Sample records for bayesian experimental design

  1. Final Report, DOE Early Career Award: Predictive modeling of complex physical systems: new tools for statistical inference, uncertainty quantification, and experimental design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzouk, Youssef

    Predictive simulation of complex physical systems increasingly rests on the interplay of experimental observations with computational models. Key inputs, parameters, or structural aspects of models may be incomplete or unknown, and must be developed from indirect and limited observations. At the same time, quantified uncertainties are needed to qualify computational predictions in the support of design and decision-making. In this context, Bayesian statistics provides a foundation for inference from noisy and limited data, but at prohibitive computional expense. This project intends to make rigorous predictive modeling *feasible* in complex physical systems, via accelerated and scalable tools for uncertainty quantification, Bayesianmore » inference, and experimental design. Specific objectives are as follows: 1. Develop adaptive posterior approximations and dimensionality reduction approaches for Bayesian inference in high-dimensional nonlinear systems. 2. Extend accelerated Bayesian methodologies to large-scale {\\em sequential} data assimilation, fully treating nonlinear models and non-Gaussian state and parameter distributions. 3. Devise efficient surrogate-based methods for Bayesian model selection and the learning of model structure. 4. Develop scalable simulation/optimization approaches to nonlinear Bayesian experimental design, for both parameter inference and model selection. 5. Demonstrate these inferential tools on chemical kinetic models in reacting flow, constructing and refining thermochemical and electrochemical models from limited data. Demonstrate Bayesian filtering on canonical stochastic PDEs and in the dynamic estimation of inhomogeneous subsurface properties and flow fields.« less

  2. Using Alien Coins to Test Whether Simple Inference Is Bayesian

    ERIC Educational Resources Information Center

    Cassey, Peter; Hawkins, Guy E.; Donkin, Chris; Brown, Scott D.

    2016-01-01

    Reasoning and inference are well-studied aspects of basic cognition that have been explained as statistically optimal Bayesian inference. Using a simplified experimental design, we conducted quantitative comparisons between Bayesian inference and human inference at the level of individuals. In 3 experiments, with more than 13,000 participants, we…

  3. Robust Bayesian Experimental Design for Conceptual Model Discrimination

    NASA Astrophysics Data System (ADS)

    Pham, H. V.; Tsai, F. T. C.

    2015-12-01

    A robust Bayesian optimal experimental design under uncertainty is presented to provide firm information for model discrimination, given the least number of pumping wells and observation wells. Firm information is the maximum information of a system can be guaranteed from an experimental design. The design is based on the Box-Hill expected entropy decrease (EED) before and after the experiment design and the Bayesian model averaging (BMA) framework. A max-min programming is introduced to choose the robust design that maximizes the minimal Box-Hill EED subject to that the highest expected posterior model probability satisfies a desired probability threshold. The EED is calculated by the Gauss-Hermite quadrature. The BMA method is used to predict future observations and to quantify future observation uncertainty arising from conceptual and parametric uncertainties in calculating EED. Monte Carlo approach is adopted to quantify the uncertainty in the posterior model probabilities. The optimal experimental design is tested by a synthetic 5-layer anisotropic confined aquifer. Nine conceptual groundwater models are constructed due to uncertain geological architecture and boundary condition. High-performance computing is used to enumerate all possible design solutions in order to identify the most plausible groundwater model. Results highlight the impacts of scedasticity in future observation data as well as uncertainty sources on potential pumping and observation locations.

  4. Bayesian Inference for Source Term Estimation: Application to the International Monitoring System Radionuclide Network

    DTIC Science & Technology

    2014-10-01

    de l’exactitude et de la précision), comparativement au modèle de mesure plus simple qui n’utilise pas de multiplicateurs. Importance pour la défense...3) Bayesian experimental design for receptor placement in order to maximize the expected information in the measured concen- tration data for...applications of the Bayesian inferential methodology for source recon- struction have used high-quality concentration data from well- designed atmospheric

  5. Experimental design and Bayesian networks for enhancement of delta-endotoxin production by Bacillus thuringiensis.

    PubMed

    Ennouri, Karim; Ayed, Rayda Ben; Hassen, Hanen Ben; Mazzarello, Maura; Ottaviani, Ennio

    2015-12-01

    Bacillus thuringiensis (Bt) is a Gram-positive bacterium. The entomopathogenic activity of Bt is related to the existence of the crystal consisting of protoxins, also called delta-endotoxins. In order to optimize and explain the production of delta-endotoxins of Bacillus thuringiensis kurstaki, we studied seven medium components: soybean meal, starch, KH₂PO₄, K₂HPO₄, FeSO₄, MnSO₄, and MgSO₄and their relationships with the concentration of delta-endotoxins using an experimental design (Plackett-Burman design) and Bayesian networks modelling. The effects of the ingredients of the culture medium on delta-endotoxins production were estimated. The developed model showed that different medium components are important for the Bacillus thuringiensis fermentation. The most important factors influenced the production of delta-endotoxins are FeSO₄, K2HPO₄, starch and soybean meal. Indeed, it was found that soybean meal, K₂HPO₄, KH₂PO₄and starch also showed positive effect on the delta-endotoxins production. However, FeSO4 and MnSO4 expressed opposite effect. The developed model, based on Bayesian techniques, can automatically learn emerging models in data to serve in the prediction of delta-endotoxins concentrations. The constructed model in the present study implies that experimental design (Plackett-Burman design) joined with Bayesian networks method could be used for identification of effect variables on delta-endotoxins variation.

  6. A Bayesian pick-the-winner design in a randomized phase II clinical trial.

    PubMed

    Chen, Dung-Tsa; Huang, Po-Yu; Lin, Hui-Yi; Chiappori, Alberto A; Gabrilovich, Dmitry I; Haura, Eric B; Antonia, Scott J; Gray, Jhanelle E

    2017-10-24

    Many phase II clinical trials evaluate unique experimental drugs/combinations through multi-arm design to expedite the screening process (early termination of ineffective drugs) and to identify the most effective drug (pick the winner) to warrant a phase III trial. Various statistical approaches have been developed for the pick-the-winner design but have been criticized for lack of objective comparison among the drug agents. We developed a Bayesian pick-the-winner design by integrating a Bayesian posterior probability with Simon two-stage design in a randomized two-arm clinical trial. The Bayesian posterior probability, as the rule to pick the winner, is defined as probability of the response rate in one arm higher than in the other arm. The posterior probability aims to determine the winner when both arms pass the second stage of the Simon two-stage design. When both arms are competitive (i.e., both passing the second stage), the Bayesian posterior probability performs better to correctly identify the winner compared with the Fisher exact test in the simulation study. In comparison to a standard two-arm randomized design, the Bayesian pick-the-winner design has a higher power to determine a clear winner. In application to two studies, the approach is able to perform statistical comparison of two treatment arms and provides a winner probability (Bayesian posterior probability) to statistically justify the winning arm. We developed an integrated design that utilizes Bayesian posterior probability, Simon two-stage design, and randomization into a unique setting. It gives objective comparisons between the arms to determine the winner.

  7. Fast Bayesian experimental design: Laplace-based importance sampling for the expected information gain

    NASA Astrophysics Data System (ADS)

    Beck, Joakim; Dia, Ben Mansour; Espath, Luis F. R.; Long, Quan; Tempone, Raúl

    2018-06-01

    In calculating expected information gain in optimal Bayesian experimental design, the computation of the inner loop in the classical double-loop Monte Carlo requires a large number of samples and suffers from underflow if the number of samples is small. These drawbacks can be avoided by using an importance sampling approach. We present a computationally efficient method for optimal Bayesian experimental design that introduces importance sampling based on the Laplace method to the inner loop. We derive the optimal values for the method parameters in which the average computational cost is minimized according to the desired error tolerance. We use three numerical examples to demonstrate the computational efficiency of our method compared with the classical double-loop Monte Carlo, and a more recent single-loop Monte Carlo method that uses the Laplace method as an approximation of the return value of the inner loop. The first example is a scalar problem that is linear in the uncertain parameter. The second example is a nonlinear scalar problem. The third example deals with the optimal sensor placement for an electrical impedance tomography experiment to recover the fiber orientation in laminate composites.

  8. Bayesian experimental design for models with intractable likelihoods.

    PubMed

    Drovandi, Christopher C; Pettitt, Anthony N

    2013-12-01

    In this paper we present a methodology for designing experiments for efficiently estimating the parameters of models with computationally intractable likelihoods. The approach combines a commonly used methodology for robust experimental design, based on Markov chain Monte Carlo sampling, with approximate Bayesian computation (ABC) to ensure that no likelihood evaluations are required. The utility function considered for precise parameter estimation is based upon the precision of the ABC posterior distribution, which we form efficiently via the ABC rejection algorithm based on pre-computed model simulations. Our focus is on stochastic models and, in particular, we investigate the methodology for Markov process models of epidemics and macroparasite population evolution. The macroparasite example involves a multivariate process and we assess the loss of information from not observing all variables. © 2013, The International Biometric Society.

  9. Bayesian cross-entropy methodology for optimal design of validation experiments

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Mahadevan, S.

    2006-07-01

    An important concern in the design of validation experiments is how to incorporate the mathematical model in the design in order to allow conclusive comparisons of model prediction with experimental output in model assessment. The classical experimental design methods are more suitable for phenomena discovery and may result in a subjective, expensive, time-consuming and ineffective design that may adversely impact these comparisons. In this paper, an integrated Bayesian cross-entropy methodology is proposed to perform the optimal design of validation experiments incorporating the computational model. The expected cross entropy, an information-theoretic distance between the distributions of model prediction and experimental observation, is defined as a utility function to measure the similarity of two distributions. A simulated annealing algorithm is used to find optimal values of input variables through minimizing or maximizing the expected cross entropy. The measured data after testing with the optimum input values are used to update the distribution of the experimental output using Bayes theorem. The procedure is repeated to adaptively design the required number of experiments for model assessment, each time ensuring that the experiment provides effective comparison for validation. The methodology is illustrated for the optimal design of validation experiments for a three-leg bolted joint structure and a composite helicopter rotor hub component.

  10. Bayesian Dose-Response Modeling in Sparse Data

    NASA Astrophysics Data System (ADS)

    Kim, Steven B.

    This book discusses Bayesian dose-response modeling in small samples applied to two different settings. The first setting is early phase clinical trials, and the second setting is toxicology studies in cancer risk assessment. In early phase clinical trials, experimental units are humans who are actual patients. Prior to a clinical trial, opinions from multiple subject area experts are generally more informative than the opinion of a single expert, but we may face a dilemma when they have disagreeing prior opinions. In this regard, we consider compromising the disagreement and compare two different approaches for making a decision. In addition to combining multiple opinions, we also address balancing two levels of ethics in early phase clinical trials. The first level is individual-level ethics which reflects the perspective of trial participants. The second level is population-level ethics which reflects the perspective of future patients. We extensively compare two existing statistical methods which focus on each perspective and propose a new method which balances the two conflicting perspectives. In toxicology studies, experimental units are living animals. Here we focus on a potential non-monotonic dose-response relationship which is known as hormesis. Briefly, hormesis is a phenomenon which can be characterized by a beneficial effect at low doses and a harmful effect at high doses. In cancer risk assessments, the estimation of a parameter, which is known as a benchmark dose, can be highly sensitive to a class of assumptions, monotonicity or hormesis. In this regard, we propose a robust approach which considers both monotonicity and hormesis as a possibility. In addition, We discuss statistical hypothesis testing for hormesis and consider various experimental designs for detecting hormesis based on Bayesian decision theory. Past experiments have not been optimally designed for testing for hormesis, and some Bayesian optimal designs may not be optimal under a wrong parametric assumption. In this regard, we consider a robust experimental design which does not require any parametric assumption.

  11. Probabilistic Inference: Task Dependency and Individual Differences of Probability Weighting Revealed by Hierarchical Bayesian Modeling

    PubMed Central

    Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno

    2016-01-01

    Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision. PMID:27303323

  12. Bayesian Probability Theory

    NASA Astrophysics Data System (ADS)

    von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo

    2014-06-01

    Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.

  13. Bayesian Inference in the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2008-01-01

    This paper provides an elementary tutorial overview of Bayesian inference and its potential for application in aerospace experimentation in general and wind tunnel testing in particular. Bayes Theorem is reviewed and examples are provided to illustrate how it can be applied to objectively revise prior knowledge by incorporating insights subsequently obtained from additional observations, resulting in new (posterior) knowledge that combines information from both sources. A logical merger of Bayesian methods and certain aspects of Response Surface Modeling is explored. Specific applications to wind tunnel testing, computational code validation, and instrumentation calibration are discussed.

  14. An adaptive Gaussian process-based method for efficient Bayesian experimental design in groundwater contaminant source identification problems: ADAPTIVE GAUSSIAN PROCESS-BASED INVERSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiangjiang; Li, Weixuan; Zeng, Lingzao

    Surrogate models are commonly used in Bayesian approaches such as Markov Chain Monte Carlo (MCMC) to avoid repetitive CPU-demanding model evaluations. However, the approximation error of a surrogate may lead to biased estimations of the posterior distribution. This bias can be corrected by constructing a very accurate surrogate or implementing MCMC in a two-stage manner. Since the two-stage MCMC requires extra original model evaluations, the computational cost is still high. If the information of measurement is incorporated, a locally accurate approximation of the original model can be adaptively constructed with low computational cost. Based on this idea, we propose amore » Gaussian process (GP) surrogate-based Bayesian experimental design and parameter estimation approach for groundwater contaminant source identification problems. A major advantage of the GP surrogate is that it provides a convenient estimation of the approximation error, which can be incorporated in the Bayesian formula to avoid over-confident estimation of the posterior distribution. The proposed approach is tested with a numerical case study. Without sacrificing the estimation accuracy, the new approach achieves about 200 times of speed-up compared to our previous work using two-stage MCMC.« less

  15. Efficient Bayesian experimental design for contaminant source identification

    NASA Astrophysics Data System (ADS)

    Zhang, Jiangjiang; Zeng, Lingzao; Chen, Cheng; Chen, Dingjiang; Wu, Laosheng

    2015-01-01

    In this study, an efficient full Bayesian approach is developed for the optimal sampling well location design and source parameters identification of groundwater contaminants. An information measure, i.e., the relative entropy, is employed to quantify the information gain from concentration measurements in identifying unknown parameters. In this approach, the sampling locations that give the maximum expected relative entropy are selected as the optimal design. After the sampling locations are determined, a Bayesian approach based on Markov Chain Monte Carlo (MCMC) is used to estimate unknown parameters. In both the design and estimation, the contaminant transport equation is required to be solved many times to evaluate the likelihood. To reduce the computational burden, an interpolation method based on the adaptive sparse grid is utilized to construct a surrogate for the contaminant transport equation. The approximated likelihood can be evaluated directly from the surrogate, which greatly accelerates the design and estimation process. The accuracy and efficiency of our approach are demonstrated through numerical case studies. It is shown that the methods can be used to assist in both single sampling location and monitoring network design for contaminant source identifications in groundwater.

  16. Diagnostic accuracy of a bayesian latent group analysis for the detection of malingering-related poor effort.

    PubMed

    Ortega, Alonso; Labrenz, Stephan; Markowitsch, Hans J; Piefke, Martina

    2013-01-01

    In the last decade, different statistical techniques have been introduced to improve assessment of malingering-related poor effort. In this context, we have recently shown preliminary evidence that a Bayesian latent group model may help to optimize classification accuracy using a simulation research design. In the present study, we conducted two analyses. Firstly, we evaluated how accurately this Bayesian approach can distinguish between participants answering in an honest way (honest response group) and participants feigning cognitive impairment (experimental malingering group). Secondly, we tested the accuracy of our model in the differentiation between patients who had real cognitive deficits (cognitively impaired group) and participants who belonged to the experimental malingering group. All Bayesian analyses were conducted using the raw scores of a visual recognition forced-choice task (2AFC), the Test of Memory Malingering (TOMM, Trial 2), and the Word Memory Test (WMT, primary effort subtests). The first analysis showed 100% accuracy for the Bayesian model in distinguishing participants of both groups with all effort measures. The second analysis showed outstanding overall accuracy of the Bayesian model when estimates were obtained from the 2AFC and the TOMM raw scores. Diagnostic accuracy of the Bayesian model diminished when using the WMT total raw scores. Despite, overall diagnostic accuracy can still be considered excellent. The most plausible explanation for this decrement is the low performance in verbal recognition and fluency tasks of some patients of the cognitively impaired group. Additionally, the Bayesian model provides individual estimates, p(zi |D), of examinees' effort levels. In conclusion, both high classification accuracy levels and Bayesian individual estimates of effort may be very useful for clinicians when assessing for effort in medico-legal settings.

  17. Assessing noninferiority in a three-arm trial using the Bayesian approach.

    PubMed

    Ghosh, Pulak; Nathoo, Farouk; Gönen, Mithat; Tiwari, Ram C

    2011-07-10

    Non-inferiority trials, which aim to demonstrate that a test product is not worse than a competitor by more than a pre-specified small amount, are of great importance to the pharmaceutical community. As a result, methodology for designing and analyzing such trials is required, and developing new methods for such analysis is an important area of statistical research. The three-arm trial consists of a placebo, a reference and an experimental treatment, and simultaneously tests the superiority of the reference over the placebo along with comparing this reference to an experimental treatment. In this paper, we consider the analysis of non-inferiority trials using Bayesian methods which incorporate both parametric as well as semi-parametric models. The resulting testing approach is both flexible and robust. The benefit of the proposed Bayesian methods is assessed via simulation, based on a study examining home-based blood pressure interventions. Copyright © 2011 John Wiley & Sons, Ltd.

  18. MIDAS: a practical Bayesian design for platform trials with molecularly targeted agents.

    PubMed

    Yuan, Ying; Guo, Beibei; Munsell, Mark; Lu, Karen; Jazaeri, Amir

    2016-09-30

    Recent success of immunotherapy and other targeted therapies in cancer treatment has led to an unprecedented surge in the number of novel therapeutic agents that need to be evaluated in clinical trials. Traditional phase II clinical trial designs were developed for evaluating one candidate treatment at a time and thus not efficient for this task. We propose a Bayesian phase II platform design, the multi-candidate iterative design with adaptive selection (MIDAS), which allows investigators to continuously screen a large number of candidate agents in an efficient and seamless fashion. MIDAS consists of one control arm, which contains a standard therapy as the control, and several experimental arms, which contain the experimental agents. Patients are adaptively randomized to the control and experimental agents based on their estimated efficacy. During the trial, we adaptively drop inefficacious or overly toxic agents and 'graduate' the promising agents from the trial to the next stage of development. Whenever an experimental agent graduates or is dropped, the corresponding arm opens immediately for testing the next available new agent. Simulation studies show that MIDAS substantially outperforms the conventional approach. The proposed design yields a significantly higher probability for identifying the promising agents and dropping the futile agents. In addition, MIDAS requires only one master protocol, which streamlines trial conduct and substantially decreases the overhead burden. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. MIDAS: A Practical Bayesian Design for Platform Trials with Molecularly Targeted Agents

    PubMed Central

    Yuan, Ying; Guo, Beibei; Munsell, Mark; Lu, Karen; Jazaeri, Amir

    2016-01-01

    Recent success of immunotherapy and other targeted therapies in cancer treatment has led to an unprecedented surge in the number of novel therapeutic agents that need to be evaluated in clinical trials. Traditional phase II clinical trial designs were developed for evaluating one candidate treatment at a time, and thus not efficient for this task. We propose a Bayesian phase II platform design, the Multi-candidate Iterative Design with Adaptive Selection (MIDAS), which allows investigators to continuously screen a large number of candidate agents in an efficient and seamless fashion. MIDAS consists of one control arm, which contains a standard therapy as the control, and several experimental arms, which contain the experimental agents. Patients are adaptively randomized to the control and experimental agents based on their estimated efficacy. During the trial, we adaptively drop inefficacious or overly toxic agents and “graduate” the promising agents from the trial to the next stage of development. Whenever an experimental agent graduates or is dropped, the corresponding arm opens immediately for testing the next available new agent. Simulation studies show that MIDAS substantially outperforms the conventional approach. The proposed design yields a significantly higher probability for identifying the promising agents and dropping the futile agents. In addition, MIDAS requires only one master protocol, which streamlines trial conduct and substantially decreases the overhead burden. PMID:27112322

  20. A Surrogate Approach to the Experimental Optimization of Multielement Airfoils

    NASA Technical Reports Server (NTRS)

    Otto, John C.; Landman, Drew; Patera, Anthony T.

    1996-01-01

    The incorporation of experimental test data into the optimization process is accomplished through the use of Bayesian-validated surrogates. In the surrogate approach, a surrogate for the experiment (e.g., a response surface) serves in the optimization process. The validation step of the framework provides a qualitative assessment of the surrogate quality, and bounds the surrogate-for-experiment error on designs "near" surrogate-predicted optimal designs. The utility of the framework is demonstrated through its application to the experimental selection of the trailing edge ap position to achieve a design lift coefficient for a three-element airfoil.

  1. An algorithm for generating all possible 2(p-q) fractional factorial designs and its use in scientific experimentation

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1973-01-01

    An algorithm and computer program are presented for generating all the distinct 2(p-q) fractional factorial designs. Some applications of this algorithm to the construction of tables of designs and of designs for nonstandard situations and its use in Bayesian design are discussed. An appendix includes a discussion of an actual experiment whose design was facilitated by the algorithm.

  2. Accounting for uncertainty in the historical response rate of the standard treatment in single-arm two-stage designs based on Bayesian power functions.

    PubMed

    Matano, Francesca; Sambucini, Valeria

    2016-11-01

    In phase II single-arm studies, the response rate of the experimental treatment is typically compared with a fixed target value that should ideally represent the true response rate for the standard of care therapy. Generally, this target value is estimated through previous data, but the inherent variability in the historical response rate is not taken into account. In this paper, we present a Bayesian procedure to construct single-arm two-stage designs that allows to incorporate uncertainty in the response rate of the standard treatment. In both stages, the sample size determination criterion is based on the concepts of conditional and predictive Bayesian power functions. Different kinds of prior distributions, which play different roles in the designs, are introduced, and some guidelines for their elicitation are described. Finally, some numerical results about the performance of the designs are provided and a real data example is illustrated. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Gaussian process surrogates for failure detection: A Bayesian experimental design approach

    NASA Astrophysics Data System (ADS)

    Wang, Hongqiao; Lin, Guang; Li, Jinglai

    2016-05-01

    An important task of uncertainty quantification is to identify the probability of undesired events, in particular, system failures, caused by various sources of uncertainties. In this work we consider the construction of Gaussian process surrogates for failure detection and failure probability estimation. In particular, we consider the situation that the underlying computer models are extremely expensive, and in this setting, determining the sampling points in the state space is of essential importance. We formulate the problem as an optimal experimental design for Bayesian inferences of the limit state (i.e., the failure boundary) and propose an efficient numerical scheme to solve the resulting optimization problem. In particular, the proposed limit-state inference method is capable of determining multiple sampling points at a time, and thus it is well suited for problems where multiple computer simulations can be performed in parallel. The accuracy and performance of the proposed method is demonstrated by both academic and practical examples.

  4. A Bayesian multi-stage cost-effectiveness design for animal studies in stroke research

    PubMed Central

    Cai, Chunyan; Ning, Jing; Huang, Xuelin

    2017-01-01

    Much progress has been made in the area of adaptive designs for clinical trials. However, little has been done regarding adaptive designs to identify optimal treatment strategies in animal studies. Motivated by an animal study of a novel strategy for treating strokes, we propose a Bayesian multi-stage cost-effectiveness design to simultaneously identify the optimal dose and determine the therapeutic treatment window for administrating the experimental agent. We consider a non-monotonic pattern for the dose-schedule-efficacy relationship and develop an adaptive shrinkage algorithm to assign more cohorts to admissible strategies. We conduct simulation studies to evaluate the performance of the proposed design by comparing it with two standard designs. These simulation studies show that the proposed design yields a significantly higher probability of selecting the optimal strategy, while it is generally more efficient and practical in terms of resource usage. PMID:27405325

  5. A Bayesian Perspective on Methodologies for Drawing Causal Inferences in Experimental and Non-Experimental Settings

    ERIC Educational Resources Information Center

    Kaplan, David

    2010-01-01

    In recent years, attention in the education community has focused on the need for evidenced-based research, particularly educational policies and interventions that rest on "scientifically based research". The emphasis on scientifically based research in education has led to a corresponding increase in studies designed to provide strong warrants…

  6. A Primer on Bayesian Analysis for Experimental Psychopathologists

    PubMed Central

    Krypotos, Angelos-Miltiadis; Blanken, Tessa F.; Arnaudova, Inna; Matzke, Dora; Beckers, Tom

    2016-01-01

    The principal goals of experimental psychopathology (EPP) research are to offer insights into the pathogenic mechanisms of mental disorders and to provide a stable ground for the development of clinical interventions. The main message of the present article is that those goals are better served by the adoption of Bayesian statistics than by the continued use of null-hypothesis significance testing (NHST). In the first part of the article we list the main disadvantages of NHST and explain why those disadvantages limit the conclusions that can be drawn from EPP research. Next, we highlight the advantages of Bayesian statistics. To illustrate, we then pit NHST and Bayesian analysis against each other using an experimental data set from our lab. Finally, we discuss some challenges when adopting Bayesian statistics. We hope that the present article will encourage experimental psychopathologists to embrace Bayesian statistics, which could strengthen the conclusions drawn from EPP research. PMID:28748068

  7. A Hierarchical Modeling Approach to Data Analysis and Study Design in a Multi-Site Experimental fMRI Study

    ERIC Educational Resources Information Center

    Zhou, Bo; Konstorum, Anna; Duong, Thao; Tieu, Kinh H.; Wells, William M.; Brown, Gregory G.; Stern, Hal S.; Shahbaba, Babak

    2013-01-01

    We propose a hierarchical Bayesian model for analyzing multi-site experimental fMRI studies. Our method takes the hierarchical structure of the data (subjects are nested within sites, and there are multiple observations per subject) into account and allows for modeling between-site variation. Using posterior predictive model checking and model…

  8. A Robust Adaptive Autonomous Approach to Optimal Experimental Design

    NASA Astrophysics Data System (ADS)

    Gu, Hairong

    Experimentation is the fundamental tool of scientific inquiries to understand the laws governing the nature and human behaviors. Many complex real-world experimental scenarios, particularly in quest of prediction accuracy, often encounter difficulties to conduct experiments using an existing experimental procedure for the following two reasons. First, the existing experimental procedures require a parametric model to serve as the proxy of the latent data structure or data-generating mechanism at the beginning of an experiment. However, for those experimental scenarios of concern, a sound model is often unavailable before an experiment. Second, those experimental scenarios usually contain a large number of design variables, which potentially leads to a lengthy and costly data collection cycle. Incompetently, the existing experimental procedures are unable to optimize large-scale experiments so as to minimize the experimental length and cost. Facing the two challenges in those experimental scenarios, the aim of the present study is to develop a new experimental procedure that allows an experiment to be conducted without the assumption of a parametric model while still achieving satisfactory prediction, and performs optimization of experimental designs to improve the efficiency of an experiment. The new experimental procedure developed in the present study is named robust adaptive autonomous system (RAAS). RAAS is a procedure for sequential experiments composed of multiple experimental trials, which performs function estimation, variable selection, reverse prediction and design optimization on each trial. Directly addressing the challenges in those experimental scenarios of concern, function estimation and variable selection are performed by data-driven modeling methods to generate a predictive model from data collected during the course of an experiment, thus exempting the requirement of a parametric model at the beginning of an experiment; design optimization is performed to select experimental designs on the fly of an experiment based on their usefulness so that fewest designs are needed to reach useful inferential conclusions. Technically, function estimation is realized by Bayesian P-splines, variable selection is realized by Bayesian spike-and-slab prior, reverse prediction is realized by grid-search and design optimization is realized by the concepts of active learning. The present study demonstrated that RAAS achieves statistical robustness by making accurate predictions without the assumption of a parametric model serving as the proxy of latent data structure while the existing procedures can draw poor statistical inferences if a misspecified model is assumed; RAAS also achieves inferential efficiency by taking fewer designs to acquire useful statistical inferences than non-optimal procedures. Thus, RAAS is expected to be a principled solution to real-world experimental scenarios pursuing robust prediction and efficient experimentation.

  9. Incorporating approximation error in surrogate based Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zeng, L.; Li, W.; Wu, L.

    2015-12-01

    There are increasing interests in applying surrogates for inverse Bayesian modeling to reduce repetitive evaluations of original model. In this way, the computational cost is expected to be saved. However, the approximation error of surrogate model is usually overlooked. This is partly because that it is difficult to evaluate the approximation error for many surrogates. Previous studies have shown that, the direct combination of surrogates and Bayesian methods (e.g., Markov Chain Monte Carlo, MCMC) may lead to biased estimations when the surrogate cannot emulate the highly nonlinear original system. This problem can be alleviated by implementing MCMC in a two-stage manner. However, the computational cost is still high since a relatively large number of original model simulations are required. In this study, we illustrate the importance of incorporating approximation error in inverse Bayesian modeling. Gaussian process (GP) is chosen to construct the surrogate for its convenience in approximation error evaluation. Numerical cases of Bayesian experimental design and parameter estimation for contaminant source identification are used to illustrate this idea. It is shown that, once the surrogate approximation error is well incorporated into Bayesian framework, promising results can be obtained even when the surrogate is directly used, and no further original model simulations are required.

  10. A Bayesian-frequentist two-stage single-arm phase II clinical trial design.

    PubMed

    Dong, Gaohong; Shih, Weichung Joe; Moore, Dirk; Quan, Hui; Marcella, Stephen

    2012-08-30

    It is well-known that both frequentist and Bayesian clinical trial designs have their own advantages and disadvantages. To have better properties inherited from these two types of designs, we developed a Bayesian-frequentist two-stage single-arm phase II clinical trial design. This design allows both early acceptance and rejection of the null hypothesis ( H(0) ). The measures (for example probability of trial early termination, expected sample size, etc.) of the design properties under both frequentist and Bayesian settings are derived. Moreover, under the Bayesian setting, the upper and lower boundaries are determined with predictive probability of trial success outcome. Given a beta prior and a sample size for stage I, based on the marginal distribution of the responses at stage I, we derived Bayesian Type I and Type II error rates. By controlling both frequentist and Bayesian error rates, the Bayesian-frequentist two-stage design has special features compared with other two-stage designs. Copyright © 2012 John Wiley & Sons, Ltd.

  11. A Bayesian predictive two-stage design for phase II clinical trials.

    PubMed

    Sambucini, Valeria

    2008-04-15

    In this paper, we propose a Bayesian two-stage design for phase II clinical trials, which represents a predictive version of the single threshold design (STD) recently introduced by Tan and Machin. The STD two-stage sample sizes are determined specifying a minimum threshold for the posterior probability that the true response rate exceeds a pre-specified target value and assuming that the observed response rate is slightly higher than the target. Unlike the STD, we do not refer to a fixed experimental outcome, but take into account the uncertainty about future data. In both stages, the design aims to control the probability of getting a large posterior probability that the true response rate exceeds the target value. Such a probability is expressed in terms of prior predictive distributions of the data. The performance of the design is based on the distinction between analysis and design priors, recently introduced in the literature. The properties of the method are studied when all the design parameters vary.

  12. Bayesian truthing as experimental verification of C4ISR sensors

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Romanov, Volodymyr; Wang, Wenjian; Nielsen, Thomas; Kostrzewski, Andrew

    2015-05-01

    In this paper, the general methodology for experimental verification/validation of C4ISR and other sensors' performance, is presented, based on Bayesian inference, in general, and binary sensors, in particular. This methodology, called Bayesian Truthing, defines Performance Metrics for binary sensors in: physics, optics, electronics, medicine, law enforcement, C3ISR, QC, ATR (Automatic Target Recognition), terrorism related events, and many others. For Bayesian Truthing, the sensing medium itself is not what is truly important; it is how the decision process is affected.

  13. Identifiability of sorption parameters in stirred flow-through reactor experiments and their identification with a Bayesian approach.

    PubMed

    Nicoulaud-Gouin, V; Garcia-Sanchez, L; Giacalone, M; Attard, J C; Martin-Garin, A; Bois, F Y

    2016-10-01

    This paper addresses the methodological conditions -particularly experimental design and statistical inference- ensuring the identifiability of sorption parameters from breakthrough curves measured during stirred flow-through reactor experiments also known as continuous flow stirred-tank reactor (CSTR) experiments. The equilibrium-kinetic (EK) sorption model was selected as nonequilibrium parameterization embedding the K d approach. Parameter identifiability was studied formally on the equations governing outlet concentrations. It was also studied numerically on 6 simulated CSTR experiments on a soil with known equilibrium-kinetic sorption parameters. EK sorption parameters can not be identified from a single breakthrough curve of a CSTR experiment, because K d,1 and k - were diagnosed collinear. For pairs of CSTR experiments, Bayesian inference allowed to select the correct models of sorption and error among sorption alternatives. Bayesian inference was conducted with SAMCAT software (Sensitivity Analysis and Markov Chain simulations Applied to Transfer models) which launched the simulations through the embedded simulation engine GNU-MCSim, and automated their configuration and post-processing. Experimental designs consisting in varying flow rates between experiments reaching equilibrium at contamination stage were found optimal, because they simultaneously gave accurate sorption parameters and predictions. Bayesian results were comparable to maximum likehood method but they avoided convergence problems, the marginal likelihood allowed to compare all models, and credible interval gave directly the uncertainty of sorption parameters θ. Although these findings are limited to the specific conditions studied here, in particular the considered sorption model, the chosen parameter values and error structure, they help in the conception and analysis of future CSTR experiments with radionuclides whose kinetic behaviour is suspected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Textual and visual content-based anti-phishing: a Bayesian approach.

    PubMed

    Zhang, Haijun; Liu, Gang; Chow, Tommy W S; Liu, Wenyin

    2011-10-01

    A novel framework using a Bayesian approach for content-based phishing web page detection is presented. Our model takes into account textual and visual contents to measure the similarity between the protected web page and suspicious web pages. A text classifier, an image classifier, and an algorithm fusing the results from classifiers are introduced. An outstanding feature of this paper is the exploration of a Bayesian model to estimate the matching threshold. This is required in the classifier for determining the class of the web page and identifying whether the web page is phishing or not. In the text classifier, the naive Bayes rule is used to calculate the probability that a web page is phishing. In the image classifier, the earth mover's distance is employed to measure the visual similarity, and our Bayesian model is designed to determine the threshold. In the data fusion algorithm, the Bayes theory is used to synthesize the classification results from textual and visual content. The effectiveness of our proposed approach was examined in a large-scale dataset collected from real phishing cases. Experimental results demonstrated that the text classifier and the image classifier we designed deliver promising results, the fusion algorithm outperforms either of the individual classifiers, and our model can be adapted to different phishing cases. © 2011 IEEE

  15. Implementation of a Bayesian design in a dose-escalation study of an experimental agent in healthy volunteers.

    PubMed

    Zhou, Yinghui; Whitehead, John; Korhonen, Pasi; Mustonen, Mika

    2008-03-01

    Bayesian decision procedures have recently been developed for dose escalation in phase I clinical trials concerning pharmacokinetic responses observed in healthy volunteers. This article describes how that general methodology was extended and evaluated for implementation in a specific phase I trial of a novel compound. At the time of writing, the study is ongoing, and it will be some time before the sponsor will wish to put the results into the public domain. This article is an account of how the study was designed in a way that should prove to be safe, accurate, and efficient whatever the true nature of the compound. The study involves the observation of two pharmacokinetic endpoints relating to the plasma concentration of the compound itself and of a metabolite as well as a safety endpoint relating to the occurrence of adverse events. Construction of the design and its evaluation via simulation are presented.

  16. Chemical purity using quantitative 1H-nuclear magnetic resonance: a hierarchical Bayesian approach for traceable calibrations

    NASA Astrophysics Data System (ADS)

    Toman, Blaza; Nelson, Michael A.; Lippa, Katrice A.

    2016-10-01

    Chemical purity assessment using quantitative 1H-nuclear magnetic resonance spectroscopy is a method based on ratio references of mass and signal intensity of the analyte species to that of chemical standards of known purity. As such, it is an example of a calculation using a known measurement equation with multiple inputs. Though multiple samples are often analyzed during purity evaluations in order to assess measurement repeatability, the uncertainty evaluation must also account for contributions from inputs to the measurement equation. Furthermore, there may be other uncertainty components inherent in the experimental design, such as independent implementation of multiple calibration standards. As such, the uncertainty evaluation is not purely bottom up (based on the measurement equation) or top down (based on the experimental design), but inherently contains elements of both. This hybrid form of uncertainty analysis is readily implemented with Bayesian statistical analysis. In this article we describe this type of analysis in detail and illustrate it using data from an evaluation of chemical purity and its uncertainty for a folic acid material.

  17. Statistical modelling of networked human-automation performance using working memory capacity.

    PubMed

    Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja

    2014-01-01

    This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.

  18. Hierarchical Commensurate and Power Prior Models for Adaptive Incorporation of Historical Information in Clinical Trials

    PubMed Central

    Hobbs, Brian P.; Carlin, Bradley P.; Mandrekar, Sumithra J.; Sargent, Daniel J.

    2011-01-01

    Summary Bayesian clinical trial designs offer the possibility of a substantially reduced sample size, increased statistical power, and reductions in cost and ethical hazard. However when prior and current information conflict, Bayesian methods can lead to higher than expected Type I error, as well as the possibility of a costlier and lengthier trial. This motivates an investigation of the feasibility of hierarchical Bayesian methods for incorporating historical data that are adaptively robust to prior information that reveals itself to be inconsistent with the accumulating experimental data. In this paper, we present several models that allow for the commensurability of the information in the historical and current data to determine how much historical information is used. A primary tool is elaborating the traditional power prior approach based upon a measure of commensurability for Gaussian data. We compare the frequentist performance of several methods using simulations, and close with an example of a colon cancer trial that illustrates a linear models extension of our adaptive borrowing approach. Our proposed methods produce more precise estimates of the model parameters, in particular conferring statistical significance to the observed reduction in tumor size for the experimental regimen as compared to the control regimen. PMID:21361892

  19. Improving Bayesian credibility intervals for classifier error rates using maximum entropy empirical priors.

    PubMed

    Gustafsson, Mats G; Wallman, Mikael; Wickenberg Bolin, Ulrika; Göransson, Hanna; Fryknäs, M; Andersson, Claes R; Isaksson, Anders

    2010-06-01

    Successful use of classifiers that learn to make decisions from a set of patient examples require robust methods for performance estimation. Recently many promising approaches for determination of an upper bound for the error rate of a single classifier have been reported but the Bayesian credibility interval (CI) obtained from a conventional holdout test still delivers one of the tightest bounds. The conventional Bayesian CI becomes unacceptably large in real world applications where the test set sizes are less than a few hundred. The source of this problem is that fact that the CI is determined exclusively by the result on the test examples. In other words, there is no information at all provided by the uniform prior density distribution employed which reflects complete lack of prior knowledge about the unknown error rate. Therefore, the aim of the study reported here was to study a maximum entropy (ME) based approach to improved prior knowledge and Bayesian CIs, demonstrating its relevance for biomedical research and clinical practice. It is demonstrated how a refined non-uniform prior density distribution can be obtained by means of the ME principle using empirical results from a few designs and tests using non-overlapping sets of examples. Experimental results show that ME based priors improve the CIs when employed to four quite different simulated and two real world data sets. An empirically derived ME prior seems promising for improving the Bayesian CI for the unknown error rate of a designed classifier. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Adaptive design optimization: a mutual information-based approach to model discrimination in cognitive science.

    PubMed

    Cavagnaro, Daniel R; Myung, Jay I; Pitt, Mark A; Kujala, Janne V

    2010-04-01

    Discriminating among competing statistical models is a pressing issue for many experimentalists in the field of cognitive science. Resolving this issue begins with designing maximally informative experiments. To this end, the problem to be solved in adaptive design optimization is identifying experimental designs under which one can infer the underlying model in the fewest possible steps. When the models under consideration are nonlinear, as is often the case in cognitive science, this problem can be impossible to solve analytically without simplifying assumptions. However, as we show in this letter, a full solution can be found numerically with the help of a Bayesian computational trick derived from the statistics literature, which recasts the problem as a probability density simulation in which the optimal design is the mode of the density. We use a utility function based on mutual information and give three intuitive interpretations of the utility function in terms of Bayesian posterior estimates. As a proof of concept, we offer a simple example application to an experiment on memory retention.

  1. Establishment and reliability evaluation of the design space for HPLC analysis of six alkaloids in Coptis chinensis (Huanglian) using Bayesian approach.

    PubMed

    Dai, Sheng-Yun; Xu, Bing; Zhang, Yi; Li, Jian-Yu; Sun, Fei; Shi, Xin-Yuan; Qiao, Yan-Jiang

    2016-09-01

    Coptis chinensis (Huanglian) is a commonly used traditional Chinese medicine (TCM) herb and alkaloids are the most important chemical constituents in it. In the present study, an isocratic reverse phase high performance liquid chromatography (RP-HPLC) method allowing the separation of six alkaloids in Huanglian was for the first time developed under the quality by design (QbD) principles. First, five chromatographic parameters were identified to construct a Plackett-Burman experimental design. The critical resolution, analysis time, and peak width were responses modeled by multivariate linear regression. The results showed that the percentage of acetonitrile, concentration of sodium dodecyl sulfate, and concentration of potassium phosphate monobasic were statistically significant parameters (P < 0.05). Then, the Box-Behnken experimental design was applied to further evaluate the interactions between the three parameters on selected responses. Full quadratic models were built and used to establish the analytical design space. Moreover, the reliability of design space was estimated by the Bayesian posterior predictive distribution. The optimal separation was predicted at 40% acetonitrile, 1.7 g·mL(-1) of sodium dodecyl sulfate and 0.03 mol·mL(-1) of potassium phosphate monobasic. Finally, the accuracy profile methodology was used to validate the established HPLC method. The results demonstrated that the QbD concept could be efficiently used to develop a robust RP-HPLC analytical method for Huanglian. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  2. A Bayesian adaptive design for biomarker trials with linked treatments.

    PubMed

    Wason, James M S; Abraham, Jean E; Baird, Richard D; Gournaris, Ioannis; Vallier, Anne-Laure; Brenton, James D; Earl, Helena M; Mander, Adrian P

    2015-09-01

    Response to treatments is highly heterogeneous in cancer. Increased availability of biomarkers and targeted treatments has led to the need for trial designs that efficiently test new treatments in biomarker-stratified patient subgroups. We propose a novel Bayesian adaptive randomisation (BAR) design for use in multi-arm phase II trials where biomarkers exist that are potentially predictive of a linked treatment's effect. The design is motivated in part by two phase II trials that are currently in development. The design starts by randomising patients to the control treatment or to experimental treatments that the biomarker profile suggests should be active. At interim analyses, data from treated patients are used to update the allocation probabilities. If the linked treatments are effective, the allocation remains high; if ineffective, the allocation changes over the course of the trial to unlinked treatments that are more effective. Our proposed design has high power to detect treatment effects if the pairings of treatment with biomarker are correct, but also performs well when alternative pairings are true. The design is consistently more powerful than parallel-groups stratified trials. This BAR design is a powerful approach to use when there are pairings of biomarkers with treatments available for testing simultaneously.

  3. A hierarchical Bayesian approach to adaptive vision testing: A case study with the contrast sensitivity function.

    PubMed

    Gu, Hairong; Kim, Woojae; Hou, Fang; Lesmes, Luis Andres; Pitt, Mark A; Lu, Zhong-Lin; Myung, Jay I

    2016-01-01

    Measurement efficiency is of concern when a large number of observations are required to obtain reliable estimates for parametric models of vision. The standard entropy-based Bayesian adaptive testing procedures addressed the issue by selecting the most informative stimulus in sequential experimental trials. Noninformative, diffuse priors were commonly used in those tests. Hierarchical adaptive design optimization (HADO; Kim, Pitt, Lu, Steyvers, & Myung, 2014) further improves the efficiency of the standard Bayesian adaptive testing procedures by constructing an informative prior using data from observers who have already participated in the experiment. The present study represents an empirical validation of HADO in estimating the human contrast sensitivity function. The results show that HADO significantly improves the accuracy and precision of parameter estimates, and therefore requires many fewer observations to obtain reliable inference about contrast sensitivity, compared to the method of quick contrast sensitivity function (Lesmes, Lu, Baek, & Albright, 2010), which uses the standard Bayesian procedure. The improvement with HADO was maintained even when the prior was constructed from heterogeneous populations or a relatively small number of observers. These results of this case study support the conclusion that HADO can be used in Bayesian adaptive testing by replacing noninformative, diffuse priors with statistically justified informative priors without introducing unwanted bias.

  4. A hierarchical Bayesian approach to adaptive vision testing: A case study with the contrast sensitivity function

    PubMed Central

    Gu, Hairong; Kim, Woojae; Hou, Fang; Lesmes, Luis Andres; Pitt, Mark A.; Lu, Zhong-Lin; Myung, Jay I.

    2016-01-01

    Measurement efficiency is of concern when a large number of observations are required to obtain reliable estimates for parametric models of vision. The standard entropy-based Bayesian adaptive testing procedures addressed the issue by selecting the most informative stimulus in sequential experimental trials. Noninformative, diffuse priors were commonly used in those tests. Hierarchical adaptive design optimization (HADO; Kim, Pitt, Lu, Steyvers, & Myung, 2014) further improves the efficiency of the standard Bayesian adaptive testing procedures by constructing an informative prior using data from observers who have already participated in the experiment. The present study represents an empirical validation of HADO in estimating the human contrast sensitivity function. The results show that HADO significantly improves the accuracy and precision of parameter estimates, and therefore requires many fewer observations to obtain reliable inference about contrast sensitivity, compared to the method of quick contrast sensitivity function (Lesmes, Lu, Baek, & Albright, 2010), which uses the standard Bayesian procedure. The improvement with HADO was maintained even when the prior was constructed from heterogeneous populations or a relatively small number of observers. These results of this case study support the conclusion that HADO can be used in Bayesian adaptive testing by replacing noninformative, diffuse priors with statistically justified informative priors without introducing unwanted bias. PMID:27105061

  5. Optimizing Experimental Design for Comparing Models of Brain Function

    PubMed Central

    Daunizeau, Jean; Preuschoff, Kerstin; Friston, Karl; Stephan, Klaas

    2011-01-01

    This article presents the first attempt to formalize the optimization of experimental design with the aim of comparing models of brain function based on neuroimaging data. We demonstrate our approach in the context of Dynamic Causal Modelling (DCM), which relates experimental manipulations to observed network dynamics (via hidden neuronal states) and provides an inference framework for selecting among candidate models. Here, we show how to optimize the sensitivity of model selection by choosing among experimental designs according to their respective model selection accuracy. Using Bayesian decision theory, we (i) derive the Laplace-Chernoff risk for model selection, (ii) disclose its relationship with classical design optimality criteria and (iii) assess its sensitivity to basic modelling assumptions. We then evaluate the approach when identifying brain networks using DCM. Monte-Carlo simulations and empirical analyses of fMRI data from a simple bimanual motor task in humans serve to demonstrate the relationship between network identification and the optimal experimental design. For example, we show that deciding whether there is a feedback connection requires shorter epoch durations, relative to asking whether there is experimentally induced change in a connection that is known to be present. Finally, we discuss limitations and potential extensions of this work. PMID:22125485

  6. Using Bayesian Adaptive Trial Designs for Comparative Effectiveness Research: A Virtual Trial Execution.

    PubMed

    Luce, Bryan R; Connor, Jason T; Broglio, Kristine R; Mullins, C Daniel; Ishak, K Jack; Saunders, Elijah; Davis, Barry R

    2016-09-20

    Bayesian and adaptive clinical trial designs offer the potential for more efficient processes that result in lower sample sizes and shorter trial durations than traditional designs. To explore the use and potential benefits of Bayesian adaptive clinical trial designs in comparative effectiveness research. Virtual execution of ALLHAT (Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial) as if it had been done according to a Bayesian adaptive trial design. Comparative effectiveness trial of antihypertensive medications. Patient data sampled from the more than 42 000 patients enrolled in ALLHAT with publicly available data. Number of patients randomly assigned between groups, trial duration, observed numbers of events, and overall trial results and conclusions. The Bayesian adaptive approach and original design yielded similar overall trial conclusions. The Bayesian adaptive trial randomly assigned more patients to the better-performing group and would probably have ended slightly earlier. This virtual trial execution required limited resampling of ALLHAT patients for inclusion in RE-ADAPT (REsearch in ADAptive methods for Pragmatic Trials). Involvement of a data monitoring committee and other trial logistics were not considered. In a comparative effectiveness research trial, Bayesian adaptive trial designs are a feasible approach and potentially generate earlier results and allocate more patients to better-performing groups. National Heart, Lung, and Blood Institute.

  7. Bayesian analyses of time-interval data for environmental radiation monitoring.

    PubMed

    Luo, Peng; Sharp, Julia L; DeVol, Timothy A

    2013-01-01

    Time-interval (time difference between two consecutive pulses) analysis based on the principles of Bayesian inference was investigated for online radiation monitoring. Using experimental and simulated data, Bayesian analysis of time-interval data [Bayesian (ti)] was compared with Bayesian and a conventional frequentist analysis of counts in a fixed count time [Bayesian (cnt) and single interval test (SIT), respectively]. The performances of the three methods were compared in terms of average run length (ARL) and detection probability for several simulated detection scenarios. Experimental data were acquired with a DGF-4C system in list mode. Simulated data were obtained using Monte Carlo techniques to obtain a random sampling of the Poisson distribution. All statistical algorithms were developed using the R Project for statistical computing. Bayesian analysis of time-interval information provided a similar detection probability as Bayesian analysis of count information, but the authors were able to make a decision with fewer pulses at relatively higher radiation levels. In addition, for the cases with very short presence of the source (< count time), time-interval information is more sensitive to detect a change than count information since the source data is averaged by the background data over the entire count time. The relationships of the source time, change points, and modifications to the Bayesian approach for increasing detection probability are presented.

  8. Extreme-Scale Bayesian Inference for Uncertainty Quantification of Complex Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biros, George

    Uncertainty quantification (UQ)—that is, quantifying uncertainties in complex mathematical models and their large-scale computational implementations—is widely viewed as one of the outstanding challenges facing the field of CS&E over the coming decade. The EUREKA project set to address the most difficult class of UQ problems: those for which both the underlying PDE model as well as the uncertain parameters are of extreme scale. In the project we worked on these extreme-scale challenges in the following four areas: 1. Scalable parallel algorithms for sampling and characterizing the posterior distribution that exploit the structure of the underlying PDEs and parameter-to-observable map. Thesemore » include structure-exploiting versions of the randomized maximum likelihood method, which aims to overcome the intractability of employing conventional MCMC methods for solving extreme-scale Bayesian inversion problems by appealing to and adapting ideas from large-scale PDE-constrained optimization, which have been very successful at exploring high-dimensional spaces. 2. Scalable parallel algorithms for construction of prior and likelihood functions based on learning methods and non-parametric density estimation. Constructing problem-specific priors remains a critical challenge in Bayesian inference, and more so in high dimensions. Another challenge is construction of likelihood functions that capture unmodeled couplings between observations and parameters. We will create parallel algorithms for non-parametric density estimation using high dimensional N-body methods and combine them with supervised learning techniques for the construction of priors and likelihood functions. 3. Bayesian inadequacy models, which augment physics models with stochastic models that represent their imperfections. The success of the Bayesian inference framework depends on the ability to represent the uncertainty due to imperfections of the mathematical model of the phenomena of interest. This is a central challenge in UQ, especially for large-scale models. We propose to develop the mathematical tools to address these challenges in the context of extreme-scale problems. 4. Parallel scalable algorithms for Bayesian optimal experimental design (OED). Bayesian inversion yields quantified uncertainties in the model parameters, which can be propagated forward through the model to yield uncertainty in outputs of interest. This opens the way for designing new experiments to reduce the uncertainties in the model parameters and model predictions. Such experimental design problems have been intractable for large-scale problems using conventional methods; we will create OED algorithms that exploit the structure of the PDE model and the parameter-to-output map to overcome these challenges. Parallel algorithms for these four problems were created, analyzed, prototyped, implemented, tuned, and scaled up for leading-edge supercomputers, including UT-Austin’s own 10 petaflops Stampede system, ANL’s Mira system, and ORNL’s Titan system. While our focus is on fundamental mathematical/computational methods and algorithms, we will assess our methods on model problems derived from several DOE mission applications, including multiscale mechanics and ice sheet dynamics.« less

  9. Sparsely sampling the sky: a Bayesian experimental design approach

    NASA Astrophysics Data System (ADS)

    Paykari, P.; Jaffe, A. H.

    2013-08-01

    The next generation of galaxy surveys will observe millions of galaxies over large volumes of the Universe. These surveys are expensive both in time and cost, raising questions regarding the optimal investment of this time and money. In this work, we investigate criteria for selecting amongst observing strategies for constraining the galaxy power spectrum and a set of cosmological parameters. Depending on the parameters of interest, it may be more efficient to observe a larger, but sparsely sampled, area of sky instead of a smaller contiguous area. In this work, by making use of the principles of Bayesian experimental design, we will investigate the advantages and disadvantages of the sparse sampling of the sky and discuss the circumstances in which a sparse survey is indeed the most efficient strategy. For the Dark Energy Survey (DES), we find that by sparsely observing the same area in a smaller amount of time, we only increase the errors on the parameters by a maximum of 0.45 per cent. Conversely, investing the same amount of time as the original DES to observe a sparser but larger area of sky, we can in fact constrain the parameters with errors reduced by 28 per cent.

  10. Bayesian truthing and experimental validation in homeland security and defense

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Wang, Wenjian; Kostrzewski, Andrew; Pradhan, Ranjit

    2014-05-01

    In this paper we discuss relations between Bayesian Truthing (experimental validation), Bayesian statistics, and Binary Sensing in the context of selected Homeland Security and Intelligence, Surveillance, Reconnaissance (ISR) optical and nonoptical application scenarios. The basic Figure of Merit (FoM) is Positive Predictive Value (PPV), as well as false positives and false negatives. By using these simple binary statistics, we can analyze, classify, and evaluate a broad variety of events including: ISR; natural disasters; QC; and terrorism-related, GIS-related, law enforcement-related, and other C3I events.

  11. Precise Network Modeling of Systems Genetics Data Using the Bayesian Network Webserver.

    PubMed

    Ziebarth, Jesse D; Cui, Yan

    2017-01-01

    The Bayesian Network Webserver (BNW, http://compbio.uthsc.edu/BNW ) is an integrated platform for Bayesian network modeling of biological datasets. It provides a web-based network modeling environment that seamlessly integrates advanced algorithms for probabilistic causal modeling and reasoning with Bayesian networks. BNW is designed for precise modeling of relatively small networks that contain less than 20 nodes. The structure learning algorithms used by BNW guarantee the discovery of the best (most probable) network structure given the data. To facilitate network modeling across multiple biological levels, BNW provides a very flexible interface that allows users to assign network nodes into different tiers and define the relationships between and within the tiers. This function is particularly useful for modeling systems genetics datasets that often consist of multiscalar heterogeneous genotype-to-phenotype data. BNW enables users to, within seconds or minutes, go from having a simply formatted input file containing a dataset to using a network model to make predictions about the interactions between variables and the potential effects of experimental interventions. In this chapter, we will introduce the functions of BNW and show how to model systems genetics datasets with BNW.

  12. Efficient Bayesian experimental design for contaminant source identification

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zeng, L.

    2013-12-01

    In this study, an efficient full Bayesian approach is developed for the optimal sampling well location design and source parameter identification of groundwater contaminants. An information measure, i.e., the relative entropy, is employed to quantify the information gain from indirect concentration measurements in identifying unknown source parameters such as the release time, strength and location. In this approach, the sampling location that gives the maximum relative entropy is selected as the optimal one. Once the sampling location is determined, a Bayesian approach based on Markov Chain Monte Carlo (MCMC) is used to estimate unknown source parameters. In both the design and estimation, the contaminant transport equation is required to be solved many times to evaluate the likelihood. To reduce the computational burden, an interpolation method based on the adaptive sparse grid is utilized to construct a surrogate for the contaminant transport. The approximated likelihood can be evaluated directly from the surrogate, which greatly accelerates the design and estimation process. The accuracy and efficiency of our approach are demonstrated through numerical case studies. Compared with the traditional optimal design, which is based on the Gaussian linear assumption, the method developed in this study can cope with arbitrary nonlinearity. It can be used to assist in groundwater monitor network design and identification of unknown contaminant sources. Contours of the expected information gain. The optimal observing location corresponds to the maximum value. Posterior marginal probability densities of unknown parameters, the thick solid black lines are for the designed location. For comparison, other 7 lines are for randomly chosen locations. The true values are denoted by vertical lines. It is obvious that the unknown parameters are estimated better with the desinged location.

  13. QUEST+: A general multidimensional Bayesian adaptive psychometric method.

    PubMed

    Watson, Andrew B

    2017-03-01

    QUEST+ is a Bayesian adaptive psychometric testing method that allows an arbitrary number of stimulus dimensions, psychometric function parameters, and trial outcomes. It is a generalization and extension of the original QUEST procedure and incorporates many subsequent developments in the area of parametric adaptive testing. With a single procedure, it is possible to implement a wide variety of experimental designs, including conventional threshold measurement; measurement of psychometric function parameters, such as slope and lapse; estimation of the contrast sensitivity function; measurement of increment threshold functions; measurement of noise-masking functions; Thurstone scale estimation using pair comparisons; and categorical ratings on linear and circular stimulus dimensions. QUEST+ provides a general method to accelerate data collection in many areas of cognitive and perceptual science.

  14. A Bayesian adaptive design for biomarker trials with linked treatments

    PubMed Central

    Wason, James M S; Abraham, Jean E; Baird, Richard D; Gournaris, Ioannis; Vallier, Anne-Laure; Brenton, James D; Earl, Helena M; Mander, Adrian P

    2015-01-01

    Background: Response to treatments is highly heterogeneous in cancer. Increased availability of biomarkers and targeted treatments has led to the need for trial designs that efficiently test new treatments in biomarker-stratified patient subgroups. Methods: We propose a novel Bayesian adaptive randomisation (BAR) design for use in multi-arm phase II trials where biomarkers exist that are potentially predictive of a linked treatment's effect. The design is motivated in part by two phase II trials that are currently in development. The design starts by randomising patients to the control treatment or to experimental treatments that the biomarker profile suggests should be active. At interim analyses, data from treated patients are used to update the allocation probabilities. If the linked treatments are effective, the allocation remains high; if ineffective, the allocation changes over the course of the trial to unlinked treatments that are more effective. Results: Our proposed design has high power to detect treatment effects if the pairings of treatment with biomarker are correct, but also performs well when alternative pairings are true. The design is consistently more powerful than parallel-groups stratified trials. Conclusions: This BAR design is a powerful approach to use when there are pairings of biomarkers with treatments available for testing simultaneously. PMID:26263479

  15. Capturing the Cumulative Effects of School Reform: An 11-Year Study of the Impacts of America's Choice on Student Achievement

    ERIC Educational Resources Information Center

    May, Henry; Supovitz, Jonathan A.

    2006-01-01

    This article presents the results of an 11-year longitudinal study of the impact of America's Choice comprehensive school reform (CSR) design on student learning gains in Rochester, New York. A quasi-experimental interrupted time-series approach using Bayesian hierarchical growth curve analysis with crossed random effects is used to compare the…

  16. Bayesian Learning and the Psychology of Rule Induction

    ERIC Educational Resources Information Center

    Endress, Ansgar D.

    2013-01-01

    In recent years, Bayesian learning models have been applied to an increasing variety of domains. While such models have been criticized on theoretical grounds, the underlying assumptions and predictions are rarely made concrete and tested experimentally. Here, I use Frank and Tenenbaum's (2011) Bayesian model of rule-learning as a case study to…

  17. Bayesian randomized clinical trials: From fixed to adaptive design.

    PubMed

    Yin, Guosheng; Lam, Chi Kin; Shi, Haolun

    2017-08-01

    Randomized controlled studies are the gold standard for phase III clinical trials. Using α-spending functions to control the overall type I error rate, group sequential methods are well established and have been dominating phase III studies. Bayesian randomized design, on the other hand, can be viewed as a complement instead of competitive approach to the frequentist methods. For the fixed Bayesian design, the hypothesis testing can be cast in the posterior probability or Bayes factor framework, which has a direct link to the frequentist type I error rate. Bayesian group sequential design relies upon Bayesian decision-theoretic approaches based on backward induction, which is often computationally intensive. Compared with the frequentist approaches, Bayesian methods have several advantages. The posterior predictive probability serves as a useful and convenient tool for trial monitoring, and can be updated at any time as the data accrue during the trial. The Bayesian decision-theoretic framework possesses a direct link to the decision making in the practical setting, and can be modeled more realistically to reflect the actual cost-benefit analysis during the drug development process. Other merits include the possibility of hierarchical modeling and the use of informative priors, which would lead to a more comprehensive utilization of information from both historical and longitudinal data. From fixed to adaptive design, we focus on Bayesian randomized controlled clinical trials and make extensive comparisons with frequentist counterparts through numerical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Uncertainty quantification in capacitive RF MEMS switches

    NASA Astrophysics Data System (ADS)

    Pax, Benjamin J.

    Development of radio frequency micro electrical-mechanical systems (RF MEMS) has led to novel approaches to implement electrical circuitry. The introduction of capacitive MEMS switches, in particular, has shown promise in low-loss, low-power devices. However, the promise of MEMS switches has not yet been completely realized. RF-MEMS switches are known to fail after only a few months of operation, and nominally similar designs show wide variability in lifetime. Modeling switch operation using nominal or as-designed parameters cannot predict the statistical spread in the number of cycles to failure, and probabilistic methods are necessary. A Bayesian framework for calibration, validation and prediction offers an integrated approach to quantifying the uncertainty in predictions of MEMS switch performance. The objective of this thesis is to use the Bayesian framework to predict the creep-related deflection of the PRISM RF-MEMS switch over several thousand hours of operation. The PRISM switch used in this thesis is the focus of research at Purdue's PRISM center, and is a capacitive contacting RF-MEMS switch. It employs a fixed-fixed nickel membrane which is electrostatically actuated by applying voltage between the membrane and a pull-down electrode. Creep plays a central role in the reliability of this switch. The focus of this thesis is on the creep model, which is calibrated against experimental data measured for a frog-leg varactor fabricated and characterized at Purdue University. Creep plasticity is modeled using plate element theory with electrostatic forces being generated using either parallel plate approximations where appropriate, or solving for the full 3D potential field. For the latter, structure-electrostatics interaction is determined through immersed boundary method. A probabilistic framework using generalized polynomial chaos (gPC) is used to create surrogate models to mitigate the costly full physics simulations, and Bayesian calibration and forward propagation of uncertainty are performed using this surrogate model. The first step in the analysis is Bayesian calibration of the creep related parameters. A computational model of the frog-leg varactor is created, and the computed creep deflection of the device over 800 hours is used to generate a surrogate model using a polynomial chaos expansion in Hermite polynomials. Parameters related to the creep phenomenon are calibrated using Bayesian calibration with experimental deflection data from the frog-leg device. The calibrated input distributions are subsequently propagated through a surrogate gPC model for the PRISM MEMS switch to produce probability density functions of the maximum membrane deflection of the membrane over several thousand hours. The assumptions related to the Bayesian calibration and forward propagation are analyzed to determine the sensitivity to these assumptions of the calibrated input distributions and propagated output distributions of the PRISM device. The work is an early step in understanding the role of geometric variability, model uncertainty, numerical errors and experimental uncertainties in the long-term performance of RF-MEMS.

  19. Quantum state estimation when qubits are lost: a no-data-left-behind approach

    DOE PAGES

    Williams, Brian P.; Lougovski, Pavel

    2017-04-06

    We present an approach to Bayesian mean estimation of quantum states using hyperspherical parametrization and an experiment-specific likelihood which allows utilization of all available data, even when qubits are lost. With this method, we report the first closed-form Bayesian mean and maximum likelihood estimates for the ideal single qubit. Due to computational constraints, we utilize numerical sampling to determine the Bayesian mean estimate for a photonic two-qubit experiment in which our novel analysis reduces burdens associated with experimental asymmetries and inefficiencies. This method can be applied to quantum states of any dimension and experimental complexity.

  20. Within-subject mediation analysis for experimental data in cognitive psychology and neuroscience.

    PubMed

    Vuorre, Matti; Bolger, Niall

    2017-12-15

    Statistical mediation allows researchers to investigate potential causal effects of experimental manipulations through intervening variables. It is a powerful tool for assessing the presence and strength of postulated causal mechanisms. Although mediation is used in certain areas of psychology, it is rarely applied in cognitive psychology and neuroscience. One reason for the scarcity of applications is that these areas of psychology commonly employ within-subjects designs, and mediation models for within-subjects data are considerably more complicated than for between-subjects data. Here, we draw attention to the importance and ubiquity of mediational hypotheses in within-subjects designs, and we present a general and flexible software package for conducting Bayesian within-subjects mediation analyses in the R programming environment. We use experimental data from cognitive psychology to illustrate the benefits of within-subject mediation for theory testing and comparison.

  1. BOP2: Bayesian optimal design for phase II clinical trials with simple and complex endpoints.

    PubMed

    Zhou, Heng; Lee, J Jack; Yuan, Ying

    2017-09-20

    We propose a flexible Bayesian optimal phase II (BOP2) design that is capable of handling simple (e.g., binary) and complicated (e.g., ordinal, nested, and co-primary) endpoints under a unified framework. We use a Dirichlet-multinomial model to accommodate different types of endpoints. At each interim, the go/no-go decision is made by evaluating a set of posterior probabilities of the events of interest, which is optimized to maximize power or minimize the number of patients under the null hypothesis. Unlike other existing Bayesian designs, the BOP2 design explicitly controls the type I error rate, thereby bridging the gap between Bayesian designs and frequentist designs. In addition, the stopping boundary of the BOP2 design can be enumerated prior to the onset of the trial. These features make the BOP2 design accessible to a wide range of users and regulatory agencies and particularly easy to implement in practice. Simulation studies show that the BOP2 design has favorable operating characteristics with higher power and lower risk of incorrectly terminating the trial than some existing Bayesian phase II designs. The software to implement the BOP2 design is freely available at www.trialdesign.org. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. A Bayesian sequential design with adaptive randomization for 2-sided hypothesis test.

    PubMed

    Yu, Qingzhao; Zhu, Lin; Zhu, Han

    2017-11-01

    Bayesian sequential and adaptive randomization designs are gaining popularity in clinical trials thanks to their potentials to reduce the number of required participants and save resources. We propose a Bayesian sequential design with adaptive randomization rates so as to more efficiently attribute newly recruited patients to different treatment arms. In this paper, we consider 2-arm clinical trials. Patients are allocated to the 2 arms with a randomization rate to achieve minimum variance for the test statistic. Algorithms are presented to calculate the optimal randomization rate, critical values, and power for the proposed design. Sensitivity analysis is implemented to check the influence on design by changing the prior distributions. Simulation studies are applied to compare the proposed method and traditional methods in terms of power and actual sample sizes. Simulations show that, when total sample size is fixed, the proposed design can obtain greater power and/or cost smaller actual sample size than the traditional Bayesian sequential design. Finally, we apply the proposed method to a real data set and compare the results with the Bayesian sequential design without adaptive randomization in terms of sample sizes. The proposed method can further reduce required sample size. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Sparse-grid, reduced-basis Bayesian inversion: Nonaffine-parametric nonlinear equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Peng, E-mail: peng@ices.utexas.edu; Schwab, Christoph, E-mail: christoph.schwab@sam.math.ethz.ch

    2016-07-01

    We extend the reduced basis (RB) accelerated Bayesian inversion methods for affine-parametric, linear operator equations which are considered in [16,17] to non-affine, nonlinear parametric operator equations. We generalize the analysis of sparsity of parametric forward solution maps in [20] and of Bayesian inversion in [48,49] to the fully discrete setting, including Petrov–Galerkin high-fidelity (“HiFi”) discretization of the forward maps. We develop adaptive, stochastic collocation based reduction methods for the efficient computation of reduced bases on the parametric solution manifold. The nonaffinity and nonlinearity with respect to (w.r.t.) the distributed, uncertain parameters and the unknown solution is collocated; specifically, by themore » so-called Empirical Interpolation Method (EIM). For the corresponding Bayesian inversion problems, computational efficiency is enhanced in two ways: first, expectations w.r.t. the posterior are computed by adaptive quadratures with dimension-independent convergence rates proposed in [49]; the present work generalizes [49] to account for the impact of the PG discretization in the forward maps on the convergence rates of the Quantities of Interest (QoI for short). Second, we propose to perform the Bayesian estimation only w.r.t. a parsimonious, RB approximation of the posterior density. Based on the approximation results in [49], the infinite-dimensional parametric, deterministic forward map and operator admit N-term RB and EIM approximations which converge at rates which depend only on the sparsity of the parametric forward map. In several numerical experiments, the proposed algorithms exhibit dimension-independent convergence rates which equal, at least, the currently known rate estimates for N-term approximation. We propose to accelerate Bayesian estimation by first offline construction of reduced basis surrogates of the Bayesian posterior density. The parsimonious surrogates can then be employed for online data assimilation and for Bayesian estimation. They also open a perspective for optimal experimental design.« less

  4. Semisupervised learning using Bayesian interpretation: application to LS-SVM.

    PubMed

    Adankon, Mathias M; Cheriet, Mohamed; Biem, Alain

    2011-04-01

    Bayesian reasoning provides an ideal basis for representing and manipulating uncertain knowledge, with the result that many interesting algorithms in machine learning are based on Bayesian inference. In this paper, we use the Bayesian approach with one and two levels of inference to model the semisupervised learning problem and give its application to the successful kernel classifier support vector machine (SVM) and its variant least-squares SVM (LS-SVM). Taking advantage of Bayesian interpretation of LS-SVM, we develop a semisupervised learning algorithm for Bayesian LS-SVM using our approach based on two levels of inference. Experimental results on both artificial and real pattern recognition problems show the utility of our method.

  5. Bayesian characterization of micro-perforated panels and multi-layer absorbers

    NASA Astrophysics Data System (ADS)

    Schmitt, Andrew Alexander Joseph

    First described by the late acoustician Dah-You Maa, micro-perforated panel (MPP) absorbers produce extremely high acoustic absorption coefficients. This is done without the use of conventional fibrous or porous materials that are often used in acoustic treatments, meaning MPP absorbers are capable of being implemented and withstanding critical situations where traditional absorbers do not suffice. The absorption function of a micro-perforated panel yields high yet relatively narrow results at certain frequencies, although wide-band absorption can be designed by stacking multiple MPP absorbers comprised of different characteristic parameters. Using Bayesian analysis, the physical properties of panel thickness, pore diameter, perforation ratio, and air depth are estimated inversely from experimental data of acoustic absorption, based on theoretical models for design of micro-perforated panels. Furthermore, this analysis helps to understand the interdependence and uncertainties of the parameters and how each affects the performance of the panel. Various micro-perforated panels are manufactured and tested in single- and double-layer absorber constructions.

  6. Missing-value estimation using linear and non-linear regression with Bayesian gene selection.

    PubMed

    Zhou, Xiaobo; Wang, Xiaodong; Dougherty, Edward R

    2003-11-22

    Data from microarray experiments are usually in the form of large matrices of expression levels of genes under different experimental conditions. Owing to various reasons, there are frequently missing values. Estimating these missing values is important because they affect downstream analysis, such as clustering, classification and network design. Several methods of missing-value estimation are in use. The problem has two parts: (1) selection of genes for estimation and (2) design of an estimation rule. We propose Bayesian variable selection to obtain genes to be used for estimation, and employ both linear and nonlinear regression for the estimation rule itself. Fast implementation issues for these methods are discussed, including the use of QR decomposition for parameter estimation. The proposed methods are tested on data sets arising from hereditary breast cancer and small round blue-cell tumors. The results compare very favorably with currently used methods based on the normalized root-mean-square error. The appendix is available from http://gspsnap.tamu.edu/gspweb/zxb/missing_zxb/ (user: gspweb; passwd: gsplab).

  7. Bayesian Models Leveraging Bioactivity and Cytotoxicity Information for Drug Discovery

    PubMed Central

    Ekins, Sean; Reynolds, Robert C.; Kim, Hiyun; Koo, Mi-Sun; Ekonomidis, Marilyn; Talaue, Meliza; Paget, Steve D.; Woolhiser, Lisa K.; Lenaerts, Anne J.; Bunin, Barry A.; Connell, Nancy; Freundlich, Joel S.

    2013-01-01

    SUMMARY Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (HTS) data, to experimentally validate virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screen a commercial library and experimentally confirm actives with hit rates exceeding typical HTS results by 1-2 orders of magnitude. The first dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery. PMID:23521795

  8. Bayesian methods for the design and interpretation of clinical trials in very rare diseases

    PubMed Central

    Hampson, Lisa V; Whitehead, John; Eleftheriou, Despina; Brogan, Paul

    2014-01-01

    This paper considers the design and interpretation of clinical trials comparing treatments for conditions so rare that worldwide recruitment efforts are likely to yield total sample sizes of 50 or fewer, even when patients are recruited over several years. For such studies, the sample size needed to meet a conventional frequentist power requirement is clearly infeasible. Rather, the expectation of any such trial has to be limited to the generation of an improved understanding of treatment options. We propose a Bayesian approach for the conduct of rare-disease trials comparing an experimental treatment with a control where patient responses are classified as a success or failure. A systematic elicitation from clinicians of their beliefs concerning treatment efficacy is used to establish Bayesian priors for unknown model parameters. The process of determining the prior is described, including the possibility of formally considering results from related trials. As sample sizes are small, it is possible to compute all possible posterior distributions of the two success rates. A number of allocation ratios between the two treatment groups can be considered with a view to maximising the prior probability that the trial concludes recommending the new treatment when in fact it is non-inferior to control. Consideration of the extent to which opinion can be changed, even by data from the best feasible design, can help to determine whether such a trial is worthwhile. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:24957522

  9. A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks

    PubMed Central

    Zaikin, Alexey; Míguez, Joaquín

    2017-01-01

    We compare three state-of-the-art Bayesian inference methods for the estimation of the unknown parameters in a stochastic model of a genetic network. In particular, we introduce a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ullner et al., 2007. By introducing dynamical noise in the model and assuming that the partial observations of the system are contaminated by additive noise, we enable a principled mechanism to represent experimental uncertainties in the synthesis of the multicellular system and pave the way for the design of probabilistic methods for the estimation of any unknowns in the model. Within this setup, we tackle the Bayesian estimation of a subset of the model parameters. Specifically, we compare three Monte Carlo based numerical methods for the approximation of the posterior probability density function of the unknown parameters given a set of partial and noisy observations of the system. The schemes we assess are the particle Metropolis-Hastings (PMH) algorithm, the nonlinear population Monte Carlo (NPMC) method and the approximate Bayesian computation sequential Monte Carlo (ABC-SMC) scheme. We present an extensive numerical simulation study, which shows that while the three techniques can effectively solve the problem there are significant differences both in estimation accuracy and computational efficiency. PMID:28797087

  10. Development of an Integrated Team Training Design and Assessment Architecture to Support Adaptability in Healthcare Teams

    DTIC Science & Technology

    2016-10-01

    and implementation of embedded, adaptive feedback and performance assessment. The investigators also initiated work designing a Bayesian Belief ...training; Teamwork; Adaptive performance; Leadership; Simulation; Modeling; Bayesian belief networks (BBN) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...Trauma teams Team training Teamwork Adaptability Adaptive performance Leadership Simulation Modeling Bayesian belief networks (BBN) 6

  11. Using Bayesian variable selection to analyze regular resolution IV two-level fractional factorial designs

    DOE PAGES

    Chipman, Hugh A.; Hamada, Michael S.

    2016-06-02

    Regular two-level fractional factorial designs have complete aliasing in which the associated columns of multiple effects are identical. Here, we show how Bayesian variable selection can be used to analyze experiments that use such designs. In addition to sparsity and hierarchy, Bayesian variable selection naturally incorporates heredity . This prior information is used to identify the most likely combinations of active terms. We also demonstrate the method on simulated and real experiments.

  12. Using Bayesian variable selection to analyze regular resolution IV two-level fractional factorial designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chipman, Hugh A.; Hamada, Michael S.

    Regular two-level fractional factorial designs have complete aliasing in which the associated columns of multiple effects are identical. Here, we show how Bayesian variable selection can be used to analyze experiments that use such designs. In addition to sparsity and hierarchy, Bayesian variable selection naturally incorporates heredity . This prior information is used to identify the most likely combinations of active terms. We also demonstrate the method on simulated and real experiments.

  13. A Bayesian sequential design using alpha spending function to control type I error.

    PubMed

    Zhu, Han; Yu, Qingzhao

    2017-10-01

    We propose in this article a Bayesian sequential design using alpha spending functions to control the overall type I error in phase III clinical trials. We provide algorithms to calculate critical values, power, and sample sizes for the proposed design. Sensitivity analysis is implemented to check the effects from different prior distributions, and conservative priors are recommended. We compare the power and actual sample sizes of the proposed Bayesian sequential design with different alpha spending functions through simulations. We also compare the power of the proposed method with frequentist sequential design using the same alpha spending function. Simulations show that, at the same sample size, the proposed method provides larger power than the corresponding frequentist sequential design. It also has larger power than traditional Bayesian sequential design which sets equal critical values for all interim analyses. When compared with other alpha spending functions, O'Brien-Fleming alpha spending function has the largest power and is the most conservative in terms that at the same sample size, the null hypothesis is the least likely to be rejected at early stage of clinical trials. And finally, we show that adding a step of stop for futility in the Bayesian sequential design can reduce the overall type I error and reduce the actual sample sizes.

  14. A Bayesian Nonparametric Approach to Test Equating

    ERIC Educational Resources Information Center

    Karabatsos, George; Walker, Stephen G.

    2009-01-01

    A Bayesian nonparametric model is introduced for score equating. It is applicable to all major equating designs, and has advantages over previous equating models. Unlike the previous models, the Bayesian model accounts for positive dependence between distributions of scores from two tests. The Bayesian model and the previous equating models are…

  15. Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach.

    PubMed

    Duarte, Belmiro P M; Wong, Weng Kee

    2015-08-01

    This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted.

  16. Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach

    PubMed Central

    Duarte, Belmiro P. M.; Wong, Weng Kee

    2014-01-01

    Summary This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted. PMID:26512159

  17. Validation of the thermal challenge problem using Bayesian Belief Networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarland, John; Swiler, Laura Painton

    The thermal challenge problem has been developed at Sandia National Laboratories as a testbed for demonstrating various types of validation approaches and prediction methods. This report discusses one particular methodology to assess the validity of a computational model given experimental data. This methodology is based on Bayesian Belief Networks (BBNs) and can incorporate uncertainty in experimental measurements, in physical quantities, and model uncertainties. The approach uses the prior and posterior distributions of model output to compute a validation metric based on Bayesian hypothesis testing (a Bayes' factor). This report discusses various aspects of the BBN, specifically in the context ofmore » the thermal challenge problem. A BBN is developed for a given set of experimental data in a particular experimental configuration. The development of the BBN and the method for ''solving'' the BBN to develop the posterior distribution of model output through Monte Carlo Markov Chain sampling is discussed in detail. The use of the BBN to compute a Bayes' factor is demonstrated.« less

  18. With or without you: predictive coding and Bayesian inference in the brain

    PubMed Central

    Aitchison, Laurence; Lengyel, Máté

    2018-01-01

    Two theoretical ideas have emerged recently with the ambition to provide a unifying functional explanation of neural population coding and dynamics: predictive coding and Bayesian inference. Here, we describe the two theories and their combination into a single framework: Bayesian predictive coding. We clarify how the two theories can be distinguished, despite sharing core computational concepts and addressing an overlapping set of empirical phenomena. We argue that predictive coding is an algorithmic / representational motif that can serve several different computational goals of which Bayesian inference is but one. Conversely, while Bayesian inference can utilize predictive coding, it can also be realized by a variety of other representations. We critically evaluate the experimental evidence supporting Bayesian predictive coding and discuss how to test it more directly. PMID:28942084

  19. Bayesian Normalization Model for Label-Free Quantitative Analysis by LC-MS

    PubMed Central

    Nezami Ranjbar, Mohammad R.; Tadesse, Mahlet G.; Wang, Yue; Ressom, Habtom W.

    2016-01-01

    We introduce a new method for normalization of data acquired by liquid chromatography coupled with mass spectrometry (LC-MS) in label-free differential expression analysis. Normalization of LC-MS data is desired prior to subsequent statistical analysis to adjust variabilities in ion intensities that are not caused by biological differences but experimental bias. There are different sources of bias including variabilities during sample collection and sample storage, poor experimental design, noise, etc. In addition, instrument variability in experiments involving a large number of LC-MS runs leads to a significant drift in intensity measurements. Although various methods have been proposed for normalization of LC-MS data, there is no universally applicable approach. In this paper, we propose a Bayesian normalization model (BNM) that utilizes scan-level information from LC-MS data. Specifically, the proposed method uses peak shapes to model the scan-level data acquired from extracted ion chromatograms (EIC) with parameters considered as a linear mixed effects model. We extended the model into BNM with drift (BNMD) to compensate for the variability in intensity measurements due to long LC-MS runs. We evaluated the performance of our method using synthetic and experimental data. In comparison with several existing methods, the proposed BNM and BNMD yielded significant improvement. PMID:26357332

  20. Bayesian adaptive phase II screening design for combination trials.

    PubMed

    Cai, Chunyan; Yuan, Ying; Johnson, Valen E

    2013-01-01

    Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Simulation studies show that the proposed design substantially outperforms the conventional multiarm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while allocating substantially more patients to efficacious treatments. The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while providing higher power to identify the best treatment at the end of the trial.

  1. Bayesian design criteria: computation, comparison, and application to a pharmacokinetic and a pharmacodynamic model.

    PubMed

    Merlé, Y; Mentré, F

    1995-02-01

    In this paper 3 criteria to design experiments for Bayesian estimation of the parameters of nonlinear models with respect to their parameters, when a prior distribution is available, are presented: the determinant of the Bayesian information matrix, the determinant of the pre-posterior covariance matrix, and the expected information provided by an experiment. A procedure to simplify the computation of these criteria is proposed in the case of continuous prior distributions and is compared with the criterion obtained from a linearization of the model about the mean of the prior distribution for the parameters. This procedure is applied to two models commonly encountered in the area of pharmacokinetics and pharmacodynamics: the one-compartment open model with bolus intravenous single-dose injection and the Emax model. They both involve two parameters. Additive as well as multiplicative gaussian measurement errors are considered with normal prior distributions. Various combinations of the variances of the prior distribution and of the measurement error are studied. Our attention is restricted to designs with limited numbers of measurements (1 or 2 measurements). This situation often occurs in practice when Bayesian estimation is performed. The optimal Bayesian designs that result vary with the variances of the parameter distribution and with the measurement error. The two-point optimal designs sometimes differ from the D-optimal designs for the mean of the prior distribution and may consist of replicating measurements. For the studied cases, the determinant of the Bayesian information matrix and its linearized form lead to the same optimal designs. In some cases, the pre-posterior covariance matrix can be far from its lower bound, namely, the inverse of the Bayesian information matrix, especially for the Emax model and a multiplicative measurement error. The expected information provided by the experiment and the determinant of the pre-posterior covariance matrix generally lead to the same designs except for the Emax model and the multiplicative measurement error. Results show that these criteria can be easily computed and that they could be incorporated in modules for designing experiments.

  2. A Bayesian approach to estimating variance components within a multivariate generalizability theory framework.

    PubMed

    Jiang, Zhehan; Skorupski, William

    2017-12-12

    In many behavioral research areas, multivariate generalizability theory (mG theory) has been typically used to investigate the reliability of certain multidimensional assessments. However, traditional mG-theory estimation-namely, using frequentist approaches-has limits, leading researchers to fail to take full advantage of the information that mG theory can offer regarding the reliability of measurements. Alternatively, Bayesian methods provide more information than frequentist approaches can offer. This article presents instructional guidelines on how to implement mG-theory analyses in a Bayesian framework; in particular, BUGS code is presented to fit commonly seen designs from mG theory, including single-facet designs, two-facet crossed designs, and two-facet nested designs. In addition to concrete examples that are closely related to the selected designs and the corresponding BUGS code, a simulated dataset is provided to demonstrate the utility and advantages of the Bayesian approach. This article is intended to serve as a tutorial reference for applied researchers and methodologists conducting mG-theory studies.

  3. Bayesian accounts of covert selective attention: A tutorial review.

    PubMed

    Vincent, Benjamin T

    2015-05-01

    Decision making and optimal observer models offer an important theoretical approach to the study of covert selective attention. While their probabilistic formulation allows quantitative comparison to human performance, the models can be complex and their insights are not always immediately apparent. Part 1 establishes the theoretical appeal of the Bayesian approach, and introduces the way in which probabilistic approaches can be applied to covert search paradigms. Part 2 presents novel formulations of Bayesian models of 4 important covert attention paradigms, illustrating optimal observer predictions over a range of experimental manipulations. Graphical model notation is used to present models in an accessible way and Supplementary Code is provided to help bridge the gap between model theory and practical implementation. Part 3 reviews a large body of empirical and modelling evidence showing that many experimental phenomena in the domain of covert selective attention are a set of by-products. These effects emerge as the result of observers conducting Bayesian inference with noisy sensory observations, prior expectations, and knowledge of the generative structure of the stimulus environment.

  4. Optimal Experimental Design of Borehole Locations for Bayesian Inference of Past Ice Sheet Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Davis, A. D.; Huan, X.; Heimbach, P.; Marzouk, Y.

    2017-12-01

    Borehole data are essential for calibrating ice sheet models. However, field expeditions for acquiring borehole data are often time-consuming, expensive, and dangerous. It is thus essential to plan the best sampling locations that maximize the value of data while minimizing costs and risks. We present an uncertainty quantification (UQ) workflow based on rigorous probability framework to achieve these objectives. First, we employ an optimal experimental design (OED) procedure to compute borehole locations that yield the highest expected information gain. We take into account practical considerations of location accessibility (e.g., proximity to research sites, terrain, and ice velocity may affect feasibility of drilling) and robustness (e.g., real-time constraints such as weather may force researchers to drill at sub-optimal locations near those originally planned), by incorporating a penalty reflecting accessibility as well as sensitivity to deviations from the optimal locations. Next, we extract vertical temperature profiles from these boreholes and formulate a Bayesian inverse problem to reconstruct past surface temperatures. Using a model of temperature advection/diffusion, the top boundary condition (corresponding to surface temperatures) is calibrated via efficient Markov chain Monte Carlo (MCMC). The overall procedure can then be iterated to choose new optimal borehole locations for the next expeditions.Through this work, we demonstrate powerful UQ methods for designing experiments, calibrating models, making predictions, and assessing sensitivity--all performed under an uncertain environment. We develop a theoretical framework as well as practical software within an intuitive workflow, and illustrate their usefulness for combining data and models for environmental and climate research.

  5. The Bayesian reader: explaining word recognition as an optimal Bayesian decision process.

    PubMed

    Norris, Dennis

    2006-04-01

    This article presents a theory of visual word recognition that assumes that, in the tasks of word identification, lexical decision, and semantic categorization, human readers behave as optimal Bayesian decision makers. This leads to the development of a computational model of word recognition, the Bayesian reader. The Bayesian reader successfully simulates some of the most significant data on human reading. The model accounts for the nature of the function relating word frequency to reaction time and identification threshold, the effects of neighborhood density and its interaction with frequency, and the variation in the pattern of neighborhood density effects seen in different experimental tasks. Both the general behavior of the model and the way the model predicts different patterns of results in different tasks follow entirely from the assumption that human readers approximate optimal Bayesian decision makers. ((c) 2006 APA, all rights reserved).

  6. Bayesian adaptive phase II screening design for combination trials

    PubMed Central

    Cai, Chunyan; Yuan, Ying; Johnson, Valen E

    2013-01-01

    Background Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Methods Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Results Simulation studies show that the proposed design substantially outperforms the conventional multiarm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while allocating substantially more patients to efficacious treatments. Limitations The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. Conclusions The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while providing higher power to identify the best treatment at the end of the trial. PMID:23359875

  7. Quantum-Like Representation of Non-Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.

    2013-01-01

    This research is related to the problem of "irrational decision making or inference" that have been discussed in cognitive psychology. There are some experimental studies, and these statistical data cannot be described by classical probability theory. The process of decision making generating these data cannot be reduced to the classical Bayesian inference. For this problem, a number of quantum-like coginitive models of decision making was proposed. Our previous work represented in a natural way the classical Bayesian inference in the frame work of quantum mechanics. By using this representation, in this paper, we try to discuss the non-Bayesian (irrational) inference that is biased by effects like the quantum interference. Further, we describe "psychological factor" disturbing "rationality" as an "environment" correlating with the "main system" of usual Bayesian inference.

  8. Modeling Diagnostic Assessments with Bayesian Networks

    ERIC Educational Resources Information Center

    Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego

    2007-01-01

    This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…

  9. Development of a Bayesian response-adaptive trial design for the Dexamethasone for Excessive Menstruation study.

    PubMed

    Holm Hansen, Christian; Warner, Pamela; Parker, Richard A; Walker, Brian R; Critchley, Hilary Od; Weir, Christopher J

    2017-12-01

    It is often unclear what specific adaptive trial design features lead to an efficient design which is also feasible to implement. This article describes the preparatory simulation study for a Bayesian response-adaptive dose-finding trial design. Dexamethasone for Excessive Menstruation aims to assess the efficacy of Dexamethasone in reducing excessive menstrual bleeding and to determine the best dose for further study. To maximise learning about the dose response, patients receive placebo or an active dose with randomisation probabilities adapting based on evidence from patients already recruited. The dose-response relationship is estimated using a flexible Bayesian Normal Dynamic Linear Model. Several competing design options were considered including: number of doses, proportion assigned to placebo, adaptation criterion, and number and timing of adaptations. We performed a fractional factorial study using SAS software to simulate virtual trial data for candidate adaptive designs under a variety of scenarios and to invoke WinBUGS for Bayesian model estimation. We analysed the simulated trial results using Normal linear models to estimate the effects of each design feature on empirical type I error and statistical power. Our readily-implemented approach using widely available statistical software identified a final design which performed robustly across a range of potential trial scenarios.

  10. Bayesian statistics: estimating plant demographic parameters

    Treesearch

    James S. Clark; Michael Lavine

    2001-01-01

    There are times when external information should be brought tobear on an ecological analysis. experiments are never conducted in a knowledge-free context. The inference we draw from an observation may depend on everything else we know about the process. Bayesian analysis is a method that brings outside evidence into the analysis of experimental and observational data...

  11. Comparison of Co-Temporal Modeling Algorithms on Sparse Experimental Time Series Data Sets.

    PubMed

    Allen, Edward E; Norris, James L; John, David J; Thomas, Stan J; Turkett, William H; Fetrow, Jacquelyn S

    2010-01-01

    Multiple approaches for reverse-engineering biological networks from time-series data have been proposed in the computational biology literature. These approaches can be classified by their underlying mathematical algorithms, such as Bayesian or algebraic techniques, as well as by their time paradigm, which includes next-state and co-temporal modeling. The types of biological relationships, such as parent-child or siblings, discovered by these algorithms are quite varied. It is important to understand the strengths and weaknesses of the various algorithms and time paradigms on actual experimental data. We assess how well the co-temporal implementations of three algorithms, continuous Bayesian, discrete Bayesian, and computational algebraic, can 1) identify two types of entity relationships, parent and sibling, between biological entities, 2) deal with experimental sparse time course data, and 3) handle experimental noise seen in replicate data sets. These algorithms are evaluated, using the shuffle index metric, for how well the resulting models match literature models in terms of siblings and parent relationships. Results indicate that all three co-temporal algorithms perform well, at a statistically significant level, at finding sibling relationships, but perform relatively poorly in finding parent relationships.

  12. A local approach for focussed Bayesian fusion

    NASA Astrophysics Data System (ADS)

    Sander, Jennifer; Heizmann, Michael; Goussev, Igor; Beyerer, Jürgen

    2009-04-01

    Local Bayesian fusion approaches aim to reduce high storage and computational costs of Bayesian fusion which is separated from fixed modeling assumptions. Using the small world formalism, we argue why this proceeding is conform with Bayesian theory. Then, we concentrate on the realization of local Bayesian fusion by focussing the fusion process solely on local regions that are task relevant with a high probability. The resulting local models correspond then to restricted versions of the original one. In a previous publication, we used bounds for the probability of misleading evidence to show the validity of the pre-evaluation of task specific knowledge and prior information which we perform to build local models. In this paper, we prove the validity of this proceeding using information theoretic arguments. For additional efficiency, local Bayesian fusion can be realized in a distributed manner. Here, several local Bayesian fusion tasks are evaluated and unified after the actual fusion process. For the practical realization of distributed local Bayesian fusion, software agents are predestinated. There is a natural analogy between the resulting agent based architecture and criminal investigations in real life. We show how this analogy can be used to improve the efficiency of distributed local Bayesian fusion additionally. Using a landscape model, we present an experimental study of distributed local Bayesian fusion in the field of reconnaissance, which highlights its high potential.

  13. Review of Reliability-Based Design Optimization Approach and Its Integration with Bayesian Method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangnan

    2018-03-01

    A lot of uncertain factors lie in practical engineering, such as external load environment, material property, geometrical shape, initial condition, boundary condition, etc. Reliability method measures the structural safety condition and determine the optimal design parameter combination based on the probabilistic theory. Reliability-based design optimization (RBDO) is the most commonly used approach to minimize the structural cost or other performance under uncertainty variables which combines the reliability theory and optimization. However, it cannot handle the various incomplete information. The Bayesian approach is utilized to incorporate this kind of incomplete information in its uncertainty quantification. In this paper, the RBDO approach and its integration with Bayesian method are introduced.

  14. Adaptive Randomization of Neratinib in Early Breast Cancer

    PubMed Central

    Park, John W.; Liu, Minetta C.; Yee, Douglas; Yau, Christina; van 't Veer, Laura J.; Symmans, W. Fraser; Paoloni, Melissa; Perlmutter, Jane; Hylton, Nola M.; Hogarth, Michael; DeMichele, Angela; Buxton, Meredith B.; Chien, A. Jo; Wallace, Anne M.; Boughey, Judy C.; Haddad, Tufia C.; Chui, Stephen Y.; Kemmer, Kathleen A.; Kaplan, Henry G.; Liu, Minetta C.; Isaacs, Claudine; Nanda, Rita; Tripathy, Debasish; Albain, Kathy S.; Edmiston, Kirsten K.; Elias, Anthony D.; Northfelt, Donald W.; Pusztai, Lajos; Moulder, Stacy L.; Lang, Julie E.; Viscusi, Rebecca K.; Euhus, David M.; Haley, Barbara B.; Khan, Qamar J.; Wood, William C.; Melisko, Michelle; Schwab, Richard; Lyandres, Julia; Davis, Sarah E.; Hirst, Gillian L.; Sanil, Ashish; Esserman, Laura J.; Berry, Donald A.

    2017-01-01

    Background I-SPY2, a standing, multicenter, adaptive phase 2 neoadjuvant trial ongoing in high-risk clinical stage II/III breast cancer, is designed to evaluate multiple, novel experimental agents added to standard chemotherapy for their ability to improve the rate of pathologic complete response (pCR). Experimental therapies are compared against a common control arm. We report efficacy for the tyrosine kinase inhibitor neratinib. Methods Eligible women had ≥2.5 cm stage II/III breast cancer, categorized into 8 biomarker subtypes based on HER2, hormone-receptor status (HR), and MammaPrint. Neratinib was evaluated for 10 signatures (prospectively defined subtype combinations), with primary endpoint pCR. MR volume changes inform likelihood of pCR for each patient prior to surgery. Adaptive assignment to experimental arms within disease subtype was based on current Bayesian probabilities of superiority over control. Accrual to experimental arm stop at any time for futility or graduation within a particular signature based on Bayesian predictive probability of success in a confirmatory trial. The maximum sample size in any experimental arm is 120 patients, Results With 115 patients and 78 concurrently randomized controls, neratinib graduated in the HER2+/HR− signature, with mean pCR rate 56% (95% PI: 37 to 73%) vs 33% for controls (11 to 54%). Final predictive probability of success, updated when all pathology data were available, was 79%. Conclusion Adaptive, multi-armed trials can efficiently identify responding tumor subtypes. Neratinib added to standard therapy is highly likely to improve pCR rates in HER2+/HR2212; breast cancer. Confirmation in I-SPY 3, a phase 3 neoadjuvant registration trial, is planned. PMID:27406346

  15. Bayesian methodology for the design and interpretation of clinical trials in critical care medicine: a primer for clinicians.

    PubMed

    Kalil, Andre C; Sun, Junfeng

    2014-10-01

    To review Bayesian methodology and its utility to clinical decision making and research in the critical care field. Clinical, epidemiological, and biostatistical studies on Bayesian methods in PubMed and Embase from their inception to December 2013. Bayesian methods have been extensively used by a wide range of scientific fields, including astronomy, engineering, chemistry, genetics, physics, geology, paleontology, climatology, cryptography, linguistics, ecology, and computational sciences. The application of medical knowledge in clinical research is analogous to the application of medical knowledge in clinical practice. Bedside physicians have to make most diagnostic and treatment decisions on critically ill patients every day without clear-cut evidence-based medicine (more subjective than objective evidence). Similarly, clinical researchers have to make most decisions about trial design with limited available data. Bayesian methodology allows both subjective and objective aspects of knowledge to be formally measured and transparently incorporated into the design, execution, and interpretation of clinical trials. In addition, various degrees of knowledge and several hypotheses can be tested at the same time in a single clinical trial without the risk of multiplicity. Notably, the Bayesian technology is naturally suited for the interpretation of clinical trial findings for the individualized care of critically ill patients and for the optimization of public health policies. We propose that the application of the versatile Bayesian methodology in conjunction with the conventional statistical methods is not only ripe for actual use in critical care clinical research but it is also a necessary step to maximize the performance of clinical trials and its translation to the practice of critical care medicine.

  16. Evaluation of a multi-arm multi-stage Bayesian design for phase II drug selection trials - an example in hemato-oncology.

    PubMed

    Jacob, Louis; Uvarova, Maria; Boulet, Sandrine; Begaj, Inva; Chevret, Sylvie

    2016-06-02

    Multi-Arm Multi-Stage designs aim at comparing several new treatments to a common reference, in order to select or drop any treatment arm to move forward when such evidence already exists based on interim analyses. We redesigned a Bayesian adaptive design initially proposed for dose-finding, focusing our interest in the comparison of multiple experimental drugs to a control on a binary criterion measure. We redesigned a phase II clinical trial that randomly allocates patients across three (one control and two experimental) treatment arms to assess dropping decision rules. We were interested in dropping any arm due to futility, either based on historical control rate (first rule) or comparison across arms (second rule), and in stopping experimental arm due to its ability to reach a sufficient response rate (third rule), using the difference of response probabilities in Bayes binomial trials between the treated and control as a measure of treatment benefit. Simulations were then conducted to investigate the decision operating characteristics under a variety of plausible scenarios, as a function of the decision thresholds. Our findings suggest that one experimental treatment was less efficient than the control and could have been dropped from the trial based on a sample of approximately 20 instead of 40 patients. In the simulation study, stopping decisions were reached sooner for the first rule than for the second rule, with close mean estimates of response rates and small bias. According to the decision threshold, the mean sample size to detect the required 0.15 absolute benefit ranged from 63 to 70 (rule 3) with false negative rates of less than 2 % (rule 1) up to 6 % (rule 2). In contrast, detecting a 0.15 inferiority in response rates required a sample size ranging on average from 23 to 35 (rules 1 and 2, respectively) with a false positive rate ranging from 3.6 to 0.6 % (rule 3). Adaptive trial design is a good way to improve clinical trials. It allows removing ineffective drugs and reducing the trial sample size, while maintaining unbiased estimates. Decision thresholds can be set according to predefined fixed error decision rates. ClinicalTrials.gov Identifier: NCT01342692 .

  17. An Exploratory Study Examining the Feasibility of Using Bayesian Networks to Predict Circuit Analysis Understanding

    ERIC Educational Resources Information Center

    Chung, Gregory K. W. K.; Dionne, Gary B.; Kaiser, William J.

    2006-01-01

    Our research question was whether we could develop a feasible technique, using Bayesian networks, to diagnose gaps in student knowledge. Thirty-four college-age participants completed tasks designed to measure conceptual knowledge, procedural knowledge, and problem-solving skills related to circuit analysis. A Bayesian network was used to model…

  18. Practical Bayesian tomography

    NASA Astrophysics Data System (ADS)

    Granade, Christopher; Combes, Joshua; Cory, D. G.

    2016-03-01

    In recent years, Bayesian methods have been proposed as a solution to a wide range of issues in quantum state and process tomography. State-of-the-art Bayesian tomography solutions suffer from three problems: numerical intractability, a lack of informative prior distributions, and an inability to track time-dependent processes. Here, we address all three problems. First, we use modern statistical methods, as pioneered by Huszár and Houlsby (2012 Phys. Rev. A 85 052120) and by Ferrie (2014 New J. Phys. 16 093035), to make Bayesian tomography numerically tractable. Our approach allows for practical computation of Bayesian point and region estimators for quantum states and channels. Second, we propose the first priors on quantum states and channels that allow for including useful experimental insight. Finally, we develop a method that allows tracking of time-dependent states and estimates the drift and diffusion processes affecting a state. We provide source code and animated visual examples for our methods.

  19. Comparison between the basic least squares and the Bayesian approach for elastic constants identification

    NASA Astrophysics Data System (ADS)

    Gogu, C.; Haftka, R.; LeRiche, R.; Molimard, J.; Vautrin, A.; Sankar, B.

    2008-11-01

    The basic formulation of the least squares method, based on the L2 norm of the misfit, is still widely used today for identifying elastic material properties from experimental data. An alternative statistical approach is the Bayesian method. We seek here situations with significant difference between the material properties found by the two methods. For a simple three bar truss example we illustrate three such situations in which the Bayesian approach leads to more accurate results: different magnitude of the measurements, different uncertainty in the measurements and correlation among measurements. When all three effects add up, the Bayesian approach can have a large advantage. We then compared the two methods for identification of elastic constants from plate vibration natural frequencies.

  20. Bayesian methods in reliability

    NASA Astrophysics Data System (ADS)

    Sander, P.; Badoux, R.

    1991-11-01

    The present proceedings from a course on Bayesian methods in reliability encompasses Bayesian statistical methods and their computational implementation, models for analyzing censored data from nonrepairable systems, the traits of repairable systems and growth models, the use of expert judgment, and a review of the problem of forecasting software reliability. Specific issues addressed include the use of Bayesian methods to estimate the leak rate of a gas pipeline, approximate analyses under great prior uncertainty, reliability estimation techniques, and a nonhomogeneous Poisson process. Also addressed are the calibration sets and seed variables of expert judgment systems for risk assessment, experimental illustrations of the use of expert judgment for reliability testing, and analyses of the predictive quality of software-reliability growth models such as the Weibull order statistics.

  1. Application of Bayesian Approach in Cancer Clinical Trial

    PubMed Central

    Bhattacharjee, Atanu

    2014-01-01

    The application of Bayesian approach in clinical trials becomes more useful over classical method. It is beneficial from design to analysis phase. The straight forward statement is possible to obtain through Bayesian about the drug treatment effect. Complex computational problems are simple to handle with Bayesian techniques. The technique is only feasible to performing presence of prior information of the data. The inference is possible to establish through posterior estimates. However, some limitations are present in this method. The objective of this work was to explore the several merits and demerits of Bayesian approach in cancer research. The review of the technique will be helpful for the clinical researcher involved in the oncology to explore the limitation and power of Bayesian techniques. PMID:29147387

  2. Bayesian learning and the psychology of rule induction

    PubMed Central

    Endress, Ansgar D.

    2014-01-01

    In recent years, Bayesian learning models have been applied to an increasing variety of domains. While such models have been criticized on theoretical grounds, the underlying assumptions and predictions are rarely made concrete and tested experimentally. Here, I use Frank and Tenenbaum's (2011) Bayesian model of rule-learning as a case study to spell out the underlying assumptions, and to confront them with the empirical results Frank and Tenenbaum (2011) propose to simulate, as well as with novel experiments. While rule-learning is arguably well suited to rational Bayesian approaches, I show that their models are neither psychologically plausible nor ideal observer models. Further, I show that their central assumption is unfounded: humans do not always preferentially learn more specific rules, but, at least in some situations, those rules that happen to be more salient. Even when granting the unsupported assumptions, I show that all of the experiments modeled by Frank and Tenenbaum (2011) either contradict their models, or have a large number of more plausible interpretations. I provide an alternative account of the experimental data based on simple psychological mechanisms, and show that this account both describes the data better, and is easier to falsify. I conclude that, despite the recent surge in Bayesian models of cognitive phenomena, psychological phenomena are best understood by developing and testing psychological theories rather than models that can be fit to virtually any data. PMID:23454791

  3. Dynamic Bayesian Network Modeling of the Interplay between EGFR and Hedgehog Signaling.

    PubMed

    Fröhlich, Holger; Bahamondez, Gloria; Götschel, Frank; Korf, Ulrike

    2015-01-01

    Aberrant activation of sonic Hegdehog (SHH) signaling has been found to disrupt cellular differentiation in many human cancers and to increase proliferation. The SHH pathway is known to cross-talk with EGFR dependent signaling. Recent studies experimentally addressed this interplay in Daoy cells, which are presumable a model system for medulloblastoma, a highly malignant brain tumor that predominately occurs in children. Currently ongoing are several clinical trials for different solid cancers, which are designed to validate the clinical benefits of targeting the SHH in combination with other pathways. This has motivated us to investigate interactions between EGFR and SHH dependent signaling in greater depth. To our knowledge, there is no mathematical model describing the interplay between EGFR and SHH dependent signaling in medulloblastoma so far. Here we come up with a fully probabilistic approach using Dynamic Bayesian Networks (DBNs). To build our model, we made use of literature based knowledge describing SHH and EGFR signaling and integrated gene expression (Illumina) and cellular location dependent time series protein expression data (Reverse Phase Protein Arrays). We validated our model by sub-sampling training data and making Bayesian predictions on the left out test data. Our predictions focusing on key transcription factors and p70S6K, showed a high level of concordance with experimental data. Furthermore, the stability of our model was tested by a parametric bootstrap approach. Stable network features were in agreement with published data. Altogether we believe that our model improved our understanding of the interplay between two highly oncogenic signaling pathways in Daoy cells. This may open new perspectives for the future therapy of Hedghog/EGF-dependent solid tumors.

  4. A Bayesian Hybrid Adaptive Randomisation Design for Clinical Trials with Survival Outcomes.

    PubMed

    Moatti, M; Chevret, S; Zohar, S; Rosenberger, W F

    2016-01-01

    Response-adaptive randomisation designs have been proposed to improve the efficiency of phase III randomised clinical trials and improve the outcomes of the clinical trial population. In the setting of failure time outcomes, Zhang and Rosenberger (2007) developed a response-adaptive randomisation approach that targets an optimal allocation, based on a fixed sample size. The aim of this research is to propose a response-adaptive randomisation procedure for survival trials with an interim monitoring plan, based on the following optimal criterion: for fixed variance of the estimated log hazard ratio, what allocation minimizes the expected hazard of failure? We demonstrate the utility of the design by redesigning a clinical trial on multiple myeloma. To handle continuous monitoring of data, we propose a Bayesian response-adaptive randomisation procedure, where the log hazard ratio is the effect measure of interest. Combining the prior with the normal likelihood, the mean posterior estimate of the log hazard ratio allows derivation of the optimal target allocation. We perform a simulation study to assess and compare the performance of this proposed Bayesian hybrid adaptive design to those of fixed, sequential or adaptive - either frequentist or fully Bayesian - designs. Non informative normal priors of the log hazard ratio were used, as well as mixture of enthusiastic and skeptical priors. Stopping rules based on the posterior distribution of the log hazard ratio were computed. The method is then illustrated by redesigning a phase III randomised clinical trial of chemotherapy in patients with multiple myeloma, with mixture of normal priors elicited from experts. As expected, there was a reduction in the proportion of observed deaths in the adaptive vs. non-adaptive designs; this reduction was maximized using a Bayes mixture prior, with no clear-cut improvement by using a fully Bayesian procedure. The use of stopping rules allows a slight decrease in the observed proportion of deaths under the alternate hypothesis compared with the adaptive designs with no stopping rules. Such Bayesian hybrid adaptive survival trials may be promising alternatives to traditional designs, reducing the duration of survival trials, as well as optimizing the ethical concerns for patients enrolled in the trial.

  5. Bayesian Design of Superiority Clinical Trials for Recurrent Events Data with Applications to Bleeding and Transfusion Events in Myelodyplastic Syndrome

    PubMed Central

    Chen, Ming-Hui; Zeng, Donglin; Hu, Kuolung; Jia, Catherine

    2014-01-01

    Summary In many biomedical studies, patients may experience the same type of recurrent event repeatedly over time, such as bleeding, multiple infections and disease. In this article, we propose a Bayesian design to a pivotal clinical trial in which lower risk myelodysplastic syndromes (MDS) patients are treated with MDS disease modifying therapies. One of the key study objectives is to demonstrate the investigational product (treatment) effect on reduction of platelet transfusion and bleeding events while receiving MDS therapies. In this context, we propose a new Bayesian approach for the design of superiority clinical trials using recurrent events frailty regression models. Historical recurrent events data from an already completed phase 2 trial are incorporated into the Bayesian design via the partial borrowing power prior of Ibrahim et al. (2012, Biometrics 68, 578–586). An efficient Gibbs sampling algorithm, a predictive data generation algorithm, and a simulation-based algorithm are developed for sampling from the fitting posterior distribution, generating the predictive recurrent events data, and computing various design quantities such as the type I error rate and power, respectively. An extensive simulation study is conducted to compare the proposed method to the existing frequentist methods and to investigate various operating characteristics of the proposed design. PMID:25041037

  6. Bayesian sample size calculations in phase II clinical trials using a mixture of informative priors.

    PubMed

    Gajewski, Byron J; Mayo, Matthew S

    2006-08-15

    A number of researchers have discussed phase II clinical trials from a Bayesian perspective. A recent article by Mayo and Gajewski focuses on sample size calculations, which they determine by specifying an informative prior distribution and then calculating a posterior probability that the true response will exceed a prespecified target. In this article, we extend these sample size calculations to include a mixture of informative prior distributions. The mixture comes from several sources of information. For example consider information from two (or more) clinicians. The first clinician is pessimistic about the drug and the second clinician is optimistic. We tabulate the results for sample size design using the fact that the simple mixture of Betas is a conjugate family for the Beta- Binomial model. We discuss the theoretical framework for these types of Bayesian designs and show that the Bayesian designs in this paper approximate this theoretical framework. Copyright 2006 John Wiley & Sons, Ltd.

  7. Bayesian ensemble refinement by replica simulations and reweighting.

    PubMed

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-28

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.

  8. Bayesian ensemble refinement by replica simulations and reweighting

    NASA Astrophysics Data System (ADS)

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-01

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.

  9. D-Optimal Experimental Design for Contaminant Source Identification

    NASA Astrophysics Data System (ADS)

    Sai Baba, A. K.; Alexanderian, A.

    2016-12-01

    Contaminant source identification seeks to estimate the release history of a conservative solute given point concentration measurements at some time after the release. This can be mathematically expressed as an inverse problem, with a linear observation operator or a parameter-to-observation map, which we tackle using a Bayesian approach. Acquisition of experimental data can be laborious and expensive. The goal is to control the experimental parameters - in our case, the sparsity of the sensors, to maximize the information gain subject to some physical or budget constraints. This is known as optimal experimental design (OED). D-optimal experimental design seeks to maximize the expected information gain, and has long been considered the gold standard in the statistics community. Our goal is to develop scalable methods for D-optimal experimental designs involving large-scale PDE constrained problems with high-dimensional parameter fields. A major challenge for the OED, is that a nonlinear optimization algorithm for the D-optimality criterion requires repeated evaluation of objective function and gradient involving the determinant of large and dense matrices - this cost can be prohibitively expensive for applications of interest. We propose novel randomized matrix techniques that bring down the computational costs of the objective function and gradient evaluations by several orders of magnitude compared to the naive approach. The effect of randomized estimators on the accuracy and the convergence of the optimization solver will be discussed. The features and benefits of our new approach will be demonstrated on a challenging model problem from contaminant source identification involving the inference of the initial condition from spatio-temporal observations in a time-dependent advection-diffusion problem.

  10. Uncertainty aggregation and reduction in structure-material performance prediction

    NASA Astrophysics Data System (ADS)

    Hu, Zhen; Mahadevan, Sankaran; Ao, Dan

    2018-02-01

    An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.

  11. Careful with Those Priors: A Note on Bayesian Estimation in Two-Parameter Logistic Item Response Theory Models

    ERIC Educational Resources Information Center

    Marcoulides, Katerina M.

    2018-01-01

    This study examined the use of Bayesian analysis methods for the estimation of item parameters in a two-parameter logistic item response theory model. Using simulated data under various design conditions with both informative and non-informative priors, the parameter recovery of Bayesian analysis methods were examined. Overall results showed that…

  12. Modeling of Academic Achievement of Primary School Students in Ethiopia Using Bayesian Multilevel Approach

    ERIC Educational Resources Information Center

    Sebro, Negusse Yohannes; Goshu, Ayele Taye

    2017-01-01

    This study aims to explore Bayesian multilevel modeling to investigate variations of average academic achievement of grade eight school students. A sample of 636 students is randomly selected from 26 private and government schools by a two-stage stratified sampling design. Bayesian method is used to estimate the fixed and random effects. Input and…

  13. Designing a Mobile Training System in Rural Areas with Bayesian Factor Models

    ERIC Educational Resources Information Center

    Omidi Najafabadi, Maryam; Mirdamadi, Seyed Mehdi; Payandeh Najafabadi, Amir Teimour

    2014-01-01

    The facts that the wireless technologies (1) are more convenient; and (2) need less skill than desktop computers, play a crucial role to decrease digital gap in rural areas. This study employed the Bayesian Confirmatory Factor Analysis (CFA) to design a mobile training system in rural areas of Iran. It categorized challenges, potential, and…

  14. Estimation and uncertainty analysis of dose response in an inter-laboratory experiment

    NASA Astrophysics Data System (ADS)

    Toman, Blaza; Rösslein, Matthias; Elliott, John T.; Petersen, Elijah J.

    2016-02-01

    An inter-laboratory experiment for the evaluation of toxic effects of NH2-polystyrene nanoparticles on living human cancer cells was performed with five participating laboratories. Previously published results from nanocytoxicity assays are often contradictory, mostly due to challenges related to producing a reliable cytotoxicity assay protocol for use with nanomaterials. Specific challenges include reproducibility preparing nanoparticle dispersions, biological variability from testing living cell lines, and the potential for nano-related interference effects. In this experiment, such challenges were addressed by developing a detailed experimental protocol and using a specially designed 96-well plate layout which incorporated a range of control measurements to assess multiple factors such as nanomaterial interference, pipetting accuracy, cell seeding density, and instrument performance. Detailed data analysis of these control measurements showed that good control of the experiments was attained by all participants in most cases. The main measurement objective of the study was the estimation of a dose response relationship between concentration of the nanoparticles and metabolic activity of the living cells, under several experimental conditions. The dose curve estimation was achieved by imbedding a three parameter logistic curve in a three level Bayesian hierarchical model, accounting for uncertainty due to all known experimental conditions as well as between laboratory variability in a top-down manner. Computation was performed using Markov Chain Monte Carlo methods. The fit of the model was evaluated using Bayesian posterior predictive probabilities and found to be satisfactory.

  15. Bayesian design of decision rules for failure detection

    NASA Technical Reports Server (NTRS)

    Chow, E. Y.; Willsky, A. S.

    1984-01-01

    The formulation of the decision making process of a failure detection algorithm as a Bayes sequential decision problem provides a simple conceptualization of the decision rule design problem. As the optimal Bayes rule is not computable, a methodology that is based on the Bayesian approach and aimed at a reduced computational requirement is developed for designing suboptimal rules. A numerical algorithm is constructed to facilitate the design and performance evaluation of these suboptimal rules. The result of applying this design methodology to an example shows that this approach is potentially a useful one.

  16. Single-case experimental design yielded an effect estimate corresponding to a randomized controlled trial.

    PubMed

    Shadish, William R; Rindskopf, David M; Boyajian, Jonathan G

    2016-08-01

    We reanalyzed data from a previous randomized crossover design that administered high or low doses of intravenous immunoglobulin (IgG) to 12 patients with hypogammaglobulinaemia over 12 time points, with crossover after time 6. The objective was to see if results corresponded when analyzed as a set of single-case experimental designs vs. as a usual randomized controlled trial (RCT). Two blinded statisticians independently analyzed results. One analyzed the RCT comparing mean outcomes of group A (high dose IgG) to group B (low dose IgG) at the usual trial end point (time 6 in this case). The other analyzed all 12 time points for the group B patients as six single-case experimental designs analyzed together in a Bayesian nonlinear framework. In the randomized trial, group A [M = 794.93; standard deviation (SD) = 90.48] had significantly higher serum IgG levels at time six than group B (M = 283.89; SD = 71.10) (t = 10.88; df = 10; P < 0.001), yielding a mean difference of MD = 511.05 [standard error (SE) = 46.98]. For the single-case experimental designs, the effect from an intrinsically nonlinear regression was also significant and comparable in size with overlapping confidence intervals: MD = 495.00, SE = 54.41, and t = 495.00/54.41 = 9.10. Subsequent exploratory analyses indicated that how trend was modeled made a difference to these conclusions. The results of single-case experimental designs accurately approximated results from an RCT, although more work is needed to understand the conditions under which this holds. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Bayesian analysis of time-series data under case-crossover designs: posterior equivalence and inference.

    PubMed

    Li, Shi; Mukherjee, Bhramar; Batterman, Stuart; Ghosh, Malay

    2013-12-01

    Case-crossover designs are widely used to study short-term exposure effects on the risk of acute adverse health events. While the frequentist literature on this topic is vast, there is no Bayesian work in this general area. The contribution of this paper is twofold. First, the paper establishes Bayesian equivalence results that require characterization of the set of priors under which the posterior distributions of the risk ratio parameters based on a case-crossover and time-series analysis are identical. Second, the paper studies inferential issues under case-crossover designs in a Bayesian framework. Traditionally, a conditional logistic regression is used for inference on risk-ratio parameters in case-crossover studies. We consider instead a more general full likelihood-based approach which makes less restrictive assumptions on the risk functions. Formulation of a full likelihood leads to growth in the number of parameters proportional to the sample size. We propose a semi-parametric Bayesian approach using a Dirichlet process prior to handle the random nuisance parameters that appear in a full likelihood formulation. We carry out a simulation study to compare the Bayesian methods based on full and conditional likelihood with the standard frequentist approaches for case-crossover and time-series analysis. The proposed methods are illustrated through the Detroit Asthma Morbidity, Air Quality and Traffic study, which examines the association between acute asthma risk and ambient air pollutant concentrations. © 2013, The International Biometric Society.

  18. Multilevel modeling of single-case data: A comparison of maximum likelihood and Bayesian estimation.

    PubMed

    Moeyaert, Mariola; Rindskopf, David; Onghena, Patrick; Van den Noortgate, Wim

    2017-12-01

    The focus of this article is to describe Bayesian estimation, including construction of prior distributions, and to compare parameter recovery under the Bayesian framework (using weakly informative priors) and the maximum likelihood (ML) framework in the context of multilevel modeling of single-case experimental data. Bayesian estimation results were found similar to ML estimation results in terms of the treatment effect estimates, regardless of the functional form and degree of information included in the prior specification in the Bayesian framework. In terms of the variance component estimates, both the ML and Bayesian estimation procedures result in biased and less precise variance estimates when the number of participants is small (i.e., 3). By increasing the number of participants to 5 or 7, the relative bias is close to 5% and more precise estimates are obtained for all approaches, except for the inverse-Wishart prior using the identity matrix. When a more informative prior was added, more precise estimates for the fixed effects and random effects were obtained, even when only 3 participants were included. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Bayesian Inference for Functional Dynamics Exploring in fMRI Data.

    PubMed

    Guo, Xuan; Liu, Bing; Chen, Le; Chen, Guantao; Pan, Yi; Zhang, Jing

    2016-01-01

    This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM), Bayesian Connectivity Change Point Model (BCCPM), and Dynamic Bayesian Variable Partition Model (DBVPM), and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.

  20. A Gaussian Approximation Approach for Value of Information Analysis.

    PubMed

    Jalal, Hawre; Alarid-Escudero, Fernando

    2018-02-01

    Most decisions are associated with uncertainty. Value of information (VOI) analysis quantifies the opportunity loss associated with choosing a suboptimal intervention based on current imperfect information. VOI can inform the value of collecting additional information, resource allocation, research prioritization, and future research designs. However, in practice, VOI remains underused due to many conceptual and computational challenges associated with its application. Expected value of sample information (EVSI) is rooted in Bayesian statistical decision theory and measures the value of information from a finite sample. The past few years have witnessed a dramatic growth in computationally efficient methods to calculate EVSI, including metamodeling. However, little research has been done to simplify the experimental data collection step inherent to all EVSI computations, especially for correlated model parameters. This article proposes a general Gaussian approximation (GA) of the traditional Bayesian updating approach based on the original work by Raiffa and Schlaifer to compute EVSI. The proposed approach uses a single probabilistic sensitivity analysis (PSA) data set and involves 2 steps: 1) a linear metamodel step to compute the EVSI on the preposterior distributions and 2) a GA step to compute the preposterior distribution of the parameters of interest. The proposed approach is efficient and can be applied for a wide range of data collection designs involving multiple non-Gaussian parameters and unbalanced study designs. Our approach is particularly useful when the parameters of an economic evaluation are correlated or interact.

  1. Evaluating impacts using a BACI design, ratios, and a Bayesian approach with a focus on restoration.

    PubMed

    Conner, Mary M; Saunders, W Carl; Bouwes, Nicolaas; Jordan, Chris

    2015-10-01

    Before-after-control-impact (BACI) designs are an effective method to evaluate natural and human-induced perturbations on ecological variables when treatment sites cannot be randomly chosen. While effect sizes of interest can be tested with frequentist methods, using Bayesian Markov chain Monte Carlo (MCMC) sampling methods, probabilities of effect sizes, such as a ≥20 % increase in density after restoration, can be directly estimated. Although BACI and Bayesian methods are used widely for assessing natural and human-induced impacts for field experiments, the application of hierarchal Bayesian modeling with MCMC sampling to BACI designs is less common. Here, we combine these approaches and extend the typical presentation of results with an easy to interpret ratio, which provides an answer to the main study question-"How much impact did a management action or natural perturbation have?" As an example of this approach, we evaluate the impact of a restoration project, which implemented beaver dam analogs, on survival and density of juvenile steelhead. Results indicated the probabilities of a ≥30 % increase were high for survival and density after the dams were installed, 0.88 and 0.99, respectively, while probabilities for a higher increase of ≥50 % were variable, 0.17 and 0.82, respectively. This approach demonstrates a useful extension of Bayesian methods that can easily be generalized to other study designs from simple (e.g., single factor ANOVA, paired t test) to more complicated block designs (e.g., crossover, split-plot). This approach is valuable for estimating the probabilities of restoration impacts or other management actions.

  2. Screened selection design for randomised phase II oncology trials: an example in chronic lymphocytic leukaemia

    PubMed Central

    2013-01-01

    Background As there are limited patients for chronic lymphocytic leukaemia trials, it is important that statistical methodologies in Phase II efficiently select regimens for subsequent evaluation in larger-scale Phase III trials. Methods We propose the screened selection design (SSD), which is a practical multi-stage, randomised Phase II design for two experimental arms. Activity is first evaluated by applying Simon’s two-stage design (1989) on each arm. If both are active, the play-the-winner selection strategy proposed by Simon, Wittes and Ellenberg (SWE) (1985) is applied to select the superior arm. A variant of the design, Modified SSD, also allows the arm with the higher response rates to be recommended only if its activity rate is greater by a clinically-relevant value. The operating characteristics are explored via a simulation study and compared to a Bayesian Selection approach. Results Simulations showed that with the proposed SSD, it is possible to retain the sample size as required in SWE and obtain similar probabilities of selecting the correct superior arm of at least 90%; with the additional attractive benefit of reducing the probability of selecting ineffective arms. This approach is comparable to a Bayesian Selection Strategy. The Modified SSD performs substantially better than the other designs in selecting neither arm if the underlying rates for both arms are desirable but equivalent, allowing for other factors to be considered in the decision making process. Though its probability of correctly selecting a superior arm might be reduced, it still performs reasonably well. It also reduces the probability of selecting an inferior arm. Conclusions SSD provides an easy to implement randomised Phase II design that selects the most promising treatment that has shown sufficient evidence of activity, with available R codes to evaluate its operating characteristics. PMID:23819695

  3. Screened selection design for randomised phase II oncology trials: an example in chronic lymphocytic leukaemia.

    PubMed

    Yap, Christina; Pettitt, Andrew; Billingham, Lucinda

    2013-07-03

    As there are limited patients for chronic lymphocytic leukaemia trials, it is important that statistical methodologies in Phase II efficiently select regimens for subsequent evaluation in larger-scale Phase III trials. We propose the screened selection design (SSD), which is a practical multi-stage, randomised Phase II design for two experimental arms. Activity is first evaluated by applying Simon's two-stage design (1989) on each arm. If both are active, the play-the-winner selection strategy proposed by Simon, Wittes and Ellenberg (SWE) (1985) is applied to select the superior arm. A variant of the design, Modified SSD, also allows the arm with the higher response rates to be recommended only if its activity rate is greater by a clinically-relevant value. The operating characteristics are explored via a simulation study and compared to a Bayesian Selection approach. Simulations showed that with the proposed SSD, it is possible to retain the sample size as required in SWE and obtain similar probabilities of selecting the correct superior arm of at least 90%; with the additional attractive benefit of reducing the probability of selecting ineffective arms. This approach is comparable to a Bayesian Selection Strategy. The Modified SSD performs substantially better than the other designs in selecting neither arm if the underlying rates for both arms are desirable but equivalent, allowing for other factors to be considered in the decision making process. Though its probability of correctly selecting a superior arm might be reduced, it still performs reasonably well. It also reduces the probability of selecting an inferior arm. SSD provides an easy to implement randomised Phase II design that selects the most promising treatment that has shown sufficient evidence of activity, with available R codes to evaluate its operating characteristics.

  4. Bayesian Adaptive Trial Design for a Newly Validated Surrogate Endpoint

    PubMed Central

    Renfro, Lindsay A.; Carlin, Bradley P.; Sargent, Daniel J.

    2011-01-01

    Summary The evaluation of surrogate endpoints for primary use in future clinical trials is an increasingly important research area, due to demands for more efficient trials coupled with recent regulatory acceptance of some surrogates as ‘valid.’ However, little consideration has been given to how a trial which utilizes a newly-validated surrogate endpoint as its primary endpoint might be appropriately designed. We propose a novel Bayesian adaptive trial design that allows the new surrogate endpoint to play a dominant role in assessing the effect of an intervention, while remaining realistically cautious about its use. By incorporating multi-trial historical information on the validated relationship between the surrogate and clinical endpoints, then subsequently evaluating accumulating data against this relationship as the new trial progresses, we adaptively guard against an erroneous assessment of treatment based upon a truly invalid surrogate. When the joint outcomes in the new trial seem plausible given similar historical trials, we proceed with the surrogate endpoint as the primary endpoint, and do so adaptively–perhaps stopping the trial for early success or inferiority of the experimental treatment, or for futility. Otherwise, we discard the surrogate and switch adaptive determinations to the original primary endpoint. We use simulation to test the operating characteristics of this new design compared to a standard O’Brien-Fleming approach, as well as the ability of our design to discriminate trustworthy from untrustworthy surrogates in hypothetical future trials. Furthermore, we investigate possible benefits using patient-level data from 18 adjuvant therapy trials in colon cancer, where disease-free survival is considered a newly-validated surrogate endpoint for overall survival. PMID:21838811

  5. Compromise decision support problems for hierarchical design involving uncertainty

    NASA Astrophysics Data System (ADS)

    Vadde, S.; Allen, J. K.; Mistree, F.

    1994-08-01

    In this paper an extension to the traditional compromise Decision Support Problem (DSP) formulation is presented. Bayesian statistics is used in the formulation to model uncertainties associated with the information being used. In an earlier paper a compromise DSP that accounts for uncertainty using fuzzy set theory was introduced. The Bayesian Decision Support Problem is described in this paper. The method for hierarchical design is demonstrated by using this formulation to design a portal frame. The results are discussed and comparisons are made with those obtained using the fuzzy DSP. Finally, the efficacy of incorporating Bayesian statistics into the traditional compromise DSP formulation is discussed and some pending research issues are described. Our emphasis in this paper is on the method rather than the results per se.

  6. Bayesian adaptive trials offer advantages in comparative effectiveness trials: an example in status epilepticus.

    PubMed

    Connor, Jason T; Elm, Jordan J; Broglio, Kristine R

    2013-08-01

    We present a novel Bayesian adaptive comparative effectiveness trial comparing three treatments for status epilepticus that uses adaptive randomization with potential early stopping. The trial will enroll 720 unique patients in emergency departments and uses a Bayesian adaptive design. The trial design is compared to a trial without adaptive randomization and produces an efficient trial in which a higher proportion of patients are likely to be randomized to the most effective treatment arm while generally using fewer total patients and offers higher power than an analogous trial with fixed randomization when identifying a superior treatment. When one treatment is superior to the other two, the trial design provides better patient care, higher power, and a lower expected sample size. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. CytoBayesJ: software tools for Bayesian analysis of cytogenetic radiation dosimetry data.

    PubMed

    Ainsbury, Elizabeth A; Vinnikov, Volodymyr; Puig, Pedro; Maznyk, Nataliya; Rothkamm, Kai; Lloyd, David C

    2013-08-30

    A number of authors have suggested that a Bayesian approach may be most appropriate for analysis of cytogenetic radiation dosimetry data. In the Bayesian framework, probability of an event is described in terms of previous expectations and uncertainty. Previously existing, or prior, information is used in combination with experimental results to infer probabilities or the likelihood that a hypothesis is true. It has been shown that the Bayesian approach increases both the accuracy and quality assurance of radiation dose estimates. New software entitled CytoBayesJ has been developed with the aim of bringing Bayesian analysis to cytogenetic biodosimetry laboratory practice. CytoBayesJ takes a number of Bayesian or 'Bayesian like' methods that have been proposed in the literature and presents them to the user in the form of simple user-friendly tools, including testing for the most appropriate model for distribution of chromosome aberrations and calculations of posterior probability distributions. The individual tools are described in detail and relevant examples of the use of the methods and the corresponding CytoBayesJ software tools are given. In this way, the suitability of the Bayesian approach to biological radiation dosimetry is highlighted and its wider application encouraged by providing a user-friendly software interface and manual in English and Russian. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Experimental adaptive quantum tomography of two-qubit states

    NASA Astrophysics Data System (ADS)

    Struchalin, G. I.; Pogorelov, I. A.; Straupe, S. S.; Kravtsov, K. S.; Radchenko, I. V.; Kulik, S. P.

    2016-01-01

    We report an experimental realization of adaptive Bayesian quantum state tomography for two-qubit states. Our implementation is based on the adaptive experimental design strategy proposed in the work by Huszár and Houlsby [F. Huszár and N. M. T. Houlsby, Phys. Rev. A 85, 052120 (2012)., 10.1103/PhysRevA.85.052120] and provides an optimal measurement approach in terms of the information gain. We address the practical questions which one faces in any experimental application: the influence of technical noise and the behavior of the tomographic algorithm for an easy-to-implement class of factorized measurements. In an experiment with polarization states of entangled photon pairs, we observe a lower instrumental noise floor and superior reconstruction accuracy for nearly pure states of the adaptive protocol compared to a nonadaptive protocol. At the same time, we show that for the mixed states, the restriction to factorized measurements results in no advantage for adaptive measurements, so general measurements have to be used.

  9. PEITH(Θ): perfecting experiments with information theory in Python with GPU support.

    PubMed

    Dony, Leander; Mackerodt, Jonas; Ward, Scott; Filippi, Sarah; Stumpf, Michael P H; Liepe, Juliane

    2018-04-01

    Different experiments provide differing levels of information about a biological system. This makes it difficult, a priori, to select one of them beyond mere speculation and/or belief, especially when resources are limited. With the increasing diversity of experimental approaches and general advances in quantitative systems biology, methods that inform us about the information content that a given experiment carries about the question we want to answer, become crucial. PEITH(Θ) is a general purpose, Python framework for experimental design in systems biology. PEITH(Θ) uses Bayesian inference and information theory in order to derive which experiments are most informative in order to estimate all model parameters and/or perform model predictions. https://github.com/MichaelPHStumpf/Peitho. m.stumpf@imperial.ac.uk or juliane.liepe@mpibpc.mpg.de.

  10. Bayesian techniques for analyzing group differences in the Iowa Gambling Task: A case study of intuitive and deliberate decision-makers.

    PubMed

    Steingroever, Helen; Pachur, Thorsten; Šmíra, Martin; Lee, Michael D

    2018-06-01

    The Iowa Gambling Task (IGT) is one of the most popular experimental paradigms for comparing complex decision-making across groups. Most commonly, IGT behavior is analyzed using frequentist tests to compare performance across groups, and to compare inferred parameters of cognitive models developed for the IGT. Here, we present a Bayesian alternative based on Bayesian repeated-measures ANOVA for comparing performance, and a suite of three complementary model-based methods for assessing the cognitive processes underlying IGT performance. The three model-based methods involve Bayesian hierarchical parameter estimation, Bayes factor model comparison, and Bayesian latent-mixture modeling. We illustrate these Bayesian methods by applying them to test the extent to which differences in intuitive versus deliberate decision style are associated with differences in IGT performance. The results show that intuitive and deliberate decision-makers behave similarly on the IGT, and the modeling analyses consistently suggest that both groups of decision-makers rely on similar cognitive processes. Our results challenge the notion that individual differences in intuitive and deliberate decision styles have a broad impact on decision-making. They also highlight the advantages of Bayesian methods, especially their ability to quantify evidence in favor of the null hypothesis, and that they allow model-based analyses to incorporate hierarchical and latent-mixture structures.

  11. Nonlinear and non-Gaussian Bayesian based handwriting beautification

    NASA Astrophysics Data System (ADS)

    Shi, Cao; Xiao, Jianguo; Xu, Canhui; Jia, Wenhua

    2013-03-01

    A framework is proposed in this paper to effectively and efficiently beautify handwriting by means of a novel nonlinear and non-Gaussian Bayesian algorithm. In the proposed framework, format and size of handwriting image are firstly normalized, and then typeface in computer system is applied to optimize vision effect of handwriting. The Bayesian statistics is exploited to characterize the handwriting beautification process as a Bayesian dynamic model. The model parameters to translate, rotate and scale typeface in computer system are controlled by state equation, and the matching optimization between handwriting and transformed typeface is employed by measurement equation. Finally, the new typeface, which is transformed from the original one and gains the best nonlinear and non-Gaussian optimization, is the beautification result of handwriting. Experimental results demonstrate the proposed framework provides a creative handwriting beautification methodology to improve visual acceptance.

  12. Construction of monitoring model and algorithm design on passenger security during shipping based on improved Bayesian network.

    PubMed

    Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng

    2014-01-01

    A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping.

  13. Construction of Monitoring Model and Algorithm Design on Passenger Security during Shipping Based on Improved Bayesian Network

    PubMed Central

    Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng

    2014-01-01

    A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping. PMID:25254227

  14. A Bayesian nonparametric method for prediction in EST analysis

    PubMed Central

    Lijoi, Antonio; Mena, Ramsés H; Prünster, Igor

    2007-01-01

    Background Expressed sequence tags (ESTs) analyses are a fundamental tool for gene identification in organisms. Given a preliminary EST sample from a certain library, several statistical prediction problems arise. In particular, it is of interest to estimate how many new genes can be detected in a future EST sample of given size and also to determine the gene discovery rate: these estimates represent the basis for deciding whether to proceed sequencing the library and, in case of a positive decision, a guideline for selecting the size of the new sample. Such information is also useful for establishing sequencing efficiency in experimental design and for measuring the degree of redundancy of an EST library. Results In this work we propose a Bayesian nonparametric approach for tackling statistical problems related to EST surveys. In particular, we provide estimates for: a) the coverage, defined as the proportion of unique genes in the library represented in the given sample of reads; b) the number of new unique genes to be observed in a future sample; c) the discovery rate of new genes as a function of the future sample size. The Bayesian nonparametric model we adopt conveys, in a statistically rigorous way, the available information into prediction. Our proposal has appealing properties over frequentist nonparametric methods, which become unstable when prediction is required for large future samples. EST libraries, previously studied with frequentist methods, are analyzed in detail. Conclusion The Bayesian nonparametric approach we undertake yields valuable tools for gene capture and prediction in EST libraries. The estimators we obtain do not feature the kind of drawbacks associated with frequentist estimators and are reliable for any size of the additional sample. PMID:17868445

  15. Bayesian approach to estimate AUC, partition coefficient and drug targeting index for studies with serial sacrifice design.

    PubMed

    Wang, Tianli; Baron, Kyle; Zhong, Wei; Brundage, Richard; Elmquist, William

    2014-03-01

    The current study presents a Bayesian approach to non-compartmental analysis (NCA), which provides the accurate and precise estimate of AUC 0 (∞) and any AUC 0 (∞) -based NCA parameter or derivation. In order to assess the performance of the proposed method, 1,000 simulated datasets were generated in different scenarios. A Bayesian method was used to estimate the tissue and plasma AUC 0 (∞) s and the tissue-to-plasma AUC 0 (∞) ratio. The posterior medians and the coverage of 95% credible intervals for the true parameter values were examined. The method was applied to laboratory data from a mice brain distribution study with serial sacrifice design for illustration. Bayesian NCA approach is accurate and precise in point estimation of the AUC 0 (∞) and the partition coefficient under a serial sacrifice design. It also provides a consistently good variance estimate, even considering the variability of the data and the physiological structure of the pharmacokinetic model. The application in the case study obtained a physiologically reasonable posterior distribution of AUC, with a posterior median close to the value estimated by classic Bailer-type methods. This Bayesian NCA approach for sparse data analysis provides statistical inference on the variability of AUC 0 (∞) -based parameters such as partition coefficient and drug targeting index, so that the comparison of these parameters following destructive sampling becomes statistically feasible.

  16. Bayesian survival analysis in clinical trials: What methods are used in practice?

    PubMed

    Brard, Caroline; Le Teuff, Gwénaël; Le Deley, Marie-Cécile; Hampson, Lisa V

    2017-02-01

    Background Bayesian statistics are an appealing alternative to the traditional frequentist approach to designing, analysing, and reporting of clinical trials, especially in rare diseases. Time-to-event endpoints are widely used in many medical fields. There are additional complexities to designing Bayesian survival trials which arise from the need to specify a model for the survival distribution. The objective of this article was to critically review the use and reporting of Bayesian methods in survival trials. Methods A systematic review of clinical trials using Bayesian survival analyses was performed through PubMed and Web of Science databases. This was complemented by a full text search of the online repositories of pre-selected journals. Cost-effectiveness, dose-finding studies, meta-analyses, and methodological papers using clinical trials were excluded. Results In total, 28 articles met the inclusion criteria, 25 were original reports of clinical trials and 3 were re-analyses of a clinical trial. Most trials were in oncology (n = 25), were randomised controlled (n = 21) phase III trials (n = 13), and half considered a rare disease (n = 13). Bayesian approaches were used for monitoring in 14 trials and for the final analysis only in 14 trials. In the latter case, Bayesian survival analyses were used for the primary analysis in four cases, for the secondary analysis in seven cases, and for the trial re-analysis in three cases. Overall, 12 articles reported fitting Bayesian regression models (semi-parametric, n = 3; parametric, n = 9). Prior distributions were often incompletely reported: 20 articles did not define the prior distribution used for the parameter of interest. Over half of the trials used only non-informative priors for monitoring and the final analysis (n = 12) when it was specified. Indeed, no articles fitting Bayesian regression models placed informative priors on the parameter of interest. The prior for the treatment effect was based on historical data in only four trials. Decision rules were pre-defined in eight cases when trials used Bayesian monitoring, and in only one case when trials adopted a Bayesian approach to the final analysis. Conclusion Few trials implemented a Bayesian survival analysis and few incorporated external data into priors. There is scope to improve the quality of reporting of Bayesian methods in survival trials. Extension of the Consolidated Standards of Reporting Trials statement for reporting Bayesian clinical trials is recommended.

  17. Identification of failure type in corroded pipelines: a bayesian probabilistic approach.

    PubMed

    Breton, T; Sanchez-Gheno, J C; Alamilla, J L; Alvarez-Ramirez, J

    2010-07-15

    Spillover of hazardous materials from transport pipelines can lead to catastrophic events with serious and dangerous environmental impact, potential fire events and human fatalities. The problem is more serious for large pipelines when the construction material is under environmental corrosion conditions, as in the petroleum and gas industries. In this way, predictive models can provide a suitable framework for risk evaluation, maintenance policies and substitution procedure design that should be oriented to reduce increased hazards. This work proposes a bayesian probabilistic approach to identify and predict the type of failure (leakage or rupture) for steel pipelines under realistic corroding conditions. In the first step of the modeling process, the mechanical performance of the pipe is considered for establishing conditions under which either leakage or rupture failure can occur. In the second step, experimental burst tests are used to introduce a mean probabilistic boundary defining a region where the type of failure is uncertain. In the boundary vicinity, the failure discrimination is carried out with a probabilistic model where the events are considered as random variables. In turn, the model parameters are estimated with available experimental data and contrasted with a real catastrophic event, showing good discrimination capacity. The results are discussed in terms of policies oriented to inspection and maintenance of large-size pipelines in the oil and gas industry. 2010 Elsevier B.V. All rights reserved.

  18. A Bayesian hierarchical diffusion model decomposition of performance in Approach–Avoidance Tasks

    PubMed Central

    Krypotos, Angelos-Miltiadis; Beckers, Tom; Kindt, Merel; Wagenmakers, Eric-Jan

    2015-01-01

    Common methods for analysing response time (RT) tasks, frequently used across different disciplines of psychology, suffer from a number of limitations such as the failure to directly measure the underlying latent processes of interest and the inability to take into account the uncertainty associated with each individual's point estimate of performance. Here, we discuss a Bayesian hierarchical diffusion model and apply it to RT data. This model allows researchers to decompose performance into meaningful psychological processes and to account optimally for individual differences and commonalities, even with relatively sparse data. We highlight the advantages of the Bayesian hierarchical diffusion model decomposition by applying it to performance on Approach–Avoidance Tasks, widely used in the emotion and psychopathology literature. Model fits for two experimental data-sets demonstrate that the model performs well. The Bayesian hierarchical diffusion model overcomes important limitations of current analysis procedures and provides deeper insight in latent psychological processes of interest. PMID:25491372

  19. Bayesian learning of visual chunks by human observers

    PubMed Central

    Orbán, Gergő; Fiser, József; Aslin, Richard N.; Lengyel, Máté

    2008-01-01

    Efficient and versatile processing of any hierarchically structured information requires a learning mechanism that combines lower-level features into higher-level chunks. We investigated this chunking mechanism in humans with a visual pattern-learning paradigm. We developed an ideal learner based on Bayesian model comparison that extracts and stores only those chunks of information that are minimally sufficient to encode a set of visual scenes. Our ideal Bayesian chunk learner not only reproduced the results of a large set of previous empirical findings in the domain of human pattern learning but also made a key prediction that we confirmed experimentally. In accordance with Bayesian learning but contrary to associative learning, human performance was well above chance when pair-wise statistics in the exemplars contained no relevant information. Thus, humans extract chunks from complex visual patterns by generating accurate yet economical representations and not by encoding the full correlational structure of the input. PMID:18268353

  20. A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models.

    PubMed

    Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S; Wu, Xiaowei; Müller, Rolf

    2018-01-01

    Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design.

  1. A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models

    PubMed Central

    Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S.; Wu, Xiaowei; Müller, Rolf

    2017-01-01

    Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design. PMID:29749977

  2. Palmprint identification using FRIT

    NASA Astrophysics Data System (ADS)

    Kisku, D. R.; Rattani, A.; Gupta, P.; Hwang, C. J.; Sing, J. K.

    2011-06-01

    This paper proposes a palmprint identification system using Finite Ridgelet Transform (FRIT) and Bayesian classifier. FRIT is applied on the ROI (region of interest), which is extracted from palmprint image, to extract a set of distinctive features from palmprint image. These features are used to classify with the help of Bayesian classifier. The proposed system has been tested on CASIA and IIT Kanpur palmprint databases. The experimental results reveal better performance compared to all well known systems.

  3. Bayesian model comparison and parameter inference in systems biology using nested sampling.

    PubMed

    Pullen, Nick; Morris, Richard J

    2014-01-01

    Inferring parameters for models of biological processes is a current challenge in systems biology, as is the related problem of comparing competing models that explain the data. In this work we apply Skilling's nested sampling to address both of these problems. Nested sampling is a Bayesian method for exploring parameter space that transforms a multi-dimensional integral to a 1D integration over likelihood space. This approach focuses on the computation of the marginal likelihood or evidence. The ratio of evidences of different models leads to the Bayes factor, which can be used for model comparison. We demonstrate how nested sampling can be used to reverse-engineer a system's behaviour whilst accounting for the uncertainty in the results. The effect of missing initial conditions of the variables as well as unknown parameters is investigated. We show how the evidence and the model ranking can change as a function of the available data. Furthermore, the addition of data from extra variables of the system can deliver more information for model comparison than increasing the data from one variable, thus providing a basis for experimental design.

  4. A Gender Identification System for Customers in a Shop Using Infrared Area Scanners

    NASA Astrophysics Data System (ADS)

    Tajima, Takuya; Kimura, Haruhiko; Abe, Takehiko; Abe, Koji; Nakamoto, Yoshinori

    Information about customers in shops plays an important role in marketing analysis. Currently, in convenience stores and supermarkets, the identification of customer's gender is examined by clerks. On the other hand, gender identification systems using camera images are investigated. However, these systems have a problem of invading human privacies in identifying attributes of customers. The proposed system identifies gender by using infrared area scanners and Bayesian network. In the proposed system, since infrared area scanners do not take customers' images directly, invasion of privacies are not occurred. The proposed method uses three parameters of height, walking speed and pace for humans. In general, it is shown that these parameters have factors of sexual distinction in humans, and Bayesian network is designed with these three parameters. The proposed method resolves the existent problems of restricting the locations where the systems are set and invading human privacies. Experimental results using data obtained from 450 people show that the identification rate for the proposed method was 91.3% on the average of both of male and female identifications.

  5. Cross-view gait recognition using joint Bayesian

    NASA Astrophysics Data System (ADS)

    Li, Chao; Sun, Shouqian; Chen, Xiaoyu; Min, Xin

    2017-07-01

    Human gait, as a soft biometric, helps to recognize people by walking. To further improve the recognition performance under cross-view condition, we propose Joint Bayesian to model the view variance. We evaluated our prosed method with the largest population (OULP) dataset which makes our result reliable in a statically way. As a result, we confirmed our proposed method significantly outperformed state-of-the-art approaches for both identification and verification tasks. Finally, sensitivity analysis on the number of training subjects was conducted, we find Joint Bayesian could achieve competitive results even with a small subset of training subjects (100 subjects). For further comparison, experimental results, learning models, and test codes are available.

  6. Applications of Bayesian spectrum representation in acoustics

    NASA Astrophysics Data System (ADS)

    Botts, Jonathan M.

    This dissertation utilizes a Bayesian inference framework to enhance the solution of inverse problems where the forward model maps to acoustic spectra. A Bayesian solution to filter design inverts a acoustic spectra to pole-zero locations of a discrete-time filter model. Spatial sound field analysis with a spherical microphone array is a data analysis problem that requires inversion of spatio-temporal spectra to directions of arrival. As with many inverse problems, a probabilistic analysis results in richer solutions than can be achieved with ad-hoc methods. In the filter design problem, the Bayesian inversion results in globally optimal coefficient estimates as well as an estimate the most concise filter capable of representing the given spectrum, within a single framework. This approach is demonstrated on synthetic spectra, head-related transfer function spectra, and measured acoustic reflection spectra. The Bayesian model-based analysis of spatial room impulse responses is presented as an analogous problem with equally rich solution. The model selection mechanism provides an estimate of the number of arrivals, which is necessary to properly infer the directions of simultaneous arrivals. Although, spectrum inversion problems are fairly ubiquitous, the scope of this dissertation has been limited to these two and derivative problems. The Bayesian approach to filter design is demonstrated on an artificial spectrum to illustrate the model comparison mechanism and then on measured head-related transfer functions to show the potential range of application. Coupled with sampling methods, the Bayesian approach is shown to outperform least-squares filter design methods commonly used in commercial software, confirming the need for a global search of the parameter space. The resulting designs are shown to be comparable to those that result from global optimization methods, but the Bayesian approach has the added advantage of a filter length estimate within the same unified framework. The application to reflection data is useful for representing frequency-dependent impedance boundaries in finite difference acoustic simulations. Furthermore, since the filter transfer function is a parametric model, it can be modified to incorporate arbitrary frequency weighting and account for the band-limited nature of measured reflection spectra. Finally, the model is modified to compensate for dispersive error in the finite difference simulation, from the filter design process. Stemming from the filter boundary problem, the implementation of pressure sources in finite difference simulation is addressed in order to assure that schemes properly converge. A class of parameterized source functions is proposed and shown to offer straightforward control of residual error in the simulation. Guided by the notion that the solution to be approximated affects the approximation error, sources are designed which reduce residual dispersive error to the size of round-off errors. The early part of a room impulse response can be characterized by a series of isolated plane waves. Measured with an array of microphones, plane waves map to a directional response of the array or spatial intensity map. Probabilistic inversion of this response results in estimates of the number and directions of image source arrivals. The model-based inversion is shown to avoid ambiguities associated with peak-finding or inspection of the spatial intensity map. For this problem, determining the number of arrivals in a given frame is critical for properly inferring the state of the sound field. This analysis is effectively compression of the spatial room response, which is useful for analysis or encoding of the spatial sound field. Parametric, model-based formulations of these problems enhance the solution in all cases, and a Bayesian interpretation provides a principled approach to model comparison and parameter estimation. v

  7. Model based inference from microvascular measurements: Combining experimental measurements and model predictions using a Bayesian probabilistic approach

    PubMed Central

    Rasmussen, Peter M.; Smith, Amy F.; Sakadžić, Sava; Boas, David A.; Pries, Axel R.; Secomb, Timothy W.; Østergaard, Leif

    2017-01-01

    Objective In vivo imaging of the microcirculation and network-oriented modeling have emerged as powerful means of studying microvascular function and understanding its physiological significance. Network-oriented modeling may provide the means of summarizing vast amounts of data produced by high-throughput imaging techniques in terms of key, physiological indices. To estimate such indices with sufficient certainty, however, network-oriented analysis must be robust to the inevitable presence of uncertainty due to measurement errors as well as model errors. Methods We propose the Bayesian probabilistic data analysis framework as a means of integrating experimental measurements and network model simulations into a combined and statistically coherent analysis. The framework naturally handles noisy measurements and provides posterior distributions of model parameters as well as physiological indices associated with uncertainty. Results We applied the analysis framework to experimental data from three rat mesentery networks and one mouse brain cortex network. We inferred distributions for more than five hundred unknown pressure and hematocrit boundary conditions. Model predictions were consistent with previous analyses, and remained robust when measurements were omitted from model calibration. Conclusion Our Bayesian probabilistic approach may be suitable for optimizing data acquisition and for analyzing and reporting large datasets acquired as part of microvascular imaging studies. PMID:27987383

  8. Forensic Signature Detection of Yersinia Pestis Culturing Practices Across Institutions Using a Bayesian Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb-Robertson, Bobbie-Jo M.; Corley, Courtney D.; McCue, Lee Ann

    The field of bioforensics is focused on the analysis of evidence from a biocrime. Existing laboratory analyses can identify the specific strain of an organism in the evidence, as well signatures of the specific culture batch of organisms, such as low-frequency contaminants or indicators of growth and processing methods. To link these disparate types of physical data to potential suspects, investigators may need to identify institutions or individuals whose access to strains and culturing practices match those identified from the evidence. In this work we present a Bayesian statistical network to fuse different types of analytical measurements that predict themore » production environment of a Yersinia pestis sample under investigation with automated test processing of scientific publications to identify institutions with a history of growing Y. pestis under similar conditions. Furthermore, the textual and experimental signatures were evaluated recursively to determine the overall sensitivity of the network across all levels of false positives. We illustrate that institutions associated with several specific culturing practices can be accurately selected based on the experimental signature from only a few analytical measurements. These findings demonstrate that similar Bayesian networks can be generated generically for many organisms of interest and their deployment is not prohibitive due to either computational or experimental factors.« less

  9. Sequential Designs Based on Bayesian Uncertainty Quantification in Sparse Representation Surrogate Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ray -Bing; Wang, Weichung; Jeff Wu, C. F.

    A numerical method, called OBSM, was recently proposed which employs overcomplete basis functions to achieve sparse representations. While the method can handle non-stationary response without the need of inverting large covariance matrices, it lacks the capability to quantify uncertainty in predictions. We address this issue by proposing a Bayesian approach which first imposes a normal prior on the large space of linear coefficients, then applies the MCMC algorithm to generate posterior samples for predictions. From these samples, Bayesian credible intervals can then be obtained to assess prediction uncertainty. A key application for the proposed method is the efficient construction ofmore » sequential designs. Several sequential design procedures with different infill criteria are proposed based on the generated posterior samples. As a result, numerical studies show that the proposed schemes are capable of solving problems of positive point identification, optimization, and surrogate fitting.« less

  10. Sequential Designs Based on Bayesian Uncertainty Quantification in Sparse Representation Surrogate Modeling

    DOE PAGES

    Chen, Ray -Bing; Wang, Weichung; Jeff Wu, C. F.

    2017-04-12

    A numerical method, called OBSM, was recently proposed which employs overcomplete basis functions to achieve sparse representations. While the method can handle non-stationary response without the need of inverting large covariance matrices, it lacks the capability to quantify uncertainty in predictions. We address this issue by proposing a Bayesian approach which first imposes a normal prior on the large space of linear coefficients, then applies the MCMC algorithm to generate posterior samples for predictions. From these samples, Bayesian credible intervals can then be obtained to assess prediction uncertainty. A key application for the proposed method is the efficient construction ofmore » sequential designs. Several sequential design procedures with different infill criteria are proposed based on the generated posterior samples. As a result, numerical studies show that the proposed schemes are capable of solving problems of positive point identification, optimization, and surrogate fitting.« less

  11. Numerical study on the sequential Bayesian approach for radioactive materials detection

    NASA Astrophysics Data System (ADS)

    Qingpei, Xiang; Dongfeng, Tian; Jianyu, Zhu; Fanhua, Hao; Ge, Ding; Jun, Zeng

    2013-01-01

    A new detection method, based on the sequential Bayesian approach proposed by Candy et al., offers new horizons for the research of radioactive detection. Compared with the commonly adopted detection methods incorporated with statistical theory, the sequential Bayesian approach offers the advantages of shorter verification time during the analysis of spectra that contain low total counts, especially in complex radionuclide components. In this paper, a simulation experiment platform implanted with the methodology of sequential Bayesian approach was developed. Events sequences of γ-rays associating with the true parameters of a LaBr3(Ce) detector were obtained based on an events sequence generator using Monte Carlo sampling theory to study the performance of the sequential Bayesian approach. The numerical experimental results are in accordance with those of Candy. Moreover, the relationship between the detection model and the event generator, respectively represented by the expected detection rate (Am) and the tested detection rate (Gm) parameters, is investigated. To achieve an optimal performance for this processor, the interval of the tested detection rate as a function of the expected detection rate is also presented.

  12. Do Bayesian adaptive trials offer advantages for comparative effectiveness research? Protocol for the RE-ADAPT study

    PubMed Central

    Luce, Bryan R; Broglio, Kristine R; Ishak, K Jack; Mullins, C Daniel; Vanness, David J; Fleurence, Rachael; Saunders, Elijah; Davis, Barry R

    2013-01-01

    Background Randomized clinical trials, particularly for comparative effectiveness research (CER), are frequently criticized for being overly restrictive or untimely for health-care decision making. Purpose Our prospectively designed REsearch in ADAptive methods for Pragmatic Trials (RE-ADAPT) study is a ‘proof of concept’ to stimulate investment in Bayesian adaptive designs for future CER trials. Methods We will assess whether Bayesian adaptive designs offer potential efficiencies in CER by simulating a re-execution of the Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) study using actual data from ALLHAT. Results We prospectively define seven alternate designs consisting of various combinations of arm dropping, adaptive randomization, and early stopping and describe how these designs will be compared to the original ALLHAT design. We identify the one particular design that would have been executed, which incorporates early stopping and information-based adaptive randomization. Limitations While the simulation realistically emulates patient enrollment, interim analyses, and adaptive changes to design, it cannot incorporate key features like the involvement of data monitoring committee in making decisions about adaptive changes. Conclusion This article describes our analytic approach for RE-ADAPT. The next stage of the project is to conduct the re-execution analyses using the seven prespecified designs and the original ALLHAT data. PMID:23983160

  13. Exploring complex dynamics in multi agent-based intelligent systems: Theoretical and experimental approaches using the Multi Agent-based Behavioral Economic Landscape (MABEL) model

    NASA Astrophysics Data System (ADS)

    Alexandridis, Konstantinos T.

    This dissertation adopts a holistic and detailed approach to modeling spatially explicit agent-based artificial intelligent systems, using the Multi Agent-based Behavioral Economic Landscape (MABEL) model. The research questions that addresses stem from the need to understand and analyze the real-world patterns and dynamics of land use change from a coupled human-environmental systems perspective. Describes the systemic, mathematical, statistical, socio-economic and spatial dynamics of the MABEL modeling framework, and provides a wide array of cross-disciplinary modeling applications within the research, decision-making and policy domains. Establishes the symbolic properties of the MABEL model as a Markov decision process, analyzes the decision-theoretic utility and optimization attributes of agents towards comprising statistically and spatially optimal policies and actions, and explores the probabilogic character of the agents' decision-making and inference mechanisms via the use of Bayesian belief and decision networks. Develops and describes a Monte Carlo methodology for experimental replications of agent's decisions regarding complex spatial parcel acquisition and learning. Recognizes the gap on spatially-explicit accuracy assessment techniques for complex spatial models, and proposes an ensemble of statistical tools designed to address this problem. Advanced information assessment techniques such as the Receiver-Operator Characteristic curve, the impurity entropy and Gini functions, and the Bayesian classification functions are proposed. The theoretical foundation for modular Bayesian inference in spatially-explicit multi-agent artificial intelligent systems, and the ensembles of cognitive and scenario assessment modular tools build for the MABEL model are provided. Emphasizes the modularity and robustness as valuable qualitative modeling attributes, and examines the role of robust intelligent modeling as a tool for improving policy-decisions related to land use change. Finally, the major contributions to the science are presented along with valuable directions for future research.

  14. Bayesian Calibration of Thermodynamic Databases and the Role of Kinetics

    NASA Astrophysics Data System (ADS)

    Wolf, A. S.; Ghiorso, M. S.

    2017-12-01

    Self-consistent thermodynamic databases of geologically relevant materials (like Berman, 1988; Holland and Powell, 1998, Stixrude & Lithgow-Bertelloni 2011) are crucial for simulating geological processes as well as interpreting rock samples from the field. These databases form the backbone of our understanding of how fluids and rocks interact at extreme planetary conditions. Considerable work is involved in their construction from experimental phase reaction data, as they must self-consistently describe the free energy surfaces (including relative offsets) of potentially hundreds of interacting phases. Standard database calibration methods typically utilize either linear programming or least squares regression. While both produce a viable model, they suffer from strong limitations on the training data (which must be filtered by hand), along with general ignorance of many of the sources of experimental uncertainty. We develop a new method for calibrating high P-T thermodynamic databases for use in geologic applications. The model is designed to handle pure solid endmember and free fluid phases and can be extended to include mixed solid solutions and melt phases. This new calibration effort utilizes Bayesian techniques to obtain optimal parameter values together with a full family of statistically acceptable models, summarized by the posterior. Unlike previous efforts, the Bayesian Logistic Uncertain Reaction (BLUR) model directly accounts for both measurement uncertainties and disequilibrium effects, by employing a kinetic reaction model whose parameters are empirically determined from the experiments themselves. Thus, along with the equilibrium free energy surfaces, we also provide rough estimates of the activation energies, entropies, and volumes for each reaction. As a first application, we demonstrate this new method on the three-phase aluminosilicate system, illustrating how it can produce superior estimates of the phase boundaries by incorporating constraints from all available data, while automatically handling variable data quality due to a combination of measurement errors and kinetic effects.

  15. A Bayesian computational model for online character recognition and disability assessment during cursive eye writing.

    PubMed

    Diard, Julien; Rynik, Vincent; Lorenceau, Jean

    2013-01-01

    This research involves a novel apparatus, in which the user is presented with an illusion inducing visual stimulus. The user perceives illusory movement that can be followed by the eye, so that smooth pursuit eye movements can be sustained in arbitrary directions. Thus, free-flow trajectories of any shape can be traced. In other words, coupled with an eye-tracking device, this apparatus enables "eye writing," which appears to be an original object of study. We adapt a previous model of reading and writing to this context. We describe a probabilistic model called the Bayesian Action-Perception for Eye On-Line model (BAP-EOL). It encodes probabilistic knowledge about isolated letter trajectories, their size, high-frequency components of the produced trajectory, and pupil diameter. We show how Bayesian inference, in this single model, can be used to solve several tasks, like letter recognition and novelty detection (i.e., recognizing when a presented character is not part of the learned database). We are interested in the potential use of the eye writing apparatus by motor impaired patients: the final task we solve by Bayesian inference is disability assessment (i.e., measuring and tracking the evolution of motor characteristics of produced trajectories). Preliminary experimental results are presented, which illustrate the method, showing the feasibility of character recognition in the context of eye writing. We then show experimentally how a model of the unknown character can be used to detect trajectories that are likely to be new symbols, and how disability assessment can be performed by opportunistically observing characteristics of fine motor control, as letter are being traced. Experimental analyses also help identify specificities of eye writing, as compared to handwriting, and the resulting technical challenges.

  16. A Bayesian computational model for online character recognition and disability assessment during cursive eye writing

    PubMed Central

    Diard, Julien; Rynik, Vincent; Lorenceau, Jean

    2013-01-01

    This research involves a novel apparatus, in which the user is presented with an illusion inducing visual stimulus. The user perceives illusory movement that can be followed by the eye, so that smooth pursuit eye movements can be sustained in arbitrary directions. Thus, free-flow trajectories of any shape can be traced. In other words, coupled with an eye-tracking device, this apparatus enables “eye writing,” which appears to be an original object of study. We adapt a previous model of reading and writing to this context. We describe a probabilistic model called the Bayesian Action-Perception for Eye On-Line model (BAP-EOL). It encodes probabilistic knowledge about isolated letter trajectories, their size, high-frequency components of the produced trajectory, and pupil diameter. We show how Bayesian inference, in this single model, can be used to solve several tasks, like letter recognition and novelty detection (i.e., recognizing when a presented character is not part of the learned database). We are interested in the potential use of the eye writing apparatus by motor impaired patients: the final task we solve by Bayesian inference is disability assessment (i.e., measuring and tracking the evolution of motor characteristics of produced trajectories). Preliminary experimental results are presented, which illustrate the method, showing the feasibility of character recognition in the context of eye writing. We then show experimentally how a model of the unknown character can be used to detect trajectories that are likely to be new symbols, and how disability assessment can be performed by opportunistically observing characteristics of fine motor control, as letter are being traced. Experimental analyses also help identify specificities of eye writing, as compared to handwriting, and the resulting technical challenges. PMID:24273525

  17. Human-in-the-loop Bayesian optimization of wearable device parameters

    PubMed Central

    Malcolm, Philippe; Speeckaert, Jozefien; Siviy, Christoper J.; Walsh, Conor J.; Kuindersma, Scott

    2017-01-01

    The increasing capabilities of exoskeletons and powered prosthetics for walking assistance have paved the way for more sophisticated and individualized control strategies. In response to this opportunity, recent work on human-in-the-loop optimization has considered the problem of automatically tuning control parameters based on realtime physiological measurements. However, the common use of metabolic cost as a performance metric creates significant experimental challenges due to its long measurement times and low signal-to-noise ratio. We evaluate the use of Bayesian optimization—a family of sample-efficient, noise-tolerant, and global optimization methods—for quickly identifying near-optimal control parameters. To manage experimental complexity and provide comparisons against related work, we consider the task of minimizing metabolic cost by optimizing walking step frequencies in unaided human subjects. Compared to an existing approach based on gradient descent, Bayesian optimization identified a near-optimal step frequency with a faster time to convergence (12 minutes, p < 0.01), smaller inter-subject variability in convergence time (± 2 minutes, p < 0.01), and lower overall energy expenditure (p < 0.01). PMID:28926613

  18. Bayesian network prior: network analysis of biological data using external knowledge

    PubMed Central

    Isci, Senol; Dogan, Haluk; Ozturk, Cengizhan; Otu, Hasan H.

    2014-01-01

    Motivation: Reverse engineering GI networks from experimental data is a challenging task due to the complex nature of the networks and the noise inherent in the data. One way to overcome these hurdles would be incorporating the vast amounts of external biological knowledge when building interaction networks. We propose a framework where GI networks are learned from experimental data using Bayesian networks (BNs) and the incorporation of external knowledge is also done via a BN that we call Bayesian Network Prior (BNP). BNP depicts the relation between various evidence types that contribute to the event ‘gene interaction’ and is used to calculate the probability of a candidate graph (G) in the structure learning process. Results: Our simulation results on synthetic, simulated and real biological data show that the proposed approach can identify the underlying interaction network with high accuracy even when the prior information is distorted and outperforms existing methods. Availability: Accompanying BNP software package is freely available for academic use at http://bioe.bilgi.edu.tr/BNP. Contact: hasan.otu@bilgi.edu.tr Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:24215027

  19. Bayesian Estimation of Thermonuclear Reaction Rates for Deuterium+Deuterium Reactions

    NASA Astrophysics Data System (ADS)

    Gómez Iñesta, Á.; Iliadis, C.; Coc, A.

    2017-11-01

    The study of d+d reactions is of major interest since their reaction rates affect the predicted abundances of D, 3He, and 7Li. In particular, recent measurements of primordial D/H ratios call for reduced uncertainties in the theoretical abundances predicted by Big Bang nucleosynthesis (BBN). Different authors have studied reactions involved in BBN by incorporating new experimental data and a careful treatment of systematic and probabilistic uncertainties. To analyze the experimental data, Coc et al. used results of ab initio models for the theoretical calculation of the energy dependence of S-factors in conjunction with traditional statistical methods based on χ 2 minimization. Bayesian methods have now spread to many scientific fields and provide numerous advantages in data analysis. Astrophysical S-factors and reaction rates using Bayesian statistics were calculated by Iliadis et al. Here we present a similar analysis for two d+d reactions, d(d, n)3He and d(d, p)3H, that has been translated into a total decrease of the predicted D/H value by 0.16%.

  20. Bayesian cloud detection for MERIS, AATSR, and their combination

    NASA Astrophysics Data System (ADS)

    Hollstein, A.; Fischer, J.; Carbajal Henken, C.; Preusker, R.

    2014-11-01

    A broad range of different of Bayesian cloud detection schemes is applied to measurements from the Medium Resolution Imaging Spectrometer (MERIS), the Advanced Along-Track Scanning Radiometer (AATSR), and their combination. The cloud masks were designed to be numerically efficient and suited for the processing of large amounts of data. Results from the classical and naive approach to Bayesian cloud masking are discussed for MERIS and AATSR as well as for their combination. A sensitivity study on the resolution of multidimensional histograms, which were post-processed by Gaussian smoothing, shows how theoretically insufficient amounts of truth data can be used to set up accurate classical Bayesian cloud masks. Sets of exploited features from single and derived channels are numerically optimized and results for naive and classical Bayesian cloud masks are presented. The application of the Bayesian approach is discussed in terms of reproducing existing algorithms, enhancing existing algorithms, increasing the robustness of existing algorithms, and on setting up new classification schemes based on manually classified scenes.

  1. Bayesian cloud detection for MERIS, AATSR, and their combination

    NASA Astrophysics Data System (ADS)

    Hollstein, A.; Fischer, J.; Carbajal Henken, C.; Preusker, R.

    2015-04-01

    A broad range of different of Bayesian cloud detection schemes is applied to measurements from the Medium Resolution Imaging Spectrometer (MERIS), the Advanced Along-Track Scanning Radiometer (AATSR), and their combination. The cloud detection schemes were designed to be numerically efficient and suited for the processing of large numbers of data. Results from the classical and naive approach to Bayesian cloud masking are discussed for MERIS and AATSR as well as for their combination. A sensitivity study on the resolution of multidimensional histograms, which were post-processed by Gaussian smoothing, shows how theoretically insufficient numbers of truth data can be used to set up accurate classical Bayesian cloud masks. Sets of exploited features from single and derived channels are numerically optimized and results for naive and classical Bayesian cloud masks are presented. The application of the Bayesian approach is discussed in terms of reproducing existing algorithms, enhancing existing algorithms, increasing the robustness of existing algorithms, and on setting up new classification schemes based on manually classified scenes.

  2. A Variational Bayes Genomic-Enabled Prediction Model with Genotype × Environment Interaction

    PubMed Central

    Montesinos-López, Osval A.; Montesinos-López, Abelardo; Crossa, José; Montesinos-López, José Cricelio; Luna-Vázquez, Francisco Javier; Salinas-Ruiz, Josafhat; Herrera-Morales, José R.; Buenrostro-Mariscal, Raymundo

    2017-01-01

    There are Bayesian and non-Bayesian genomic models that take into account G×E interactions. However, the computational cost of implementing Bayesian models is high, and becomes almost impossible when the number of genotypes, environments, and traits is very large, while, in non-Bayesian models, there are often important and unsolved convergence problems. The variational Bayes method is popular in machine learning, and, by approximating the probability distributions through optimization, it tends to be faster than Markov Chain Monte Carlo methods. For this reason, in this paper, we propose a new genomic variational Bayes version of the Bayesian genomic model with G×E using half-t priors on each standard deviation (SD) term to guarantee highly noninformative and posterior inferences that are not sensitive to the choice of hyper-parameters. We show the complete theoretical derivation of the full conditional and the variational posterior distributions, and their implementations. We used eight experimental genomic maize and wheat data sets to illustrate the new proposed variational Bayes approximation, and compared its predictions and implementation time with a standard Bayesian genomic model with G×E. Results indicated that prediction accuracies are slightly higher in the standard Bayesian model with G×E than in its variational counterpart, but, in terms of computation time, the variational Bayes genomic model with G×E is, in general, 10 times faster than the conventional Bayesian genomic model with G×E. For this reason, the proposed model may be a useful tool for researchers who need to predict and select genotypes in several environments. PMID:28391241

  3. A Variational Bayes Genomic-Enabled Prediction Model with Genotype × Environment Interaction.

    PubMed

    Montesinos-López, Osval A; Montesinos-López, Abelardo; Crossa, José; Montesinos-López, José Cricelio; Luna-Vázquez, Francisco Javier; Salinas-Ruiz, Josafhat; Herrera-Morales, José R; Buenrostro-Mariscal, Raymundo

    2017-06-07

    There are Bayesian and non-Bayesian genomic models that take into account G×E interactions. However, the computational cost of implementing Bayesian models is high, and becomes almost impossible when the number of genotypes, environments, and traits is very large, while, in non-Bayesian models, there are often important and unsolved convergence problems. The variational Bayes method is popular in machine learning, and, by approximating the probability distributions through optimization, it tends to be faster than Markov Chain Monte Carlo methods. For this reason, in this paper, we propose a new genomic variational Bayes version of the Bayesian genomic model with G×E using half-t priors on each standard deviation (SD) term to guarantee highly noninformative and posterior inferences that are not sensitive to the choice of hyper-parameters. We show the complete theoretical derivation of the full conditional and the variational posterior distributions, and their implementations. We used eight experimental genomic maize and wheat data sets to illustrate the new proposed variational Bayes approximation, and compared its predictions and implementation time with a standard Bayesian genomic model with G×E. Results indicated that prediction accuracies are slightly higher in the standard Bayesian model with G×E than in its variational counterpart, but, in terms of computation time, the variational Bayes genomic model with G×E is, in general, 10 times faster than the conventional Bayesian genomic model with G×E. For this reason, the proposed model may be a useful tool for researchers who need to predict and select genotypes in several environments. Copyright © 2017 Montesinos-López et al.

  4. Active SAmpling Protocol (ASAP) to Optimize Individual Neurocognitive Hypothesis Testing: A BCI-Inspired Dynamic Experimental Design.

    PubMed

    Sanchez, Gaëtan; Lecaignard, Françoise; Otman, Anatole; Maby, Emmanuel; Mattout, Jérémie

    2016-01-01

    The relatively young field of Brain-Computer Interfaces has promoted the use of electrophysiology and neuroimaging in real-time. In the meantime, cognitive neuroscience studies, which make extensive use of functional exploration techniques, have evolved toward model-based experiments and fine hypothesis testing protocols. Although these two developments are mostly unrelated, we argue that, brought together, they may trigger an important shift in the way experimental paradigms are being designed, which should prove fruitful to both endeavors. This change simply consists in using real-time neuroimaging in order to optimize advanced neurocognitive hypothesis testing. We refer to this new approach as the instantiation of an Active SAmpling Protocol (ASAP). As opposed to classical (static) experimental protocols, ASAP implements online model comparison, enabling the optimization of design parameters (e.g., stimuli) during the course of data acquisition. This follows the well-known principle of sequential hypothesis testing. What is radically new, however, is our ability to perform online processing of the huge amount of complex data that brain imaging techniques provide. This is all the more relevant at a time when physiological and psychological processes are beginning to be approached using more realistic, generative models which may be difficult to tease apart empirically. Based upon Bayesian inference, ASAP proposes a generic and principled way to optimize experimental design adaptively. In this perspective paper, we summarize the main steps in ASAP. Using synthetic data we illustrate its superiority in selecting the right perceptual model compared to a classical design. Finally, we briefly discuss its future potential for basic and clinical neuroscience as well as some remaining challenges.

  5. Smsynth: AN Imagery Synthesis System for Soil Moisture Retrieval

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Xu, L.; Peng, J.

    2018-04-01

    Soil moisture (SM) is a important variable in various research areas, such as weather and climate forecasting, agriculture, drought and flood monitoring and prediction, and human health. An ongoing challenge in estimating SM via synthetic aperture radar (SAR) is the development of the retrieval SM methods, especially the empirical models needs as training samples a lot of measurements of SM and soil roughness parameters which are very difficult to acquire. As such, it is difficult to develop empirical models using realistic SAR imagery and it is necessary to develop methods to synthesis SAR imagery. To tackle this issue, a SAR imagery synthesis system based on the SM named SMSynth is presented, which can simulate radar signals that are realistic as far as possible to the real SAR imagery. In SMSynth, SAR backscatter coefficients for each soil type are simulated via the Oh model under the Bayesian framework, where the spatial correlation is modeled by the Markov random field (MRF) model. The backscattering coefficients simulated based on the designed soil parameters and sensor parameters are added into the Bayesian framework through the data likelihood where the soil parameters and sensor parameters are set as realistic as possible to the circumstances on the ground and in the validity range of the Oh model. In this way, a complete and coherent Bayesian probabilistic framework is established. Experimental results show that SMSynth is capable of generating realistic SAR images that suit the needs of a large amount of training samples of empirical models.

  6. Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method

    PubMed Central

    Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui

    2017-01-01

    Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli, and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs. PMID:29113310

  7. Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method.

    PubMed

    Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui

    2017-10-06

    Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli , and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.

  8. Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip.

    PubMed

    Paesani, S; Gentile, A A; Santagati, R; Wang, J; Wiebe, N; Tew, D P; O'Brien, J L; Thompson, M G

    2017-03-10

    Quantum phase estimation is a fundamental subroutine in many quantum algorithms, including Shor's factorization algorithm and quantum simulation. However, so far results have cast doubt on its practicability for near-term, nonfault tolerant, quantum devices. Here we report experimental results demonstrating that this intuition need not be true. We implement a recently proposed adaptive Bayesian approach to quantum phase estimation and use it to simulate molecular energies on a silicon quantum photonic device. The approach is verified to be well suited for prethreshold quantum processors by investigating its superior robustness to noise and decoherence compared to the iterative phase estimation algorithm. This shows a promising route to unlock the power of quantum phase estimation much sooner than previously believed.

  9. The Power Prior: Theory and Applications

    PubMed Central

    Ibrahim, Joseph G.; Chen, Ming-Hui; Gwon, Yeongjin; Chen, Fang

    2015-01-01

    The power prior has been widely used in many applications covering a large number of disciplines. The power prior is intended to be an informative prior constructed from historical data. It has been used in clinical trials, genetics, health care, psychology, environmental health, engineering, economics, and business. It has also been applied for a wide variety of models and settings, both in the experimental design and analysis contexts. In this review article, we give an A to Z exposition of the power prior and its applications to date. We review its theoretical properties, variations in its formulation, statistical contexts for which it has been used, applications, and its advantages over other informative priors. We review models for which it has been used, including generalized linear models, survival models, and random effects models. Statistical areas where the power prior has been used include model selection, experimental design, hierarchical modeling, and conjugate priors. Prequentist properties of power priors in posterior inference are established and a simulation study is conducted to further examine the empirical performance of the posterior estimates with power priors. Real data analyses are given illustrating the power prior as well as the use of the power prior in the Bayesian design of clinical trials. PMID:26346180

  10. Bayesian theories of conditioning in a changing world.

    PubMed

    Courville, Aaron C; Daw, Nathaniel D; Touretzky, David S

    2006-07-01

    The recent flowering of Bayesian approaches invites the re-examination of classic issues in behavior, even in areas as venerable as Pavlovian conditioning. A statistical account can offer a new, principled interpretation of behavior, and previous experiments and theories can inform many unexplored aspects of the Bayesian enterprise. Here we consider one such issue: the finding that surprising events provoke animals to learn faster. We suggest that, in a statistical account of conditioning, surprise signals change and therefore uncertainty and the need for new learning. We discuss inference in a world that changes and show how experimental results involving surprise can be interpreted from this perspective, and also how, thus understood, these phenomena help constrain statistical theories of animal and human learning.

  11. On a full Bayesian inference for force reconstruction problems

    NASA Astrophysics Data System (ADS)

    Aucejo, M.; De Smet, O.

    2018-05-01

    In a previous paper, the authors introduced a flexible methodology for reconstructing mechanical sources in the frequency domain from prior local information on both their nature and location over a linear and time invariant structure. The proposed approach was derived from Bayesian statistics, because of its ability in mathematically accounting for experimenter's prior knowledge. However, since only the Maximum a Posteriori estimate was computed, the posterior uncertainty about the regularized solution given the measured vibration field, the mechanical model and the regularization parameter was not assessed. To answer this legitimate question, this paper fully exploits the Bayesian framework to provide, from a Markov Chain Monte Carlo algorithm, credible intervals and other statistical measures (mean, median, mode) for all the parameters of the force reconstruction problem.

  12. Computational statistics using the Bayesian Inference Engine

    NASA Astrophysics Data System (ADS)

    Weinberg, Martin D.

    2013-09-01

    This paper introduces the Bayesian Inference Engine (BIE), a general parallel, optimized software package for parameter inference and model selection. This package is motivated by the analysis needs of modern astronomical surveys and the need to organize and reuse expensive derived data. The BIE is the first platform for computational statistics designed explicitly to enable Bayesian update and model comparison for astronomical problems. Bayesian update is based on the representation of high-dimensional posterior distributions using metric-ball-tree based kernel density estimation. Among its algorithmic offerings, the BIE emphasizes hybrid tempered Markov chain Monte Carlo schemes that robustly sample multimodal posterior distributions in high-dimensional parameter spaces. Moreover, the BIE implements a full persistence or serialization system that stores the full byte-level image of the running inference and previously characterized posterior distributions for later use. Two new algorithms to compute the marginal likelihood from the posterior distribution, developed for and implemented in the BIE, enable model comparison for complex models and data sets. Finally, the BIE was designed to be a collaborative platform for applying Bayesian methodology to astronomy. It includes an extensible object-oriented and easily extended framework that implements every aspect of the Bayesian inference. By providing a variety of statistical algorithms for all phases of the inference problem, a scientist may explore a variety of approaches with a single model and data implementation. Additional technical details and download details are available from http://www.astro.umass.edu/bie. The BIE is distributed under the GNU General Public License.

  13. Aminoglycoside Therapy Manager: An Advanced Computer Program for Decision Support for Drug Dosing and Therapeutic Monitoring

    PubMed Central

    Lenert, Leslie; Lurie, Jon; Coleman, Robert; Klosterman, Heidrun; Blaschke, Terrence

    1990-01-01

    In this paper, we will describe an advanced drug dosing program, Aminoglycoside Therapy Manager that reasons using Bayesian pharmacokinetic modeling and symbolic modeling of patient status and drug response. Our design is similar to the design of the Digitalis Therapy Advisor program, but extends previous work by incorporating a Bayesian pharmacokinetic model, a “meta-level” analysis of drug concentrations to identify sampling errors and changes in pharmacokinetics, and including the results of the “meta-level” analysis in reasoning for dosing and therapeutic monitoring recommendations. The program is user friendly and runs on low cost general-purpose hardware. Validation studies show that the program is as accurate in predicting future drug concentrations as an expert using commercial Bayesian forecasting software.

  14. Statistical modeling for Bayesian extrapolation of adult clinical trial information in pediatric drug evaluation.

    PubMed

    Gamalo-Siebers, Margaret; Savic, Jasmina; Basu, Cynthia; Zhao, Xin; Gopalakrishnan, Mathangi; Gao, Aijun; Song, Guochen; Baygani, Simin; Thompson, Laura; Xia, H Amy; Price, Karen; Tiwari, Ram; Carlin, Bradley P

    2017-07-01

    Children represent a large underserved population of "therapeutic orphans," as an estimated 80% of children are treated off-label. However, pediatric drug development often faces substantial challenges, including economic, logistical, technical, and ethical barriers, among others. Among many efforts trying to remove these barriers, increased recent attention has been paid to extrapolation; that is, the leveraging of available data from adults or older age groups to draw conclusions for the pediatric population. The Bayesian statistical paradigm is natural in this setting, as it permits the combining (or "borrowing") of information across disparate sources, such as the adult and pediatric data. In this paper, authored by the pediatric subteam of the Drug Information Association Bayesian Scientific Working Group and Adaptive Design Working Group, we develop, illustrate, and provide suggestions on Bayesian statistical methods that could be used to design improved pediatric development programs that use all available information in the most efficient manner. A variety of relevant Bayesian approaches are described, several of which are illustrated through 2 case studies: extrapolating adult efficacy data to expand the labeling for Remicade to include pediatric ulcerative colitis and extrapolating adult exposure-response information for antiepileptic drugs to pediatrics. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Discussion of “Bayesian design of experiments for industrial and scientific applications via gaussian processes”

    DOE PAGES

    Anderson-Cook, Christine M.; Burke, Sarah E.

    2016-10-18

    First, we would like to commend Dr. Woods on his thought-provoking paper and insightful presentation at the 4th Annual Stu Hunter conference. We think that the material presented highlights some important needs in the area of design of experiments for generalized linear models (GLMs). In addition, we agree with Dr. Woods that design of experiements of GLMs does implicitly require expert judgement about model parameters, and hence using a Bayesian approach to capture this knowledge is a natural strategy to summarize what is known with the opportunity to incorporate associated uncertainty about that information.

  16. Discussion of “Bayesian design of experiments for industrial and scientific applications via gaussian processes”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson-Cook, Christine M.; Burke, Sarah E.

    First, we would like to commend Dr. Woods on his thought-provoking paper and insightful presentation at the 4th Annual Stu Hunter conference. We think that the material presented highlights some important needs in the area of design of experiments for generalized linear models (GLMs). In addition, we agree with Dr. Woods that design of experiements of GLMs does implicitly require expert judgement about model parameters, and hence using a Bayesian approach to capture this knowledge is a natural strategy to summarize what is known with the opportunity to incorporate associated uncertainty about that information.

  17. Bayesian Action-Perception loop modeling: Application to trajectory generation and recognition using internal motor simulation

    NASA Astrophysics Data System (ADS)

    Gilet, Estelle; Diard, Julien; Palluel-Germain, Richard; Bessière, Pierre

    2011-03-01

    This paper is about modeling perception-action loops and, more precisely, the study of the influence of motor knowledge during perception tasks. We use the Bayesian Action-Perception (BAP) model, which deals with the sensorimotor loop involved in reading and writing cursive isolated letters and includes an internal simulation of movement loop. By using this probabilistic model we simulate letter recognition, both with and without internal motor simulation. Comparison of their performance yields an experimental prediction, which we set forth.

  18. Bayesian approach to non-Gaussian field statistics for diffusive broadband terahertz pulses.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2005-11-01

    We develop a closed-form expression for the probability distribution function for the field components of a diffusive broadband wave propagating through a random medium. We consider each spectral component to provide an individual observation of a random variable, the configurationally averaged spectral intensity. Since the intensity determines the variance of the field distribution at each frequency, this random variable serves as the Bayesian prior that determines the form of the non-Gaussian field statistics. This model agrees well with experimental results.

  19. Immune allied genetic algorithm for Bayesian network structure learning

    NASA Astrophysics Data System (ADS)

    Song, Qin; Lin, Feng; Sun, Wei; Chang, KC

    2012-06-01

    Bayesian network (BN) structure learning is a NP-hard problem. In this paper, we present an improved approach to enhance efficiency of BN structure learning. To avoid premature convergence in traditional single-group genetic algorithm (GA), we propose an immune allied genetic algorithm (IAGA) in which the multiple-population and allied strategy are introduced. Moreover, in the algorithm, we apply prior knowledge by injecting immune operator to individuals which can effectively prevent degeneration. To illustrate the effectiveness of the proposed technique, we present some experimental results.

  20. An Intuitive Dashboard for Bayesian Network Inference

    NASA Astrophysics Data System (ADS)

    Reddy, Vikas; Charisse Farr, Anna; Wu, Paul; Mengersen, Kerrie; Yarlagadda, Prasad K. D. V.

    2014-03-01

    Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++.

  1. Bayesian data analysis in observational comparative effectiveness research: rationale and examples.

    PubMed

    Olson, William H; Crivera, Concetta; Ma, Yi-Wen; Panish, Jessica; Mao, Lian; Lynch, Scott M

    2013-11-01

    Many comparative effectiveness research and patient-centered outcomes research studies will need to be observational for one or both of two reasons: first, randomized trials are expensive and time-consuming; and second, only observational studies can answer some research questions. It is generally recognized that there is a need to increase the scientific validity and efficiency of observational studies. Bayesian methods for the design and analysis of observational studies are scientifically valid and offer many advantages over frequentist methods, including, importantly, the ability to conduct comparative effectiveness research/patient-centered outcomes research more efficiently. Bayesian data analysis is being introduced into outcomes studies that we are conducting. Our purpose here is to describe our view of some of the advantages of Bayesian methods for observational studies and to illustrate both realized and potential advantages by describing studies we are conducting in which various Bayesian methods have been or could be implemented.

  2. An information theoretic approach to use high-fidelity codes to calibrate low-fidelity codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Allison, E-mail: lewis.allison10@gmail.com; Smith, Ralph; Williams, Brian

    For many simulation models, it can be prohibitively expensive or physically infeasible to obtain a complete set of experimental data to calibrate model parameters. In such cases, one can alternatively employ validated higher-fidelity codes to generate simulated data, which can be used to calibrate the lower-fidelity code. In this paper, we employ an information-theoretic framework to determine the reduction in parameter uncertainty that is obtained by evaluating the high-fidelity code at a specific set of design conditions. These conditions are chosen sequentially, based on the amount of information that they contribute to the low-fidelity model parameters. The goal is tomore » employ Bayesian experimental design techniques to minimize the number of high-fidelity code evaluations required to accurately calibrate the low-fidelity model. We illustrate the performance of this framework using heat and diffusion examples, a 1-D kinetic neutron diffusion equation, and a particle transport model, and include initial results from the integration of the high-fidelity thermal-hydraulics code Hydra-TH with a low-fidelity exponential model for the friction correlation factor.« less

  3. Metis: A Pure Metropolis Markov Chain Monte Carlo Bayesian Inference Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, Cameron Russell; Mckigney, Edward Allen

    The use of Bayesian inference in data analysis has become the standard for large scienti c experiments [1, 2]. The Monte Carlo Codes Group(XCP-3) at Los Alamos has developed a simple set of algorithms currently implemented in C++ and Python to easily perform at-prior Markov Chain Monte Carlo Bayesian inference with pure Metropolis sampling. These implementations are designed to be user friendly and extensible for customization based on speci c application requirements. This document describes the algorithmic choices made and presents two use cases.

  4. Characterization of a Saccharomyces cerevisiae fermentation process for production of a therapeutic recombinant protein using a multivariate Bayesian approach.

    PubMed

    Fu, Zhibiao; Baker, Daniel; Cheng, Aili; Leighton, Julie; Appelbaum, Edward; Aon, Juan

    2016-05-01

    The principle of quality by design (QbD) has been widely applied to biopharmaceutical manufacturing processes. Process characterization is an essential step to implement the QbD concept to establish the design space and to define the proven acceptable ranges (PAR) for critical process parameters (CPPs). In this study, we present characterization of a Saccharomyces cerevisiae fermentation process using risk assessment analysis, statistical design of experiments (DoE), and the multivariate Bayesian predictive approach. The critical quality attributes (CQAs) and CPPs were identified with a risk assessment. The statistical model for each attribute was established using the results from the DoE study with consideration given to interactions between CPPs. Both the conventional overlapping contour plot and the multivariate Bayesian predictive approaches were used to establish the region of process operating conditions where all attributes met their specifications simultaneously. The quantitative Bayesian predictive approach was chosen to define the PARs for the CPPs, which apply to the manufacturing control strategy. Experience from the 10,000 L manufacturing scale process validation, including 64 continued process verification batches, indicates that the CPPs remain under a state of control and within the established PARs. The end product quality attributes were within their drug substance specifications. The probability generated with the Bayesian approach was also used as a tool to assess CPP deviations. This approach can be extended to develop other production process characterization and quantify a reliable operating region. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:799-812, 2016. © 2016 American Institute of Chemical Engineers.

  5. Whose statistical reasoning is facilitated by a causal structure intervention?

    PubMed

    McNair, Simon; Feeney, Aidan

    2015-02-01

    People often struggle when making Bayesian probabilistic estimates on the basis of competing sources of statistical evidence. Recently, Krynski and Tenenbaum (Journal of Experimental Psychology: General, 136, 430-450, 2007) proposed that a causal Bayesian framework accounts for peoples' errors in Bayesian reasoning and showed that, by clarifying the causal relations among the pieces of evidence, judgments on a classic statistical reasoning problem could be significantly improved. We aimed to understand whose statistical reasoning is facilitated by the causal structure intervention. In Experiment 1, although we observed causal facilitation effects overall, the effect was confined to participants high in numeracy. We did not find an overall facilitation effect in Experiment 2 but did replicate the earlier interaction between numerical ability and the presence or absence of causal content. This effect held when we controlled for general cognitive ability and thinking disposition. Our results suggest that clarifying causal structure facilitates Bayesian judgments, but only for participants with sufficient understanding of basic concepts in probability and statistics.

  6. Bayesian Action–Perception Computational Model: Interaction of Production and Recognition of Cursive Letters

    PubMed Central

    Gilet, Estelle; Diard, Julien; Bessière, Pierre

    2011-01-01

    In this paper, we study the collaboration of perception and action representations involved in cursive letter recognition and production. We propose a mathematical formulation for the whole perception–action loop, based on probabilistic modeling and Bayesian inference, which we call the Bayesian Action–Perception (BAP) model. Being a model of both perception and action processes, the purpose of this model is to study the interaction of these processes. More precisely, the model includes a feedback loop from motor production, which implements an internal simulation of movement. Motor knowledge can therefore be involved during perception tasks. In this paper, we formally define the BAP model and show how it solves the following six varied cognitive tasks using Bayesian inference: i) letter recognition (purely sensory), ii) writer recognition, iii) letter production (with different effectors), iv) copying of trajectories, v) copying of letters, and vi) letter recognition (with internal simulation of movements). We present computer simulations of each of these cognitive tasks, and discuss experimental predictions and theoretical developments. PMID:21674043

  7. Traffic Video Image Segmentation Model Based on Bayesian and Spatio-Temporal Markov Random Field

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Bao, Xu; Li, Dawei; Yin, Yongwen

    2017-10-01

    Traffic video image is a kind of dynamic image and its background and foreground is changed at any time, which results in the occlusion. In this case, using the general method is more difficult to get accurate image segmentation. A segmentation algorithm based on Bayesian and Spatio-Temporal Markov Random Field is put forward, which respectively build the energy function model of observation field and label field to motion sequence image with Markov property, then according to Bayesian' rule, use the interaction of label field and observation field, that is the relationship of label field’s prior probability and observation field’s likelihood probability, get the maximum posterior probability of label field’s estimation parameter, use the ICM model to extract the motion object, consequently the process of segmentation is finished. Finally, the segmentation methods of ST - MRF and the Bayesian combined with ST - MRF were analyzed. Experimental results: the segmentation time in Bayesian combined with ST-MRF algorithm is shorter than in ST-MRF, and the computing workload is small, especially in the heavy traffic dynamic scenes the method also can achieve better segmentation effect.

  8. Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga

    2009-01-01

    In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specifically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. (See CASI ID 20100021910 for supplemental data disk.)

  9. Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception.

    PubMed

    Kutschireiter, Anna; Surace, Simone Carlo; Sprekeler, Henning; Pfister, Jean-Pascal

    2017-08-18

    The robust estimation of dynamical hidden features, such as the position of prey, based on sensory inputs is one of the hallmarks of perception. This dynamical estimation can be rigorously formulated by nonlinear Bayesian filtering theory. Recent experimental and behavioral studies have shown that animals' performance in many tasks is consistent with such a Bayesian statistical interpretation. However, it is presently unclear how a nonlinear Bayesian filter can be efficiently implemented in a network of neurons that satisfies some minimum constraints of biological plausibility. Here, we propose the Neural Particle Filter (NPF), a sampling-based nonlinear Bayesian filter, which does not rely on importance weights. We show that this filter can be interpreted as the neuronal dynamics of a recurrently connected rate-based neural network receiving feed-forward input from sensory neurons. Further, it captures properties of temporal and multi-sensory integration that are crucial for perception, and it allows for online parameter learning with a maximum likelihood approach. The NPF holds the promise to avoid the 'curse of dimensionality', and we demonstrate numerically its capability to outperform weighted particle filters in higher dimensions and when the number of particles is limited.

  10. Explaining Inference on a Population of Independent Agents Using Bayesian Networks

    ERIC Educational Resources Information Center

    Sutovsky, Peter

    2013-01-01

    The main goal of this research is to design, implement, and evaluate a novel explanation method, the hierarchical explanation method (HEM), for explaining Bayesian network (BN) inference when the network is modeling a population of conditionally independent agents, each of which is modeled as a subnetwork. For example, consider disease-outbreak…

  11. A Bayesian approach to the statistical analysis of device preference studies.

    PubMed

    Fu, Haoda; Qu, Yongming; Zhu, Baojin; Huster, William

    2012-01-01

    Drug delivery devices are required to have excellent technical specifications to deliver drugs accurately, and in addition, the devices should provide a satisfactory experience to patients because this can have a direct effect on drug compliance. To compare patients' experience with two devices, cross-over studies with patient-reported outcomes (PRO) as response variables are often used. Because of the strength of cross-over designs, each subject can directly compare the two devices by using the PRO variables, and variables indicating preference (preferring A, preferring B, or no preference) can be easily derived. Traditionally, methods based on frequentist statistics can be used to analyze such preference data, but there are some limitations for the frequentist methods. Recently, Bayesian methods are considered an acceptable method by the US Food and Drug Administration to design and analyze device studies. In this paper, we propose a Bayesian statistical method to analyze the data from preference trials. We demonstrate that the new Bayesian estimator enjoys some optimal properties versus the frequentist estimator. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Evaluation of calibration efficacy under different levels of uncertainty

    DOE PAGES

    Heo, Yeonsook; Graziano, Diane J.; Guzowski, Leah; ...

    2014-06-10

    This study examines how calibration performs under different levels of uncertainty in model input data. It specifically assesses the efficacy of Bayesian calibration to enhance the reliability of EnergyPlus model predictions. A Bayesian approach can be used to update uncertain values of parameters, given measured energy-use data, and to quantify the associated uncertainty.We assess the efficacy of Bayesian calibration under a controlled virtual-reality setup, which enables rigorous validation of the accuracy of calibration results in terms of both calibrated parameter values and model predictions. Case studies demonstrate the performance of Bayesian calibration of base models developed from audit data withmore » differing levels of detail in building design, usage, and operation.« less

  13. A Bayesian Active Learning Experimental Design for Inferring Signaling Networks.

    PubMed

    Ness, Robert O; Sachs, Karen; Mallick, Parag; Vitek, Olga

    2018-06-21

    Machine learning methods for learning network structure are applied to quantitative proteomics experiments and reverse-engineer intracellular signal transduction networks. They provide insight into the rewiring of signaling within the context of a disease or a phenotype. To learn the causal patterns of influence between proteins in the network, the methods require experiments that include targeted interventions that fix the activity of specific proteins. However, the interventions are costly and add experimental complexity. We describe an active learning strategy for selecting optimal interventions. Our approach takes as inputs pathway databases and historic data sets, expresses them in form of prior probability distributions on network structures, and selects interventions that maximize their expected contribution to structure learning. Evaluations on simulated and real data show that the strategy reduces the detection error of validated edges as compared with an unguided choice of interventions and avoids redundant interventions, thereby increasing the effectiveness of the experiment.

  14. Analyzing Single-Molecule Protein Transportation Experiments via Hierarchical Hidden Markov Models

    PubMed Central

    Chen, Yang; Shen, Kuang

    2017-01-01

    To maintain proper cellular functions, over 50% of proteins encoded in the genome need to be transported to cellular membranes. The molecular mechanism behind such a process, often referred to as protein targeting, is not well understood. Single-molecule experiments are designed to unveil the detailed mechanisms and reveal the functions of different molecular machineries involved in the process. The experimental data consist of hundreds of stochastic time traces from the fluorescence recordings of the experimental system. We introduce a Bayesian hierarchical model on top of hidden Markov models (HMMs) to analyze these data and use the statistical results to answer the biological questions. In addition to resolving the biological puzzles and delineating the regulating roles of different molecular complexes, our statistical results enable us to propose a more detailed mechanism for the late stages of the protein targeting process. PMID:28943680

  15. MDTS: automatic complex materials design using Monte Carlo tree search.

    PubMed

    M Dieb, Thaer; Ju, Shenghong; Yoshizoe, Kazuki; Hou, Zhufeng; Shiomi, Junichiro; Tsuda, Koji

    2017-01-01

    Complex materials design is often represented as a black-box combinatorial optimization problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree Search). Our algorithm employs a Monte Carlo tree search approach, which has shown exceptional performance in computer Go game. Unlike evolutionary algorithms that require user intervention to set parameters appropriately, MDTS has no tuning parameters and works autonomously in various problems. In comparison to a Bayesian optimization package, our algorithm showed competitive search efficiency and superior scalability. We succeeded in designing large Silicon-Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.

  16. MDTS: automatic complex materials design using Monte Carlo tree search

    NASA Astrophysics Data System (ADS)

    Dieb, Thaer M.; Ju, Shenghong; Yoshizoe, Kazuki; Hou, Zhufeng; Shiomi, Junichiro; Tsuda, Koji

    2017-12-01

    Complex materials design is often represented as a black-box combinatorial optimization problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree Search). Our algorithm employs a Monte Carlo tree search approach, which has shown exceptional performance in computer Go game. Unlike evolutionary algorithms that require user intervention to set parameters appropriately, MDTS has no tuning parameters and works autonomously in various problems. In comparison to a Bayesian optimization package, our algorithm showed competitive search efficiency and superior scalability. We succeeded in designing large Silicon-Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.

  17. A Development of Nonstationary Regional Frequency Analysis Model with Large-scale Climate Information: Its Application to Korean Watershed

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Young; Kwon, Hyun-Han; Kim, Hung-Soo

    2015-04-01

    The existing regional frequency analysis has disadvantages in that it is difficult to consider geographical characteristics in estimating areal rainfall. In this regard, this study aims to develop a hierarchical Bayesian model based nonstationary regional frequency analysis in that spatial patterns of the design rainfall with geographical information (e.g. latitude, longitude and altitude) are explicitly incorporated. This study assumes that the parameters of Gumbel (or GEV distribution) are a function of geographical characteristics within a general linear regression framework. Posterior distribution of the regression parameters are estimated by Bayesian Markov Chain Monte Carlo (MCMC) method, and the identified functional relationship is used to spatially interpolate the parameters of the distributions by using digital elevation models (DEM) as inputs. The proposed model is applied to derive design rainfalls over the entire Han-river watershed. It was found that the proposed Bayesian regional frequency analysis model showed similar results compared to L-moment based regional frequency analysis. In addition, the model showed an advantage in terms of quantifying uncertainty of the design rainfall and estimating the area rainfall considering geographical information. Finally, comprehensive discussion on design rainfall in the context of nonstationary will be presented. KEYWORDS: Regional frequency analysis, Nonstationary, Spatial information, Bayesian Acknowledgement This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  18. A Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems with Application to Porous Medium Flow

    NASA Astrophysics Data System (ADS)

    Petra, N.; Alexanderian, A.; Stadler, G.; Ghattas, O.

    2015-12-01

    We address the problem of optimal experimental design (OED) for Bayesian nonlinear inverse problems governed by partial differential equations (PDEs). The inverse problem seeks to infer a parameter field (e.g., the log permeability field in a porous medium flow model problem) from synthetic observations at a set of sensor locations and from the governing PDEs. The goal of the OED problem is to find an optimal placement of sensors so as to minimize the uncertainty in the inferred parameter field. We formulate the OED objective function by generalizing the classical A-optimal experimental design criterion using the expected value of the trace of the posterior covariance. This expected value is computed through sample averaging over the set of likely experimental data. Due to the infinite-dimensional character of the parameter field, we seek an optimization method that solves the OED problem at a cost (measured in the number of forward PDE solves) that is independent of both the parameter and the sensor dimension. To facilitate this goal, we construct a Gaussian approximation to the posterior at the maximum a posteriori probability (MAP) point, and use the resulting covariance operator to define the OED objective function. We use randomized trace estimation to compute the trace of this covariance operator. The resulting OED problem includes as constraints the system of PDEs characterizing the MAP point, and the PDEs describing the action of the covariance (of the Gaussian approximation to the posterior) to vectors. We control the sparsity of the sensor configurations using sparsifying penalty functions, and solve the resulting penalized bilevel optimization problem via an interior-point quasi-Newton method, where gradient information is computed via adjoints. We elaborate our OED method for the problem of determining the optimal sensor configuration to best infer the log permeability field in a porous medium flow problem. Numerical results show that the number of PDE solves required for the evaluation of the OED objective function and its gradient is essentially independent of both the parameter dimension and the sensor dimension (i.e., the number of candidate sensor locations). The number of quasi-Newton iterations for computing an OED also exhibits the same dimension invariance properties.

  19. Predicting the heat of vaporization of iron at high temperatures using time-resolved laser-induced incandescence and Bayesian model selection

    NASA Astrophysics Data System (ADS)

    Sipkens, Timothy A.; Hadwin, Paul J.; Grauer, Samuel J.; Daun, Kyle J.

    2018-03-01

    Competing theories have been proposed to account for how the latent heat of vaporization of liquid iron varies with temperature, but experimental confirmation remains elusive, particularly at high temperatures. We propose time-resolved laser-induced incandescence measurements on iron nanoparticles combined with Bayesian model plausibility, as a novel method for evaluating these relationships. Our approach scores the explanatory power of candidate models, accounting for parameter uncertainty, model complexity, measurement noise, and goodness-of-fit. The approach is first validated with simulated data and then applied to experimental data for iron nanoparticles in argon. Our results justify the use of Román's equation to account for the temperature dependence of the latent heat of vaporization of liquid iron.

  20. Protein construct storage: Bayesian variable selection and prediction with mixtures.

    PubMed

    Clyde, M A; Parmigiani, G

    1998-07-01

    Determining optimal conditions for protein storage while maintaining a high level of protein activity is an important question in pharmaceutical research. A designed experiment based on a space-filling design was conducted to understand the effects of factors affecting protein storage and to establish optimal storage conditions. Different model-selection strategies to identify important factors may lead to very different answers about optimal conditions. Uncertainty about which factors are important, or model uncertainty, can be a critical issue in decision-making. We use Bayesian variable selection methods for linear models to identify important variables in the protein storage data, while accounting for model uncertainty. We also use the Bayesian framework to build predictions based on a large family of models, rather than an individual model, and to evaluate the probability that certain candidate storage conditions are optimal.

  1. Quality-by-Design II: Application of Quantitative Risk Analysis to the Formulation of Ciprofloxacin Tablets.

    PubMed

    Claycamp, H Gregg; Kona, Ravikanth; Fahmy, Raafat; Hoag, Stephen W

    2016-04-01

    Qualitative risk assessment methods are often used as the first step to determining design space boundaries; however, quantitative assessments of risk with respect to the design space, i.e., calculating the probability of failure for a given severity, are needed to fully characterize design space boundaries. Quantitative risk assessment methods in design and operational spaces are a significant aid to evaluating proposed design space boundaries. The goal of this paper is to demonstrate a relatively simple strategy for design space definition using a simplified Bayesian Monte Carlo simulation. This paper builds on a previous paper that used failure mode and effects analysis (FMEA) qualitative risk assessment and Plackett-Burman design of experiments to identity the critical quality attributes. The results show that the sequential use of qualitative and quantitative risk assessments can focus the design of experiments on a reduced set of critical material and process parameters that determine a robust design space under conditions of limited laboratory experimentation. This approach provides a strategy by which the degree of risk associated with each known parameter can be calculated and allocates resources in a manner that manages risk to an acceptable level.

  2. Modelling the Flow Stress of Alloy 316L using a Multi-Layered Feed Forward Neural Network with Bayesian Regularization

    NASA Astrophysics Data System (ADS)

    Abiriand Bhekisipho Twala, Olufunminiyi

    2017-08-01

    In this paper, a multilayer feedforward neural network with Bayesian regularization constitutive model is developed for alloy 316L during high strain rate and high temperature plastic deformation. The input variables are strain rate, temperature and strain while the output value is the flow stress of the material. The results show that the use of Bayesian regularized technique reduces the potential of overfitting and overtraining. The prediction quality of the model is thereby improved. The model predictions are in good agreement with experimental measurements. The measurement data used for the network training and model comparison were taken from relevant literature. The developed model is robust as it can be generalized to deformation conditions slightly below or above the training dataset.

  3. Bayesian selective response-adaptive design using the historical control.

    PubMed

    Kim, Mi-Ok; Harun, Nusrat; Liu, Chunyan; Khoury, Jane C; Broderick, Joseph P

    2018-06-13

    High quality historical control data, if incorporated, may reduce sample size, trial cost, and duration. A too optimistic use of the data, however, may result in bias under prior-data conflict. Motivated by well-publicized two-arm comparative trials in stroke, we propose a Bayesian design that both adaptively incorporates historical control data and selectively adapt the treatment allocation ratios within an ongoing trial responsively to the relative treatment effects. The proposed design differs from existing designs that borrow from historical controls. As opposed to reducing the number of subjects assigned to the control arm blindly, this design does so adaptively to the relative treatment effects only if evaluation of cumulated current trial data combined with the historical control suggests the superiority of the intervention arm. We used the effective historical sample size approach to quantify borrowed information on the control arm and modified the treatment allocation rules of the doubly adaptive biased coin design to incorporate the quantity. The modified allocation rules were then implemented under the Bayesian framework with commensurate priors addressing prior-data conflict. Trials were also more frequently concluded earlier in line with the underlying truth, reducing trial cost, and duration and yielded parameter estimates with smaller standard errors. © 2018 The Authors. Statistics in Medicine Published by John Wiley & Sons, Ltd.

  4. Metainference: A Bayesian inference method for heterogeneous systems.

    PubMed

    Bonomi, Massimiliano; Camilloni, Carlo; Cavalli, Andrea; Vendruscolo, Michele

    2016-01-01

    Modeling a complex system is almost invariably a challenging task. The incorporation of experimental observations can be used to improve the quality of a model and thus to obtain better predictions about the behavior of the corresponding system. This approach, however, is affected by a variety of different errors, especially when a system simultaneously populates an ensemble of different states and experimental data are measured as averages over such states. To address this problem, we present a Bayesian inference method, called "metainference," that is able to deal with errors in experimental measurements and with experimental measurements averaged over multiple states. To achieve this goal, metainference models a finite sample of the distribution of models using a replica approach, in the spirit of the replica-averaging modeling based on the maximum entropy principle. To illustrate the method, we present its application to a heterogeneous model system and to the determination of an ensemble of structures corresponding to the thermal fluctuations of a protein molecule. Metainference thus provides an approach to modeling complex systems with heterogeneous components and interconverting between different states by taking into account all possible sources of errors.

  5. Bayesian network modeling applied to coastal geomorphology: lessons learned from a decade of experimentation and application

    NASA Astrophysics Data System (ADS)

    Plant, N. G.; Thieler, E. R.; Gutierrez, B.; Lentz, E. E.; Zeigler, S. L.; Van Dongeren, A.; Fienen, M. N.

    2016-12-01

    We evaluate the strengths and weaknesses of Bayesian networks that have been used to address scientific and decision-support questions related to coastal geomorphology. We will provide an overview of coastal geomorphology research that has used Bayesian networks and describe what this approach can do and when it works (or fails to work). Over the past decade, Bayesian networks have been formulated to analyze the multi-variate structure and evolution of coastal morphology and associated human and ecological impacts. The approach relates observable system variables to each other by estimating discrete correlations. The resulting Bayesian-networks make predictions that propagate errors, conduct inference via Bayes rule, or both. In scientific applications, the model results are useful for hypothesis testing, using confidence estimates to gage the strength of tests while applications to coastal resource management are aimed at decision-support, where the probabilities of desired ecosystems outcomes are evaluated. The range of Bayesian-network applications to coastal morphology includes emulation of high-resolution wave transformation models to make oceanographic predictions, morphologic response to storms and/or sea-level rise, groundwater response to sea-level rise and morphologic variability, habitat suitability for endangered species, and assessment of monetary or human-life risk associated with storms. All of these examples are based on vast observational data sets, numerical model output, or both. We will discuss the progression of our experiments, which has included testing whether the Bayesian-network approach can be implemented and is appropriate for addressing basic and applied scientific problems and evaluating the hindcast and forecast skill of these implementations. We will present and discuss calibration/validation tests that are used to assess the robustness of Bayesian-network models and we will compare these results to tests of other models. This will demonstrate how Bayesian networks are used to extract new insights about coastal morphologic behavior, assess impacts to societal and ecological systems, and communicate probabilistic predictions to decision makers.

  6. Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse Bayesian learning.

    PubMed

    Zhang, Zhilin; Jung, Tzyy-Ping; Makeig, Scott; Rao, Bhaskar D

    2013-02-01

    Fetal ECG (FECG) telemonitoring is an important branch in telemedicine. The design of a telemonitoring system via a wireless body area network with low energy consumption for ambulatory use is highly desirable. As an emerging technique, compressed sensing (CS) shows great promise in compressing/reconstructing data with low energy consumption. However, due to some specific characteristics of raw FECG recordings such as nonsparsity and strong noise contamination, current CS algorithms generally fail in this application. This paper proposes to use the block sparse Bayesian learning framework to compress/reconstruct nonsparse raw FECG recordings. Experimental results show that the framework can reconstruct the raw recordings with high quality. Especially, the reconstruction does not destroy the interdependence relation among the multichannel recordings. This ensures that the independent component analysis decomposition of the reconstructed recordings has high fidelity. Furthermore, the framework allows the use of a sparse binary sensing matrix with much fewer nonzero entries to compress recordings. Particularly, each column of the matrix can contain only two nonzero entries. This shows that the framework, compared to other algorithms such as current CS algorithms and wavelet algorithms, can greatly reduce code execution in CPU in the data compression stage.

  7. Towards Real-time, On-board, Hardware-Supported Sensor and Software Health Management for Unmanned Aerial Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Rozier, Kristin Y.; Reinbacher, Thomas; Mengshoel, Ole J.; Mbaya, Timmy; Ippolito, Corey

    2013-01-01

    Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and advanced on the- fly temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software due to instrumentation. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual data from the NASA Swift UAS, an experimental all-electric aircraft.

  8. Bayesian regression discontinuity designs: incorporating clinical knowledge in the causal analysis of primary care data.

    PubMed

    Geneletti, Sara; O'Keeffe, Aidan G; Sharples, Linda D; Richardson, Sylvia; Baio, Gianluca

    2015-07-10

    The regression discontinuity (RD) design is a quasi-experimental design that estimates the causal effects of a treatment by exploiting naturally occurring treatment rules. It can be applied in any context where a particular treatment or intervention is administered according to a pre-specified rule linked to a continuous variable. Such thresholds are common in primary care drug prescription where the RD design can be used to estimate the causal effect of medication in the general population. Such results can then be contrasted to those obtained from randomised controlled trials (RCTs) and inform prescription policy and guidelines based on a more realistic and less expensive context. In this paper, we focus on statins, a class of cholesterol-lowering drugs, however, the methodology can be applied to many other drugs provided these are prescribed in accordance to pre-determined guidelines. Current guidelines in the UK state that statins should be prescribed to patients with 10-year cardiovascular disease risk scores in excess of 20%. If we consider patients whose risk scores are close to the 20%  risk score threshold, we find that there is an element of random variation in both the risk score itself and its measurement. We can therefore consider the threshold as a randomising device that assigns statin prescription to individuals just above the threshold and withholds it from those just below. Thus, we are effectively replicating the conditions of an RCT in the area around the threshold, removing or at least mitigating confounding. We frame the RD design in the language of conditional independence, which clarifies the assumptions necessary to apply an RD design to data, and which makes the links with instrumental variables clear. We also have context-specific knowledge about the expected sizes of the effects of statin prescription and are thus able to incorporate this into Bayesian models by formulating informative priors on our causal parameters. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  9. On-line Bayesian model updating for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Rocchetta, Roberto; Broggi, Matteo; Huchet, Quentin; Patelli, Edoardo

    2018-03-01

    Fatigue induced cracks is a dangerous failure mechanism which affects mechanical components subject to alternating load cycles. System health monitoring should be adopted to identify cracks which can jeopardise the structure. Real-time damage detection may fail in the identification of the cracks due to different sources of uncertainty which have been poorly assessed or even fully neglected. In this paper, a novel efficient and robust procedure is used for the detection of cracks locations and lengths in mechanical components. A Bayesian model updating framework is employed, which allows accounting for relevant sources of uncertainty. The idea underpinning the approach is to identify the most probable crack consistent with the experimental measurements. To tackle the computational cost of the Bayesian approach an emulator is adopted for replacing the computationally costly Finite Element model. To improve the overall robustness of the procedure, different numerical likelihoods, measurement noises and imprecision in the value of model parameters are analysed and their effects quantified. The accuracy of the stochastic updating and the efficiency of the numerical procedure are discussed. An experimental aluminium frame and on a numerical model of a typical car suspension arm are used to demonstrate the applicability of the approach.

  10. Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.

    PubMed

    Hack, C Eric

    2006-04-17

    Physiologically based toxicokinetic (PBTK) and toxicodynamic (TD) models of bromate in animals and humans would improve our ability to accurately estimate the toxic doses in humans based on available animal studies. These mathematical models are often highly parameterized and must be calibrated in order for the model predictions of internal dose to adequately fit the experimentally measured doses. Highly parameterized models are difficult to calibrate and it is difficult to obtain accurate estimates of uncertainty or variability in model parameters with commonly used frequentist calibration methods, such as maximum likelihood estimation (MLE) or least squared error approaches. The Bayesian approach called Markov chain Monte Carlo (MCMC) analysis can be used to successfully calibrate these complex models. Prior knowledge about the biological system and associated model parameters is easily incorporated in this approach in the form of prior parameter distributions, and the distributions are refined or updated using experimental data to generate posterior distributions of parameter estimates. The goal of this paper is to give the non-mathematician a brief description of the Bayesian approach and Markov chain Monte Carlo analysis, how this technique is used in risk assessment, and the issues associated with this approach.

  11. Bayesian Analysis of Multidimensional Item Response Theory Models: A Discussion and Illustration of Three Response Style Models

    ERIC Educational Resources Information Center

    Leventhal, Brian C.; Stone, Clement A.

    2018-01-01

    Interest in Bayesian analysis of item response theory (IRT) models has grown tremendously due to the appeal of the paradigm among psychometricians, advantages of these methods when analyzing complex models, and availability of general-purpose software. Possible models include models which reflect multidimensionality due to designed test structure,…

  12. Psychological Needs, Engagement, and Work Intentions: A Bayesian Multi-Measurement Mediation Approach and Implications for HRD

    ERIC Educational Resources Information Center

    Shuck, Brad; Zigarmi, Drea; Owen, Jesse

    2015-01-01

    Purpose: The purpose of this study was to empirically examine the utility of self-determination theory (SDT) within the engagement-performance linkage. Design/methodology/approach: Bayesian multi-measurement mediation modeling was used to estimate the relation between SDT, engagement and a proxy measure of performance (e.g. work intentions) (N =…

  13. Estimation of light source colours for light pollution assessment.

    PubMed

    Ziou, D; Kerouh, F

    2018-05-01

    The concept of the smart city raised several technological and scientific issues including light pollution. There are various negative impacts of light pollution on economy, ecology, and heath. This paper deals with the census of the colour of light emitted by lamps used in a city environment. To this end, we derive a light bulb colour estimator based on Bayesian reasoning, directional data, and image formation model in which the usual concept of reflectance is not used. All choices we made are devoted to designing an algorithm which can be run almost in real-time. Experimental results show the effectiveness of the proposed approach. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Advanced obstacle avoidance for a laser based wheelchair using optimised Bayesian neural networks.

    PubMed

    Trieu, Hoang T; Nguyen, Hung T; Willey, Keith

    2008-01-01

    In this paper we present an advanced method of obstacle avoidance for a laser based intelligent wheelchair using optimized Bayesian neural networks. Three neural networks are designed for three separate sub-tasks: passing through a door way, corridor and wall following and general obstacle avoidance. The accurate usable accessible space is determined by including the actual wheelchair dimensions in a real-time map used as inputs to each networks. Data acquisitions are performed separately to collect the patterns required for specified sub-tasks. Bayesian frame work is used to determine the optimal neural network structure in each case. Then these networks are trained under the supervision of Bayesian rule. Experiment results showed that compare to the VFH algorithm our neural networks navigated a smoother path following a near optimum trajectory.

  15. Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers.

    PubMed

    Borchani, Hanen; Bielza, Concha; Toro, Carlos; Larrañaga, Pedro

    2013-03-01

    Our aim is to use multi-dimensional Bayesian network classifiers in order to predict the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors given an input set of respective resistance mutations that an HIV patient carries. Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models especially designed to solve multi-dimensional classification problems, where each input instance in the data set has to be assigned simultaneously to multiple output class variables that are not necessarily binary. In this paper, we introduce a new method, named MB-MBC, for learning MBCs from data by determining the Markov blanket around each class variable using the HITON algorithm. Our method is applied to both reverse transcriptase and protease data sets obtained from the Stanford HIV-1 database. Regarding the prediction of antiretroviral combination therapies, the experimental study shows promising results in terms of classification accuracy compared with state-of-the-art MBC learning algorithms. For reverse transcriptase inhibitors, we get 71% and 11% in mean and global accuracy, respectively; while for protease inhibitors, we get more than 84% and 31% in mean and global accuracy, respectively. In addition, the analysis of MBC graphical structures lets us gain insight into both known and novel interactions between reverse transcriptase and protease inhibitors and their respective resistance mutations. MB-MBC algorithm is a valuable tool to analyze the HIV-1 reverse transcriptase and protease inhibitors prediction problem and to discover interactions within and between these two classes of inhibitors. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks.

    PubMed

    Deeter, Anthony; Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui

    2017-01-01

    The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways.

  17. Crystalline nucleation in undercooled liquids: a Bayesian data-analysis approach for a nonhomogeneous Poisson process.

    PubMed

    Filipponi, A; Di Cicco, A; Principi, E

    2012-12-01

    A Bayesian data-analysis approach to data sets of maximum undercooling temperatures recorded in repeated melting-cooling cycles of high-purity samples is proposed. The crystallization phenomenon is described in terms of a nonhomogeneous Poisson process driven by a temperature-dependent sample nucleation rate J(T). The method was extensively tested by computer simulations and applied to real data for undercooled liquid Ge. It proved to be particularly useful in the case of scarce data sets where the usage of binned data would degrade the available experimental information.

  18. A Bayesian model for visual space perception

    NASA Technical Reports Server (NTRS)

    Curry, R. E.

    1972-01-01

    A model for visual space perception is proposed that contains desirable features in the theories of Gibson and Brunswik. This model is a Bayesian processor of proximal stimuli which contains three important elements: an internal model of the Markov process describing the knowledge of the distal world, the a priori distribution of the state of the Markov process, and an internal model relating state to proximal stimuli. The universality of the model is discussed and it is compared with signal detection theory models. Experimental results of Kinchla are used as a special case.

  19. Design space construction of multiple dose-strength tablets utilizing bayesian estimation based on one set of design-of-experiments.

    PubMed

    Maeda, Jin; Suzuki, Tatsuya; Takayama, Kozo

    2012-01-01

    Design spaces for multiple dose strengths of tablets were constructed using a Bayesian estimation method with one set of design of experiments (DoE) of only the highest dose-strength tablet. The lubricant blending process for theophylline tablets with dose strengths of 100, 50, and 25 mg is used as a model manufacturing process in order to construct design spaces. The DoE was conducted using various Froude numbers (X(1)) and blending times (X(2)) for theophylline 100-mg tablet. The response surfaces, design space, and their reliability of the compression rate of the powder mixture (Y(1)), tablet hardness (Y(2)), and dissolution rate (Y(3)) of the 100-mg tablet were calculated using multivariate spline interpolation, a bootstrap resampling technique, and self-organizing map clustering. Three experiments under an optimal condition and two experiments under other conditions were performed using 50- and 25-mg tablets, respectively. The response surfaces of the highest-strength tablet were corrected to those of the lower-strength tablets by Bayesian estimation using the manufacturing data of the lower-strength tablets. Experiments under three additional sets of conditions of lower-strength tablets showed that the corrected design space made it possible to predict the quality of lower-strength tablets more precisely than the design space of the highest-strength tablet. This approach is useful for constructing design spaces of tablets with multiple strengths.

  20. Tracking composite material damage evolution using Bayesian filtering and flash thermography data

    NASA Astrophysics Data System (ADS)

    Gregory, Elizabeth D.; Holland, Steve D.

    2016-05-01

    We propose a method for tracking the condition of a composite part using Bayesian filtering of ash thermography data over the lifetime of the part. In this demonstration, composite panels were fabricated; impacted to induce subsurface delaminations; and loaded in compression over multiple time steps, causing the delaminations to grow in size. Flash thermography data was collected between each damage event to serve as a time history of the part. The ash thermography indicated some areas of damage but provided little additional information as to the exact nature or depth of the damage. Computed tomography (CT) data was also collected after each damage event and provided a high resolution volume model of damage that acted as truth. After each cycle, the condition estimate, from the ash thermography data and the Bayesian filter, was compared to 'ground truth'. The Bayesian process builds on the lifetime history of ash thermography scans and can give better estimates of material condition as compared to the most recent scan alone, which is common practice in the aerospace industry. Bayesian inference provides probabilistic estimates of damage condition that are updated as each new set of data becomes available. The method was tested on simulated data and then on an experimental data set.

  1. A Calibrated Power Prior Approach to Borrow Information from Historical Data with Application to Biosimilar Clinical Trials.

    PubMed

    Pan, Haitao; Yuan, Ying; Xia, Jielai

    2017-11-01

    A biosimilar refers to a follow-on biologic intended to be approved for marketing based on biosimilarity to an existing patented biological product (i.e., the reference product). To develop a biosimilar product, it is essential to demonstrate biosimilarity between the follow-on biologic and the reference product, typically through two-arm randomization trials. We propose a Bayesian adaptive design for trials to evaluate biosimilar products. To take advantage of the abundant historical data on the efficacy of the reference product that is typically available at the time a biosimilar product is developed, we propose the calibrated power prior, which allows our design to adaptively borrow information from the historical data according to the congruence between the historical data and the new data collected from the current trial. We propose a new measure, the Bayesian biosimilarity index, to measure the similarity between the biosimilar and the reference product. During the trial, we evaluate the Bayesian biosimilarity index in a group sequential fashion based on the accumulating interim data, and stop the trial early once there is enough information to conclude or reject the similarity. Extensive simulation studies show that the proposed design has higher power than traditional designs. We applied the proposed design to a biosimilar trial for treating rheumatoid arthritis.

  2. Speeded Reaching Movements around Invisible Obstacles

    PubMed Central

    Hudson, Todd E.; Wolfe, Uta; Maloney, Laurence T.

    2012-01-01

    We analyze the problem of obstacle avoidance from a Bayesian decision-theoretic perspective using an experimental task in which reaches around a virtual obstacle were made toward targets on an upright monitor. Subjects received monetary rewards for touching the target and incurred losses for accidentally touching the intervening obstacle. The locations of target-obstacle pairs within the workspace were varied from trial to trial. We compared human performance to that of a Bayesian ideal movement planner (who chooses motor strategies maximizing expected gain) using the Dominance Test employed in Hudson et al. (2007). The ideal movement planner suffers from the same sources of noise as the human, but selects movement plans that maximize expected gain in the presence of that noise. We find good agreement between the predictions of the model and actual performance in most but not all experimental conditions. PMID:23028276

  3. Sizing aerosolized fractal nanoparticle aggregates through Bayesian analysis of wide-angle light scattering (WALS) data

    NASA Astrophysics Data System (ADS)

    Huber, Franz J. T.; Will, Stefan; Daun, Kyle J.

    2016-11-01

    Inferring the size distribution of aerosolized fractal aggregates from the angular distribution of elastically scattered light is a mathematically ill-posed problem. This paper presents a procedure for analyzing Wide-Angle Light Scattering (WALS) data using Bayesian inference. The outcome is probability densities for the recovered size distribution and aggregate morphology parameters. This technique is applied to both synthetic data and experimental data collected on soot-laden aerosols, using a measurement equation derived from Rayleigh-Debye-Gans fractal aggregate (RDG-FA) theory. In the case of experimental data, the recovered aggregate size distribution parameters are generally consistent with TEM-derived values, but the accuracy is impaired by the well-known limited accuracy of RDG-FA theory. Finally, we show how this bias could potentially be avoided using the approximation error technique.

  4. In Silico Syndrome Prediction for Coronary Artery Disease in Traditional Chinese Medicine

    PubMed Central

    Lu, Peng; Chen, Jianxin; Zhao, Huihui; Gao, Yibo; Luo, Liangtao; Zuo, Xiaohan; Shi, Qi; Yang, Yiping; Yi, Jianqiang; Wang, Wei

    2012-01-01

    Coronary artery disease (CAD) is the leading causes of deaths in the world. The differentiation of syndrome (ZHENG) is the criterion of diagnosis and therapeutic in TCM. Therefore, syndrome prediction in silico can be improving the performance of treatment. In this paper, we present a Bayesian network framework to construct a high-confidence syndrome predictor based on the optimum subset, that is, collected by Support Vector Machine (SVM) feature selection. Syndrome of CAD can be divided into asthenia and sthenia syndromes. According to the hierarchical characteristics of syndrome, we firstly label every case three types of syndrome (asthenia, sthenia, or both) to solve several syndromes with some patients. On basis of the three syndromes' classes, we design SVM feature selection to achieve the optimum symptom subset and compare this subset with Markov blanket feature select using ROC. Using this subset, the six predictors of CAD's syndrome are constructed by the Bayesian network technique. We also design Naïve Bayes, C4.5 Logistic, Radial basis function (RBF) network compared with Bayesian network. In a conclusion, the Bayesian network method based on the optimum symptoms shows a practical method to predict six syndromes of CAD in TCM. PMID:22567030

  5. Application of Artificial Neural Networks in the Design and Optimization of a Nanoparticulate Fingolimod Delivery System Based on Biodegradable Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate).

    PubMed

    Shahsavari, Shadab; Rezaie Shirmard, Leila; Amini, Mohsen; Abedin Dokoosh, Farid

    2017-01-01

    Formulation of a nanoparticulate Fingolimod delivery system based on biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was optimized according to artificial neural networks (ANNs). Concentration of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PVA and amount of Fingolimod is considered as the input value, and the particle size, polydispersity index, loading capacity, and entrapment efficacy as output data in experimental design study. In vitro release study was carried out for best formulation according to statistical analysis. ANNs are employed to generate the best model to determine the relationships between various values. In order to specify the model with the best accuracy and proficiency for the in vitro release, a multilayer percepteron with different training algorithm has been examined. Three training model formulations including Levenberg-Marquardt (LM), gradient descent, and Bayesian regularization were employed for training the ANN models. It is demonstrated that the predictive ability of each training algorithm is in the order of LM > gradient descent > Bayesian regularization. Also, optimum formulation was achieved by LM training function with 15 hidden layers and 20 neurons. The transfer function of the hidden layer for this formulation and the output layer were tansig and purlin, respectively. Also, the optimization process was developed by minimizing the error among the predicted and observed values of training algorithm (about 0.0341). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Latent structure modeling underlying theophylline tablet formulations using a Bayesian network based on a self-organizing map clustering.

    PubMed

    Yasuda, Akihito; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2015-01-01

    The "quality by design" concept in pharmaceutical formulation development requires the establishment of a science-based rationale and design space. In this article, we integrate thin-plate spline (TPS) interpolation, Kohonen's self-organizing map (SOM) and a Bayesian network (BN) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline tablets were prepared using a standard formulation. We measured the tensile strength and disintegration time as response variables and the compressibility, cohesion and dispersibility of the pretableting blend as latent variables. We predicted these variables quantitatively using nonlinear TPS, generated a large amount of data on pretableting blends and tablets and clustered these data into several clusters using a SOM. Our results show that we are able to predict the experimental values of the latent and response variables with a high degree of accuracy and are able to classify the tablet data into several distinct clusters. In addition, to visualize the latent structure between the causal and latent factors and the response variables, we applied a BN method to the SOM clustering results. We found that despite having inserted latent variables between the causal factors and response variables, their relation is equivalent to the results for the SOM clustering, and thus we are able to explain the underlying latent structure. Consequently, this technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline tablet formulation.

  7. The power prior: theory and applications.

    PubMed

    Ibrahim, Joseph G; Chen, Ming-Hui; Gwon, Yeongjin; Chen, Fang

    2015-12-10

    The power prior has been widely used in many applications covering a large number of disciplines. The power prior is intended to be an informative prior constructed from historical data. It has been used in clinical trials, genetics, health care, psychology, environmental health, engineering, economics, and business. It has also been applied for a wide variety of models and settings, both in the experimental design and analysis contexts. In this review article, we give an A-to-Z exposition of the power prior and its applications to date. We review its theoretical properties, variations in its formulation, statistical contexts for which it has been used, applications, and its advantages over other informative priors. We review models for which it has been used, including generalized linear models, survival models, and random effects models. Statistical areas where the power prior has been used include model selection, experimental design, hierarchical modeling, and conjugate priors. Frequentist properties of power priors in posterior inference are established, and a simulation study is conducted to further examine the empirical performance of the posterior estimates with power priors. Real data analyses are given illustrating the power prior as well as the use of the power prior in the Bayesian design of clinical trials. Copyright © 2015 John Wiley & Sons, Ltd.

  8. The frequentist implications of optional stopping on Bayesian hypothesis tests.

    PubMed

    Sanborn, Adam N; Hills, Thomas T

    2014-04-01

    Null hypothesis significance testing (NHST) is the most commonly used statistical methodology in psychology. The probability of achieving a value as extreme or more extreme than the statistic obtained from the data is evaluated, and if it is low enough, the null hypothesis is rejected. However, because common experimental practice often clashes with the assumptions underlying NHST, these calculated probabilities are often incorrect. Most commonly, experimenters use tests that assume that sample sizes are fixed in advance of data collection but then use the data to determine when to stop; in the limit, experimenters can use data monitoring to guarantee that the null hypothesis will be rejected. Bayesian hypothesis testing (BHT) provides a solution to these ills because the stopping rule used is irrelevant to the calculation of a Bayes factor. In addition, there are strong mathematical guarantees on the frequentist properties of BHT that are comforting for researchers concerned that stopping rules could influence the Bayes factors produced. Here, we show that these guaranteed bounds have limited scope and often do not apply in psychological research. Specifically, we quantitatively demonstrate the impact of optional stopping on the resulting Bayes factors in two common situations: (1) when the truth is a combination of the hypotheses, such as in a heterogeneous population, and (2) when a hypothesis is composite-taking multiple parameter values-such as the alternative hypothesis in a t-test. We found that, for these situations, while the Bayesian interpretation remains correct regardless of the stopping rule used, the choice of stopping rule can, in some situations, greatly increase the chance of experimenters finding evidence in the direction they desire. We suggest ways to control these frequentist implications of stopping rules on BHT.

  9. Improved head direction command classification using an optimised Bayesian neural network.

    PubMed

    Nguyen, Son T; Nguyen, Hung T; Taylor, Philip B; Middleton, James

    2006-01-01

    Assistive technologies have recently emerged to improve the quality of life of severely disabled people by enhancing their independence in daily activities. Since many of those individuals have limited or non-existing control from the neck downward, alternative hands-free input modalities have become very important for these people to access assistive devices. In hands-free control, head movement has been proved to be a very effective user interface as it can provide a comfortable, reliable and natural way to access the device. Recently, neural networks have been shown to be useful not only for real-time pattern recognition but also for creating user-adaptive models. Since multi-layer perceptron neural networks trained using standard back-propagation may cause poor generalisation, the Bayesian technique has been proposed to improve the generalisation and robustness of these networks. This paper describes the use of Bayesian neural networks in developing a hands-free wheelchair control system. The experimental results show that with the optimised architecture, classification Bayesian neural networks can detect head commands of wheelchair users accurately irrespective to their levels of injuries.

  10. Iterative Bayesian Estimation of Travel Times on Urban Arterials: Fusing Loop Detector and Probe Vehicle Data.

    PubMed

    Liu, Kai; Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo

    2016-01-01

    On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods.

  11. Iterative Bayesian Estimation of Travel Times on Urban Arterials: Fusing Loop Detector and Probe Vehicle Data

    PubMed Central

    Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo

    2016-01-01

    On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods. PMID:27362654

  12. Bayesian enhancement two-stage design for single-arm phase II clinical trials with binary and time-to-event endpoints.

    PubMed

    Shi, Haolun; Yin, Guosheng

    2018-02-21

    Simon's two-stage design is one of the most commonly used methods in phase II clinical trials with binary endpoints. The design tests the null hypothesis that the response rate is less than an uninteresting level, versus the alternative hypothesis that the response rate is greater than a desirable target level. From a Bayesian perspective, we compute the posterior probabilities of the null and alternative hypotheses given that a promising result is declared in Simon's design. Our study reveals that because the frequentist hypothesis testing framework places its focus on the null hypothesis, a potentially efficacious treatment identified by rejecting the null under Simon's design could have only less than 10% posterior probability of attaining the desirable target level. Due to the indifference region between the null and alternative, rejecting the null does not necessarily mean that the drug achieves the desirable response level. To clarify such ambiguity, we propose a Bayesian enhancement two-stage (BET) design, which guarantees a high posterior probability of the response rate reaching the target level, while allowing for early termination and sample size saving in case that the drug's response rate is smaller than the clinically uninteresting level. Moreover, the BET design can be naturally adapted to accommodate survival endpoints. We conduct extensive simulation studies to examine the empirical performance of our design and present two trial examples as applications. © 2018, The International Biometric Society.

  13. Time-to-event continual reassessment method incorporating treatment cycle information with application to an oncology phase I trial.

    PubMed

    Huang, Bo; Kuan, Pei Fen

    2014-11-01

    Delayed dose limiting toxicities (i.e. beyond first cycle of treatment) is a challenge for phase I trials. The time-to-event continual reassessment method (TITE-CRM) is a Bayesian dose-finding design to address the issue of long observation time and early patient drop-out. It uses a weighted binomial likelihood with weights assigned to observations by the unknown time-to-toxicity distribution, and is open to accrual continually. To avoid dosing at overly toxic levels while retaining accuracy and efficiency for DLT evaluation that involves multiple cycles, we propose an adaptive weight function by incorporating cyclical data of the experimental treatment with parameters updated continually. This provides a reasonable estimate for the time-to-toxicity distribution by accounting for inter-cycle variability and maintains the statistical properties of consistency and coherence. A case study of a First-in-Human trial in cancer for an experimental biologic is presented using the proposed design. Design calibrations for the clinical and statistical parameters are conducted to ensure good operating characteristics. Simulation results show that the proposed TITE-CRM design with adaptive weight function yields significantly shorter trial duration, does not expose patients to additional risk, is competitive against the existing weighting methods, and possesses some desirable properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Informed Source Separation: A Bayesian Tutorial

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.

    2005-01-01

    Source separation problems are ubiquitous in the physical sciences; any situation where signals are superimposed calls for source separation to estimate the original signals. In h s tutorial I will discuss the Bayesian approach to the source separation problem. This approach has a specific advantage in that it requires the designer to explicitly describe the signal model in addition to any other information or assumptions that go into the problem description. This leads naturally to the idea of informed source separation, where the algorithm design incorporates relevant information about the specific problem. This approach promises to enable researchers to design their own high-quality algorithms that are specifically tailored to the problem at hand.

  15. Experimentally Derived δ13C and δ15N Discrimination Factors for Gray Wolves and the Impact of Prior Information in Bayesian Mixing Models

    PubMed Central

    Bucci, Melanie E.; Callahan, Peggy; Koprowski, John L.; Polfus, Jean L.; Krausman, Paul R.

    2015-01-01

    Stable isotope analysis of diet has become a common tool in conservation research. However, the multiple sources of uncertainty inherent in this analysis framework involve consequences that have not been thoroughly addressed. Uncertainty arises from the choice of trophic discrimination factors, and for Bayesian stable isotope mixing models (SIMMs), the specification of prior information; the combined effect of these aspects has not been explicitly tested. We used a captive feeding study of gray wolves (Canis lupus) to determine the first experimentally-derived trophic discrimination factors of C and N for this large carnivore of broad conservation interest. Using the estimated diet in our controlled system and data from a published study on wild wolves and their prey in Montana, USA, we then investigated the simultaneous effect of discrimination factors and prior information on diet reconstruction with Bayesian SIMMs. Discrimination factors for gray wolves and their prey were 1.97‰ for δ13C and 3.04‰ for δ15N. Specifying wolf discrimination factors, as opposed to the commonly used red fox (Vulpes vulpes) factors, made little practical difference to estimates of wolf diet, but prior information had a strong effect on bias, precision, and accuracy of posterior estimates. Without specifying prior information in our Bayesian SIMM, it was not possible to produce SIMM posteriors statistically similar to the estimated diet in our controlled study or the diet of wild wolves. Our study demonstrates the critical effect of prior information on estimates of animal diets using Bayesian SIMMs, and suggests species-specific trophic discrimination factors are of secondary importance. When using stable isotope analysis to inform conservation decisions researchers should understand the limits of their data. It may be difficult to obtain useful information from SIMMs if informative priors are omitted and species-specific discrimination factors are unavailable. PMID:25803664

  16. Experimentally derived δ¹³C and δ¹⁵N discrimination factors for gray wolves and the impact of prior information in Bayesian mixing models.

    PubMed

    Derbridge, Jonathan J; Merkle, Jerod A; Bucci, Melanie E; Callahan, Peggy; Koprowski, John L; Polfus, Jean L; Krausman, Paul R

    2015-01-01

    Stable isotope analysis of diet has become a common tool in conservation research. However, the multiple sources of uncertainty inherent in this analysis framework involve consequences that have not been thoroughly addressed. Uncertainty arises from the choice of trophic discrimination factors, and for Bayesian stable isotope mixing models (SIMMs), the specification of prior information; the combined effect of these aspects has not been explicitly tested. We used a captive feeding study of gray wolves (Canis lupus) to determine the first experimentally-derived trophic discrimination factors of C and N for this large carnivore of broad conservation interest. Using the estimated diet in our controlled system and data from a published study on wild wolves and their prey in Montana, USA, we then investigated the simultaneous effect of discrimination factors and prior information on diet reconstruction with Bayesian SIMMs. Discrimination factors for gray wolves and their prey were 1.97‰ for δ13C and 3.04‰ for δ15N. Specifying wolf discrimination factors, as opposed to the commonly used red fox (Vulpes vulpes) factors, made little practical difference to estimates of wolf diet, but prior information had a strong effect on bias, precision, and accuracy of posterior estimates. Without specifying prior information in our Bayesian SIMM, it was not possible to produce SIMM posteriors statistically similar to the estimated diet in our controlled study or the diet of wild wolves. Our study demonstrates the critical effect of prior information on estimates of animal diets using Bayesian SIMMs, and suggests species-specific trophic discrimination factors are of secondary importance. When using stable isotope analysis to inform conservation decisions researchers should understand the limits of their data. It may be difficult to obtain useful information from SIMMs if informative priors are omitted and species-specific discrimination factors are unavailable.

  17. Analysis of statistical and standard algorithms for detecting muscle onset with surface electromyography.

    PubMed

    Tenan, Matthew S; Tweedell, Andrew J; Haynes, Courtney A

    2017-01-01

    The timing of muscle activity is a commonly applied analytic method to understand how the nervous system controls movement. This study systematically evaluates six classes of standard and statistical algorithms to determine muscle onset in both experimental surface electromyography (EMG) and simulated EMG with a known onset time. Eighteen participants had EMG collected from the biceps brachii and vastus lateralis while performing a biceps curl or knee extension, respectively. Three established methods and three statistical methods for EMG onset were evaluated. Linear envelope, Teager-Kaiser energy operator + linear envelope and sample entropy were the established methods evaluated while general time series mean/variance, sequential and batch processing of parametric and nonparametric tools, and Bayesian changepoint analysis were the statistical techniques used. Visual EMG onset (experimental data) and objective EMG onset (simulated data) were compared with algorithmic EMG onset via root mean square error and linear regression models for stepwise elimination of inferior algorithms. The top algorithms for both data types were analyzed for their mean agreement with the gold standard onset and evaluation of 95% confidence intervals. The top algorithms were all Bayesian changepoint analysis iterations where the parameter of the prior (p0) was zero. The best performing Bayesian algorithms were p0 = 0 and a posterior probability for onset determination at 60-90%. While existing algorithms performed reasonably, the Bayesian changepoint analysis methodology provides greater reliability and accuracy when determining the singular onset of EMG activity in a time series. Further research is needed to determine if this class of algorithms perform equally well when the time series has multiple bursts of muscle activity.

  18. Efficient Probabilistic Diagnostics for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole J.; Chavira, Mark; Cascio, Keith; Poll, Scott; Darwiche, Adnan; Uckun, Serdar

    2008-01-01

    We consider in this work the probabilistic approach to model-based diagnosis when applied to electrical power systems (EPSs). Our probabilistic approach is formally well-founded, as it based on Bayesian networks and arithmetic circuits. We investigate the diagnostic task known as fault isolation, and pay special attention to meeting two of the main challenges . model development and real-time reasoning . often associated with real-world application of model-based diagnosis technologies. To address the challenge of model development, we develop a systematic approach to representing electrical power systems as Bayesian networks, supported by an easy-to-use speci.cation language. To address the real-time reasoning challenge, we compile Bayesian networks into arithmetic circuits. Arithmetic circuit evaluation supports real-time diagnosis by being predictable and fast. In essence, we introduce a high-level EPS speci.cation language from which Bayesian networks that can diagnose multiple simultaneous failures are auto-generated, and we illustrate the feasibility of using arithmetic circuits, compiled from Bayesian networks, for real-time diagnosis on real-world EPSs of interest to NASA. The experimental system is a real-world EPS, namely the Advanced Diagnostic and Prognostic Testbed (ADAPT) located at the NASA Ames Research Center. In experiments with the ADAPT Bayesian network, which currently contains 503 discrete nodes and 579 edges, we .nd high diagnostic accuracy in scenarios where one to three faults, both in components and sensors, were inserted. The time taken to compute the most probable explanation using arithmetic circuits has a small mean of 0.2625 milliseconds and standard deviation of 0.2028 milliseconds. In experiments with data from ADAPT we also show that arithmetic circuit evaluation substantially outperforms joint tree propagation and variable elimination, two alternative algorithms for diagnosis using Bayesian network inference.

  19. Bayesian Optimization for Neuroimaging Pre-processing in Brain Age Classification and Prediction

    PubMed Central

    Lancaster, Jenessa; Lorenz, Romy; Leech, Rob; Cole, James H.

    2018-01-01

    Neuroimaging-based age prediction using machine learning is proposed as a biomarker of brain aging, relating to cognitive performance, health outcomes and progression of neurodegenerative disease. However, even leading age-prediction algorithms contain measurement error, motivating efforts to improve experimental pipelines. T1-weighted MRI is commonly used for age prediction, and the pre-processing of these scans involves normalization to a common template and resampling to a common voxel size, followed by spatial smoothing. Resampling parameters are often selected arbitrarily. Here, we sought to improve brain-age prediction accuracy by optimizing resampling parameters using Bayesian optimization. Using data on N = 2003 healthy individuals (aged 16–90 years) we trained support vector machines to (i) distinguish between young (<22 years) and old (>50 years) brains (classification) and (ii) predict chronological age (regression). We also evaluated generalisability of the age-regression model to an independent dataset (CamCAN, N = 648, aged 18–88 years). Bayesian optimization was used to identify optimal voxel size and smoothing kernel size for each task. This procedure adaptively samples the parameter space to evaluate accuracy across a range of possible parameters, using independent sub-samples to iteratively assess different parameter combinations to arrive at optimal values. When distinguishing between young and old brains a classification accuracy of 88.1% was achieved, (optimal voxel size = 11.5 mm3, smoothing kernel = 2.3 mm). For predicting chronological age, a mean absolute error (MAE) of 5.08 years was achieved, (optimal voxel size = 3.73 mm3, smoothing kernel = 3.68 mm). This was compared to performance using default values of 1.5 mm3 and 4mm respectively, resulting in MAE = 5.48 years, though this 7.3% improvement was not statistically significant. When assessing generalisability, best performance was achieved when applying the entire Bayesian optimization framework to the new dataset, out-performing the parameters optimized for the initial training dataset. Our study outlines the proof-of-principle that neuroimaging models for brain-age prediction can use Bayesian optimization to derive case-specific pre-processing parameters. Our results suggest that different pre-processing parameters are selected when optimization is conducted in specific contexts. This potentially motivates use of optimization techniques at many different points during the experimental process, which may improve statistical sensitivity and reduce opportunities for experimenter-led bias. PMID:29483870

  20. Bayesian B-spline mapping for dynamic quantitative traits.

    PubMed

    Xing, Jun; Li, Jiahan; Yang, Runqing; Zhou, Xiaojing; Xu, Shizhong

    2012-04-01

    Owing to their ability and flexibility to describe individual gene expression at different time points, random regression (RR) analyses have become a popular procedure for the genetic analysis of dynamic traits whose phenotypes are collected over time. Specifically, when modelling the dynamic patterns of gene expressions in the RR framework, B-splines have been proved successful as an alternative to orthogonal polynomials. In the so-called Bayesian B-spline quantitative trait locus (QTL) mapping, B-splines are used to characterize the patterns of QTL effects and individual-specific time-dependent environmental errors over time, and the Bayesian shrinkage estimation method is employed to estimate model parameters. Extensive simulations demonstrate that (1) in terms of statistical power, Bayesian B-spline mapping outperforms the interval mapping based on the maximum likelihood; (2) for the simulated dataset with complicated growth curve simulated by B-splines, Legendre polynomial-based Bayesian mapping is not capable of identifying the designed QTLs accurately, even when higher-order Legendre polynomials are considered and (3) for the simulated dataset using Legendre polynomials, the Bayesian B-spline mapping can find the same QTLs as those identified by Legendre polynomial analysis. All simulation results support the necessity and flexibility of B-spline in Bayesian mapping of dynamic traits. The proposed method is also applied to a real dataset, where QTLs controlling the growth trajectory of stem diameters in Populus are located.

  1. Metainference: A Bayesian inference method for heterogeneous systems

    PubMed Central

    Bonomi, Massimiliano; Camilloni, Carlo; Cavalli, Andrea; Vendruscolo, Michele

    2016-01-01

    Modeling a complex system is almost invariably a challenging task. The incorporation of experimental observations can be used to improve the quality of a model and thus to obtain better predictions about the behavior of the corresponding system. This approach, however, is affected by a variety of different errors, especially when a system simultaneously populates an ensemble of different states and experimental data are measured as averages over such states. To address this problem, we present a Bayesian inference method, called “metainference,” that is able to deal with errors in experimental measurements and with experimental measurements averaged over multiple states. To achieve this goal, metainference models a finite sample of the distribution of models using a replica approach, in the spirit of the replica-averaging modeling based on the maximum entropy principle. To illustrate the method, we present its application to a heterogeneous model system and to the determination of an ensemble of structures corresponding to the thermal fluctuations of a protein molecule. Metainference thus provides an approach to modeling complex systems with heterogeneous components and interconverting between different states by taking into account all possible sources of errors. PMID:26844300

  2. Novel method to construct large-scale design space in lubrication process utilizing Bayesian estimation based on a small-scale design-of-experiment and small sets of large-scale manufacturing data.

    PubMed

    Maeda, Jin; Suzuki, Tatsuya; Takayama, Kozo

    2012-12-01

    A large-scale design space was constructed using a Bayesian estimation method with a small-scale design of experiments (DoE) and small sets of large-scale manufacturing data without enforcing a large-scale DoE. The small-scale DoE was conducted using various Froude numbers (X(1)) and blending times (X(2)) in the lubricant blending process for theophylline tablets. The response surfaces, design space, and their reliability of the compression rate of the powder mixture (Y(1)), tablet hardness (Y(2)), and dissolution rate (Y(3)) on a small scale were calculated using multivariate spline interpolation, a bootstrap resampling technique, and self-organizing map clustering. The constant Froude number was applied as a scale-up rule. Three experiments under an optimal condition and two experiments under other conditions were performed on a large scale. The response surfaces on the small scale were corrected to those on a large scale by Bayesian estimation using the large-scale results. Large-scale experiments under three additional sets of conditions showed that the corrected design space was more reliable than that on the small scale, even if there was some discrepancy in the pharmaceutical quality between the manufacturing scales. This approach is useful for setting up a design space in pharmaceutical development when a DoE cannot be performed at a commercial large manufacturing scale.

  3. Quantifying the effect of experimental design choices for in vitro scratch assays.

    PubMed

    Johnston, Stuart T; Ross, Joshua V; Binder, Benjamin J; Sean McElwain, D L; Haridas, Parvathi; Simpson, Matthew J

    2016-07-07

    Scratch assays are often used to investigate potential drug treatments for chronic wounds and cancer. Interpreting these experiments with a mathematical model allows us to estimate the cell diffusivity, D, and the cell proliferation rate, λ. However, the influence of the experimental design on the estimates of D and λ is unclear. Here we apply an approximate Bayesian computation (ABC) parameter inference method, which produces a posterior distribution of D and λ, to new sets of synthetic data, generated from an idealised mathematical model, and experimental data for a non-adhesive mesenchymal population of fibroblast cells. The posterior distribution allows us to quantify the amount of information obtained about D and λ. We investigate two types of scratch assay, as well as varying the number and timing of the experimental observations captured. Our results show that a scrape assay, involving one cell front, provides more precise estimates of D and λ, and is more computationally efficient to interpret than a wound assay, with two opposingly directed cell fronts. We find that recording two observations, after making the initial observation, is sufficient to estimate D and λ, and that the final observation time should correspond to the time taken for the cell front to move across the field of view. These results provide guidance for estimating D and λ, while simultaneously minimising the time and cost associated with performing and interpreting the experiment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Feasibility of streamlining an interactive Bayesian-based diagnostic support tool designed for clinical practice

    NASA Astrophysics Data System (ADS)

    Chen, Po-Hao; Botzolakis, Emmanuel; Mohan, Suyash; Bryan, R. N.; Cook, Tessa

    2016-03-01

    In radiology, diagnostic errors occur either through the failure of detection or incorrect interpretation. Errors are estimated to occur in 30-35% of all exams and contribute to 40-54% of medical malpractice litigations. In this work, we focus on reducing incorrect interpretation of known imaging features. Existing literature categorizes cognitive bias leading a radiologist to an incorrect diagnosis despite having correctly recognized the abnormal imaging features: anchoring bias, framing effect, availability bias, and premature closure. Computational methods make a unique contribution, as they do not exhibit the same cognitive biases as a human. Bayesian networks formalize the diagnostic process. They modify pre-test diagnostic probabilities using clinical and imaging features, arriving at a post-test probability for each possible diagnosis. To translate Bayesian networks to clinical practice, we implemented an entirely web-based open-source software tool. In this tool, the radiologist first selects a network of choice (e.g. basal ganglia). Then, large, clearly labeled buttons displaying salient imaging features are displayed on the screen serving both as a checklist and for input. As the radiologist inputs the value of an extracted imaging feature, the conditional probabilities of each possible diagnosis are updated. The software presents its level of diagnostic discrimination using a Pareto distribution chart, updated with each additional imaging feature. Active collaboration with the clinical radiologist is a feasible approach to software design and leads to design decisions closely coupling the complex mathematics of conditional probability in Bayesian networks with practice.

  5. A Bayesian approach to estimating hidden variables as well as missing and wrong molecular interactions in ordinary differential equation-based mathematical models.

    PubMed

    Engelhardt, Benjamin; Kschischo, Maik; Fröhlich, Holger

    2017-06-01

    Ordinary differential equations (ODEs) are a popular approach to quantitatively model molecular networks based on biological knowledge. However, such knowledge is typically restricted. Wrongly modelled biological mechanisms as well as relevant external influence factors that are not included into the model are likely to manifest in major discrepancies between model predictions and experimental data. Finding the exact reasons for such observed discrepancies can be quite challenging in practice. In order to address this issue, we suggest a Bayesian approach to estimate hidden influences in ODE-based models. The method can distinguish between exogenous and endogenous hidden influences. Thus, we can detect wrongly specified as well as missed molecular interactions in the model. We demonstrate the performance of our Bayesian dynamic elastic-net with several ordinary differential equation models from the literature, such as human JAK-STAT signalling, information processing at the erythropoietin receptor, isomerization of liquid α -Pinene, G protein cycling in yeast and UV-B triggered signalling in plants. Moreover, we investigate a set of commonly known network motifs and a gene-regulatory network. Altogether our method supports the modeller in an algorithmic manner to identify possible sources of errors in ODE-based models on the basis of experimental data. © 2017 The Author(s).

  6. Bayesian denoising in digital radiography: a comparison in the dental field.

    PubMed

    Frosio, I; Olivieri, C; Lucchese, M; Borghese, N A; Boccacci, P

    2013-01-01

    We compared two Bayesian denoising algorithms for digital radiographs, based on Total Variation regularization and wavelet decomposition. The comparison was performed on simulated radiographs with different photon counts and frequency content and on real dental radiographs. Four different quality indices were considered to quantify the quality of the filtered radiographs. The experimental results suggested that Total Variation is more suited to preserve fine anatomical details, whereas wavelets produce images of higher quality at global scale; they also highlighted the need for more reliable image quality indices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Hypothesis testing on the fractal structure of behavioral sequences: the Bayesian assessment of scaling methodology.

    PubMed

    Moscoso del Prado Martín, Fermín

    2013-12-01

    I introduce the Bayesian assessment of scaling (BAS), a simple but powerful Bayesian hypothesis contrast methodology that can be used to test hypotheses on the scaling regime exhibited by a sequence of behavioral data. Rather than comparing parametric models, as typically done in previous approaches, the BAS offers a direct, nonparametric way to test whether a time series exhibits fractal scaling. The BAS provides a simpler and faster test than do previous methods, and the code for making the required computations is provided. The method also enables testing of finely specified hypotheses on the scaling indices, something that was not possible with the previously available methods. I then present 4 simulation studies showing that the BAS methodology outperforms the other methods used in the psychological literature. I conclude with a discussion of methodological issues on fractal analyses in experimental psychology. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  8. A Bayesian Account of Vocal Adaptation to Pitch-Shifted Auditory Feedback

    PubMed Central

    Hahnloser, Richard H. R.

    2017-01-01

    Motor systems are highly adaptive. Both birds and humans compensate for synthetically induced shifts in the pitch (fundamental frequency) of auditory feedback stemming from their vocalizations. Pitch-shift compensation is partial in the sense that large shifts lead to smaller relative compensatory adjustments of vocal pitch than small shifts. Also, compensation is larger in subjects with high motor variability. To formulate a mechanistic description of these findings, we adapt a Bayesian model of error relevance. We assume that vocal-auditory feedback loops in the brain cope optimally with known sensory and motor variability. Based on measurements of motor variability, optimal compensatory responses in our model provide accurate fits to published experimental data. Optimal compensation correctly predicts sensory acuity, which has been estimated in psychophysical experiments as just-noticeable pitch differences. Our model extends the utility of Bayesian approaches to adaptive vocal behaviors. PMID:28135267

  9. A hierarchical, ontology-driven Bayesian concept for ubiquitous medical environments--a case study for pulmonary diseases.

    PubMed

    Maragoudakis, Manolis; Lymberopoulos, Dimitrios; Fakotakis, Nikos; Spiropoulos, Kostas

    2008-01-01

    The present paper extends work on an existing computer-based Decision Support System (DSS) that aims to provide assistance to physicians as regards to pulmonary diseases. The extension deals with allowing for a hierarchical decomposition of the task, at different levels of domain granularity, using a novel approach, i.e. Hierarchical Bayesian Networks. The proposed framework uses data from various networking appliances such as mobile phones and wireless medical sensors to establish a ubiquitous environment for medical treatment of pulmonary diseases. Domain knowledge is encoded at the upper levels of the hierarchy, thus making the process of generalization easier to accomplish. The experimental results were carried out under the Pulmonary Department, University Regional Hospital Patras, Patras, Greece. They have supported our initial beliefs about the ability of Bayesian networks to provide an effective, yet semantically-oriented, means of prognosis and reasoning under conditions of uncertainty.

  10. Modular analysis of the probabilistic genetic interaction network.

    PubMed

    Hou, Lin; Wang, Lin; Qian, Minping; Li, Dong; Tang, Chao; Zhu, Yunping; Deng, Minghua; Li, Fangting

    2011-03-15

    Epistatic Miniarray Profiles (EMAP) has enabled the mapping of large-scale genetic interaction networks; however, the quantitative information gained from EMAP cannot be fully exploited since the data are usually interpreted as a discrete network based on an arbitrary hard threshold. To address such limitations, we adopted a mixture modeling procedure to construct a probabilistic genetic interaction network and then implemented a Bayesian approach to identify densely interacting modules in the probabilistic network. Mixture modeling has been demonstrated as an effective soft-threshold technique of EMAP measures. The Bayesian approach was applied to an EMAP dataset studying the early secretory pathway in Saccharomyces cerevisiae. Twenty-seven modules were identified, and 14 of those were enriched by gold standard functional gene sets. We also conducted a detailed comparison with state-of-the-art algorithms, hierarchical cluster and Markov clustering. The experimental results show that the Bayesian approach outperforms others in efficiently recovering biologically significant modules.

  11. Inference of missing data and chemical model parameters using experimental statistics

    NASA Astrophysics Data System (ADS)

    Casey, Tiernan; Najm, Habib

    2017-11-01

    A method for determining the joint parameter density of Arrhenius rate expressions through the inference of missing experimental data is presented. This approach proposes noisy hypothetical data sets from target experiments and accepts those which agree with the reported statistics, in the form of nominal parameter values and their associated uncertainties. The data exploration procedure is formalized using Bayesian inference, employing maximum entropy and approximate Bayesian computation methods to arrive at a joint density on data and parameters. The method is demonstrated in the context of reactions in the H2-O2 system for predictive modeling of combustion systems of interest. Work supported by the US DOE BES CSGB. Sandia National Labs is a multimission lab managed and operated by Nat. Technology and Eng'g Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell Intl, for the US DOE NCSA under contract DE-NA-0003525.

  12. Bayesian markets to elicit private information.

    PubMed

    Baillon, Aurélien

    2017-07-25

    Financial markets reveal what investors think about the future, and prediction markets are used to forecast election results. Could markets also encourage people to reveal private information, such as subjective judgments (e.g., "Are you satisfied with your life?") or unverifiable facts? This paper shows how to design such markets, called Bayesian markets. People trade an asset whose value represents the proportion of affirmative answers to a question. Their trading position then reveals their own answer to the question. The results of this paper are based on a Bayesian setup in which people use their private information (their "type") as a signal. Hence, beliefs about others' types are correlated with one's own type. Bayesian markets transform this correlation into a mechanism that rewards truth telling. These markets avoid two complications of alternative methods: they need no knowledge of prior information and no elicitation of metabeliefs regarding others' signals.

  13. Using Bayesian Networks for Candidate Generation in Consistency-based Diagnosis

    NASA Technical Reports Server (NTRS)

    Narasimhan, Sriram; Mengshoel, Ole

    2008-01-01

    Consistency-based diagnosis relies heavily on the assumption that discrepancies between model predictions and sensor observations can be detected accurately. When sources of uncertainty like sensor noise and model abstraction exist robust schemes have to be designed to make a binary decision on whether predictions are consistent with observations. This risks the occurrence of false alarms and missed alarms when an erroneous decision is made. Moreover when multiple sensors (with differing sensing properties) are available the degree of match between predictions and observations can be used to guide the search for fault candidates. In this paper we propose a novel approach to handle this problem using Bayesian networks. In the consistency- based diagnosis formulation, automatically generated Bayesian networks are used to encode a probabilistic measure of fit between predictions and observations. A Bayesian network inference algorithm is used to compute most probable fault candidates.

  14. Learning Bayesian Networks from Correlated Data

    NASA Astrophysics Data System (ADS)

    Bae, Harold; Monti, Stefano; Montano, Monty; Steinberg, Martin H.; Perls, Thomas T.; Sebastiani, Paola

    2016-05-01

    Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between observations within the same cluster and ignoring this correlation typically inflates the rate of false positive associations. We describe a novel parameterization of Bayesian networks that uses random effects to model the correlation within sample units and can be used for structure and parameter learning from correlated data without inflating the Type I error rate. We compare different learning metrics using simulations and illustrate the method in two real examples: an analysis of genetic and non-genetic factors associated with human longevity from a family-based study, and an example of risk factors for complications of sickle cell anemia from a longitudinal study with repeated measures.

  15. Bayesian markets to elicit private information

    PubMed Central

    2017-01-01

    Financial markets reveal what investors think about the future, and prediction markets are used to forecast election results. Could markets also encourage people to reveal private information, such as subjective judgments (e.g., “Are you satisfied with your life?”) or unverifiable facts? This paper shows how to design such markets, called Bayesian markets. People trade an asset whose value represents the proportion of affirmative answers to a question. Their trading position then reveals their own answer to the question. The results of this paper are based on a Bayesian setup in which people use their private information (their “type”) as a signal. Hence, beliefs about others’ types are correlated with one’s own type. Bayesian markets transform this correlation into a mechanism that rewards truth telling. These markets avoid two complications of alternative methods: they need no knowledge of prior information and no elicitation of metabeliefs regarding others’ signals. PMID:28696293

  16. Detection of multiple damages employing best achievable eigenvectors under Bayesian inference

    NASA Astrophysics Data System (ADS)

    Prajapat, Kanta; Ray-Chaudhuri, Samit

    2018-05-01

    A novel approach is presented in this work to localize simultaneously multiple damaged elements in a structure along with the estimation of damage severity for each of the damaged elements. For detection of damaged elements, a best achievable eigenvector based formulation has been derived. To deal with noisy data, Bayesian inference is employed in the formulation wherein the likelihood of the Bayesian algorithm is formed on the basis of errors between the best achievable eigenvectors and the measured modes. In this approach, the most probable damage locations are evaluated under Bayesian inference by generating combinations of various possible damaged elements. Once damage locations are identified, damage severities are estimated using a Bayesian inference Markov chain Monte Carlo simulation. The efficiency of the proposed approach has been demonstrated by carrying out a numerical study involving a 12-story shear building. It has been found from this study that damage scenarios involving as low as 10% loss of stiffness in multiple elements are accurately determined (localized and severities quantified) even when 2% noise contaminated modal data are utilized. Further, this study introduces a term parameter impact (evaluated based on sensitivity of modal parameters towards structural parameters) to decide the suitability of selecting a particular mode, if some idea about the damaged elements are available. It has been demonstrated here that the accuracy and efficiency of the Bayesian quantification algorithm increases if damage localization is carried out a-priori. An experimental study involving a laboratory scale shear building and different stiffness modification scenarios shows that the proposed approach is efficient enough to localize the stories with stiffness modification.

  17. Identifying causal networks linking cancer processes and anti-tumor immunity using Bayesian network inference and metagene constructs.

    PubMed

    Kaiser, Jacob L; Bland, Cassidy L; Klinke, David J

    2016-03-01

    Cancer arises from a deregulation of both intracellular and intercellular networks that maintain system homeostasis. Identifying the architecture of these networks and how they are changed in cancer is a pre-requisite for designing drugs to restore homeostasis. Since intercellular networks only appear in intact systems, it is difficult to identify how these networks become altered in human cancer using many of the common experimental models. To overcome this, we used the diversity in normal and malignant human tissue samples from the Cancer Genome Atlas (TCGA) database of human breast cancer to identify the topology associated with intercellular networks in vivo. To improve the underlying biological signals, we constructed Bayesian networks using metagene constructs, which represented groups of genes that are concomitantly associated with different immune and cancer states. We also used bootstrap resampling to establish the significance associated with the inferred networks. In short, we found opposing relationships between cell proliferation and epithelial-to-mesenchymal transformation (EMT) with regards to macrophage polarization. These results were consistent across multiple carcinomas in that proliferation was associated with a type 1 cell-mediated anti-tumor immune response and EMT was associated with a pro-tumor anti-inflammatory response. To address the identifiability of these networks from other datasets, we could identify the relationship between EMT and macrophage polarization with fewer samples when the Bayesian network was generated from malignant samples alone. However, the relationship between proliferation and macrophage polarization was identified with fewer samples when the samples were taken from a combination of the normal and malignant samples. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:470-479, 2016. © 2016 American Institute of Chemical Engineers.

  18. Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks

    PubMed Central

    Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui

    2017-01-01

    The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways. PMID:29049295

  19. A Bayesian Attractor Model for Perceptual Decision Making

    PubMed Central

    Bitzer, Sebastian; Bruineberg, Jelle; Kiebel, Stefan J.

    2015-01-01

    Even for simple perceptual decisions, the mechanisms that the brain employs are still under debate. Although current consensus states that the brain accumulates evidence extracted from noisy sensory information, open questions remain about how this simple model relates to other perceptual phenomena such as flexibility in decisions, decision-dependent modulation of sensory gain, or confidence about a decision. We propose a novel approach of how perceptual decisions are made by combining two influential formalisms into a new model. Specifically, we embed an attractor model of decision making into a probabilistic framework that models decision making as Bayesian inference. We show that the new model can explain decision making behaviour by fitting it to experimental data. In addition, the new model combines for the first time three important features: First, the model can update decisions in response to switches in the underlying stimulus. Second, the probabilistic formulation accounts for top-down effects that may explain recent experimental findings of decision-related gain modulation of sensory neurons. Finally, the model computes an explicit measure of confidence which we relate to recent experimental evidence for confidence computations in perceptual decision tasks. PMID:26267143

  20. Adaptive designs in clinical trials.

    PubMed

    Bowalekar, Suresh

    2011-01-01

    In addition to the expensive and lengthy process of developing a new medicine, the attrition rate in clinical research was on the rise, resulting in stagnation in the development of new compounds. As a consequence to this, the US Food and Drug Administration released a critical path initiative document in 2004, highlighting the need for developing innovative trial designs. One of the innovations suggested the use of adaptive designs for clinical trials. Thus, post critical path initiative, there is a growing interest in using adaptive designs for the development of pharmaceutical products. Adaptive designs are expected to have great potential to reduce the number of patients and duration of trial and to have relatively less exposure to new drug. Adaptive designs are not new in the sense that the task of interim analysis (IA)/review of the accumulated data used in adaptive designs existed in the past too. However, such reviews/analyses of accumulated data were not necessarily planned at the stage of planning clinical trial and the methods used were not necessarily compliant with clinical trial process. The Bayesian approach commonly used in adaptive designs was developed by Thomas Bayes in the 18th century, about hundred years prior to the development of modern statistical methods by the father of modern statistics, Sir Ronald A. Fisher, but the complexity involved in Bayesian approach prevented its use in real life practice. The advances in the field of computer and information technology over the last three to four decades has changed the scenario and the Bayesian techniques are being used in adaptive designs in addition to other sequential methods used in IA. This paper attempts to describe the various adaptive designs in clinical trial and views of stakeholders about feasibility of using them, without going into mathematical complexities.

  1. Maximizing neotissue growth kinetics in a perfusion bioreactor: An in silico strategy using model reduction and Bayesian optimization.

    PubMed

    Mehrian, Mohammad; Guyot, Yann; Papantoniou, Ioannis; Olofsson, Simon; Sonnaert, Maarten; Misener, Ruth; Geris, Liesbet

    2018-03-01

    In regenerative medicine, computer models describing bioreactor processes can assist in designing optimal process conditions leading to robust and economically viable products. In this study, we started from a (3D) mechanistic model describing the growth of neotissue, comprised of cells, and extracellular matrix, in a perfusion bioreactor set-up influenced by the scaffold geometry, flow-induced shear stress, and a number of metabolic factors. Subsequently, we applied model reduction by reformulating the problem from a set of partial differential equations into a set of ordinary differential equations. Comparing the reduced model results to the mechanistic model results and to dedicated experimental results assesses the reduction step quality. The obtained homogenized model is 10 5 fold faster than the 3D version, allowing the application of rigorous optimization techniques. Bayesian optimization was applied to find the medium refreshment regime in terms of frequency and percentage of medium replaced that would maximize neotissue growth kinetics during 21 days of culture. The simulation results indicated that maximum neotissue growth will occur for a high frequency and medium replacement percentage, a finding that is corroborated by reports in the literature. This study demonstrates an in silico strategy for bioprocess optimization paying particular attention to the reduction of the associated computational cost. © 2017 Wiley Periodicals, Inc.

  2. Examination of a muscular activity estimation model using a Bayesian network for the influence of an ankle foot orthosis.

    PubMed

    Inoue, Jun; Kawamura, Kazuya; Fujie, Masakatsu G

    2012-01-01

    In the present paper, we examine the appropriateness of a new model to examine the activity of the foot in gait. We developed an estimation model for foot-ankle muscular activity in the design of an ankle-foot orthosis by means of a statistical method. We chose three muscles for measuring muscular activity and built a Bayesian network model to confirm the appropriateness of the estimation model. We experimentally examined the normal gait of a non-disabled subject. We measured the muscular activity of the lower foot muscles using electromyography, the joint angles, and the pressure on each part of the sole. From these data, we obtained the causal relationship at every 10% level for these factors and built models for the stance phase, control term, and propulsive term. Our model has three advantages. First, it can express the influences that change during gait because we use 10% level nodes for each factor. Second, it can express the influences of factors that differ for low and high muscular-activity levels. Third, we created divided models that are able to reflect the actual features of gait. In evaluating the new model, we confirmed it is able to estimate all muscular activity level with an accuracy of over 90%.

  3. The discounting model selector: Statistical software for delay discounting applications.

    PubMed

    Gilroy, Shawn P; Franck, Christopher T; Hantula, Donald A

    2017-05-01

    Original, open-source computer software was developed and validated against established delay discounting methods in the literature. The software executed approximate Bayesian model selection methods from user-supplied temporal discounting data and computed the effective delay 50 (ED50) from the best performing model. Software was custom-designed to enable behavior analysts to conveniently apply recent statistical methods to temporal discounting data with the aid of a graphical user interface (GUI). The results of independent validation of the approximate Bayesian model selection methods indicated that the program provided results identical to that of the original source paper and its methods. Monte Carlo simulation (n = 50,000) confirmed that true model was selected most often in each setting. Simulation code and data for this study were posted to an online repository for use by other researchers. The model selection approach was applied to three existing delay discounting data sets from the literature in addition to the data from the source paper. Comparisons of model selected ED50 were consistent with traditional indices of discounting. Conceptual issues related to the development and use of computer software by behavior analysts and the opportunities afforded by free and open-sourced software are discussed and a review of possible expansions of this software are provided. © 2017 Society for the Experimental Analysis of Behavior.

  4. Analysis of statistical and standard algorithms for detecting muscle onset with surface electromyography

    PubMed Central

    Tweedell, Andrew J.; Haynes, Courtney A.

    2017-01-01

    The timing of muscle activity is a commonly applied analytic method to understand how the nervous system controls movement. This study systematically evaluates six classes of standard and statistical algorithms to determine muscle onset in both experimental surface electromyography (EMG) and simulated EMG with a known onset time. Eighteen participants had EMG collected from the biceps brachii and vastus lateralis while performing a biceps curl or knee extension, respectively. Three established methods and three statistical methods for EMG onset were evaluated. Linear envelope, Teager-Kaiser energy operator + linear envelope and sample entropy were the established methods evaluated while general time series mean/variance, sequential and batch processing of parametric and nonparametric tools, and Bayesian changepoint analysis were the statistical techniques used. Visual EMG onset (experimental data) and objective EMG onset (simulated data) were compared with algorithmic EMG onset via root mean square error and linear regression models for stepwise elimination of inferior algorithms. The top algorithms for both data types were analyzed for their mean agreement with the gold standard onset and evaluation of 95% confidence intervals. The top algorithms were all Bayesian changepoint analysis iterations where the parameter of the prior (p0) was zero. The best performing Bayesian algorithms were p0 = 0 and a posterior probability for onset determination at 60–90%. While existing algorithms performed reasonably, the Bayesian changepoint analysis methodology provides greater reliability and accuracy when determining the singular onset of EMG activity in a time series. Further research is needed to determine if this class of algorithms perform equally well when the time series has multiple bursts of muscle activity. PMID:28489897

  5. ANUBIS: artificial neuromodulation using a Bayesian inference system.

    PubMed

    Smith, Benjamin J H; Saaj, Chakravarthini M; Allouis, Elie

    2013-01-01

    Gain tuning is a crucial part of controller design and depends not only on an accurate understanding of the system in question, but also on the designer's ability to predict what disturbances and other perturbations the system will encounter throughout its operation. This letter presents ANUBIS (artificial neuromodulation using a Bayesian inference system), a novel biologically inspired technique for automatically tuning controller parameters in real time. ANUBIS is based on the Bayesian brain concept and modifies it by incorporating a model of the neuromodulatory system comprising four artificial neuromodulators. It has been applied to the controller of EchinoBot, a prototype walking rover for Martian exploration. ANUBIS has been implemented at three levels of the controller; gait generation, foot trajectory planning using Bézier curves, and foot trajectory tracking using a terminal sliding mode controller. We compare the results to a similar system that has been tuned using a multilayer perceptron. The use of Bayesian inference means that the system retains mathematical interpretability, unlike other intelligent tuning techniques, which use neural networks, fuzzy logic, or evolutionary algorithms. The simulation results show that ANUBIS provides significant improvements in efficiency and adaptability of the three controller components; it allows the robot to react to obstacles and uncertainties faster than the system tuned with the MLP, while maintaining stability and accuracy. As well as advancing rover autonomy, ANUBIS could also be applied to other situations where operating conditions are likely to change or cannot be accurately modeled in advance, such as process control. In addition, it demonstrates one way in which neuromodulation could fit into the Bayesian brain framework.

  6. Comparing models for quantitative risk assessment: an application to the European Registry of foreign body injuries in children.

    PubMed

    Berchialla, Paola; Scarinzi, Cecilia; Snidero, Silvia; Gregori, Dario

    2016-08-01

    Risk Assessment is the systematic study of decisions subject to uncertain consequences. An increasing interest has been focused on modeling techniques like Bayesian Networks since their capability of (1) combining in the probabilistic framework different type of evidence including both expert judgments and objective data; (2) overturning previous beliefs in the light of the new information being received and (3) making predictions even with incomplete data. In this work, we proposed a comparison among Bayesian Networks and other classical Quantitative Risk Assessment techniques such as Neural Networks, Classification Trees, Random Forests and Logistic Regression models. Hybrid approaches, combining both Classification Trees and Bayesian Networks, were also considered. Among Bayesian Networks, a clear distinction between purely data-driven approach and combination of expert knowledge with objective data is made. The aim of this paper consists in evaluating among this models which best can be applied, in the framework of Quantitative Risk Assessment, to assess the safety of children who are exposed to the risk of inhalation/insertion/aspiration of consumer products. The issue of preventing injuries in children is of paramount importance, in particular where product design is involved: quantifying the risk associated to product characteristics can be of great usefulness in addressing the product safety design regulation. Data of the European Registry of Foreign Bodies Injuries formed the starting evidence for risk assessment. Results showed that Bayesian Networks appeared to have both the ease of interpretability and accuracy in making prediction, even if simpler models like logistic regression still performed well. © The Author(s) 2013.

  7. Fragment virtual screening based on Bayesian categorization for discovering novel VEGFR-2 scaffolds.

    PubMed

    Zhang, Yanmin; Jiao, Yu; Xiong, Xiao; Liu, Haichun; Ran, Ting; Xu, Jinxing; Lu, Shuai; Xu, Anyang; Pan, Jing; Qiao, Xin; Shi, Zhihao; Lu, Tao; Chen, Yadong

    2015-11-01

    The discovery of novel scaffolds against a specific target has long been one of the most significant but challengeable goals in discovering lead compounds. A scaffold that binds in important regions of the active pocket is more favorable as a starting point because scaffolds generally possess greater optimization possibilities. However, due to the lack of sufficient chemical space diversity of the databases and the ineffectiveness of the screening methods, it still remains a great challenge to discover novel active scaffolds. Since the strengths and weaknesses of both fragment-based drug design and traditional virtual screening (VS), we proposed a fragment VS concept based on Bayesian categorization for the discovery of novel scaffolds. This work investigated the proposal through an application on VEGFR-2 target. Firstly, scaffold and structural diversity of chemical space for 10 compound databases were explicitly evaluated. Simultaneously, a robust Bayesian classification model was constructed for screening not only compound databases but also their corresponding fragment databases. Although analysis of the scaffold diversity demonstrated a very unevenly distribution of scaffolds over molecules, results showed that our Bayesian model behaved better in screening fragments than molecules. Through a literature retrospective research, several generated fragments with relatively high Bayesian scores indeed exhibit VEGFR-2 biological activity, which strongly proved the effectiveness of fragment VS based on Bayesian categorization models. This investigation of Bayesian-based fragment VS can further emphasize the necessity for enrichment of compound databases employed in lead discovery by amplifying the diversity of databases with novel structures.

  8. Bayes-LQAS: classifying the prevalence of global acute malnutrition

    PubMed Central

    2010-01-01

    Lot Quality Assurance Sampling (LQAS) applications in health have generally relied on frequentist interpretations for statistical validity. Yet health professionals often seek statements about the probability distribution of unknown parameters to answer questions of interest. The frequentist paradigm does not pretend to yield such information, although a Bayesian formulation might. This is the source of an error made in a recent paper published in this journal. Many applications lend themselves to a Bayesian treatment, and would benefit from such considerations in their design. We discuss Bayes-LQAS (B-LQAS), which allows for incorporation of prior information into the LQAS classification procedure, and thus shows how to correct the aforementioned error. Further, we pay special attention to the formulation of Bayes Operating Characteristic Curves and the use of prior information to improve survey designs. As a motivating example, we discuss the classification of Global Acute Malnutrition prevalence and draw parallels between the Bayes and classical classifications schemes. We also illustrate the impact of informative and non-informative priors on the survey design. Results indicate that using a Bayesian approach allows the incorporation of expert information and/or historical data and is thus potentially a valuable tool for making accurate and precise classifications. PMID:20534159

  9. Bayes-LQAS: classifying the prevalence of global acute malnutrition.

    PubMed

    Olives, Casey; Pagano, Marcello

    2010-06-09

    Lot Quality Assurance Sampling (LQAS) applications in health have generally relied on frequentist interpretations for statistical validity. Yet health professionals often seek statements about the probability distribution of unknown parameters to answer questions of interest. The frequentist paradigm does not pretend to yield such information, although a Bayesian formulation might. This is the source of an error made in a recent paper published in this journal. Many applications lend themselves to a Bayesian treatment, and would benefit from such considerations in their design. We discuss Bayes-LQAS (B-LQAS), which allows for incorporation of prior information into the LQAS classification procedure, and thus shows how to correct the aforementioned error. Further, we pay special attention to the formulation of Bayes Operating Characteristic Curves and the use of prior information to improve survey designs. As a motivating example, we discuss the classification of Global Acute Malnutrition prevalence and draw parallels between the Bayes and classical classifications schemes. We also illustrate the impact of informative and non-informative priors on the survey design. Results indicate that using a Bayesian approach allows the incorporation of expert information and/or historical data and is thus potentially a valuable tool for making accurate and precise classifications.

  10. The current duration design for estimating the time to pregnancy distribution: a nonparametric Bayesian perspective.

    PubMed

    Gasbarra, Dario; Arjas, Elja; Vehtari, Aki; Slama, Rémy; Keiding, Niels

    2015-10-01

    This paper was inspired by the studies of Niels Keiding and co-authors on estimating the waiting time-to-pregnancy (TTP) distribution, and in particular on using the current duration design in that context. In this design, a cross-sectional sample of women is collected from those who are currently attempting to become pregnant, and then by recording from each the time she has been attempting. Our aim here is to study the identifiability and the estimation of the waiting time distribution on the basis of current duration data. The main difficulty in this stems from the fact that very short waiting times are only rarely selected into the sample of current durations, and this renders their estimation unstable. We introduce here a Bayesian method for this estimation problem, prove its asymptotic consistency, and compare the method to some variants of the non-parametric maximum likelihood estimators, which have been used previously in this context. The properties of the Bayesian estimation method are studied also empirically, using both simulated data and TTP data on current durations collected by Slama et al. (Hum Reprod 27(5):1489-1498, 2012).

  11. Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity

    PubMed Central

    Nessler, Bernhard; Pfeiffer, Michael; Buesing, Lars; Maass, Wolfgang

    2013-01-01

    The principles by which networks of neurons compute, and how spike-timing dependent plasticity (STDP) of synaptic weights generates and maintains their computational function, are unknown. Preceding work has shown that soft winner-take-all (WTA) circuits, where pyramidal neurons inhibit each other via interneurons, are a common motif of cortical microcircuits. We show through theoretical analysis and computer simulations that Bayesian computation is induced in these network motifs through STDP in combination with activity-dependent changes in the excitability of neurons. The fundamental components of this emergent Bayesian computation are priors that result from adaptation of neuronal excitability and implicit generative models for hidden causes that are created in the synaptic weights through STDP. In fact, a surprising result is that STDP is able to approximate a powerful principle for fitting such implicit generative models to high-dimensional spike inputs: Expectation Maximization. Our results suggest that the experimentally observed spontaneous activity and trial-to-trial variability of cortical neurons are essential features of their information processing capability, since their functional role is to represent probability distributions rather than static neural codes. Furthermore it suggests networks of Bayesian computation modules as a new model for distributed information processing in the cortex. PMID:23633941

  12. Rigorous evaluation of chemical measurement uncertainty: liquid chromatographic analysis methods using detector response factor calibration

    NASA Astrophysics Data System (ADS)

    Toman, Blaza; Nelson, Michael A.; Bedner, Mary

    2017-06-01

    Chemical measurement methods are designed to promote accurate knowledge of a measurand or system. As such, these methods often allow elicitation of latent sources of variability and correlation in experimental data. They typically implement measurement equations that support quantification of effects associated with calibration standards and other known or observed parametric variables. Additionally, multiple samples and calibrants are usually analyzed to assess accuracy of the measurement procedure and repeatability by the analyst. Thus, a realistic assessment of uncertainty for most chemical measurement methods is not purely bottom-up (based on the measurement equation) or top-down (based on the experimental design), but inherently contains elements of both. Confidence in results must be rigorously evaluated for the sources of variability in all of the bottom-up and top-down elements. This type of analysis presents unique challenges due to various statistical correlations among the outputs of measurement equations. One approach is to use a Bayesian hierarchical (BH) model which is intrinsically rigorous, thus making it a straightforward method for use with complex experimental designs, particularly when correlations among data are numerous and difficult to elucidate or explicitly quantify. In simpler cases, careful analysis using GUM Supplement 1 (MC) methods augmented with random effects meta analysis yields similar results to a full BH model analysis. In this article we describe both approaches to rigorous uncertainty evaluation using as examples measurements of 25-hydroxyvitamin D3 in solution reference materials via liquid chromatography with UV absorbance detection (LC-UV) and liquid chromatography mass spectrometric detection using isotope dilution (LC-IDMS).

  13. Testing for Divergent Transmission Histories among Cultural Characters: A Study Using Bayesian Phylogenetic Methods and Iranian Tribal Textile Data

    PubMed Central

    Matthews, Luke J.; Tehrani, Jamie J.; Jordan, Fiona M.; Collard, Mark; Nunn, Charles L.

    2011-01-01

    Background Archaeologists and anthropologists have long recognized that different cultural complexes may have distinct descent histories, but they have lacked analytical techniques capable of easily identifying such incongruence. Here, we show how Bayesian phylogenetic analysis can be used to identify incongruent cultural histories. We employ the approach to investigate Iranian tribal textile traditions. Methods We used Bayes factor comparisons in a phylogenetic framework to test two models of cultural evolution: the hierarchically integrated system hypothesis and the multiple coherent units hypothesis. In the hierarchically integrated system hypothesis, a core tradition of characters evolves through descent with modification and characters peripheral to the core are exchanged among contemporaneous populations. In the multiple coherent units hypothesis, a core tradition does not exist. Rather, there are several cultural units consisting of sets of characters that have different histories of descent. Results For the Iranian textiles, the Bayesian phylogenetic analyses supported the multiple coherent units hypothesis over the hierarchically integrated system hypothesis. Our analyses suggest that pile-weave designs represent a distinct cultural unit that has a different phylogenetic history compared to other textile characters. Conclusions The results from the Iranian textiles are consistent with the available ethnographic evidence, which suggests that the commercial rug market has influenced pile-rug designs but not the techniques or designs incorporated in the other textiles produced by the tribes. We anticipate that Bayesian phylogenetic tests for inferring cultural units will be of great value for researchers interested in studying the evolution of cultural traits including language, behavior, and material culture. PMID:21559083

  14. Robust, Adaptive Functional Regression in Functional Mixed Model Framework.

    PubMed

    Zhu, Hongxiao; Brown, Philip J; Morris, Jeffrey S

    2011-09-01

    Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets.

  15. Robust, Adaptive Functional Regression in Functional Mixed Model Framework

    PubMed Central

    Zhu, Hongxiao; Brown, Philip J.; Morris, Jeffrey S.

    2012-01-01

    Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets. PMID:22308015

  16. New tools for evaluating LQAS survey designs

    PubMed Central

    2014-01-01

    Lot Quality Assurance Sampling (LQAS) surveys have become increasingly popular in global health care applications. Incorporating Bayesian ideas into LQAS survey design, such as using reasonable prior beliefs about the distribution of an indicator, can improve the selection of design parameters and decision rules. In this paper, a joint frequentist and Bayesian framework is proposed for evaluating LQAS classification accuracy and informing survey design parameters. Simple software tools are provided for calculating the positive and negative predictive value of a design with respect to an underlying coverage distribution and the selected design parameters. These tools are illustrated using a data example from two consecutive LQAS surveys measuring Oral Rehydration Solution (ORS) preparation. Using the survey tools, the dependence of classification accuracy on benchmark selection and the width of the ‘grey region’ are clarified in the context of ORS preparation across seven supervision areas. Following the completion of an LQAS survey, estimation of the distribution of coverage across areas facilitates quantifying classification accuracy and can help guide intervention decisions. PMID:24528928

  17. New tools for evaluating LQAS survey designs.

    PubMed

    Hund, Lauren

    2014-02-15

    Lot Quality Assurance Sampling (LQAS) surveys have become increasingly popular in global health care applications. Incorporating Bayesian ideas into LQAS survey design, such as using reasonable prior beliefs about the distribution of an indicator, can improve the selection of design parameters and decision rules. In this paper, a joint frequentist and Bayesian framework is proposed for evaluating LQAS classification accuracy and informing survey design parameters. Simple software tools are provided for calculating the positive and negative predictive value of a design with respect to an underlying coverage distribution and the selected design parameters. These tools are illustrated using a data example from two consecutive LQAS surveys measuring Oral Rehydration Solution (ORS) preparation. Using the survey tools, the dependence of classification accuracy on benchmark selection and the width of the 'grey region' are clarified in the context of ORS preparation across seven supervision areas. Following the completion of an LQAS survey, estimation of the distribution of coverage across areas facilitates quantifying classification accuracy and can help guide intervention decisions.

  18. PFIM 4.0, an extended R program for design evaluation and optimization in nonlinear mixed-effect models.

    PubMed

    Dumont, Cyrielle; Lestini, Giulia; Le Nagard, Hervé; Mentré, France; Comets, Emmanuelle; Nguyen, Thu Thuy; Group, For The Pfim

    2018-03-01

    Nonlinear mixed-effect models (NLMEMs) are increasingly used for the analysis of longitudinal studies during drug development. When designing these studies, the expected Fisher information matrix (FIM) can be used instead of performing time-consuming clinical trial simulations. The function PFIM is the first tool for design evaluation and optimization that has been developed in R. In this article, we present an extended version, PFIM 4.0, which includes several new features. Compared with version 3.0, PFIM 4.0 includes a more complete pharmacokinetic/pharmacodynamic library of models and accommodates models including additional random effects for inter-occasion variability as well as discrete covariates. A new input method has been added to specify user-defined models through an R function. Optimization can be performed assuming some fixed parameters or some fixed sampling times. New outputs have been added regarding the FIM such as eigenvalues, conditional numbers, and the option of saving the matrix obtained after evaluation or optimization. Previously obtained results, which are summarized in a FIM, can be taken into account in evaluation or optimization of one-group protocols. This feature enables the use of PFIM for adaptive designs. The Bayesian individual FIM has been implemented, taking into account a priori distribution of random effects. Designs for maximum a posteriori Bayesian estimation of individual parameters can now be evaluated or optimized and the predicted shrinkage is also reported. It is also possible to visualize the graphs of the model and the sensitivity functions without performing evaluation or optimization. The usefulness of these approaches and the simplicity of use of PFIM 4.0 are illustrated by two examples: (i) an example of designing a population pharmacokinetic study accounting for previous results, which highlights the advantage of adaptive designs; (ii) an example of Bayesian individual design optimization for a pharmacodynamic study, showing that the Bayesian individual FIM can be a useful tool in therapeutic drug monitoring, allowing efficient prediction of estimation precision and shrinkage for individual parameters. PFIM 4.0 is a useful tool for design evaluation and optimization of longitudinal studies in pharmacometrics and is freely available at http://www.pfim.biostat.fr. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Gesture Based Control and EMG Decomposition

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Chang, Mindy H.; Knuth, Kevin H.

    2005-01-01

    This paper presents two probabilistic developments for use with Electromyograms (EMG). First described is a new-electric interface for virtual device control based on gesture recognition. The second development is a Bayesian method for decomposing EMG into individual motor unit action potentials. This more complex technique will then allow for higher resolution in separating muscle groups for gesture recognition. All examples presented rely upon sampling EMG data from a subject's forearm. The gesture based recognition uses pattern recognition software that has been trained to identify gestures from among a given set of gestures. The pattern recognition software consists of hidden Markov models which are used to recognize the gestures as they are being performed in real-time from moving averages of EMG. Two experiments were conducted to examine the feasibility of this interface technology. The first replicated a virtual joystick interface, and the second replicated a keyboard. Moving averages of EMG do not provide easy distinction between fine muscle groups. To better distinguish between different fine motor skill muscle groups we present a Bayesian algorithm to separate surface EMG into representative motor unit action potentials. The algorithm is based upon differential Variable Component Analysis (dVCA) [l], [2] which was originally developed for Electroencephalograms. The algorithm uses a simple forward model representing a mixture of motor unit action potentials as seen across multiple channels. The parameters of this model are iteratively optimized for each component. Results are presented on both synthetic and experimental EMG data. The synthetic case has additive white noise and is compared with known components. The experimental EMG data was obtained using a custom linear electrode array designed for this study.

  20. Bayesian estimation and use of high-throughput remote sensing indices for quantitative genetic analyses of leaf growth.

    PubMed

    Baker, Robert L; Leong, Wen Fung; An, Nan; Brock, Marcus T; Rubin, Matthew J; Welch, Stephen; Weinig, Cynthia

    2018-02-01

    We develop Bayesian function-valued trait models that mathematically isolate genetic mechanisms underlying leaf growth trajectories by factoring out genotype-specific differences in photosynthesis. Remote sensing data can be used instead of leaf-level physiological measurements. Characterizing the genetic basis of traits that vary during ontogeny and affect plant performance is a major goal in evolutionary biology and agronomy. Describing genetic programs that specifically regulate morphological traits can be complicated by genotypic differences in physiological traits. We describe the growth trajectories of leaves using novel Bayesian function-valued trait (FVT) modeling approaches in Brassica rapa recombinant inbred lines raised in heterogeneous field settings. While frequentist approaches estimate parameter values by treating each experimental replicate discretely, Bayesian models can utilize information in the global dataset, potentially leading to more robust trait estimation. We illustrate this principle by estimating growth asymptotes in the face of missing data and comparing heritabilities of growth trajectory parameters estimated by Bayesian and frequentist approaches. Using pseudo-Bayes factors, we compare the performance of an initial Bayesian logistic growth model and a model that incorporates carbon assimilation (A max ) as a cofactor, thus statistically accounting for genotypic differences in carbon resources. We further evaluate two remotely sensed spectroradiometric indices, photochemical reflectance (pri2) and MERIS Terrestrial Chlorophyll Index (mtci) as covariates in lieu of A max , because these two indices were genetically correlated with A max across years and treatments yet allow much higher throughput compared to direct leaf-level gas-exchange measurements. For leaf lengths in uncrowded settings, including A max improves model fit over the initial model. The mtci and pri2 indices also outperform direct A max measurements. Of particular importance for evolutionary biologists and plant breeders, hierarchical Bayesian models estimating FVT parameters improve heritabilities compared to frequentist approaches.

  1. ChemStable: a web server for rule-embedded naïve Bayesian learning approach to predict compound stability.

    PubMed

    Liu, Zhihong; Zheng, Minghao; Yan, Xin; Gu, Qiong; Gasteiger, Johann; Tijhuis, Johan; Maas, Peter; Li, Jiabo; Xu, Jun

    2014-09-01

    Predicting compound chemical stability is important because unstable compounds can lead to either false positive or to false negative conclusions in bioassays. Experimental data (COMDECOM) measured from DMSO/H2O solutions stored at 50 °C for 105 days were used to predicted stability by applying rule-embedded naïve Bayesian learning, based upon atom center fragment (ACF) features. To build the naïve Bayesian classifier, we derived ACF features from 9,746 compounds in the COMDECOM dataset. By recursively applying naïve Bayesian learning from the data set, each ACF is assigned with an expected stable probability (p(s)) and an unstable probability (p(uns)). 13,340 ACFs, together with their p(s) and p(uns) data, were stored in a knowledge base for use by the Bayesian classifier. For a given compound, its ACFs were derived from its structure connection table with the same protocol used to drive ACFs from the training data. Then, the Bayesian classifier assigned p(s) and p(uns) values to the compound ACFs by a structural pattern recognition algorithm, which was implemented in-house. Compound instability is calculated, with Bayes' theorem, based upon the p(s) and p(uns) values of the compound ACFs. We were able to achieve performance with an AUC value of 84% and a tenfold cross validation accuracy of 76.5%. To reduce false negatives, a rule-based approach has been embedded in the classifier. The rule-based module allows the program to improve its predictivity by expanding its compound instability knowledge base, thus further reducing the possibility of false negatives. To our knowledge, this is the first in silico prediction service for the prediction of the stabilities of organic compounds.

  2. On the uncertainty in single molecule fluorescent lifetime and energy emission measurements

    NASA Technical Reports Server (NTRS)

    Brown, Emery N.; Zhang, Zhenhua; Mccollom, Alex D.

    1995-01-01

    Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least square methods agree and are optimal when the number of detected photons is large however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67% of those can be noise and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous poisson processes, we derive the exact joint arrival time probably density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. the ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background nose and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.

  3. On the Uncertainty in Single Molecule Fluorescent Lifetime and Energy Emission Measurements

    NASA Technical Reports Server (NTRS)

    Brown, Emery N.; Zhang, Zhenhua; McCollom, Alex D.

    1996-01-01

    Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least squares methods agree and are optimal when the number of detected photons is large, however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67 percent of those can be noise, and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous Poisson processes, we derive the exact joint arrival time probability density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. The ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background noise and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.

  4. Bayesian Treed Calibration: An Application to Carbon Capture With AX Sorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konomi, Bledar A.; Karagiannis, Georgios; Lai, Kevin

    2017-01-02

    In cases where field or experimental measurements are not available, computer models can model real physical or engineering systems to reproduce their outcomes. They are usually calibrated in light of experimental data to create a better representation of the real system. Statistical methods, based on Gaussian processes, for calibration and prediction have been especially important when the computer models are expensive and experimental data limited. In this paper, we develop the Bayesian treed calibration (BTC) as an extension of standard Gaussian process calibration methods to deal with non-stationarity computer models and/or their discrepancy from the field (or experimental) data. Ourmore » proposed method partitions both the calibration and observable input space, based on a binary tree partitioning, into sub-regions where existing model calibration methods can be applied to connect a computer model with the real system. The estimation of the parameters in the proposed model is carried out using Markov chain Monte Carlo (MCMC) computational techniques. Different strategies have been applied to improve mixing. We illustrate our method in two artificial examples and a real application that concerns the capture of carbon dioxide with AX amine based sorbents. The source code and the examples analyzed in this paper are available as part of the supplementary materials.« less

  5. Bayesian analysis of experimental epidemics of foot-and-mouth disease.

    PubMed Central

    Streftaris, George; Gibson, Gavin J.

    2004-01-01

    We investigate the transmission dynamics of a certain type of foot-and-mouth disease (FMD) virus under experimental conditions. Previous analyses of experimental data from FMD outbreaks in non-homogeneously mixing populations of sheep have suggested a decline in viraemic level through serial passage of the virus, but these do not take into account possible variation in the length of the chain of viral transmission for each animal, which is implicit in the non-observed transmission process. We consider a susceptible-exposed-infectious-removed non-Markovian compartmental model for partially observed epidemic processes, and we employ powerful methodology (Markov chain Monte Carlo) for statistical inference, to address epidemiological issues under a Bayesian framework that accounts for all available information and associated uncertainty in a coherent approach. The analysis allows us to investigate the posterior distribution of the hidden transmission history of the epidemic, and thus to determine the effect of the length of the infection chain on the recorded viraemic levels, based on the posterior distribution of a p-value. Parameter estimates of the epidemiological characteristics of the disease are also obtained. The results reveal a possible decline in viraemia in one of the two experimental outbreaks. Our model also suggests that individual infectivity is related to the level of viraemia. PMID:15306359

  6. Spatial Prediction and Optimized Sampling Design for Sodium Concentration in Groundwater

    PubMed Central

    Shabbir, Javid; M. AbdEl-Salam, Nasser; Hussain, Tajammal

    2016-01-01

    Sodium is an integral part of water, and its excessive amount in drinking water causes high blood pressure and hypertension. In the present paper, spatial distribution of sodium concentration in drinking water is modeled and optimized sampling designs for selecting sampling locations is calculated for three divisions in Punjab, Pakistan. Universal kriging and Bayesian universal kriging are used to predict the sodium concentrations. Spatial simulated annealing is used to generate optimized sampling designs. Different estimation methods (i.e., maximum likelihood, restricted maximum likelihood, ordinary least squares, and weighted least squares) are used to estimate the parameters of the variogram model (i.e, exponential, Gaussian, spherical and cubic). It is concluded that Bayesian universal kriging fits better than universal kriging. It is also observed that the universal kriging predictor provides minimum mean universal kriging variance for both adding and deleting locations during sampling design. PMID:27683016

  7. Bayesian estimation of differential transcript usage from RNA-seq data.

    PubMed

    Papastamoulis, Panagiotis; Rattray, Magnus

    2017-11-27

    Next generation sequencing allows the identification of genes consisting of differentially expressed transcripts, a term which usually refers to changes in the overall expression level. A specific type of differential expression is differential transcript usage (DTU) and targets changes in the relative within gene expression of a transcript. The contribution of this paper is to: (a) extend the use of cjBitSeq to the DTU context, a previously introduced Bayesian model which is originally designed for identifying changes in overall expression levels and (b) propose a Bayesian version of DRIMSeq, a frequentist model for inferring DTU. cjBitSeq is a read based model and performs fully Bayesian inference by MCMC sampling on the space of latent state of each transcript per gene. BayesDRIMSeq is a count based model and estimates the Bayes Factor of a DTU model against a null model using Laplace's approximation. The proposed models are benchmarked against the existing ones using a recent independent simulation study as well as a real RNA-seq dataset. Our results suggest that the Bayesian methods exhibit similar performance with DRIMSeq in terms of precision/recall but offer better calibration of False Discovery Rate.

  8. Approaches in highly parameterized inversion: bgaPEST, a Bayesian geostatistical approach implementation with PEST: documentation and instructions

    USGS Publications Warehouse

    Fienen, Michael N.; D'Oria, Marco; Doherty, John E.; Hunt, Randall J.

    2013-01-01

    The application bgaPEST is a highly parameterized inversion software package implementing the Bayesian Geostatistical Approach in a framework compatible with the parameter estimation suite PEST. Highly parameterized inversion refers to cases in which parameters are distributed in space or time and are correlated with one another. The Bayesian aspect of bgaPEST is related to Bayesian probability theory in which prior information about parameters is formally revised on the basis of the calibration dataset used for the inversion. Conceptually, this approach formalizes the conditionality of estimated parameters on the specific data and model available. The geostatistical component of the method refers to the way in which prior information about the parameters is used. A geostatistical autocorrelation function is used to enforce structure on the parameters to avoid overfitting and unrealistic results. Bayesian Geostatistical Approach is designed to provide the smoothest solution that is consistent with the data. Optionally, users can specify a level of fit or estimate a balance between fit and model complexity informed by the data. Groundwater and surface-water applications are used as examples in this text, but the possible uses of bgaPEST extend to any distributed parameter applications.

  9. Rediscovery of Good-Turing estimators via Bayesian nonparametrics.

    PubMed

    Favaro, Stefano; Nipoti, Bernardo; Teh, Yee Whye

    2016-03-01

    The problem of estimating discovery probabilities originated in the context of statistical ecology, and in recent years it has become popular due to its frequent appearance in challenging applications arising in genetics, bioinformatics, linguistics, designs of experiments, machine learning, etc. A full range of statistical approaches, parametric and nonparametric as well as frequentist and Bayesian, has been proposed for estimating discovery probabilities. In this article, we investigate the relationships between the celebrated Good-Turing approach, which is a frequentist nonparametric approach developed in the 1940s, and a Bayesian nonparametric approach recently introduced in the literature. Specifically, under the assumption of a two parameter Poisson-Dirichlet prior, we show that Bayesian nonparametric estimators of discovery probabilities are asymptotically equivalent, for a large sample size, to suitably smoothed Good-Turing estimators. As a by-product of this result, we introduce and investigate a methodology for deriving exact and asymptotic credible intervals to be associated with the Bayesian nonparametric estimators of discovery probabilities. The proposed methodology is illustrated through a comprehensive simulation study and the analysis of Expressed Sequence Tags data generated by sequencing a benchmark complementary DNA library. © 2015, The International Biometric Society.

  10. A Bayesian Nonparametric Causal Model for Regression Discontinuity Designs

    ERIC Educational Resources Information Center

    Karabatsos, George; Walker, Stephen G.

    2013-01-01

    The regression discontinuity (RD) design (Thistlewaite & Campbell, 1960; Cook, 2008) provides a framework to identify and estimate causal effects from a non-randomized design. Each subject of a RD design is assigned to the treatment (versus assignment to a non-treatment) whenever her/his observed value of the assignment variable equals or…

  11. The use of a Nintendo Wii remote control in physics experiments

    NASA Astrophysics Data System (ADS)

    Abellán, F. J.; Arenas, A.; Núñez, M. J.; Victoria, L.

    2013-09-01

    In this paper we describe how a Nintendo Wii remote control (known as the Wiimote) can be used in the design and implementation of several undergraduate-level experiments in a physics laboratory class. An experimental setup composed of a Wiimote and a conveniently located IR LED allows the trajectory of one or several moving objects to be tracked and recorded accurately, in both long and short displacement. The authors have developed a user interface program to configure the operation of the acquisition system of such data. The two experiments included in this work are the free fall of a body with magnetic braking and the simple pendulum, but other physics experiments could have been chosen. The treatment of the data was performed using Bayesian inference.

  12. Markov Chain Monte Carlo in the Analysis of Single-Molecule Experimental Data

    NASA Astrophysics Data System (ADS)

    Kou, S. C.; Xie, X. Sunney; Liu, Jun S.

    2003-11-01

    This article provides a Bayesian analysis of the single-molecule fluorescence lifetime experiment designed to probe the conformational dynamics of a single DNA hairpin molecule. The DNA hairpin's conformational change is initially modeled as a two-state Markov chain, which is not observable and has to be indirectly inferred. The Brownian diffusion of the single molecule, in addition to the hidden Markov structure, further complicates the matter. We show that the analytical form of the likelihood function can be obtained in the simplest case and a Metropolis-Hastings algorithm can be designed to sample from the posterior distribution of the parameters of interest and to compute desired estiamtes. To cope with the molecular diffusion process and the potentially oscillating energy barrier between the two states of the DNA hairpin, we introduce a data augmentation technique to handle both the Brownian diffusion and the hidden Ornstein-Uhlenbeck process associated with the fluctuating energy barrier, and design a more sophisticated Metropolis-type algorithm. Our method not only increases the estimating resolution by several folds but also proves to be successful for model discrimination.

  13. Rationale of a novel study design for the BIOFLOW V study, a prospective, randomized multicenter study to assess the safety and efficacy of the Orsiro sirolimus-eluting coronary stent system using a Bayesian approach.

    PubMed

    Doros, Gheorghe; Massaro, Joseph M; Kandzari, David E; Waksman, Ron; Koolen, Jacques J; Cutlip, Donald E; Mauri, Laura

    2017-11-01

    Traditional study design submitted to the Food and Drug Administration to test newer drug-eluting stents (DES) for marketing approval is the prospective randomized controlled trial. However, several DES have extensive clinical data from trials conducted outside the United States that have led to utilization of a novel design using the Bayesian approach. This design was proposed for testing DES with bioresorbable polymer compared with DES most commonly in use today that use durable polymers for drug elution. This prospective, multicenter, randomized, controlled trial is designed to assess the safety and efficacy of the Orsiro bioresorbable polymer sirolimus-eluting stent (BP SES). Up to 1,334 subjects with up to 3 de novo or restenotic coronary artery lesions who qualify for percutaneous coronary intervention with stenting will be randomized 2:1 to the BP SES versus the Xience durable polymer everolimus-eluting stent (DP EES). Data from this trial will be combined with data from 2 similarly designed trials that also randomize subjects to BP SES and DP EES (BIOFLOW II, N=452 and BIOFLOW IV, N=579) by using a Bayesian approach. The primary end point is target lesion failure at 12 months post index procedure, defined as cardiac death, target vessel myocardial infarction, or clinically driven target lesion revascularization, and the primary analysis is a test of noninferiority of the BP SES versus DP EES on the primary end point according to a noninferiority delta of 3.85%. Secondary end points include stent thrombosis and the individual components of target lesion failure. Subjects will be followed for 5 years after randomization. The BIOFLOW V trial offers an opportunity to assess clinical outcomes in patients treated with coronary revascularization using the Orsiro BP SES relative to a commonly used DP EES. The use of a Bayesian analysis combines a large randomized cohort of patients 2 two smaller contributing randomized trials to augment the efficiency of the comparison. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Improved Accuracy Using Recursive Bayesian Estimation Based Language Model Fusion in ERP-Based BCI Typing Systems

    PubMed Central

    Orhan, U.; Erdogmus, D.; Roark, B.; Oken, B.; Purwar, S.; Hild, K. E.; Fowler, A.; Fried-Oken, M.

    2013-01-01

    RSVP Keyboard™ is an electroencephalography (EEG) based brain computer interface (BCI) typing system, designed as an assistive technology for the communication needs of people with locked-in syndrome (LIS). It relies on rapid serial visual presentation (RSVP) and does not require precise eye gaze control. Existing BCI typing systems which uses event related potentials (ERP) in EEG suffer from low accuracy due to low signal-to-noise ratio. Henceforth, RSVP Keyboard™ utilizes a context based decision making via incorporating a language model, to improve the accuracy of letter decisions. To further improve the contributions of the language model, we propose recursive Bayesian estimation, which relies on non-committing string decisions, and conduct an offline analysis, which compares it with the existing naïve Bayesian fusion approach. The results indicate the superiority of the recursive Bayesian fusion and in the next generation of RSVP Keyboard™ we plan to incorporate this new approach. PMID:23366432

  15. Time-varying nonstationary multivariate risk analysis using a dynamic Bayesian copula

    NASA Astrophysics Data System (ADS)

    Sarhadi, Ali; Burn, Donald H.; Concepción Ausín, María.; Wiper, Michael P.

    2016-03-01

    A time-varying risk analysis is proposed for an adaptive design framework in nonstationary conditions arising from climate change. A Bayesian, dynamic conditional copula is developed for modeling the time-varying dependence structure between mixed continuous and discrete multiattributes of multidimensional hydrometeorological phenomena. Joint Bayesian inference is carried out to fit the marginals and copula in an illustrative example using an adaptive, Gibbs Markov Chain Monte Carlo (MCMC) sampler. Posterior mean estimates and credible intervals are provided for the model parameters and the Deviance Information Criterion (DIC) is used to select the model that best captures different forms of nonstationarity over time. This study also introduces a fully Bayesian, time-varying joint return period for multivariate time-dependent risk analysis in nonstationary environments. The results demonstrate that the nature and the risk of extreme-climate multidimensional processes are changed over time under the impact of climate change, and accordingly the long-term decision making strategies should be updated based on the anomalies of the nonstationary environment.

  16. A Bayesian network to predict vulnerability to sea-level rise: data report

    USGS Publications Warehouse

    Gutierrez, Benjamin T.; Plant, Nathaniel G.; Thieler, E. Robert

    2011-01-01

    During the 21st century, sea-level rise is projected to have a wide range of effects on coastal environments, development, and infrastructure. Consequently, there has been an increased focus on developing modeling or other analytical approaches to evaluate potential impacts to inform coastal management. This report provides the data that were used to develop and evaluate the performance of a Bayesian network designed to predict long-term shoreline change due to sea-level rise. The data include local rates of relative sea-level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline-change rate compiled as part of the U.S. Geological Survey Coastal Vulnerability Index for the U.S. Atlantic coast. In this project, the Bayesian network is used to define relationships among driving forces, geologic constraints, and coastal responses. Using this information, the Bayesian network is used to make probabilistic predictions of shoreline change in response to different future sea-level-rise scenarios.

  17. Analyzing the relationship between sequence divergence and nodal support using Bayesian phylogenetic analyses.

    PubMed

    Makowsky, Robert; Cox, Christian L; Roelke, Corey; Chippindale, Paul T

    2010-11-01

    Determining the appropriate gene for phylogeny reconstruction can be a difficult process. Rapidly evolving genes tend to resolve recent relationships, but suffer from alignment issues and increased homoplasy among distantly related species. Conversely, slowly evolving genes generally perform best for deeper relationships, but lack sufficient variation to resolve recent relationships. We determine the relationship between sequence divergence and Bayesian phylogenetic reconstruction ability using both natural and simulated datasets. The natural data are based on 28 well-supported relationships within the subphylum Vertebrata. Sequences of 12 genes were acquired and Bayesian analyses were used to determine phylogenetic support for correct relationships. Simulated datasets were designed to determine whether an optimal range of sequence divergence exists across extreme phylogenetic conditions. Across all genes we found that an optimal range of divergence for resolving the correct relationships does exist, although this level of divergence expectedly depends on the distance metric. Simulated datasets show that an optimal range of sequence divergence exists across diverse topologies and models of evolution. We determine that a simple to measure property of genetic sequences (genetic distance) is related to phylogenic reconstruction ability in Bayesian analyses. This information should be useful for selecting the most informative gene to resolve any relationships, especially those that are difficult to resolve, as well as minimizing both cost and confounding information during project design. Copyright © 2010. Published by Elsevier Inc.

  18. Bayesian Optimal Interval Design: A Simple and Well-Performing Design for Phase I Oncology Trials

    PubMed Central

    Yuan, Ying; Hess, Kenneth R.; Hilsenbeck, Susan G.; Gilbert, Mark R.

    2016-01-01

    Despite more than two decades of publications that offer more innovative model-based designs, the classical 3+3 design remains the most dominant phase I trial design in practice. In this article, we introduce a new trial design, the Bayesian optimal interval (BOIN) design. The BOIN design is easy to implement in a way similar to the 3+3 design, but is more flexible for choosing the target toxicity rate and cohort size and yields a substantially better performance that is comparable to that of more complex model-based designs. The BOIN design contains the 3+3 design and the accelerated titration design as special cases, thus linking it to established phase I approaches. A numerical study shows that the BOIN design generally outperforms the 3+3 design and the modified toxicity probability interval (mTPI) design. The BOIN design is more likely than the 3+3 design to correctly select the maximum tolerated dose (MTD) and allocate more patients to the MTD. Compared to the mTPI design, the BOIN design has a substantially lower risk of overdosing patients and generally a higher probability of correctly selecting the MTD. User-friendly software is freely available to facilitate the application of the BOIN design. PMID:27407096

  19. Evaluation of the pre-posterior distribution of optimized sampling times for the design of pharmacokinetic studies.

    PubMed

    Duffull, Stephen B; Graham, Gordon; Mengersen, Kerrie; Eccleston, John

    2012-01-01

    Information theoretic methods are often used to design studies that aim to learn about pharmacokinetic and linked pharmacokinetic-pharmacodynamic systems. These design techniques, such as D-optimality, provide the optimum experimental conditions. The performance of the optimum design will depend on the ability of the investigator to comply with the proposed study conditions. However, in clinical settings it is not possible to comply exactly with the optimum design and hence some degree of unplanned suboptimality occurs due to error in the execution of the study. In addition, due to the nonlinear relationship of the parameters of these models to the data, the designs are also locally dependent on an arbitrary choice of a nominal set of parameter values. A design that is robust to both study conditions and uncertainty in the nominal set of parameter values is likely to be of use clinically. We propose an adaptive design strategy to account for both execution error and uncertainty in the parameter values. In this study we investigate designs for a one-compartment first-order pharmacokinetic model. We do this in a Bayesian framework using Markov-chain Monte Carlo (MCMC) methods. We consider log-normal prior distributions on the parameters and investigate several prior distributions on the sampling times. An adaptive design was used to find the sampling window for the current sampling time conditional on the actual times of all previous samples.

  20. A Bayesian Approach for Sensor Optimisation in Impact Identification

    PubMed Central

    Mallardo, Vincenzo; Sharif Khodaei, Zahra; Aliabadi, Ferri M. H.

    2016-01-01

    This paper presents a Bayesian approach for optimizing the position of sensors aimed at impact identification in composite structures under operational conditions. The uncertainty in the sensor data has been represented by statistical distributions of the recorded signals. An optimisation strategy based on the genetic algorithm is proposed to find the best sensor combination aimed at locating impacts on composite structures. A Bayesian-based objective function is adopted in the optimisation procedure as an indicator of the performance of meta-models developed for different sensor combinations to locate various impact events. To represent a real structure under operational load and to increase the reliability of the Structural Health Monitoring (SHM) system, the probability of malfunctioning sensors is included in the optimisation. The reliability and the robustness of the procedure is tested with experimental and numerical examples. Finally, the proposed optimisation algorithm is applied to a composite stiffened panel for both the uniform and non-uniform probability of impact occurrence. PMID:28774064

  1. BAYESIAN BICLUSTERING FOR PATIENT STRATIFICATION.

    PubMed

    Khakabimamaghani, Sahand; Ester, Martin

    2016-01-01

    The move from Empirical Medicine towards Personalized Medicine has attracted attention to Stratified Medicine (SM). Some methods are provided in the literature for patient stratification, which is the central task of SM, however, there are still significant open issues. First, it is still unclear if integrating different datatypes will help in detecting disease subtypes more accurately, and, if not, which datatype(s) are most useful for this task. Second, it is not clear how we can compare different methods of patient stratification. Third, as most of the proposed stratification methods are deterministic, there is a need for investigating the potential benefits of applying probabilistic methods. To address these issues, we introduce a novel integrative Bayesian biclustering method, called B2PS, for patient stratification and propose methods for evaluating the results. Our experimental results demonstrate the superiority of B2PS over a popular state-of-the-art method and the benefits of Bayesian approaches. Our results agree with the intuition that transcriptomic data forms a better basis for patient stratification than genomic data.

  2. A Bayesian Approach for Measurements of Stray Neutrons at Proton Therapy Facilities: Quantifying Neutron Dose Uncertainty.

    PubMed

    Dommert, M; Reginatto, M; Zboril, M; Fiedler, F; Helmbrecht, S; Enghardt, W; Lutz, B

    2017-11-28

    Bonner sphere measurements are typically analyzed using unfolding codes. It is well known that it is difficult to get reliable estimates of uncertainties for standard unfolding procedures. An alternative approach is to analyze the data using Bayesian parameter estimation. This method provides reliable estimates of the uncertainties of neutron spectra leading to rigorous estimates of uncertainties of the dose. We extend previous Bayesian approaches and apply the method to stray neutrons in proton therapy environments by introducing a new parameterized model which describes the main features of the expected neutron spectra. The parameterization is based on information that is available from measurements and detailed Monte Carlo simulations. The validity of this approach has been validated with results of an experiment using Bonner spheres carried out at the experimental hall of the OncoRay proton therapy facility in Dresden. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Data-driven Modeling of Metal-oxide Sensors with Dynamic Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Gosangi, Rakesh; Gutierrez-Osuna, Ricardo

    2011-09-01

    We present a data-driven probabilistic framework to model the transient response of MOX sensors modulated with a sequence of voltage steps. Analytical models of MOX sensors are usually built based on the physico-chemical properties of the sensing materials. Although building these models provides an insight into the sensor behavior, they also require a thorough understanding of the underlying operating principles. Here we propose a data-driven approach to characterize the dynamical relationship between sensor inputs and outputs. Namely, we use dynamic Bayesian networks (DBNs), probabilistic models that represent temporal relations between a set of random variables. We identify a set of control variables that influence the sensor responses, create a graphical representation that captures the causal relations between these variables, and finally train the model with experimental data. We validated the approach on experimental data in terms of predictive accuracy and classification performance. Our results show that DBNs can accurately predict the dynamic response of MOX sensors, as well as capture the discriminatory information present in the sensor transients.

  4. Parameter Estimation for a Pulsating Turbulent Buoyant Jet Using Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Christopher, Jason; Wimer, Nicholas; Lapointe, Caelan; Hayden, Torrey; Grooms, Ian; Rieker, Greg; Hamlington, Peter

    2017-11-01

    Approximate Bayesian Computation (ABC) is a powerful tool that allows sparse experimental or other ``truth'' data to be used for the prediction of unknown parameters, such as flow properties and boundary conditions, in numerical simulations of real-world engineering systems. Here we introduce the ABC approach and then use ABC to predict unknown inflow conditions in simulations of a two-dimensional (2D) turbulent, high-temperature buoyant jet. For this test case, truth data are obtained from a direct numerical simulation (DNS) with known boundary conditions and problem parameters, while the ABC procedure utilizes lower fidelity large eddy simulations. Using spatially-sparse statistics from the 2D buoyant jet DNS, we show that the ABC method provides accurate predictions of true jet inflow parameters. The success of the ABC approach in the present test suggests that ABC is a useful and versatile tool for predicting flow information, such as boundary conditions, that can be difficult to determine experimentally.

  5. A product of independent beta probabilities dose escalation design for dual-agent phase I trials.

    PubMed

    Mander, Adrian P; Sweeting, Michael J

    2015-04-15

    Dual-agent trials are now increasingly common in oncology research, and many proposed dose-escalation designs are available in the statistical literature. Despite this, the translation from statistical design to practical application is slow, as has been highlighted in single-agent phase I trials, where a 3 + 3 rule-based design is often still used. To expedite this process, new dose-escalation designs need to be not only scientifically beneficial but also easy to understand and implement by clinicians. In this paper, we propose a curve-free (nonparametric) design for a dual-agent trial in which the model parameters are the probabilities of toxicity at each of the dose combinations. We show that it is relatively trivial for a clinician's prior beliefs or historical information to be incorporated in the model and updating is fast and computationally simple through the use of conjugate Bayesian inference. Monotonicity is ensured by considering only a set of monotonic contours for the distribution of the maximum tolerated contour, which defines the dose-escalation decision process. Varied experimentation around the contour is achievable, and multiple dose combinations can be recommended to take forward to phase II. Code for R, Stata and Excel are available for implementation. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  6. Visual and Auditory Components in the Perception of Asynchronous Audiovisual Speech

    PubMed Central

    Alcalá-Quintana, Rocío

    2015-01-01

    Research on asynchronous audiovisual speech perception manipulates experimental conditions to observe their effects on synchrony judgments. Probabilistic models establish a link between the sensory and decisional processes underlying such judgments and the observed data, via interpretable parameters that allow testing hypotheses and making inferences about how experimental manipulations affect such processes. Two models of this type have recently been proposed, one based on independent channels and the other using a Bayesian approach. Both models are fitted here to a common data set, with a subsequent analysis of the interpretation they provide about how experimental manipulations affected the processes underlying perceived synchrony. The data consist of synchrony judgments as a function of audiovisual offset in a speech stimulus, under four within-subjects manipulations of the quality of the visual component. The Bayesian model could not accommodate asymmetric data, was rejected by goodness-of-fit statistics for 8/16 observers, and was found to be nonidentifiable, which renders uninterpretable parameter estimates. The independent-channels model captured asymmetric data, was rejected for only 1/16 observers, and identified how sensory and decisional processes mediating asynchronous audiovisual speech perception are affected by manipulations that only alter the quality of the visual component of the speech signal. PMID:27551361

  7. Analysis of phase II methodologies for single-arm clinical trials with multiple endpoints in rare cancers: An example in Ewing's sarcoma.

    PubMed

    Dutton, P; Love, S B; Billingham, L; Hassan, A B

    2018-05-01

    Trials run in either rare diseases, such as rare cancers, or rare sub-populations of common diseases are challenging in terms of identifying, recruiting and treating sufficient patients in a sensible period. Treatments for rare diseases are often designed for other disease areas and then later proposed as possible treatments for the rare disease after initial phase I testing is complete. To ensure the trial is in the best interests of the patient participants, frequent interim analyses are needed to force the trial to stop promptly if the treatment is futile or toxic. These non-definitive phase II trials should also be stopped for efficacy to accelerate research progress if the treatment proves to be particularly promising. In this paper, we review frequentist and Bayesian methods that have been adapted to incorporate two binary endpoints and frequent interim analyses. The Eurosarc Trial of Linsitinib in advanced Ewing Sarcoma (LINES) is used as a motivating example and provides a suitable platform to compare these approaches. The Bayesian approach provides greater design flexibility, but does not provide additional value over the frequentist approaches in a single trial setting when the prior is non-informative. However, Bayesian designs are able to borrow from any previous experience, using prior information to improve efficiency.

  8. Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks

    NASA Astrophysics Data System (ADS)

    Jiang, Fei-Bo; Dai, Qian-Wei; Dong, Li

    2016-06-01

    Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.

  9. Statistical comparison of a hybrid approach with approximate and exact inference models for Fusion 2+

    NASA Astrophysics Data System (ADS)

    Lee, K. David; Wiesenfeld, Eric; Gelfand, Andrew

    2007-04-01

    One of the greatest challenges in modern combat is maintaining a high level of timely Situational Awareness (SA). In many situations, computational complexity and accuracy considerations make the development and deployment of real-time, high-level inference tools very difficult. An innovative hybrid framework that combines Bayesian inference, in the form of Bayesian Networks, and Possibility Theory, in the form of Fuzzy Logic systems, has recently been introduced to provide a rigorous framework for high-level inference. In previous research, the theoretical basis and benefits of the hybrid approach have been developed. However, lacking is a concrete experimental comparison of the hybrid framework with traditional fusion methods, to demonstrate and quantify this benefit. The goal of this research, therefore, is to provide a statistical analysis on the comparison of the accuracy and performance of hybrid network theory, with pure Bayesian and Fuzzy systems and an inexact Bayesian system approximated using Particle Filtering. To accomplish this task, domain specific models will be developed under these different theoretical approaches and then evaluated, via Monte Carlo Simulation, in comparison to situational ground truth to measure accuracy and fidelity. Following this, a rigorous statistical analysis of the performance results will be performed, to quantify the benefit of hybrid inference to other fusion tools.

  10. Optimal speech motor control and token-to-token variability: a Bayesian modeling approach.

    PubMed

    Patri, Jean-François; Diard, Julien; Perrier, Pascal

    2015-12-01

    The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the central nervous system selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of this approach, one of its drawbacks is the intrinsic contradiction between the concept of optimality and the observed experimental intra-speaker token-to-token variability. The present paper proposes an alternative approach by formulating feedforward optimal control in a probabilistic Bayesian modeling framework. This is illustrated by controlling a biomechanical model of the vocal tract for speech production and by comparing it with an existing optimal control model (GEPPETO). The essential elements of this optimal control model are presented first. From them the Bayesian model is constructed in a progressive way. Performance of the Bayesian model is evaluated based on computer simulations and compared to the optimal control model. This approach is shown to be appropriate for solving the speech planning problem while accounting for variability in a principled way.

  11. Bayesian approach for assessing non-inferiority in a three-arm trial with pre-specified margin.

    PubMed

    Ghosh, Samiran; Ghosh, Santu; Tiwari, Ram C

    2016-02-28

    Non-inferiority trials are becoming increasingly popular for comparative effectiveness research. However, inclusion of the placebo arm, whenever possible, gives rise to a three-arm trial which has lesser burdensome assumptions than a standard two-arm non-inferiority trial. Most of the past developments in a three-arm trial consider defining a pre-specified fraction of unknown effect size of reference drug, that is, without directly specifying a fixed non-inferiority margin. However, in some recent developments, a more direct approach is being considered with pre-specified fixed margin albeit in the frequentist setup. Bayesian paradigm provides a natural path to integrate historical and current trials' information via sequential learning. In this paper, we propose a Bayesian approach for simultaneous testing of non-inferiority and assay sensitivity in a three-arm trial with normal responses. For the experimental arm, in absence of historical information, non-informative priors are assumed under two situations, namely when (i) variance is known and (ii) variance is unknown. A Bayesian decision criteria is derived and compared with the frequentist method using simulation studies. Finally, several published clinical trial examples are reanalyzed to demonstrate the benefit of the proposed procedure. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Estimation of k-ε parameters using surrogate models and jet-in-crossflow data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefantzi, Sophia; Ray, Jaideep; Arunajatesan, Srinivasan

    2014-11-01

    We demonstrate a Bayesian method that can be used to calibrate computationally expensive 3D RANS (Reynolds Av- eraged Navier Stokes) models with complex response surfaces. Such calibrations, conditioned on experimental data, can yield turbulence model parameters as probability density functions (PDF), concisely capturing the uncertainty in the parameter estimates. Methods such as Markov chain Monte Carlo (MCMC) estimate the PDF by sampling, with each sample requiring a run of the RANS model. Consequently a quick-running surrogate is used instead to the RANS simulator. The surrogate can be very difficult to design if the model's response i.e., the dependence of themore » calibration variable (the observable) on the parameter being estimated is complex. We show how the training data used to construct the surrogate can be employed to isolate a promising and physically realistic part of the parameter space, within which the response is well-behaved and easily modeled. We design a classifier, based on treed linear models, to model the "well-behaved region". This classifier serves as a prior in a Bayesian calibration study aimed at estimating 3 k - ε parameters ( C μ, C ε2 , C ε1 ) from experimental data of a transonic jet-in-crossflow interaction. The robustness of the calibration is investigated by checking its predictions of variables not included in the cal- ibration data. We also check the limit of applicability of the calibration by testing at off-calibration flow regimes. We find that calibration yield turbulence model parameters which predict the flowfield far better than when the nomi- nal values of the parameters are used. Substantial improvements are still obtained when we use the calibrated RANS model to predict jet-in-crossflow at Mach numbers and jet strengths quite different from those used to generate the ex- perimental (calibration) data. Thus the primary reason for poor predictive skill of RANS, when using nominal values of the turbulence model parameters, was parametric uncertainty, which was rectified by calibration. Post-calibration, the dominant contribution to model inaccuraries are due to the structural errors in RANS.« less

  13. A Bayesian hierarchical model for mortality data from cluster-sampling household surveys in humanitarian crises.

    PubMed

    Heudtlass, Peter; Guha-Sapir, Debarati; Speybroeck, Niko

    2018-05-31

    The crude death rate (CDR) is one of the defining indicators of humanitarian emergencies. When data from vital registration systems are not available, it is common practice to estimate the CDR from household surveys with cluster-sampling design. However, sample sizes are often too small to compare mortality estimates to emergency thresholds, at least in a frequentist framework. Several authors have proposed Bayesian methods for health surveys in humanitarian crises. Here, we develop an approach specifically for mortality data and cluster-sampling surveys. We describe a Bayesian hierarchical Poisson-Gamma mixture model with generic (weakly informative) priors that could be used as default in absence of any specific prior knowledge, and compare Bayesian and frequentist CDR estimates using five different mortality datasets. We provide an interpretation of the Bayesian estimates in the context of an emergency threshold and demonstrate how to interpret parameters at the cluster level and ways in which informative priors can be introduced. With the same set of weakly informative priors, Bayesian CDR estimates are equivalent to frequentist estimates, for all practical purposes. The probability that the CDR surpasses the emergency threshold can be derived directly from the posterior of the mean of the mixing distribution. All observation in the datasets contribute to the estimation of cluster-level estimates, through the hierarchical structure of the model. In a context of sparse data, Bayesian mortality assessments have advantages over frequentist ones already when using only weakly informative priors. More informative priors offer a formal and transparent way of combining new data with existing data and expert knowledge and can help to improve decision-making in humanitarian crises by complementing frequentist estimates.

  14. Bayesian Estimates of Autocorrelations in Single-Case Designs

    ERIC Educational Resources Information Center

    Shadish, William R.; Rindskopf, David M.; Hedges, Larry V.; Sullivan, Kristynn J.

    2012-01-01

    Researchers in the single-case design tradition have debated the size and importance of the observed autocorrelations in those designs. All of the past estimates of the autocorrelation in that literature have taken the observed autocorrelation estimates as the data to be used in the debate. However, estimates of the autocorrelation are subject to…

  15. The Automatic Neuroscientist: A framework for optimizing experimental design with closed-loop real-time fMRI

    PubMed Central

    Lorenz, Romy; Monti, Ricardo Pio; Violante, Inês R.; Anagnostopoulos, Christoforos; Faisal, Aldo A.; Montana, Giovanni; Leech, Robert

    2016-01-01

    Functional neuroimaging typically explores how a particular task activates a set of brain regions. Importantly though, the same neural system can be activated by inherently different tasks. To date, there is no approach available that systematically explores whether and how distinct tasks probe the same neural system. Here, we propose and validate an alternative framework, the Automatic Neuroscientist, which turns the standard fMRI approach on its head. We use real-time fMRI in combination with modern machine-learning techniques to automatically design the optimal experiment to evoke a desired target brain state. In this work, we present two proof-of-principle studies involving perceptual stimuli. In both studies optimization algorithms of varying complexity were employed; the first involved a stochastic approximation method while the second incorporated a more sophisticated Bayesian optimization technique. In the first study, we achieved convergence for the hypothesized optimum in 11 out of 14 runs in less than 10 min. Results of the second study showed how our closed-loop framework accurately and with high efficiency estimated the underlying relationship between stimuli and neural responses for each subject in one to two runs: with each run lasting 6.3 min. Moreover, we demonstrate that using only the first run produced a reliable solution at a group-level. Supporting simulation analyses provided evidence on the robustness of the Bayesian optimization approach for scenarios with low contrast-to-noise ratio. This framework is generalizable to numerous applications, ranging from optimizing stimuli in neuroimaging pilot studies to tailoring clinical rehabilitation therapy to patients and can be used with multiple imaging modalities in humans and animals. PMID:26804778

  16. The Automatic Neuroscientist: A framework for optimizing experimental design with closed-loop real-time fMRI.

    PubMed

    Lorenz, Romy; Monti, Ricardo Pio; Violante, Inês R; Anagnostopoulos, Christoforos; Faisal, Aldo A; Montana, Giovanni; Leech, Robert

    2016-04-01

    Functional neuroimaging typically explores how a particular task activates a set of brain regions. Importantly though, the same neural system can be activated by inherently different tasks. To date, there is no approach available that systematically explores whether and how distinct tasks probe the same neural system. Here, we propose and validate an alternative framework, the Automatic Neuroscientist, which turns the standard fMRI approach on its head. We use real-time fMRI in combination with modern machine-learning techniques to automatically design the optimal experiment to evoke a desired target brain state. In this work, we present two proof-of-principle studies involving perceptual stimuli. In both studies optimization algorithms of varying complexity were employed; the first involved a stochastic approximation method while the second incorporated a more sophisticated Bayesian optimization technique. In the first study, we achieved convergence for the hypothesized optimum in 11 out of 14 runs in less than 10 min. Results of the second study showed how our closed-loop framework accurately and with high efficiency estimated the underlying relationship between stimuli and neural responses for each subject in one to two runs: with each run lasting 6.3 min. Moreover, we demonstrate that using only the first run produced a reliable solution at a group-level. Supporting simulation analyses provided evidence on the robustness of the Bayesian optimization approach for scenarios with low contrast-to-noise ratio. This framework is generalizable to numerous applications, ranging from optimizing stimuli in neuroimaging pilot studies to tailoring clinical rehabilitation therapy to patients and can be used with multiple imaging modalities in humans and animals. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Experimental Concepts for Testing Seismic Hazard Models

    NASA Astrophysics Data System (ADS)

    Marzocchi, W.; Jordan, T. H.

    2015-12-01

    Seismic hazard analysis is the primary interface through which useful information about earthquake rupture and wave propagation is delivered to society. To account for the randomness (aleatory variability) and limited knowledge (epistemic uncertainty) of these natural processes, seismologists must formulate and test hazard models using the concepts of probability. In this presentation, we will address the scientific objections that have been raised over the years against probabilistic seismic hazard analysis (PSHA). Owing to the paucity of observations, we must rely on expert opinion to quantify the epistemic uncertainties of PSHA models (e.g., in the weighting of individual models from logic-tree ensembles of plausible models). The main theoretical issue is a frequentist critique: subjectivity is immeasurable; ergo, PSHA models cannot be objectively tested against data; ergo, they are fundamentally unscientific. We have argued (PNAS, 111, 11973-11978) that the Bayesian subjectivity required for casting epistemic uncertainties can be bridged with the frequentist objectivity needed for pure significance testing through "experimental concepts." An experimental concept specifies collections of data, observed and not yet observed, that are judged to be exchangeable (i.e., with a joint distribution independent of the data ordering) when conditioned on a set of explanatory variables. We illustrate, through concrete examples, experimental concepts useful in the testing of PSHA models for ontological errors in the presence of aleatory variability and epistemic uncertainty. In particular, we describe experimental concepts that lead to exchangeable binary sequences that are statistically independent but not identically distributed, showing how the Bayesian concept of exchangeability generalizes the frequentist concept of experimental repeatability. We also address the issue of testing PSHA models using spatially correlated data.

  18. A Comparison of FPGA and GPGPU Designs for Bayesian Occupancy Filters.

    PubMed

    Medina, Luis; Diez-Ochoa, Miguel; Correal, Raul; Cuenca-Asensi, Sergio; Serrano, Alejandro; Godoy, Jorge; Martínez-Álvarez, Antonio; Villagra, Jorge

    2017-11-11

    Grid-based perception techniques in the automotive sector based on fusing information from different sensors and their robust perceptions of the environment are proliferating in the industry. However, one of the main drawbacks of these techniques is the traditionally prohibitive, high computing performance that is required for embedded automotive systems. In this work, the capabilities of new computing architectures that embed these algorithms are assessed in a real car. The paper compares two ad hoc optimized designs of the Bayesian Occupancy Filter; one for General Purpose Graphics Processing Unit (GPGPU) and the other for Field-Programmable Gate Array (FPGA). The resulting implementations are compared in terms of development effort, accuracy and performance, using datasets from a realistic simulator and from a real automated vehicle.

  19. Design of a Bayesian adaptive phase 2 proof-of-concept trial for BAN2401, a putative disease-modifying monoclonal antibody for the treatment of Alzheimer's disease.

    PubMed

    Satlin, Andrew; Wang, Jinping; Logovinsky, Veronika; Berry, Scott; Swanson, Chad; Dhadda, Shobha; Berry, Donald A

    2016-01-01

    Recent failures in phase 3 clinical trials in Alzheimer's disease (AD) suggest that novel approaches to drug development are urgently needed. Phase 3 risk can be mitigated by ensuring that clinical efficacy is established before initiating confirmatory trials, but traditional phase 2 trials in AD can be lengthy and costly. We designed a Bayesian adaptive phase 2, proof-of-concept trial with a clinical endpoint to evaluate BAN2401, a monoclonal antibody targeting amyloid protofibrils. The study design used dose response and longitudinal modeling. Simulations were used to refine study design features to achieve optimal operating characteristics. The study design includes five active treatment arms plus placebo, a clinical outcome, 12-month primary endpoint, and a maximum sample size of 800. The average overall probability of success is ≥80% when at least one dose shows a treatment effect that would be considered clinically meaningful. Using frequent interim analyses, the randomization ratios are adapted based on the clinical endpoint, and the trial can be stopped for success or futility before full enrollment. Bayesian statistics can enhance the efficiency of analyzing the study data. The adaptive randomization generates more data on doses that appear to be more efficacious, which can improve dose selection for phase 3. The interim analyses permit stopping as soon as a predefined signal is detected, which can accelerate decision making. Both features can reduce the size and duration of the trial. This study design can mitigate some of the risks associated with advancing to phase 3 in the absence of data demonstrating clinical efficacy. Limitations to the approach are discussed.

  20. Approximate Bayesian Computation in the estimation of the parameters of the Forbush decrease model

    NASA Astrophysics Data System (ADS)

    Wawrzynczak, A.; Kopka, P.

    2017-12-01

    Realistic modeling of the complicated phenomena as Forbush decrease of the galactic cosmic ray intensity is a quite challenging task. One aspect is a numerical solution of the Fokker-Planck equation in five-dimensional space (three spatial variables, the time and particles energy). The second difficulty arises from a lack of detailed knowledge about the spatial and time profiles of the parameters responsible for the creation of the Forbush decrease. Among these parameters, the central role plays a diffusion coefficient. Assessment of the correctness of the proposed model can be done only by comparison of the model output with the experimental observations of the galactic cosmic ray intensity. We apply the Approximate Bayesian Computation (ABC) methodology to match the Forbush decrease model to experimental data. The ABC method is becoming increasing exploited for dynamic complex problems in which the likelihood function is costly to compute. The main idea of all ABC methods is to accept samples as an approximate posterior draw if its associated modeled data are close enough to the observed one. In this paper, we present application of the Sequential Monte Carlo Approximate Bayesian Computation algorithm scanning the space of the diffusion coefficient parameters. The proposed algorithm is adopted to create the model of the Forbush decrease observed by the neutron monitors at the Earth in March 2002. The model of the Forbush decrease is based on the stochastic approach to the solution of the Fokker-Planck equation.

  1. Moments and Root-Mean-Square Error of the Bayesian MMSE Estimator of Classification Error in the Gaussian Model.

    PubMed

    Zollanvari, Amin; Dougherty, Edward R

    2014-06-01

    The most important aspect of any classifier is its error rate, because this quantifies its predictive capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in small-sample classifier design because the error must be estimated using the same data from which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution on an uncertainty class of feature-label distributions to which the true, but unknown, feature-distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in circumstances where accurate completely model-free error estimation is impossible. This paper provides analytic asymptotically exact finite-sample approximations for various performance metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting, which enables us to derive asymptotic expressions of the desired performance metrics. From these we produce analytic finite-sample approximations and demonstrate their accuracy via numerical examples. Various examples illustrate the behavior of these approximations and their use in determining the necessary sample size to achieve a desired RMS. The Supplementary Material contains derivations for some equations and added figures.

  2. Bayesian Optimal Interval Design: A Simple and Well-Performing Design for Phase I Oncology Trials.

    PubMed

    Yuan, Ying; Hess, Kenneth R; Hilsenbeck, Susan G; Gilbert, Mark R

    2016-09-01

    Despite more than two decades of publications that offer more innovative model-based designs, the classical 3 + 3 design remains the most dominant phase I trial design in practice. In this article, we introduce a new trial design, the Bayesian optimal interval (BOIN) design. The BOIN design is easy to implement in a way similar to the 3 + 3 design, but is more flexible for choosing the target toxicity rate and cohort size and yields a substantially better performance that is comparable with that of more complex model-based designs. The BOIN design contains the 3 + 3 design and the accelerated titration design as special cases, thus linking it to established phase I approaches. A numerical study shows that the BOIN design generally outperforms the 3 + 3 design and the modified toxicity probability interval (mTPI) design. The BOIN design is more likely than the 3 + 3 design to correctly select the MTD and allocate more patients to the MTD. Compared with the mTPI design, the BOIN design has a substantially lower risk of overdosing patients and generally a higher probability of correctly selecting the MTD. User-friendly software is freely available to facilitate the application of the BOIN design. Clin Cancer Res; 22(17); 4291-301. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. The prediction of crystal structure by merging knowledge methods with first principles quantum mechanics

    NASA Astrophysics Data System (ADS)

    Ceder, Gerbrand

    2007-03-01

    The prediction of structure is a key problem in computational materials science that forms the platform on which rational materials design can be performed. Finding structure by traditional optimization methods on quantum mechanical energy models is not possible due to the complexity and high dimensionality of the coordinate space. An unusual, but efficient solution to this problem can be obtained by merging ideas from heuristic and ab initio methods: In the same way that scientist build empirical rules by observation of experimental trends, we have developed machine learning approaches that extract knowledge from a large set of experimental information and a database of over 15,000 first principles computations, and used these to rapidly direct accurate quantum mechanical techniques to the lowest energy crystal structure of a material. Knowledge is captured in a Bayesian probability network that relates the probability to find a particular crystal structure at a given composition to structure and energy information at other compositions. We show that this approach is highly efficient in finding the ground states of binary metallic alloys and can be easily generalized to more complex systems.

  4. A Rational Analysis of the Selection Task as Optimal Data Selection.

    ERIC Educational Resources Information Center

    Oaksford, Mike; Chater, Nick

    1994-01-01

    Experimental data on human reasoning in hypothesis-testing tasks is reassessed in light of a Bayesian model of optimal data selection in inductive hypothesis testing. The rational analysis provided by the model suggests that reasoning in such tasks may be rational rather than subject to systematic bias. (SLD)

  5. Bayesian population receptive field modelling.

    PubMed

    Zeidman, Peter; Silson, Edward Harry; Schwarzkopf, Dietrich Samuel; Baker, Chris Ian; Penny, Will

    2017-09-08

    We introduce a probabilistic (Bayesian) framework and associated software toolbox for mapping population receptive fields (pRFs) based on fMRI data. This generic approach is intended to work with stimuli of any dimension and is demonstrated and validated in the context of 2D retinotopic mapping. The framework enables the experimenter to specify generative (encoding) models of fMRI timeseries, in which experimental stimuli enter a pRF model of neural activity, which in turns drives a nonlinear model of neurovascular coupling and Blood Oxygenation Level Dependent (BOLD) response. The neuronal and haemodynamic parameters are estimated together on a voxel-by-voxel or region-of-interest basis using a Bayesian estimation algorithm (variational Laplace). This offers several novel contributions to receptive field modelling. The variance/covariance of parameters are estimated, enabling receptive fields to be plotted while properly representing uncertainty about pRF size and location. Variability in the haemodynamic response across the brain is accounted for. Furthermore, the framework introduces formal hypothesis testing to pRF analysis, enabling competing models to be evaluated based on their log model evidence (approximated by the variational free energy), which represents the optimal tradeoff between accuracy and complexity. Using simulations and empirical data, we found that parameters typically used to represent pRF size and neuronal scaling are strongly correlated, which is taken into account by the Bayesian methods we describe when making inferences. We used the framework to compare the evidence for six variants of pRF model using 7 T functional MRI data and we found a circular Difference of Gaussians (DoG) model to be the best explanation for our data overall. We hope this framework will prove useful for mapping stimulus spaces with any number of dimensions onto the anatomy of the brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. An AI-based communication system for motor and speech disabled persons: design methodology and prototype testing.

    PubMed

    Sy, B K; Deller, J R

    1989-05-01

    An intelligent communication device is developed to assist the nonverbal, motor disabled in the generation of written and spoken messages. The device is centered on a knowledge base of the grammatical rules and message elements. A "belief" reasoning scheme based on both the information from external sources and the embedded knowledge is used to optimize the process of message search. The search for the message elements is conceptualized as a path search in the language graph, and a special frame architecture is used to construct and to partition the graph. Bayesian "belief" reasoning from the Dempster-Shafer theory of evidence is augmented to cope with time-varying evidence. An "information fusion" strategy is also introduced to integrate various forms of external information. Experimental testing of the prototype system is discussed.

  7. Optimal Bayesian Adaptive Design for Test-Item Calibration.

    PubMed

    van der Linden, Wim J; Ren, Hao

    2015-06-01

    An optimal adaptive design for test-item calibration based on Bayesian optimality criteria is presented. The design adapts the choice of field-test items to the examinees taking an operational adaptive test using both the information in the posterior distributions of their ability parameters and the current posterior distributions of the field-test parameters. Different criteria of optimality based on the two types of posterior distributions are possible. The design can be implemented using an MCMC scheme with alternating stages of sampling from the posterior distributions of the test takers' ability parameters and the parameters of the field-test items while reusing samples from earlier posterior distributions of the other parameters. Results from a simulation study demonstrated the feasibility of the proposed MCMC implementation for operational item calibration. A comparison of performances for different optimality criteria showed faster calibration of substantial numbers of items for the criterion of D-optimality relative to A-optimality, a special case of c-optimality, and random assignment of items to the test takers.

  8. Mixture class recovery in GMM under varying degrees of class separation: frequentist versus Bayesian estimation.

    PubMed

    Depaoli, Sarah

    2013-06-01

    Growth mixture modeling (GMM) represents a technique that is designed to capture change over time for unobserved subgroups (or latent classes) that exhibit qualitatively different patterns of growth. The aim of the current article was to explore the impact of latent class separation (i.e., how similar growth trajectories are across latent classes) on GMM performance. Several estimation conditions were compared: maximum likelihood via the expectation maximization (EM) algorithm and the Bayesian framework implementing diffuse priors, "accurate" informative priors, weakly informative priors, data-driven informative priors, priors reflecting partial-knowledge of parameters, and "inaccurate" (but informative) priors. The main goal was to provide insight about the optimal estimation condition under different degrees of latent class separation for GMM. Results indicated that optimal parameter recovery was obtained though the Bayesian approach using "accurate" informative priors, and partial-knowledge priors showed promise for the recovery of the growth trajectory parameters. Maximum likelihood and the remaining Bayesian estimation conditions yielded poor parameter recovery for the latent class proportions and the growth trajectories. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  9. Bayesian stock assessment of Pacific herring in Prince William Sound, Alaska.

    PubMed

    Muradian, Melissa L; Branch, Trevor A; Moffitt, Steven D; Hulson, Peter-John F

    2017-01-01

    The Pacific herring (Clupea pallasii) population in Prince William Sound, Alaska crashed in 1993 and has yet to recover, affecting food web dynamics in the Sound and impacting Alaskan communities. To help researchers design and implement the most effective monitoring, management, and recovery programs, a Bayesian assessment of Prince William Sound herring was developed by reformulating the current model used by the Alaska Department of Fish and Game. The Bayesian model estimated pre-fishery spawning biomass of herring age-3 and older in 2013 to be a median of 19,410 mt (95% credibility interval 12,150-31,740 mt), with a 54% probability that biomass in 2013 was below the management limit used to regulate fisheries in Prince William Sound. The main advantages of the Bayesian model are that it can more objectively weight different datasets and provide estimates of uncertainty for model parameters and outputs, unlike the weighted sum-of-squares used in the original model. In addition, the revised model could be used to manage herring stocks with a decision rule that considers both stock status and the uncertainty in stock status.

  10. Enhanced optical alignment of a digital micro mirror device through Bayesian adaptive exploration

    NASA Astrophysics Data System (ADS)

    Wynne, Kevin B.; Knuth, Kevin H.; Petruccelli, Jonathan

    2017-12-01

    As the use of Digital Micro Mirror Devices (DMDs) becomes more prevalent in optics research, the ability to precisely locate the Fourier "footprint" of an image beam at the Fourier plane becomes a pressing need. In this approach, Bayesian adaptive exploration techniques were employed to characterize the size and position of the beam on a DMD located at the Fourier plane. It couples a Bayesian inference engine with an inquiry engine to implement the search. The inquiry engine explores the DMD by engaging mirrors and recording light intensity values based on the maximization of the expected information gain. Using the data collected from this exploration, the Bayesian inference engine updates the posterior probability describing the beam's characteristics. The process is iterated until the beam is located to within the desired precision. This methodology not only locates the center and radius of the beam with remarkable precision but accomplishes the task in far less time than a brute force search. The employed approach has applications to system alignment for both Fourier processing and coded aperture design.

  11. Bayesian stock assessment of Pacific herring in Prince William Sound, Alaska

    PubMed Central

    Moffitt, Steven D.; Hulson, Peter-John F.

    2017-01-01

    The Pacific herring (Clupea pallasii) population in Prince William Sound, Alaska crashed in 1993 and has yet to recover, affecting food web dynamics in the Sound and impacting Alaskan communities. To help researchers design and implement the most effective monitoring, management, and recovery programs, a Bayesian assessment of Prince William Sound herring was developed by reformulating the current model used by the Alaska Department of Fish and Game. The Bayesian model estimated pre-fishery spawning biomass of herring age-3 and older in 2013 to be a median of 19,410 mt (95% credibility interval 12,150–31,740 mt), with a 54% probability that biomass in 2013 was below the management limit used to regulate fisheries in Prince William Sound. The main advantages of the Bayesian model are that it can more objectively weight different datasets and provide estimates of uncertainty for model parameters and outputs, unlike the weighted sum-of-squares used in the original model. In addition, the revised model could be used to manage herring stocks with a decision rule that considers both stock status and the uncertainty in stock status. PMID:28222151

  12. Physics of ultrasonic wave propagation in bone and heart characterized using Bayesian parameter estimation

    NASA Astrophysics Data System (ADS)

    Anderson, Christian Carl

    This Dissertation explores the physics underlying the propagation of ultrasonic waves in bone and in heart tissue through the use of Bayesian probability theory. Quantitative ultrasound is a noninvasive modality used for clinical detection, characterization, and evaluation of bone quality and cardiovascular disease. Approaches that extend the state of knowledge of the physics underpinning the interaction of ultrasound with inherently inhomogeneous and isotropic tissue have the potential to enhance its clinical utility. Simulations of fast and slow compressional wave propagation in cancellous bone were carried out to demonstrate the plausibility of a proposed explanation for the widely reported anomalous negative dispersion in cancellous bone. The results showed that negative dispersion could arise from analysis that proceeded under the assumption that the data consist of only a single ultrasonic wave, when in fact two overlapping and interfering waves are present. The confounding effect of overlapping fast and slow waves was addressed by applying Bayesian parameter estimation to simulated data, to experimental data acquired on bone-mimicking phantoms, and to data acquired in vitro on cancellous bone. The Bayesian approach successfully estimated the properties of the individual fast and slow waves even when they strongly overlapped in the acquired data. The Bayesian parameter estimation technique was further applied to an investigation of the anisotropy of ultrasonic properties in cancellous bone. The degree to which fast and slow waves overlap is partially determined by the angle of insonation of ultrasound relative to the predominant direction of trabecular orientation. In the past, studies of anisotropy have been limited by interference between fast and slow waves over a portion of the range of insonation angles. Bayesian analysis estimated attenuation, velocity, and amplitude parameters over the entire range of insonation angles, allowing a more complete characterization of anisotropy. A novel piecewise linear model for the cyclic variation of ultrasonic backscatter from myocardium was proposed. Models of cyclic variation for 100 type 2 diabetes patients and 43 normal control subjects were constructed using Bayesian parameter estimation. Parameters determined from the model, specifically rise time and slew rate, were found to be more reliable in differentiating between subject groups than the previously employed magnitude parameter.

  13. Multiscale Bayesian neural networks for soil water content estimation

    NASA Astrophysics Data System (ADS)

    Jana, Raghavendra B.; Mohanty, Binayak P.; Springer, Everett P.

    2008-08-01

    Artificial neural networks (ANN) have been used for some time now to estimate soil hydraulic parameters from other available or more easily measurable soil properties. However, most such uses of ANNs as pedotransfer functions (PTFs) have been at matching spatial scales (1:1) of inputs and outputs. This approach assumes that the outputs are only required at the same scale as the input data. Unfortunately, this is rarely true. Different hydrologic, hydroclimatic, and contaminant transport models require soil hydraulic parameter data at different spatial scales, depending upon their grid sizes. While conventional (deterministic) ANNs have been traditionally used in these studies, the use of Bayesian training of ANNs is a more recent development. In this paper, we develop a Bayesian framework to derive soil water retention function including its uncertainty at the point or local scale using PTFs trained with coarser-scale Soil Survey Geographic (SSURGO)-based soil data. The approach includes an ANN trained with Bayesian techniques as a PTF tool with training and validation data collected across spatial extents (scales) in two different regions in the United States. The two study areas include the Las Cruces Trench site in the Rio Grande basin of New Mexico, and the Southern Great Plains 1997 (SGP97) hydrology experimental region in Oklahoma. Each region-specific Bayesian ANN is trained using soil texture and bulk density data from the SSURGO database (scale 1:24,000), and predictions of the soil water contents at different pressure heads with point scale data (1:1) inputs are made. The resulting outputs are corrected for bias using both linear and nonlinear correction techniques. The results show good agreement between the soil water content values measured at the point scale and those predicted by the Bayesian ANN-based PTFs for both the study sites. Overall, Bayesian ANNs coupled with nonlinear bias correction are found to be very suitable tools for deriving soil hydraulic parameters at the local/fine scale from soil physical properties at coarser-scale and across different spatial extents. This approach could potentially be used for soil hydraulic properties estimation and downscaling.

  14. Integrated Software Health Management for Aircraft GN and C

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Mengshoel, Ole

    2011-01-01

    Modern aircraft rely heavily on dependable operation of many safety-critical software components. Despite careful design, verification and validation (V&V), on-board software can fail with disastrous consequences if it encounters problematic software/hardware interaction or must operate in an unexpected environment. We are using a Bayesian approach to monitor the software and its behavior during operation and provide up-to-date information about the health of the software and its components. The powerful reasoning mechanism provided by our model-based Bayesian approach makes reliable diagnosis of the root causes possible and minimizes the number of false alarms. Compilation of the Bayesian model into compact arithmetic circuits makes SWHM feasible even on platforms with limited CPU power. We show initial results of SWHM on a small simulator of an embedded aircraft software system, where software and sensor faults can be injected.

  15. A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA.

    PubMed

    Fong, Duncan K H; Kim, Sunghoon; Chen, Zhe; DeSarbo, Wayne S

    2016-03-01

    A new Bayesian multinomial probit model is proposed for the analysis of panel choice data. Using a parameter expansion technique, we are able to devise a Markov Chain Monte Carlo algorithm to compute our Bayesian estimates efficiently. We also show that the proposed procedure enables the estimation of individual level coefficients for the single-period multinomial probit model even when the available prior information is vague. We apply our new procedure to consumer purchase data and reanalyze a well-known scanner panel dataset that reveals new substantive insights. In addition, we delineate a number of advantageous features of our proposed procedure over several benchmark models. Finally, through a simulation analysis employing a fractional factorial design, we demonstrate that the results from our proposed model are quite robust with respect to differing factors across various conditions.

  16. An Engineering Educator's Decision Support Tool for Improving Innovation in Student Design Projects

    ERIC Educational Resources Information Center

    Ozaltin, Nur Ozge; Besterfield-Sacre, Mary; Clark, Renee M.

    2015-01-01

    Learning how to design innovatively is a critical process skill for undergraduate engineers in the 21st century. To this end, our paper discusses the development and validation of a Bayesian network decision support tool that can be used by engineering educators to make recommendations that positively impact the innovativeness of product designs.…

  17. Analysis of phase II methodologies for single-arm clinical trials with multiple endpoints in rare cancers: An example in Ewing’s sarcoma

    PubMed Central

    Dutton, P; Love, SB; Billingham, L; Hassan, AB

    2016-01-01

    Trials run in either rare diseases, such as rare cancers, or rare sub-populations of common diseases are challenging in terms of identifying, recruiting and treating sufficient patients in a sensible period. Treatments for rare diseases are often designed for other disease areas and then later proposed as possible treatments for the rare disease after initial phase I testing is complete. To ensure the trial is in the best interests of the patient participants, frequent interim analyses are needed to force the trial to stop promptly if the treatment is futile or toxic. These non-definitive phase II trials should also be stopped for efficacy to accelerate research progress if the treatment proves to be particularly promising. In this paper, we review frequentist and Bayesian methods that have been adapted to incorporate two binary endpoints and frequent interim analyses. The Eurosarc Trial of Linsitinib in advanced Ewing Sarcoma (LINES) is used as a motivating example and provides a suitable platform to compare these approaches. The Bayesian approach provides greater design flexibility, but does not provide additional value over the frequentist approaches in a single trial setting when the prior is non-informative. However, Bayesian designs are able to borrow from any previous experience, using prior information to improve efficiency. PMID:27587590

  18. Application of hierarchical Bayesian unmixing models in river sediment source apportionment

    NASA Astrophysics Data System (ADS)

    Blake, Will; Smith, Hugh; Navas, Ana; Bodé, Samuel; Goddard, Rupert; Zou Kuzyk, Zou; Lennard, Amy; Lobb, David; Owens, Phil; Palazon, Leticia; Petticrew, Ellen; Gaspar, Leticia; Stock, Brian; Boeckx, Pacsal; Semmens, Brice

    2016-04-01

    Fingerprinting and unmixing concepts are used widely across environmental disciplines for forensic evaluation of pollutant sources. In aquatic and marine systems, this includes tracking the source of organic and inorganic pollutants in water and linking problem sediment to soil erosion and land use sources. It is, however, the particular complexity of ecological systems that has driven creation of the most sophisticated mixing models, primarily to (i) evaluate diet composition in complex ecological food webs, (ii) inform population structure and (iii) explore animal movement. In the context of the new hierarchical Bayesian unmixing model, MIXSIAR, developed to characterise intra-population niche variation in ecological systems, we evaluate the linkage between ecological 'prey' and 'consumer' concepts and river basin sediment 'source' and sediment 'mixtures' to exemplify the value of ecological modelling tools to river basin science. Recent studies have outlined advantages presented by Bayesian unmixing approaches in handling complex source and mixture datasets while dealing appropriately with uncertainty in parameter probability distributions. MixSIAR is unique in that it allows individual fixed and random effects associated with mixture hierarchy, i.e. factors that might exert an influence on model outcome for mixture groups, to be explored within the source-receptor framework. This offers new and powerful ways of interpreting river basin apportionment data. In this contribution, key components of the model are evaluated in the context of common experimental designs for sediment fingerprinting studies namely simple, nested and distributed catchment sampling programmes. Illustrative examples using geochemical and compound specific stable isotope datasets are presented and used to discuss best practice with specific attention to (1) the tracer selection process, (2) incorporation of fixed effects relating to sample timeframe and sediment type in the modelling process, (3) deriving and using informative priors in sediment fingerprinting context and (4) transparency of the process and replication of model results by other users.

  19. Modeling and Bayesian parameter estimation for shape memory alloy bending actuators

    NASA Astrophysics Data System (ADS)

    Crews, John H.; Smith, Ralph C.

    2012-04-01

    In this paper, we employ a homogenized energy model (HEM) for shape memory alloy (SMA) bending actuators. Additionally, we utilize a Bayesian method for quantifying parameter uncertainty. The system consists of a SMA wire attached to a flexible beam. As the actuator is heated, the beam bends, providing endoscopic motion. The model parameters are fit to experimental data using an ordinary least-squares approach. The uncertainty in the fit model parameters is then quantified using Markov Chain Monte Carlo (MCMC) methods. The MCMC algorithm provides bounds on the parameters, which will ultimately be used in robust control algorithms. One purpose of the paper is to test the feasibility of the Random Walk Metropolis algorithm, the MCMC method used here.

  20. Bayesian analysis of non-linear differential equation models with application to a gut microbial ecosystem.

    PubMed

    Lawson, Daniel J; Holtrop, Grietje; Flint, Harry

    2011-07-01

    Process models specified by non-linear dynamic differential equations contain many parameters, which often must be inferred from a limited amount of data. We discuss a hierarchical Bayesian approach combining data from multiple related experiments in a meaningful way, which permits more powerful inference than treating each experiment as independent. The approach is illustrated with a simulation study and example data from experiments replicating the aspects of the human gut microbial ecosystem. A predictive model is obtained that contains prediction uncertainty caused by uncertainty in the parameters, and we extend the model to capture situations of interest that cannot easily be studied experimentally. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Experimental demonstration of conflicting interest nonlocal games using superconducting qubits

    NASA Astrophysics Data System (ADS)

    Situ, Haozhen; Li, Lvzhou; Huang, Zhiming; He, Zhimin; Zhang, Cai

    2018-06-01

    Conflicting interest nonlocal games are special Bayesian games played by noncooperative players without communication. In recent years, some conflicting interest nonlocal games have been proposed where quantum advice can help players to obtain higher payoffs. In this work we perform an experiment of six conflicting interest nonlocal games using the IBM quantum computer made up of five superconducting qubits. The experimental results demonstrate quantum advantage in four of these games, whereas the other two games fail to showcase quantum advantage in the experiment.

  2. On estimating the accuracy of monitoring methods using Bayesian error propagation technique

    NASA Astrophysics Data System (ADS)

    Zonta, Daniele; Bruschetta, Federico; Cappello, Carlo; Zandonini, R.; Pozzi, Matteo; Wang, Ming; Glisic, B.; Inaudi, D.; Posenato, D.; Zhao, Y.

    2014-04-01

    This paper illustrates an application of Bayesian logic to monitoring data analysis and structural condition state inference. The case study is a 260 m long cable-stayed bridge spanning the Adige River 10 km north of the town of Trento, Italy. This is a statically indeterminate structure, having a composite steel-concrete deck, supported by 12 stay cables. Structural redundancy, possible relaxation losses and an as-built condition differing from design, suggest that long-term load redistribution between cables can be expected. To monitor load redistribution, the owner decided to install a monitoring system which combines built-on-site elasto-magnetic and fiber-optic sensors. In this note, we discuss a rational way to improve the accuracy of the load estimate from the EM sensors taking advantage of the FOS information. More specifically, we use a multi-sensor Bayesian data fusion approach which combines the information from the two sensing systems with the prior knowledge, including design information and the outcomes of laboratory calibration. Using the data acquired to date, we demonstrate that combining the two measurements allows a more accurate estimate of the cable load, to better than 50 kN.

  3. Bayesian hypothesis testing for human threat conditioning research: an introduction and the condir R package

    PubMed Central

    Krypotos, Angelos-Miltiadis; Klugkist, Irene; Engelhard, Iris M.

    2017-01-01

    ABSTRACT Threat conditioning procedures have allowed the experimental investigation of the pathogenesis of Post-Traumatic Stress Disorder. The findings of these procedures have also provided stable foundations for the development of relevant intervention programs (e.g. exposure therapy). Statistical inference of threat conditioning procedures is commonly based on p-values and Null Hypothesis Significance Testing (NHST). Nowadays, however, there is a growing concern about this statistical approach, as many scientists point to the various limitations of p-values and NHST. As an alternative, the use of Bayes factors and Bayesian hypothesis testing has been suggested. In this article, we apply this statistical approach to threat conditioning data. In order to enable the easy computation of Bayes factors for threat conditioning data we present a new R package named condir, which can be used either via the R console or via a Shiny application. This article provides both a non-technical introduction to Bayesian analysis for researchers using the threat conditioning paradigm, and the necessary tools for computing Bayes factors easily. PMID:29038683

  4. A Fatigue Crack Size Evaluation Method Based on Lamb Wave Simulation and Limited Experimental Data

    PubMed Central

    He, Jingjing; Ran, Yunmeng; Liu, Bin; Yang, Jinsong; Guan, Xuefei

    2017-01-01

    This paper presents a systematic and general method for Lamb wave-based crack size quantification using finite element simulations and Bayesian updating. The method consists of construction of a baseline quantification model using finite element simulation data and Bayesian updating with limited Lamb wave data from target structure. The baseline model correlates two proposed damage sensitive features, namely the normalized amplitude and phase change, with the crack length through a response surface model. The two damage sensitive features are extracted from the first received S0 mode wave package. The model parameters of the baseline model are estimated using finite element simulation data. To account for uncertainties from numerical modeling, geometry, material and manufacturing between the baseline model and the target model, Bayesian method is employed to update the baseline model with a few measurements acquired from the actual target structure. A rigorous validation is made using in-situ fatigue testing and Lamb wave data from coupon specimens and realistic lap-joint components. The effectiveness and accuracy of the proposed method is demonstrated under different loading and damage conditions. PMID:28902148

  5. High-throughput Bayesian Network Learning using Heterogeneous Multicore Computers

    PubMed Central

    Linderman, Michael D.; Athalye, Vivek; Meng, Teresa H.; Asadi, Narges Bani; Bruggner, Robert; Nolan, Garry P.

    2017-01-01

    Aberrant intracellular signaling plays an important role in many diseases. The causal structure of signal transduction networks can be modeled as Bayesian Networks (BNs), and computationally learned from experimental data. However, learning the structure of Bayesian Networks (BNs) is an NP-hard problem that, even with fast heuristics, is too time consuming for large, clinically important networks (20–50 nodes). In this paper, we present a novel graphics processing unit (GPU)-accelerated implementation of a Monte Carlo Markov Chain-based algorithm for learning BNs that is up to 7.5-fold faster than current general-purpose processor (GPP)-based implementations. The GPU-based implementation is just one of several implementations within the larger application, each optimized for a different input or machine configuration. We describe the methodology we use to build an extensible application, assembled from these variants, that can target a broad range of heterogeneous systems, e.g., GPUs, multicore GPPs. Specifically we show how we use the Merge programming model to efficiently integrate, test and intelligently select among the different potential implementations. PMID:28819655

  6. The Scientific Method, Diagnostic Bayes, and How to Detect Epistemic Errors

    NASA Astrophysics Data System (ADS)

    Vrugt, J. A.

    2015-12-01

    In the past decades, Bayesian methods have found widespread application and use in environmental systems modeling. Bayes theorem states that the posterior probability, P(H|D) of a hypothesis, H is proportional to the product of the prior probability, P(H) of this hypothesis and the likelihood, L(H|hat{D}) of the same hypothesis given the new/incoming observations, \\hat {D}. In science and engineering, H often constitutes some numerical simulation model, D = F(x,.) which summarizes using algebraic, empirical, and differential equations, state variables and fluxes, all our theoretical and/or practical knowledge of the system of interest, and x are the d unknown parameters which are subject to inference using some data, \\hat {D} of the observed system response. The Bayesian approach is intimately related to the scientific method and uses an iterative cycle of hypothesis formulation (model), experimentation and data collection, and theory/hypothesis refinement to elucidate the rules that govern the natural world. Unfortunately, model refinement has proven to be very difficult in large part because of the poor diagnostic power of residual based likelihood functions tep{gupta2008}. This has inspired te{vrugt2013} to advocate the use of 'likelihood-free' inference using approximate Bayesian computation (ABC). This approach uses one or more summary statistics, S(\\hat {D}) of the original data, \\hat {D} designed ideally to be sensitive only to one particular process in the model. Any mismatch between the observed and simulated summary metrics is then easily linked to a specific model component. A recurrent issue with the application of ABC is self-sufficiency of the summary statistics. In theory, S(.) should contain as much information as the original data itself, yet complex systems rarely admit sufficient statistics. In this article, we propose to combine the ideas of ABC and regular Bayesian inference to guarantee that no information is lost in diagnostic model evaluation. This hybrid approach, coined diagnostic Bayes, uses the summary metrics as prior distribution and original data in the likelihood function, or P(x|\\hat {D}) ∝ P(x|S(\\hat {D})) L(x|\\hat {D}). A case study illustrates the ability of the proposed methodology to diagnose epistemic errors and provide guidance on model refinement.

  7. Probabilistic Approaches for Multi-Hazard Risk Assessment of Structures and Systems

    NASA Astrophysics Data System (ADS)

    Kwag, Shinyoung

    Performance assessment of structures, systems, and components for multi-hazard scenarios has received significant attention in recent years. However, the concept of multi-hazard analysis is quite broad in nature and the focus of existing literature varies across a wide range of problems. In some cases, such studies focus on hazards that either occur simultaneously or are closely correlated with each other. For example, seismically induced flooding or seismically induced fires. In other cases, multi-hazard studies relate to hazards that are not dependent or correlated but have strong likelihood of occurrence at different times during the lifetime of a structure. The current approaches for risk assessment need enhancement to account for multi-hazard risks. It must be able to account for uncertainty propagation in a systems-level analysis, consider correlation among events or failure modes, and allow integration of newly available information from continually evolving simulation models, experimental observations, and field measurements. This dissertation presents a detailed study that proposes enhancements by incorporating Bayesian networks and Bayesian updating within a performance-based probabilistic framework. The performance-based framework allows propagation of risk as well as uncertainties in the risk estimates within a systems analysis. Unlike conventional risk assessment techniques such as a fault-tree analysis, a Bayesian network can account for statistical dependencies and correlations among events/hazards. The proposed approach is extended to develop a risk-informed framework for quantitative validation and verification of high fidelity system-level simulation tools. Validation of such simulations can be quite formidable within the context of a multi-hazard risk assessment in nuclear power plants. The efficiency of this approach lies in identification of critical events, components, and systems that contribute to the overall risk. Validation of any event or component on the critical path is relatively more important in a risk-informed environment. Significance of multi-hazard risk is also illustrated for uncorrelated hazards of earthquakes and high winds which may result in competing design objectives. It is also illustrated that the number of computationally intensive nonlinear simulations needed in performance-based risk assessment for external hazards can be significantly reduced by using the power of Bayesian updating in conjunction with the concept of equivalent limit-state.

  8. Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach.

    PubMed

    Zou, Cunlu; Ladroue, Christophe; Guo, Shuixia; Feng, Jianfeng

    2010-06-21

    Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs) and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE), Bayesian networks, information theory and Granger Causality. Here we focused on Granger causality both in the time and frequency domain and in local and global networks, and applied our approach to experimental data (genes and proteins). For a small gene network, Granger causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the frequency domain were also recovered. The results on the proteomic data and gene data confirm that Granger causality is a simple and accurate approach to recover the network structure. Our approach is general and can be easily applied to other types of temporal data.

  9. Bayesian inference reveals positive but subtle effects of experimental fishery closures on marine predator demographics

    PubMed Central

    Barham, Barbara J.; Barham, Peter J.; Campbell, Kate J.; Crawford, Robert J. M.; Grigg, Jennifer; Horswill, Cat; Morris, Taryn L.; Pichegru, Lorien; Steinfurth, Antje; Weller, Florian; Winker, Henning

    2018-01-01

    Global forage-fish landings are increasing, with potentially grave consequences for marine ecosystems. Predators of forage fish may be influenced by this harvest, but the nature of these effects is contentious. Experimental fishery manipulations offer the best solution to quantify population-level impacts, but are rare. We used Bayesian inference to examine changes in chick survival, body condition and population growth rate of endangered African penguins Spheniscus demersus in response to 8 years of alternating time–area closures around two pairs of colonies. Our results demonstrate that fishing closures improved chick survival and condition, after controlling for changing prey availability. However, this effect was inconsistent across sites and years, highlighting the difficultly of assessing management interventions in marine ecosystems. Nevertheless, modelled increases in population growth rates exceeded 1% at one colony; i.e. the threshold considered biologically meaningful by fisheries management in South Africa. Fishing closures evidently can improve the population trend of a forage-fish-dependent predator—we therefore recommend they continue in South Africa and support their application elsewhere. However, detecting demographic gains for mobile marine predators from small no-take zones requires experimental time frames and scales that will often exceed those desired by decision makers. PMID:29343602

  10. A Comparison of FPGA and GPGPU Designs for Bayesian Occupancy Filters

    PubMed Central

    Medina, Luis; Diez-Ochoa, Miguel; Correal, Raul; Cuenca-Asensi, Sergio; Godoy, Jorge; Martínez-Álvarez, Antonio

    2017-01-01

    Grid-based perception techniques in the automotive sector based on fusing information from different sensors and their robust perceptions of the environment are proliferating in the industry. However, one of the main drawbacks of these techniques is the traditionally prohibitive, high computing performance that is required for embedded automotive systems. In this work, the capabilities of new computing architectures that embed these algorithms are assessed in a real car. The paper compares two ad hoc optimized designs of the Bayesian Occupancy Filter; one for General Purpose Graphics Processing Unit (GPGPU) and the other for Field-Programmable Gate Array (FPGA). The resulting implementations are compared in terms of development effort, accuracy and performance, using datasets from a realistic simulator and from a real automated vehicle. PMID:29137137

  11. Robust phenotyping strategies for evaluation of stem non-structural carbohydrates (NSC) in rice.

    PubMed

    Wang, Diane R; Wolfrum, Edward J; Virk, Parminder; Ismail, Abdelbagi; Greenberg, Anthony J; McCouch, Susan R

    2016-11-01

    Rice plants (Oryza sativa) accumulate excess photoassimilates in the form of non-structural carbohydrates (NSCs) in their stems prior to heading that can later be mobilized to supplement photosynthate production during grain-filling. Despite longstanding interest in stem NSC for rice improvement, the dynamics of NSC accumulation, remobilization, and re-accumulation that have genetic potential for optimization have not been systematically investigated. Here we conducted three pilot experiments to lay the groundwork for large-scale diversity studies on rice stem NSC. We assessed the relationship of stem NSC components with 21 agronomic traits in large-scale, tropical yield trials using 33 breeder-nominated lines, established an appropriate experimental design for future genetic studies using a Bayesian framework to sample sub-datasets from highly replicated greenhouse data using 36 genetically diverse genotypes, and used 434 phenotypically divergent rice stem samples to develop two partial least-squares (PLS) models using near-infrared (NIR) spectra for accurate, rapid prediction of rice stem starch, sucrose, and total non-structural carbohydrates. We find evidence that stem reserves are most critical for short-duration varieties and suggest that pre-heading stem NSC is worthy of further experimentation for breeding early maturing rice. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. A Bayesian Framework for Analysis of Pseudo-Spatial Models of Comparable Engineered Systems with Application to Spacecraft Anomaly Prediction Based on Precedent Data

    NASA Astrophysics Data System (ADS)

    Ndu, Obibobi Kamtochukwu

    To ensure that estimates of risk and reliability inform design and resource allocation decisions in the development of complex engineering systems, early engagement in the design life cycle is necessary. An unfortunate constraint on the accuracy of such estimates at this stage of concept development is the limited amount of high fidelity design and failure information available on the actual system under development. Applying the human ability to learn from experience and augment our state of knowledge to evolve better solutions mitigates this limitation. However, the challenge lies in formalizing a methodology that takes this highly abstract, but fundamentally human cognitive, ability and extending it to the field of risk analysis while maintaining the tenets of generalization, Bayesian inference, and probabilistic risk analysis. We introduce an integrated framework for inferring the reliability, or other probabilistic measures of interest, of a new system or a conceptual variant of an existing system. Abstractly, our framework is based on learning from the performance of precedent designs and then applying the acquired knowledge, appropriately adjusted based on degree of relevance, to the inference process. This dissertation presents a method for inferring properties of the conceptual variant using a pseudo-spatial model that describes the spatial configuration of the family of systems to which the concept belongs. Through non-metric multidimensional scaling, we formulate the pseudo-spatial model based on rank-ordered subjective expert perception of design similarity between systems that elucidate the psychological space of the family. By a novel extension of Kriging methods for analysis of geospatial data to our "pseudo-space of comparable engineered systems", we develop a Bayesian inference model that allows prediction of the probabilistic measure of interest.

  13. Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design

    NASA Astrophysics Data System (ADS)

    Leube, P. C.; Geiges, A.; Nowak, W.

    2012-02-01

    Incorporating hydro(geo)logical data, such as head and tracer data, into stochastic models of (subsurface) flow and transport helps to reduce prediction uncertainty. Because of financial limitations for investigation campaigns, information needs toward modeling or prediction goals should be satisfied efficiently and rationally. Optimal design techniques find the best one among a set of investigation strategies. They optimize the expected impact of data on prediction confidence or related objectives prior to data collection. We introduce a new optimal design method, called PreDIA(gnosis) (Preposterior Data Impact Assessor). PreDIA derives the relevant probability distributions and measures of data utility within a fully Bayesian, generalized, flexible, and accurate framework. It extends the bootstrap filter (BF) and related frameworks to optimal design by marginalizing utility measures over the yet unknown data values. PreDIA is a strictly formal information-processing scheme free of linearizations. It works with arbitrary simulation tools, provides full flexibility concerning measurement types (linear, nonlinear, direct, indirect), allows for any desired task-driven formulations, and can account for various sources of uncertainty (e.g., heterogeneity, geostatistical assumptions, boundary conditions, measurement values, model structure uncertainty, a large class of model errors) via Bayesian geostatistics and model averaging. Existing methods fail to simultaneously provide these crucial advantages, which our method buys at relatively higher-computational costs. We demonstrate the applicability and advantages of PreDIA over conventional linearized methods in a synthetic example of subsurface transport. In the example, we show that informative data is often invisible for linearized methods that confuse zero correlation with statistical independence. Hence, PreDIA will often lead to substantially better sampling designs. Finally, we extend our example to specifically highlight the consideration of conceptual model uncertainty.

  14. The Cause of Category-Based Distortions in Spatial Memory: A Distribution Analysis

    ERIC Educational Resources Information Center

    Sampaio, Cristina; Wang, Ranxiao Frances

    2017-01-01

    Recall of remembered locations reliably reflects a compromise between a target's true position and its region's prototypical position. The effect is quite robust, and a standard interpretation for these data is that the metric and categorical codings blend in a Bayesian combinatory fashion. However, there has been no direct experimental evidence…

  15. Analyzing thresholds and efficiency with hierarchical Bayesian logistic regression.

    PubMed

    Houpt, Joseph W; Bittner, Jennifer L

    2018-07-01

    Ideal observer analysis is a fundamental tool used widely in vision science for analyzing the efficiency with which a cognitive or perceptual system uses available information. The performance of an ideal observer provides a formal measure of the amount of information in a given experiment. The ratio of human to ideal performance is then used to compute efficiency, a construct that can be directly compared across experimental conditions while controlling for the differences due to the stimuli and/or task specific demands. In previous research using ideal observer analysis, the effects of varying experimental conditions on efficiency have been tested using ANOVAs and pairwise comparisons. In this work, we present a model that combines Bayesian estimates of psychometric functions with hierarchical logistic regression for inference about both unadjusted human performance metrics and efficiencies. Our approach improves upon the existing methods by constraining the statistical analysis using a standard model connecting stimulus intensity to human observer accuracy and by accounting for variability in the estimates of human and ideal observer performance scores. This allows for both individual and group level inferences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism

    PubMed Central

    Johnston, Iain G; Burgstaller, Joerg P; Havlicek, Vitezslav; Kolbe, Thomas; Rülicke, Thomas; Brem, Gottfried; Poulton, Jo; Jones, Nick S

    2015-01-01

    Dangerous damage to mitochondrial DNA (mtDNA) can be ameliorated during mammalian development through a highly debated mechanism called the mtDNA bottleneck. Uncertainty surrounding this process limits our ability to address inherited mtDNA diseases. We produce a new, physically motivated, generalisable theoretical model for mtDNA populations during development, allowing the first statistical comparison of proposed bottleneck mechanisms. Using approximate Bayesian computation and mouse data, we find most statistical support for a combination of binomial partitioning of mtDNAs at cell divisions and random mtDNA turnover, meaning that the debated exact magnitude of mtDNA copy number depletion is flexible. New experimental measurements from a wild-derived mtDNA pairing in mice confirm the theoretical predictions of this model. We analytically solve a mathematical description of this mechanism, computing probabilities of mtDNA disease onset, efficacy of clinical sampling strategies, and effects of potential dynamic interventions, thus developing a quantitative and experimentally-supported stochastic theory of the bottleneck. DOI: http://dx.doi.org/10.7554/eLife.07464.001 PMID:26035426

  17. Non-Linear Modeling of Growth Prerequisites in a Finnish Polytechnic Institution of Higher Education

    ERIC Educational Resources Information Center

    Nokelainen, Petri; Ruohotie, Pekka

    2009-01-01

    Purpose: This study aims to examine the factors of growth-oriented atmosphere in a Finnish polytechnic institution of higher education with categorical exploratory factor analysis, multidimensional scaling and Bayesian unsupervised model-based visualization. Design/methodology/approach: This study was designed to examine employee perceptions of…

  18. K-ε Turbulence Model Parameter Estimates Using an Approximate Self-similar Jet-in-Crossflow Solution

    DOE PAGES

    DeChant, Lawrence; Ray, Jaideep; Lefantzi, Sophia; ...

    2017-06-09

    The k-ε turbulence model has been described as perhaps “the most widely used complete turbulence model.” This family of heuristic Reynolds Averaged Navier-Stokes (RANS) turbulence closures is supported by a suite of model parameters that have been estimated by demanding the satisfaction of well-established canonical flows such as homogeneous shear flow, log-law behavior, etc. While this procedure does yield a set of so-called nominal parameters, it is abundantly clear that they do not provide a universally satisfactory turbulence model that is capable of simulating complex flows. Recent work on the Bayesian calibration of the k-ε model using jet-in-crossflow wind tunnelmore » data has yielded parameter estimates that are far more predictive than nominal parameter values. In this paper, we develop a self-similar asymptotic solution for axisymmetric jet-in-crossflow interactions and derive analytical estimates of the parameters that were inferred using Bayesian calibration. The self-similar method utilizes a near field approach to estimate the turbulence model parameters while retaining the classical far-field scaling to model flow field quantities. Our parameter values are seen to be far more predictive than the nominal values, as checked using RANS simulations and experimental measurements. They are also closer to the Bayesian estimates than the nominal parameters. A traditional simplified jet trajectory model is explicitly related to the turbulence model parameters and is shown to yield good agreement with measurement when utilizing the analytical derived turbulence model coefficients. Finally, the close agreement between the turbulence model coefficients obtained via Bayesian calibration and the analytically estimated coefficients derived in this paper is consistent with the contention that the Bayesian calibration approach is firmly rooted in the underlying physical description.« less

  19. Bayesian networks for satellite payload testing

    NASA Astrophysics Data System (ADS)

    Przytula, Krzysztof W.; Hagen, Frank; Yung, Kar

    1999-11-01

    Satellite payloads are fast increasing in complexity, resulting in commensurate growth in cost of manufacturing and operation. A need exists for a software tool, which would assist engineers in production and operation of satellite systems. We have designed and implemented a software tool, which performs part of this task. The tool aids a test engineer in debugging satellite payloads during system testing. At this stage of satellite integration and testing both the tested payload and the testing equipment represent complicated systems consisting of a very large number of components and devices. When an error is detected during execution of a test procedure, the tool presents to the engineer a ranked list of potential sources of the error and a list of recommended further tests. The engineer decides this on this basis if to perform some of the recommended additional test or replace the suspect component. The tool has been installed in payload testing facility. The tool is based on Bayesian networks, a graphical method of representing uncertainty in terms of probabilistic influences. The Bayesian network was configured using detailed flow diagrams of testing procedures and block diagrams of the payload and testing hardware. The conditional and prior probability values were initially obtained from experts and refined in later stages of design. The Bayesian network provided a very informative model of the payload and testing equipment and inspired many new ideas regarding the future test procedures and testing equipment configurations. The tool is the first step in developing a family of tools for various phases of satellite integration and operation.

  20. Natural variability of biochemical biomarkers in the macro-zoobenthos: Dependence on life stage and environmental factors.

    PubMed

    Scarduelli, Lucia; Giacchini, Roberto; Parenti, Paolo; Migliorati, Sonia; Di Brisco, Agnese Maria; Vighi, Marco

    2017-11-01

    Biomarkers are widely used in ecotoxicology as indicators of exposure to toxicants. However, their ability to provide ecologically relevant information remains controversial. One of the major problems is understanding whether the measured responses are determined by stress factors or lie within the natural variability range. In a previous work, the natural variability of enzymatic levels in invertebrates sampled in pristine rivers was proven to be relevant across both space and time. In the present study, the experimental design was improved by considering different life stages of the selected taxa and by measuring more environmental parameters. The experimental design considered sampling sites in 2 different rivers, 8 sampling dates covering the whole seasonal cycle, 4 species from 3 different taxonomic groups (Plecoptera, Perla grandis; Ephemeroptera, Baetis alpinus and Epeorus alpicula; Tricoptera, Hydropsyche pellucidula), different life stages for each species, and 4 enzymes (acetylcholinesterase, glutathione S-transferase, alkaline phosphatase, and catalase). Biomarker levels were related to environmental (physicochemical) parameters to verify any kind of dependence. Data were statistically elaborated using hierarchical multilevel Bayesian models. Natural variability was found to be relevant across both space and time. The results of the present study proved that care should be paid when interpreting biomarker results. Further research is needed to better understand the dependence of the natural variability on environmental parameters. Environ Toxicol Chem 2017;36:3158-3167. © 2017 SETAC. © 2017 SETAC.

  1. Bayesian Decision Tree for the Classification of the Mode of Motion in Single-Molecule Trajectories

    PubMed Central

    Türkcan, Silvan; Masson, Jean-Baptiste

    2013-01-01

    Membrane proteins move in heterogeneous environments with spatially (sometimes temporally) varying friction and with biochemical interactions with various partners. It is important to reliably distinguish different modes of motion to improve our knowledge of the membrane architecture and to understand the nature of interactions between membrane proteins and their environments. Here, we present an analysis technique for single molecule tracking (SMT) trajectories that can determine the preferred model of motion that best matches observed trajectories. The method is based on Bayesian inference to calculate the posteriori probability of an observed trajectory according to a certain model. Information theory criteria, such as the Bayesian information criterion (BIC), the Akaike information criterion (AIC), and modified AIC (AICc), are used to select the preferred model. The considered group of models includes free Brownian motion, and confined motion in 2nd or 4th order potentials. We determine the best information criteria for classifying trajectories. We tested its limits through simulations matching large sets of experimental conditions and we built a decision tree. This decision tree first uses the BIC to distinguish between free Brownian motion and confined motion. In a second step, it classifies the confining potential further using the AIC. We apply the method to experimental Clostridium Perfingens -toxin (CPT) receptor trajectories to show that these receptors are confined by a spring-like potential. An adaptation of this technique was applied on a sliding window in the temporal dimension along the trajectory. We applied this adaptation to experimental CPT trajectories that lose confinement due to disaggregation of confining domains. This new technique adds another dimension to the discussion of SMT data. The mode of motion of a receptor might hold more biologically relevant information than the diffusion coefficient or domain size and may be a better tool to classify and compare different SMT experiments. PMID:24376584

  2. Competing risk models in reliability systems, a weibull distribution model with bayesian analysis approach

    NASA Astrophysics Data System (ADS)

    Iskandar, Ismed; Satria Gondokaryono, Yudi

    2016-02-01

    In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range between the true value and the maximum likelihood estimated value lines.

  3. Bayesian methods for outliers detection in GNSS time series

    NASA Astrophysics Data System (ADS)

    Qianqian, Zhang; Qingming, Gui

    2013-07-01

    This article is concerned with the problem of detecting outliers in GNSS time series based on Bayesian statistical theory. Firstly, a new model is proposed to simultaneously detect different types of outliers based on the conception of introducing different types of classification variables corresponding to the different types of outliers; the problem of outlier detection is converted into the computation of the corresponding posterior probabilities, and the algorithm for computing the posterior probabilities based on standard Gibbs sampler is designed. Secondly, we analyze the reasons of masking and swamping about detecting patches of additive outliers intensively; an unmasking Bayesian method for detecting additive outlier patches is proposed based on an adaptive Gibbs sampler. Thirdly, the correctness of the theories and methods proposed above is illustrated by simulated data and then by analyzing real GNSS observations, such as cycle slips detection in carrier phase data. Examples illustrate that the Bayesian methods for outliers detection in GNSS time series proposed by this paper are not only capable of detecting isolated outliers but also capable of detecting additive outlier patches. Furthermore, it can be successfully used to process cycle slips in phase data, which solves the problem of small cycle slips.

  4. The effect of iconicity of visual displays on statistical reasoning: evidence in favor of the null hypothesis.

    PubMed

    Sirota, Miroslav; Kostovičová, Lenka; Juanchich, Marie

    2014-08-01

    Knowing which properties of visual displays facilitate statistical reasoning bears practical and theoretical implications. Therefore, we studied the effect of one property of visual diplays - iconicity (i.e., the resemblance of a visual sign to its referent) - on Bayesian reasoning. Two main accounts of statistical reasoning predict different effect of iconicity on Bayesian reasoning. The ecological-rationality account predicts a positive iconicity effect, because more highly iconic signs resemble more individuated objects, which tap better into an evolutionary-designed frequency-coding mechanism that, in turn, facilitates Bayesian reasoning. The nested-sets account predicts a null iconicity effect, because iconicity does not affect the salience of a nested-sets structure-the factor facilitating Bayesian reasoning processed by a general reasoning mechanism. In two well-powered experiments (N = 577), we found no support for a positive iconicity effect across different iconicity levels that were manipulated in different visual displays (meta-analytical overall effect: log OR = -0.13, 95% CI [-0.53, 0.28]). A Bayes factor analysis provided strong evidence in favor of the null hypothesis-the null iconicity effect. Thus, these findings corroborate the nested-sets rather than the ecological-rationality account of statistical reasoning.

  5. Applications of Bayesian Procrustes shape analysis to ensemble radar reflectivity nowcast verification

    NASA Astrophysics Data System (ADS)

    Fox, Neil I.; Micheas, Athanasios C.; Peng, Yuqiang

    2016-07-01

    This paper introduces the use of Bayesian full Procrustes shape analysis in object-oriented meteorological applications. In particular, the Procrustes methodology is used to generate mean forecast precipitation fields from a set of ensemble forecasts. This approach has advantages over other ensemble averaging techniques in that it can produce a forecast that retains the morphological features of the precipitation structures and present the range of forecast outcomes represented by the ensemble. The production of the ensemble mean avoids the problems of smoothing that result from simple pixel or cell averaging, while producing credible sets that retain information on ensemble spread. Also in this paper, the full Bayesian Procrustes scheme is used as an object verification tool for precipitation forecasts. This is an extension of a previously presented Procrustes shape analysis based verification approach into a full Bayesian format designed to handle the verification of precipitation forecasts that match objects from an ensemble of forecast fields to a single truth image. The methodology is tested on radar reflectivity nowcasts produced in the Warning Decision Support System - Integrated Information (WDSS-II) by varying parameters in the K-means cluster tracking scheme.

  6. The importance of early investigation and publishing in an emergent health and environment crisis.

    PubMed

    Murase, Kaori

    2016-10-01

    To minimize the damage resulting from a long-term environmental disaster such as the 2011 Fukushima nuclear accident in Japan, early disclosure of research data by scientists and prompt decision making by government authorities are required in place of careful, time-consuming research and deliberation about the consequences and cause of the accident. A Bayesian approach with flexible statistical modeling helps scientists and encourages government authorities to make decisions based on environmental data available in the early stages of a disaster. It is evident from Fukushima and similar accidents that classical research methods involving statistical methodologies that require rigorous experimental design and complex data sets are too cumbersome and delay important actions that may be critical in the early stages of an environmental disaster. Integr Environ Assess Manag 2016;12:680-682. © 2016 SETAC. © 2016 SETAC.

  7. Integrated Display and Simulation for Automatic Dependent Surveillance-Broadcast and Traffic Collision Avoidance System Data Fusion.

    PubMed

    Wang, Yanran; Xiao, Gang; Dai, Zhouyun

    2017-11-13

    Automatic Dependent Surveillance-Broadcast (ADS-B) is the direction of airspace surveillance development. Research analyzing the benefits of Traffic Collision Avoidance System (TCAS) and ADS-B data fusion is almost absent. The paper proposes an ADS-B minimum system from ADS-B In and ADS-B Out. In ADS-B In, a fusion model with a variable sampling Variational Bayesian-Interacting Multiple Model (VSVB-IMM) algorithm is proposed for integrated display and an airspace traffic situation display is developed by using ADS-B information. ADS-B Out includes ADS-B Out transmission based on a simulator platform and an Unmanned Aerial Vehicle (UAV) platform. This paper describes the overall implementation of ADS-B minimum system, including theoretical model design, experimental simulation verification, engineering implementation, results analysis, etc. Simulation and implementation results show that the fused system has better performance than each independent subsystem and it can work well in engineering applications.

  8. Diversity among elephant grass genotypes using Bayesian multi-trait model.

    PubMed

    Rossi, D A; Daher, R F; Barbé, T C; Lima, R S N; Costa, A F; Ribeiro, L P; Teodoro, P E; Bhering, L L

    2017-09-27

    Elephant grass is a perennial tropical grass with great potential for energy generation from biomass. The objective of this study was to estimate the genetic diversity among elephant grass accessions based on morpho-agronomic and biomass quality traits and to identify promising genotypes for obtaining hybrids with high energetic biomass production capacity. The experiment was installed at experimental area of the State Agricultural College Antônio Sarlo, in Campos dos Goytacazes. Fifty-two elephant grass genotypes were evaluated in a randomized block design with two replicates. Components of variance and the genotypic means were obtained using a Bayesian multi-trait model. We considered 350,000 iterations in the Gibbs sampler algorithm for each parameter adopted, with a warm-up period (burn-in) of 50,000 Iterations. For obtaining an uncorrelated sample, we considered five iterations (thinning) as a spacing between sampled points, which resulted in a final sample size 60,000. Subsequently, the Mahalanobis distance between each pair of genotypes was estimated. Estimates of genotypic variance indicated a favorable condition for gains in all traits. Elephant grass accessions presented greater variability for biomass quality traits, for which three groups were formed, while for the agronomic traits, two groups were formed. Crosses between Mercker Pinda México x Mercker 86-México, Mercker Pinda México x Turrialba, and Mercker 86-México x Taiwan A-25 can be carried out for obtaining elephant grass hybrids for energy purposes.

  9. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach.

    PubMed

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Changsen; Liu, Feixiang

    2017-02-15

    Common spatial pattern (CSP) is most widely used in motor imagery based brain-computer interface (BCI) systems. In conventional CSP algorithm, pairs of the eigenvectors corresponding to both extreme eigenvalues are selected to construct the optimal spatial filter. In addition, an appropriate selection of subject-specific time segments and frequency bands plays an important role in its successful application. This study proposes to optimize spatial-frequency-temporal patterns for discriminative feature extraction. Spatial optimization is implemented by channel selection and finding discriminative spatial filters adaptively on each time-frequency segment. A novel Discernibility of Feature Sets (DFS) criteria is designed for spatial filter optimization. Besides, discriminative features located in multiple time-frequency segments are selected automatically by the proposed sparse time-frequency segment common spatial pattern (STFSCSP) method which exploits sparse regression for significant features selection. Finally, a weight determined by the sparse coefficient is assigned for each selected CSP feature and we propose a Weighted Naïve Bayesian Classifier (WNBC) for classification. Experimental results on two public EEG datasets demonstrate that optimizing spatial-frequency-temporal patterns in a data-driven manner for discriminative feature extraction greatly improves the classification performance. The proposed method gives significantly better classification accuracies in comparison with several competing methods in the literature. The proposed approach is a promising candidate for future BCI systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Recursive Bayesian recurrent neural networks for time-series modeling.

    PubMed

    Mirikitani, Derrick T; Nikolaev, Nikolay

    2010-02-01

    This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.

  11. Bayesian inference to identify parameters in viscoelasticity

    NASA Astrophysics Data System (ADS)

    Rappel, Hussein; Beex, Lars A. A.; Bordas, Stéphane P. A.

    2017-08-01

    This contribution discusses Bayesian inference (BI) as an approach to identify parameters in viscoelasticity. The aims are: (i) to show that the prior has a substantial influence for viscoelasticity, (ii) to show that this influence decreases for an increasing number of measurements and (iii) to show how different types of experiments influence the identified parameters and their uncertainties. The standard linear solid model is the material description of interest and a relaxation test, a constant strain-rate test and a creep test are the tensile experiments focused on. The experimental data are artificially created, allowing us to make a one-to-one comparison between the input parameters and the identified parameter values. Besides dealing with the aforementioned issues, we believe that this contribution forms a comprehensible start for those interested in applying BI in viscoelasticity.

  12. Trust from the past: Bayesian Personalized Ranking based Link Prediction in Knowledge Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Baichuan; Choudhury, Sutanay; Al-Hasan, Mohammad

    2016-02-01

    Estimating the confidence for a link is a critical task for Knowledge Graph construction. Link prediction, or predicting the likelihood of a link in a knowledge graph based on prior state is a key research direction within this area. We propose a Latent Feature Embedding based link recommendation model for prediction task and utilize Bayesian Personalized Ranking based optimization technique for learning models for each predicate. Experimental results on large-scale knowledge bases such as YAGO2 show that our approach achieves substantially higher performance than several state-of-art approaches. Furthermore, we also study the performance of the link prediction algorithm in termsmore » of topological properties of the Knowledge Graph and present a linear regression model to reason about its expected level of accuracy.« less

  13. Bayesian Software Health Management for Aircraft Guidance, Navigation, and Control

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Mbaya, Timmy; Menghoel, Ole

    2011-01-01

    Modern aircraft, both piloted fly-by-wire commercial aircraft as well as UAVs, more and more depend on highly complex safety critical software systems with many sensors and computer-controlled actuators. Despite careful design and V&V of the software, severe incidents have happened due to malfunctioning software. In this paper, we discuss the use of Bayesian networks (BNs) to monitor the health of the on-board software and sensor system, and to perform advanced on-board diagnostic reasoning. We will focus on the approach to develop reliable and robust health models for the combined software and sensor systems.

  14. An objective Bayesian analysis of a crossover design via model selection and model averaging.

    PubMed

    Li, Dandan; Sivaganesan, Siva

    2016-11-10

    Inference about the treatment effect in a crossover design has received much attention over time owing to the uncertainty in the existence of the carryover effect and its impact on the estimation of the treatment effect. Adding to this uncertainty is that the existence of the carryover effect and its size may depend on the presence of the treatment effect and its size. We consider estimation and testing hypothesis about the treatment effect in a two-period crossover design, assuming normally distributed response variable, and use an objective Bayesian approach to test the hypothesis about the treatment effect and to estimate its size when it exists while accounting for the uncertainty about the presence of the carryover effect as well as the treatment and period effects. We evaluate and compare the performance of the proposed approach with a standard frequentist approach using simulated data, and real data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. A Bayesian model for estimating population means using a link-tracing sampling design.

    PubMed

    St Clair, Katherine; O'Connell, Daniel

    2012-03-01

    Link-tracing sampling designs can be used to study human populations that contain "hidden" groups who tend to be linked together by a common social trait. These links can be used to increase the sampling intensity of a hidden domain by tracing links from individuals selected in an initial wave of sampling to additional domain members. Chow and Thompson (2003, Survey Methodology 29, 197-205) derived a Bayesian model to estimate the size or proportion of individuals in the hidden population for certain link-tracing designs. We propose an addition to their model that will allow for the modeling of a quantitative response. We assess properties of our model using a constructed population and a real population of at-risk individuals, both of which contain two domains of hidden and nonhidden individuals. Our results show that our model can produce good point and interval estimates of the population mean and domain means when our population assumptions are satisfied. © 2011, The International Biometric Society.

  16. Bayesian Hypothesis Testing for Psychologists: A Tutorial on the Savage-Dickey Method

    ERIC Educational Resources Information Center

    Wagenmakers, Eric-Jan; Lodewyckx, Tom; Kuriyal, Himanshu; Grasman, Raoul

    2010-01-01

    In the field of cognitive psychology, the "p"-value hypothesis test has established a stranglehold on statistical reporting. This is unfortunate, as the "p"-value provides at best a rough estimate of the evidence that the data provide for the presence of an experimental effect. An alternative and arguably more appropriate measure of evidence is…

  17. A meta-analytic review of corridor effectiveness.

    PubMed

    Gilbert-Norton, Lynne; Wilson, Ryan; Stevens, John R; Beard, Karen H

    2010-06-01

    Using corridors for conservation is increasing despite a lack of consensus on their efficacy. Specifically, whether corridors increase movement of plants and animals between habitat fragments has been addressed on a case-by-case basis with mixed results. Because of the growing number of well-designed experiments that have addressed this question, we conducted a meta-analysis to determine whether corridors increase movement; whether corridor effectiveness differs among taxa; how recent changes in experimental design have influenced findings; and whether corridor effectiveness differs between manipulative and natural experiments. To conduct our meta-analysis, we analyzed 78 experiments from 35 studies using a conservative hierarchical Bayesian model that accounts for hierarchical and sampling dependence. We found a highly significant result that corridors increase movement between habitat patches by approximately 50% compared to patches that are not connected with corridors. We found that corridors were more important for the movement of invertebrates, nonavian vertebrates, and plants than they were for birds. Recent methodological advances in corridor experiments, such as controlling for the area added by corridors, did not influence whether corridors increased movement, whereas controlling for the distance between source and connected or unconnected recipient patches decreased movement through corridors. After controlling for taxa differences and whether studies controlled for distance in experimental design, we found that natural corridors (those existing in landscapes prior to the study) showed more movement than manipulated corridors (those created and maintained for the study). Our results suggest that existing corridors increase species movement in fragmented landscapes and that efforts spent on maintaining and creating corridors are worthwhile.

  18. A Bayesian approach for parameter estimation and prediction using a computationally intensive model

    DOE PAGES

    Higdon, Dave; McDonnell, Jordan D.; Schunck, Nicolas; ...

    2015-02-05

    Bayesian methods have been successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based modelmore » $$\\eta (\\theta )$$, where θ denotes the uncertain, best input setting. Hence the statistical model is of the form $$y=\\eta (\\theta )+\\epsilon ,$$ where $$\\epsilon $$ accounts for measurement, and possibly other, error sources. When nonlinearity is present in $$\\eta (\\cdot )$$, the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and nonstandard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. Although generally applicable, MCMC requires thousands (or even millions) of evaluations of the physics model $$\\eta (\\cdot )$$. This requirement is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory model, using experimental mass/binding energy measurements from a collection of atomic nuclei. Lastly, we also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory.« less

  19. Propagation of population pharmacokinetic information using a Bayesian approach: comparison with meta-analysis.

    PubMed

    Dokoumetzidis, Aristides; Aarons, Leon

    2005-08-01

    We investigated the propagation of population pharmacokinetic information across clinical studies by applying Bayesian techniques. The aim was to summarize the population pharmacokinetic estimates of a study in appropriate statistical distributions in order to use them as Bayesian priors in consequent population pharmacokinetic analyses. Various data sets of simulated and real clinical data were fitted with WinBUGS, with and without informative priors. The posterior estimates of fittings with non-informative priors were used to build parametric informative priors and the whole procedure was carried on in a consecutive manner. The posterior distributions of the fittings with informative priors where compared to those of the meta-analysis fittings of the respective combinations of data sets. Good agreement was found, for the simulated and experimental datasets when the populations were exchangeable, with the posterior distribution from the fittings with the prior to be nearly identical to the ones estimated with meta-analysis. However, when populations were not exchangeble an alternative parametric form for the prior, the natural conjugate prior, had to be used in order to have consistent results. In conclusion, the results of a population pharmacokinetic analysis may be summarized in Bayesian prior distributions that can be used consecutively with other analyses. The procedure is an alternative to meta-analysis and gives comparable results. It has the advantage that it is faster than the meta-analysis, due to the large datasets used with the latter and can be performed when the data included in the prior are not actually available.

  20. Properties of inductive reasoning.

    PubMed

    Heit, E

    2000-12-01

    This paper reviews the main psychological phenomena of inductive reasoning, covering 25 years of experimental and model-based research, in particular addressing four questions. First, what makes a case or event generalizable to other cases? Second, what makes a set of cases generalizable? Third, what makes a property or predicate projectable? Fourth, how do psychological models of induction address these results? The key results in inductive reasoning are outlined, and several recent models, including a new Bayesian account, are evaluated with respect to these results. In addition, future directions for experimental and model-based work are proposed.

  1. Understanding causality and uncertainty in volcanic observations: An example of forecasting eruptive activity on Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Sheldrake, T. E.; Aspinall, W. P.; Odbert, H. M.; Wadge, G.; Sparks, R. S. J.

    2017-07-01

    Following a cessation in eruptive activity it is important to understand how a volcano will behave in the future and when it may next erupt. Such an assessment can be based on the volcano's long-term pattern of behaviour and insights into its current state via monitoring observations. We present a Bayesian network that integrates these two strands of evidence to forecast future eruptive scenarios using expert elicitation. The Bayesian approach provides a framework to quantify the magmatic causes in terms of volcanic effects (i.e., eruption and unrest). In October 2013, an expert elicitation was performed to populate a Bayesian network designed to help forecast future eruptive (in-)activity at Soufrière Hills Volcano. The Bayesian network was devised to assess the state of the shallow magmatic system, as a means to forecast the future eruptive activity in the context of the long-term behaviour at similar dome-building volcanoes. The findings highlight coherence amongst experts when interpreting the current behaviour of the volcano, but reveal considerable ambiguity when relating this to longer patterns of volcanism at dome-building volcanoes, as a class. By asking questions in terms of magmatic causes, the Bayesian approach highlights the importance of using short-term unrest indicators from monitoring data as evidence in long-term forecasts at volcanoes. Furthermore, it highlights potential biases in the judgements of volcanologists and identifies sources of uncertainty in terms of magmatic causes rather than scenario-based outcomes.

  2. Bayesian Approach for Reliability Assessment of Sunshield Deployment on JWST

    NASA Technical Reports Server (NTRS)

    Kaminskiy, Mark P.; Evans, John W.; Gallo, Luis D.

    2013-01-01

    Deployable subsystems are essential to mission success of most spacecraft. These subsystems enable critical functions including power, communications and thermal control. The loss of any of these functions will generally result in loss of the mission. These subsystems and their components often consist of unique designs and applications, for which various standardized data sources are not applicable for estimating reliability and for assessing risks. In this study, a Bayesian approach for reliability estimation of spacecraft deployment was developed for this purpose. This approach was then applied to the James Webb Space Telescope (JWST) Sunshield subsystem, a unique design intended for thermal control of the observatory's telescope and science instruments. In order to collect the prior information on deployable systems, detailed studies of "heritage information", were conducted extending over 45 years of spacecraft launches. The NASA Goddard Space Flight Center (GSFC) Spacecraft Operational Anomaly and Reporting System (SOARS) data were then used to estimate the parameters of the conjugative beta prior distribution for anomaly and failure occurrence, as the most consistent set of available data and that could be matched to launch histories. This allows for an emperical Bayesian prediction for the risk of an anomaly occurrence of the complex Sunshield deployment, with credibility limits, using prior deployment data and test information.

  3. A Bayesian Framework for Reliability Analysis of Spacecraft Deployments

    NASA Technical Reports Server (NTRS)

    Evans, John W.; Gallo, Luis; Kaminsky, Mark

    2012-01-01

    Deployable subsystems are essential to mission success of most spacecraft. These subsystems enable critical functions including power, communications and thermal control. The loss of any of these functions will generally result in loss of the mission. These subsystems and their components often consist of unique designs and applications for which various standardized data sources are not applicable for estimating reliability and for assessing risks. In this study, a two stage sequential Bayesian framework for reliability estimation of spacecraft deployment was developed for this purpose. This process was then applied to the James Webb Space Telescope (JWST) Sunshield subsystem, a unique design intended for thermal control of the Optical Telescope Element. Initially, detailed studies of NASA deployment history, "heritage information", were conducted, extending over 45 years of spacecraft launches. This information was then coupled to a non-informative prior and a binomial likelihood function to create a posterior distribution for deployments of various subsystems uSing Monte Carlo Markov Chain sampling. Select distributions were then coupled to a subsequent analysis, using test data and anomaly occurrences on successive ground test deployments of scale model test articles of JWST hardware, to update the NASA heritage data. This allowed for a realistic prediction for the reliability of the complex Sunshield deployment, with credibility limits, within this two stage Bayesian framework.

  4. Probing Quark-Gluon-Plasma properties with a Bayesian model-to-data comparison

    NASA Astrophysics Data System (ADS)

    Cai, Tianji; Bernhard, Jonah; Ke, Weiyao; Bass, Steffen; Duke QCD Group Team

    2016-09-01

    Experiments at RHIC and LHC study a special state of matter called the Quark Gluon Plasma (QGP), where quarks and gluons roam freely, by colliding relativistic heavy-ions. Given the transitory nature of the QGP, its properties can only be explored by comparing computational models of its formation and evolution to experimental data. The models fall, roughly speaking, under two categories-those solely using relativistic viscous hydrodynamics (pure hydro model) and those that in addition couple to a microscopic Boltzmann transport for the later evolution of the hadronic decay products (hybrid model). Each of these models has multiple parameters that encode the physical properties we want to probe and that need to be calibrated to experimental data, a task which is computationally expensive, but necessary for the knowledge extraction and determination of the models' quality. Our group has developed an analysis technique based on Bayesian Statistics to perform the model calibration and to extract probability distributions for each model parameter. Following the previous work that applies the technique to the hybrid model, we now perform a similar analysis on a pure-hydro model and display the posterior distributions for the same set of model parameters. We also develop a set of criteria to assess the quality of the two models with respect to their ability to describe current experimental data. Funded by Duke University Goldman Sachs Research Fellowship.

  5. Modelling Odor Decoding in the Antennal Lobe by Combining Sequential Firing Rate Models with Bayesian Inference

    PubMed Central

    Cuevas Rivera, Dario; Bitzer, Sebastian; Kiebel, Stefan J.

    2015-01-01

    The olfactory information that is received by the insect brain is encoded in the form of spatiotemporal patterns in the projection neurons of the antennal lobe. These dense and overlapping patterns are transformed into a sparse code in Kenyon cells in the mushroom body. Although it is clear that this sparse code is the basis for rapid categorization of odors, it is yet unclear how the sparse code in Kenyon cells is computed and what information it represents. Here we show that this computation can be modeled by sequential firing rate patterns using Lotka-Volterra equations and Bayesian online inference. This new model can be understood as an ‘intelligent coincidence detector’, which robustly and dynamically encodes the presence of specific odor features. We found that the model is able to qualitatively reproduce experimentally observed activity in both the projection neurons and the Kenyon cells. In particular, the model explains mechanistically how sparse activity in the Kenyon cells arises from the dense code in the projection neurons. The odor classification performance of the model proved to be robust against noise and time jitter in the observed input sequences. As in recent experimental results, we found that recognition of an odor happened very early during stimulus presentation in the model. Critically, by using the model, we found surprising but simple computational explanations for several experimental phenomena. PMID:26451888

  6. Evaluating experimental design for soil-plant model selection using a Bootstrap Filter and Bayesian model averaging

    NASA Astrophysics Data System (ADS)

    Wöhling, T.; Schöniger, A.; Geiges, A.; Nowak, W.; Gayler, S.

    2013-12-01

    The objective selection of appropriate models for realistic simulations of coupled soil-plant processes is a challenging task since the processes are complex, not fully understood at larger scales, and highly non-linear. Also, comprehensive data sets are scarce, and measurements are uncertain. In the past decades, a variety of different models have been developed that exhibit a wide range of complexity regarding their approximation of processes in the coupled model compartments. We present a method for evaluating experimental design for maximum confidence in the model selection task. The method considers uncertainty in parameters, measurements and model structures. Advancing the ideas behind Bayesian Model Averaging (BMA), we analyze the changes in posterior model weights and posterior model choice uncertainty when more data are made available. This allows assessing the power of different data types, data densities and data locations in identifying the best model structure from among a suite of plausible models. The models considered in this study are the crop models CERES, SUCROS, GECROS and SPASS, which are coupled to identical routines for simulating soil processes within the modelling framework Expert-N. The four models considerably differ in the degree of detail at which crop growth and root water uptake are represented. Monte-Carlo simulations were conducted for each of these models considering their uncertainty in soil hydraulic properties and selected crop model parameters. Using a Bootstrap Filter (BF), the models were then conditioned on field measurements of soil moisture, matric potential, leaf-area index, and evapotranspiration rates (from eddy-covariance measurements) during a vegetation period of winter wheat at a field site at the Swabian Alb in Southwestern Germany. Following our new method, we derived model weights when using all data or different subsets thereof. We discuss to which degree the posterior mean outperforms the prior mean and all individual posterior models, how informative the data types were for reducing prediction uncertainty of evapotranspiration and deep drainage, and how well the model structure can be identified based on the different data types and subsets. We further analyze the impact of measurement uncertainty und systematic model errors on the effective sample size of the BF and the resulting model weights.

  7. A Bayesian state-space approach for damage detection and classification

    NASA Astrophysics Data System (ADS)

    Dzunic, Zoran; Chen, Justin G.; Mobahi, Hossein; Büyüköztürk, Oral; Fisher, John W.

    2017-11-01

    The problem of automatic damage detection in civil structures is complex and requires a system that can interpret collected sensor data into meaningful information. We apply our recently developed switching Bayesian model for dependency analysis to the problems of damage detection and classification. The model relies on a state-space approach that accounts for noisy measurement processes and missing data, which also infers the statistical temporal dependency between measurement locations signifying the potential flow of information within the structure. A Gibbs sampling algorithm is used to simultaneously infer the latent states, parameters of the state dynamics, the dependence graph, and any changes in behavior. By employing a fully Bayesian approach, we are able to characterize uncertainty in these variables via their posterior distribution and provide probabilistic estimates of the occurrence of damage or a specific damage scenario. We also implement a single class classification method which is more realistic for most real world situations where training data for a damaged structure is not available. We demonstrate the methodology with experimental test data from a laboratory model structure and accelerometer data from a real world structure during different environmental and excitation conditions.

  8. Nuclear charge radii: density functional theory meets Bayesian neural networks

    NASA Astrophysics Data System (ADS)

    Utama, R.; Chen, Wei-Chia; Piekarewicz, J.

    2016-11-01

    The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. The aim of this study is to explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain.

  9. Hybrid-coded 3D structured illumination imaging with Bayesian estimation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Hsun; Luo, Yuan; Singh, Vijay R.

    2016-03-01

    Light induced fluorescent microscopy has long been developed to observe and understand the object at microscale, such as cellular sample. However, the transfer function of lense-based imaging system limits the resolution so that the fine and detailed structure of sample cannot be identified clearly. The techniques of resolution enhancement are fascinated to break the limit of resolution for objective given. In the past decades, the resolution enhancement imaging has been investigated through variety of strategies, including photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), stimulated emission depletion (STED), and structure illuminated microscopy (SIM). In those methods, only SIM can intrinsically improve the resolution limit for a system without taking the structure properties of object into account. In this paper, we develop a SIM associated with Bayesian estimation, furthermore, with optical sectioning capability rendered from HiLo processing, resulting the high resolution through 3D volume. This 3D SIM can provide the optical sectioning and resolution enhancement performance, and be robust to noise owing to the Data driven Bayesian estimation reconstruction proposed. For validating the 3D SIM, we show our simulation result of algorithm, and the experimental result demonstrating the 3D resolution enhancement.

  10. Bayesian energy landscape tilting: towards concordant models of molecular ensembles.

    PubMed

    Beauchamp, Kyle A; Pande, Vijay S; Das, Rhiju

    2014-03-18

    Predicting biological structure has remained challenging for systems such as disordered proteins that take on myriad conformations. Hybrid simulation/experiment strategies have been undermined by difficulties in evaluating errors from computational model inaccuracies and data uncertainties. Building on recent proposals from maximum entropy theory and nonequilibrium thermodynamics, we address these issues through a Bayesian energy landscape tilting (BELT) scheme for computing Bayesian hyperensembles over conformational ensembles. BELT uses Markov chain Monte Carlo to directly sample maximum-entropy conformational ensembles consistent with a set of input experimental observables. To test this framework, we apply BELT to model trialanine, starting from disagreeing simulations with the force fields ff96, ff99, ff99sbnmr-ildn, CHARMM27, and OPLS-AA. BELT incorporation of limited chemical shift and (3)J measurements gives convergent values of the peptide's α, β, and PPII conformational populations in all cases. As a test of predictive power, all five BELT hyperensembles recover set-aside measurements not used in the fitting and report accurate errors, even when starting from highly inaccurate simulations. BELT's principled framework thus enables practical predictions for complex biomolecular systems from discordant simulations and sparse data. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. A cost minimisation and Bayesian inference model predicts startle reflex modulation across species.

    PubMed

    Bach, Dominik R

    2015-04-07

    In many species, rapid defensive reflexes are paramount to escaping acute danger. These reflexes are modulated by the state of the environment. This is exemplified in fear-potentiated startle, a more vigorous startle response during conditioned anticipation of an unrelated threatening event. Extant explanations of this phenomenon build on descriptive models of underlying psychological states, or neural processes. Yet, they fail to predict invigorated startle during reward anticipation and instructed attention, and do not explain why startle reflex modulation evolved. Here, we fill this lacuna by developing a normative cost minimisation model based on Bayesian optimality principles. This model predicts the observed pattern of startle modification by rewards, punishments, instructed attention, and several other states. Moreover, the mathematical formalism furnishes predictions that can be tested experimentally. Comparing the model with existing data suggests a specific neural implementation of the underlying computations which yields close approximations to the optimal solution under most circumstances. This analysis puts startle modification into the framework of Bayesian decision theory and predictive coding, and illustrates the importance of an adaptive perspective to interpret defensive behaviour across species. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  12. Calculating shock arrival in expansion tubes and shock tunnels using Bayesian changepoint analysis

    NASA Astrophysics Data System (ADS)

    James, Christopher M.; Bourke, Emily J.; Gildfind, David E.

    2018-06-01

    To understand the flow conditions generated in expansion tubes and shock tunnels, shock speeds are generally calculated based on shock arrival times at high-frequency wall-mounted pressure transducers. These calculations require that the shock arrival times are obtained accurately. This can be non-trivial for expansion tubes especially because pressure rises may be small and shock speeds high. Inaccurate shock arrival times can be a significant source of uncertainty. To help address this problem, this paper investigates two separate but complimentary techniques. Principally, it proposes using a Bayesian changepoint detection method to automatically calculate shock arrival, potentially reducing error and simplifying the shock arrival finding process. To compliment this, a technique for filtering the raw data without losing the shock arrival time is also presented and investigated. To test the validity of the proposed techniques, tests are performed using both a theoretical step change with different levels of noise and real experimental data. It was found that with conditions added to ensure that a real shock arrival time was found, the Bayesian changepoint analysis method was able to automatically find the shock arrival time, even for noisy signals.

  13. A novel Pareto-based Bayesian approach on extension of the infogram for extracting repetitive transients

    NASA Astrophysics Data System (ADS)

    Gu, Xiaohui; Yang, Shaopu; Liu, Yongqiang; Hao, Rujiang

    2018-06-01

    Two most important signatures of repetitive transients in the vibration signals of a faulty rotating machine are impulsiveness and cyclostationarity. In the newly proposed infogram, the time-domain and frequency-domain spectral negentropy were put forward to characterize these two aspects, respectively. However, in extension of the infogram to Bayesian inference based optimal wavelet filtering, only one spectral negentropy was employed in identifying the informative frequency band. To overcome its drawback, a novel Pareto-based Bayesian approach was proposed in this paper. The Pareto optimal solutions which can simultaneously maximize the time-domain and frequency-domain spectral negentropy were utilized in estimating the posterior wavelet parameters distributions. Moreover, the relationship between the impulsive and cyclostationary signatures was established by the domination. It can help balance the contributions due to these two aspects other than simply synthesize by the average weight in the infogram. Three instance studies including simulated and experimental signals were investigated to illustrate the effectiveness of the proposed method by challenging different noises and interferences. In addition, some comparisons with the aforementioned peer methods were also conducted to show its superiority and robustness in extracting the repetitive transients.

  14. Robust phenotyping strategies for evaluation of stem non-structural carbohydrates (NSC) in rice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Diane R.; Wolfrum, Edward J.; Virk, Parminder

    Rice plants ( Oryza sativa) accumulate excess photoassimilates in the form of non-structural carbohydrates (NSCs) in their stems prior to heading that can later be mobilized to supplement photosynthate production during grain-filling. Despite longstanding interest in stem NSC for rice improvement, the dynamics of NSC accumulation, remobilization, and re-accumulation that have genetic potential for optimization have not been systematically investigated. Here we conducted three pilot experiments to lay the groundwork for large-scale diversity studies on rice stem NSC. We assessed the relationship of stem NSC components with 21 agronomic traits in large-scale, tropical yield trials using 33 breeder-nominated lines, establishedmore » an appropriate experimental design for future genetic studies using a Bayesian framework to sample sub-datasets from highly replicated greenhouse data using 36 genetically diverse genotypes, and used 434 phenotypically divergent rice stem samples to develop two partial least-squares (PLS) models using near-infrared (NIR) spectra for accurate, rapid prediction of rice stem starch, sucrose, and total non-structural carbohydrates. Lastly, we find evidence that stem reserves are most critical for short-duration varieties and suggest that pre-heading stem NSC is worthy of further experimentation for breeding early maturing rice.« less

  15. Robust phenotyping strategies for evaluation of stem non-structural carbohydrates (NSC) in rice

    PubMed Central

    Wang, Diane R.; Wolfrum, Edward J.; Virk, Parminder; Ismail, Abdelbagi; Greenberg, Anthony J.; McCouch, Susan R.

    2016-01-01

    Rice plants (Oryza sativa) accumulate excess photoassimilates in the form of non-structural carbohydrates (NSCs) in their stems prior to heading that can later be mobilized to supplement photosynthate production during grain-filling. Despite longstanding interest in stem NSC for rice improvement, the dynamics of NSC accumulation, remobilization, and re-accumulation that have genetic potential for optimization have not been systematically investigated. Here we conducted three pilot experiments to lay the groundwork for large-scale diversity studies on rice stem NSC. We assessed the relationship of stem NSC components with 21 agronomic traits in large-scale, tropical yield trials using 33 breeder-nominated lines, established an appropriate experimental design for future genetic studies using a Bayesian framework to sample sub-datasets from highly replicated greenhouse data using 36 genetically diverse genotypes, and used 434 phenotypically divergent rice stem samples to develop two partial least-squares (PLS) models using near-infrared (NIR) spectra for accurate, rapid prediction of rice stem starch, sucrose, and total non-structural carbohydrates. We find evidence that stem reserves are most critical for short-duration varieties and suggest that pre-heading stem NSC is worthy of further experimentation for breeding early maturing rice. PMID:27707775

  16. Robust phenotyping strategies for evaluation of stem non-structural carbohydrates (NSC) in rice

    DOE PAGES

    Wang, Diane R.; Wolfrum, Edward J.; Virk, Parminder; ...

    2016-10-05

    Rice plants ( Oryza sativa) accumulate excess photoassimilates in the form of non-structural carbohydrates (NSCs) in their stems prior to heading that can later be mobilized to supplement photosynthate production during grain-filling. Despite longstanding interest in stem NSC for rice improvement, the dynamics of NSC accumulation, remobilization, and re-accumulation that have genetic potential for optimization have not been systematically investigated. Here we conducted three pilot experiments to lay the groundwork for large-scale diversity studies on rice stem NSC. We assessed the relationship of stem NSC components with 21 agronomic traits in large-scale, tropical yield trials using 33 breeder-nominated lines, establishedmore » an appropriate experimental design for future genetic studies using a Bayesian framework to sample sub-datasets from highly replicated greenhouse data using 36 genetically diverse genotypes, and used 434 phenotypically divergent rice stem samples to develop two partial least-squares (PLS) models using near-infrared (NIR) spectra for accurate, rapid prediction of rice stem starch, sucrose, and total non-structural carbohydrates. Lastly, we find evidence that stem reserves are most critical for short-duration varieties and suggest that pre-heading stem NSC is worthy of further experimentation for breeding early maturing rice.« less

  17. Assessing reliability of fatigue indicator parameters for small crack growth via a probabilistic framework

    NASA Astrophysics Data System (ADS)

    Rovinelli, Andrea; Guilhem, Yoann; Proudhon, Henry; Lebensohn, Ricardo A.; Ludwig, Wolfgang; Sangid, Michael D.

    2017-06-01

    Microstructurally small cracks exhibit large variability in their fatigue crack growth rate. It is accepted that the inherent variability in microstructural features is related to the uncertainty in the growth rate. However, due to (i) the lack of cycle-by-cycle experimental data, (ii) the complexity of the short crack growth phenomenon, and (iii) the incomplete physics of constitutive relationships, only empirical damage metrics have been postulated to describe the short crack driving force metric (SCDFM) at the mesoscale level. The identification of the SCDFM of polycrystalline engineering alloys is a critical need, in order to achieve more reliable fatigue life prediction and improve material design. In this work, the first steps in the development of a general probabilistic framework are presented, which uses experimental result as an input, retrieves missing experimental data through crystal plasticity (CP) simulations, and extracts correlations utilizing machine learning and Bayesian networks (BNs). More precisely, experimental results representing cycle-by-cycle data of a short crack growing through a beta-metastable titanium alloy, VST-55531, have been acquired via phase and diffraction contrast tomography. These results serve as an input for FFT-based CP simulations, which provide the micromechanical fields influenced by the presence of the crack, complementing the information available from the experiment. In order to assess the correlation between postulated SCDFM and experimental observations, the data is mined and analyzed utilizing BNs. Results show the ability of the framework to autonomously capture relevant correlations and the equivalence in the prediction capability of different postulated SCDFMs for the high cycle fatigue regime.

  18. Uncertainty estimation of a complex water quality model: The influence of Box-Cox transformation on Bayesian approaches and comparison with a non-Bayesian method

    NASA Astrophysics Data System (ADS)

    Freni, Gabriele; Mannina, Giorgio

    In urban drainage modelling, uncertainty analysis is of undoubted necessity. However, uncertainty analysis in urban water-quality modelling is still in its infancy and only few studies have been carried out. Therefore, several methodological aspects still need to be experienced and clarified especially regarding water quality modelling. The use of the Bayesian approach for uncertainty analysis has been stimulated by its rigorous theoretical framework and by the possibility of evaluating the impact of new knowledge on the modelling predictions. Nevertheless, the Bayesian approach relies on some restrictive hypotheses that are not present in less formal methods like the Generalised Likelihood Uncertainty Estimation (GLUE). One crucial point in the application of Bayesian method is the formulation of a likelihood function that is conditioned by the hypotheses made regarding model residuals. Statistical transformations, such as the use of Box-Cox equation, are generally used to ensure the homoscedasticity of residuals. However, this practice may affect the reliability of the analysis leading to a wrong uncertainty estimation. The present paper aims to explore the influence of the Box-Cox equation for environmental water quality models. To this end, five cases were considered one of which was the “real” residuals distributions (i.e. drawn from available data). The analysis was applied to the Nocella experimental catchment (Italy) which is an agricultural and semi-urbanised basin where two sewer systems, two wastewater treatment plants and a river reach were monitored during both dry and wet weather periods. The results show that the uncertainty estimation is greatly affected by residual transformation and a wrong assumption may also affect the evaluation of model uncertainty. The use of less formal methods always provide an overestimation of modelling uncertainty with respect to Bayesian method but such effect is reduced if a wrong assumption is made regarding the residuals distribution. If residuals are not normally distributed, the uncertainty is over-estimated if Box-Cox transformation is not applied or non-calibrated parameter is used.

  19. A practical Bayesian stepped wedge design for community-based cluster-randomized clinical trials: The British Columbia Telehealth Trial.

    PubMed

    Cunanan, Kristen M; Carlin, Bradley P; Peterson, Kevin A

    2016-12-01

    Many clinical trial designs are impractical for community-based clinical intervention trials. Stepped wedge trial designs provide practical advantages, but few descriptions exist of their clinical implementational features, statistical design efficiencies, and limitations. Enhance efficiency of stepped wedge trial designs by evaluating the impact of design characteristics on statistical power for the British Columbia Telehealth Trial. The British Columbia Telehealth Trial is a community-based, cluster-randomized, controlled clinical trial in rural and urban British Columbia. To determine the effect of an Internet-based telehealth intervention on healthcare utilization, 1000 subjects with an existing diagnosis of congestive heart failure or type 2 diabetes will be enrolled from 50 clinical practices. Hospital utilization is measured using a composite of disease-specific hospital admissions and emergency visits. The intervention comprises online telehealth data collection and counseling provided to support a disease-specific action plan developed by the primary care provider. The planned intervention is sequentially introduced across all participating practices. We adopt a fully Bayesian, Markov chain Monte Carlo-driven statistical approach, wherein we use simulation to determine the effect of cluster size, sample size, and crossover interval choice on type I error and power to evaluate differences in hospital utilization. For our Bayesian stepped wedge trial design, simulations suggest moderate decreases in power when crossover intervals from control to intervention are reduced from every 3 to 2 weeks, and dramatic decreases in power as the numbers of clusters decrease. Power and type I error performance were not notably affected by the addition of nonzero cluster effects or a temporal trend in hospitalization intensity. Stepped wedge trial designs that intervene in small clusters across longer periods can provide enhanced power to evaluate comparative effectiveness, while offering practical implementation advantages in geographic stratification, temporal change, use of existing data, and resource distribution. Current population estimates were used; however, models may not reflect actual event rates during the trial. In addition, temporal or spatial heterogeneity can bias treatment effect estimates. © The Author(s) 2016.

  20. Bayesian dose selection design for a binary outcome using restricted response adaptive randomization.

    PubMed

    Meinzer, Caitlyn; Martin, Renee; Suarez, Jose I

    2017-09-08

    In phase II trials, the most efficacious dose is usually not known. Moreover, given limited resources, it is difficult to robustly identify a dose while also testing for a signal of efficacy that would support a phase III trial. Recent designs have sought to be more efficient by exploring multiple doses through the use of adaptive strategies. However, the added flexibility may potentially increase the risk of making incorrect assumptions and reduce the total amount of information available across the dose range as a function of imbalanced sample size. To balance these challenges, a novel placebo-controlled design is presented in which a restricted Bayesian response adaptive randomization (RAR) is used to allocate a majority of subjects to the optimal dose of active drug, defined as the dose with the lowest probability of poor outcome. However, the allocation between subjects who receive active drug or placebo is held constant to retain the maximum possible power for a hypothesis test of overall efficacy comparing the optimal dose to placebo. The design properties and optimization of the design are presented in the context of a phase II trial for subarachnoid hemorrhage. For a fixed total sample size, a trade-off exists between the ability to select the optimal dose and the probability of rejecting the null hypothesis. This relationship is modified by the allocation ratio between active and control subjects, the choice of RAR algorithm, and the number of subjects allocated to an initial fixed allocation period. While a responsive RAR algorithm improves the ability to select the correct dose, there is an increased risk of assigning more subjects to a worse arm as a function of ephemeral trends in the data. A subarachnoid treatment trial is used to illustrate how this design can be customized for specific objectives and available data. Bayesian adaptive designs are a flexible approach to addressing multiple questions surrounding the optimal dose for treatment efficacy within the context of limited resources. While the design is general enough to apply to many situations, future work is needed to address interim analyses and the incorporation of models for dose response.

  1. Designing Cognitively Diagnostic Assessment for Algebraic Content Knowledge and Thinking Skills

    ERIC Educational Resources Information Center

    Zhang, Zhidong

    2018-01-01

    This study explored a diagnostic assessment method that emphasized the cognitive process of algebra learning. The study utilized a design and a theory-driven model to examine the content knowledge. Using the theory driven model, the thinking skills of algebra learning was also examined. A Bayesian network model was applied to represent the theory…

  2. A Simple Effect Size Estimator for Single Case Designs Using WinBUGS

    ERIC Educational Resources Information Center

    Rindskopf, David; Shadish, William; Hedges, Larry V.

    2012-01-01

    This conference presentation demonstrates a multilevel model for analyzing single case designs. The model is implemented in the Bayesian program WinBUGS. The authors show how it is possible to estimate a d-statistic like the one in Hedges, Pustejovsky and Shadish (2012) in this program. Results are demonstrated on an example.

  3. Acoustic emission based damage localization in composites structures using Bayesian identification

    NASA Astrophysics Data System (ADS)

    Kundu, A.; Eaton, M. J.; Al-Jumali, S.; Sikdar, S.; Pullin, R.

    2017-05-01

    Acoustic emission based damage detection in composite structures is based on detection of ultra high frequency packets of acoustic waves emitted from damage sources (such as fibre breakage, fatigue fracture, amongst others) with a network of distributed sensors. This non-destructive monitoring scheme requires solving an inverse problem where the measured signals are linked back to the location of the source. This in turn enables rapid deployment of mitigative measures. The presence of significant amount of uncertainty associated with the operating conditions and measurements makes the problem of damage identification quite challenging. The uncertainties stem from the fact that the measured signals are affected by the irregular geometries, manufacturing imprecision, imperfect boundary conditions, existing damages/structural degradation, amongst others. This work aims to tackle these uncertainties within a framework of automated probabilistic damage detection. The method trains a probabilistic model of the parametrized input and output model of the acoustic emission system with experimental data to give probabilistic descriptors of damage locations. A response surface modelling the acoustic emission as a function of parametrized damage signals collected from sensors would be calibrated with a training dataset using Bayesian inference. This is used to deduce damage locations in the online monitoring phase. During online monitoring, the spatially correlated time data is utilized in conjunction with the calibrated acoustic emissions model to infer the probabilistic description of the acoustic emission source within a hierarchical Bayesian inference framework. The methodology is tested on a composite structure consisting of carbon fibre panel with stiffeners and damage source behaviour has been experimentally simulated using standard H-N sources. The methodology presented in this study would be applicable in the current form to structural damage detection under varying operational loads and would be investigated in future studies.

  4. ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling | Office of Cancer Genomics

    Cancer.gov

    Functional genomics (FG) screens, using RNAi or CRISPR technology, have become a standard tool for systematic, genome-wide loss-of-function studies for therapeutic target discovery. As in many large-scale assays, however, off-target effects, variable reagents' potency and experimental noise must be accounted for appropriately control for false positives.

  5. Application of Turchin's method of statistical regularization

    NASA Astrophysics Data System (ADS)

    Zelenyi, Mikhail; Poliakova, Mariia; Nozik, Alexander; Khudyakov, Alexey

    2018-04-01

    During analysis of experimental data, one usually needs to restore a signal after it has been convoluted with some kind of apparatus function. According to Hadamard's definition this problem is ill-posed and requires regularization to provide sensible results. In this article we describe an implementation of the Turchin's method of statistical regularization based on the Bayesian approach to the regularization strategy.

  6. Constraining the symmetry energy with heavy-ion collisions and Bayesian analysis

    NASA Astrophysics Data System (ADS)

    Tsang, C. Y.; Jhang, G.; Morfouace, P.; Lynch, W. G.; Tsang, M. B.; HiRA Collaboration

    2017-09-01

    To extract constraints on symmetry energy terms in nuclear Equation of State (EoS), data from heavy ion reactions, are often compared to calculations from transport models. As multiple model input parameters are needed in the transport model, it is necessary to do multi-parameter analysis to understand the relationship especially if strong correlations exist among the parameters. In this talk, I will discuss how four symmetry energy parameters, So, (Symmetry energy) and L (slope) at saturation density as well as the nucleon scaler effective mass (ms*) and the nucleon effective mass splitting, (FI) are obtained by comparing transport mode results with experimental data such as isospin diffusions and n/p spectral ratios using MADAI Bayesian analysis software. Probability of each parameter having a certain value given experimental data can be calculated with Bayes theorem by Markov Chain Monte Carlo integration. Results using single and double ratios of neutron and proton spectra from 124Sn +124Sn, 112Sn +112Sn collisions at 120 MeV/u as well as isospin diffusion from Sn +Sn isotopes, at 50 and 35 MeV/u will be presented. This research is supported by the National Science Foundation under Grant No. PHY-1565546.

  7. Organellar proteome analyses of ricin toxin-treated HeLa cells.

    PubMed

    Liao, Peng; Li, Yunhu; Li, Hongyang; Liu, Wensen

    2016-07-01

    Apoptosis triggered by ricin toxin (RT) has previously been associated with certain cellular organellar compartments, but the diversity in the composition of the organellar proteins remains unclear. Here, we applied a shotgun proteomics strategy to examine the differential expression of proteins in the mitochondria, nuclei, and cytoplasm of HeLa cells treated and not treated with RT. Data were combined with a global bioinformatics analysis and experimental confirmations. A total of 3107 proteins were identified. Bioinformatics predictors (Proteome Analyst, WoLF PSORT, TargetP, MitoPred, Nucleo, MultiLoc, and k-nearest neighbor) and a Bayesian model that integrated these predictors were used to predict the locations of 1349 distinct organellar proteins. Our data indicate that the Bayesian model was more efficient than the individual implementation of these predictors. Additionally, a Biomolecular Interaction Network (BIN) analysis was used to identify 149 BIN subnetworks. Our experimental confirmations indicate that certain apoptosis-related proteins (e.g. cytochrome c, enolase, lamin B, Bax, and Drp1) were found to be translocated and had variable expression levels. These results provide new insights for the systematic understanding of RT-induced apoptosis responses. © The Author(s) 2014.

  8. Exploring Quantum Dynamics of Continuous Measurement with a Superconducting Qubit

    NASA Astrophysics Data System (ADS)

    Jadbabaie, Arian; Forouzani, Neda; Tan, Dian; Murch, Kater

    Weak measurements obtain partial information about a quantum state with minimal backaction. This enables state tracking without immediate collapse to eigenstates, of interest to both experimental and theoretical physics. State tomography and continuous weak measurements may be used to reconstruct the evolution of a single system, known as a quantum trajectory. We examine experimental trajectories of a two-level system at varied measurement strengths with constant unitary drive. Our analysis is applied to a transmon qubit dispersively coupled to a 3D microwave cavity in the circuit QED architecture. The weakly coupled cavity acts as pointer system for QND measurements in the qubit's energy basis. Our results indicate a marked difference in state purity between two approaches for trajectory reconstruction: the Bayesian and Stochastic Master Equation (SME) formalisms. Further, we observe the transition from diffusive to jump-like trajectories, state purity evolution, and a novel, tilted form of the Quantum Zeno effect. This work provides new insight into quantum behavior and prompts further comparison of SME and Bayesian formalisms to understand the nature of quantum systems. Our results are applicable to a variety of fields, from stochastic thermodynamics to quantum control.

  9. Bayesian hierarchical models for smoothing in two-phase studies, with application to small area estimation.

    PubMed

    Ross, Michelle; Wakefield, Jon

    2015-10-01

    Two-phase study designs are appealing since they allow for the oversampling of rare sub-populations which improves efficiency. In this paper we describe a Bayesian hierarchical model for the analysis of two-phase data. Such a model is particularly appealing in a spatial setting in which random effects are introduced to model between-area variability. In such a situation, one may be interested in estimating regression coefficients or, in the context of small area estimation, in reconstructing the population totals by strata. The efficiency gains of the two-phase sampling scheme are compared to standard approaches using 2011 birth data from the research triangle area of North Carolina. We show that the proposed method can overcome small sample difficulties and improve on existing techniques. We conclude that the two-phase design is an attractive approach for small area estimation.

  10. Decision making with epistemic uncertainty under safety constraints: An application to seismic design

    USGS Publications Warehouse

    Veneziano, D.; Agarwal, A.; Karaca, E.

    2009-01-01

    The problem of accounting for epistemic uncertainty in risk management decisions is conceptually straightforward, but is riddled with practical difficulties. Simple approximations are often used whereby future variations in epistemic uncertainty are ignored or worst-case scenarios are postulated. These strategies tend to produce sub-optimal decisions. We develop a general framework based on Bayesian decision theory and exemplify it for the case of seismic design of buildings. When temporal fluctuations of the epistemic uncertainties and regulatory safety constraints are included, the optimal level of seismic protection exceeds the normative level at the time of construction. Optimal Bayesian decisions do not depend on the aleatory or epistemic nature of the uncertainties, but only on the total (epistemic plus aleatory) uncertainty and how that total uncertainty varies randomly during the lifetime of the project. ?? 2009 Elsevier Ltd. All rights reserved.

  11. The Impact of the Tree Prior on Molecular Dating of Data Sets Containing a Mixture of Inter- and Intraspecies Sampling.

    PubMed

    Ritchie, Andrew M; Lo, Nathan; Ho, Simon Y W

    2017-05-01

    In Bayesian phylogenetic analyses of genetic data, prior probability distributions need to be specified for the model parameters, including the tree. When Bayesian methods are used for molecular dating, available tree priors include those designed for species-level data, such as the pure-birth and birth-death priors, and coalescent-based priors designed for population-level data. However, molecular dating methods are frequently applied to data sets that include multiple individuals across multiple species. Such data sets violate the assumptions of both the speciation and coalescent-based tree priors, making it unclear which should be chosen and whether this choice can affect the estimation of node times. To investigate this problem, we used a simulation approach to produce data sets with different proportions of within- and between-species sampling under the multispecies coalescent model. These data sets were then analyzed under pure-birth, birth-death, constant-size coalescent, and skyline coalescent tree priors. We also explored the ability of Bayesian model testing to select the best-performing priors. We confirmed the applicability of our results to empirical data sets from cetaceans, phocids, and coregonid whitefish. Estimates of node times were generally robust to the choice of tree prior, but some combinations of tree priors and sampling schemes led to large differences in the age estimates. In particular, the pure-birth tree prior frequently led to inaccurate estimates for data sets containing a mixture of inter- and intraspecific sampling, whereas the birth-death and skyline coalescent priors produced stable results across all scenarios. Model testing provided an adequate means of rejecting inappropriate tree priors. Our results suggest that tree priors do not strongly affect Bayesian molecular dating results in most cases, even when severely misspecified. However, the choice of tree prior can be significant for the accuracy of dating results in the case of data sets with mixed inter- and intraspecies sampling. [Bayesian phylogenetic methods; model testing; molecular dating; node time; tree prior.]. © The authors 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  12. Bayesian Networks Predict Neuronal Transdifferentiation.

    PubMed

    Ainsworth, Richard I; Ai, Rizi; Ding, Bo; Li, Nan; Zhang, Kai; Wang, Wei

    2018-05-30

    We employ the language of Bayesian networks to systematically construct gene-regulation topologies from deep-sequencing single-nucleus RNA-Seq data for human neurons. From the perspective of the cell-state potential landscape, we identify attractors that correspond closely to different neuron subtypes. Attractors are also recovered for cell states from an independent data set confirming our models accurate description of global genetic regulations across differing cell types of the neocortex (not included in the training data). Our model recovers experimentally confirmed genetic regulations and community analysis reveals genetic associations in common pathways. Via a comprehensive scan of all theoretical three-gene perturbations of gene knockout and overexpression, we discover novel neuronal trans-differrentiation recipes (including perturbations of SATB2, GAD1, POU6F2 and ADARB2) for excitatory projection neuron and inhibitory interneuron subtypes. Copyright © 2018, G3: Genes, Genomes, Genetics.

  13. Parameter Estimation for a Turbulent Buoyant Jet Using Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Christopher, Jason D.; Wimer, Nicholas T.; Hayden, Torrey R. S.; Lapointe, Caelan; Grooms, Ian; Rieker, Gregory B.; Hamlington, Peter E.

    2016-11-01

    Approximate Bayesian Computation (ABC) is a powerful tool that allows sparse experimental or other "truth" data to be used for the prediction of unknown model parameters in numerical simulations of real-world engineering systems. In this presentation, we introduce the ABC approach and then use ABC to predict unknown inflow conditions in simulations of a two-dimensional (2D) turbulent, high-temperature buoyant jet. For this test case, truth data are obtained from a simulation with known boundary conditions and problem parameters. Using spatially-sparse temperature statistics from the 2D buoyant jet truth simulation, we show that the ABC method provides accurate predictions of the true jet inflow temperature. The success of the ABC approach in the present test suggests that ABC is a useful and versatile tool for engineering fluid dynamics research.

  14. Hyperspectral Image Classification With Markov Random Fields and a Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Cao, Xiangyong; Zhou, Feng; Xu, Lin; Meng, Deyu; Xu, Zongben; Paisley, John

    2018-05-01

    This paper presents a new supervised classification algorithm for remotely sensed hyperspectral image (HSI) which integrates spectral and spatial information in a unified Bayesian framework. First, we formulate the HSI classification problem from a Bayesian perspective. Then, we adopt a convolutional neural network (CNN) to learn the posterior class distributions using a patch-wise training strategy to better use the spatial information. Next, spatial information is further considered by placing a spatial smoothness prior on the labels. Finally, we iteratively update the CNN parameters using stochastic gradient decent (SGD) and update the class labels of all pixel vectors using an alpha-expansion min-cut-based algorithm. Compared with other state-of-the-art methods, the proposed classification method achieves better performance on one synthetic dataset and two benchmark HSI datasets in a number of experimental settings.

  15. Maximum entropy perception-action space: a Bayesian model of eye movement selection

    NASA Astrophysics Data System (ADS)

    Colas, Francis; Bessière, Pierre; Girard, Benoît

    2011-03-01

    In this article, we investigate the issue of the selection of eye movements in a free-eye Multiple Object Tracking task. We propose a Bayesian model of retinotopic maps with a complex logarithmic mapping. This model is structured in two parts: a representation of the visual scene, and a decision model based on the representation. We compare different decision models based on different features of the representation and we show that taking into account uncertainty helps predict the eye movements of subjects recorded in a psychophysics experiment. Finally, based on experimental data, we postulate that the complex logarithmic mapping has a functional relevance, as the density of objects in this space in more uniform than expected. This may indicate that the representation space and control strategies are such that the object density is of maximum entropy.

  16. Design of a Randomized Controlled Trial for Ebola Virus Disease Medical Countermeasures: PREVAIL II, the Ebola MCM Study.

    PubMed

    Dodd, Lori E; Proschan, Michael A; Neuhaus, Jacqueline; Koopmeiners, Joseph S; Neaton, James; Beigel, John D; Barrett, Kevin; Lane, Henry Clifford; Davey, Richard T

    2016-06-15

    Unique challenges posed by emerging infectious diseases often expose inadequacies in the conventional phased investigational therapeutic development paradigm. The recent Ebola outbreak in West Africa presents a critical case-study highlighting barriers to faster development. During the outbreak, clinical trials were implemented with unprecedented speed. Yet, in most cases, this fast-tracked approach proved too slow for the rapidly evolving epidemic. Controversy abounded as to the most appropriate study designs to yield safety and efficacy data, potentially causing delays in pivotal studies. Preparation for research during future outbreaks may require acceptance of a paradigm that circumvents, accelerates, or reorders traditional phases, without losing sight of the traditional benchmarks by which drug candidates must be assessed for activity, safety and efficacy. We present the design of an adaptive, parent protocol, ongoing in West Africa until January 2016. The exigent circumstances of the outbreak and limited prior clinical experience with experimental treatments, led to more direct bridging from preclinical studies to human trials than the conventional paradigm would typically have sanctioned, and required considerable design flexibility. Preliminary evaluation of the "barely Bayesian" design was provided through computer simulation studies. The understanding and public discussion of the study design will help its future implementation. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. Uncertainty quantification and validation of 3D lattice scaffolds for computer-aided biomedical applications.

    PubMed

    Gorguluarslan, Recep M; Choi, Seung-Kyum; Saldana, Christopher J

    2017-07-01

    A methodology is proposed for uncertainty quantification and validation to accurately predict the mechanical response of lattice structures used in the design of scaffolds. Effective structural properties of the scaffolds are characterized using a developed multi-level stochastic upscaling process that propagates the quantified uncertainties at strut level to the lattice structure level. To obtain realistic simulation models for the stochastic upscaling process and minimize the experimental cost, high-resolution finite element models of individual struts were reconstructed from the micro-CT scan images of lattice structures which are fabricated by selective laser melting. The upscaling method facilitates the process of determining homogenized strut properties to reduce the computational cost of the detailed simulation model for the scaffold. Bayesian Information Criterion is utilized to quantify the uncertainties with parametric distributions based on the statistical data obtained from the reconstructed strut models. A systematic validation approach that can minimize the experimental cost is also developed to assess the predictive capability of the stochastic upscaling method used at the strut level and lattice structure level. In comparison with physical compression test results, the proposed methodology of linking the uncertainty quantification with the multi-level stochastic upscaling method enabled an accurate prediction of the elastic behavior of the lattice structure with minimal experimental cost by accounting for the uncertainties induced by the additive manufacturing process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. As-built design specification for proportion estimate software subsystem

    NASA Technical Reports Server (NTRS)

    Obrien, S. (Principal Investigator)

    1980-01-01

    The Proportion Estimate Processor evaluates four estimation techniques in order to get an improved estimate of the proportion of a scene that is planted in a selected crop. The four techniques to be evaluated were provided by the techniques development section and are: (1) random sampling; (2) proportional allocation, relative count estimate; (3) proportional allocation, Bayesian estimate; and (4) sequential Bayesian allocation. The user is given two options for computation of the estimated mean square error. These are referred to as the cluster calculation option and the segment calculation option. The software for the Proportion Estimate Processor is operational on the IBM 3031 computer.

  19. A Massively Parallel Bayesian Approach to Planetary Protection Trajectory Analysis and Design

    NASA Technical Reports Server (NTRS)

    Wallace, Mark S.

    2015-01-01

    The NASA Planetary Protection Office has levied a requirement that the upper stage of future planetary launches have a less than 10(exp -4) chance of impacting Mars within 50 years after launch. A brute-force approach requires a decade of computer time to demonstrate compliance. By using a Bayesian approach and taking advantage of the demonstrated reliability of the upper stage, the required number of fifty-year propagations can be massively reduced. By spreading the remaining embarrassingly parallel Monte Carlo simulations across multiple computers, compliance can be demonstrated in a reasonable time frame. The method used is described here.

  20. Planetary micro-rover operations on Mars using a Bayesian framework for inference and control

    NASA Astrophysics Data System (ADS)

    Post, Mark A.; Li, Junquan; Quine, Brendan M.

    2016-03-01

    With the recent progress toward the application of commercially-available hardware to small-scale space missions, it is now becoming feasible for groups of small, efficient robots based on low-power embedded hardware to perform simple tasks on other planets in the place of large-scale, heavy and expensive robots. In this paper, we describe design and programming of the Beaver micro-rover developed for Northern Light, a Canadian initiative to send a small lander and rover to Mars to study the Martian surface and subsurface. For a small, hardware-limited rover to handle an uncertain and mostly unknown environment without constant management by human operators, we use a Bayesian network of discrete random variables as an abstraction of expert knowledge about the rover and its environment, and inference operations for control. A framework for efficient construction and inference into a Bayesian network using only the C language and fixed-point mathematics on embedded hardware has been developed for the Beaver to make intelligent decisions with minimal sensor data. We study the performance of the Beaver as it probabilistically maps a simple outdoor environment with sensor models that include uncertainty. Results indicate that the Beaver and other small and simple robotic platforms can make use of a Bayesian network to make intelligent decisions in uncertain planetary environments.

  1. Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells.

    PubMed

    Hu, Ying S; Zhu, Quan; Elkins, Keri; Tse, Kevin; Li, Yu; Fitzpatrick, James A J; Verma, Inder M; Cang, Hu

    2013-01-01

    Heterochromatin in the nucleus of human embryonic cells plays an important role in the epigenetic regulation of gene expression. The architecture of heterochromatin and its dynamic organization remain elusive because of the lack of fast and high-resolution deep-cell imaging tools. We enable this task by advancing instrumental and algorithmic implementation of the localization-based super-resolution technique. We present light-sheet Bayesian super-resolution microscopy (LSBM). We adapt light-sheet illumination for super-resolution imaging by using a novel prism-coupled condenser design to illuminate a thin slice of the nucleus with high signal-to-noise ratio. Coupled with a Bayesian algorithm that resolves overlapping fluorophores from high-density areas, we show, for the first time, nanoscopic features of the heterochromatin structure in both fixed and live human embryonic stem cells. The enhanced temporal resolution allows capturing the dynamic change of heterochromatin with a lateral resolution of 50-60 nm on a time scale of 2.3 s. Light-sheet Bayesian microscopy opens up broad new possibilities of probing nanometer-scale nuclear structures and real-time sub-cellular processes and other previously difficult-to-access intracellular regions of living cells at the single-molecule, and single cell level.

  2. Receptive Field Inference with Localized Priors

    PubMed Central

    Park, Mijung; Pillow, Jonathan W.

    2011-01-01

    The linear receptive field describes a mapping from sensory stimuli to a one-dimensional variable governing a neuron's spike response. However, traditional receptive field estimators such as the spike-triggered average converge slowly and often require large amounts of data. Bayesian methods seek to overcome this problem by biasing estimates towards solutions that are more likely a priori, typically those with small, smooth, or sparse coefficients. Here we introduce a novel Bayesian receptive field estimator designed to incorporate locality, a powerful form of prior information about receptive field structure. The key to our approach is a hierarchical receptive field model that flexibly adapts to localized structure in both spacetime and spatiotemporal frequency, using an inference method known as empirical Bayes. We refer to our method as automatic locality determination (ALD), and show that it can accurately recover various types of smooth, sparse, and localized receptive fields. We apply ALD to neural data from retinal ganglion cells and V1 simple cells, and find it achieves error rates several times lower than standard estimators. Thus, estimates of comparable accuracy can be achieved with substantially less data. Finally, we introduce a computationally efficient Markov Chain Monte Carlo (MCMC) algorithm for fully Bayesian inference under the ALD prior, yielding accurate Bayesian confidence intervals for small or noisy datasets. PMID:22046110

  3. Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells

    PubMed Central

    Hu, Ying S; Zhu, Quan; Elkins, Keri; Tse, Kevin; Li, Yu; Fitzpatrick, James A J; Verma, Inder M; Cang, Hu

    2016-01-01

    Background Heterochromatin in the nucleus of human embryonic cells plays an important role in the epigenetic regulation of gene expression. The architecture of heterochromatin and its dynamic organization remain elusive because of the lack of fast and high-resolution deep-cell imaging tools. We enable this task by advancing instrumental and algorithmic implementation of the localization-based super-resolution technique. Results We present light-sheet Bayesian super-resolution microscopy (LSBM). We adapt light-sheet illumination for super-resolution imaging by using a novel prism-coupled condenser design to illuminate a thin slice of the nucleus with high signal-to-noise ratio. Coupled with a Bayesian algorithm that resolves overlapping fluorophores from high-density areas, we show, for the first time, nanoscopic features of the heterochromatin structure in both fixed and live human embryonic stem cells. The enhanced temporal resolution allows capturing the dynamic change of heterochromatin with a lateral resolution of 50–60 nm on a time scale of 2.3 s. Conclusion Light-sheet Bayesian microscopy opens up broad new possibilities of probing nanometer-scale nuclear structures and real-time sub-cellular processes and other previously difficult-to-access intracellular regions of living cells at the single-molecule, and single cell level. PMID:27795878

  4. Development of an internet based system for modeling biotin metabolism using Bayesian networks.

    PubMed

    Zhou, Jinglei; Wang, Dong; Schlegel, Vicki; Zempleni, Janos

    2011-11-01

    Biotin is an essential water-soluble vitamin crucial for maintaining normal body functions. The importance of biotin for human health has been under-appreciated but there is plenty of opportunity for future research with great importance for human health. Currently, carrying out predictions of biotin metabolism involves tedious manual manipulations. In this paper, we report the development of BiotinNet, an internet based program that uses Bayesian networks to integrate published data on various aspects of biotin metabolism. Users can provide a combination of values on the levels of biotin related metabolites to obtain the predictions on other metabolites that are not specified. As an inherent feature of Bayesian networks, the uncertainty of the prediction is also quantified and reported to the user. This program enables convenient in silico experiments regarding biotin metabolism, which can help researchers design future experiments while new data can be continuously incorporated. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Environmentally adaptive processing for shallow ocean applications: A sequential Bayesian approach.

    PubMed

    Candy, J V

    2015-09-01

    The shallow ocean is a changing environment primarily due to temperature variations in its upper layers directly affecting sound propagation throughout. The need to develop processors capable of tracking these changes implies a stochastic as well as an environmentally adaptive design. Bayesian techniques have evolved to enable a class of processors capable of performing in such an uncertain, nonstationary (varying statistics), non-Gaussian, variable shallow ocean environment. A solution to this problem is addressed by developing a sequential Bayesian processor capable of providing a joint solution to the modal function tracking and environmental adaptivity problem. Here, the focus is on the development of both a particle filter and an unscented Kalman filter capable of providing reasonable performance for this problem. These processors are applied to hydrophone measurements obtained from a vertical array. The adaptivity problem is attacked by allowing the modal coefficients and/or wavenumbers to be jointly estimated from the noisy measurement data along with tracking of the modal functions while simultaneously enhancing the noisy pressure-field measurements.

  6. Multivariate Copula Analysis Toolbox (MvCAT): Describing dependence and underlying uncertainty using a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Sadegh, Mojtaba; Ragno, Elisa; AghaKouchak, Amir

    2017-06-01

    We present a newly developed Multivariate Copula Analysis Toolbox (MvCAT) which includes a wide range of copula families with different levels of complexity. MvCAT employs a Bayesian framework with a residual-based Gaussian likelihood function for inferring copula parameters and estimating the underlying uncertainties. The contribution of this paper is threefold: (a) providing a Bayesian framework to approximate the predictive uncertainties of fitted copulas, (b) introducing a hybrid-evolution Markov Chain Monte Carlo (MCMC) approach designed for numerical estimation of the posterior distribution of copula parameters, and (c) enabling the community to explore a wide range of copulas and evaluate them relative to the fitting uncertainties. We show that the commonly used local optimization methods for copula parameter estimation often get trapped in local minima. The proposed method, however, addresses this limitation and improves describing the dependence structure. MvCAT also enables evaluation of uncertainties relative to the length of record, which is fundamental to a wide range of applications such as multivariate frequency analysis.

  7. Predicting ICU mortality: a comparison of stationary and nonstationary temporal models.

    PubMed Central

    Kayaalp, M.; Cooper, G. F.; Clermont, G.

    2000-01-01

    OBJECTIVE: This study evaluates the effectiveness of the stationarity assumption in predicting the mortality of intensive care unit (ICU) patients at the ICU discharge. DESIGN: This is a comparative study. A stationary temporal Bayesian network learned from data was compared to a set of (33) nonstationary temporal Bayesian networks learned from data. A process observed as a sequence of events is stationary if its stochastic properties stay the same when the sequence is shifted in a positive or negative direction by a constant time parameter. The temporal Bayesian networks forecast mortalities of patients, where each patient has one record per day. The predictive performance of the stationary model is compared with nonstationary models using the area under the receiver operating characteristics (ROC) curves. RESULTS: The stationary model usually performed best. However, one nonstationary model using large data sets performed significantly better than the stationary model. CONCLUSION: Results suggest that using a combination of stationary and nonstationary models may predict better than using either alone. PMID:11079917

  8. Autistic traits, but not schizotypy, predict increased weighting of sensory information in Bayesian visual integration.

    PubMed

    Karvelis, Povilas; Seitz, Aaron R; Lawrie, Stephen M; Seriès, Peggy

    2018-05-14

    Recent theories propose that schizophrenia/schizotypy and autistic spectrum disorder are related to impairments in Bayesian inference that is, how the brain integrates sensory information (likelihoods) with prior knowledge. However existing accounts fail to clarify: (i) how proposed theories differ in accounts of ASD vs. schizophrenia and (ii) whether the impairments result from weaker priors or enhanced likelihoods. Here, we directly address these issues by characterizing how 91 healthy participants, scored for autistic and schizotypal traits, implicitly learned and combined priors with sensory information. This was accomplished through a visual statistical learning paradigm designed to quantitatively assess variations in individuals' likelihoods and priors. The acquisition of the priors was found to be intact along both traits spectra. However, autistic traits were associated with more veridical perception and weaker influence of expectations. Bayesian modeling revealed that this was due, not to weaker prior expectations, but to more precise sensory representations. © 2018, Karvelis et al.

  9. A comparison of two worlds: How does Bayes hold up to the status quo for the analysis of clinical trials?

    PubMed

    Pressman, Alice R; Avins, Andrew L; Hubbard, Alan; Satariano, William A

    2011-07-01

    There is a paucity of literature comparing Bayesian analytic techniques with traditional approaches for analyzing clinical trials using real trial data. We compared Bayesian and frequentist group sequential methods using data from two published clinical trials. We chose two widely accepted frequentist rules, O'Brien-Fleming and Lan-DeMets, and conjugate Bayesian priors. Using the nonparametric bootstrap, we estimated a sampling distribution of stopping times for each method. Because current practice dictates the preservation of an experiment-wise false positive rate (Type I error), we approximated these error rates for our Bayesian and frequentist analyses with the posterior probability of detecting an effect in a simulated null sample. Thus for the data-generated distribution represented by these trials, we were able to compare the relative performance of these techniques. No final outcomes differed from those of the original trials. However, the timing of trial termination differed substantially by method and varied by trial. For one trial, group sequential designs of either type dictated early stopping of the study. In the other, stopping times were dependent upon the choice of spending function and prior distribution. Results indicate that trialists ought to consider Bayesian methods in addition to traditional approaches for analysis of clinical trials. Though findings from this small sample did not demonstrate either method to consistently outperform the other, they did suggest the need to replicate these comparisons using data from varied clinical trials in order to determine the conditions under which the different methods would be most efficient. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. A comparison of two worlds: How does Bayes hold up to the status quo for the analysis of clinical trials?

    PubMed Central

    Pressman, Alice R.; Avins, Andrew L.; Hubbard, Alan; Satariano, William A.

    2014-01-01

    Background There is a paucity of literature comparing Bayesian analytic techniques with traditional approaches for analyzing clinical trials using real trial data. Methods We compared Bayesian and frequentist group sequential methods using data from two published clinical trials. We chose two widely accepted frequentist rules, O'Brien–Fleming and Lan–DeMets, and conjugate Bayesian priors. Using the nonparametric bootstrap, we estimated a sampling distribution of stopping times for each method. Because current practice dictates the preservation of an experiment-wise false positive rate (Type I error), we approximated these error rates for our Bayesian and frequentist analyses with the posterior probability of detecting an effect in a simulated null sample. Thus for the data-generated distribution represented by these trials, we were able to compare the relative performance of these techniques. Results No final outcomes differed from those of the original trials. However, the timing of trial termination differed substantially by method and varied by trial. For one trial, group sequential designs of either type dictated early stopping of the study. In the other, stopping times were dependent upon the choice of spending function and prior distribution. Conclusions Results indicate that trialists ought to consider Bayesian methods in addition to traditional approaches for analysis of clinical trials. Though findings from this small sample did not demonstrate either method to consistently outperform the other, they did suggest the need to replicate these comparisons using data from varied clinical trials in order to determine the conditions under which the different methods would be most efficient. PMID:21453792

  11. Diagnosis of combined faults in Rotary Machinery by Non-Naive Bayesian approach

    NASA Astrophysics Data System (ADS)

    Asr, Mahsa Yazdanian; Ettefagh, Mir Mohammad; Hassannejad, Reza; Razavi, Seyed Naser

    2017-02-01

    When combined faults happen in different parts of the rotating machines, their features are profoundly dependent. Experts are completely familiar with individuals faults characteristics and enough data are available from single faults but the problem arises, when the faults combined and the separation of characteristics becomes complex. Therefore, the experts cannot declare exact information about the symptoms of combined fault and its quality. In this paper to overcome this drawback, a novel method is proposed. The core idea of the method is about declaring combined fault without using combined fault features as training data set and just individual fault features are applied in training step. For this purpose, after data acquisition and resampling the obtained vibration signals, Empirical Mode Decomposition (EMD) is utilized to decompose multi component signals to Intrinsic Mode Functions (IMFs). With the use of correlation coefficient, proper IMFs for feature extraction are selected. In feature extraction step, Shannon energy entropy of IMFs was extracted as well as statistical features. It is obvious that most of extracted features are strongly dependent. To consider this matter, Non-Naive Bayesian Classifier (NNBC) is appointed, which release the fundamental assumption of Naive Bayesian, i.e., the independence among features. To demonstrate the superiority of NNBC, other counterpart methods, include Normal Naive Bayesian classifier, Kernel Naive Bayesian classifier and Back Propagation Neural Networks were applied and the classification results are compared. An experimental vibration signals, collected from automobile gearbox, were used to verify the effectiveness of the proposed method. During the classification process, only the features, related individually to healthy state, bearing failure and gear failures, were assigned for training the classifier. But, combined fault features (combined gear and bearing failures) were examined as test data. The achieved probabilities for the test data show that the combined fault can be identified with high success rate.

  12. Bayesian Chance-Constrained Hydraulic Barrier Design under Geological Structure Uncertainty.

    PubMed

    Chitsazan, Nima; Pham, Hai V; Tsai, Frank T-C

    2015-01-01

    The groundwater community has widely recognized geological structure uncertainty as a major source of model structure uncertainty. Previous studies in aquifer remediation design, however, rarely discuss the impact of geological structure uncertainty. This study combines chance-constrained (CC) programming with Bayesian model averaging (BMA) as a BMA-CC framework to assess the impact of geological structure uncertainty in remediation design. To pursue this goal, the BMA-CC method is compared with traditional CC programming that only considers model parameter uncertainty. The BMA-CC method is employed to design a hydraulic barrier to protect public supply wells of the Government St. pump station from salt water intrusion in the "1500-foot" sand and the "1700-foot" sand of the Baton Rouge area, southeastern Louisiana. To address geological structure uncertainty, three groundwater models based on three different hydrostratigraphic architectures are developed. The results show that using traditional CC programming overestimates design reliability. The results also show that at least five additional connector wells are needed to achieve more than 90% design reliability level. The total amount of injected water from the connector wells is higher than the total pumpage of the protected public supply wells. While reducing the injection rate can be achieved by reducing the reliability level, the study finds that the hydraulic barrier design to protect the Government St. pump station may not be economically attractive. © 2014, National Ground Water Association.

  13. Précis of bayesian rationality: The probabilistic approach to human reasoning.

    PubMed

    Oaksford, Mike; Chater, Nick

    2009-02-01

    According to Aristotle, humans are the rational animal. The borderline between rationality and irrationality is fundamental to many aspects of human life including the law, mental health, and language interpretation. But what is it to be rational? One answer, deeply embedded in the Western intellectual tradition since ancient Greece, is that rationality concerns reasoning according to the rules of logic--the formal theory that specifies the inferential connections that hold with certainty between propositions. Piaget viewed logical reasoning as defining the end-point of cognitive development; and contemporary psychology of reasoning has focussed on comparing human reasoning against logical standards. Bayesian Rationality argues that rationality is defined instead by the ability to reason about uncertainty. Although people are typically poor at numerical reasoning about probability, human thought is sensitive to subtle patterns of qualitative Bayesian, probabilistic reasoning. In Chapters 1-4 of Bayesian Rationality (Oaksford & Chater 2007), the case is made that cognition in general, and human everyday reasoning in particular, is best viewed as solving probabilistic, rather than logical, inference problems. In Chapters 5-7 the psychology of "deductive" reasoning is tackled head-on: It is argued that purportedly "logical" reasoning problems, revealing apparently irrational behaviour, are better understood from a probabilistic point of view. Data from conditional reasoning, Wason's selection task, and syllogistic inference are captured by recasting these problems probabilistically. The probabilistic approach makes a variety of novel predictions which have been experimentally confirmed. The book considers the implications of this work, and the wider "probabilistic turn" in cognitive science and artificial intelligence, for understanding human rationality.

  14. How Much Can We Learn from a Single Chromatographic Experiment? A Bayesian Perspective.

    PubMed

    Wiczling, Paweł; Kaliszan, Roman

    2016-01-05

    In this work, we proposed and investigated a Bayesian inference procedure to find the desired chromatographic conditions based on known analyte properties (lipophilicity, pKa, and polar surface area) using one preliminary experiment. A previously developed nonlinear mixed effect model was used to specify the prior information about a new analyte with known physicochemical properties. Further, the prior (no preliminary data) and posterior predictive distribution (prior + one experiment) were determined sequentially to search towards the desired separation. The following isocratic high-performance reversed-phase liquid chromatographic conditions were sought: (1) retention time of a single analyte within the range of 4-6 min and (2) baseline separation of two analytes with retention times within the range of 4-10 min. The empirical posterior Bayesian distribution of parameters was estimated using the "slice sampling" Markov Chain Monte Carlo (MCMC) algorithm implemented in Matlab. The simulations with artificial analytes and experimental data of ketoprofen and papaverine were used to test the proposed methodology. The simulation experiment showed that for a single and two randomly selected analytes, there is 97% and 74% probability of obtaining a successful chromatogram using none or one preliminary experiment. The desired separation for ketoprofen and papaverine was established based on a single experiment. It was confirmed that the search for a desired separation rarely requires a large number of chromatographic analyses at least for a simple optimization problem. The proposed Bayesian-based optimization scheme is a powerful method of finding a desired chromatographic separation based on a small number of preliminary experiments.

  15. Attention in a Bayesian Framework

    PubMed Central

    Whiteley, Louise; Sahani, Maneesh

    2012-01-01

    The behavioral phenomena of sensory attention are thought to reflect the allocation of a limited processing resource, but there is little consensus on the nature of the resource or why it should be limited. Here we argue that a fundamental bottleneck emerges naturally within Bayesian models of perception, and use this observation to frame a new computational account of the need for, and action of, attention – unifying diverse attentional phenomena in a way that goes beyond previous inferential, probabilistic and Bayesian models. Attentional effects are most evident in cluttered environments, and include both selective phenomena, where attention is invoked by cues that point to particular stimuli, and integrative phenomena, where attention is invoked dynamically by endogenous processing. However, most previous Bayesian accounts of attention have focused on describing relatively simple experimental settings, where cues shape expectations about a small number of upcoming stimuli and thus convey “prior” information about clearly defined objects. While operationally consistent with the experiments it seeks to describe, this view of attention as prior seems to miss many essential elements of both its selective and integrative roles, and thus cannot be easily extended to complex environments. We suggest that the resource bottleneck stems from the computational intractability of exact perceptual inference in complex settings, and that attention reflects an evolved mechanism for approximate inference which can be shaped to refine the local accuracy of perception. We show that this approach extends the simple picture of attention as prior, so as to provide a unified and computationally driven account of both selective and integrative attentional phenomena. PMID:22712010

  16. Fully Bayesian Estimation of Data from Single Case Designs

    ERIC Educational Resources Information Center

    Rindskopf, David

    2013-01-01

    Single case designs (SCDs) generally consist of a small number of short time series in two or more phases. The analysis of SCDs statistically fits in the framework of a multilevel model, or hierarchical model. The usual analysis does not take into account the uncertainty in the estimation of the random effects. This not only has an effect on the…

  17. Bayesian Inference of Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design

    DTIC Science & Technology

    2016-03-01

    design . ERDC/CHL CHETN-X-2. Vicksburg, MS: U.S. Army Engineer Research and Development Center. http://chl.erdc.usace.army. mil/chetn REFERENCES...Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon , D. Qin, M. Manning, Z. Chen, M...Duration- Frequency Curves for Infrastructure Design by Brian E. Skahill, Amir AghaKouchak, Linyin Cheng, Aaron Byrd, and Joseph Kanney

  18. Utility-based designs for randomized comparative trials with categorical outcomes

    PubMed Central

    Murray, Thomas A.; Thall, Peter F.; Yuan, Ying

    2016-01-01

    A general utility-based testing methodology for design and conduct of randomized comparative clinical trials with categorical outcomes is presented. Numerical utilities of all elementary events are elicited to quantify their desirabilities. These numerical values are used to map the categorical outcome probability vector of each treatment to a mean utility, which is used as a one-dimensional criterion for constructing comparative tests. Bayesian tests are presented, including fixed sample and group sequential procedures, assuming Dirichlet-multinomial models for the priors and likelihoods. Guidelines are provided for establishing priors, eliciting utilities, and specifying hypotheses. Efficient posterior computation is discussed, and algorithms are provided for jointly calibrating test cutoffs and sample size to control overall type I error and achieve specified power. Asymptotic approximations for the power curve are used to initialize the algorithms. The methodology is applied to re-design a completed trial that compared two chemotherapy regimens for chronic lymphocytic leukemia, in which an ordinal efficacy outcome was dichotomized and toxicity was ignored to construct the trial’s design. The Bayesian tests also are illustrated by several types of categorical outcomes arising in common clinical settings. Freely available computer software for implementation is provided. PMID:27189672

  19. Performing Contrast Analysis in Factorial Designs: From NHST to Confidence Intervals and Beyond

    PubMed Central

    Wiens, Stefan; Nilsson, Mats E.

    2016-01-01

    Because of the continuing debates about statistics, many researchers may feel confused about how to analyze and interpret data. Current guidelines in psychology advocate the use of effect sizes and confidence intervals (CIs). However, researchers may be unsure about how to extract effect sizes from factorial designs. Contrast analysis is helpful because it can be used to test specific questions of central interest in studies with factorial designs. It weighs several means and combines them into one or two sets that can be tested with t tests. The effect size produced by a contrast analysis is simply the difference between means. The CI of the effect size informs directly about direction, hypothesis exclusion, and the relevance of the effects of interest. However, any interpretation in terms of precision or likelihood requires the use of likelihood intervals or credible intervals (Bayesian). These various intervals and even a Bayesian t test can be obtained easily with free software. This tutorial reviews these methods to guide researchers in answering the following questions: When I analyze mean differences in factorial designs, where can I find the effects of central interest, and what can I learn about their effect sizes? PMID:29805179

  20. A flexible Bayesian assessment for the expected impact of data on prediction confidence for optimal sampling designs

    NASA Astrophysics Data System (ADS)

    Leube, Philipp; Geiges, Andreas; Nowak, Wolfgang

    2010-05-01

    Incorporating hydrogeological data, such as head and tracer data, into stochastic models of subsurface flow and transport helps to reduce prediction uncertainty. Considering limited financial resources available for the data acquisition campaign, information needs towards the prediction goal should be satisfied in a efficient and task-specific manner. For finding the best one among a set of design candidates, an objective function is commonly evaluated, which measures the expected impact of data on prediction confidence, prior to their collection. An appropriate approach to this task should be stochastically rigorous, master non-linear dependencies between data, parameters and model predictions, and allow for a wide variety of different data types. Existing methods fail to fulfill all these requirements simultaneously. For this reason, we introduce a new method, denoted as CLUE (Cross-bred Likelihood Uncertainty Estimator), that derives the essential distributions and measures of data utility within a generalized, flexible and accurate framework. The method makes use of Bayesian GLUE (Generalized Likelihood Uncertainty Estimator) and extends it to an optimal design method by marginalizing over the yet unknown data values. Operating in a purely Bayesian Monte-Carlo framework, CLUE is a strictly formal information processing scheme free of linearizations. It provides full flexibility associated with the type of measurements (linear, non-linear, direct, indirect) and accounts for almost arbitrary sources of uncertainty (e.g. heterogeneity, geostatistical assumptions, boundary conditions, model concepts) via stochastic simulation and Bayesian model averaging. This helps to minimize the strength and impact of possible subjective prior assumptions, that would be hard to defend prior to data collection. Our study focuses on evaluating two different uncertainty measures: (i) expected conditional variance and (ii) expected relative entropy of a given prediction goal. The applicability and advantages are shown in a synthetic example. Therefor, we consider a contaminant source, posing a threat on a drinking water well in an aquifer. Furthermore, we assume uncertainty in geostatistical parameters, boundary conditions and hydraulic gradient. The two mentioned measures evaluate the sensitivity of (1) general prediction confidence and (2) exceedance probability of a legal regulatory threshold value on sampling locations.

  1. Bayesian parameter estimation for the Wnt pathway: an infinite mixture models approach.

    PubMed

    Koutroumpas, Konstantinos; Ballarini, Paolo; Votsi, Irene; Cournède, Paul-Henry

    2016-09-01

    Likelihood-free methods, like Approximate Bayesian Computation (ABC), have been extensively used in model-based statistical inference with intractable likelihood functions. When combined with Sequential Monte Carlo (SMC) algorithms they constitute a powerful approach for parameter estimation and model selection of mathematical models of complex biological systems. A crucial step in the ABC-SMC algorithms, significantly affecting their performance, is the propagation of a set of parameter vectors through a sequence of intermediate distributions using Markov kernels. In this article, we employ Dirichlet process mixtures (DPMs) to design optimal transition kernels and we present an ABC-SMC algorithm with DPM kernels. We illustrate the use of the proposed methodology using real data for the canonical Wnt signaling pathway. A multi-compartment model of the pathway is developed and it is compared to an existing model. The results indicate that DPMs are more efficient in the exploration of the parameter space and can significantly improve ABC-SMC performance. In comparison to alternative sampling schemes that are commonly used, the proposed approach can bring potential benefits in the estimation of complex multimodal distributions. The method is used to estimate the parameters and the initial state of two models of the Wnt pathway and it is shown that the multi-compartment model fits better the experimental data. Python scripts for the Dirichlet Process Gaussian Mixture model and the Gibbs sampler are available at https://sites.google.com/site/kkoutroumpas/software konstantinos.koutroumpas@ecp.fr. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Measuring the Acoustic Release of a Chemotherapeutic Agent from Folate-Targeted Polymeric Micelles.

    PubMed

    Abusara, Ayah; Abdel-Hafez, Mamoun; Husseini, Ghaleb

    2018-08-01

    In this paper, we compare the use of Bayesian filters for the estimation of release and re-encapsulation rates of a chemotherapeutic agent (namely Doxorubicin) from nanocarriers in an acoustically activated drug release system. The study is implemented using an advanced kinetic model that takes into account cavitation events causing the antineoplastic agent's release from polymeric micelles upon exposure to ultrasound. This model is an improvement over the previous representations of acoustic release that used simple zero-, first- and second-order release and re-encapsulation kinetics to study acoustically triggered drug release from polymeric micelles. The new model incorporates drug release and micellar reassembly events caused by cavitation allowing for the controlled release of chemotherapeutics specially and temporally. Different Bayesian estimators are tested for this purpose including Kalman filters (KF), Extended Kalman filters (EKF), Particle filters (PF), and multi-model KF and EKF. Simulated and experimental results are used to verify the performance of the above-mentioned estimators. The proposed methods demonstrate the utility and high-accuracy of using estimation methods in modeling this drug delivery technique. The results show that, in both cases (linear and non-linear dynamics), the modeling errors are expensive but can be minimized using a multi-model approach. In addition, particle filters are more flexible filters that perform reasonably well compared to the other two filters. The study improved the accuracy of the kinetic models used to capture acoustically activated drug release from polymeric micelles, which may in turn help in designing hardware and software capable of precisely controlling the delivered amount of chemotherapeutics to cancerous tissue.

  3. Multiple machine learning based descriptive and predictive workflow for the identification of potential PTP1B inhibitors.

    PubMed

    Chandra, Sharat; Pandey, Jyotsana; Tamrakar, Akhilesh Kumar; Siddiqi, Mohammad Imran

    2017-01-01

    In insulin and leptin signaling pathway, Protein-Tyrosine Phosphatase 1B (PTP1B) plays a crucial controlling role as a negative regulator, which makes it an attractive therapeutic target for both Type-2 Diabetes (T2D) and obesity. In this work, we have generated classification models by using the inhibition data set of known PTP1B inhibitors to identify new inhibitors of PTP1B utilizing multiple machine learning techniques like naïve Bayesian, random forest, support vector machine and k-nearest neighbors, along with structural fingerprints and selected molecular descriptors. Several models from each algorithm have been constructed and optimized, with the different combination of molecular descriptors and structural fingerprints. For the training and test sets, most of the predictive models showed more than 90% of overall prediction accuracies. The best model was obtained with support vector machine approach and has Matthews Correlation Coefficient of 0.82 for the external test set, which was further employed for the virtual screening of Maybridge small compound database. Five compounds were subsequently selected for experimental assay. Out of these two compounds were found to inhibit PTP1B with significant inhibitory activity in in-vitro inhibition assay. The structural fragments which are important for PTP1B inhibition were identified by naïve Bayesian method and can be further exploited to design new molecules around the identified scaffolds. The descriptive and predictive modeling strategy applied in this study is capable of identifying PTP1B inhibitors from the large compound libraries. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A flexible bayesian model for testing for transmission ratio distortion.

    PubMed

    Casellas, Joaquim; Manunza, Arianna; Mercader, Anna; Quintanilla, Raquel; Amills, Marcel

    2014-12-01

    Current statistical approaches to investigate the nature and magnitude of transmission ratio distortion (TRD) are scarce and restricted to the most common experimental designs such as F2 populations and backcrosses. In this article, we describe a new Bayesian approach to check TRD within a given biallelic genetic marker in a diploid species, providing a highly flexible framework that can accommodate any kind of population structure. This model relies on the genotype of each offspring and thus integrates all available information from either the parents' genotypes or population-specific allele frequencies and yields TRD estimates that can be corroborated by the calculation of a Bayes factor (BF). This approach has been evaluated on simulated data sets with appealing statistical performance. As a proof of concept, we have also tested TRD in a porcine population with five half-sib families and 352 offspring. All boars and piglets were genotyped with the Porcine SNP60 BeadChip, whereas genotypes from the sows were not available. The SNP-by-SNP screening of the pig genome revealed 84 SNPs with decisive evidences of TRD (BF > 100) after accounting for multiple testing. Many of these regions contained genes related to biological processes (e.g., nucleosome assembly and co-organization, DNA conformation and packaging, and DNA complex assembly) that are critically associated with embryonic viability. The implementation of this method, which overcomes many of the limitations of previous approaches, should contribute to fostering research on TRD in both model and nonmodel organisms. Copyright © 2014 by the Genetics Society of America.

  5. Bayesian data analysis for newcomers.

    PubMed

    Kruschke, John K; Liddell, Torrin M

    2018-02-01

    This article explains the foundational concepts of Bayesian data analysis using virtually no mathematical notation. Bayesian ideas already match your intuitions from everyday reasoning and from traditional data analysis. Simple examples of Bayesian data analysis are presented that illustrate how the information delivered by a Bayesian analysis can be directly interpreted. Bayesian approaches to null-value assessment are discussed. The article clarifies misconceptions about Bayesian methods that newcomers might have acquired elsewhere. We discuss prior distributions and explain how they are not a liability but an important asset. We discuss the relation of Bayesian data analysis to Bayesian models of mind, and we briefly discuss what methodological problems Bayesian data analysis is not meant to solve. After you have read this article, you should have a clear sense of how Bayesian data analysis works and the sort of information it delivers, and why that information is so intuitive and useful for drawing conclusions from data.

  6. Evaluation of a Partial Genome Screening of Two Asthma Susceptibility Regions Using Bayesian Network Based Bayesian Multilevel Analysis of Relevance

    PubMed Central

    Antal, Péter; Kiszel, Petra Sz.; Gézsi, András; Hadadi, Éva; Virág, Viktor; Hajós, Gergely; Millinghoffer, András; Nagy, Adrienne; Kiss, András; Semsei, Ágnes F.; Temesi, Gergely; Melegh, Béla; Kisfali, Péter; Széll, Márta; Bikov, András; Gálffy, Gabriella; Tamási, Lilla; Falus, András; Szalai, Csaba

    2012-01-01

    Genetic studies indicate high number of potential factors related to asthma. Based on earlier linkage analyses we selected the 11q13 and 14q22 asthma susceptibility regions, for which we designed a partial genome screening study using 145 SNPs in 1201 individuals (436 asthmatic children and 765 controls). The results were evaluated with traditional frequentist methods and we applied a new statistical method, called Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA). This method uses Bayesian network representation to provide detailed characterization of the relevance of factors, such as joint significance, the type of dependency, and multi-target aspects. We estimated posteriors for these relations within the Bayesian statistical framework, in order to estimate the posteriors whether a variable is directly relevant or its association is only mediated. With frequentist methods one SNP (rs3751464 in the FRMD6 gene) provided evidence for an association with asthma (OR = 1.43(1.2–1.8); p = 3×10−4). The possible role of the FRMD6 gene in asthma was also confirmed in an animal model and human asthmatics. In the BN-BMLA analysis altogether 5 SNPs in 4 genes were found relevant in connection with asthma phenotype: PRPF19 on chromosome 11, and FRMD6, PTGER2 and PTGDR on chromosome 14. In a subsequent step a partial dataset containing rhinitis and further clinical parameters was used, which allowed the analysis of relevance of SNPs for asthma and multiple targets. These analyses suggested that SNPs in the AHNAK and MS4A2 genes were indirectly associated with asthma. This paper indicates that BN-BMLA explores the relevant factors more comprehensively than traditional statistical methods and extends the scope of strong relevance based methods to include partial relevance, global characterization of relevance and multi-target relevance. PMID:22432035

  7. The trade-off between morphology and control in the co-optimized design of robots.

    PubMed

    Rosendo, Andre; von Atzigen, Marco; Iida, Fumiya

    2017-01-01

    Conventionally, robot morphologies are developed through simulations and calculations, and different control methods are applied afterwards. Assuming that simulations and predictions are simplified representations of our reality, how sure can roboticists be that the chosen morphology is the most adequate for the possible control choices in the real-world? Here we study the influence of the design parameters in the creation of a robot with a Bayesian morphology-control (MC) co-optimization process. A robot autonomously creates child robots from a set of possible design parameters and uses Bayesian Optimization (BO) to infer the best locomotion behavior from real world experiments. Then, we systematically change from an MC co-optimization to a control-only (C) optimization, which better represents the traditional way that robots are developed, to explore the trade-off between these two methods. We show that although C processes can greatly improve the behavior of poor morphologies, such agents are still outperformed by MC co-optimization results with as few as 25 iterations. Our findings, on one hand, suggest that BO should be used in the design process of robots for both morphological and control parameters to reach optimal performance, and on the other hand, point to the downfall of current design methods in face of new search techniques.

  8. The trade-off between morphology and control in the co-optimized design of robots

    PubMed Central

    Iida, Fumiya

    2017-01-01

    Conventionally, robot morphologies are developed through simulations and calculations, and different control methods are applied afterwards. Assuming that simulations and predictions are simplified representations of our reality, how sure can roboticists be that the chosen morphology is the most adequate for the possible control choices in the real-world? Here we study the influence of the design parameters in the creation of a robot with a Bayesian morphology-control (MC) co-optimization process. A robot autonomously creates child robots from a set of possible design parameters and uses Bayesian Optimization (BO) to infer the best locomotion behavior from real world experiments. Then, we systematically change from an MC co-optimization to a control-only (C) optimization, which better represents the traditional way that robots are developed, to explore the trade-off between these two methods. We show that although C processes can greatly improve the behavior of poor morphologies, such agents are still outperformed by MC co-optimization results with as few as 25 iterations. Our findings, on one hand, suggest that BO should be used in the design process of robots for both morphological and control parameters to reach optimal performance, and on the other hand, point to the downfall of current design methods in face of new search techniques. PMID:29023482

  9. Myths and legends in learning classification rules

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1990-01-01

    A discussion is presented of machine learning theory on empirically learning classification rules. Six myths are proposed in the machine learning community that address issues of bias, learning as search, computational learning theory, Occam's razor, universal learning algorithms, and interactive learning. Some of the problems raised are also addressed from a Bayesian perspective. Questions are suggested that machine learning researchers should be addressing both theoretically and experimentally.

  10. Uncertainty Quantification Analysis of Both Experimental and CFD Simulation Data of a Bench-scale Fluidized Bed Gasifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahnam, Mehrdad; Gel, Aytekin; Subramaniyan, Arun K.

    Adequate assessment of the uncertainties in modeling and simulation is becoming an integral part of the simulation based engineering design. The goal of this study is to demonstrate the application of non-intrusive Bayesian uncertainty quantification (UQ) methodology in multiphase (gas-solid) flows with experimental and simulation data, as part of our research efforts to determine the most suited approach for UQ of a bench scale fluidized bed gasifier. UQ analysis was first performed on the available experimental data. Global sensitivity analysis performed as part of the UQ analysis shows that among the three operating factors, steam to oxygen ratio has themore » most influence on syngas composition in the bench-scale gasifier experiments. An analysis for forward propagation of uncertainties was performed and results show that an increase in steam to oxygen ratio leads to an increase in H2 mole fraction and a decrease in CO mole fraction. These findings are in agreement with the ANOVA analysis performed in the reference experimental study. Another contribution in addition to the UQ analysis is the optimization-based approach to guide to identify next best set of additional experimental samples, should the possibility arise for additional experiments. Hence, the surrogate models constructed as part of the UQ analysis is employed to improve the information gain and make incremental recommendation, should the possibility to add more experiments arise. In the second step, series of simulations were carried out with the open-source computational fluid dynamics software MFiX to reproduce the experimental conditions, where three operating factors, i.e., coal flow rate, coal particle diameter, and steam-to-oxygen ratio, were systematically varied to understand their effect on the syngas composition. Bayesian UQ analysis was performed on the numerical results. As part of Bayesian UQ analysis, a global sensitivity analysis was performed based on the simulation results, which shows that the predicted syngas composition is strongly affected not only by the steam-to-oxygen ratio (which was observed in experiments as well) but also by variation in the coal flow rate and particle diameter (which was not observed in experiments). The carbon monoxide mole fraction is underpredicted at lower steam-to-oxygen ratios and overpredicted at higher steam-to-oxygen ratios. The opposite trend is observed for the carbon dioxide mole fraction. These discrepancies are attributed to either excessive segregation of the phases that leads to the fuel-rich or -lean regions or alternatively the selection of reaction models, where different reaction models and kinetics can lead to different syngas compositions throughout the gasifier. To improve quality of numerical models used, the effect that uncertainties in reaction models for gasification, char oxidation, carbon monoxide oxidation, and water gas shift will have on the syngas composition at different grid resolution, along with bed temperature were investigated. The global sensitivity analysis showed that among various reaction models employed for water gas shift, gasification, char oxidation, the choice of reaction model for water gas shift has the greatest influence on syngas composition, with gasification reaction model being second. Syngas composition also shows a small sensitivity to temperature of the bed. The hydrodynamic behavior of the bed did not change beyond grid spacing of 18 times the particle diameter. However, the syngas concentration continued to be affected by the grid resolution as low as 9 times the particle diameter. This is due to a better resolution of the phasic interface between the gases and solid that leads to stronger heterogeneous reactions. This report is a compilation of three manuscripts published in peer-reviewed journals for the series of studies mentioned above.« less

  11. A nanomaterial release model for waste shredding using a Bayesian belief network

    NASA Astrophysics Data System (ADS)

    Shandilya, Neeraj; Ligthart, Tom; van Voorde, Imelda; Stahlmecke, Burkhard; Clavaguera, Simon; Philippot, Cecile; Ding, Yaobo; Goede, Henk

    2018-02-01

    The shredding of waste of electrical and electronic equipment (WEEE) and other products, incorporated with nanomaterials, can lead to a substantial release of nanomaterials. Considering the uncertainty, complexity, and scarcity of experimental data on release, we present the development of a Bayesian belief network (BBN) model. This baseline model aims to give a first prediction of the release of nanomaterials (excluding nanofibers) during their mechanical shredding. With a focus on the description of the model development methodology, we characterize nanomaterial release in terms of number, size, mass, and composition of released particles. Through a sensitivity analysis of the model, we find the material-specific parameters like affinity of nanomaterials to the matrix of the composite and their state of dispersion inside the matrix to reduce the nanomaterial release up to 50%. The shredder-specific parameters like number of shafts in a shredder and input and output size of the material for shredding could minimize it up to 98%. The comparison with two experimental test cases shows promising outcome on the prediction capacity of the model. As additional experimental data on nanomaterial release becomes available, the model is able to further adapt and update risk forecasts. When adapting the model with additional expert beliefs, experts should be selected using criteria, e.g., substantial contribution to nanomaterial and/or particulate matter release-related scientific literature, the capacity and willingness to contribute to further development of the BBN model, and openness to accepting deviating opinions. [Figure not available: see fulltext.

  12. A method to accelerate creation of plasma etch recipes using physics and Bayesian statistics

    NASA Astrophysics Data System (ADS)

    Chopra, Meghali J.; Verma, Rahul; Lane, Austin; Willson, C. G.; Bonnecaze, Roger T.

    2017-03-01

    Next generation semiconductor technologies like high density memory storage require precise 2D and 3D nanopatterns. Plasma etching processes are essential to achieving the nanoscale precision required for these structures. Current plasma process development methods rely primarily on iterative trial and error or factorial design of experiment (DOE) to define the plasma process space. Here we evaluate the efficacy of the software tool Recipe Optimization for Deposition and Etching (RODEo) against standard industry methods at determining the process parameters of a high density O2 plasma system with three case studies. In the first case study, we demonstrate that RODEo is able to predict etch rates more accurately than a regression model based on a full factorial design while using 40% fewer experiments. In the second case study, we demonstrate that RODEo performs significantly better than a full factorial DOE at identifying optimal process conditions to maximize anisotropy. In the third case study we experimentally show how RODEo maximizes etch rates while using half the experiments of a full factorial DOE method. With enhanced process predictions and more accurate maps of the process space, RODEo reduces the number of experiments required to develop and optimize plasma processes.

  13. The Importance of Proving the Null

    PubMed Central

    Gallistel, C. R.

    2010-01-01

    Null hypotheses are simple, precise, and theoretically important. Conventional statistical analysis cannot support them; Bayesian analysis can. The challenge in a Bayesian analysis is to formulate a suitably vague alternative, because the vaguer the alternative is (the more it spreads out the unit mass of prior probability), the more the null is favored. A general solution is a sensitivity analysis: Compute the odds for or against the null as a function of the limit(s) on the vagueness of the alternative. If the odds on the null approach 1 from above as the hypothesized maximum size of the possible effect approaches 0, then the data favor the null over any vaguer alternative to it. The simple computations and the intuitive graphic representation of the analysis are illustrated by the analysis of diverse examples from the current literature. They pose 3 common experimental questions: (a) Are 2 means the same? (b) Is performance at chance? (c) Are factors additive? PMID:19348549

  14. Nested Sampling for Bayesian Model Comparison in the Context of Salmonella Disease Dynamics

    PubMed Central

    Dybowski, Richard; McKinley, Trevelyan J.; Mastroeni, Pietro; Restif, Olivier

    2013-01-01

    Understanding the mechanisms underlying the observed dynamics of complex biological systems requires the statistical assessment and comparison of multiple alternative models. Although this has traditionally been done using maximum likelihood-based methods such as Akaike's Information Criterion (AIC), Bayesian methods have gained in popularity because they provide more informative output in the form of posterior probability distributions. However, comparison between multiple models in a Bayesian framework is made difficult by the computational cost of numerical integration over large parameter spaces. A new, efficient method for the computation of posterior probabilities has recently been proposed and applied to complex problems from the physical sciences. Here we demonstrate how nested sampling can be used for inference and model comparison in biological sciences. We present a reanalysis of data from experimental infection of mice with Salmonella enterica showing the distribution of bacteria in liver cells. In addition to confirming the main finding of the original analysis, which relied on AIC, our approach provides: (a) integration across the parameter space, (b) estimation of the posterior parameter distributions (with visualisations of parameter correlations), and (c) estimation of the posterior predictive distributions for goodness-of-fit assessments of the models. The goodness-of-fit results suggest that alternative mechanistic models and a relaxation of the quasi-stationary assumption should be considered. PMID:24376528

  15. Bayesian GGE biplot models applied to maize multi-environments trials.

    PubMed

    de Oliveira, L A; da Silva, C P; Nuvunga, J J; da Silva, A Q; Balestre, M

    2016-06-17

    The additive main effects and multiplicative interaction (AMMI) and the genotype main effects and genotype x environment interaction (GGE) models stand out among the linear-bilinear models used in genotype x environment interaction studies. Despite the advantages of their use to describe genotype x environment (AMMI) or genotype and genotype x environment (GGE) interactions, these methods have known limitations that are inherent to fixed effects models, including difficulty in treating variance heterogeneity and missing data. Traditional biplots include no measure of uncertainty regarding the principal components. The present study aimed to apply the Bayesian approach to GGE biplot models and assess the implications for selecting stable and adapted genotypes. Our results demonstrated that the Bayesian approach applied to GGE models with non-informative priors was consistent with the traditional GGE biplot analysis, although the credible region incorporated into the biplot enabled distinguishing, based on probability, the performance of genotypes, and their relationships with the environments in the biplot. Those regions also enabled the identification of groups of genotypes and environments with similar effects in terms of adaptability and stability. The relative position of genotypes and environments in biplots is highly affected by the experimental accuracy. Thus, incorporation of uncertainty in biplots is a key tool for breeders to make decisions regarding stability selection and adaptability and the definition of mega-environments.

  16. Bayesian refinement of protein structures and ensembles against SAXS data using molecular dynamics

    PubMed Central

    Shevchuk, Roman; Hub, Jochen S.

    2017-01-01

    Small-angle X-ray scattering is an increasingly popular technique used to detect protein structures and ensembles in solution. However, the refinement of structures and ensembles against SAXS data is often ambiguous due to the low information content of SAXS data, unknown systematic errors, and unknown scattering contributions from the solvent. We offer a solution to such problems by combining Bayesian inference with all-atom molecular dynamics simulations and explicit-solvent SAXS calculations. The Bayesian formulation correctly weights the SAXS data versus prior physical knowledge, it quantifies the precision or ambiguity of fitted structures and ensembles, and it accounts for unknown systematic errors due to poor buffer matching. The method further provides a probabilistic criterion for identifying the number of states required to explain the SAXS data. The method is validated by refining ensembles of a periplasmic binding protein against calculated SAXS curves. Subsequently, we derive the solution ensembles of the eukaryotic chaperone heat shock protein 90 (Hsp90) against experimental SAXS data. We find that the SAXS data of the apo state of Hsp90 is compatible with a single wide-open conformation, whereas the SAXS data of Hsp90 bound to ATP or to an ATP-analogue strongly suggest heterogenous ensembles of a closed and a wide-open state. PMID:29045407

  17. Detection of cylinder unbalance from Bayesian inference combining cylinder pressure and vibration block measurement in a Diesel engine

    NASA Astrophysics Data System (ADS)

    Nguyen, Emmanuel; Antoni, Jerome; Grondin, Olivier

    2009-12-01

    In the automotive industry, the necessary reduction of pollutant emission for new Diesel engines requires the control of combustion events. This control is efficient provided combustion parameters such as combustion occurrence and combustion energy are relevant. Combustion parameters are traditionally measured from cylinder pressure sensors. However this kind of sensor is expensive and has a limited lifetime. Thus this paper proposes to use only one cylinder pressure on a multi-cylinder engine and to extract combustion parameters from the other cylinders with low cost knock sensors. Knock sensors measure the vibration circulating on the engine block, hence they do not all contain the information on the combustion processes, but they are also contaminated by other mechanical noises that disorder the signal. The question is how to combine the information coming from one cylinder pressure and knock sensors to obtain the most relevant combustion parameters in all engine cylinders. In this paper, the issue is addressed trough the Bayesian inference formalism. In that cylinder where a cylinder pressure sensor is mounted, combustion parameters will be measured directly. In the other cylinders, they will be measured indirectly from Bayesian inference. Experimental results obtained on a four cylinder Diesel engine demonstrate the effectiveness of the proposed algorithm toward that purpose.

  18. Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Zhu, Shijia; Wang, Yadong

    2015-12-01

    Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is ‘stationarity’, and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings.

  19. Assessment of CT image quality using a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Reginatto, M.; Anton, M.; Elster, C.

    2017-08-01

    One of the most promising approaches for evaluating CT image quality is task-specific quality assessment. This involves a simplified version of a clinical task, e.g. deciding whether an image belongs to the class of images that contain the signature of a lesion or not. Task-specific quality assessment can be done by model observers, which are mathematical procedures that carry out the classification task. The most widely used figure of merit for CT image quality is the area under the ROC curve (AUC), a quantity which characterizes the performance of a given model observer. In order to estimate AUC from a finite sample of images, different approaches from classical statistics have been suggested. The goal of this paper is to introduce task-specific quality assessment of CT images to metrology and to propose a novel Bayesian estimation of AUC for the channelized Hotelling observer (CHO) applied to the task of detecting a lesion at a known image location. It is assumed that signal-present and signal-absent images follow multivariate normal distributions with the same covariance matrix. The Bayesian approach results in a posterior distribution for the AUC of the CHO which provides in addition a complete characterization of the uncertainty of this figure of merit. The approach is illustrated by its application to both simulated and experimental data.

  20. Influence of erroneous patient records on population pharmacokinetic modeling and individual bayesian estimation.

    PubMed

    van der Meer, Aize Franciscus; Touw, Daniël J; Marcus, Marco A E; Neef, Cornelis; Proost, Johannes H

    2012-10-01

    Observational data sets can be used for population pharmacokinetic (PK) modeling. However, these data sets are generally less precisely recorded than experimental data sets. This article aims to investigate the influence of erroneous records on population PK modeling and individual maximum a posteriori Bayesian (MAPB) estimation. A total of 1123 patient records of neonates who were administered vancomycin were used for population PK modeling by iterative 2-stage Bayesian (ITSB) analysis. Cut-off values for weighted residuals were tested for exclusion of records from the analysis. A simulation study was performed to assess the influence of erroneous records on population modeling and individual MAPB estimation. Also the cut-off values for weighted residuals were tested in the simulation study. Errors in registration have limited the influence on outcomes of population PK modeling but can have detrimental effects on individual MAPB estimation. A population PK model created from a data set with many registration errors has little influence on subsequent MAPB estimates for precisely recorded data. A weighted residual value of 2 for concentration measurements has good discriminative power for identification of erroneous records. ITSB analysis and its individual estimates are hardly affected by most registration errors. Large registration errors can be detected by weighted residuals of concentration.

  1. Prediction of Effective Drug Combinations by an Improved Naïve Bayesian Algorithm.

    PubMed

    Bai, Li-Yue; Dai, Hao; Xu, Qin; Junaid, Muhammad; Peng, Shao-Liang; Zhu, Xiaolei; Xiong, Yi; Wei, Dong-Qing

    2018-02-05

    Drug combinatorial therapy is a promising strategy for combating complex diseases due to its fewer side effects, lower toxicity and better efficacy. However, it is not feasible to determine all the effective drug combinations in the vast space of possible combinations given the increasing number of approved drugs in the market, since the experimental methods for identification of effective drug combinations are both labor- and time-consuming. In this study, we conducted systematic analysis of various types of features to characterize pairs of drugs. These features included information about the targets of the drugs, the pathway in which the target protein of a drug was involved in, side effects of drugs, metabolic enzymes of the drugs, and drug transporters. The latter two features (metabolic enzymes and drug transporters) were related to the metabolism and transportation properties of drugs, which were not analyzed or used in previous studies. Then, we devised a novel improved naïve Bayesian algorithm to construct classification models to predict effective drug combinations by using the individual types of features mentioned above. Our results indicated that the performance of our proposed method was indeed better than the naïve Bayesian algorithm and other conventional classification algorithms such as support vector machine and K-nearest neighbor.

  2. Multiscale hidden Markov models for photon-limited imaging

    NASA Astrophysics Data System (ADS)

    Nowak, Robert D.

    1999-06-01

    Photon-limited image analysis is often hindered by low signal-to-noise ratios. A novel Bayesian multiscale modeling and analysis method is developed in this paper to assist in these challenging situations. In addition to providing a very natural and useful framework for modeling an d processing images, Bayesian multiscale analysis is often much less computationally demanding compared to classical Markov random field models. This paper focuses on a probabilistic graph model called the multiscale hidden Markov model (MHMM), which captures the key inter-scale dependencies present in natural image intensities. The MHMM framework presented here is specifically designed for photon-limited imagin applications involving Poisson statistics, and applications to image intensity analysis are examined.

  3. A nonparametric method to generate synthetic populations to adjust for complex sampling design features.

    PubMed

    Dong, Qi; Elliott, Michael R; Raghunathan, Trivellore E

    2014-06-01

    Outside of the survey sampling literature, samples are often assumed to be generated by a simple random sampling process that produces independent and identically distributed (IID) samples. Many statistical methods are developed largely in this IID world. Application of these methods to data from complex sample surveys without making allowance for the survey design features can lead to erroneous inferences. Hence, much time and effort have been devoted to develop the statistical methods to analyze complex survey data and account for the sample design. This issue is particularly important when generating synthetic populations using finite population Bayesian inference, as is often done in missing data or disclosure risk settings, or when combining data from multiple surveys. By extending previous work in finite population Bayesian bootstrap literature, we propose a method to generate synthetic populations from a posterior predictive distribution in a fashion inverts the complex sampling design features and generates simple random samples from a superpopulation point of view, making adjustment on the complex data so that they can be analyzed as simple random samples. We consider a simulation study with a stratified, clustered unequal-probability of selection sample design, and use the proposed nonparametric method to generate synthetic populations for the 2006 National Health Interview Survey (NHIS), and the Medical Expenditure Panel Survey (MEPS), which are stratified, clustered unequal-probability of selection sample designs.

  4. A nonparametric method to generate synthetic populations to adjust for complex sampling design features

    PubMed Central

    Dong, Qi; Elliott, Michael R.; Raghunathan, Trivellore E.

    2017-01-01

    Outside of the survey sampling literature, samples are often assumed to be generated by a simple random sampling process that produces independent and identically distributed (IID) samples. Many statistical methods are developed largely in this IID world. Application of these methods to data from complex sample surveys without making allowance for the survey design features can lead to erroneous inferences. Hence, much time and effort have been devoted to develop the statistical methods to analyze complex survey data and account for the sample design. This issue is particularly important when generating synthetic populations using finite population Bayesian inference, as is often done in missing data or disclosure risk settings, or when combining data from multiple surveys. By extending previous work in finite population Bayesian bootstrap literature, we propose a method to generate synthetic populations from a posterior predictive distribution in a fashion inverts the complex sampling design features and generates simple random samples from a superpopulation point of view, making adjustment on the complex data so that they can be analyzed as simple random samples. We consider a simulation study with a stratified, clustered unequal-probability of selection sample design, and use the proposed nonparametric method to generate synthetic populations for the 2006 National Health Interview Survey (NHIS), and the Medical Expenditure Panel Survey (MEPS), which are stratified, clustered unequal-probability of selection sample designs. PMID:29200608

  5. The Development of Bayesian Theory and Its Applications in Business and Bioinformatics

    NASA Astrophysics Data System (ADS)

    Zhang, Yifei

    2018-03-01

    Bayesian Theory originated from an Essay of a British mathematician named Thomas Bayes in 1763, and after its development in 20th century, Bayesian Statistics has been taking a significant part in statistical study of all fields. Due to the recent breakthrough of high-dimensional integral, Bayesian Statistics has been improved and perfected, and now it can be used to solve problems that Classical Statistics failed to solve. This paper summarizes Bayesian Statistics’ history, concepts and applications, which are illustrated in five parts: the history of Bayesian Statistics, the weakness of Classical Statistics, Bayesian Theory and its development and applications. The first two parts make a comparison between Bayesian Statistics and Classical Statistics in a macroscopic aspect. And the last three parts focus on Bayesian Theory in specific -- from introducing some particular Bayesian Statistics’ concepts to listing their development and finally their applications.

  6. Bayesian demography 250 years after Bayes

    PubMed Central

    Bijak, Jakub; Bryant, John

    2016-01-01

    Bayesian statistics offers an alternative to classical (frequentist) statistics. It is distinguished by its use of probability distributions to describe uncertain quantities, which leads to elegant solutions to many difficult statistical problems. Although Bayesian demography, like Bayesian statistics more generally, is around 250 years old, only recently has it begun to flourish. The aim of this paper is to review the achievements of Bayesian demography, address some misconceptions, and make the case for wider use of Bayesian methods in population studies. We focus on three applications: demographic forecasts, limited data, and highly structured or complex models. The key advantages of Bayesian methods are the ability to integrate information from multiple sources and to describe uncertainty coherently. Bayesian methods also allow for including additional (prior) information next to the data sample. As such, Bayesian approaches are complementary to many traditional methods, which can be productively re-expressed in Bayesian terms. PMID:26902889

  7. Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rovinelli, Andrea; Sangid, Michael D.; Proudhon, Henry

    Small crack propagation accounts for most of the fatigue life of engineering structures subject to high cycle fatigue loading conditions. Determining the fatigue crack growth rate of small cracks propagating into polycrystalline engineering alloys is critical to improving fatigue life predictions, thus lowering cost and increasing safety. In this work, cycle-by-cycle data of a small crack propagating in a beta metastable titanium alloy is available via phase and diffraction contrast tomography. Crystal plasticity simulations are used to supplement experimental data regarding the micromechanical fields ahead of the crack tip. Experimental and numerical results are combined into a multimodal dataset andmore » sampled utilizing a non-local data mining procedure. Furthermore, to capture the propensity of body-centered cubic metals to deform according to the pencil-glide model, a non-local driving force is postulated. The proposed driving force serves as the basis to construct a data-driven probabilistic crack propagation framework using Bayesian networks as building blocks. The spatial correlation between the postulated driving force and experimental observations is obtained by analyzing the results of the proposed framework. Results show that the above correlation increases proportionally to the distance from the crack front until the edge of the plastic zone. Moreover, the predictions of the propagation framework show good agreement with experimental observations. Finally, we studied the interaction of a small crack with grain boundaries (GBs) utilizing various slip transmission criteria, revealing the tendency of a crack to cross a GB by propagating along the slip directions minimizing the residual Burgers vector within the GB.« less

  8. Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations

    NASA Astrophysics Data System (ADS)

    Rovinelli, Andrea; Sangid, Michael D.; Proudhon, Henry; Guilhem, Yoann; Lebensohn, Ricardo A.; Ludwig, Wolfgang

    2018-06-01

    Small crack propagation accounts for most of the fatigue life of engineering structures subject to high cycle fatigue loading conditions. Determining the fatigue crack growth rate of small cracks propagating into polycrystalline engineering alloys is critical to improving fatigue life predictions, thus lowering cost and increasing safety. In this work, cycle-by-cycle data of a small crack propagating in a beta metastable titanium alloy is available via phase and diffraction contrast tomography. Crystal plasticity simulations are used to supplement experimental data regarding the micromechanical fields ahead of the crack tip. Experimental and numerical results are combined into a multimodal dataset and sampled utilizing a non-local data mining procedure. Furthermore, to capture the propensity of body-centered cubic metals to deform according to the pencil-glide model, a non-local driving force is postulated. The proposed driving force serves as the basis to construct a data-driven probabilistic crack propagation framework using Bayesian networks as building blocks. The spatial correlation between the postulated driving force and experimental observations is obtained by analyzing the results of the proposed framework. Results show that the above correlation increases proportionally to the distance from the crack front until the edge of the plastic zone. Moreover, the predictions of the propagation framework show good agreement with experimental observations. Finally, we studied the interaction of a small crack with grain boundaries (GBs) utilizing various slip transmission criteria, revealing the tendency of a crack to cross a GB by propagating along the slip directions minimizing the residual Burgers vector within the GB.

  9. Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation

    PubMed Central

    Vo, Brenda N.; Drovandi, Christopher C.; Pettitt, Anthony N.; Pettet, Graeme J.

    2015-01-01

    In vitro studies and mathematical models are now being widely used to study the underlying mechanisms driving the expansion of cell colonies. This can improve our understanding of cancer formation and progression. Although much progress has been made in terms of developing and analysing mathematical models, far less progress has been made in terms of understanding how to estimate model parameters using experimental in vitro image-based data. To address this issue, a new approximate Bayesian computation (ABC) algorithm is proposed to estimate key parameters governing the expansion of melanoma cell (MM127) colonies, including cell diffusivity, D, cell proliferation rate, λ, and cell-to-cell adhesion, q, in two experimental scenarios, namely with and without a chemical treatment to suppress cell proliferation. Even when little prior biological knowledge about the parameters is assumed, all parameters are precisely inferred with a small posterior coefficient of variation, approximately 2–12%. The ABC analyses reveal that the posterior distributions of D and q depend on the experimental elapsed time, whereas the posterior distribution of λ does not. The posterior mean values of D and q are in the ranges 226–268 µm2h−1, 311–351 µm2h−1 and 0.23–0.39, 0.32–0.61 for the experimental periods of 0–24 h and 24–48 h, respectively. Furthermore, we found that the posterior distribution of q also depends on the initial cell density, whereas the posterior distributions of D and λ do not. The ABC approach also enables information from the two experiments to be combined, resulting in greater precision for all estimates of D and λ. PMID:26642072

  10. Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations

    DOE PAGES

    Rovinelli, Andrea; Sangid, Michael D.; Proudhon, Henry; ...

    2018-03-11

    Small crack propagation accounts for most of the fatigue life of engineering structures subject to high cycle fatigue loading conditions. Determining the fatigue crack growth rate of small cracks propagating into polycrystalline engineering alloys is critical to improving fatigue life predictions, thus lowering cost and increasing safety. In this work, cycle-by-cycle data of a small crack propagating in a beta metastable titanium alloy is available via phase and diffraction contrast tomography. Crystal plasticity simulations are used to supplement experimental data regarding the micromechanical fields ahead of the crack tip. Experimental and numerical results are combined into a multimodal dataset andmore » sampled utilizing a non-local data mining procedure. Furthermore, to capture the propensity of body-centered cubic metals to deform according to the pencil-glide model, a non-local driving force is postulated. The proposed driving force serves as the basis to construct a data-driven probabilistic crack propagation framework using Bayesian networks as building blocks. The spatial correlation between the postulated driving force and experimental observations is obtained by analyzing the results of the proposed framework. Results show that the above correlation increases proportionally to the distance from the crack front until the edge of the plastic zone. Moreover, the predictions of the propagation framework show good agreement with experimental observations. Finally, we studied the interaction of a small crack with grain boundaries (GBs) utilizing various slip transmission criteria, revealing the tendency of a crack to cross a GB by propagating along the slip directions minimizing the residual Burgers vector within the GB.« less

  11. Uncertainty quantification for constitutive model calibration of brain tissue.

    PubMed

    Brewick, Patrick T; Teferra, Kirubel

    2018-05-31

    The results of a study comparing model calibration techniques for Ogden's constitutive model that describes the hyperelastic behavior of brain tissue are presented. One and two-term Ogden models are fit to two different sets of stress-strain experimental data for brain tissue using both least squares optimization and Bayesian estimation. For the Bayesian estimation, the joint posterior distribution of the constitutive parameters is calculated by employing Hamiltonian Monte Carlo (HMC) sampling, a type of Markov Chain Monte Carlo method. The HMC method is enriched in this work to intrinsically enforce the Drucker stability criterion by formulating a nonlinear parameter constraint function, which ensures the constitutive model produces physically meaningful results. Through application of the nested sampling technique, 95% confidence bounds on the constitutive model parameters are identified, and these bounds are then propagated through the constitutive model to produce the resultant bounds on the stress-strain response. The behavior of the model calibration procedures and the effect of the characteristics of the experimental data are extensively evaluated. It is demonstrated that increasing model complexity (i.e., adding an additional term in the Ogden model) improves the accuracy of the best-fit set of parameters while also increasing the uncertainty via the widening of the confidence bounds of the calibrated parameters. Despite some similarity between the two data sets, the resulting distributions are noticeably different, highlighting the sensitivity of the calibration procedures to the characteristics of the data. For example, the amount of uncertainty reported on the experimental data plays an essential role in how data points are weighted during the calibration, and this significantly affects how the parameters are calibrated when combining experimental data sets from disparate sources. Published by Elsevier Ltd.

  12. BAYESIAN ENTROPY FOR SPATIAL SAMPLING DESIGN OF ENVIRONMENTAL DATA

    EPA Science Inventory

    Particulate Matter (PM) has been linked to widespread public health effects, including a range of serious respiratory and cardiovascular problems, and to reduced visibility in may parts of the United States, see the Environmental Protection Agency (EPA) report (2004) and relevant...

  13. A Bayesian comparative effectiveness trial in action: developing a platform for multisite study adaptive randomization.

    PubMed

    Brown, Alexandra R; Gajewski, Byron J; Aaronson, Lauren S; Mudaranthakam, Dinesh Pal; Hunt, Suzanne L; Berry, Scott M; Quintana, Melanie; Pasnoor, Mamatha; Dimachkie, Mazen M; Jawdat, Omar; Herbelin, Laura; Barohn, Richard J

    2016-08-31

    In the last few decades, the number of trials using Bayesian methods has grown rapidly. Publications prior to 1990 included only three clinical trials that used Bayesian methods, but that number quickly jumped to 19 in the 1990s and to 99 from 2000 to 2012. While this literature provides many examples of Bayesian Adaptive Designs (BAD), none of the papers that are available walks the reader through the detailed process of conducting a BAD. This paper fills that gap by describing the BAD process used for one comparative effectiveness trial (Patient Assisted Intervention for Neuropathy: Comparison of Treatment in Real Life Situations) that can be generalized for use by others. A BAD was chosen with efficiency in mind. Response-adaptive randomization allows the potential for substantially smaller sample sizes, and can provide faster conclusions about which treatment or treatments are most effective. An Internet-based electronic data capture tool, which features a randomization module, facilitated data capture across study sites and an in-house computation software program was developed to implement the response-adaptive randomization. A process for adapting randomization with minimal interruption to study sites was developed. A new randomization table can be generated quickly and can be seamlessly integrated in the data capture tool with minimal interruption to study sites. This manuscript is the first to detail the technical process used to evaluate a multisite comparative effectiveness trial using adaptive randomization. An important opportunity for the application of Bayesian trials is in comparative effectiveness trials. The specific case study presented in this paper can be used as a model for conducting future clinical trials using a combination of statistical software and a web-based application. ClinicalTrials.gov Identifier: NCT02260388 , registered on 6 October 2014.

  14. Combined N-of-1 trials to investigate mexiletine in non-dystrophic myotonia using a Bayesian approach; study rationale and protocol.

    PubMed

    Stunnenberg, Bas C; Woertman, Willem; Raaphorst, Joost; Statland, Jeffrey M; Griggs, Robert C; Timmermans, Janneke; Saris, Christiaan G; Schouwenberg, Bas J; Groenewoud, Hans M; Stegeman, Dick F; van Engelen, Baziel G M; Drost, Gea; van der Wilt, Gert Jan

    2015-03-25

    To obtain evidence for the clinical and cost-effectiveness of treatments for patients with rare diseases is a challenge. Non-dystrophic myotonia (NDM) is a group of inherited, rare muscle diseases characterized by muscle stiffness. The reimbursement of mexiletine, the expert opinion drug for NDM, has been discontinued in some countries due to a lack of independent randomized controlled trials (RCTs). It remains unclear however, which concessions can be accepted towards the level 1 evidence needed for coverage decisions, in rare diseases. Considering the large number of rare diseases with a lack of treatment evidence, more experience with innovative trial designs is needed. Both NDM and mexiletine are well suited for an N-of-1 trial design. A Bayesian approach allows for the combination of N-of-1 trials, which enables the assessment of outcomes on the patient and group level simultaneously. We will combine 30 individual, double-blind, randomized, placebo-controlled N-of-1 trials of mexiletine (600 mg daily) vs. placebo in genetically confirmed NDM patients using hierarchical Bayesian modeling. Our results will be compared and combined with the main results of an international cross-over RCT (mexiletine vs. placebo in NDM) published in 2012 that will be used as an informative prior. Similar criteria of eligibility, treatment regimen, end-points and measurement instruments are employed as used in the international cross-over RCT. The treatment of patients with NDM with mexiletine offers a unique opportunity to compare outcomes and efficiency of novel N-of-1 trial-based designs and conventional approaches in producing evidence of clinical and cost-effectiveness of treatments for patients with rare diseases. ClinicalTrials.gov Identifier: NCT02045667.

  15. Integrated Display and Simulation for Automatic Dependent Surveillance–Broadcast and Traffic Collision Avoidance System Data Fusion

    PubMed Central

    Wang, Yanran; Xiao, Gang; Dai, Zhouyun

    2017-01-01

    Automatic Dependent Surveillance–Broadcast (ADS-B) is the direction of airspace surveillance development. Research analyzing the benefits of Traffic Collision Avoidance System (TCAS) and ADS-B data fusion is almost absent. The paper proposes an ADS-B minimum system from ADS-B In and ADS-B Out. In ADS-B In, a fusion model with a variable sampling Variational Bayesian-Interacting Multiple Model (VSVB-IMM) algorithm is proposed for integrated display and an airspace traffic situation display is developed by using ADS-B information. ADS-B Out includes ADS-B Out transmission based on a simulator platform and an Unmanned Aerial Vehicle (UAV) platform. This paper describes the overall implementation of ADS-B minimum system, including theoretical model design, experimental simulation verification, engineering implementation, results analysis, etc. Simulation and implementation results show that the fused system has better performance than each independent subsystem and it can work well in engineering applications. PMID:29137194

  16. A dedicated on-line detecting system for auto air dryers

    NASA Astrophysics Data System (ADS)

    Shi, Chao-yu; Luo, Zai

    2013-10-01

    According to the correlative automobile industry standard and the requirements of manufacturer, this dedicated on-line detecting system is designed against the shortage of low degree automatic efficiency and detection precision of auto air dryer in the domestic. Fast automatic detection is achieved by combining the technology of computer control, mechatronics and pneumatics. This system can detect the speciality performance of pressure regulating valve and sealability of auto air dryer, in which online analytical processing of test data is available, at the same time, saving and inquiring data is achieved. Through some experimental analysis, it is indicated that efficient and accurate detection of the performance of auto air dryer is realized, and the test errors are less than 3%. Moreover, we carry out the type A evaluation of uncertainty in test data based on Bayesian theory, and the results show that the test uncertainties of all performance parameters are less than 0.5kPa, which can meet the requirements of operating industrial site absolutely.

  17. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography.

    PubMed

    Cai, C; Rodet, T; Legoupil, S; Mohammad-Djafari, A

    2013-11-01

    Dual-energy computed tomography (DECT) makes it possible to get two fractions of basis materials without segmentation. One is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical DECT measurements are usually obtained with polychromatic x-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam polychromaticity fail to estimate the correct decomposition fractions and result in beam-hardening artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log preprocessing and the ill-conditioned water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on nonlinear forward models counting the beam polychromaticity show great potential for giving accurate fraction images. This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint maximum a posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a nonquadratic cost function. To solve it, the use of a monotone conjugate gradient algorithm with suboptimal descent steps is proposed. The performance of the proposed approach is analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also necessary to have the accurate spectrum information about the source-detector system. When dealing with experimental data, the spectrum can be predicted by a Monte Carlo simulator. For the materials between water and bone, less than 5% separation errors are observed on the estimated decomposition fractions. The proposed approach is a statistical reconstruction approach based on a nonlinear forward model counting the full beam polychromaticity and applied directly to the projections without taking negative-log. Compared to the approaches based on linear forward models and the BHA correction approaches, it has advantages in noise robustness and reconstruction accuracy.

  18. Error Quantification and Confidence Assessment of Aerothermal Model Predictions for Hypersonic Aircraft (Preprint)

    DTIC Science & Technology

    2013-09-01

    based confidence metric is used to compare several different model predictions with the experimental data. II. Aerothermal Model Definition and...whereas 5% measurement uncertainty is assumed for aerodynamic pressure and heat flux measurements 4p y and 4Q y . Bayesian updating according... definitive conclusions for these particular aerodynamic models. However, given the confidence associated with the 4 sdp predictions for Run 30 (H/D

  19. Myths and legends in learning classification rules

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1990-01-01

    This paper is a discussion of machine learning theory on empirically learning classification rules. The paper proposes six myths in the machine learning community that address issues of bias, learning as search, computational learning theory, Occam's razor, 'universal' learning algorithms, and interactive learnings. Some of the problems raised are also addressed from a Bayesian perspective. The paper concludes by suggesting questions that machine learning researchers should be addressing both theoretically and experimentally.

  20. Cross-Situational Learning with Bayesian Generative Models for Multimodal Category and Word Learning in Robots

    PubMed Central

    Taniguchi, Akira; Taniguchi, Tadahiro; Cangelosi, Angelo

    2017-01-01

    In this paper, we propose a Bayesian generative model that can form multiple categories based on each sensory-channel and can associate words with any of the four sensory-channels (action, position, object, and color). This paper focuses on cross-situational learning using the co-occurrence between words and information of sensory-channels in complex situations rather than conventional situations of cross-situational learning. We conducted a learning scenario using a simulator and a real humanoid iCub robot. In the scenario, a human tutor provided a sentence that describes an object of visual attention and an accompanying action to the robot. The scenario was set as follows: the number of words per sensory-channel was three or four, and the number of trials for learning was 20 and 40 for the simulator and 25 and 40 for the real robot. The experimental results showed that the proposed method was able to estimate the multiple categorizations and to learn the relationships between multiple sensory-channels and words accurately. In addition, we conducted an action generation task and an action description task based on word meanings learned in the cross-situational learning scenario. The experimental results showed that the robot could successfully use the word meanings learned by using the proposed method. PMID:29311888

  1. Visual shape perception as Bayesian inference of 3D object-centered shape representations.

    PubMed

    Erdogan, Goker; Jacobs, Robert A

    2017-11-01

    Despite decades of research, little is known about how people visually perceive object shape. We hypothesize that a promising approach to shape perception is provided by a "visual perception as Bayesian inference" framework which augments an emphasis on visual representation with an emphasis on the idea that shape perception is a form of statistical inference. Our hypothesis claims that shape perception of unfamiliar objects can be characterized as statistical inference of 3D shape in an object-centered coordinate system. We describe a computational model based on our theoretical framework, and provide evidence for the model along two lines. First, we show that, counterintuitively, the model accounts for viewpoint-dependency of object recognition, traditionally regarded as evidence against people's use of 3D object-centered shape representations. Second, we report the results of an experiment using a shape similarity task, and present an extensive evaluation of existing models' abilities to account for the experimental data. We find that our shape inference model captures subjects' behaviors better than competing models. Taken as a whole, our experimental and computational results illustrate the promise of our approach and suggest that people's shape representations of unfamiliar objects are probabilistic, 3D, and object-centered. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Quantitative critical thinking: Student activities using Bayesian updating

    NASA Astrophysics Data System (ADS)

    Warren, Aaron R.

    2018-05-01

    One of the central roles of physics education is the development of students' ability to evaluate proposed hypotheses and models. This ability is important not just for students' understanding of physics but also to prepare students for future learning beyond physics. In particular, it is often hoped that students will better understand the manner in which physicists leverage the availability of prior knowledge to guide and constrain the construction of new knowledge. Here, we discuss how the use of Bayes' Theorem to update the estimated likelihood of hypotheses and models can help achieve these educational goals through its integration with evaluative activities that use hypothetico-deductive reasoning. Several types of classroom and laboratory activities are presented that engage students in the practice of Bayesian likelihood updating on the basis of either consistency with experimental data or consistency with pre-established principles and models. This approach is sufficiently simple for introductory physics students while offering a robust mechanism to guide relatively sophisticated student reflection concerning models, hypotheses, and problem-solutions. A quasi-experimental study utilizing algebra-based introductory courses is presented to assess the impact of these activities on student epistemological development. The results indicate gains on the Epistemological Beliefs Assessment for Physical Science (EBAPS) at a minimal cost of class-time.

  3. Kalman-variant estimators for state of charge in lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Propp, Karsten; Auger, Daniel J.; Fotouhi, Abbas; Longo, Stefano; Knap, Vaclav

    2017-03-01

    Lithium-sulfur batteries are now commercially available, offering high specific energy density, low production costs and high safety. However, there is no commercially-available battery management system for them, and there are no published methods for determining state of charge in situ. This paper describes a study to address this gap. The properties and behaviours of lithium-sulfur are briefly introduced, and the applicability of 'standard' lithium-ion state-of-charge estimation methods is explored. Open-circuit voltage methods and 'Coulomb counting' are found to have a poor fit for lithium-sulfur, and model-based methods, particularly recursive Bayesian filters, are identified as showing strong promise. Three recursive Bayesian filters are implemented: an extended Kalman filter (EKF), an unscented Kalman filter (UKF) and a particle filter (PF). These estimators are tested through practical experimentation, considering both a pulse-discharge test and a test based on the New European Driving Cycle (NEDC). Experimentation is carried out at a constant temperature, mirroring the environment expected in the authors' target automotive application. It is shown that the estimators, which are based on a relatively simple equivalent-circuit-network model, can deliver useful results. If the three estimators implemented, the unscented Kalman filter gives the most robust and accurate performance, with an acceptable computational effort.

  4. Elastic Properties of Novel Co- and CoNi-Based Superalloys Determined through Bayesian Inference and Resonant Ultrasound Spectroscopy

    NASA Astrophysics Data System (ADS)

    Goodlet, Brent R.; Mills, Leah; Bales, Ben; Charpagne, Marie-Agathe; Murray, Sean P.; Lenthe, William C.; Petzold, Linda; Pollock, Tresa M.

    2018-06-01

    Bayesian inference is employed to precisely evaluate single crystal elastic properties of novel γ -γ ' Co- and CoNi-based superalloys from simple and non-destructive resonant ultrasound spectroscopy (RUS) measurements. Nine alloys from three Co-, CoNi-, and Ni-based alloy classes were evaluated in the fully aged condition, with one alloy per class also evaluated in the solution heat-treated condition. Comparisons are made between the elastic properties of the three alloy classes and among the alloys of a single class, with the following trends observed. A monotonic rise in the c_{44} (shear) elastic constant by a total of 12 pct is observed between the three alloy classes as Co is substituted for Ni. Elastic anisotropy ( A) is also increased, with a large majority of the nearly 13 pct increase occurring after Co becomes the dominant constituent. Together the five CoNi alloys, with Co:Ni ratios from 1:1 to 1.5:1, exhibited remarkably similar properties with an average A 1.8 pct greater than the Ni-based alloy CMSX-4. Custom code demonstrating a substantial advance over previously reported methods for RUS inversion is also reported here for the first time. CmdStan-RUS is built upon the open-source probabilistic programing language of Stan and formulates the inverse problem using Bayesian methods. Bayesian posterior distributions are efficiently computed with Hamiltonian Monte Carlo (HMC), while initial parameterization is randomly generated from weakly informative prior distributions. Remarkably robust convergence behavior is demonstrated across multiple independent HMC chains in spite of initial parameterization often very far from actual parameter values. Experimental procedures are substantially simplified by allowing any arbitrary misorientation between the specimen and crystal axes, as elastic properties and misorientation are estimated simultaneously.

  5. Remote Sensing Image Classification Applied to the First National Geographical Information Census of China

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Wen, Zongyong; Zhu, Zhaorong; Xia, Qiang; Shun, Lan

    2016-06-01

    Image classification will still be a long way in the future, although it has gone almost half a century. In fact, researchers have gained many fruits in the image classification domain, but there is still a long distance between theory and practice. However, some new methods in the artificial intelligence domain will be absorbed into the image classification domain and draw on the strength of each to offset the weakness of the other, which will open up a new prospect. Usually, networks play the role of a high-level language, as is seen in Artificial Intelligence and statistics, because networks are used to build complex model from simple components. These years, Bayesian Networks, one of probabilistic networks, are a powerful data mining technique for handling uncertainty in complex domains. In this paper, we apply Tree Augmented Naive Bayesian Networks (TAN) to texture classification of High-resolution remote sensing images and put up a new method to construct the network topology structure in terms of training accuracy based on the training samples. Since 2013, China government has started the first national geographical information census project, which mainly interprets geographical information based on high-resolution remote sensing images. Therefore, this paper tries to apply Bayesian network to remote sensing image classification, in order to improve image interpretation in the first national geographical information census project. In the experiment, we choose some remote sensing images in Beijing. Experimental results demonstrate TAN outperform than Naive Bayesian Classifier (NBC) and Maximum Likelihood Classification Method (MLC) in the overall classification accuracy. In addition, the proposed method can reduce the workload of field workers and improve the work efficiency. Although it is time consuming, it will be an attractive and effective method for assisting office operation of image interpretation.

  6. Estimation of white matter fiber parameters from compressed multiresolution diffusion MRI using sparse Bayesian learning.

    PubMed

    Pisharady, Pramod Kumar; Sotiropoulos, Stamatios N; Duarte-Carvajalino, Julio M; Sapiro, Guillermo; Lenglet, Christophe

    2018-02-15

    We present a sparse Bayesian unmixing algorithm BusineX: Bayesian Unmixing for Sparse Inference-based Estimation of Fiber Crossings (X), for estimation of white matter fiber parameters from compressed (under-sampled) diffusion MRI (dMRI) data. BusineX combines compressive sensing with linear unmixing and introduces sparsity to the previously proposed multiresolution data fusion algorithm RubiX, resulting in a method for improved reconstruction, especially from data with lower number of diffusion gradients. We formulate the estimation of fiber parameters as a sparse signal recovery problem and propose a linear unmixing framework with sparse Bayesian learning for the recovery of sparse signals, the fiber orientations and volume fractions. The data is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible diffusion directions. Volume fractions of fibers along these directions define the dictionary weights. The proposed sparse inference, which is based on the dictionary representation, considers the sparsity of fiber populations and exploits the spatial redundancy in data representation, thereby facilitating inference from under-sampled q-space. The algorithm improves parameter estimation from dMRI through data-dependent local learning of hyperparameters, at each voxel and for each possible fiber orientation, that moderate the strength of priors governing the parameter variances. Experimental results on synthetic and in-vivo data show improved accuracy with a lower uncertainty in fiber parameter estimates. BusineX resolves a higher number of second and third fiber crossings. For under-sampled data, the algorithm is also shown to produce more reliable estimates. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Three-Dimensional Bayesian Geostatistical Aquifer Characterization at the Hanford 300 Area using Tracer Test Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xingyuan; Murakami, Haruko; Hahn, Melanie S.

    2012-06-01

    Tracer testing under natural or forced gradient flow holds the potential to provide useful information for characterizing subsurface properties, through monitoring, modeling and interpretation of the tracer plume migration in an aquifer. Non-reactive tracer experiments were conducted at the Hanford 300 Area, along with constant-rate injection tests and electromagnetic borehole flowmeter (EBF) profiling. A Bayesian data assimilation technique, the method of anchored distributions (MAD) [Rubin et al., 2010], was applied to assimilate the experimental tracer test data with the other types of data and to infer the three-dimensional heterogeneous structure of the hydraulic conductivity in the saturated zone of themore » Hanford formation. In this study, the Bayesian prior information on the underlying random hydraulic conductivity field was obtained from previous field characterization efforts using the constant-rate injection tests and the EBF data. The posterior distribution of the conductivity field was obtained by further conditioning the field on the temporal moments of tracer breakthrough curves at various observation wells. MAD was implemented with the massively-parallel three-dimensional flow and transport code PFLOTRAN to cope with the highly transient flow boundary conditions at the site and to meet the computational demands of MAD. A synthetic study proved that the proposed method could effectively invert tracer test data to capture the essential spatial heterogeneity of the three-dimensional hydraulic conductivity field. Application of MAD to actual field data shows that the hydrogeological model, when conditioned on the tracer test data, can reproduce the tracer transport behavior better than the field characterized without the tracer test data. This study successfully demonstrates that MAD can sequentially assimilate multi-scale multi-type field data through a consistent Bayesian framework.« less

  8. Probabilistic estimation of dune retreat on the Gold Coast, Australia

    USGS Publications Warehouse

    Palmsten, Margaret L.; Splinter, Kristen D.; Plant, Nathaniel G.; Stockdon, Hilary F.

    2014-01-01

    Sand dunes are an important natural buffer between storm impacts and development backing the beach on the Gold Coast of Queensland, Australia. The ability to forecast dune erosion at a prediction horizon of days to a week would allow efficient and timely response to dune erosion in this highly populated area. Towards this goal, we modified an existing probabilistic dune erosion model for use on the Gold Coast. The original model was trained using observations of dune response from Hurricane Ivan on Santa Rosa Island, Florida, USA (Plant and Stockdon 2012. Probabilistic prediction of barrier-island response to hurricanes, Journal of Geophysical Research, 117(F3), F03015). The model relates dune position change to pre-storm dune elevations, dune widths, and beach widths, along with storm surge and run-up using a Bayesian network. The Bayesian approach captures the uncertainty of inputs and predictions through the conditional probabilities between variables. Three versions of the barrier island response Bayesian network were tested for use on the Gold Coast. One network has the same structure as the original and was trained with the Santa Rosa Island data. The second network has a modified design and was trained using only pre- and post-storm data from 1988-2009 for the Gold Coast. The third version of the network has the same design as the second version of the network and was trained with the combined data from the Gold Coast and Santa Rosa Island. The two networks modified for use on the Gold Coast hindcast dune retreat with equal accuracy. Both networks explained 60% of the observed dune retreat variance, which is comparable to the skill observed by Plant and Stockdon (2012) in the initial Bayesian network application at Santa Rosa Island. The new networks improved predictions relative to application of the original network on the Gold Coast. Dune width was the most important morphologic variable in hindcasting dune retreat, while hydrodynamic variables, surge and run-up elevation, were also important

  9. Estimating relative risks in multicenter studies with a small number of centers - which methods to use? A simulation study.

    PubMed

    Pedroza, Claudia; Truong, Van Thi Thanh

    2017-11-02

    Analyses of multicenter studies often need to account for center clustering to ensure valid inference. For binary outcomes, it is particularly challenging to properly adjust for center when the number of centers or total sample size is small, or when there are few events per center. Our objective was to evaluate the performance of generalized estimating equation (GEE) log-binomial and Poisson models, generalized linear mixed models (GLMMs) assuming binomial and Poisson distributions, and a Bayesian binomial GLMM to account for center effect in these scenarios. We conducted a simulation study with few centers (≤30) and 50 or fewer subjects per center, using both a randomized controlled trial and an observational study design to estimate relative risk. We compared the GEE and GLMM models with a log-binomial model without adjustment for clustering in terms of bias, root mean square error (RMSE), and coverage. For the Bayesian GLMM, we used informative neutral priors that are skeptical of large treatment effects that are almost never observed in studies of medical interventions. All frequentist methods exhibited little bias, and the RMSE was very similar across the models. The binomial GLMM had poor convergence rates, ranging from 27% to 85%, but performed well otherwise. The results show that both GEE models need to use small sample corrections for robust SEs to achieve proper coverage of 95% CIs. The Bayesian GLMM had similar convergence rates but resulted in slightly more biased estimates for the smallest sample sizes. However, it had the smallest RMSE and good coverage across all scenarios. These results were very similar for both study designs. For the analyses of multicenter studies with a binary outcome and few centers, we recommend adjustment for center with either a GEE log-binomial or Poisson model with appropriate small sample corrections or a Bayesian binomial GLMM with informative priors.

  10. Bayesian spatiotemporal model of fMRI data using transfer functions.

    PubMed

    Quirós, Alicia; Diez, Raquel Montes; Wilson, Simon P

    2010-09-01

    This research describes a new Bayesian spatiotemporal model to analyse BOLD fMRI studies. In the temporal dimension, we describe the shape of the hemodynamic response function (HRF) with a transfer function model. The spatial continuity and local homogeneity of the evoked responses are modelled by a Gaussian Markov random field prior on the parameter indicating activations. The proposal constitutes an extension of the spatiotemporal model presented in a previous approach [Quirós, A., Montes Diez, R. and Gamerman, D., 2010. Bayesian spatiotemporal model of fMRI data, Neuroimage, 49: 442-456], offering more flexibility in the estimation of the HRF and computational advantages in the resulting MCMC algorithm. Simulations from the model are performed in order to ascertain the performance of the sampling scheme and the ability of the posterior to estimate model parameters, as well as to check the model sensitivity to signal to noise ratio. Results are shown on synthetic data and on a real data set from a block-design fMRI experiment. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. Genetic basis of climatic adaptation in scots pine by bayesian quantitative trait locus analysis.

    PubMed Central

    Hurme, P; Sillanpää, M J; Arjas, E; Repo, T; Savolainen, O

    2000-01-01

    We examined the genetic basis of large adaptive differences in timing of bud set and frost hardiness between natural populations of Scots pine. As a mapping population, we considered an "open-pollinated backcross" progeny by collecting seeds of a single F(1) tree (cross between trees from southern and northern Finland) growing in southern Finland. Due to the special features of the design (no marker information available on grandparents or the father), we applied a Bayesian quantitative trait locus (QTL) mapping method developed previously for outcrossed offspring. We found four potential QTL for timing of bud set and seven for frost hardiness. Bayesian analyses detected more QTL than ANOVA for frost hardiness, but the opposite was true for bud set. These QTL included alleles with rather large effects, and additionally smaller QTL were supported. The largest QTL for bud set date accounted for about a fourth of the mean difference between populations. Thus, natural selection during adaptation has resulted in selection of at least some alleles of rather large effect. PMID:11063704

  12. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network

    PubMed Central

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-01

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006

  13. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network.

    PubMed

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-08

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.

  14. Continuous time Bayesian networks identify Prdm1 as a negative regulator of TH17 cell differentiation in humans

    PubMed Central

    Acerbi, Enzo; Viganò, Elena; Poidinger, Michael; Mortellaro, Alessandra; Zelante, Teresa; Stella, Fabio

    2016-01-01

    T helper 17 (TH17) cells represent a pivotal adaptive cell subset involved in multiple immune disorders in mammalian species. Deciphering the molecular interactions regulating TH17 cell differentiation is particularly critical for novel drug target discovery designed to control maladaptive inflammatory conditions. Using continuous time Bayesian networks over a time-course gene expression dataset, we inferred the global regulatory network controlling TH17 differentiation. From the network, we identified the Prdm1 gene encoding the B lymphocyte-induced maturation protein 1 as a crucial negative regulator of human TH17 cell differentiation. The results have been validated by perturbing Prdm1 expression on freshly isolated CD4+ naïve T cells: reduction of Prdm1 expression leads to augmentation of IL-17 release. These data unravel a possible novel target to control TH17 polarization in inflammatory disorders. Furthermore, this study represents the first in vitro validation of continuous time Bayesian networks as gene network reconstruction method and as hypothesis generation tool for wet-lab biological experiments. PMID:26976045

  15. Improving photoelectron counting and particle identification in scintillation detectors with Bayesian techniques

    NASA Astrophysics Data System (ADS)

    Akashi-Ronquest, M.; Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bodmer, M.; Boulay, M. G.; Broerman, B.; Buck, B.; Butcher, A.; Cai, B.; Caldwell, T.; Chen, M.; Chen, Y.; Cleveland, B.; Coakley, K.; Dering, K.; Duncan, F. A.; Formaggio, J. A.; Gagnon, R.; Gastler, D.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Graham, K.; Grace, E.; Guerrero, N.; Guiseppe, V.; Hallin, A. L.; Harvey, P.; Hearns, C.; Henning, R.; Hime, A.; Hofgartner, J.; Jaditz, S.; Jillings, C. J.; Kachulis, C.; Kearns, E.; Kelsey, J.; Klein, J. R.; Kuźniak, M.; LaTorre, A.; Lawson, I.; Li, O.; Lidgard, J. J.; Liimatainen, P.; Linden, S.; McFarlane, K.; McKinsey, D. N.; MacMullin, S.; Mastbaum, A.; Mathew, R.; McDonald, A. B.; Mei, D.-M.; Monroe, J.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J. A.; Noble, T.; O'Dwyer, E.; Olsen, K.; Orebi Gann, G. D.; Ouellet, C.; Palladino, K.; Pasuthip, P.; Perumpilly, G.; Pollmann, T.; Rau, P.; Retière, F.; Rielage, K.; Schnee, R.; Seibert, S.; Skensved, P.; Sonley, T.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Wang, B.; Wang, J.; Ward, M.; Zhang, C.

    2015-05-01

    Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector.

  16. Conformational Transition Pathways of Epidermal Growth Factor Receptor Kinase Domain from Multiple Molecular Dynamics Simulations and Bayesian Clustering.

    PubMed

    Li, Yan; Li, Xiang; Ma, Weiya; Dong, Zigang

    2014-08-12

    The epidermal growth factor receptor (EGFR) is aberrantly activated in various cancer cells and an important target for cancer treatment. Deep understanding of EGFR conformational changes between the active and inactive states is of pharmaceutical interest. Here we present a strategy combining multiply targeted molecular dynamics simulations, unbiased molecular dynamics simulations, and Bayesian clustering to investigate transition pathways during the activation/inactivation process of EGFR kinase domain. Two distinct pathways between the active and inactive forms are designed, explored, and compared. Based on Bayesian clustering and rough two-dimensional free energy surfaces, the energy-favorable pathway is recognized, though DFG-flip happens in both pathways. In addition, another pathway with different intermediate states appears in our simulations. Comparison of distinct pathways also indicates that disruption of the Lys745-Glu762 interaction is critically important in DFG-flip while movement of the A-loop significantly facilitates the conformational change. Our simulations yield new insights into EGFR conformational transitions. Moreover, our results verify that this approach is valid and efficient in sampling of protein conformational changes and comparison of distinct pathways.

  17. Bayesian Revision of Residual Detection Power

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2013-01-01

    This paper addresses some issues with quality assessment and quality assurance in response surface modeling experiments executed in wind tunnels. The role of data volume on quality assurance for response surface models is reviewed. Specific wind tunnel response surface modeling experiments are considered for which apparent discrepancies exist between fit quality expectations based on implemented quality assurance tactics, and the actual fit quality achieved in those experiments. These discrepancies are resolved by using Bayesian inference to account for certain imperfections in the assessment methodology. Estimates of the fraction of out-of-tolerance model predictions based on traditional frequentist methods are revised to account for uncertainty in the residual assessment process. The number of sites in the design space for which residuals are out of tolerance is seen to exceed the number of sites where the model actually fails to fit the data. A method is presented to estimate how much of the design space in inadequately modeled by low-order polynomial approximations to the true but unknown underlying response function.

  18. A Bayesian approach for incorporating economic factors in sample size design for clinical trials of individual drugs and portfolios of drugs.

    PubMed

    Patel, Nitin R; Ankolekar, Suresh

    2007-11-30

    Classical approaches to clinical trial design ignore economic factors that determine economic viability of a new drug. We address the choice of sample size in Phase III trials as a decision theory problem using a hybrid approach that takes a Bayesian view from the perspective of a drug company and a classical Neyman-Pearson view from the perspective of regulatory authorities. We incorporate relevant economic factors in the analysis to determine the optimal sample size to maximize the expected profit for the company. We extend the analysis to account for risk by using a 'satisficing' objective function that maximizes the chance of meeting a management-specified target level of profit. We extend the models for single drugs to a portfolio of clinical trials and optimize the sample sizes to maximize the expected profit subject to budget constraints. Further, we address the portfolio risk and optimize the sample sizes to maximize the probability of achieving a given target of expected profit.

  19. Using simulation to interpret experimental data in terms of protein conformational ensembles.

    PubMed

    Allison, Jane R

    2017-04-01

    In their biological environment, proteins are dynamic molecules, necessitating an ensemble structural description. Molecular dynamics simulations and solution-state experiments provide complimentary information in the form of atomically detailed coordinates and averaged or distributions of structural properties or related quantities. Recently, increases in the temporal and spatial scale of conformational sampling and comparison of the more diverse conformational ensembles thus generated have revealed the importance of sampling rare events. Excitingly, new methods based on maximum entropy and Bayesian inference are promising to provide a statistically sound mechanism for combining experimental data with molecular dynamics simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Bayesian block-diagonal variable selection and model averaging

    PubMed Central

    Papaspiliopoulos, O.; Rossell, D.

    2018-01-01

    Summary We propose a scalable algorithmic framework for exact Bayesian variable selection and model averaging in linear models under the assumption that the Gram matrix is block-diagonal, and as a heuristic for exploring the model space for general designs. In block-diagonal designs our approach returns the most probable model of any given size without resorting to numerical integration. The algorithm also provides a novel and efficient solution to the frequentist best subset selection problem for block-diagonal designs. Posterior probabilities for any number of models are obtained by evaluating a single one-dimensional integral, and other quantities of interest such as variable inclusion probabilities and model-averaged regression estimates are obtained by an adaptive, deterministic one-dimensional numerical integration. The overall computational cost scales linearly with the number of blocks, which can be processed in parallel, and exponentially with the block size, rendering it most adequate in situations where predictors are organized in many moderately-sized blocks. For general designs, we approximate the Gram matrix by a block-diagonal matrix using spectral clustering and propose an iterative algorithm that capitalizes on the block-diagonal algorithms to explore efficiently the model space. All methods proposed in this paper are implemented in the R library mombf. PMID:29861501

Top