and which one of the two decision models the chosen action is consistent with-these were broadly verified by the data. Other determinants of RT were hypothesized on the basis of existing theory and tested empirically. Response times were strongly dependent on the actions chosen by both players in the previous rounds and the resulting outcomes. Specifically, response time was shortest after a win in the previous round where the maximum possible payoff was obtained; response time after losses was significantly longer. Strongly auto-correlated behavior (regardless of its sign) was also associated with longer response times. I conclude that, similar to other tasks, there is a strong coupling in repeated games between behavior and RT, which can be exploited to further our understanding of decision making. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Implementation of a framework for multi-species, multi-objective adaptive management in Delaware Bay

    USGS Publications Warehouse

    McGowan, Conor P.; Smith, David R.; Nichols, James D.; Lyons, James E.; Sweka, John A.; Kalasz, Kevin; Niles, Lawrence J.; Wong, Richard; Brust, Jeffrey; Davis, Michelle C.; Spear, Braddock

    2015-01-01

    Decision analytic approaches have been widely recommended as well suited to solving disputed and ecologically complex natural resource management problems with multiple objectives and high uncertainty. However, the difference between theory and practice is substantial, as there are very few actual resource management programs that represent formal applications of decision analysis. We applied the process of structured decision making to Atlantic horseshoe crab harvest decisions in the Delaware Bay region to develop a multispecies adaptive management (AM) plan, which is currently being implemented. Horseshoe crab harvest has been a controversial management issue since the late 1990s. A largely unregulated horseshoe crab harvest caused a decline in crab spawning abundance. That decline coincided with a major decline in migratory shorebird populations that consume horseshoe crab eggs on the sandy beaches of Delaware Bay during spring migration. Our approach incorporated multiple stakeholders, including fishery and shorebird conservation advocates, to account for diverse management objectives and varied opinions on ecosystem function. Through consensus building, we devised an objective statement and quantitative objective function to evaluate alternative crab harvest policies. We developed a set of competing ecological models accounting for the leading hypotheses on the interaction between shorebirds and horseshoe crabs. The models were initially weighted based on stakeholder confidence in these hypotheses, but weights will be adjusted based on monitoring and Bayesian model weight updating. These models were used together to predict the effects of management actions on the crab and shorebird populations. Finally, we used a dynamic optimization routine to identify the state dependent optimal harvest policy for horseshoe crabs, given the possible actions, the stated objectives and our competing hypotheses about system function. The AM plan was reviewed, accepted and implemented by the Atlantic States Marine Fisheries Commission in 2012 and 2013. While disagreements among stakeholders persist, structured decision making enabled unprecedented progress towards a transparent and consensus driven management plan for crabs and shorebirds in Delaware Bay.

  18. How Decision Support Systems Can Benefit from a Theory of Change Approach.

    PubMed

    Allen, Will; Cruz, Jennyffer; Warburton, Bruce

    2017-06-01

    Decision support systems are now mostly computer and internet-based information systems designed to support land managers with complex decision-making. However, there is concern that many environmental and agricultural decision support systems remain underutilized and ineffective. Recent efforts to improve decision support systems use have focused on enhancing stakeholder participation in their development, but a mismatch between stakeholders' expectations and the reality of decision support systems outputs continues to limit uptake. Additional challenges remain in problem-framing and evaluation. We propose using an outcomes-based approach called theory of change in conjunction with decision support systems development to support both wider problem-framing and outcomes-based monitoring and evaluation. The theory of change helps framing by placing the decision support systems within a wider context. It highlights how decision support systems use can "contribute" to long-term outcomes, and helps align decision support systems outputs with these larger goals. We illustrate the benefits of linking decision support systems development and application with a theory of change approach using an example of pest rabbit management in Australia. We develop a theory of change that outlines the activities required to achieve the outcomes desired from an effective rabbit management program, and two decision support systems that contribute to specific aspects of decision making in this wider problem context. Using a theory of change in this way should increase acceptance of the role of decision support systems by end-users, clarify their limitations and, importantly, increase effectiveness of rabbit management. The use of a theory of change should benefit those seeking to improve decision support systems design, use and, evaluation.

  19. How Decision Support Systems Can Benefit from a Theory of Change Approach

    NASA Astrophysics Data System (ADS)

    Allen, Will; Cruz, Jennyffer; Warburton, Bruce

    2017-06-01

    Decision support systems are now mostly computer and internet-based information systems designed to support land managers with complex decision-making. However, there is concern that many environmental and agricultural decision support systems remain underutilized and ineffective. Recent efforts to improve decision support systems use have focused on enhancing stakeholder participation in their development, but a mismatch between stakeholders' expectations and the reality of decision support systems outputs continues to limit uptake. Additional challenges remain in problem-framing and evaluation. We propose using an outcomes-based approach called theory of change in conjunction with decision support systems development to support both wider problem-framing and outcomes-based monitoring and evaluation. The theory of change helps framing by placing the decision support systems within a wider context. It highlights how decision support systems use can "contribute" to long-term outcomes, and helps align decision support systems outputs with these larger goals. We illustrate the benefits of linking decision support systems development and application with a theory of change approach using an example of pest rabbit management in Australia. We develop a theory of change that outlines the activities required to achieve the outcomes desired from an effective rabbit management program, and two decision support systems that contribute to specific aspects of decision making in this wider problem context. Using a theory of change in this way should increase acceptance of the role of decision support systems by end-users, clarify their limitations and, importantly, increase effectiveness of rabbit management. The use of a theory of change should benefit those seeking to improve decision support systems design, use and, evaluation.

  20. Decision strategies for handling the uncertainty of future extreme rainfall under the influence of climate change.

    PubMed

    Gregersen, I B; Arnbjerg-Nielsen, K

    2012-01-01

    Several extraordinary rainfall events have occurred in Denmark within the last few years. For each event, problems in urban areas occurred as the capacity of the existing drainage systems were exceeded. Adaptation to climate change is necessary but also very challenging as urban drainage systems are characterized by long technical lifetimes and high, unrecoverable construction costs. One of the most important barriers for the initiation and implementation of the adaptation strategies is therefore the uncertainty when predicting the magnitude of the extreme rainfall in the future. This challenge is explored through the application and discussion of three different theoretical decision support strategies: the precautionary principle, the minimax strategy and Bayesian decision support. The reviewed decision support strategies all proved valuable for addressing the identified uncertainties, at best applied together as they all yield information that improved decision making and thus enabled more robust decisions.

  1. Decision-Making in National Security Affairs: Toward a Typology.

    DTIC Science & Technology

    1985-06-07

    decisional model, and thus provide the necessary linkage between observation and application of theory in explaining and/or predicting policy decisions . r...examines theories and models of decision -making processes from an interdisciplinary perspective, with a view toward deriving means by which the behavior of...processes, game theory , linear programming, network and graph theory , time series analysis, and the like. The discipline of decision analysis is a relatively

  2. The boundaries of instance-based learning theory for explaining decisions from experience.

    PubMed

    Gonzalez, Cleotilde

    2013-01-01

    Most demonstrations of how people make decisions in risky situations rely on decisions from description, where outcomes and their probabilities are explicitly stated. But recently, more attention has been given to decisions from experience where people discover these outcomes and probabilities through exploration. More importantly, risky behavior depends on how decisions are made (from description or experience), and although prospect theory explains decisions from description, a comprehensive model of decisions from experience is yet to be found. Instance-based learning theory (IBLT) explains how decisions are made from experience through interactions with dynamic environments (Gonzalez et al., 2003). The theory has shown robust explanations of behavior across multiple tasks and contexts, but it is becoming unclear what the theory is able to explain and what it does not. The goal of this chapter is to start addressing this problem. I will introduce IBLT and a recent cognitive model based on this theory: the IBL model of repeated binary choice; then I will discuss the phenomena that the IBL model explains and those that the model does not. The argument is for the theory's robustness but also for clarity in terms of concrete effects that the theory can or cannot account for. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Specialist and generalist symbionts show counterintuitive levels of genetic diversity and discordant demographic histories along the Florida Reef Tract

    NASA Astrophysics Data System (ADS)

    Titus, Benjamin M.; Daly, Marymegan

    2017-03-01

    Specialist and generalist life histories are expected to result in contrasting levels of genetic diversity at the population level, and symbioses are expected to lead to patterns that reflect a shared biogeographic history and co-diversification. We test these assumptions using mtDNA sequencing and a comparative phylogeographic approach for six co-occurring crustacean species that are symbiotic with sea anemones on western Atlantic coral reefs, yet vary in their host specificities: four are host specialists and two are host generalists. We first conducted species discovery analyses to delimit cryptic lineages, followed by classic population genetic diversity analyses for each delimited taxon, and then reconstructed the demographic history for each taxon using traditional summary statistics, Bayesian skyline plots, and approximate Bayesian computation to test for signatures of recent and concerted population expansion. The genetic diversity values recovered here contravene the expectations of the specialist-generalist variation hypothesis and classic population genetics theory; all specialist lineages had greater genetic diversity than generalists. Demography suggests recent population expansions in all taxa, although Bayesian skyline plots and approximate Bayesian computation suggest the timing and magnitude of these events were idiosyncratic. These results do not meet the a priori expectation of concordance among symbiotic taxa and suggest that intrinsic aspects of species biology may contribute more to phylogeographic history than extrinsic forces that shape whole communities. The recovery of two cryptic specialist lineages adds an additional layer of biodiversity to this symbiosis and contributes to an emerging pattern of cryptic speciation in the specialist taxa. Our results underscore the differences in the evolutionary processes acting on marine systems from the terrestrial processes that often drive theory. Finally, we continue to highlight the Florida Reef Tract as an important biodiversity hotspot.

  4. Proxy decision making and dementia: Using Construal Level Theory to analyse the thoughts of decision makers.

    PubMed

    Convey, Helen; Holt, Janet; Summers, Barbara

    2018-07-01

    This study explored the feasibility of using Construal Level Theory to analyse proxy decision maker thinking about a hypothetical ethical dilemma, relating to a person who has dementia. Proxy decision makers make decisions on behalf of individuals who are living with dementia when dementia affects that individual's decision making ability. Ethical dilemmas arise because there is a need to balance the individual's past and contemporary values and views. Understanding of how proxy decision makers respond is incomplete. Construal Level Theory contends that individuals imagine reactions and make predications about the future by crossing psychological distance. This involves abstract thinking, giving meaning to decisions. There is no empirical evidence of Construal Level Theory being used to analyse proxy decision maker thinking. Exploring the feasibility of using Construal Level Theory to understand dementia carer thinking regarding proxy decisions may provide insights which inform the support given. Descriptive qualitative research with semi-structured interviews. Seven participants were interviewed using a hypothetical dementia care scenario in February 2016. Interview transcripts were analysed for themes. Construal Level Theory was applied to analyse participant responses within themes using the Linguistic Category Model. Participants travelled across psychological distance, using abstract thinking to clarify goals and provide a basis for decisions. When thinking concretely participants established boundaries regarding the ethical dilemma. Construal Level Theory gives insight into proxy decision maker thinking and the levels of abstraction used. Understanding what dementia carers think about when making proxy decisions may help nurses to understand their perspectives and to provide appropriate support. © 2018 John Wiley & Sons Ltd.

  5. Rethinking human visual attention: spatial cueing effects and optimality of decisions by honeybees, monkeys and humans.

    PubMed

    Eckstein, Miguel P; Mack, Stephen C; Liston, Dorion B; Bogush, Lisa; Menzel, Randolf; Krauzlis, Richard J

    2013-06-07

    Visual attention is commonly studied by using visuo-spatial cues indicating probable locations of a target and assessing the effect of the validity of the cue on perceptual performance and its neural correlates. Here, we adapt a cueing task to measure spatial cueing effects on the decisions of honeybees and compare their behavior to that of humans and monkeys in a similarly structured two-alternative forced-choice perceptual task. Unlike the typical cueing paradigm in which the stimulus strength remains unchanged within a block of trials, for the monkey and human studies we randomized the contrast of the signal to simulate more real world conditions in which the organism is uncertain about the strength of the signal. A Bayesian ideal observer that weights sensory evidence from cued and uncued locations based on the cue validity to maximize overall performance is used as a benchmark of comparison against the three animals and other suboptimal models: probability matching, ignore the cue, always follow the cue, and an additive bias/single decision threshold model. We find that the cueing effect is pervasive across all three species but is smaller in size than that shown by the Bayesian ideal observer. Humans show a larger cueing effect than monkeys and bees show the smallest effect. The cueing effect and overall performance of the honeybees allows rejection of the models in which the bees are ignoring the cue, following the cue and disregarding stimuli to be discriminated, or adopting a probability matching strategy. Stimulus strength uncertainty also reduces the theoretically predicted variation in cueing effect with stimulus strength of an optimal Bayesian observer and diminishes the size of the cueing effect when stimulus strength is low. A more biologically plausible model that includes an additive bias to the sensory response from the cued location, although not mathematically equivalent to the optimal observer for the case stimulus strength uncertainty, can approximate the benefits of the more computationally complex optimal Bayesian model. We discuss the implications of our findings on the field's common conceptualization of covert visual attention in the cueing task and what aspects, if any, might be unique to humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Eye Tracking and Pupillometry are Indicators of Dissociable Latent Decision Processes

    PubMed Central

    Cavanagh, James F.; Wiecki, Thomas V.; Kochar, Angad; Frank, Michael J.

    2014-01-01

    Can you predict what someone is going to do just by watching them? This is certainly difficult: it would require a clear mapping between observable indicators and unobservable cognitive states. In this report we demonstrate how this is possible by monitoring eye gaze and pupil dilation, which predict dissociable biases during decision making. We quantified decision making using the Drift Diffusion Model (DDM), which provides an algorithmic account of how evidence accumulation and response caution contribute to decisions through separate latent parameters of drift rate and decision threshold, respectively. We used a hierarchical Bayesian estimation approach to assess the single trial influence of observable physiological signals on these latent DDM parameters. Increased eye gaze dwell time specifically predicted an increased drift rate toward the fixated option, irrespective of the value of the option. In contrast, greater pupil dilation specifically predicted an increase in decision threshold during difficult decisions. These findings suggest that eye tracking and pupillometry reflect the operations of dissociated latent decision processes. PMID:24548281

  7. Coding Theory Information Theory and Radar

    DTIC Science & Technology

    2005-01-01

    the design and synthesis of artificial multiagent systems and for the understanding of human decision-making processes. This... altruism that may exist in a complex society. SGT derives its ability to account simultaneously for both group and individual interests from the structure of ...satisficing decision theory as a model of human decision mak- ing. 2 Multi-Attribute Decision Making Many decision problems involve the consideration of

  8. Sharing the Diagnostic Process in the Clinical Teaching Environment: A Case Study

    ERIC Educational Resources Information Center

    Cuello-Garcia; Carlos

    2005-01-01

    Revealing or visualizing the thinking involved in making clinical decisions is a challenge. A case study is presented with a visual implement for sharing the diagnostic process. This technique adapts the Bayesian approach to the case presentation. Pretest probabilities and likelihood ratios are gathered to obtain post-test probabilities of every…

  9. Application of IATA - A case study in evaluating the global and local performance of a Bayesian Network model for Skin Sensitization

    EPA Science Inventory

    Since the publication of the Adverse Outcome Pathway (AOP) for skin sensitization, there have been many efforts to develop systematic approaches to integrate the information generated from different key events for decision making. The types of information characterizing key event...

  10. A Biologically Informed Framework for the Analysis of the PPAR Signaling Pathway using a Bayesian Network

    EPA Science Inventory

    The US EPA’s ToxCastTM program seeks to combine advances in high-throughput screening technology with methodologies from statistics and computer science to develop high-throughput decision support tools for assessing chemical hazard and risk. To develop new methods of analysis of...

  11. A New Method for Predicting Patient Survivorship Using Efficient Bayesian Network Learning

    PubMed Central

    Jiang, Xia; Xue, Diyang; Brufsky, Adam; Khan, Seema; Neapolitan, Richard

    2014-01-01

    The purpose of this investigation is to develop and evaluate a new Bayesian network (BN)-based patient survivorship prediction method. The central hypothesis is that the method predicts patient survivorship well, while having the capability to handle high-dimensional data and be incorporated into a clinical decision support system (CDSS). We have developed EBMC_Survivorship (EBMC_S), which predicts survivorship for each year individually. EBMC_S is based on the EBMC BN algorithm, which has been shown to handle high-dimensional data. BNs have excellent architecture for decision support systems. In this study, we evaluate EBMC_S using the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset, which concerns breast tumors. A 5-fold cross-validation study indicates that EMBC_S performs better than the Cox proportional hazard model and is comparable to the random survival forest method. We show that EBMC_S provides additional information such as sensitivity analyses, which covariates predict each year, and yearly areas under the ROC curve (AUROCs). We conclude that our investigation supports the central hypothesis. PMID:24558297

  12. A new method for predicting patient survivorship using efficient bayesian network learning.

    PubMed

    Jiang, Xia; Xue, Diyang; Brufsky, Adam; Khan, Seema; Neapolitan, Richard

    2014-01-01

    The purpose of this investigation is to develop and evaluate a new Bayesian network (BN)-based patient survivorship prediction method. The central hypothesis is that the method predicts patient survivorship well, while having the capability to handle high-dimensional data and be incorporated into a clinical decision support system (CDSS). We have developed EBMC_Survivorship (EBMC_S), which predicts survivorship for each year individually. EBMC_S is based on the EBMC BN algorithm, which has been shown to handle high-dimensional data. BNs have excellent architecture for decision support systems. In this study, we evaluate EBMC_S using the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset, which concerns breast tumors. A 5-fold cross-validation study indicates that EMBC_S performs better than the Cox proportional hazard model and is comparable to the random survival forest method. We show that EBMC_S provides additional information such as sensitivity analyses, which covariates predict each year, and yearly areas under the ROC curve (AUROCs). We conclude that our investigation supports the central hypothesis.

  13. Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Kelly, Dana; Smith, Curtis; Vedros, Kurt; Galyean, William

    2009-01-01

    This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to provide guidelines for the collection and evaluation of risk and reliability-related data. It is aimed at scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to the investigation and application of a variety of risk and reliability data assessment methods, tools, and techniques. This document provides both: A broad perspective on data analysis collection and evaluation issues. A narrow focus on the methods to implement a comprehensive information repository. The topics addressed herein cover the fundamentals of how data and information are to be used in risk and reliability analysis models and their potential role in decision making. Understanding these topics is essential to attaining a risk informed decision making environment that is being sought by NASA requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements).

  14. A controllable sensor management algorithm capable of learning

    NASA Astrophysics Data System (ADS)

    Osadciw, Lisa A.; Veeramacheneni, Kalyan K.

    2005-03-01

    Sensor management technology progress is challenged by the geographic space it spans, the heterogeneity of the sensors, and the real-time timeframes within which plans controlling the assets are executed. This paper presents a new sensor management paradigm and demonstrates its application in a sensor management algorithm designed for a biometric access control system. This approach consists of an artificial intelligence (AI) algorithm focused on uncertainty measures, which makes the high level decisions to reduce uncertainties and interfaces with the user, integrated cohesively with a bottom up evolutionary algorithm, which optimizes the sensor network"s operation as determined by the AI algorithm. The sensor management algorithm presented is composed of a Bayesian network, the AI algorithm component, and a swarm optimization algorithm, the evolutionary algorithm. Thus, the algorithm can change its own performance goals in real-time and will modify its own decisions based on observed measures within the sensor network. The definition of the measures as well as the Bayesian network determine the robustness of the algorithm and its utility in reacting dynamically to changes in the global system.

  15. Top quark produced through the electroweak force: Discovery using the matrix element analysis and search for heavy gauge bosons using boosted decision trees

    NASA Astrophysics Data System (ADS)

    Pangilinan, Monica

    The top quark produced through the electroweak channel provides a direct measurement of the Vtb element in the CKM matrix which can be viewed as a transition rate of a top quark to a bottom quark. This production channel of top quark is also sensitive to different theories beyond the Standard Model such as heavy charged gauged bosons termed W'. This thesis measures the cross section of the electroweak produced top quark using a technique based on using the matrix elements of the processes under consideration. The technique is applied to 2.3 fb--1 of data from the DO detector. From a comparison of the matrix element discriminants between data and the signal and background model using Bayesian statistics, we measure the cross section of the top quark produced through the electroweak mechanism spp¯→ tb+X,tqb+X=4.30+0.98-1.2 0pb The measured result corresponds to a 4.9sigma Gaussian-equivalent significance. By combining this analysis with other analyses based on the Bayesian Neural Network (BNN) and Boosted Decision Tree (BDT) method, the measured cross section is 3.94 +/- 0.88 pb with a significance of 5.0sigma, resulting in the discovery of electroweak produced top quarks. Using this measured cross section and constraining |Vtb| < 1, the 95% confidence level (C.L.) lower limit is |Vtb| > 0.78. Additionally, a search is made for the production of W' using the same samples from the electroweak produced top quark. An analysis based on the BDT method is used to separate the signal from expected backgrounds. No significant excess is found and 95% C.L. upper limits on the production cross section are set for W' with masses within 600--950 GeV. For four general models of W' boson production using decay channel W' → tb¯, the lower mass limits are the following: M( W'L with SM couplings) > 840 GeV; M( W'R ) > 880 GeV or 890 GeV if the right-handed neutrino is lighter or heavier than W'R ; and M( W'L+R ) > 915 GeV.

  16. Heuristics as Bayesian inference under extreme priors.

    PubMed

    Parpart, Paula; Jones, Matt; Love, Bradley C

    2018-05-01

    Simple heuristics are often regarded as tractable decision strategies because they ignore a great deal of information in the input data. One puzzle is why heuristics can outperform full-information models, such as linear regression, which make full use of the available information. These "less-is-more" effects, in which a relatively simpler model outperforms a more complex model, are prevalent throughout cognitive science, and are frequently argued to demonstrate an inherent advantage of simplifying computation or ignoring information. In contrast, we show at the computational level (where algorithmic restrictions are set aside) that it is never optimal to discard information. Through a formal Bayesian analysis, we prove that popular heuristics, such as tallying and take-the-best, are formally equivalent to Bayesian inference under the limit of infinitely strong priors. Varying the strength of the prior yields a continuum of Bayesian models with the heuristics at one end and ordinary regression at the other. Critically, intermediate models perform better across all our simulations, suggesting that down-weighting information with the appropriate prior is preferable to entirely ignoring it. Rather than because of their simplicity, our analyses suggest heuristics perform well because they implement strong priors that approximate the actual structure of the environment. We end by considering how new heuristics could be derived by infinitely strengthening the priors of other Bayesian models. These formal results have implications for work in psychology, machine learning and economics. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    PubMed

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  18. 21st century neurobehavioral theories of decision making in addiction: Review and evaluation.

    PubMed

    Bickel, Warren K; Mellis, Alexandra M; Snider, Sarah E; Athamneh, Liqa N; Stein, Jeffrey S; Pope, Derek A

    2018-01-01

    This review critically examines neurobehavioral theoretical developments in decision making in addiction in the 21st century. We specifically compare each theory reviewed to seven benchmarks of theoretical robustness, based on their ability to address: why some commodities are addictive; developmental trends in addiction; addiction-related anhedonia; self-defeating patterns of behavior in addiction; why addiction co-occurs with other unhealthy behaviors; and, finally, means for the repair of addiction. We have included only self-contained theories or hypotheses which have been developed or extended in the 21st century to address decision making in addiction. We thus review seven distinct theories of decision making in addiction: learning theories, incentive-sensitization theory, dopamine imbalance and systems models, opponent process theory, strength models of self-control failure, the competing neurobehavioral decision systems theory, and the triadic systems theory of addiction. Finally, we have directly compared the performance of each of these theories based on the aforementioned benchmarks, and highlighted key points at which several theories have coalesced. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Ethical Behavior and Ajzen’s Theory of Planned Behavior Applied to the Decision to Obtain Professional Credentials

    DTIC Science & Technology

    2015-03-26

    ETHICAL BEHAVIOR AND AJZEN’S THEORY OF PLANNED BEHAVIOR APPLIED TO THE DECISION TO OBTAIN...copyright protection in the United States. AFIT-ENV-15-M-191 ETHICAL BEHAVIOR AND AJZEN’S THEORY OF PLANNED BEHAVIOR APPLIED TO THE DECISION TO...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENV-15-M-191 ETHICAL BEHAVIOR AND AJZEN’S THEORY OF PLANNED BEHAVIOR APPLIED TO THE DECISION

  20. A Theory of Bayesian Data Analysis

    DTIC Science & Technology

    1989-10-10

    and the sim- plification of models," in Evaluation of Econometric Models, J. Kmenta and J. 20 Ramsey , eds., Academic Press, 245-268. Edwards, W...Evaluation of Econometric Models, ed. by J. Kmenta and J. Ramsey , Academic Press, 197-217. Hill, Bruce M., (1980c), Review of Specification Searches, by E...also Hill (1970a, 1975a) for earlier thoughts the subject with regard to tests of significance, and Smith.(1986). The Baesi theory of tests of

Top