A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network
NASA Astrophysics Data System (ADS)
Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.
2018-02-01
Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.
Bayesian Factor Analysis as a Variable Selection Problem: Alternative Priors and Consequences
Lu, Zhao-Hua; Chow, Sy-Miin; Loken, Eric
2016-01-01
Factor analysis is a popular statistical technique for multivariate data analysis. Developments in the structural equation modeling framework have enabled the use of hybrid confirmatory/exploratory approaches in which factor loading structures can be explored relatively flexibly within a confirmatory factor analysis (CFA) framework. Recently, a Bayesian structural equation modeling (BSEM) approach (Muthén & Asparouhov, 2012) has been proposed as a way to explore the presence of cross-loadings in CFA models. We show that the issue of determining factor loading patterns may be formulated as a Bayesian variable selection problem in which Muthén and Asparouhov’s approach can be regarded as a BSEM approach with ridge regression prior (BSEM-RP). We propose another Bayesian approach, denoted herein as the Bayesian structural equation modeling with spike and slab prior (BSEM-SSP), which serves as a one-stage alternative to the BSEM-RP. We review the theoretical advantages and disadvantages of both approaches and compare their empirical performance relative to two modification indices-based approaches and exploratory factor analysis with target rotation. A teacher stress scale data set (Byrne, 2012; Pettegrew & Wolf, 1982) is used to demonstrate our approach. PMID:27314566
Bayesian Exploratory Factor Analysis
Conti, Gabriella; Frühwirth-Schnatter, Sylvia; Heckman, James J.; Piatek, Rémi
2014-01-01
This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the corresponding factor loadings. Classical identification criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo study confirms the validity of the approach. The method is used to produce interpretable low dimensional aggregates from a high dimensional set of psychological measurements. PMID:25431517
Bayesian Factor Analysis When Only a Sample Covariance Matrix Is Available
ERIC Educational Resources Information Center
Hayashi, Kentaro; Arav, Marina
2006-01-01
In traditional factor analysis, the variance-covariance matrix or the correlation matrix has often been a form of inputting data. In contrast, in Bayesian factor analysis, the entire data set is typically required to compute the posterior estimates, such as Bayes factor loadings and Bayes unique variances. We propose a simple method for computing…
ERIC Educational Resources Information Center
Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel
2012-01-01
In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…
Robust Bayesian Factor Analysis
ERIC Educational Resources Information Center
Hayashi, Kentaro; Yuan, Ke-Hai
2003-01-01
Bayesian factor analysis (BFA) assumes the normal distribution of the current sample conditional on the parameters. Practical data in social and behavioral sciences typically have significant skewness and kurtosis. If the normality assumption is not attainable, the posterior analysis will be inaccurate, although the BFA depends less on the current…
Chen, Bo; Chen, Minhua; Paisley, John; Zaas, Aimee; Woods, Christopher; Ginsburg, Geoffrey S; Hero, Alfred; Lucas, Joseph; Dunson, David; Carin, Lawrence
2010-11-09
Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis. Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches. Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.
A Comparison of Imputation Methods for Bayesian Factor Analysis Models
ERIC Educational Resources Information Center
Merkle, Edgar C.
2011-01-01
Imputation methods are popular for the handling of missing data in psychology. The methods generally consist of predicting missing data based on observed data, yielding a complete data set that is amiable to standard statistical analyses. In the context of Bayesian factor analysis, this article compares imputation under an unrestricted…
Testing students' e-learning via Facebook through Bayesian structural equation modeling.
Salarzadeh Jenatabadi, Hashem; Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad
2017-01-01
Learning is an intentional activity, with several factors affecting students' intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods' results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated.
Testing students’ e-learning via Facebook through Bayesian structural equation modeling
Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad
2017-01-01
Learning is an intentional activity, with several factors affecting students’ intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods’ results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated. PMID:28886019
2010-01-01
Background Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis. Results Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches. Conclusions Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data. PMID:21062443
Bayesian Data-Model Fit Assessment for Structural Equation Modeling
ERIC Educational Resources Information Center
Levy, Roy
2011-01-01
Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…
Bayesian structural equation modeling in sport and exercise psychology.
Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus
2015-08-01
Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.
Bayesian linkage and segregation analysis: factoring the problem.
Matthysse, S
2000-01-01
Complex segregation analysis and linkage methods are mathematical techniques for the genetic dissection of complex diseases. They are used to delineate complex modes of familial transmission and to localize putative disease susceptibility loci to specific chromosomal locations. The computational problem of Bayesian linkage and segregation analysis is one of integration in high-dimensional spaces. In this paper, three available techniques for Bayesian linkage and segregation analysis are discussed: Markov Chain Monte Carlo (MCMC), importance sampling, and exact calculation. The contribution of each to the overall integration will be explicitly discussed.
Bayesian Structural Equation Modeling: A More Flexible Representation of Substantive Theory
ERIC Educational Resources Information Center
Muthen, Bengt; Asparouhov, Tihomir
2012-01-01
This article proposes a new approach to factor analysis and structural equation modeling using Bayesian analysis. The new approach replaces parameter specifications of exact zeros with approximate zeros based on informative, small-variance priors. It is argued that this produces an analysis that better reflects substantive theories. The proposed…
Designing a Mobile Training System in Rural Areas with Bayesian Factor Models
ERIC Educational Resources Information Center
Omidi Najafabadi, Maryam; Mirdamadi, Seyed Mehdi; Payandeh Najafabadi, Amir Teimour
2014-01-01
The facts that the wireless technologies (1) are more convenient; and (2) need less skill than desktop computers, play a crucial role to decrease digital gap in rural areas. This study employed the Bayesian Confirmatory Factor Analysis (CFA) to design a mobile training system in rural areas of Iran. It categorized challenges, potential, and…
ERIC Educational Resources Information Center
Tchumtchoua, Sylvie; Dey, Dipak K.
2012-01-01
This paper proposes a semiparametric Bayesian framework for the analysis of associations among multivariate longitudinal categorical variables in high-dimensional data settings. This type of data is frequent, especially in the social and behavioral sciences. A semiparametric hierarchical factor analysis model is developed in which the…
ERIC Educational Resources Information Center
Rindskopf, David
2012-01-01
Muthen and Asparouhov (2012) made a strong case for the advantages of Bayesian methodology in factor analysis and structural equation models. I show additional extensions and adaptations of their methods and show how non-Bayesians can take advantage of many (though not all) of these advantages by using interval restrictions on parameters. By…
Bucci, Melanie E.; Callahan, Peggy; Koprowski, John L.; Polfus, Jean L.; Krausman, Paul R.
2015-01-01
Stable isotope analysis of diet has become a common tool in conservation research. However, the multiple sources of uncertainty inherent in this analysis framework involve consequences that have not been thoroughly addressed. Uncertainty arises from the choice of trophic discrimination factors, and for Bayesian stable isotope mixing models (SIMMs), the specification of prior information; the combined effect of these aspects has not been explicitly tested. We used a captive feeding study of gray wolves (Canis lupus) to determine the first experimentally-derived trophic discrimination factors of C and N for this large carnivore of broad conservation interest. Using the estimated diet in our controlled system and data from a published study on wild wolves and their prey in Montana, USA, we then investigated the simultaneous effect of discrimination factors and prior information on diet reconstruction with Bayesian SIMMs. Discrimination factors for gray wolves and their prey were 1.97‰ for δ13C and 3.04‰ for δ15N. Specifying wolf discrimination factors, as opposed to the commonly used red fox (Vulpes vulpes) factors, made little practical difference to estimates of wolf diet, but prior information had a strong effect on bias, precision, and accuracy of posterior estimates. Without specifying prior information in our Bayesian SIMM, it was not possible to produce SIMM posteriors statistically similar to the estimated diet in our controlled study or the diet of wild wolves. Our study demonstrates the critical effect of prior information on estimates of animal diets using Bayesian SIMMs, and suggests species-specific trophic discrimination factors are of secondary importance. When using stable isotope analysis to inform conservation decisions researchers should understand the limits of their data. It may be difficult to obtain useful information from SIMMs if informative priors are omitted and species-specific discrimination factors are unavailable. PMID:25803664
Derbridge, Jonathan J; Merkle, Jerod A; Bucci, Melanie E; Callahan, Peggy; Koprowski, John L; Polfus, Jean L; Krausman, Paul R
2015-01-01
Stable isotope analysis of diet has become a common tool in conservation research. However, the multiple sources of uncertainty inherent in this analysis framework involve consequences that have not been thoroughly addressed. Uncertainty arises from the choice of trophic discrimination factors, and for Bayesian stable isotope mixing models (SIMMs), the specification of prior information; the combined effect of these aspects has not been explicitly tested. We used a captive feeding study of gray wolves (Canis lupus) to determine the first experimentally-derived trophic discrimination factors of C and N for this large carnivore of broad conservation interest. Using the estimated diet in our controlled system and data from a published study on wild wolves and their prey in Montana, USA, we then investigated the simultaneous effect of discrimination factors and prior information on diet reconstruction with Bayesian SIMMs. Discrimination factors for gray wolves and their prey were 1.97‰ for δ13C and 3.04‰ for δ15N. Specifying wolf discrimination factors, as opposed to the commonly used red fox (Vulpes vulpes) factors, made little practical difference to estimates of wolf diet, but prior information had a strong effect on bias, precision, and accuracy of posterior estimates. Without specifying prior information in our Bayesian SIMM, it was not possible to produce SIMM posteriors statistically similar to the estimated diet in our controlled study or the diet of wild wolves. Our study demonstrates the critical effect of prior information on estimates of animal diets using Bayesian SIMMs, and suggests species-specific trophic discrimination factors are of secondary importance. When using stable isotope analysis to inform conservation decisions researchers should understand the limits of their data. It may be difficult to obtain useful information from SIMMs if informative priors are omitted and species-specific discrimination factors are unavailable.
Comparing interval estimates for small sample ordinal CFA models
Natesan, Prathiba
2015-01-01
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research. PMID:26579002
Comparing interval estimates for small sample ordinal CFA models.
Natesan, Prathiba
2015-01-01
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research.
Williams, Mary R; Sigman, Michael E; Lewis, Jennifer; Pitan, Kelly McHugh
2012-10-10
A bayesian soft classification method combined with target factor analysis (TFA) is described and tested for the analysis of fire debris data. The method relies on analysis of the average mass spectrum across the chromatographic profile (i.e., the total ion spectrum, TIS) from multiple samples taken from a single fire scene. A library of TIS from reference ignitable liquids with assigned ASTM classification is used as the target factors in TFA. The class-conditional distributions of correlations between the target and predicted factors for each ASTM class are represented by kernel functions and analyzed by bayesian decision theory. The soft classification approach assists in assessing the probability that ignitable liquid residue from a specific ASTM E1618 class, is present in a set of samples from a single fire scene, even in the presence of unspecified background contributions from pyrolysis products. The method is demonstrated with sample data sets and then tested on laboratory-scale burn data and large-scale field test burns. The overall performance achieved in laboratory and field test of the method is approximately 80% correct classification of fire debris samples. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Bayesian structural equation modeling: a more flexible representation of substantive theory.
Muthén, Bengt; Asparouhov, Tihomir
2012-09-01
This article proposes a new approach to factor analysis and structural equation modeling using Bayesian analysis. The new approach replaces parameter specifications of exact zeros with approximate zeros based on informative, small-variance priors. It is argued that this produces an analysis that better reflects substantive theories. The proposed Bayesian approach is particularly beneficial in applications where parameters are added to a conventional model such that a nonidentified model is obtained if maximum-likelihood estimation is applied. This approach is useful for measurement aspects of latent variable modeling, such as with confirmatory factor analysis, and the measurement part of structural equation modeling. Two application areas are studied, cross-loadings and residual correlations in confirmatory factor analysis. An example using a full structural equation model is also presented, showing an efficient way to find model misspecification. The approach encompasses 3 elements: model testing using posterior predictive checking, model estimation, and model modification. Monte Carlo simulations and real data are analyzed using Mplus. The real-data analyses use data from Holzinger and Swineford's (1939) classic mental abilities study, Big Five personality factor data from a British survey, and science achievement data from the National Educational Longitudinal Study of 1988.
Han, Hyemin; Park, Joonsuk
2018-01-01
Recent debates about the conventional traditional threshold used in the fields of neuroscience and psychology, namely P < 0.05, have spurred researchers to consider alternative ways to analyze fMRI data. A group of methodologists and statisticians have considered Bayesian inference as a candidate methodology. However, few previous studies have attempted to provide end users of fMRI analysis tools, such as SPM 12, with practical guidelines about how to conduct Bayesian inference. In the present study, we aim to demonstrate how to utilize Bayesian inference, Bayesian second-level inference in particular, implemented in SPM 12 by analyzing fMRI data available to public via NeuroVault. In addition, to help end users understand how Bayesian inference actually works in SPM 12, we examine outcomes from Bayesian second-level inference implemented in SPM 12 by comparing them with those from classical second-level inference. Finally, we provide practical guidelines about how to set the parameters for Bayesian inference and how to interpret the results, such as Bayes factors, from the inference. We also discuss the practical and philosophical benefits of Bayesian inference and directions for future research. PMID:29456498
NASA Astrophysics Data System (ADS)
Cox, M.; Shirono, K.
2017-10-01
A criticism levelled at the Guide to the Expression of Uncertainty in Measurement (GUM) is that it is based on a mixture of frequentist and Bayesian thinking. In particular, the GUM’s Type A (statistical) uncertainty evaluations are frequentist, whereas the Type B evaluations, using state-of-knowledge distributions, are Bayesian. In contrast, making the GUM fully Bayesian implies, among other things, that a conventional objective Bayesian approach to Type A uncertainty evaluation for a number n of observations leads to the impractical consequence that n must be at least equal to 4, thus presenting a difficulty for many metrologists. This paper presents a Bayesian analysis of Type A uncertainty evaluation that applies for all n ≥slant 2 , as in the frequentist analysis in the current GUM. The analysis is based on assuming that the observations are drawn from a normal distribution (as in the conventional objective Bayesian analysis), but uses an informative prior based on lower and upper bounds for the standard deviation of the sampling distribution for the quantity under consideration. The main outcome of the analysis is a closed-form mathematical expression for the factor by which the standard deviation of the mean observation should be multiplied to calculate the required standard uncertainty. Metrological examples are used to illustrate the approach, which is straightforward to apply using a formula or look-up table.
Bayesian Analysis of the Association between Family-Level Factors and Siblings' Dental Caries.
Wen, A; Weyant, R J; McNeil, D W; Crout, R J; Neiswanger, K; Marazita, M L; Foxman, B
2017-07-01
We conducted a Bayesian analysis of the association between family-level socioeconomic status and smoking and the prevalence of dental caries among siblings (children from infant to 14 y) among children living in rural and urban Northern Appalachia using data from the Center for Oral Health Research in Appalachia (COHRA). The observed proportion of siblings sharing caries was significantly different from predicted assuming siblings' caries status was independent. Using a Bayesian hierarchical model, we found the inclusion of a household factor significantly improved the goodness of fit. Other findings showed an inverse association between parental education and siblings' caries and a positive association between households with smokers and siblings' caries. Our study strengthens existing evidence suggesting that increased parental education and decreased parental cigarette smoking are associated with reduced childhood caries in the household. Our results also demonstrate the value of a Bayesian approach, which allows us to include household as a random effect, thereby providing more accurate estimates than obtained using generalized linear mixed models.
Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.
Taghia, Jalil; Ryali, Srikanth; Chen, Tianwen; Supekar, Kaustubh; Cai, Weidong; Menon, Vinod
2017-07-15
There is growing interest in understanding the dynamical properties of functional interactions between distributed brain regions. However, robust estimation of temporal dynamics from functional magnetic resonance imaging (fMRI) data remains challenging due to limitations in extant multivariate methods for modeling time-varying functional interactions between multiple brain areas. Here, we develop a Bayesian generative model for fMRI time-series within the framework of hidden Markov models (HMMs). The model is a dynamic variant of the static factor analysis model (Ghahramani and Beal, 2000). We refer to this model as Bayesian switching factor analysis (BSFA) as it integrates factor analysis into a generative HMM in a unified Bayesian framework. In BSFA, brain dynamic functional networks are represented by latent states which are learnt from the data. Crucially, BSFA is a generative model which estimates the temporal evolution of brain states and transition probabilities between states as a function of time. An attractive feature of BSFA is the automatic determination of the number of latent states via Bayesian model selection arising from penalization of excessively complex models. Key features of BSFA are validated using extensive simulations on carefully designed synthetic data. We further validate BSFA using fingerprint analysis of multisession resting-state fMRI data from the Human Connectome Project (HCP). Our results show that modeling temporal dependencies in the generative model of BSFA results in improved fingerprinting of individual participants. Finally, we apply BSFA to elucidate the dynamic functional organization of the salience, central-executive, and default mode networks-three core neurocognitive systems with central role in cognitive and affective information processing (Menon, 2011). Across two HCP sessions, we demonstrate a high level of dynamic interactions between these networks and determine that the salience network has the highest temporal flexibility among the three networks. Our proposed methods provide a novel and powerful generative model for investigating dynamic brain connectivity. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Chao; Qin, Ting Xin; Huang, Shuai; Wu, Jian Song; Meng, Xin Yan
2018-06-01
Some factors can affect the consequences of oil pipeline accident and their effects should be analyzed to improve emergency preparation and emergency response. Although there are some qualitative analysis models of risk factors' effects, the quantitative analysis model still should be researched. In this study, we introduce a Bayesian network (BN) model of risk factors' effects analysis in an oil pipeline accident case that happened in China. The incident evolution diagram is built to identify the risk factors. And the BN model is built based on the deployment rule for factor nodes in BN and the expert knowledge by Dempster-Shafer evidence theory. Then the probabilities of incident consequences and risk factors' effects can be calculated. The most likely consequences given by this model are consilient with the case. Meanwhile, the quantitative estimations of risk factors' effects may provide a theoretical basis to take optimal risk treatment measures for oil pipeline management, which can be used in emergency preparation and emergency response.
Antal, Péter; Kiszel, Petra Sz.; Gézsi, András; Hadadi, Éva; Virág, Viktor; Hajós, Gergely; Millinghoffer, András; Nagy, Adrienne; Kiss, András; Semsei, Ágnes F.; Temesi, Gergely; Melegh, Béla; Kisfali, Péter; Széll, Márta; Bikov, András; Gálffy, Gabriella; Tamási, Lilla; Falus, András; Szalai, Csaba
2012-01-01
Genetic studies indicate high number of potential factors related to asthma. Based on earlier linkage analyses we selected the 11q13 and 14q22 asthma susceptibility regions, for which we designed a partial genome screening study using 145 SNPs in 1201 individuals (436 asthmatic children and 765 controls). The results were evaluated with traditional frequentist methods and we applied a new statistical method, called Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA). This method uses Bayesian network representation to provide detailed characterization of the relevance of factors, such as joint significance, the type of dependency, and multi-target aspects. We estimated posteriors for these relations within the Bayesian statistical framework, in order to estimate the posteriors whether a variable is directly relevant or its association is only mediated. With frequentist methods one SNP (rs3751464 in the FRMD6 gene) provided evidence for an association with asthma (OR = 1.43(1.2–1.8); p = 3×10−4). The possible role of the FRMD6 gene in asthma was also confirmed in an animal model and human asthmatics. In the BN-BMLA analysis altogether 5 SNPs in 4 genes were found relevant in connection with asthma phenotype: PRPF19 on chromosome 11, and FRMD6, PTGER2 and PTGDR on chromosome 14. In a subsequent step a partial dataset containing rhinitis and further clinical parameters was used, which allowed the analysis of relevance of SNPs for asthma and multiple targets. These analyses suggested that SNPs in the AHNAK and MS4A2 genes were indirectly associated with asthma. This paper indicates that BN-BMLA explores the relevant factors more comprehensively than traditional statistical methods and extends the scope of strong relevance based methods to include partial relevance, global characterization of relevance and multi-target relevance. PMID:22432035
Deep Learning with Hierarchical Convolutional Factor Analysis
Chen, Bo; Polatkan, Gungor; Sapiro, Guillermo; Blei, David; Dunson, David; Carin, Lawrence
2013-01-01
Unsupervised multi-layered (“deep”) models are considered for general data, with a particular focus on imagery. The model is represented using a hierarchical convolutional factor-analysis construction, with sparse factor loadings and scores. The computation of layer-dependent model parameters is implemented within a Bayesian setting, employing a Gibbs sampler and variational Bayesian (VB) analysis, that explicitly exploit the convolutional nature of the expansion. In order to address large-scale and streaming data, an online version of VB is also developed. The number of basis functions or dictionary elements at each layer is inferred from the data, based on a beta-Bernoulli implementation of the Indian buffet process. Example results are presented for several image-processing applications, with comparisons to related models in the literature. PMID:23787342
Bayesian Adaptive Lasso for Ordinal Regression with Latent Variables
ERIC Educational Resources Information Center
Feng, Xiang-Nan; Wu, Hao-Tian; Song, Xin-Yuan
2017-01-01
We consider an ordinal regression model with latent variables to investigate the effects of observable and latent explanatory variables on the ordinal responses of interest. Each latent variable is characterized by correlated observed variables through a confirmatory factor analysis model. We develop a Bayesian adaptive lasso procedure to conduct…
Bartlett, Jonathan W; Keogh, Ruth H
2018-06-01
Bayesian approaches for handling covariate measurement error are well established and yet arguably are still relatively little used by researchers. For some this is likely due to unfamiliarity or disagreement with the Bayesian inferential paradigm. For others a contributory factor is the inability of standard statistical packages to perform such Bayesian analyses. In this paper, we first give an overview of the Bayesian approach to handling covariate measurement error, and contrast it with regression calibration, arguably the most commonly adopted approach. We then argue why the Bayesian approach has a number of statistical advantages compared to regression calibration and demonstrate that implementing the Bayesian approach is usually quite feasible for the analyst. Next, we describe the closely related maximum likelihood and multiple imputation approaches and explain why we believe the Bayesian approach to generally be preferable. We then empirically compare the frequentist properties of regression calibration and the Bayesian approach through simulation studies. The flexibility of the Bayesian approach to handle both measurement error and missing data is then illustrated through an analysis of data from the Third National Health and Nutrition Examination Survey.
Yang, Ziheng; Zhu, Tianqi
2018-02-20
The Bayesian method is noted to produce spuriously high posterior probabilities for phylogenetic trees in analysis of large datasets, but the precise reasons for this overconfidence are unknown. In general, the performance of Bayesian selection of misspecified models is poorly understood, even though this is of great scientific interest since models are never true in real data analysis. Here we characterize the asymptotic behavior of Bayesian model selection and show that when the competing models are equally wrong, Bayesian model selection exhibits surprising and polarized behaviors in large datasets, supporting one model with full force while rejecting the others. If one model is slightly less wrong than the other, the less wrong model will eventually win when the amount of data increases, but the method may become overconfident before it becomes reliable. We suggest that this extreme behavior may be a major factor for the spuriously high posterior probabilities for evolutionary trees. The philosophical implications of our results to the application of Bayesian model selection to evaluate opposing scientific hypotheses are yet to be explored, as are the behaviors of non-Bayesian methods in similar situations.
Confirmatory Factor Analysis Alternative: Free, Accessible CBID Software.
Bott, Marjorie; Karanevich, Alex G; Garrard, Lili; Price, Larry R; Mudaranthakam, Dinesh Pal; Gajewski, Byron
2018-02-01
New software that performs Classical and Bayesian Instrument Development (CBID) is reported that seamlessly integrates expert (content validity) and participant data (construct validity) to produce entire reliability estimates with smaller sample requirements. The free CBID software can be accessed through a website and used by clinical investigators in new instrument development. Demonstrations are presented of the three approaches using the CBID software: (a) traditional confirmatory factor analysis (CFA), (b) Bayesian CFA using flat uninformative prior, and (c) Bayesian CFA using content expert data (informative prior). Outcomes of usability testing demonstrate the need to make the user-friendly, free CBID software available to interdisciplinary researchers. CBID has the potential to be a new and expeditious method for instrument development, adding to our current measurement toolbox. This allows for the development of new instruments for measuring determinants of health in smaller diverse populations or populations of rare diseases.
Learning Bayesian Networks from Correlated Data
NASA Astrophysics Data System (ADS)
Bae, Harold; Monti, Stefano; Montano, Monty; Steinberg, Martin H.; Perls, Thomas T.; Sebastiani, Paola
2016-05-01
Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between observations within the same cluster and ignoring this correlation typically inflates the rate of false positive associations. We describe a novel parameterization of Bayesian networks that uses random effects to model the correlation within sample units and can be used for structure and parameter learning from correlated data without inflating the Type I error rate. We compare different learning metrics using simulations and illustrate the method in two real examples: an analysis of genetic and non-genetic factors associated with human longevity from a family-based study, and an example of risk factors for complications of sickle cell anemia from a longitudinal study with repeated measures.
Fong, Ted C T; Ho, Rainbow T H
2015-01-01
The aim of this study was to reexamine the dimensionality of the widely used 9-item Utrecht Work Engagement Scale using the maximum likelihood (ML) approach and Bayesian structural equation modeling (BSEM) approach. Three measurement models (1-factor, 3-factor, and bi-factor models) were evaluated in two split samples of 1,112 health-care workers using confirmatory factor analysis and BSEM, which specified small-variance informative priors for cross-loadings and residual covariances. Model fit and comparisons were evaluated by posterior predictive p-value (PPP), deviance information criterion, and Bayesian information criterion (BIC). None of the three ML-based models showed an adequate fit to the data. The use of informative priors for cross-loadings did not improve the PPP for the models. The 1-factor BSEM model with approximately zero residual covariances displayed a good fit (PPP>0.10) to both samples and a substantially lower BIC than its 3-factor and bi-factor counterparts. The BSEM results demonstrate empirical support for the 1-factor model as a parsimonious and reasonable representation of work engagement.
Research on Risk Manage of Power Construction Project Based on Bayesian Network
NASA Astrophysics Data System (ADS)
Jia, Zhengyuan; Fan, Zhou; Li, Yong
With China's changing economic structure and increasingly fierce competition in the market, the uncertainty and risk factors in the projects of electric power construction are increasingly complex, the projects will face huge risks or even fail if we don't consider or ignore these risk factors. Therefore, risk management in the projects of electric power construction plays an important role. The paper emphatically elaborated the influence of cost risk in electric power projects through study overall risk management and the behavior of individual in risk management, and introduced the Bayesian network to the project risk management. The paper obtained the order of key factors according to both scene analysis and causal analysis for effective risk management.
Bayesian inference for psychology. Part II: Example applications with JASP.
Wagenmakers, Eric-Jan; Love, Jonathon; Marsman, Maarten; Jamil, Tahira; Ly, Alexander; Verhagen, Josine; Selker, Ravi; Gronau, Quentin F; Dropmann, Damian; Boutin, Bruno; Meerhoff, Frans; Knight, Patrick; Raj, Akash; van Kesteren, Erik-Jan; van Doorn, Johnny; Šmíra, Martin; Epskamp, Sacha; Etz, Alexander; Matzke, Dora; de Jong, Tim; van den Bergh, Don; Sarafoglou, Alexandra; Steingroever, Helen; Derks, Koen; Rouder, Jeffrey N; Morey, Richard D
2018-02-01
Bayesian hypothesis testing presents an attractive alternative to p value hypothesis testing. Part I of this series outlined several advantages of Bayesian hypothesis testing, including the ability to quantify evidence and the ability to monitor and update this evidence as data come in, without the need to know the intention with which the data were collected. Despite these and other practical advantages, Bayesian hypothesis tests are still reported relatively rarely. An important impediment to the widespread adoption of Bayesian tests is arguably the lack of user-friendly software for the run-of-the-mill statistical problems that confront psychologists for the analysis of almost every experiment: the t-test, ANOVA, correlation, regression, and contingency tables. In Part II of this series we introduce JASP ( http://www.jasp-stats.org ), an open-source, cross-platform, user-friendly graphical software package that allows users to carry out Bayesian hypothesis tests for standard statistical problems. JASP is based in part on the Bayesian analyses implemented in Morey and Rouder's BayesFactor package for R. Armed with JASP, the practical advantages of Bayesian hypothesis testing are only a mouse click away.
Bayesian data analysis for newcomers.
Kruschke, John K; Liddell, Torrin M
2018-02-01
This article explains the foundational concepts of Bayesian data analysis using virtually no mathematical notation. Bayesian ideas already match your intuitions from everyday reasoning and from traditional data analysis. Simple examples of Bayesian data analysis are presented that illustrate how the information delivered by a Bayesian analysis can be directly interpreted. Bayesian approaches to null-value assessment are discussed. The article clarifies misconceptions about Bayesian methods that newcomers might have acquired elsewhere. We discuss prior distributions and explain how they are not a liability but an important asset. We discuss the relation of Bayesian data analysis to Bayesian models of mind, and we briefly discuss what methodological problems Bayesian data analysis is not meant to solve. After you have read this article, you should have a clear sense of how Bayesian data analysis works and the sort of information it delivers, and why that information is so intuitive and useful for drawing conclusions from data.
Bayesian analysis of factors associated with fibromyalgia syndrome subjects
NASA Astrophysics Data System (ADS)
Jayawardana, Veroni; Mondal, Sumona; Russek, Leslie
2015-01-01
Factors contributing to movement-related fear were assessed by Russek, et al. 2014 for subjects with Fibromyalgia (FM) based on the collected data by a national internet survey of community-based individuals. The study focused on the variables, Activities-Specific Balance Confidence scale (ABC), Primary Care Post-Traumatic Stress Disorder screen (PC-PTSD), Tampa Scale of Kinesiophobia (TSK), a Joint Hypermobility Syndrome screen (JHS), Vertigo Symptom Scale (VSS-SF), Obsessive-Compulsive Personality Disorder (OCPD), Pain, work status and physical activity dependent from the "Revised Fibromyalgia Impact Questionnaire" (FIQR). The study presented in this paper revisits same data with a Bayesian analysis where appropriate priors were introduced for variables selected in the Russek's paper.
A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA.
Fong, Duncan K H; Kim, Sunghoon; Chen, Zhe; DeSarbo, Wayne S
2016-03-01
A new Bayesian multinomial probit model is proposed for the analysis of panel choice data. Using a parameter expansion technique, we are able to devise a Markov Chain Monte Carlo algorithm to compute our Bayesian estimates efficiently. We also show that the proposed procedure enables the estimation of individual level coefficients for the single-period multinomial probit model even when the available prior information is vague. We apply our new procedure to consumer purchase data and reanalyze a well-known scanner panel dataset that reveals new substantive insights. In addition, we delineate a number of advantageous features of our proposed procedure over several benchmark models. Finally, through a simulation analysis employing a fractional factorial design, we demonstrate that the results from our proposed model are quite robust with respect to differing factors across various conditions.
Valle, Denis; Lima, Joanna M Tucker; Millar, Justin; Amratia, Punam; Haque, Ubydul
2015-11-04
Logistic regression is a statistical model widely used in cross-sectional and cohort studies to identify and quantify the effects of potential disease risk factors. However, the impact of imperfect tests on adjusted odds ratios (and thus on the identification of risk factors) is under-appreciated. The purpose of this article is to draw attention to the problem associated with modelling imperfect diagnostic tests, and propose simple Bayesian models to adequately address this issue. A systematic literature review was conducted to determine the proportion of malaria studies that appropriately accounted for false-negatives/false-positives in a logistic regression setting. Inference from the standard logistic regression was also compared with that from three proposed Bayesian models using simulations and malaria data from the western Brazilian Amazon. A systematic literature review suggests that malaria epidemiologists are largely unaware of the problem of using logistic regression to model imperfect diagnostic test results. Simulation results reveal that statistical inference can be substantially improved when using the proposed Bayesian models versus the standard logistic regression. Finally, analysis of original malaria data with one of the proposed Bayesian models reveals that microscopy sensitivity is strongly influenced by how long people have lived in the study region, and an important risk factor (i.e., participation in forest extractivism) is identified that would have been missed by standard logistic regression. Given the numerous diagnostic methods employed by malaria researchers and the ubiquitous use of logistic regression to model the results of these diagnostic tests, this paper provides critical guidelines to improve data analysis practice in the presence of misclassification error. Easy-to-use code that can be readily adapted to WinBUGS is provided, enabling straightforward implementation of the proposed Bayesian models.
Assessing State Nuclear Weapons Proliferation: Using Bayesian Network Analysis of Social Factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coles, Garill A.; Brothers, Alan J.; Olson, Jarrod
A Bayesian network (BN) model of social factors can support proliferation assessments by estimating the likelihood that a state will pursue a nuclear weapon. Social factors including political, economic, nuclear capability, security, and national identity and psychology factors may play as important a role in whether a State pursues nuclear weapons as more physical factors. This paper will show how using Bayesian reasoning on a generic case of a would-be proliferator State can be used to combine evidence that supports proliferation assessment. Theories and analysis by political scientists can be leveraged in a quantitative and transparent way to indicate proliferationmore » risk. BN models facilitate diagnosis and inference in a probabilistic environment by using a network of nodes and acyclic directed arcs between the nodes whose connections, or absence of, indicate probabilistic relevance, or independence. We propose a BN model that would use information from both traditional safeguards and the strengthened safeguards associated with the Additional Protocol to indicate countries with a high risk of proliferating nuclear weapons. This model could be used in a variety of applications such a prioritization tool and as a component of state safeguards evaluations. This paper will discuss the benefits of BN reasoning, the development of Pacific Northwest National Laboratory’s (PNNL) BN state proliferation model and how it could be employed as an analytical tool.« less
Saha, Dibakar; Alluri, Priyanka; Gan, Albert
2017-01-01
The Highway Safety Manual (HSM) presents statistical models to quantitatively estimate an agency's safety performance. The models were developed using data from only a few U.S. states. To account for the effects of the local attributes and temporal factors on crash occurrence, agencies are required to calibrate the HSM-default models for crash predictions. The manual suggests updating calibration factors every two to three years, or preferably on an annual basis. Given that the calibration process involves substantial time, effort, and resources, a comprehensive analysis of the required calibration factor update frequency is valuable to the agencies. Accordingly, the objective of this study is to evaluate the HSM's recommendation and determine the required frequency of calibration factor updates. A robust Bayesian estimation procedure is used to assess the variation between calibration factors computed annually, biennially, and triennially using data collected from over 2400 miles of segments and over 700 intersections on urban and suburban facilities in Florida. Bayesian model yields a posterior distribution of the model parameters that give credible information to infer whether the difference between calibration factors computed at specified intervals is credibly different from the null value which represents unaltered calibration factors between the comparison years or in other words, zero difference. The concept of the null value is extended to include the range of values that are practically equivalent to zero. Bayesian inference shows that calibration factors based on total crash frequency are required to be updated every two years in cases where the variations between calibration factors are not greater than 0.01. When the variations are between 0.01 and 0.05, calibration factors based on total crash frequency could be updated every three years. Copyright © 2016 Elsevier Ltd. All rights reserved.
Uncertainty Quantification of Hypothesis Testing for the Integrated Knowledge Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuellar, Leticia
2012-05-31
The Integrated Knowledge Engine (IKE) is a tool of Bayesian analysis, based on Bayesian Belief Networks or Bayesian networks for short. A Bayesian network is a graphical model (directed acyclic graph) that allows representing the probabilistic structure of many variables assuming a localized type of dependency called the Markov property. The Markov property in this instance makes any node or random variable to be independent of any non-descendant node given information about its parent. A direct consequence of this property is that it is relatively easy to incorporate new evidence and derive the appropriate consequences, which in general is notmore » an easy or feasible task. Typically we use Bayesian networks as predictive models for a small subset of the variables, either the leave nodes or the root nodes. In IKE, since most applications deal with diagnostics, we are interested in predicting the likelihood of the root nodes given new observations on any of the children nodes. The root nodes represent the various possible outcomes of the analysis, and an important problem is to determine when we have gathered enough evidence to lean toward one of these particular outcomes. This document presents criteria to decide when the evidence gathered is sufficient to draw a particular conclusion or decide in favor of a particular outcome by quantifying the uncertainty in the conclusions that are drawn from the data. The material in this document is organized as follows: Section 2 presents briefly a forensics Bayesian network, and we explore evaluating the information provided by new evidence by looking first at the posterior distribution of the nodes of interest, and then at the corresponding posterior odds ratios. Section 3 presents a third alternative: Bayes Factors. In section 4 we finalize by showing the relation between the posterior odds ratios and Bayes factors and showing examples these cases, and in section 5 we conclude by providing clear guidelines of how to use these for the type of Bayesian networks used in IKE.« less
Chung, Doo Yong; Cho, Kang Su; Lee, Dae Hun; Han, Jang Hee; Kang, Dong Hyuk; Jung, Hae Do; Kown, Jong Kyou; Ham, Won Sik; Choi, Young Deuk; Lee, Joo Yong
2015-01-01
Purpose This study was conducted to evaluate colic pain as a prognostic pretreatment factor that can influence ureter stone clearance and to estimate the probability of stone-free status in shock wave lithotripsy (SWL) patients with a ureter stone. Materials and Methods We retrospectively reviewed the medical records of 1,418 patients who underwent their first SWL between 2005 and 2013. Among these patients, 551 had a ureter stone measuring 4–20 mm and were thus eligible for our analyses. The colic pain as the chief complaint was defined as either subjective flank pain during history taking and physical examination. Propensity-scores for established for colic pain was calculated for each patient using multivariate logistic regression based upon the following covariates: age, maximal stone length (MSL), and mean stone density (MSD). Each factor was evaluated as predictor for stone-free status by Bayesian and non-Bayesian logistic regression model. Results After propensity-score matching, 217 patients were extracted in each group from the total patient cohort. There were no statistical differences in variables used in propensity- score matching. One-session success and stone-free rate were also higher in the painful group (73.7% and 71.0%, respectively) than in the painless group (63.6% and 60.4%, respectively). In multivariate non-Bayesian and Bayesian logistic regression models, a painful stone, shorter MSL, and lower MSD were significant factors for one-session stone-free status in patients who underwent SWL. Conclusions Colic pain in patients with ureter calculi was one of the significant predicting factors including MSL and MSD for one-session stone-free status of SWL. PMID:25902059
Adaptability and phenotypic stability of common bean genotypes through Bayesian inference.
Corrêa, A M; Teodoro, P E; Gonçalves, M C; Barroso, L M A; Nascimento, M; Santos, A; Torres, F E
2016-04-27
This study used Bayesian inference to investigate the genotype x environment interaction in common bean grown in Mato Grosso do Sul State, and it also evaluated the efficiency of using informative and minimally informative a priori distributions. Six trials were conducted in randomized blocks, and the grain yield of 13 common bean genotypes was assessed. To represent the minimally informative a priori distributions, a probability distribution with high variance was used, and a meta-analysis concept was adopted to represent the informative a priori distributions. Bayes factors were used to conduct comparisons between the a priori distributions. The Bayesian inference was effective for the selection of upright common bean genotypes with high adaptability and phenotypic stability using the Eberhart and Russell method. Bayes factors indicated that the use of informative a priori distributions provided more accurate results than minimally informative a priori distributions. According to Bayesian inference, the EMGOPA-201, BAMBUÍ, CNF 4999, CNF 4129 A 54, and CNFv 8025 genotypes had specific adaptability to favorable environments, while the IAPAR 14 and IAC CARIOCA ETE genotypes had specific adaptability to unfavorable environments.
ERIC Educational Resources Information Center
Can, Seda; van de Schoot, Rens; Hox, Joop
2015-01-01
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation…
Can, Seda; van de Schoot, Rens; Hox, Joop
2015-06-01
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation coefficient (ICC) and estimation method; maximum likelihood estimation with robust chi-squares and standard errors and Bayesian estimation, on the convergence rate are investigated. The other variables of interest were rate of inadmissible solutions and the relative parameter and standard error bias on the between level. The results showed that inadmissible solutions were obtained when there was between level collinearity and the estimation method was maximum likelihood. In the within level multicollinearity condition, all of the solutions were admissible but the bias values were higher compared with the between level collinearity condition. Bayesian estimation appeared to be robust in obtaining admissible parameters but the relative bias was higher than for maximum likelihood estimation. Finally, as expected, high ICC produced less biased results compared to medium ICC conditions.
Bayesian Estimation of Thermonuclear Reaction Rates for Deuterium+Deuterium Reactions
NASA Astrophysics Data System (ADS)
Gómez Iñesta, Á.; Iliadis, C.; Coc, A.
2017-11-01
The study of d+d reactions is of major interest since their reaction rates affect the predicted abundances of D, 3He, and 7Li. In particular, recent measurements of primordial D/H ratios call for reduced uncertainties in the theoretical abundances predicted by Big Bang nucleosynthesis (BBN). Different authors have studied reactions involved in BBN by incorporating new experimental data and a careful treatment of systematic and probabilistic uncertainties. To analyze the experimental data, Coc et al. used results of ab initio models for the theoretical calculation of the energy dependence of S-factors in conjunction with traditional statistical methods based on χ 2 minimization. Bayesian methods have now spread to many scientific fields and provide numerous advantages in data analysis. Astrophysical S-factors and reaction rates using Bayesian statistics were calculated by Iliadis et al. Here we present a similar analysis for two d+d reactions, d(d, n)3He and d(d, p)3H, that has been translated into a total decrease of the predicted D/H value by 0.16%.
ERIC Educational Resources Information Center
Rouder, Jeffrey N.; Morey, Richard D.; Province, Jordan M.
2013-01-01
Psi phenomena, such as mental telepathy, precognition, and clairvoyance, have garnered much recent attention. We reassess the evidence for psi effects from Storm, Tressoldi, and Di Risio's (2010) meta-analysis. Our analysis differs from Storm et al.'s in that we rely on Bayes factors, a Bayesian approach for stating the evidence from data for…
Ghasemi, Fakhradin; Kalatpour, Omid; Moghimbeigi, Abbas; Mohammadfam, Iraj
2017-03-04
High-risk unsafe behaviors (HRUBs) have been known as the main cause of occupational accidents. Considering the financial and societal costs of accidents and the limitations of available resources, there is an urgent need for managing unsafe behaviors at workplaces. The aim of the present study was to find strategies for decreasing the rate of HRUBs using an integrated approach of safety behavior sampling technique and Bayesian networks analysis. A cross-sectional study. The Bayesian network was constructed using a focus group approach. The required data was collected using the safety behavior sampling, and the parameters of the network were estimated using Expectation-Maximization algorithm. Using sensitivity analysis and belief updating, it was determined that which factors had the highest influences on unsafe behavior. Based on BN analyses, safety training was the most important factor influencing employees' behavior at the workplace. High quality safety training courses can reduce the rate of HRUBs about 10%. Moreover, the rate of HRUBs increased by decreasing the age of employees. The rate of HRUBs was higher in the afternoon and last days of a week. Among the investigated variables, training was the most important factor affecting safety behavior of employees. By holding high quality safety training courses, companies would be able to reduce the rate of HRUBs significantly.
Bayesian Nonparametric Ordination for the Analysis of Microbial Communities.
Ren, Boyu; Bacallado, Sergio; Favaro, Stefano; Holmes, Susan; Trippa, Lorenzo
2017-01-01
Human microbiome studies use sequencing technologies to measure the abundance of bacterial species or Operational Taxonomic Units (OTUs) in samples of biological material. Typically the data are organized in contingency tables with OTU counts across heterogeneous biological samples. In the microbial ecology community, ordination methods are frequently used to investigate latent factors or clusters that capture and describe variations of OTU counts across biological samples. It remains important to evaluate how uncertainty in estimates of each biological sample's microbial distribution propagates to ordination analyses, including visualization of clusters and projections of biological samples on low dimensional spaces. We propose a Bayesian analysis for dependent distributions to endow frequently used ordinations with estimates of uncertainty. A Bayesian nonparametric prior for dependent normalized random measures is constructed, which is marginally equivalent to the normalized generalized Gamma process, a well-known prior for nonparametric analyses. In our prior, the dependence and similarity between microbial distributions is represented by latent factors that concentrate in a low dimensional space. We use a shrinkage prior to tune the dimensionality of the latent factors. The resulting posterior samples of model parameters can be used to evaluate uncertainty in analyses routinely applied in microbiome studies. Specifically, by combining them with multivariate data analysis techniques we can visualize credible regions in ecological ordination plots. The characteristics of the proposed model are illustrated through a simulation study and applications in two microbiome datasets.
Pathway analysis of high-throughput biological data within a Bayesian network framework.
Isci, Senol; Ozturk, Cengizhan; Jones, Jon; Otu, Hasan H
2011-06-15
Most current approaches to high-throughput biological data (HTBD) analysis either perform individual gene/protein analysis or, gene/protein set enrichment analysis for a list of biologically relevant molecules. Bayesian Networks (BNs) capture linear and non-linear interactions, handle stochastic events accounting for noise, and focus on local interactions, which can be related to causal inference. Here, we describe for the first time an algorithm that models biological pathways as BNs and identifies pathways that best explain given HTBD by scoring fitness of each network. Proposed method takes into account the connectivity and relatedness between nodes of the pathway through factoring pathway topology in its model. Our simulations using synthetic data demonstrated robustness of our approach. We tested proposed method, Bayesian Pathway Analysis (BPA), on human microarray data regarding renal cell carcinoma (RCC) and compared our results with gene set enrichment analysis. BPA was able to find broader and more specific pathways related to RCC. Accompanying BPA software (BPAS) package is freely available for academic use at http://bumil.boun.edu.tr/bpa.
Bayesian models: A statistical primer for ecologists
Hobbs, N. Thompson; Hooten, Mevin B.
2015-01-01
Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticiansCovers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and moreDeemphasizes computer coding in favor of basic principlesExplains how to write out properly factored statistical expressions representing Bayesian models
A Bayesian hierarchical approach to comparative audit for carotid surgery.
Kuhan, G; Marshall, E C; Abidia, A F; Chetter, I C; McCollum, P T
2002-12-01
the aim of this study was to illustrate how a Bayesian hierarchical modelling approach can aid the reliable comparison of outcome rates between surgeons. retrospective analysis of prospective and retrospective data. binary outcome data (death/stroke within 30 days), together with information on 15 possible risk factors specific for CEA were available on 836 CEAs performed by four vascular surgeons from 1992-99. The median patient age was 68 (range 38-86) years and 60% were men. the model was developed using the WinBUGS software. After adjusting for patient-level risk factors, a cross-validatory approach was adopted to identify "divergent" performance. A ranking exercise was also carried out. the overall observed 30-day stroke/death rate was 3.9% (33/836). The model found diabetes, stroke and heart disease to be significant risk factors. There was no significant difference between the predicted and observed outcome rates for any surgeon (Bayesian p -value>0.05). Each surgeon had a median rank of 3 with associated 95% CI 1.0-5.0, despite the variability of observed stroke/death rate from 2.9-4.4%. After risk adjustment, there was very little residual between-surgeon variability in outcome rate. Bayesian hierarchical models can help to accurately quantify the uncertainty associated with surgeons' performance and rank.
Shi, Qi; Abdel-Aty, Mohamed; Yu, Rongjie
2016-03-01
In traffic safety studies, crash frequency modeling of total crashes is the cornerstone before proceeding to more detailed safety evaluation. The relationship between crash occurrence and factors such as traffic flow and roadway geometric characteristics has been extensively explored for a better understanding of crash mechanisms. In this study, a multi-level Bayesian framework has been developed in an effort to identify the crash contributing factors on an urban expressway in the Central Florida area. Two types of traffic data from the Automatic Vehicle Identification system, which are the processed data capped at speed limit and the unprocessed data retaining the original speed were incorporated in the analysis along with road geometric information. The model framework was proposed to account for the hierarchical data structure and the heterogeneity among the traffic and roadway geometric data. Multi-level and random parameters models were constructed and compared with the Negative Binomial model under the Bayesian inference framework. Results showed that the unprocessed traffic data was superior. Both multi-level models and random parameters models outperformed the Negative Binomial model and the models with random parameters achieved the best model fitting. The contributing factors identified imply that on the urban expressway lower speed and higher speed variation could significantly increase the crash likelihood. Other geometric factors were significant including auxiliary lanes and horizontal curvature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Use of limited data to construct Bayesian networks for probabilistic risk assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groth, Katrina M.; Swiler, Laura Painton
2013-03-01
Probabilistic Risk Assessment (PRA) is a fundamental part of safety/quality assurance for nuclear power and nuclear weapons. Traditional PRA very effectively models complex hardware system risks using binary probabilistic models. However, traditional PRA models are not flexible enough to accommodate non-binary soft-causal factors, such as digital instrumentation&control, passive components, aging, common cause failure, and human errors. Bayesian Networks offer the opportunity to incorporate these risks into the PRA framework. This report describes the results of an early career LDRD project titled %E2%80%9CUse of Limited Data to Construct Bayesian Networks for Probabilistic Risk Assessment%E2%80%9D. The goal of the work was tomore » establish the capability to develop Bayesian Networks from sparse data, and to demonstrate this capability by producing a data-informed Bayesian Network for use in Human Reliability Analysis (HRA) as part of nuclear power plant Probabilistic Risk Assessment (PRA). This report summarizes the research goal and major products of the research.« less
Applications of Bayesian Statistics to Problems in Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Meegan, Charles A.
1997-01-01
This presentation will describe two applications of Bayesian statistics to Gamma Ray Bursts (GRBS). The first attempts to quantify the evidence for a cosmological versus galactic origin of GRBs using only the observations of the dipole and quadrupole moments of the angular distribution of bursts. The cosmological hypothesis predicts isotropy, while the galactic hypothesis is assumed to produce a uniform probability distribution over positive values for these moments. The observed isotropic distribution indicates that the Bayes factor for the cosmological hypothesis over the galactic hypothesis is about 300. Another application of Bayesian statistics is in the estimation of chance associations of optical counterparts with galaxies. The Bayesian approach is preferred to frequentist techniques here because the Bayesian approach easily accounts for galaxy mass distributions and because one can incorporate three disjoint hypotheses: (1) bursts come from galactic centers, (2) bursts come from galaxies in proportion to luminosity, and (3) bursts do not come from external galaxies. This technique was used in the analysis of the optical counterpart to GRB970228.
Unsupervised Bayesian linear unmixing of gene expression microarrays.
Bazot, Cécile; Dobigeon, Nicolas; Tourneret, Jean-Yves; Zaas, Aimee K; Ginsburg, Geoffrey S; Hero, Alfred O
2013-03-19
This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores collected during the study. Using a constrained model allows recovery of all the inflammatory genes in a single factor.
Bayesian Correlation Analysis for Sequence Count Data
Lau, Nelson; Perkins, Theodore J.
2016-01-01
Evaluating the similarity of different measured variables is a fundamental task of statistics, and a key part of many bioinformatics algorithms. Here we propose a Bayesian scheme for estimating the correlation between different entities’ measurements based on high-throughput sequencing data. These entities could be different genes or miRNAs whose expression is measured by RNA-seq, different transcription factors or histone marks whose expression is measured by ChIP-seq, or even combinations of different types of entities. Our Bayesian formulation accounts for both measured signal levels and uncertainty in those levels, due to varying sequencing depth in different experiments and to varying absolute levels of individual entities, both of which affect the precision of the measurements. In comparison with a traditional Pearson correlation analysis, we show that our Bayesian correlation analysis retains high correlations when measurement confidence is high, but suppresses correlations when measurement confidence is low—especially for entities with low signal levels. In addition, we consider the influence of priors on the Bayesian correlation estimate. Perhaps surprisingly, we show that naive, uniform priors on entities’ signal levels can lead to highly biased correlation estimates, particularly when different experiments have widely varying sequencing depths. However, we propose two alternative priors that provably mitigate this problem. We also prove that, like traditional Pearson correlation, our Bayesian correlation calculation constitutes a kernel in the machine learning sense, and thus can be used as a similarity measure in any kernel-based machine learning algorithm. We demonstrate our approach on two RNA-seq datasets and one miRNA-seq dataset. PMID:27701449
Schörgendorfer, Angela; Branscum, Adam J; Hanson, Timothy E
2013-06-01
Logistic regression is a popular tool for risk analysis in medical and population health science. With continuous response data, it is common to create a dichotomous outcome for logistic regression analysis by specifying a threshold for positivity. Fitting a linear regression to the nondichotomized response variable assuming a logistic sampling model for the data has been empirically shown to yield more efficient estimates of odds ratios than ordinary logistic regression of the dichotomized endpoint. We illustrate that risk inference is not robust to departures from the parametric logistic distribution. Moreover, the model assumption of proportional odds is generally not satisfied when the condition of a logistic distribution for the data is violated, leading to biased inference from a parametric logistic analysis. We develop novel Bayesian semiparametric methodology for testing goodness of fit of parametric logistic regression with continuous measurement data. The testing procedures hold for any cutoff threshold and our approach simultaneously provides the ability to perform semiparametric risk estimation. Bayes factors are calculated using the Savage-Dickey ratio for testing the null hypothesis of logistic regression versus a semiparametric generalization. We propose a fully Bayesian and a computationally efficient empirical Bayesian approach to testing, and we present methods for semiparametric estimation of risks, relative risks, and odds ratios when parametric logistic regression fails. Theoretical results establish the consistency of the empirical Bayes test. Results from simulated data show that the proposed approach provides accurate inference irrespective of whether parametric assumptions hold or not. Evaluation of risk factors for obesity shows that different inferences are derived from an analysis of a real data set when deviations from a logistic distribution are permissible in a flexible semiparametric framework. © 2013, The International Biometric Society.
Bayesian approach for counting experiment statistics applied to a neutrino point source analysis
NASA Astrophysics Data System (ADS)
Bose, D.; Brayeur, L.; Casier, M.; de Vries, K. D.; Golup, G.; van Eijndhoven, N.
2013-12-01
In this paper we present a model independent analysis method following Bayesian statistics to analyse data from a generic counting experiment and apply it to the search for neutrinos from point sources. We discuss a test statistic defined following a Bayesian framework that will be used in the search for a signal. In case no signal is found, we derive an upper limit without the introduction of approximations. The Bayesian approach allows us to obtain the full probability density function for both the background and the signal rate. As such, we have direct access to any signal upper limit. The upper limit derivation directly compares with a frequentist approach and is robust in the case of low-counting observations. Furthermore, it allows also to account for previous upper limits obtained by other analyses via the concept of prior information without the need of the ad hoc application of trial factors. To investigate the validity of the presented Bayesian approach, we have applied this method to the public IceCube 40-string configuration data for 10 nearby blazars and we have obtained a flux upper limit, which is in agreement with the upper limits determined via a frequentist approach. Furthermore, the upper limit obtained compares well with the previously published result of IceCube, using the same data set.
Krypotos, Angelos-Miltiadis; Klugkist, Irene; Engelhard, Iris M.
2017-01-01
ABSTRACT Threat conditioning procedures have allowed the experimental investigation of the pathogenesis of Post-Traumatic Stress Disorder. The findings of these procedures have also provided stable foundations for the development of relevant intervention programs (e.g. exposure therapy). Statistical inference of threat conditioning procedures is commonly based on p-values and Null Hypothesis Significance Testing (NHST). Nowadays, however, there is a growing concern about this statistical approach, as many scientists point to the various limitations of p-values and NHST. As an alternative, the use of Bayes factors and Bayesian hypothesis testing has been suggested. In this article, we apply this statistical approach to threat conditioning data. In order to enable the easy computation of Bayes factors for threat conditioning data we present a new R package named condir, which can be used either via the R console or via a Shiny application. This article provides both a non-technical introduction to Bayesian analysis for researchers using the threat conditioning paradigm, and the necessary tools for computing Bayes factors easily. PMID:29038683
Non-Linear Modeling of Growth Prerequisites in a Finnish Polytechnic Institution of Higher Education
ERIC Educational Resources Information Center
Nokelainen, Petri; Ruohotie, Pekka
2009-01-01
Purpose: This study aims to examine the factors of growth-oriented atmosphere in a Finnish polytechnic institution of higher education with categorical exploratory factor analysis, multidimensional scaling and Bayesian unsupervised model-based visualization. Design/methodology/approach: This study was designed to examine employee perceptions of…
Sirota, Miroslav; Kostovičová, Lenka; Juanchich, Marie
2014-08-01
Knowing which properties of visual displays facilitate statistical reasoning bears practical and theoretical implications. Therefore, we studied the effect of one property of visual diplays - iconicity (i.e., the resemblance of a visual sign to its referent) - on Bayesian reasoning. Two main accounts of statistical reasoning predict different effect of iconicity on Bayesian reasoning. The ecological-rationality account predicts a positive iconicity effect, because more highly iconic signs resemble more individuated objects, which tap better into an evolutionary-designed frequency-coding mechanism that, in turn, facilitates Bayesian reasoning. The nested-sets account predicts a null iconicity effect, because iconicity does not affect the salience of a nested-sets structure-the factor facilitating Bayesian reasoning processed by a general reasoning mechanism. In two well-powered experiments (N = 577), we found no support for a positive iconicity effect across different iconicity levels that were manipulated in different visual displays (meta-analytical overall effect: log OR = -0.13, 95% CI [-0.53, 0.28]). A Bayes factor analysis provided strong evidence in favor of the null hypothesis-the null iconicity effect. Thus, these findings corroborate the nested-sets rather than the ecological-rationality account of statistical reasoning.
Bayesian just-so stories in psychology and neuroscience.
Bowers, Jeffrey S; Davis, Colin J
2012-05-01
According to Bayesian theories in psychology and neuroscience, minds and brains are (near) optimal in solving a wide range of tasks. We challenge this view and argue that more traditional, non-Bayesian approaches are more promising. We make 3 main arguments. First, we show that the empirical evidence for Bayesian theories in psychology is weak. This weakness relates to the many arbitrary ways that priors, likelihoods, and utility functions can be altered in order to account for the data that are obtained, making the models unfalsifiable. It further relates to the fact that Bayesian theories are rarely better at predicting data compared with alternative (and simpler) non-Bayesian theories. Second, we show that the empirical evidence for Bayesian theories in neuroscience is weaker still. There are impressive mathematical analyses showing how populations of neurons could compute in a Bayesian manner but little or no evidence that they do. Third, we challenge the general scientific approach that characterizes Bayesian theorizing in cognitive science. A common premise is that theories in psychology should largely be constrained by a rational analysis of what the mind ought to do. We question this claim and argue that many of the important constraints come from biological, evolutionary, and processing (algorithmic) considerations that have no adaptive relevance to the problem per se. In our view, these factors have contributed to the development of many Bayesian "just so" stories in psychology and neuroscience; that is, mathematical analyses of cognition that can be used to explain almost any behavior as optimal. 2012 APA, all rights reserved.
Algama, Manjula; Tasker, Edward; Williams, Caitlin; Parslow, Adam C; Bryson-Richardson, Robert J; Keith, Jonathan M
2017-03-27
Computational identification of non-coding RNAs (ncRNAs) is a challenging problem. We describe a genome-wide analysis using Bayesian segmentation to identify intronic elements highly conserved between three evolutionarily distant vertebrate species: human, mouse and zebrafish. We investigate the extent to which these elements include ncRNAs (or conserved domains of ncRNAs) and regulatory sequences. We identified 655 deeply conserved intronic sequences in a genome-wide analysis. We also performed a pathway-focussed analysis on genes involved in muscle development, detecting 27 intronic elements, of which 22 were not detected in the genome-wide analysis. At least 87% of the genome-wide and 70% of the pathway-focussed elements have existing annotations indicative of conserved RNA secondary structure. The expression of 26 of the pathway-focused elements was examined using RT-PCR, providing confirmation that they include expressed ncRNAs. Consistent with previous studies, these elements are significantly over-represented in the introns of transcription factors. This study demonstrates a novel, highly effective, Bayesian approach to identifying conserved non-coding sequences. Our results complement previous findings that these sequences are enriched in transcription factors. However, in contrast to previous studies which suggest the majority of conserved sequences are regulatory factor binding sites, the majority of conserved sequences identified using our approach contain evidence of conserved RNA secondary structures, and our laboratory results suggest most are expressed. Functional roles at DNA and RNA levels are not mutually exclusive, and many of our elements possess evidence of both. Moreover, ncRNAs play roles in transcriptional and post-transcriptional regulation, and this may contribute to the over-representation of these elements in introns of transcription factors. We attribute the higher sensitivity of the pathway-focussed analysis compared to the genome-wide analysis to improved alignment quality, suggesting that enhanced genomic alignments may reveal many more conserved intronic sequences.
NASA Astrophysics Data System (ADS)
Taylor, Stephen; Ellis, Justin; Gair, Jonathan
2014-11-01
We describe several new techniques which accelerate Bayesian searches for continuous gravitational-wave emission from supermassive black-hole binaries using pulsar-timing arrays. These techniques mitigate the problematic increase of search dimensionality with the size of the pulsar array which arises from having to include an extra parameter per pulsar as the array is expanded. This extra parameter corresponds to searching over the phase of the gravitational wave as it propagates past each pulsar so that we can coherently include the pulsar term in our search strategies. Our techniques make the analysis tractable with powerful evidence-evaluation packages like MultiNest. We find good agreement of our techniques with the parameter-estimation and Bayes factor evaluation performed with full signal templates and conclude that these techniques make excellent first-cut tools for detection and characterization of continuous gravitational-wave signals with pulsar-timing arrays. Crucially, at low to moderate signal-to-noise ratios the factor by which the analysis is sped up can be ≳100 , permitting rigorous programs of systematic injection and recovery of signals to establish robust detection criteria within a Bayesian formalism.
A Bayesian bird's eye view of ‘Replications of important results in social psychology’
Schönbrodt, Felix D.; Yao, Yuling; Gelman, Andrew; Wagenmakers, Eric-Jan
2017-01-01
We applied three Bayesian methods to reanalyse the preregistered contributions to the Social Psychology special issue ‘Replications of Important Results in Social Psychology’ (Nosek & Lakens. 2014 Registered reports: a method to increase the credibility of published results. Soc. Psychol. 45, 137–141. (doi:10.1027/1864-9335/a000192)). First, individual-experiment Bayesian parameter estimation revealed that for directed effect size measures, only three out of 44 central 95% credible intervals did not overlap with zero and fell in the expected direction. For undirected effect size measures, only four out of 59 credible intervals contained values greater than 0.10 (10% of variance explained) and only 19 intervals contained values larger than 0.05. Second, a Bayesian random-effects meta-analysis for all 38 t-tests showed that only one out of the 38 hierarchically estimated credible intervals did not overlap with zero and fell in the expected direction. Third, a Bayes factor hypothesis test was used to quantify the evidence for the null hypothesis against a default one-sided alternative. Only seven out of 60 Bayes factors indicated non-anecdotal support in favour of the alternative hypothesis (BF10>3), whereas 51 Bayes factors indicated at least some support for the null hypothesis. We hope that future analyses of replication success will embrace a more inclusive statistical approach by adopting a wider range of complementary techniques. PMID:28280547
Constantinou, Anthony Costa; Yet, Barbaros; Fenton, Norman; Neil, Martin; Marsh, William
2016-01-01
Inspired by real-world examples from the forensic medical sciences domain, we seek to determine whether a decision about an interventional action could be subject to amendments on the basis of some incomplete information within the model, and whether it would be worthwhile for the decision maker to seek further information prior to suggesting a decision. The method is based on the underlying principle of Value of Information to enhance decision analysis in interventional and counterfactual Bayesian networks. The method is applied to two real-world Bayesian network models (previously developed for decision support in forensic medical sciences) to examine the average gain in terms of both Value of Information (average relative gain ranging from 11.45% and 59.91%) and decision making (potential amendments in decision making ranging from 0% to 86.8%). We have shown how the method becomes useful for decision makers, not only when decision making is subject to amendments on the basis of some unknown risk factors, but also when it is not. Knowing that a decision outcome is independent of one or more unknown risk factors saves us from the trouble of seeking information about the particular set of risk factors. Further, we have also extended the assessment of this implication to the counterfactual case and demonstrated how answers about interventional actions are expected to change when some unknown factors become known, and how useful this becomes in forensic medical science. Copyright © 2015 Elsevier B.V. All rights reserved.
A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research
ERIC Educational Resources Information Center
van de Schoot, Rens; Kaplan, David; Denissen, Jaap; Asendorpf, Jens B.; Neyer, Franz J.; van Aken, Marcel A. G.
2014-01-01
Bayesian statistical methods are becoming ever more popular in applied and fundamental research. In this study a gentle introduction to Bayesian analysis is provided. It is shown under what circumstances it is attractive to use Bayesian estimation, and how to interpret properly the results. First, the ingredients underlying Bayesian methods are…
[Reliability theory based on quality risk network analysis for Chinese medicine injection].
Li, Zheng; Kang, Li-Yuan; Fan, Xiao-Hui
2014-08-01
A new risk analysis method based upon reliability theory was introduced in this paper for the quality risk management of Chinese medicine injection manufacturing plants. The risk events including both cause and effect ones were derived in the framework as nodes with a Bayesian network analysis approach. It thus transforms the risk analysis results from failure mode and effect analysis (FMEA) into a Bayesian network platform. With its structure and parameters determined, the network can be used to evaluate the system reliability quantitatively with probabilistic analytical appraoches. Using network analysis tools such as GeNie and AgenaRisk, we are able to find the nodes that are most critical to influence the system reliability. The importance of each node to the system can be quantitatively evaluated by calculating the effect of the node on the overall risk, and minimization plan can be determined accordingly to reduce their influences and improve the system reliability. Using the Shengmai injection manufacturing plant of SZYY Ltd as a user case, we analyzed the quality risk with both static FMEA analysis and dynamic Bayesian Network analysis. The potential risk factors for the quality of Shengmai injection manufacturing were identified with the network analysis platform. Quality assurance actions were further defined to reduce the risk and improve the product quality.
Patel, Nitin R; Ankolekar, Suresh
2007-11-30
Classical approaches to clinical trial design ignore economic factors that determine economic viability of a new drug. We address the choice of sample size in Phase III trials as a decision theory problem using a hybrid approach that takes a Bayesian view from the perspective of a drug company and a classical Neyman-Pearson view from the perspective of regulatory authorities. We incorporate relevant economic factors in the analysis to determine the optimal sample size to maximize the expected profit for the company. We extend the analysis to account for risk by using a 'satisficing' objective function that maximizes the chance of meeting a management-specified target level of profit. We extend the models for single drugs to a portfolio of clinical trials and optimize the sample sizes to maximize the expected profit subject to budget constraints. Further, we address the portfolio risk and optimize the sample sizes to maximize the probability of achieving a given target of expected profit.
Bayesian data analysis in population ecology: motivations, methods, and benefits
Dorazio, Robert
2016-01-01
During the 20th century ecologists largely relied on the frequentist system of inference for the analysis of their data. However, in the past few decades ecologists have become increasingly interested in the use of Bayesian methods of data analysis. In this article I provide guidance to ecologists who would like to decide whether Bayesian methods can be used to improve their conclusions and predictions. I begin by providing a concise summary of Bayesian methods of analysis, including a comparison of differences between Bayesian and frequentist approaches to inference when using hierarchical models. Next I provide a list of problems where Bayesian methods of analysis may arguably be preferred over frequentist methods. These problems are usually encountered in analyses based on hierarchical models of data. I describe the essentials required for applying modern methods of Bayesian computation, and I use real-world examples to illustrate these methods. I conclude by summarizing what I perceive to be the main strengths and weaknesses of using Bayesian methods to solve ecological inference problems.
Crandell, Jamie L.; Voils, Corrine I.; Chang, YunKyung; Sandelowski, Margarete
2010-01-01
The possible utility of Bayesian methods for the synthesis of qualitative and quantitative research has been repeatedly suggested but insufficiently investigated. In this project, we developed and used a Bayesian method for synthesis, with the goal of identifying factors that influence adherence to HIV medication regimens. We investigated the effect of 10 factors on adherence. Recognizing that not all factors were examined in all studies, we considered standard methods for dealing with missing data and chose a Bayesian data augmentation method. We were able to summarize, rank, and compare the effects of each of the 10 factors on medication adherence. This is a promising methodological development in the synthesis of qualitative and quantitative research. PMID:21572970
Kruschke, John K; Liddell, Torrin M
2018-02-01
In the practice of data analysis, there is a conceptual distinction between hypothesis testing, on the one hand, and estimation with quantified uncertainty on the other. Among frequentists in psychology, a shift of emphasis from hypothesis testing to estimation has been dubbed "the New Statistics" (Cumming 2014). A second conceptual distinction is between frequentist methods and Bayesian methods. Our main goal in this article is to explain how Bayesian methods achieve the goals of the New Statistics better than frequentist methods. The article reviews frequentist and Bayesian approaches to hypothesis testing and to estimation with confidence or credible intervals. The article also describes Bayesian approaches to meta-analysis, randomized controlled trials, and power analysis.
Spatial Bayesian Latent Factor Regression Modeling of Coordinate-based Meta-analysis Data
Montagna, Silvia; Wager, Tor; Barrett, Lisa Feldman; Johnson, Timothy D.; Nichols, Thomas E.
2017-01-01
Summary Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the paper are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to 1) identify areas of consistent activation; and 2) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterised as a linear combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates (meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We apply our methodology to synthetic data and neuroimaging meta-analysis datasets. PMID:28498564
UNIFORMLY MOST POWERFUL BAYESIAN TESTS
Johnson, Valen E.
2014-01-01
Uniformly most powerful tests are statistical hypothesis tests that provide the greatest power against a fixed null hypothesis among all tests of a given size. In this article, the notion of uniformly most powerful tests is extended to the Bayesian setting by defining uniformly most powerful Bayesian tests to be tests that maximize the probability that the Bayes factor, in favor of the alternative hypothesis, exceeds a specified threshold. Like their classical counterpart, uniformly most powerful Bayesian tests are most easily defined in one-parameter exponential family models, although extensions outside of this class are possible. The connection between uniformly most powerful tests and uniformly most powerful Bayesian tests can be used to provide an approximate calibration between p-values and Bayes factors. Finally, issues regarding the strong dependence of resulting Bayes factors and p-values on sample size are discussed. PMID:24659829
Bayesian randomized clinical trials: From fixed to adaptive design.
Yin, Guosheng; Lam, Chi Kin; Shi, Haolun
2017-08-01
Randomized controlled studies are the gold standard for phase III clinical trials. Using α-spending functions to control the overall type I error rate, group sequential methods are well established and have been dominating phase III studies. Bayesian randomized design, on the other hand, can be viewed as a complement instead of competitive approach to the frequentist methods. For the fixed Bayesian design, the hypothesis testing can be cast in the posterior probability or Bayes factor framework, which has a direct link to the frequentist type I error rate. Bayesian group sequential design relies upon Bayesian decision-theoretic approaches based on backward induction, which is often computationally intensive. Compared with the frequentist approaches, Bayesian methods have several advantages. The posterior predictive probability serves as a useful and convenient tool for trial monitoring, and can be updated at any time as the data accrue during the trial. The Bayesian decision-theoretic framework possesses a direct link to the decision making in the practical setting, and can be modeled more realistically to reflect the actual cost-benefit analysis during the drug development process. Other merits include the possibility of hierarchical modeling and the use of informative priors, which would lead to a more comprehensive utilization of information from both historical and longitudinal data. From fixed to adaptive design, we focus on Bayesian randomized controlled clinical trials and make extensive comparisons with frequentist counterparts through numerical studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Luan, Hui; Law, Jane; Lysy, Martin
2018-02-01
Neighborhood restaurant environment (NRE) plays a vital role in shaping residents' eating behaviors. While NRE 'healthfulness' is a multi-facet concept, most studies evaluate it based only on restaurant type, thus largely ignoring variations of in-restaurant features. In the few studies that do account for such features, healthfulness scores are simply averaged over accessible restaurants, thereby concealing any uncertainty that attributed to neighborhoods' size or spatial correlation. To address these limitations, this paper presents a Bayesian Spatial Factor Analysis for assessing NRE healthfulness in the city of Kitchener, Canada. Several in-restaurant characteristics are included. By treating NRE healthfulness as a spatially correlated latent variable, the adopted modeling approach can: (i) identify specific indicators most relevant to NRE healthfulness, (ii) provide healthfulness estimates for neighborhoods without accessible restaurants, and (iii) readily quantify uncertainties in the healthfulness index. Implications of the analysis for intervention program development and community food planning are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Why Bayesian Psychologists Should Change the Way They Use the Bayes Factor.
Hoijtink, Herbert; van Kooten, Pascal; Hulsker, Koenraad
2016-01-01
The discussion following Bem's ( 2011 ) psi research highlights that applications of the Bayes factor in psychological research are not without problems. The first problem is the omission to translate subjective prior knowledge into subjective prior distributions. In the words of Savage ( 1961 ): "they make the Bayesian omelet without breaking the Bayesian egg." The second problem occurs if the Bayesian egg is not broken: the omission to choose default prior distributions such that the ensuing inferences are well calibrated. The third problem is the adherence to inadequate rules for the interpretation of the size of the Bayes factor. The current paper will elaborate these problems and show how to avoid them using the basic hypotheses and statistical model used in the first experiment described in Bem ( 2011 ). It will be argued that a thorough investigation of these problems in the context of more encompassing hypotheses and statistical models is called for if Bayesian psychologists want to add a well-founded Bayes factor to the tool kit of psychological researchers.
Is probabilistic bias analysis approximately Bayesian?
MacLehose, Richard F.; Gustafson, Paul
2011-01-01
Case-control studies are particularly susceptible to differential exposure misclassification when exposure status is determined following incident case status. Probabilistic bias analysis methods have been developed as ways to adjust standard effect estimates based on the sensitivity and specificity of exposure misclassification. The iterative sampling method advocated in probabilistic bias analysis bears a distinct resemblance to a Bayesian adjustment; however, it is not identical. Furthermore, without a formal theoretical framework (Bayesian or frequentist), the results of a probabilistic bias analysis remain somewhat difficult to interpret. We describe, both theoretically and empirically, the extent to which probabilistic bias analysis can be viewed as approximately Bayesian. While the differences between probabilistic bias analysis and Bayesian approaches to misclassification can be substantial, these situations often involve unrealistic prior specifications and are relatively easy to detect. Outside of these special cases, probabilistic bias analysis and Bayesian approaches to exposure misclassification in case-control studies appear to perform equally well. PMID:22157311
ERIC Educational Resources Information Center
Yuan, Ying; MacKinnon, David P.
2009-01-01
In this article, we propose Bayesian analysis of mediation effects. Compared with conventional frequentist mediation analysis, the Bayesian approach has several advantages. First, it allows researchers to incorporate prior information into the mediation analysis, thus potentially improving the efficiency of estimates. Second, under the Bayesian…
Using data mining techniques to predict the severity of bicycle crashes.
Prati, Gabriele; Pietrantoni, Luca; Fraboni, Federico
2017-04-01
To investigate the factors predicting severity of bicycle crashes in Italy, we used an observational study of official statistics. We applied two of the most widely used data mining techniques, CHAID decision tree technique and Bayesian network analysis. We used data provided by the Italian National Institute of Statistics on road crashes that occurred on the Italian road network during the period ranging from 2011 to 2013. In the present study, the dataset contains information about road crashes occurred on the Italian road network during the period ranging from 2011 to 2013. We extracted 49,621 road accidents where at least one cyclist was injured or killed from the original database that comprised a total of 575,093 road accidents. CHAID decision tree technique was employed to establish the relationship between severity of bicycle crashes and factors related to crash characteristics (type of collision and opponent vehicle), infrastructure characteristics (type of carriageway, road type, road signage, pavement type, and type of road segment), cyclists (gender and age), and environmental factors (time of the day, day of the week, month, pavement condition, and weather). CHAID analysis revealed that the most important predictors were, in decreasing order of importance, road type (0.30), crash type (0.24), age of cyclist (0.19), road signage (0.08), gender of cyclist (0.07), type of opponent vehicle (0.05), month (0.04), and type of road segment (0.02). These eight most important predictors of the severity of bicycle crashes were included as predictors of the target (i.e., severity of bicycle crashes) in Bayesian network analysis. Bayesian network analysis identified crash type (0.31), road type (0.19), and type of opponent vehicle (0.18) as the most important predictors of severity of bicycle crashes. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Importance of Proving the Null
Gallistel, C. R.
2010-01-01
Null hypotheses are simple, precise, and theoretically important. Conventional statistical analysis cannot support them; Bayesian analysis can. The challenge in a Bayesian analysis is to formulate a suitably vague alternative, because the vaguer the alternative is (the more it spreads out the unit mass of prior probability), the more the null is favored. A general solution is a sensitivity analysis: Compute the odds for or against the null as a function of the limit(s) on the vagueness of the alternative. If the odds on the null approach 1 from above as the hypothesized maximum size of the possible effect approaches 0, then the data favor the null over any vaguer alternative to it. The simple computations and the intuitive graphic representation of the analysis are illustrated by the analysis of diverse examples from the current literature. They pose 3 common experimental questions: (a) Are 2 means the same? (b) Is performance at chance? (c) Are factors additive? PMID:19348549
Bayesian Inference for Time Trends in Parameter Values using Weighted Evidence Sets
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. L. Kelly; A. Malkhasyan
2010-09-01
There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performedmore » for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “in-dustry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an applica-tion of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates an approach to incorporating multiple sources of data via applicability weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dana L. Kelly; Albert Malkhasyan
2010-06-01
There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performedmore » for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “industry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an application of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates the development of a generic prior distribution, which incorporates multiple sources of generic data via weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.« less
Prior approval: the growth of Bayesian methods in psychology.
Andrews, Mark; Baguley, Thom
2013-02-01
Within the last few years, Bayesian methods of data analysis in psychology have proliferated. In this paper, we briefly review the history or the Bayesian approach to statistics, and consider the implications that Bayesian methods have for the theory and practice of data analysis in psychology.
Accounting for Slipping and Other False Negatives in Logistic Models of Student Learning
ERIC Educational Resources Information Center
MacLellan, Christopher J.; Liu, Ran; Koedinger, Kenneth R.
2015-01-01
Additive Factors Model (AFM) and Performance Factors Analysis (PFA) are two popular models of student learning that employ logistic regression to estimate parameters and predict performance. This is in contrast to Bayesian Knowledge Tracing (BKT) which uses a Hidden Markov Model formalism. While all three models tend to make similar predictions,…
Bayesian Model Averaging for Propensity Score Analysis
ERIC Educational Resources Information Center
Kaplan, David; Chen, Jianshen
2013-01-01
The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…
Law, Jane
2016-01-01
Intrinsic conditional autoregressive modeling in a Bayeisan hierarchical framework has been increasingly applied in small-area ecological studies. This study explores the specifications of spatial structure in this Bayesian framework in two aspects: adjacency, i.e., the set of neighbor(s) for each area; and (spatial) weight for each pair of neighbors. Our analysis was based on a small-area study of falling injuries among people age 65 and older in Ontario, Canada, that was aimed to estimate risks and identify risk factors of such falls. In the case study, we observed incorrect adjacencies information caused by deficiencies in the digital map itself. Further, when equal weights was replaced by weights based on a variable of expected count, the range of estimated risks increased, the number of areas with probability of estimated risk greater than one at different probability thresholds increased, and model fit improved. More importantly, significance of a risk factor diminished. Further research to thoroughly investigate different methods of variable weights; quantify the influence of specifications of spatial weights; and develop strategies for better defining spatial structure of a map in small-area analysis in Bayesian hierarchical spatial modeling is recommended. PMID:29546147
Bayesian analyses of time-interval data for environmental radiation monitoring.
Luo, Peng; Sharp, Julia L; DeVol, Timothy A
2013-01-01
Time-interval (time difference between two consecutive pulses) analysis based on the principles of Bayesian inference was investigated for online radiation monitoring. Using experimental and simulated data, Bayesian analysis of time-interval data [Bayesian (ti)] was compared with Bayesian and a conventional frequentist analysis of counts in a fixed count time [Bayesian (cnt) and single interval test (SIT), respectively]. The performances of the three methods were compared in terms of average run length (ARL) and detection probability for several simulated detection scenarios. Experimental data were acquired with a DGF-4C system in list mode. Simulated data were obtained using Monte Carlo techniques to obtain a random sampling of the Poisson distribution. All statistical algorithms were developed using the R Project for statistical computing. Bayesian analysis of time-interval information provided a similar detection probability as Bayesian analysis of count information, but the authors were able to make a decision with fewer pulses at relatively higher radiation levels. In addition, for the cases with very short presence of the source (< count time), time-interval information is more sensitive to detect a change than count information since the source data is averaged by the background data over the entire count time. The relationships of the source time, change points, and modifications to the Bayesian approach for increasing detection probability are presented.
Rodgers, Joseph Lee
2016-01-01
The Bayesian-frequentist debate typically portrays these statistical perspectives as opposing views. However, both Bayesian and frequentist statisticians have expanded their epistemological basis away from a singular focus on the null hypothesis, to a broader perspective involving the development and comparison of competing statistical/mathematical models. For frequentists, statistical developments such as structural equation modeling and multilevel modeling have facilitated this transition. For Bayesians, the Bayes factor has facilitated this transition. The Bayes factor is treated in articles within this issue of Multivariate Behavioral Research. The current presentation provides brief commentary on those articles and more extended discussion of the transition toward a modern modeling epistemology. In certain respects, Bayesians and frequentists share common goals.
MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control
NASA Astrophysics Data System (ADS)
Zheng, Mao-Kuan; Ming, Xin-Guo; Zhang, Xian-Yu; Li, Guo-Ming
2017-09-01
Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the circumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian network of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly proportionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The integration of bigdata analytics and BN method offers a whole new perspective in manufacturing quality control.
Rooney, James P K; Tobin, Katy; Crampsie, Arlene; Vajda, Alice; Heverin, Mark; McLaughlin, Russell; Staines, Anthony; Hardiman, Orla
2015-10-01
Evidence of an association between areal ALS risk and population density has been previously reported. We aim to examine ALS spatial incidence in Ireland using small areas, to compare this analysis with our previous analysis of larger areas and to examine the associations between population density, social deprivation and ALS incidence. Residential area social deprivation has not been previously investigated as a risk factor for ALS. Using the Irish ALS register, we included all cases of ALS diagnosed in Ireland from 1995-2013. 2006 census data was used to calculate age and sex standardised expected cases per small area. Social deprivation was assessed using the pobalHP deprivation index. Bayesian smoothing was used to calculate small area relative risk for ALS, whilst cluster analysis was performed using SaTScan. The effects of population density and social deprivation were tested in two ways: (1) as covariates in the Bayesian spatial model; (2) via post-Bayesian regression. 1701 cases were included. Bayesian smoothed maps of relative risk at small area resolution matched closely to our previous analysis at a larger area resolution. Cluster analysis identified two areas of significant low risk. These areas did not correlate with population density or social deprivation indices. Two areas showing low frequency of ALS have been identified in the Republic of Ireland. These areas do not correlate with population density or residential area social deprivation, indicating that other reasons, such as genetic admixture may account for the observed findings. Copyright © 2015 Elsevier Inc. All rights reserved.
A SAS Interface for Bayesian Analysis with WinBUGS
ERIC Educational Resources Information Center
Zhang, Zhiyong; McArdle, John J.; Wang, Lijuan; Hamagami, Fumiaki
2008-01-01
Bayesian methods are becoming very popular despite some practical difficulties in implementation. To assist in the practical application of Bayesian methods, we show how to implement Bayesian analysis with WinBUGS as part of a standard set of SAS routines. This implementation procedure is first illustrated by fitting a multiple regression model…
A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research
van de Schoot, Rens; Kaplan, David; Denissen, Jaap; Asendorpf, Jens B; Neyer, Franz J; van Aken, Marcel AG
2014-01-01
Bayesian statistical methods are becoming ever more popular in applied and fundamental research. In this study a gentle introduction to Bayesian analysis is provided. It is shown under what circumstances it is attractive to use Bayesian estimation, and how to interpret properly the results. First, the ingredients underlying Bayesian methods are introduced using a simplified example. Thereafter, the advantages and pitfalls of the specification of prior knowledge are discussed. To illustrate Bayesian methods explained in this study, in a second example a series of studies that examine the theoretical framework of dynamic interactionism are considered. In the Discussion the advantages and disadvantages of using Bayesian statistics are reviewed, and guidelines on how to report on Bayesian statistics are provided. PMID:24116396
Uncertainties in ozone concentrations predicted with a Lagrangian photochemical air quality model have been estimated using Bayesian Monte Carlo (BMC) analysis. Bayesian Monte Carlo analysis provides a means of combining subjective "prior" uncertainty estimates developed ...
De Bondt, Niki; Van Petegem, Peter
2015-01-01
The Overexcitability Questionnaire-Two (OEQ-II) measures the degree and nature of overexcitability, which assists in determining the developmental potential of an individual according to Dabrowski's Theory of Positive Disintegration. Previous validation studies using frequentist confirmatory factor analysis, which postulates exact parameter constraints, led to model rejection and a long series of model modifications. Bayesian structural equation modeling (BSEM) allows the application of zero-mean, small-variance priors for cross-loadings, residual covariances, and differences in measurement parameters across groups, better reflecting substantive theory and leading to better model fit and less overestimation of factor correlations. Our BSEM analysis with a sample of 516 students in higher education yields positive results regarding the factorial validity of the OEQ-II. Likewise, applying BSEM-based alignment with approximate measurement invariance, the absence of non-invariant factor loadings and intercepts across gender is supportive of the psychometric quality of the OEQ-II. Compared to males, females scored significantly higher on emotional and sensual overexcitability, and significantly lower on psychomotor overexcitability. PMID:26733931
De Bondt, Niki; Van Petegem, Peter
2015-01-01
The Overexcitability Questionnaire-Two (OEQ-II) measures the degree and nature of overexcitability, which assists in determining the developmental potential of an individual according to Dabrowski's Theory of Positive Disintegration. Previous validation studies using frequentist confirmatory factor analysis, which postulates exact parameter constraints, led to model rejection and a long series of model modifications. Bayesian structural equation modeling (BSEM) allows the application of zero-mean, small-variance priors for cross-loadings, residual covariances, and differences in measurement parameters across groups, better reflecting substantive theory and leading to better model fit and less overestimation of factor correlations. Our BSEM analysis with a sample of 516 students in higher education yields positive results regarding the factorial validity of the OEQ-II. Likewise, applying BSEM-based alignment with approximate measurement invariance, the absence of non-invariant factor loadings and intercepts across gender is supportive of the psychometric quality of the OEQ-II. Compared to males, females scored significantly higher on emotional and sensual overexcitability, and significantly lower on psychomotor overexcitability.
Dembo, Mana; Radovčić, Davorka; Garvin, Heather M; Laird, Myra F; Schroeder, Lauren; Scott, Jill E; Brophy, Juliet; Ackermann, Rebecca R; Musiba, Chares M; de Ruiter, Darryl J; Mooers, Arne Ø; Collard, Mark
2016-08-01
Homo naledi is a recently discovered species of fossil hominin from South Africa. A considerable amount is already known about H. naledi but some important questions remain unanswered. Here we report a study that addressed two of them: "Where does H. naledi fit in the hominin evolutionary tree?" and "How old is it?" We used a large supermatrix of craniodental characters for both early and late hominin species and Bayesian phylogenetic techniques to carry out three analyses. First, we performed a dated Bayesian analysis to generate estimates of the evolutionary relationships of fossil hominins including H. naledi. Then we employed Bayes factor tests to compare the strength of support for hypotheses about the relationships of H. naledi suggested by the best-estimate trees. Lastly, we carried out a resampling analysis to assess the accuracy of the age estimate for H. naledi yielded by the dated Bayesian analysis. The analyses strongly supported the hypothesis that H. naledi forms a clade with the other Homo species and Australopithecus sediba. The analyses were more ambiguous regarding the position of H. naledi within the (Homo, Au. sediba) clade. A number of hypotheses were rejected, but several others were not. Based on the available craniodental data, Homo antecessor, Asian Homo erectus, Homo habilis, Homo floresiensis, Homo sapiens, and Au. sediba could all be the sister taxon of H. naledi. According to the dated Bayesian analysis, the most likely age for H. naledi is 912 ka. This age estimate was supported by the resampling analysis. Our findings have a number of implications. Most notably, they support the assignment of the new specimens to Homo, cast doubt on the claim that H. naledi is simply a variant of H. erectus, and suggest H. naledi is younger than has been previously proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bayesian Decision Support for Adaptive Lung Treatments
NASA Astrophysics Data System (ADS)
McShan, Daniel; Luo, Yi; Schipper, Matt; TenHaken, Randall
2014-03-01
Purpose: A Bayesian Decision Network will be demonstrated to provide clinical decision support for adaptive lung response-driven treatment management based on evidence that physiologic metrics may correlate better with individual patient response than traditional (population-based) dose and volume-based metrics. Further, there is evidence that information obtained during the course of radiation therapy may further improve response predictions. Methods: Clinical factors were gathered for 58 patients including planned mean lung dose, and the bio-markers IL-8 and TGF-β1 obtained prior to treatment and two weeks into treatment along with complication outcomes for these patients. A Bayesian Decision Network was constructed using Netica 5.0.2 from Norsys linking these clinical factors to obtain a prediction of radiation induced lung disese (RILD) complication. A decision node was added to the network to provide a plan adaption recommendation based on the trade-off between the RILD prediction and complexity of replanning. A utility node provides the weighting cost between the competing factors. Results: The decision node predictions were optimized against the data for the 58 cases. With this decision network solution, one can consider the decision result for a new patient with specific findings to obtain a recommendation to adaptively modify the originally planned treatment course. Conclusions: A Bayesian approach allows handling and propagating probabilistic data in a logical and principled manner. Decision networks provide the further ability to provide utility-based trade-offs, reflecting non-medical but practical cost/benefit analysis. The network demonstrated illustrates the basic concept, but many other factors may affect these decisions and work on building better models are being designed and tested. Acknowledgement: Supported by NIH-P01-CA59827
Spatial Bayesian latent factor regression modeling of coordinate-based meta-analysis data.
Montagna, Silvia; Wager, Tor; Barrett, Lisa Feldman; Johnson, Timothy D; Nichols, Thomas E
2018-03-01
Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the article are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to (i) identify areas of consistent activation; and (ii) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterized as a linear combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates (meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We apply our methodology to synthetic data and neuroimaging meta-analysis datasets. © 2017, The International Biometric Society.
Bayesian survival analysis in clinical trials: What methods are used in practice?
Brard, Caroline; Le Teuff, Gwénaël; Le Deley, Marie-Cécile; Hampson, Lisa V
2017-02-01
Background Bayesian statistics are an appealing alternative to the traditional frequentist approach to designing, analysing, and reporting of clinical trials, especially in rare diseases. Time-to-event endpoints are widely used in many medical fields. There are additional complexities to designing Bayesian survival trials which arise from the need to specify a model for the survival distribution. The objective of this article was to critically review the use and reporting of Bayesian methods in survival trials. Methods A systematic review of clinical trials using Bayesian survival analyses was performed through PubMed and Web of Science databases. This was complemented by a full text search of the online repositories of pre-selected journals. Cost-effectiveness, dose-finding studies, meta-analyses, and methodological papers using clinical trials were excluded. Results In total, 28 articles met the inclusion criteria, 25 were original reports of clinical trials and 3 were re-analyses of a clinical trial. Most trials were in oncology (n = 25), were randomised controlled (n = 21) phase III trials (n = 13), and half considered a rare disease (n = 13). Bayesian approaches were used for monitoring in 14 trials and for the final analysis only in 14 trials. In the latter case, Bayesian survival analyses were used for the primary analysis in four cases, for the secondary analysis in seven cases, and for the trial re-analysis in three cases. Overall, 12 articles reported fitting Bayesian regression models (semi-parametric, n = 3; parametric, n = 9). Prior distributions were often incompletely reported: 20 articles did not define the prior distribution used for the parameter of interest. Over half of the trials used only non-informative priors for monitoring and the final analysis (n = 12) when it was specified. Indeed, no articles fitting Bayesian regression models placed informative priors on the parameter of interest. The prior for the treatment effect was based on historical data in only four trials. Decision rules were pre-defined in eight cases when trials used Bayesian monitoring, and in only one case when trials adopted a Bayesian approach to the final analysis. Conclusion Few trials implemented a Bayesian survival analysis and few incorporated external data into priors. There is scope to improve the quality of reporting of Bayesian methods in survival trials. Extension of the Consolidated Standards of Reporting Trials statement for reporting Bayesian clinical trials is recommended.
Risk analysis of emergent water pollution accidents based on a Bayesian Network.
Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie
2016-01-01
To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Probabilistic safety analysis of earth retaining structures during earthquakes
NASA Astrophysics Data System (ADS)
Grivas, D. A.; Souflis, C.
1982-07-01
A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.
The Application of Bayesian Analysis to Issues in Developmental Research
ERIC Educational Resources Information Center
Walker, Lawrence J.; Gustafson, Paul; Frimer, Jeremy A.
2007-01-01
This article reviews the concepts and methods of Bayesian statistical analysis, which can offer innovative and powerful solutions to some challenging analytical problems that characterize developmental research. In this article, we demonstrate the utility of Bayesian analysis, explain its unique adeptness in some circumstances, address some…
A default Bayesian hypothesis test for mediation.
Nuijten, Michèle B; Wetzels, Ruud; Matzke, Dora; Dolan, Conor V; Wagenmakers, Eric-Jan
2015-03-01
In order to quantify the relationship between multiple variables, researchers often carry out a mediation analysis. In such an analysis, a mediator (e.g., knowledge of a healthy diet) transmits the effect from an independent variable (e.g., classroom instruction on a healthy diet) to a dependent variable (e.g., consumption of fruits and vegetables). Almost all mediation analyses in psychology use frequentist estimation and hypothesis-testing techniques. A recent exception is Yuan and MacKinnon (Psychological Methods, 14, 301-322, 2009), who outlined a Bayesian parameter estimation procedure for mediation analysis. Here we complete the Bayesian alternative to frequentist mediation analysis by specifying a default Bayesian hypothesis test based on the Jeffreys-Zellner-Siow approach. We further extend this default Bayesian test by allowing a comparison to directional or one-sided alternatives, using Markov chain Monte Carlo techniques implemented in JAGS. All Bayesian tests are implemented in the R package BayesMed (Nuijten, Wetzels, Matzke, Dolan, & Wagenmakers, 2014).
A Tutorial in Bayesian Potential Outcomes Mediation Analysis.
Miočević, Milica; Gonzalez, Oscar; Valente, Matthew J; MacKinnon, David P
2018-01-01
Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation of mediation analyses is challenging because randomization of subjects to levels of the independent variable does not rule out the possibility of unmeasured confounders of the mediator to outcome relation. Furthermore, commonly used frequentist methods for mediation analysis compute the probability of the data given the null hypothesis, which is not the probability of a hypothesis given the data as in Bayesian analysis. Under certain assumptions, applying the potential outcomes framework to mediation analysis allows for the computation of causal effects, and statistical mediation in the Bayesian framework gives indirect effects probabilistic interpretations. This tutorial combines causal inference and Bayesian methods for mediation analysis so the indirect and direct effects have both causal and probabilistic interpretations. Steps in Bayesian causal mediation analysis are shown in the application to an empirical example.
Tressoldi, Patrizio E.
2011-01-01
Starting from the famous phrase “extraordinary claims require extraordinary evidence,” we will present the evidence supporting the concept that human visual perception may have non-local properties, in other words, that it may operate beyond the space and time constraints of sensory organs, in order to discuss which criteria can be used to define evidence as extraordinary. This evidence has been obtained from seven databases which are related to six different protocols used to test the reality and the functioning of non-local perception, analyzed using both a frequentist and a new Bayesian meta-analysis statistical procedure. According to a frequentist meta-analysis, the null hypothesis can be rejected for all six protocols even if the effect sizes range from 0.007 to 0.28. According to Bayesian meta-analysis, the Bayes factors provides strong evidence to support the alternative hypothesis (H1) over the null hypothesis (H0), but only for three out of the six protocols. We will discuss whether quantitative psychology can contribute to defining the criteria for the acceptance of new scientific ideas in order to avoid the inconclusive controversies between supporters and opponents. PMID:21713069
Zhang, Xiang; Faries, Douglas E; Boytsov, Natalie; Stamey, James D; Seaman, John W
2016-09-01
Observational studies are frequently used to assess the effectiveness of medical interventions in routine clinical practice. However, the use of observational data for comparative effectiveness is challenged by selection bias and the potential of unmeasured confounding. This is especially problematic for analyses using a health care administrative database, in which key clinical measures are often not available. This paper provides an approach to conducting a sensitivity analyses to investigate the impact of unmeasured confounding in observational studies. In a real world osteoporosis comparative effectiveness study, the bone mineral density (BMD) score, an important predictor of fracture risk and a factor in the selection of osteoporosis treatments, is unavailable in the data base and lack of baseline BMD could potentially lead to significant selection bias. We implemented Bayesian twin-regression models, which simultaneously model both the observed outcome and the unobserved unmeasured confounder, using information from external sources. A sensitivity analysis was also conducted to assess the robustness of our conclusions to changes in such external data. The use of Bayesian modeling in this study suggests that the lack of baseline BMD did have a strong impact on the analysis, reversing the direction of the estimated effect (odds ratio of fracture incidence at 24 months: 0.40 vs. 1.36, with/without adjusting for unmeasured baseline BMD). The Bayesian twin-regression models provide a flexible sensitivity analysis tool to quantitatively assess the impact of unmeasured confounding in observational studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Golay, Philippe; Reverte, Isabelle; Rossier, Jérôme; Favez, Nicolas; Lecerf, Thierry
2013-06-01
The interpretation of the Wechsler Intelligence Scale for Children--Fourth Edition (WISC-IV) is based on a 4-factor model, which is only partially compatible with the mainstream Cattell-Horn-Carroll (CHC) model of intelligence measurement. The structure of cognitive batteries is frequently analyzed via exploratory factor analysis and/or confirmatory factor analysis. With classical confirmatory factor analysis, almost all cross-loadings between latent variables and measures are fixed to zero in order to allow the model to be identified. However, inappropriate zero cross-loadings can contribute to poor model fit, distorted factors, and biased factor correlations; most important, they do not necessarily faithfully reflect theory. To deal with these methodological and theoretical limitations, we used a new statistical approach, Bayesian structural equation modeling (BSEM), among a sample of 249 French-speaking Swiss children (8-12 years). With BSEM, zero-fixed cross-loadings between latent variables and measures are replaced by approximate zeros, based on informative, small-variance priors. Results indicated that a direct hierarchical CHC-based model with 5 factors plus a general intelligence factor better represented the structure of the WISC-IV than did the 4-factor structure and the higher order models. Because a direct hierarchical CHC model was more adequate, it was concluded that the general factor should be considered as a breadth rather than a superordinate factor. Because it was possible for us to estimate the influence of each of the latent variables on the 15 subtest scores, BSEM allowed improvement of the understanding of the structure of intelligence tests and the clinical interpretation of the subtest scores. PsycINFO Database Record (c) 2013 APA, all rights reserved.
The importance of proving the null.
Gallistel, C R
2009-04-01
Null hypotheses are simple, precise, and theoretically important. Conventional statistical analysis cannot support them; Bayesian analysis can. The challenge in a Bayesian analysis is to formulate a suitably vague alternative, because the vaguer the alternative is (the more it spreads out the unit mass of prior probability), the more the null is favored. A general solution is a sensitivity analysis: Compute the odds for or against the null as a function of the limit(s) on the vagueness of the alternative. If the odds on the null approach 1 from above as the hypothesized maximum size of the possible effect approaches 0, then the data favor the null over any vaguer alternative to it. The simple computations and the intuitive graphic representation of the analysis are illustrated by the analysis of diverse examples from the current literature. They pose 3 common experimental questions: (a) Are 2 means the same? (b) Is performance at chance? (c) Are factors additive? (c) 2009 APA, all rights reserved
Dynamic safety assessment of natural gas stations using Bayesian network.
Zarei, Esmaeil; Azadeh, Ali; Khakzad, Nima; Aliabadi, Mostafa Mirzaei; Mohammadfam, Iraj
2017-01-05
Pipelines are one of the most popular and effective ways of transporting hazardous materials, especially natural gas. However, the rapid development of gas pipelines and stations in urban areas has introduced a serious threat to public safety and assets. Although different methods have been developed for risk analysis of gas transportation systems, a comprehensive methodology for risk analysis is still lacking, especially in natural gas stations. The present work is aimed at developing a dynamic and comprehensive quantitative risk analysis (DCQRA) approach for accident scenario and risk modeling of natural gas stations. In this approach, a FMEA is used for hazard analysis while a Bow-tie diagram and Bayesian network are employed to model the worst-case accident scenario and to assess the risks. The results have indicated that the failure of the regulator system was the worst-case accident scenario with the human error as the most contributing factor. Thus, in risk management plan of natural gas stations, priority should be given to the most probable root events and main contribution factors, which have identified in the present study, in order to reduce the occurrence probability of the accident scenarios and thus alleviate the risks. Copyright © 2016 Elsevier B.V. All rights reserved.
A Bayesian approach to meta-analysis of plant pathology studies.
Mila, A L; Ngugi, H K
2011-01-01
Bayesian statistical methods are used for meta-analysis in many disciplines, including medicine, molecular biology, and engineering, but have not yet been applied for quantitative synthesis of plant pathology studies. In this paper, we illustrate the key concepts of Bayesian statistics and outline the differences between Bayesian and classical (frequentist) methods in the way parameters describing population attributes are considered. We then describe a Bayesian approach to meta-analysis and present a plant pathological example based on studies evaluating the efficacy of plant protection products that induce systemic acquired resistance for the management of fire blight of apple. In a simple random-effects model assuming a normal distribution of effect sizes and no prior information (i.e., a noninformative prior), the results of the Bayesian meta-analysis are similar to those obtained with classical methods. Implementing the same model with a Student's t distribution and a noninformative prior for the effect sizes, instead of a normal distribution, yields similar results for all but acibenzolar-S-methyl (Actigard) which was evaluated only in seven studies in this example. Whereas both the classical (P = 0.28) and the Bayesian analysis with a noninformative prior (95% credibility interval [CRI] for the log response ratio: -0.63 to 0.08) indicate a nonsignificant effect for Actigard, specifying a t distribution resulted in a significant, albeit variable, effect for this product (CRI: -0.73 to -0.10). These results confirm the sensitivity of the analytical outcome (i.e., the posterior distribution) to the choice of prior in Bayesian meta-analyses involving a limited number of studies. We review some pertinent literature on more advanced topics, including modeling of among-study heterogeneity, publication bias, analyses involving a limited number of studies, and methods for dealing with missing data, and show how these issues can be approached in a Bayesian framework. Bayesian meta-analysis can readily include information not easily incorporated in classical methods, and allow for a full evaluation of competing models. Given the power and flexibility of Bayesian methods, we expect them to become widely adopted for meta-analysis of plant pathology studies.
F-MAP: A Bayesian approach to infer the gene regulatory network using external hints
Shahdoust, Maryam; Mahjub, Hossein; Sadeghi, Mehdi
2017-01-01
The Common topological features of related species gene regulatory networks suggest reconstruction of the network of one species by using the further information from gene expressions profile of related species. We present an algorithm to reconstruct the gene regulatory network named; F-MAP, which applies the knowledge about gene interactions from related species. Our algorithm sets a Bayesian framework to estimate the precision matrix of one species microarray gene expressions dataset to infer the Gaussian Graphical model of the network. The conjugate Wishart prior is used and the information from related species is applied to estimate the hyperparameters of the prior distribution by using the factor analysis. Applying the proposed algorithm on six related species of drosophila shows that the precision of reconstructed networks is improved considerably compared to the precision of networks constructed by other Bayesian approaches. PMID:28938012
Duke Workshop on High-Dimensional Data Sensing and Analysis
2015-05-06
Bayesian sparse factor analysis formulation of Chen et al . ( 2011 ) this work develops multi-label PCA (MLPCA), a generative dimension reduction...version of this problem was recently treated by Banerjee et al . [1], Ravikumar et al . [2], Kolar and Xing [3], and Ho ̈fling and Tibshirani [4]. As...Not applicable. Final Report Duke Workshop on High-Dimensional Data Sensing and Analysis Workshop Dates: July 26-28, 2011
Bayesian Statistics for Biological Data: Pedigree Analysis
ERIC Educational Resources Information Center
Stanfield, William D.; Carlton, Matthew A.
2004-01-01
The use of Bayes' formula is applied to the biological problem of pedigree analysis to show that the Bayes' formula and non-Bayesian or "classical" methods of probability calculation give different answers. First year college students of biology can be introduced to the Bayesian statistics.
Ockham's razor and Bayesian analysis. [statistical theory for systems evaluation
NASA Technical Reports Server (NTRS)
Jefferys, William H.; Berger, James O.
1992-01-01
'Ockham's razor', the ad hoc principle enjoining the greatest possible simplicity in theoretical explanations, is presently shown to be justifiable as a consequence of Bayesian inference; Bayesian analysis can, moreover, clarify the nature of the 'simplest' hypothesis consistent with the given data. By choosing the prior probabilities of hypotheses, it becomes possible to quantify the scientific judgment that simpler hypotheses are more likely to be correct. Bayesian analysis also shows that a hypothesis with fewer adjustable parameters intrinsically possesses an enhanced posterior probability, due to the clarity of its predictions.
Testing non-minimally coupled inflation with CMB data: a Bayesian analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campista, Marcela; Benetti, Micol; Alcaniz, Jailson, E-mail: campista@on.br, E-mail: micolbenetti@on.br, E-mail: alcaniz@on.br
2017-09-01
We use the most recent cosmic microwave background (CMB) data to perform a Bayesian statistical analysis and discuss the observational viability of inflationary models with a non-minimal coupling, ξ, between the inflaton field and the Ricci scalar. We particularize our analysis to two examples of small and large field inflationary models, namely, the Coleman-Weinberg and the chaotic quartic potentials. We find that ( i ) the ξ parameter is closely correlated with the primordial amplitude ; ( ii ) although improving the agreement with the CMB data in the r − n {sub s} plane, where r is the tensor-to-scalarmore » ratio and n {sub s} the primordial spectral index, a non-null coupling is strongly disfavoured with respect to the minimally coupled standard ΛCDM model, since the upper bounds of the Bayes factor (odds) for ξ parameter are greater than 150:1.« less
Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy
NASA Astrophysics Data System (ADS)
Sharma, Sanjib
2017-08-01
Markov Chain Monte Carlo based Bayesian data analysis has now become the method of choice for analyzing and interpreting data in almost all disciplines of science. In astronomy, over the last decade, we have also seen a steady increase in the number of papers that employ Monte Carlo based Bayesian analysis. New, efficient Monte Carlo based methods are continuously being developed and explored. In this review, we first explain the basics of Bayesian theory and discuss how to set up data analysis problems within this framework. Next, we provide an overview of various Monte Carlo based methods for performing Bayesian data analysis. Finally, we discuss advanced ideas that enable us to tackle complex problems and thus hold great promise for the future. We also distribute downloadable computer software (available at https://github.com/sanjibs/bmcmc/ ) that implements some of the algorithms and examples discussed here.
Contributions to Statistical Problems Related to Microarray Data
ERIC Educational Resources Information Center
Hong, Feng
2009-01-01
Microarray is a high throughput technology to measure the gene expression. Analysis of microarray data brings many interesting and challenging problems. This thesis consists three studies related to microarray data. First, we propose a Bayesian model for microarray data and use Bayes Factors to identify differentially expressed genes. Second, we…
Power in Bayesian Mediation Analysis for Small Sample Research
Miočević, Milica; MacKinnon, David P.; Levy, Roy
2018-01-01
It was suggested that Bayesian methods have potential for increasing power in mediation analysis (Koopman, Howe, Hollenbeck, & Sin, 2015; Yuan & MacKinnon, 2009). This paper compares the power of Bayesian credibility intervals for the mediated effect to the power of normal theory, distribution of the product, percentile, and bias-corrected bootstrap confidence intervals at N≤ 200. Bayesian methods with diffuse priors have power comparable to the distribution of the product and bootstrap methods, and Bayesian methods with informative priors had the most power. Varying degrees of precision of prior distributions were also examined. Increased precision led to greater power only when N≥ 100 and the effects were small, N < 60 and the effects were large, and N < 200 and the effects were medium. An empirical example from psychology illustrated a Bayesian analysis of the single mediator model from prior selection to interpreting results. PMID:29662296
Power in Bayesian Mediation Analysis for Small Sample Research.
Miočević, Milica; MacKinnon, David P; Levy, Roy
2017-01-01
It was suggested that Bayesian methods have potential for increasing power in mediation analysis (Koopman, Howe, Hollenbeck, & Sin, 2015; Yuan & MacKinnon, 2009). This paper compares the power of Bayesian credibility intervals for the mediated effect to the power of normal theory, distribution of the product, percentile, and bias-corrected bootstrap confidence intervals at N≤ 200. Bayesian methods with diffuse priors have power comparable to the distribution of the product and bootstrap methods, and Bayesian methods with informative priors had the most power. Varying degrees of precision of prior distributions were also examined. Increased precision led to greater power only when N≥ 100 and the effects were small, N < 60 and the effects were large, and N < 200 and the effects were medium. An empirical example from psychology illustrated a Bayesian analysis of the single mediator model from prior selection to interpreting results.
Raghavan, Ram K.; Goodin, Douglas G.; Neises, Daniel; Anderson, Gary A.; Ganta, Roman R.
2016-01-01
This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio–economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio–temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio–economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main–effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate–change impacts on tick–borne diseases are discussed. PMID:26942604
Raghavan, Ram K; Goodin, Douglas G; Neises, Daniel; Anderson, Gary A; Ganta, Roman R
2016-01-01
This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.
Bayesian methods including nonrandomized study data increased the efficiency of postlaunch RCTs.
Schmidt, Amand F; Klugkist, Irene; Klungel, Olaf H; Nielen, Mirjam; de Boer, Anthonius; Hoes, Arno W; Groenwold, Rolf H H
2015-04-01
Findings from nonrandomized studies on safety or efficacy of treatment in patient subgroups may trigger postlaunch randomized clinical trials (RCTs). In the analysis of such RCTs, results from nonrandomized studies are typically ignored. This study explores the trade-off between bias and power of Bayesian RCT analysis incorporating information from nonrandomized studies. A simulation study was conducted to compare frequentist with Bayesian analyses using noninformative and informative priors in their ability to detect interaction effects. In simulated subgroups, the effect of a hypothetical treatment differed between subgroups (odds ratio 1.00 vs. 2.33). Simulations varied in sample size, proportions of the subgroups, and specification of the priors. As expected, the results for the informative Bayesian analyses were more biased than those from the noninformative Bayesian analysis or frequentist analysis. However, because of a reduction in posterior variance, informative Bayesian analyses were generally more powerful to detect an effect. In scenarios where the informative priors were in the opposite direction of the RCT data, type 1 error rates could be 100% and power 0%. Bayesian methods incorporating data from nonrandomized studies can meaningfully increase power of interaction tests in postlaunch RCTs. Copyright © 2015 Elsevier Inc. All rights reserved.
Ye, Yusen; Gao, Lin; Zhang, Shihua
2017-01-01
Transcription factors play a key role in transcriptional regulation of genes and determination of cellular identity through combinatorial interactions. However, current studies about combinatorial regulation is deficient due to lack of experimental data in the same cellular environment and extensive existence of data noise. Here, we adopt a Bayesian CANDECOMP/PARAFAC (CP) factorization approach (BCPF) to integrate multiple datasets in a network paradigm for determining precise TF interaction landscapes. In our first application, we apply BCPF to integrate three networks built based on diverse datasets of multiple cell lines from ENCODE respectively to predict a global and precise TF interaction network. This network gives 38 novel TF interactions with distinct biological functions. In our second application, we apply BCPF to seven types of cell type TF regulatory networks and predict seven cell lineage TF interaction networks, respectively. By further exploring the dynamics and modularity of them, we find cell lineage-specific hub TFs participate in cell type or lineage-specific regulation by interacting with non-specific TFs. Furthermore, we illustrate the biological function of hub TFs by taking those of cancer lineage and blood lineage as examples. Taken together, our integrative analysis can reveal more precise and extensive description about human TF combinatorial interactions. PMID:29033978
Ye, Yusen; Gao, Lin; Zhang, Shihua
2017-01-01
Transcription factors play a key role in transcriptional regulation of genes and determination of cellular identity through combinatorial interactions. However, current studies about combinatorial regulation is deficient due to lack of experimental data in the same cellular environment and extensive existence of data noise. Here, we adopt a Bayesian CANDECOMP/PARAFAC (CP) factorization approach (BCPF) to integrate multiple datasets in a network paradigm for determining precise TF interaction landscapes. In our first application, we apply BCPF to integrate three networks built based on diverse datasets of multiple cell lines from ENCODE respectively to predict a global and precise TF interaction network. This network gives 38 novel TF interactions with distinct biological functions. In our second application, we apply BCPF to seven types of cell type TF regulatory networks and predict seven cell lineage TF interaction networks, respectively. By further exploring the dynamics and modularity of them, we find cell lineage-specific hub TFs participate in cell type or lineage-specific regulation by interacting with non-specific TFs. Furthermore, we illustrate the biological function of hub TFs by taking those of cancer lineage and blood lineage as examples. Taken together, our integrative analysis can reveal more precise and extensive description about human TF combinatorial interactions.
On the predictive information criteria for model determination in seismic hazard analysis
NASA Astrophysics Data System (ADS)
Varini, Elisa; Rotondi, Renata
2016-04-01
Many statistical tools have been developed for evaluating, understanding, and comparing models, from both frequentist and Bayesian perspectives. In particular, the problem of model selection can be addressed according to whether the primary goal is explanation or, alternatively, prediction. In the former case, the criteria for model selection are defined over the parameter space whose physical interpretation can be difficult; in the latter case, they are defined over the space of the observations, which has a more direct physical meaning. In the frequentist approaches, model selection is generally based on an asymptotic approximation which may be poor for small data sets (e.g. the F-test, the Kolmogorov-Smirnov test, etc.); moreover, these methods often apply under specific assumptions on models (e.g. models have to be nested in the likelihood ratio test). In the Bayesian context, among the criteria for explanation, the ratio of the observed marginal densities for two competing models, named Bayes Factor (BF), is commonly used for both model choice and model averaging (Kass and Raftery, J. Am. Stat. Ass., 1995). But BF does not apply to improper priors and, even when the prior is proper, it is not robust to the specification of the prior. These limitations can be extended to two famous penalized likelihood methods as the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC), since they are proved to be approximations of -2log BF . In the perspective that a model is as good as its predictions, the predictive information criteria aim at evaluating the predictive accuracy of Bayesian models or, in other words, at estimating expected out-of-sample prediction error using a bias-correction adjustment of within-sample error (Gelman et al., Stat. Comput., 2014). In particular, the Watanabe criterion is fully Bayesian because it averages the predictive distribution over the posterior distribution of parameters rather than conditioning on a point estimate, but it is hardly applicable to data which are not independent given parameters (Watanabe, J. Mach. Learn. Res., 2010). A solution is given by Ando and Tsay criterion where the joint density may be decomposed into the product of the conditional densities (Ando and Tsay, Int. J. Forecast., 2010). The above mentioned criteria are global summary measures of model performance, but more detailed analysis could be required to discover the reasons for poor global performance. In this latter case, a retrospective predictive analysis is performed on each individual observation. In this study we performed the Bayesian analysis of Italian data sets by four versions of a long-term hazard model known as the stress release model (Vere-Jones, J. Physics Earth, 1978; Bebbington and Harte, Geophys. J. Int., 2003; Varini and Rotondi, Environ. Ecol. Stat., 2015). Then we illustrate the results on their performance evaluated by Bayes Factor, predictive information criteria and retrospective predictive analysis.
Hu, Wenbiao; Clements, Archie; Williams, Gail; Tong, Shilu; Mengersen, Kerrie
2010-01-01
This study aims to examine the impact of socio-ecologic factors on the transmission of Ross River virus (RRV) infection and to identify areas prone to social and ecologic-driven epidemics in Queensland, Australia. We used a Bayesian spatiotemporal conditional autoregressive model to quantify the relationship between monthly variation of RRV incidence and socio-ecologic factors and to determine spatiotemporal patterns. Our results show that the average increase in monthly RRV incidence was 2.4% (95% credible interval (CrI): 0.1–4.5%) and 2.0% (95% CrI: 1.6–2.3%) for a 1°C increase in monthly average maximum temperature and a 10 mm increase in monthly average rainfall, respectively. A significant spatiotemporal variation and interactive effect between temperature and rainfall on RRV incidence were found. No association between Socio-economic Index for Areas (SEIFA) and RRV was observed. The transmission of RRV in Queensland, Australia appeared to be primarily driven by ecologic variables rather than social factors. PMID:20810846
Bayesian Analysis of Silica Exposure and Lung Cancer Using Human and Animal Studies.
Bartell, Scott M; Hamra, Ghassan Badri; Steenland, Kyle
2017-03-01
Bayesian methods can be used to incorporate external information into epidemiologic exposure-response analyses of silica and lung cancer. We used data from a pooled mortality analysis of silica and lung cancer (n = 65,980), using untransformed and log-transformed cumulative exposure. Animal data came from chronic silica inhalation studies using rats. We conducted Bayesian analyses with informative priors based on the animal data and different cross-species extrapolation factors. We also conducted analyses with exposure measurement error corrections in the absence of a gold standard, assuming Berkson-type error that increased with increasing exposure. The pooled animal data exposure-response coefficient was markedly higher (log exposure) or lower (untransformed exposure) than the coefficient for the pooled human data. With 10-fold uncertainty, the animal prior had little effect on results for pooled analyses and only modest effects in some individual studies. One-fold uncertainty produced markedly different results for both pooled and individual studies. Measurement error correction had little effect in pooled analyses using log exposure. Using untransformed exposure, measurement error correction caused a 5% decrease in the exposure-response coefficient for the pooled analysis and marked changes in some individual studies. The animal prior had more impact for smaller human studies and for one-fold versus three- or 10-fold uncertainty. Adjustment for Berkson error using Bayesian methods had little effect on the exposure-response coefficient when exposure was log transformed or when the sample size was large. See video abstract at, http://links.lww.com/EDE/B160.
Moving beyond qualitative evaluations of Bayesian models of cognition.
Hemmer, Pernille; Tauber, Sean; Steyvers, Mark
2015-06-01
Bayesian models of cognition provide a powerful way to understand the behavior and goals of individuals from a computational point of view. Much of the focus in the Bayesian cognitive modeling approach has been on qualitative model evaluations, where predictions from the models are compared to data that is often averaged over individuals. In many cognitive tasks, however, there are pervasive individual differences. We introduce an approach to directly infer individual differences related to subjective mental representations within the framework of Bayesian models of cognition. In this approach, Bayesian data analysis methods are used to estimate cognitive parameters and motivate the inference process within a Bayesian cognitive model. We illustrate this integrative Bayesian approach on a model of memory. We apply the model to behavioral data from a memory experiment involving the recall of heights of people. A cross-validation analysis shows that the Bayesian memory model with inferred subjective priors predicts withheld data better than a Bayesian model where the priors are based on environmental statistics. In addition, the model with inferred priors at the individual subject level led to the best overall generalization performance, suggesting that individual differences are important to consider in Bayesian models of cognition.
ERIC Educational Resources Information Center
Hsieh, Chueh-An; Maier, Kimberly S.
2009-01-01
The capacity of Bayesian methods in estimating complex statistical models is undeniable. Bayesian data analysis is seen as having a range of advantages, such as an intuitive probabilistic interpretation of the parameters of interest, the efficient incorporation of prior information to empirical data analysis, model averaging and model selection.…
Bayesian meta-analysis of Cronbach's coefficient alpha to evaluate informative hypotheses.
Okada, Kensuke
2015-12-01
This paper proposes a new method to evaluate informative hypotheses for meta-analysis of Cronbach's coefficient alpha using a Bayesian approach. The coefficient alpha is one of the most widely used reliability indices. In meta-analyses of reliability, researchers typically form specific informative hypotheses beforehand, such as 'alpha of this test is greater than 0.8' or 'alpha of one form of a test is greater than the others.' The proposed method enables direct evaluation of these informative hypotheses. To this end, a Bayes factor is calculated to evaluate the informative hypothesis against its complement. It allows researchers to summarize the evidence provided by previous studies in favor of their informative hypothesis. The proposed approach can be seen as a natural extension of the Bayesian meta-analysis of coefficient alpha recently proposed in this journal (Brannick and Zhang, 2013). The proposed method is illustrated through two meta-analyses of real data that evaluate different kinds of informative hypotheses on superpopulation: one is that alpha of a particular test is above the criterion value, and the other is that alphas among different test versions have ordered relationships. Informative hypotheses are supported from the data in both cases, suggesting that the proposed approach is promising for application. Copyright © 2015 John Wiley & Sons, Ltd.
Zou, Yonghong; Wang, Lixia; Christensen, Erik R
2015-10-01
This work intended to explain the challenges of the fingerprints based source apportionment method for polycyclic aromatic hydrocarbons (PAH) in the aquatic environment, and to illustrate a practical and robust solution. The PAH data detected in the sediment cores from the Illinois River provide the basis of this study. Principal component analysis (PCA) separates PAH compounds into two groups reflecting their possible airborne transport patterns; but it is not able to suggest specific sources. Not all positive matrix factorization (PMF) determined sources are distinguishable due to the variability of source fingerprints. However, they constitute useful suggestions for inputs for a Bayesian chemical mass balance (CMB) analysis. The Bayesian CMB analysis takes into account the measurement errors as well as the variations of source fingerprints, and provides a credible source apportionment. Major PAH sources for Illinois River sediments are traffic (35%), coke oven (24%), coal combustion (18%), and wood combustion (14%). Copyright © 2015. Published by Elsevier Ltd.
Informative priors on fetal fraction increase power of the noninvasive prenatal screen.
Xu, Hanli; Wang, Shaowei; Ma, Lin-Lin; Huang, Shuai; Liang, Lin; Liu, Qian; Liu, Yang-Yang; Liu, Ke-Di; Tan, Ze-Min; Ban, Hao; Guan, Yongtao; Lu, Zuhong
2017-11-09
PurposeNoninvasive prenatal screening (NIPS) sequences a mixture of the maternal and fetal cell-free DNA. Fetal trisomy can be detected by examining chromosomal dosages estimated from sequencing reads. The traditional method uses the Z-test, which compares a subject against a set of euploid controls, where the information of fetal fraction is not fully utilized. Here we present a Bayesian method that leverages informative priors on the fetal fraction.MethodOur Bayesian method combines the Z-test likelihood and informative priors of the fetal fraction, which are learned from the sex chromosomes, to compute Bayes factors. Bayesian framework can account for nongenetic risk factors through the prior odds, and our method can report individual positive/negative predictive values.ResultsOur Bayesian method has more power than the Z-test method. We analyzed 3,405 NIPS samples and spotted at least 9 (of 51) possible Z-test false positives.ConclusionBayesian NIPS is more powerful than the Z-test method, is able to account for nongenetic risk factors through prior odds, and can report individual positive/negative predictive values.Genetics in Medicine advance online publication, 9 November 2017; doi:10.1038/gim.2017.186.
A Bayesian Multi-Level Factor Analytic Model of Consumer Price Sensitivities across Categories
ERIC Educational Resources Information Center
Duvvuri, Sri Devi; Gruca, Thomas S.
2010-01-01
Identifying price sensitive consumers is an important problem in marketing. We develop a Bayesian multi-level factor analytic model of the covariation among household-level price sensitivities across product categories that are substitutes. Based on a multivariate probit model of category incidence, this framework also allows the researcher to…
Building Models to Predict Hint-or-Attempt Actions of Students
ERIC Educational Resources Information Center
Castro, Francisco Enrique Vicente; Adjei, Seth; Colombo, Tyler; Heffernan, Neil
2015-01-01
A great deal of research in educational data mining is geared towards predicting student performance. Bayesian Knowledge Tracing, Performance Factors Analysis, and the different variations of these have been introduced and have had some success at predicting student knowledge. It is worth noting, however, that very little has been done to…
Collinear Latent Variables in Multilevel Confirmatory Factor Analysis
van de Schoot, Rens; Hox, Joop
2014-01-01
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation coefficient (ICC) and estimation method; maximum likelihood estimation with robust chi-squares and standard errors and Bayesian estimation, on the convergence rate are investigated. The other variables of interest were rate of inadmissible solutions and the relative parameter and standard error bias on the between level. The results showed that inadmissible solutions were obtained when there was between level collinearity and the estimation method was maximum likelihood. In the within level multicollinearity condition, all of the solutions were admissible but the bias values were higher compared with the between level collinearity condition. Bayesian estimation appeared to be robust in obtaining admissible parameters but the relative bias was higher than for maximum likelihood estimation. Finally, as expected, high ICC produced less biased results compared to medium ICC conditions. PMID:29795827
Developing a dimensional model for successful cognitive and emotional aging.
Vahia, Ipsit V; Thompson, Wesley K; Depp, Colin A; Allison, Matthew; Jeste, Dilip V
2012-04-01
There is currently a lack of consensus on the definition of successful aging (SA) and existing implementations have omitted constructs associated with SA. We used empirical methods to develop a dimensional model of SA that incorporates a wider range of associated variables, and we examined the relationship among these components using factor analysis and Bayesian Belief Nets. We administered a successful aging questionnaire comprising several standardized measures related to SA to a sample of 1948 older women enrolled in the San Diego site of the Women's Health Initiative study. The SA-related variables we included in the model were self-rated successful aging, depression severity, physical and emotional functioning, optimism, resilience, attitude towards own aging, self-efficacy, and cognitive ability. After adjusting for age, education and income, we fitted an exploratory factor analysis model to the SA-related variables and then, in order to address relationships among these factors, we computed a Bayesian Belief Net (BBN) using rotated factor scores. The SA-related variables loaded onto five factors. Based on the loading, we labeled the factors as follows: self-rated successful aging, cognition, psychosocial protective factors, physical functioning, and emotional functioning. In the BBN, self-rated successful aging emerged as the primary downstream factor and exhibited significant partial correlations with psychosocial protective factors, physical/general status and mental/emotional status but not with cognitive ability. Our study represents a step forward in developing a dimensional model of SA. Our findings also point to a potential role for psychiatry in improving successful aging by managing depressive symptoms and developing psychosocial interventions to improve self-efficacy, resilience, and optimism.
Sandoval-Castellanos, Edson; Palkopoulou, Eleftheria; Dalén, Love
2014-01-01
Inference of population demographic history has vastly improved in recent years due to a number of technological and theoretical advances including the use of ancient DNA. Approximate Bayesian computation (ABC) stands among the most promising methods due to its simple theoretical fundament and exceptional flexibility. However, limited availability of user-friendly programs that perform ABC analysis renders it difficult to implement, and hence programming skills are frequently required. In addition, there is limited availability of programs able to deal with heterochronous data. Here we present the software BaySICS: Bayesian Statistical Inference of Coalescent Simulations. BaySICS provides an integrated and user-friendly platform that performs ABC analyses by means of coalescent simulations from DNA sequence data. It estimates historical demographic population parameters and performs hypothesis testing by means of Bayes factors obtained from model comparisons. Although providing specific features that improve inference from datasets with heterochronous data, BaySICS also has several capabilities making it a suitable tool for analysing contemporary genetic datasets. Those capabilities include joint analysis of independent tables, a graphical interface and the implementation of Markov-chain Monte Carlo without likelihoods.
A Bayesian framework to estimate diversification rates and their variation through time and space
2011-01-01
Background Patterns of species diversity are the result of speciation and extinction processes, and molecular phylogenetic data can provide valuable information to derive their variability through time and across clades. Bayesian Markov chain Monte Carlo methods offer a promising framework to incorporate phylogenetic uncertainty when estimating rates of diversification. Results We introduce a new approach to estimate diversification rates in a Bayesian framework over a distribution of trees under various constant and variable rate birth-death and pure-birth models, and test it on simulated phylogenies. Furthermore, speciation and extinction rates and their posterior credibility intervals can be estimated while accounting for non-random taxon sampling. The framework is particularly suitable for hypothesis testing using Bayes factors, as we demonstrate analyzing dated phylogenies of Chondrostoma (Cyprinidae) and Lupinus (Fabaceae). In addition, we develop a model that extends the rate estimation to a meta-analysis framework in which different data sets are combined in a single analysis to detect general temporal and spatial trends in diversification. Conclusions Our approach provides a flexible framework for the estimation of diversification parameters and hypothesis testing while simultaneously accounting for uncertainties in the divergence times and incomplete taxon sampling. PMID:22013891
ERIC Educational Resources Information Center
Chung, Gregory K. W. K.; Dionne, Gary B.; Kaiser, William J.
2006-01-01
Our research question was whether we could develop a feasible technique, using Bayesian networks, to diagnose gaps in student knowledge. Thirty-four college-age participants completed tasks designed to measure conceptual knowledge, procedural knowledge, and problem-solving skills related to circuit analysis. A Bayesian network was used to model…
Bayesian molecular dating: opening up the black box.
Bromham, Lindell; Duchêne, Sebastián; Hua, Xia; Ritchie, Andrew M; Duchêne, David A; Ho, Simon Y W
2018-05-01
Molecular dating analyses allow evolutionary timescales to be estimated from genetic data, offering an unprecedented capacity for investigating the evolutionary past of all species. These methods require us to make assumptions about the relationship between genetic change and evolutionary time, often referred to as a 'molecular clock'. Although initially regarded with scepticism, molecular dating has now been adopted in many areas of biology. This broad uptake has been due partly to the development of Bayesian methods that allow complex aspects of molecular evolution, such as variation in rates of change across lineages, to be taken into account. But in order to do this, Bayesian dating methods rely on a range of assumptions about the evolutionary process, which vary in their degree of biological realism and empirical support. These assumptions can have substantial impacts on the estimates produced by molecular dating analyses. The aim of this review is to open the 'black box' of Bayesian molecular dating and have a look at the machinery inside. We explain the components of these dating methods, the important decisions that researchers must make in their analyses, and the factors that need to be considered when interpreting results. We illustrate the effects that the choices of different models and priors can have on the outcome of the analysis, and suggest ways to explore these impacts. We describe some major research directions that may improve the reliability of Bayesian dating. The goal of our review is to help researchers to make informed choices when using Bayesian phylogenetic methods to estimate evolutionary rates and timescales. © 2017 Cambridge Philosophical Society.
Bayesian spatial analysis of childhood diseases in Zimbabwe.
Tsiko, Rodney Godfrey
2015-09-02
Many sub-Saharan countries are confronted with persistently high levels of childhood morbidity and mortality because of the impact of a range of demographic, biological and social factors or situational events that directly precipitate ill health. In particular, under-five morbidity and mortality have increased in recent decades due to childhood diarrhoea, cough and fever. Understanding the geographic distribution of such diseases and their relationships to potential risk factors can be invaluable for cost effective intervention. Bayesian semi-parametric regression models were used to quantify the spatial risk of childhood diarrhoea, fever and cough, as well as associations between childhood diseases and a range of factors, after accounting for spatial correlation between neighbouring areas. Such semi-parametric regression models allow joint analysis of non-linear effects of continuous covariates, spatially structured variation, unstructured heterogeneity, and other fixed effects on childhood diseases. Modelling and inference made use of the fully Bayesian approach via Markov Chain Monte Carlo (MCMC) simulation techniques. The analysis was based on data derived from the 1999, 2005/6 and 2010/11 Zimbabwe Demographic and Health Surveys (ZDHS). The results suggest that until recently, sex of child had little or no significant association with childhood diseases. However, a higher proportion of male than female children within a given province had a significant association with childhood cough, fever and diarrhoea. Compared to their counterparts in rural areas, children raised in an urban setting had less exposure to cough, fever and diarrhoea across all the survey years with the exception of diarrhoea in 2010. In addition, the link between sanitation, parental education, antenatal care, vaccination and childhood diseases was found to be both intuitive and counterintuitive. Results also showed marked geographical differences in the prevalence of childhood diarrhoea, fever and cough. Across all the survey years Manicaland province reported the highest cases of childhood diseases. There is also clear evidence of significant high prevalence of childhood diseases in Mashonaland than in Matabeleland provinces.
An introduction to Bayesian statistics in health psychology.
Depaoli, Sarah; Rus, Holly M; Clifton, James P; van de Schoot, Rens; Tiemensma, Jitske
2017-09-01
The aim of the current article is to provide a brief introduction to Bayesian statistics within the field of health psychology. Bayesian methods are increasing in prevalence in applied fields, and they have been shown in simulation research to improve the estimation accuracy of structural equation models, latent growth curve (and mixture) models, and hierarchical linear models. Likewise, Bayesian methods can be used with small sample sizes since they do not rely on large sample theory. In this article, we discuss several important components of Bayesian statistics as they relate to health-based inquiries. We discuss the incorporation and impact of prior knowledge into the estimation process and the different components of the analysis that should be reported in an article. We present an example implementing Bayesian estimation in the context of blood pressure changes after participants experienced an acute stressor. We conclude with final thoughts on the implementation of Bayesian statistics in health psychology, including suggestions for reviewing Bayesian manuscripts and grant proposals. We have also included an extensive amount of online supplementary material to complement the content presented here, including Bayesian examples using many different software programmes and an extensive sensitivity analysis examining the impact of priors.
Uncertainty aggregation and reduction in structure-material performance prediction
NASA Astrophysics Data System (ADS)
Hu, Zhen; Mahadevan, Sankaran; Ao, Dan
2018-02-01
An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.
Romer, Katherine A.; Kayombya, Guy-Richard; Fraenkel, Ernest
2007-01-01
WebMOTIFS provides a web interface that facilitates the discovery and analysis of DNA-sequence motifs. Several studies have shown that the accuracy of motif discovery can be significantly improved by using multiple de novo motif discovery programs and using randomized control calculations to identify the most significant motifs or by using Bayesian approaches. WebMOTIFS makes it easy to apply these strategies. Using a single submission form, users can run several motif discovery programs and score, cluster and visualize the results. In addition, the Bayesian motif discovery program THEME can be used to determine the class of transcription factors that is most likely to regulate a set of sequences. Input can be provided as a list of gene or probe identifiers. Used with the default settings, WebMOTIFS accurately identifies biologically relevant motifs from diverse data in several species. WebMOTIFS is freely available at http://fraenkel.mit.edu/webmotifs. PMID:17584794
A Two-Step Bayesian Approach for Propensity Score Analysis: Simulations and Case Study
ERIC Educational Resources Information Center
Kaplan, David; Chen, Jianshen
2012-01-01
A two-step Bayesian propensity score approach is introduced that incorporates prior information in the propensity score equation and outcome equation without the problems associated with simultaneous Bayesian propensity score approaches. The corresponding variance estimators are also provided. The two-step Bayesian propensity score is provided for…
Prior elicitation and Bayesian analysis of the Steroids for Corneal Ulcers Trial.
See, Craig W; Srinivasan, Muthiah; Saravanan, Somu; Oldenburg, Catherine E; Esterberg, Elizabeth J; Ray, Kathryn J; Glaser, Tanya S; Tu, Elmer Y; Zegans, Michael E; McLeod, Stephen D; Acharya, Nisha R; Lietman, Thomas M
2012-12-01
To elicit expert opinion on the use of adjunctive corticosteroid therapy in bacterial corneal ulcers. To perform a Bayesian analysis of the Steroids for Corneal Ulcers Trial (SCUT), using expert opinion as a prior probability. The SCUT was a placebo-controlled trial assessing visual outcomes in patients receiving topical corticosteroids or placebo as adjunctive therapy for bacterial keratitis. Questionnaires were conducted at scientific meetings in India and North America to gauge expert consensus on the perceived benefit of corticosteroids as adjunct treatment. Bayesian analysis, using the questionnaire data as a prior probability and the primary outcome of SCUT as a likelihood, was performed. For comparison, an additional Bayesian analysis was performed using the results of the SCUT pilot study as a prior distribution. Indian respondents believed there to be a 1.21 Snellen line improvement, and North American respondents believed there to be a 1.24 line improvement with corticosteroid therapy. The SCUT primary outcome found a non-significant 0.09 Snellen line benefit with corticosteroid treatment. The results of the Bayesian analysis estimated a slightly greater benefit than did the SCUT primary analysis (0.19 lines verses 0.09 lines). Indian and North American experts had similar expectations on the effectiveness of corticosteroids in bacterial corneal ulcers; that corticosteroids would markedly improve visual outcomes. Bayesian analysis produced results very similar to those produced by the SCUT primary analysis. The similarity in result is likely due to the large sample size of SCUT and helps validate the results of SCUT.
ERIC Educational Resources Information Center
Marcoulides, Katerina M.
2018-01-01
This study examined the use of Bayesian analysis methods for the estimation of item parameters in a two-parameter logistic item response theory model. Using simulated data under various design conditions with both informative and non-informative priors, the parameter recovery of Bayesian analysis methods were examined. Overall results showed that…
A bayesian approach to classification criteria for spectacled eiders
Taylor, B.L.; Wade, P.R.; Stehn, R.A.; Cochrane, J.F.
1996-01-01
To facilitate decisions to classify species according to risk of extinction, we used Bayesian methods to analyze trend data for the Spectacled Eider, an arctic sea duck. Trend data from three independent surveys of the Yukon-Kuskokwim Delta were analyzed individually and in combination to yield posterior distributions for population growth rates. We used classification criteria developed by the recovery team for Spectacled Eiders that seek to equalize errors of under- or overprotecting the species. We conducted both a Bayesian decision analysis and a frequentist (classical statistical inference) decision analysis. Bayesian decision analyses are computationally easier, yield basically the same results, and yield results that are easier to explain to nonscientists. With the exception of the aerial survey analysis of the 10 most recent years, both Bayesian and frequentist methods indicated that an endangered classification is warranted. The discrepancy between surveys warrants further research. Although the trend data are abundance indices, we used a preliminary estimate of absolute abundance to demonstrate how to calculate extinction distributions using the joint probability distributions for population growth rate and variance in growth rate generated by the Bayesian analysis. Recent apparent increases in abundance highlight the need for models that apply to declining and then recovering species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Stephen A.; Sigeti, David E.
These are a set of slides about Bayesian hypothesis testing, where many hypotheses are tested. The conclusions are the following: The value of the Bayes factor obtained when using the median of the posterior marginal is almost the minimum value of the Bayes factor. The value of τ 2 which minimizes the Bayes factor is a reasonable choice for this parameter. This allows a likelihood ratio to be computed with is the least favorable to H 0.
CytoBayesJ: software tools for Bayesian analysis of cytogenetic radiation dosimetry data.
Ainsbury, Elizabeth A; Vinnikov, Volodymyr; Puig, Pedro; Maznyk, Nataliya; Rothkamm, Kai; Lloyd, David C
2013-08-30
A number of authors have suggested that a Bayesian approach may be most appropriate for analysis of cytogenetic radiation dosimetry data. In the Bayesian framework, probability of an event is described in terms of previous expectations and uncertainty. Previously existing, or prior, information is used in combination with experimental results to infer probabilities or the likelihood that a hypothesis is true. It has been shown that the Bayesian approach increases both the accuracy and quality assurance of radiation dose estimates. New software entitled CytoBayesJ has been developed with the aim of bringing Bayesian analysis to cytogenetic biodosimetry laboratory practice. CytoBayesJ takes a number of Bayesian or 'Bayesian like' methods that have been proposed in the literature and presents them to the user in the form of simple user-friendly tools, including testing for the most appropriate model for distribution of chromosome aberrations and calculations of posterior probability distributions. The individual tools are described in detail and relevant examples of the use of the methods and the corresponding CytoBayesJ software tools are given. In this way, the suitability of the Bayesian approach to biological radiation dosimetry is highlighted and its wider application encouraged by providing a user-friendly software interface and manual in English and Russian. Copyright © 2013 Elsevier B.V. All rights reserved.
Of bugs and birds: Markov Chain Monte Carlo for hierarchical modeling in wildlife research
Link, W.A.; Cam, E.; Nichols, J.D.; Cooch, E.G.
2002-01-01
Markov chain Monte Carlo (MCMC) is a statistical innovation that allows researchers to fit far more complex models to data than is feasible using conventional methods. Despite its widespread use in a variety of scientific fields, MCMC appears to be underutilized in wildlife applications. This may be due to a misconception that MCMC requires the adoption of a subjective Bayesian analysis, or perhaps simply to its lack of familiarity among wildlife researchers. We introduce the basic ideas of MCMC and software BUGS (Bayesian inference using Gibbs sampling), stressing that a simple and satisfactory intuition for MCMC does not require extraordinary mathematical sophistication. We illustrate the use of MCMC with an analysis of the association between latent factors governing individual heterogeneity in breeding and survival rates of kittiwakes (Rissa tridactyla). We conclude with a discussion of the importance of individual heterogeneity for understanding population dynamics and designing management plans.
Bayesian data analysis in observational comparative effectiveness research: rationale and examples.
Olson, William H; Crivera, Concetta; Ma, Yi-Wen; Panish, Jessica; Mao, Lian; Lynch, Scott M
2013-11-01
Many comparative effectiveness research and patient-centered outcomes research studies will need to be observational for one or both of two reasons: first, randomized trials are expensive and time-consuming; and second, only observational studies can answer some research questions. It is generally recognized that there is a need to increase the scientific validity and efficiency of observational studies. Bayesian methods for the design and analysis of observational studies are scientifically valid and offer many advantages over frequentist methods, including, importantly, the ability to conduct comparative effectiveness research/patient-centered outcomes research more efficiently. Bayesian data analysis is being introduced into outcomes studies that we are conducting. Our purpose here is to describe our view of some of the advantages of Bayesian methods for observational studies and to illustrate both realized and potential advantages by describing studies we are conducting in which various Bayesian methods have been or could be implemented.
Whole Genome Analysis of Response to BVDV2 Vaccinations in Angus Calves Using Bayesian Models
USDA-ARS?s Scientific Manuscript database
This study was designed to evaluate the impact of environmental factors and genetic controls on response to vaccination against bovine viral diarrhea virus type 2 (BVDV2) in Purebred American Angus beef cattle. This study utilized 245 Angus calves born in the spring (n = 139) and fall (n = 106) of 2...
Using Bayesian analysis in repeated preclinical in vivo studies for a more effective use of animals.
Walley, Rosalind; Sherington, John; Rastrick, Joe; Detrait, Eric; Hanon, Etienne; Watt, Gillian
2016-05-01
Whilst innovative Bayesian approaches are increasingly used in clinical studies, in the preclinical area Bayesian methods appear to be rarely used in the reporting of pharmacology data. This is particularly surprising in the context of regularly repeated in vivo studies where there is a considerable amount of data from historical control groups, which has potential value. This paper describes our experience with introducing Bayesian analysis for such studies using a Bayesian meta-analytic predictive approach. This leads naturally either to an informative prior for a control group as part of a full Bayesian analysis of the next study or using a predictive distribution to replace a control group entirely. We use quality control charts to illustrate study-to-study variation to the scientists and describe informative priors in terms of their approximate effective numbers of animals. We describe two case studies of animal models: the lipopolysaccharide-induced cytokine release model used in inflammation and the novel object recognition model used to screen cognitive enhancers, both of which show the advantage of a Bayesian approach over the standard frequentist analysis. We conclude that using Bayesian methods in stable repeated in vivo studies can result in a more effective use of animals, either by reducing the total number of animals used or by increasing the precision of key treatment differences. This will lead to clearer results and supports the "3Rs initiative" to Refine, Reduce and Replace animals in research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Yan, Wang-Ji; Ren, Wei-Xin
2018-01-01
This study applies the theoretical findings of circularly-symmetric complex normal ratio distribution Yan and Ren (2016) [1,2] to transmissibility-based modal analysis from a statistical viewpoint. A probabilistic model of transmissibility function in the vicinity of the resonant frequency is formulated in modal domain, while some insightful comments are offered. It theoretically reveals that the statistics of transmissibility function around the resonant frequency is solely dependent on 'noise-to-signal' ratio and mode shapes. As a sequel to the development of the probabilistic model of transmissibility function in modal domain, this study poses the process of modal identification in the context of Bayesian framework by borrowing a novel paradigm. Implementation issues unique to the proposed approach are resolved by Lagrange multiplier approach. Also, this study explores the possibility of applying Bayesian analysis in distinguishing harmonic components and structural ones. The approaches are verified through simulated data and experimentally testing data. The uncertainty behavior due to variation of different factors is also discussed in detail.
NASA Astrophysics Data System (ADS)
Li, L.; Xu, C.-Y.; Engeland, K.
2012-04-01
With respect to model calibration, parameter estimation and analysis of uncertainty sources, different approaches have been used in hydrological models. Bayesian method is one of the most widely used methods for uncertainty assessment of hydrological models, which incorporates different sources of information into a single analysis through Bayesian theorem. However, none of these applications can well treat the uncertainty in extreme flows of hydrological models' simulations. This study proposes a Bayesian modularization method approach in uncertainty assessment of conceptual hydrological models by considering the extreme flows. It includes a comprehensive comparison and evaluation of uncertainty assessments by a new Bayesian modularization method approach and traditional Bayesian models using the Metropolis Hasting (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions are used in combination with traditional Bayesian: the AR (1) plus Normal and time period independent model (Model 1), the AR (1) plus Normal and time period dependent model (Model 2) and the AR (1) plus multi-normal model (Model 3). The results reveal that (1) the simulations derived from Bayesian modularization method are more accurate with the highest Nash-Sutcliffe efficiency value, and (2) the Bayesian modularization method performs best in uncertainty estimates of entire flows and in terms of the application and computational efficiency. The study thus introduces a new approach for reducing the extreme flow's effect on the discharge uncertainty assessment of hydrological models via Bayesian. Keywords: extreme flow, uncertainty assessment, Bayesian modularization, hydrological model, WASMOD
A Primer on Bayesian Analysis for Experimental Psychopathologists
Krypotos, Angelos-Miltiadis; Blanken, Tessa F.; Arnaudova, Inna; Matzke, Dora; Beckers, Tom
2016-01-01
The principal goals of experimental psychopathology (EPP) research are to offer insights into the pathogenic mechanisms of mental disorders and to provide a stable ground for the development of clinical interventions. The main message of the present article is that those goals are better served by the adoption of Bayesian statistics than by the continued use of null-hypothesis significance testing (NHST). In the first part of the article we list the main disadvantages of NHST and explain why those disadvantages limit the conclusions that can be drawn from EPP research. Next, we highlight the advantages of Bayesian statistics. To illustrate, we then pit NHST and Bayesian analysis against each other using an experimental data set from our lab. Finally, we discuss some challenges when adopting Bayesian statistics. We hope that the present article will encourage experimental psychopathologists to embrace Bayesian statistics, which could strengthen the conclusions drawn from EPP research. PMID:28748068
Factors affecting GEBV accuracy with single-step Bayesian models.
Zhou, Lei; Mrode, Raphael; Zhang, Shengli; Zhang, Qin; Li, Bugao; Liu, Jian-Feng
2018-01-01
A single-step approach to obtain genomic prediction was first proposed in 2009. Many studies have investigated the components of GEBV accuracy in genomic selection. However, it is still unclear how the population structure and the relationships between training and validation populations influence GEBV accuracy in terms of single-step analysis. Here, we explored the components of GEBV accuracy in single-step Bayesian analysis with a simulation study. Three scenarios with various numbers of QTL (5, 50, and 500) were simulated. Three models were implemented to analyze the simulated data: single-step genomic best linear unbiased prediction (GBLUP; SSGBLUP), single-step BayesA (SS-BayesA), and single-step BayesB (SS-BayesB). According to our results, GEBV accuracy was influenced by the relationships between the training and validation populations more significantly for ungenotyped animals than for genotyped animals. SS-BayesA/BayesB showed an obvious advantage over SSGBLUP with the scenarios of 5 and 50 QTL. SS-BayesB model obtained the lowest accuracy with the 500 QTL in the simulation. SS-BayesA model was the most efficient and robust considering all QTL scenarios. Generally, both the relationships between training and validation populations and LD between markers and QTL contributed to GEBV accuracy in the single-step analysis, and the advantages of single-step Bayesian models were more apparent when the trait is controlled by fewer QTL.
BATMAN: Bayesian Technique for Multi-image Analysis
NASA Astrophysics Data System (ADS)
Casado, J.; Ascasibar, Y.; García-Benito, R.; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, S. F.; Díaz, A. I.
2017-04-01
This paper describes the Bayesian Technique for Multi-image Analysis (BATMAN), a novel image-segmentation technique based on Bayesian statistics that characterizes any astronomical data set containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (I.e. identical signal within the errors). We illustrate its operation and performance with a set of test cases including both synthetic and real integral-field spectroscopic data. The output segmentations adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. The quality of the recovered signal represents an improvement with respect to the input, especially in regions with low signal-to-noise ratio. However, the algorithm may be sensitive to small-scale random fluctuations, and its performance in presence of spatial gradients is limited. Due to these effects, errors may be underestimated by as much as a factor of 2. Our analysis reveals that the algorithm prioritizes conservation of all the statistically significant information over noise reduction, and that the precise choice of the input data has a crucial impact on the results. Hence, the philosophy of BaTMAn is not to be used as a 'black box' to improve the signal-to-noise ratio, but as a new approach to characterize spatially resolved data prior to its analysis. The source code is publicly available at http://astro.ft.uam.es/SELGIFS/BaTMAn.
[Bayesian statistics in medicine -- part II: main applications and inference].
Montomoli, C; Nichelatti, M
2008-01-01
Bayesian statistics is not only used when one is dealing with 2-way tables, but it can be used for inferential purposes. Using the basic concepts presented in the first part, this paper aims to give a simple overview of Bayesian methods by introducing its foundation (Bayes' theorem) and then applying this rule to a very simple practical example; whenever possible, the elementary processes at the basis of analysis are compared to those of frequentist (classical) statistical analysis. The Bayesian reasoning is naturally connected to medical activity, since it appears to be quite similar to a diagnostic process.
Developing and Testing a Model to Predict Outcomes of Organizational Change
Gustafson, David H; Sainfort, François; Eichler, Mary; Adams, Laura; Bisognano, Maureen; Steudel, Harold
2003-01-01
Objective To test the effectiveness of a Bayesian model employing subjective probability estimates for predicting success and failure of health care improvement projects. Data Sources Experts' subjective assessment data for model development and independent retrospective data on 221 healthcare improvement projects in the United States, Canada, and the Netherlands collected between 1996 and 2000 for validation. Methods A panel of theoretical and practical experts and literature in organizational change were used to identify factors predicting the outcome of improvement efforts. A Bayesian model was developed to estimate probability of successful change using subjective estimates of likelihood ratios and prior odds elicited from the panel of experts. A subsequent retrospective empirical analysis of change efforts in 198 health care organizations was performed to validate the model. Logistic regression and ROC analysis were used to evaluate the model's performance using three alternative definitions of success. Data Collection For the model development, experts' subjective assessments were elicited using an integrative group process. For the validation study, a staff person intimately involved in each improvement project responded to a written survey asking questions about model factors and project outcomes. Results Logistic regression chi-square statistics and areas under the ROC curve demonstrated a high level of model performance in predicting success. Chi-square statistics were significant at the 0.001 level and areas under the ROC curve were greater than 0.84. Conclusions A subjective Bayesian model was effective in predicting the outcome of actual improvement projects. Additional prospective evaluations as well as testing the impact of this model as an intervention are warranted. PMID:12785571
BAYESIAN ESTIMATION OF THERMONUCLEAR REACTION RATES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iliadis, C.; Anderson, K. S.; Coc, A.
The problem of estimating non-resonant astrophysical S -factors and thermonuclear reaction rates, based on measured nuclear cross sections, is of major interest for nuclear energy generation, neutrino physics, and element synthesis. Many different methods have been applied to this problem in the past, almost all of them based on traditional statistics. Bayesian methods, on the other hand, are now in widespread use in the physical sciences. In astronomy, for example, Bayesian statistics is applied to the observation of extrasolar planets, gravitational waves, and Type Ia supernovae. However, nuclear physics, in particular, has been slow to adopt Bayesian methods. We presentmore » astrophysical S -factors and reaction rates based on Bayesian statistics. We develop a framework that incorporates robust parameter estimation, systematic effects, and non-Gaussian uncertainties in a consistent manner. The method is applied to the reactions d(p, γ ){sup 3}He, {sup 3}He({sup 3}He,2p){sup 4}He, and {sup 3}He( α , γ ){sup 7}Be, important for deuterium burning, solar neutrinos, and Big Bang nucleosynthesis.« less
Prior Elicitation and Bayesian Analysis of the Steroids for Corneal Ulcers Trial
See, Craig W.; Srinivasan, Muthiah; Saravanan, Somu; Oldenburg, Catherine E.; Esterberg, Elizabeth J.; Ray, Kathryn J.; Glaser, Tanya S.; Tu, Elmer Y.; Zegans, Michael E.; McLeod, Stephen D.; Acharya, Nisha R.; Lietman, Thomas M.
2013-01-01
Purpose To elicit expert opinion on the use of adjunctive corticosteroid therapy in bacterial corneal ulcers. To perform a Bayesian analysis of the Steroids for Corneal Ulcers Trial (SCUT), using expert opinion as a prior probability. Methods The SCUT was a placebo-controlled trial assessing visual outcomes in patients receiving topical corticosteroids or placebo as adjunctive therapy for bacterial keratitis. Questionnaires were conducted at scientific meetings in India and North America to gauge expert consensus on the perceived benefit of corticosteroids as adjunct treatment. Bayesian analysis, using the questionnaire data as a prior probability and the primary outcome of SCUT as a likelihood, was performed. For comparison, an additional Bayesian analysis was performed using the results of the SCUT pilot study as a prior distribution. Results Indian respondents believed there to be a 1.21 Snellen line improvement, and North American respondents believed there to be a 1.24 line improvement with corticosteroid therapy. The SCUT primary outcome found a non-significant 0.09 Snellen line benefit with corticosteroid treatment. The results of the Bayesian analysis estimated a slightly greater benefit than did the SCUT primary analysis (0.19 lines verses 0.09 lines). Conclusion Indian and North American experts had similar expectations on the effectiveness of corticosteroids in bacterial corneal ulcers; that corticosteroids would markedly improve visual outcomes. Bayesian analysis produced results very similar to those produced by the SCUT primary analysis. The similarity in result is likely due to the large sample size of SCUT and helps validate the results of SCUT. PMID:23171211
Diagnosis and Prognostic of Wastewater Treatment System Based on Bayesian Network
NASA Astrophysics Data System (ADS)
Li, Dan; Yang, Haizhen; Liang, XiaoFeng
2010-11-01
Wastewater treatment is a complicated and dynamic process. The treatment effect can be influenced by many variables in microbial, chemical and physical aspects. These variables are always uncertain. Due to the complex biological reaction mechanisms, the highly time-varying and multivariable aspects, the diagnosis and prognostic of wastewater treatment system are still difficult in practice. Bayesian network (BN) is one of the best methods for dealing with uncertainty in the artificial intelligence field. Because of the powerful inference ability and convenient decision mechanism, BN can be employed into the model description and influencing factor analysis of wastewater treatment system with great flexibility and applicability.In this paper, taking modified sequencing batch reactor (MSBR) as an analysis object, BN model was constructed according to the influent water quality, operational condition and effluent effect data of MSBR, and then a novel approach based on BN is proposed to analyze the influencing factors of the wastewater treatment system. The approach presented gives an effective tool for diagnosing and predicting analysis of the wastewater treatment system. On the basis of the influent water quality and operational condition, effluent effect can be predicted. Moreover, according to the effluent effect, the influent water quality and operational condition also can be deduced.
Bayesian-network-based safety risk assessment for steel construction projects.
Leu, Sou-Sen; Chang, Ching-Miao
2013-05-01
There are four primary accident types at steel building construction (SC) projects: falls (tumbles), object falls, object collapse, and electrocution. Several systematic safety risk assessment approaches, such as fault tree analysis (FTA) and failure mode and effect criticality analysis (FMECA), have been used to evaluate safety risks at SC projects. However, these traditional methods ineffectively address dependencies among safety factors at various levels that fail to provide early warnings to prevent occupational accidents. To overcome the limitations of traditional approaches, this study addresses the development of a safety risk-assessment model for SC projects by establishing the Bayesian networks (BN) based on fault tree (FT) transformation. The BN-based safety risk-assessment model was validated against the safety inspection records of six SC building projects and nine projects in which site accidents occurred. The ranks of posterior probabilities from the BN model were highly consistent with the accidents that occurred at each project site. The model accurately provides site safety-management abilities by calculating the probabilities of safety risks and further analyzing the causes of accidents based on their relationships in BNs. In practice, based on the analysis of accident risks and significant safety factors, proper preventive safety management strategies can be established to reduce the occurrence of accidents on SC sites. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Bayes linear Bayes method for estimation of correlated event rates.
Quigley, John; Wilson, Kevin J; Walls, Lesley; Bedford, Tim
2013-12-01
Typically, full Bayesian estimation of correlated event rates can be computationally challenging since estimators are intractable. When estimation of event rates represents one activity within a larger modeling process, there is an incentive to develop more efficient inference than provided by a full Bayesian model. We develop a new subjective inference method for correlated event rates based on a Bayes linear Bayes model under the assumption that events are generated from a homogeneous Poisson process. To reduce the elicitation burden we introduce homogenization factors to the model and, as an alternative to a subjective prior, an empirical method using the method of moments is developed. Inference under the new method is compared against estimates obtained under a full Bayesian model, which takes a multivariate gamma prior, where the predictive and posterior distributions are derived in terms of well-known functions. The mathematical properties of both models are presented. A simulation study shows that the Bayes linear Bayes inference method and the full Bayesian model provide equally reliable estimates. An illustrative example, motivated by a problem of estimating correlated event rates across different users in a simple supply chain, shows how ignoring the correlation leads to biased estimation of event rates. © 2013 Society for Risk Analysis.
A Gibbs sampler for Bayesian analysis of site-occupancy data
Dorazio, Robert M.; Rodriguez, Daniel Taylor
2012-01-01
1. A Bayesian analysis of site-occupancy data containing covariates of species occurrence and species detection probabilities is usually completed using Markov chain Monte Carlo methods in conjunction with software programs that can implement those methods for any statistical model, not just site-occupancy models. Although these software programs are quite flexible, considerable experience is often required to specify a model and to initialize the Markov chain so that summaries of the posterior distribution can be estimated efficiently and accurately. 2. As an alternative to these programs, we develop a Gibbs sampler for Bayesian analysis of site-occupancy data that include covariates of species occurrence and species detection probabilities. This Gibbs sampler is based on a class of site-occupancy models in which probabilities of species occurrence and detection are specified as probit-regression functions of site- and survey-specific covariate measurements. 3. To illustrate the Gibbs sampler, we analyse site-occupancy data of the blue hawker, Aeshna cyanea (Odonata, Aeshnidae), a common dragonfly species in Switzerland. Our analysis includes a comparison of results based on Bayesian and classical (non-Bayesian) methods of inference. We also provide code (based on the R software program) for conducting Bayesian and classical analyses of site-occupancy data.
We use Bayesian uncertainty analysis to explore how to estimate pollutant exposures from biomarker concentrations. The growing number of national databases with exposure data makes such an analysis possible. They contain datasets of pharmacokinetic biomarkers for many polluta...
Lagos, Doris M; Voegtlin, David J; Coeur d'acier, Armelle; Giordano, Rosanna
2014-06-01
A phylogeny of the genus Aphis Linnaeus, 1 758 was built primarily from specimens collected in the Midwest of the United States. A data matrix was constructed with 68 species and 41 morphological characters with respective character states of alate and apterous viviparous females. Dendrogram topologies of analyses performed using UPGMA (Unweighted Pair Group Method with Arithmetic Mean), Maximum Parsimony and Bayesian analysis of Cytochrome Oxidase I, Elongation Factor 1-α and primary endosymbiont Buchnera aphidicola 16S sequences were not congruent. Bayesian analysis strongly supported most terminal nodes of the phylogenetic trees. The phylogeny was strongly supported by EF1-α, and analysis of COI and EF1-α molecular data combined with morphological characters. It was not supported by single analysis of COI or Buchnera aphidicola 16S. Results from the Bayesian phylogeny show 4 main species groups: asclepiadis, fabae, gossypii, and middletonii. Results place Aphis and species of the genera Protaphis Börner, 1952, Toxoptera Koch, and Xerobion Nevsky, 1928 in a monophyletic clade. Morphological characters support this monophyly as well. The phylogeny shows that the monophyletic clade of the North American middletonii species group belong to the genus Protaphis: P. debilicornis (Gillette & Palmer, 1929), comb. nov., P. echinaceae (Lagos and Voegtlin, 2009), comb. nov., and P. middletonii (Thomas, 1879). The genus Toxoptera should be considered a subgenus of Aphis (stat. nov.). The analysis also indicates that the current genus Iowana Frison, 1954 should be considered a subgenus of Aphis (stat. nov.). © 2013 Institute of Zoology, Chinese Academy of Sciences.
NASA Astrophysics Data System (ADS)
Tien Bui, Dieu; Hoang, Nhat-Duc
2017-09-01
In this study, a probabilistic model, named as BayGmmKda, is proposed for flood susceptibility assessment in a study area in central Vietnam. The new model is a Bayesian framework constructed by a combination of a Gaussian mixture model (GMM), radial-basis-function Fisher discriminant analysis (RBFDA), and a geographic information system (GIS) database. In the Bayesian framework, GMM is used for modeling the data distribution of flood-influencing factors in the GIS database, whereas RBFDA is utilized to construct a latent variable that aims at enhancing the model performance. As a result, the posterior probabilistic output of the BayGmmKda model is used as flood susceptibility index. Experiment results showed that the proposed hybrid framework is superior to other benchmark models, including the adaptive neuro-fuzzy inference system and the support vector machine. To facilitate the model implementation, a software program of BayGmmKda has been developed in MATLAB. The BayGmmKda program can accurately establish a flood susceptibility map for the study region. Accordingly, local authorities can overlay this susceptibility map onto various land-use maps for the purpose of land-use planning or management.
Seliske, L; Norwood, T A; McLaughlin, J R; Wang, S; Palleschi, C; Holowaty, E
2016-06-07
An important public health goal is to decrease the prevalence of key behavioural risk factors, such as tobacco use and obesity. Survey information is often available at the regional level, but heterogeneity within large geographic regions cannot be assessed. Advanced spatial analysis techniques are demonstrated to produce sensible micro area estimates of behavioural risk factors that enable identification of areas with high prevalence. A spatial Bayesian hierarchical model was used to estimate the micro area prevalence of current smoking and excess bodyweight for the Erie-St. Clair region in southwestern Ontario. Estimates were mapped for male and female respondents of five cycles of the Canadian Community Health Survey (CCHS). The micro areas were 2006 Census Dissemination Areas, with an average population of 400-700 people. Two individual-level models were specified: one controlled for survey cycle and age group (model 1), and one controlled for survey cycle, age group and micro area median household income (model 2). Post-stratification was used to derive micro area behavioural risk factor estimates weighted to the population structure. SaTScan analyses were conducted on the granular, postal-code level CCHS data to corroborate findings of elevated prevalence. Current smoking was elevated in two urban areas for both sexes (Sarnia and Windsor), and an additional small community (Chatham) for males only. Areas of excess bodyweight were prevalent in an urban core (Windsor) among males, but not females. Precision of the posterior post-stratified current smoking estimates was improved in model 2, as indicated by narrower credible intervals and a lower coefficient of variation. For excess bodyweight, both models had similar precision. Aggregation of the micro area estimates to CCHS design-based estimates validated the findings. This is among the first studies to apply a full Bayesian model to complex sample survey data to identify micro areas with variation in risk factor prevalence, accounting for spatial correlation and other covariates. Application of micro area analysis techniques helps define areas for public health planning, and may be informative to surveillance and research modeling of relevant chronic disease outcomes.
Meta-analysis of the effect of natural frequencies on Bayesian reasoning.
McDowell, Michelle; Jacobs, Perke
2017-12-01
The natural frequency facilitation effect describes the finding that people are better able to solve descriptive Bayesian inference tasks when represented as joint frequencies obtained through natural sampling, known as natural frequencies, than as conditional probabilities. The present meta-analysis reviews 20 years of research seeking to address when, why, and for whom natural frequency formats are most effective. We review contributions from research associated with the 2 dominant theoretical perspectives, the ecological rationality framework and nested-sets theory, and test potential moderators of the effect. A systematic review of relevant literature yielded 35 articles representing 226 performance estimates. These estimates were statistically integrated using a bivariate mixed-effects model that yields summary estimates of average performances across the 2 formats and estimates of the effects of different study characteristics on performance. These study characteristics range from moderators representing individual characteristics (e.g., numeracy, expertise), to methodological differences (e.g., use of incentives, scoring criteria) and features of problem representation (e.g., short menu format, visual aid). Short menu formats (less computationally complex representations showing joint-events) and visual aids demonstrated some of the strongest moderation effects, improving performance for both conditional probability and natural frequency formats. A number of methodological factors (e.g., exposure to both problem formats) were also found to affect performance rates, emphasizing the importance of a systematic approach. We suggest how research on Bayesian reasoning can be strengthened by broadening the definition of successful Bayesian reasoning to incorporate choice and process and by applying different research methodologies. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng
2014-01-01
A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping.
Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng
2014-01-01
A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping. PMID:25254227
Application of a data-mining method based on Bayesian networks to lesion-deficit analysis
NASA Technical Reports Server (NTRS)
Herskovits, Edward H.; Gerring, Joan P.
2003-01-01
Although lesion-deficit analysis (LDA) has provided extensive information about structure-function associations in the human brain, LDA has suffered from the difficulties inherent to the analysis of spatial data, i.e., there are many more variables than subjects, and data may be difficult to model using standard distributions, such as the normal distribution. We herein describe a Bayesian method for LDA; this method is based on data-mining techniques that employ Bayesian networks to represent structure-function associations. These methods are computationally tractable, and can represent complex, nonlinear structure-function associations. When applied to the evaluation of data obtained from a study of the psychiatric sequelae of traumatic brain injury in children, this method generates a Bayesian network that demonstrates complex, nonlinear associations among lesions in the left caudate, right globus pallidus, right side of the corpus callosum, right caudate, and left thalamus, and subsequent development of attention-deficit hyperactivity disorder, confirming and extending our previous statistical analysis of these data. Furthermore, analysis of simulated data indicates that methods based on Bayesian networks may be more sensitive and specific for detecting associations among categorical variables than methods based on chi-square and Fisher exact statistics.
Ortega, Alonso; Labrenz, Stephan; Markowitsch, Hans J; Piefke, Martina
2013-01-01
In the last decade, different statistical techniques have been introduced to improve assessment of malingering-related poor effort. In this context, we have recently shown preliminary evidence that a Bayesian latent group model may help to optimize classification accuracy using a simulation research design. In the present study, we conducted two analyses. Firstly, we evaluated how accurately this Bayesian approach can distinguish between participants answering in an honest way (honest response group) and participants feigning cognitive impairment (experimental malingering group). Secondly, we tested the accuracy of our model in the differentiation between patients who had real cognitive deficits (cognitively impaired group) and participants who belonged to the experimental malingering group. All Bayesian analyses were conducted using the raw scores of a visual recognition forced-choice task (2AFC), the Test of Memory Malingering (TOMM, Trial 2), and the Word Memory Test (WMT, primary effort subtests). The first analysis showed 100% accuracy for the Bayesian model in distinguishing participants of both groups with all effort measures. The second analysis showed outstanding overall accuracy of the Bayesian model when estimates were obtained from the 2AFC and the TOMM raw scores. Diagnostic accuracy of the Bayesian model diminished when using the WMT total raw scores. Despite, overall diagnostic accuracy can still be considered excellent. The most plausible explanation for this decrement is the low performance in verbal recognition and fluency tasks of some patients of the cognitively impaired group. Additionally, the Bayesian model provides individual estimates, p(zi |D), of examinees' effort levels. In conclusion, both high classification accuracy levels and Bayesian individual estimates of effort may be very useful for clinicians when assessing for effort in medico-legal settings.
Bayesian networks and information theory for audio-visual perception modeling.
Besson, Patricia; Richiardi, Jonas; Bourdin, Christophe; Bringoux, Lionel; Mestre, Daniel R; Vercher, Jean-Louis
2010-09-01
Thanks to their different senses, human observers acquire multiple information coming from their environment. Complex cross-modal interactions occur during this perceptual process. This article proposes a framework to analyze and model these interactions through a rigorous and systematic data-driven process. This requires considering the general relationships between the physical events or factors involved in the process, not only in quantitative terms, but also in term of the influence of one factor on another. We use tools from information theory and probabilistic reasoning to derive relationships between the random variables of interest, where the central notion is that of conditional independence. Using mutual information analysis to guide the model elicitation process, a probabilistic causal model encoded as a Bayesian network is obtained. We exemplify the method by using data collected in an audio-visual localization task for human subjects, and we show that it yields a well-motivated model with good predictive ability. The model elicitation process offers new prospects for the investigation of the cognitive mechanisms of multisensory perception.
Spectral decompositions of multiple time series: a Bayesian non-parametric approach.
Macaro, Christian; Prado, Raquel
2014-01-01
We consider spectral decompositions of multiple time series that arise in studies where the interest lies in assessing the influence of two or more factors. We write the spectral density of each time series as a sum of the spectral densities associated to the different levels of the factors. We then use Whittle's approximation to the likelihood function and follow a Bayesian non-parametric approach to obtain posterior inference on the spectral densities based on Bernstein-Dirichlet prior distributions. The prior is strategically important as it carries identifiability conditions for the models and allows us to quantify our degree of confidence in such conditions. A Markov chain Monte Carlo (MCMC) algorithm for posterior inference within this class of frequency-domain models is presented.We illustrate the approach by analyzing simulated and real data via spectral one-way and two-way models. In particular, we present an analysis of functional magnetic resonance imaging (fMRI) brain responses measured in individuals who participated in a designed experiment to study pain perception in humans.
Protein construct storage: Bayesian variable selection and prediction with mixtures.
Clyde, M A; Parmigiani, G
1998-07-01
Determining optimal conditions for protein storage while maintaining a high level of protein activity is an important question in pharmaceutical research. A designed experiment based on a space-filling design was conducted to understand the effects of factors affecting protein storage and to establish optimal storage conditions. Different model-selection strategies to identify important factors may lead to very different answers about optimal conditions. Uncertainty about which factors are important, or model uncertainty, can be a critical issue in decision-making. We use Bayesian variable selection methods for linear models to identify important variables in the protein storage data, while accounting for model uncertainty. We also use the Bayesian framework to build predictions based on a large family of models, rather than an individual model, and to evaluate the probability that certain candidate storage conditions are optimal.
McCarron, C Elizabeth; Pullenayegum, Eleanor M; Thabane, Lehana; Goeree, Ron; Tarride, Jean-Eric
2013-04-01
Bayesian methods have been proposed as a way of synthesizing all available evidence to inform decision making. However, few practical applications of the use of Bayesian methods for combining patient-level data (i.e., trial) with additional evidence (e.g., literature) exist in the cost-effectiveness literature. The objective of this study was to compare a Bayesian cost-effectiveness analysis using informative priors to a standard non-Bayesian nonparametric method to assess the impact of incorporating additional information into a cost-effectiveness analysis. Patient-level data from a previously published nonrandomized study were analyzed using traditional nonparametric bootstrap techniques and bivariate normal Bayesian models with vague and informative priors. Two different types of informative priors were considered to reflect different valuations of the additional evidence relative to the patient-level data (i.e., "face value" and "skeptical"). The impact of using different distributions and valuations was assessed in a sensitivity analysis. Models were compared in terms of incremental net monetary benefit (INMB) and cost-effectiveness acceptability frontiers (CEAFs). The bootstrapping and Bayesian analyses using vague priors provided similar results. The most pronounced impact of incorporating the informative priors was the increase in estimated life years in the control arm relative to what was observed in the patient-level data alone. Consequently, the incremental difference in life years originally observed in the patient-level data was reduced, and the INMB and CEAF changed accordingly. The results of this study demonstrate the potential impact and importance of incorporating additional information into an analysis of patient-level data, suggesting this could alter decisions as to whether a treatment should be adopted and whether more information should be acquired.
Single-Case Time Series with Bayesian Analysis: A Practitioner's Guide.
ERIC Educational Resources Information Center
Jones, W. Paul
2003-01-01
This article illustrates a simplified time series analysis for use by the counseling researcher practitioner in single-case baseline plus intervention studies with a Bayesian probability analysis to integrate findings from replications. The C statistic is recommended as a primary analysis tool with particular relevance in the context of actual…
Daniel Goodman’s empirical approach to Bayesian statistics
Gerrodette, Tim; Ward, Eric; Taylor, Rebecca L.; Schwarz, Lisa K.; Eguchi, Tomoharu; Wade, Paul; Himes Boor, Gina
2016-01-01
Bayesian statistics, in contrast to classical statistics, uses probability to represent uncertainty about the state of knowledge. Bayesian statistics has often been associated with the idea that knowledge is subjective and that a probability distribution represents a personal degree of belief. Dr. Daniel Goodman considered this viewpoint problematic for issues of public policy. He sought to ground his Bayesian approach in data, and advocated the construction of a prior as an empirical histogram of “similar” cases. In this way, the posterior distribution that results from a Bayesian analysis combined comparable previous data with case-specific current data, using Bayes’ formula. Goodman championed such a data-based approach, but he acknowledged that it was difficult in practice. If based on a true representation of our knowledge and uncertainty, Goodman argued that risk assessment and decision-making could be an exact science, despite the uncertainties. In his view, Bayesian statistics is a critical component of this science because a Bayesian analysis produces the probabilities of future outcomes. Indeed, Goodman maintained that the Bayesian machinery, following the rules of conditional probability, offered the best legitimate inference from available data. We give an example of an informative prior in a recent study of Steller sea lion spatial use patterns in Alaska.
Bayesian Meta-Analysis of Coefficient Alpha
ERIC Educational Resources Information Center
Brannick, Michael T.; Zhang, Nanhua
2013-01-01
The current paper describes and illustrates a Bayesian approach to the meta-analysis of coefficient alpha. Alpha is the most commonly used estimate of the reliability or consistency (freedom from measurement error) for educational and psychological measures. The conventional approach to meta-analysis uses inverse variance weights to combine…
NASA Astrophysics Data System (ADS)
Shafii, M.; Tolson, B.; Matott, L. S.
2012-04-01
Hydrologic modeling has benefited from significant developments over the past two decades. This has resulted in building of higher levels of complexity into hydrologic models, which eventually makes the model evaluation process (parameter estimation via calibration and uncertainty analysis) more challenging. In order to avoid unreasonable parameter estimates, many researchers have suggested implementation of multi-criteria calibration schemes. Furthermore, for predictive hydrologic models to be useful, proper consideration of uncertainty is essential. Consequently, recent research has emphasized comprehensive model assessment procedures in which multi-criteria parameter estimation is combined with statistically-based uncertainty analysis routines such as Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling. Such a procedure relies on the use of formal likelihood functions based on statistical assumptions, and moreover, the Bayesian inference structured on MCMC samplers requires a considerably large number of simulations. Due to these issues, especially in complex non-linear hydrological models, a variety of alternative informal approaches have been proposed for uncertainty analysis in the multi-criteria context. This study aims at exploring a number of such informal uncertainty analysis techniques in multi-criteria calibration of hydrological models. The informal methods addressed in this study are (i) Pareto optimality which quantifies the parameter uncertainty using the Pareto solutions, (ii) DDS-AU which uses the weighted sum of objective functions to derive the prediction limits, and (iii) GLUE which describes the total uncertainty through identification of behavioral solutions. The main objective is to compare such methods with MCMC-based Bayesian inference with respect to factors such as computational burden, and predictive capacity, which are evaluated based on multiple comparative measures. The measures for comparison are calculated both for calibration and evaluation periods. The uncertainty analysis methodologies are applied to a simple 5-parameter rainfall-runoff model, called HYMOD.
Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing
2016-01-01
A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006
Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing
2016-01-08
A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.
Efficient Posterior Probability Mapping Using Savage-Dickey Ratios
Penny, William D.; Ridgway, Gerard R.
2013-01-01
Statistical Parametric Mapping (SPM) is the dominant paradigm for mass-univariate analysis of neuroimaging data. More recently, a Bayesian approach termed Posterior Probability Mapping (PPM) has been proposed as an alternative. PPM offers two advantages: (i) inferences can be made about effect size thus lending a precise physiological meaning to activated regions, (ii) regions can be declared inactive. This latter facility is most parsimoniously provided by PPMs based on Bayesian model comparisons. To date these comparisons have been implemented by an Independent Model Optimization (IMO) procedure which separately fits null and alternative models. This paper proposes a more computationally efficient procedure based on Savage-Dickey approximations to the Bayes factor, and Taylor-series approximations to the voxel-wise posterior covariance matrices. Simulations show the accuracy of this Savage-Dickey-Taylor (SDT) method to be comparable to that of IMO. Results on fMRI data show excellent agreement between SDT and IMO for second-level models, and reasonable agreement for first-level models. This Savage-Dickey test is a Bayesian analogue of the classical SPM-F and allows users to implement model comparison in a truly interactive manner. PMID:23533640
van de Schoot, Rens; Broere, Joris J.; Perryck, Koen H.; Zondervan-Zwijnenburg, Mariëlle; van Loey, Nancy E.
2015-01-01
Background The analysis of small data sets in longitudinal studies can lead to power issues and often suffers from biased parameter values. These issues can be solved by using Bayesian estimation in conjunction with informative prior distributions. By means of a simulation study and an empirical example concerning posttraumatic stress symptoms (PTSS) following mechanical ventilation in burn survivors, we demonstrate the advantages and potential pitfalls of using Bayesian estimation. Methods First, we show how to specify prior distributions and by means of a sensitivity analysis we demonstrate how to check the exact influence of the prior (mis-) specification. Thereafter, we show by means of a simulation the situations in which the Bayesian approach outperforms the default, maximum likelihood and approach. Finally, we re-analyze empirical data on burn survivors which provided preliminary evidence of an aversive influence of a period of mechanical ventilation on the course of PTSS following burns. Results Not suprisingly, maximum likelihood estimation showed insufficient coverage as well as power with very small samples. Only when Bayesian analysis, in conjunction with informative priors, was used power increased to acceptable levels. As expected, we showed that the smaller the sample size the more the results rely on the prior specification. Conclusion We show that two issues often encountered during analysis of small samples, power and biased parameters, can be solved by including prior information into Bayesian analysis. We argue that the use of informative priors should always be reported together with a sensitivity analysis. PMID:25765534
van de Schoot, Rens; Broere, Joris J; Perryck, Koen H; Zondervan-Zwijnenburg, Mariëlle; van Loey, Nancy E
2015-01-01
Background : The analysis of small data sets in longitudinal studies can lead to power issues and often suffers from biased parameter values. These issues can be solved by using Bayesian estimation in conjunction with informative prior distributions. By means of a simulation study and an empirical example concerning posttraumatic stress symptoms (PTSS) following mechanical ventilation in burn survivors, we demonstrate the advantages and potential pitfalls of using Bayesian estimation. Methods : First, we show how to specify prior distributions and by means of a sensitivity analysis we demonstrate how to check the exact influence of the prior (mis-) specification. Thereafter, we show by means of a simulation the situations in which the Bayesian approach outperforms the default, maximum likelihood and approach. Finally, we re-analyze empirical data on burn survivors which provided preliminary evidence of an aversive influence of a period of mechanical ventilation on the course of PTSS following burns. Results : Not suprisingly, maximum likelihood estimation showed insufficient coverage as well as power with very small samples. Only when Bayesian analysis, in conjunction with informative priors, was used power increased to acceptable levels. As expected, we showed that the smaller the sample size the more the results rely on the prior specification. Conclusion : We show that two issues often encountered during analysis of small samples, power and biased parameters, can be solved by including prior information into Bayesian analysis. We argue that the use of informative priors should always be reported together with a sensitivity analysis.
Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L
2016-02-10
Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure. Copyright © 2015 John Wiley & Sons, Ltd.
Quantum-Like Representation of Non-Bayesian Inference
NASA Astrophysics Data System (ADS)
Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.
2013-01-01
This research is related to the problem of "irrational decision making or inference" that have been discussed in cognitive psychology. There are some experimental studies, and these statistical data cannot be described by classical probability theory. The process of decision making generating these data cannot be reduced to the classical Bayesian inference. For this problem, a number of quantum-like coginitive models of decision making was proposed. Our previous work represented in a natural way the classical Bayesian inference in the frame work of quantum mechanics. By using this representation, in this paper, we try to discuss the non-Bayesian (irrational) inference that is biased by effects like the quantum interference. Further, we describe "psychological factor" disturbing "rationality" as an "environment" correlating with the "main system" of usual Bayesian inference.
The Importance of Proving the Null
ERIC Educational Resources Information Center
Gallistel, C. R.
2009-01-01
Null hypotheses are simple, precise, and theoretically important. Conventional statistical analysis cannot support them; Bayesian analysis can. The challenge in a Bayesian analysis is to formulate a suitably vague alternative, because the vaguer the alternative is (the more it spreads out the unit mass of prior probability), the more the null is…
Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data
ERIC Educational Resources Information Center
Lee, Sik-Yum
2006-01-01
A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is used to produce the joint Bayesian estimates of…
Bayesian Posterior Odds Ratios: Statistical Tools for Collaborative Evaluations
ERIC Educational Resources Information Center
Hicks, Tyler; Rodríguez-Campos, Liliana; Choi, Jeong Hoon
2018-01-01
To begin statistical analysis, Bayesians quantify their confidence in modeling hypotheses with priors. A prior describes the probability of a certain modeling hypothesis apart from the data. Bayesians should be able to defend their choice of prior to a skeptical audience. Collaboration between evaluators and stakeholders could make their choices…
Luta, George; Ford, Melissa B; Bondy, Melissa; Shields, Peter G; Stamey, James D
2013-04-01
Recent research suggests that the Bayesian paradigm may be useful for modeling biases in epidemiological studies, such as those due to misclassification and missing data. We used Bayesian methods to perform sensitivity analyses for assessing the robustness of study findings to the potential effect of these two important sources of bias. We used data from a study of the joint associations of radiotherapy and smoking with primary lung cancer among breast cancer survivors. We used Bayesian methods to provide an operational way to combine both validation data and expert opinion to account for misclassification of the two risk factors and missing data. For comparative purposes we considered a "full model" that allowed for both misclassification and missing data, along with alternative models that considered only misclassification or missing data, and the naïve model that ignored both sources of bias. We identified noticeable differences between the four models with respect to the posterior distributions of the odds ratios that described the joint associations of radiotherapy and smoking with primary lung cancer. Despite those differences we found that the general conclusions regarding the pattern of associations were the same regardless of the model used. Overall our results indicate a nonsignificantly decreased lung cancer risk due to radiotherapy among nonsmokers, and a mildly increased risk among smokers. We described easy to implement Bayesian methods to perform sensitivity analyses for assessing the robustness of study findings to misclassification and missing data. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Lu; Xu, Chong-Yu; Engeland, Kolbjørn
2013-04-01
SummaryWith respect to model calibration, parameter estimation and analysis of uncertainty sources, various regression and probabilistic approaches are used in hydrological modeling. A family of Bayesian methods, which incorporates different sources of information into a single analysis through Bayes' theorem, is widely used for uncertainty assessment. However, none of these approaches can well treat the impact of high flows in hydrological modeling. This study proposes a Bayesian modularization uncertainty assessment approach in which the highest streamflow observations are treated as suspect information that should not influence the inference of the main bulk of the model parameters. This study includes a comprehensive comparison and evaluation of uncertainty assessments by our new Bayesian modularization method and standard Bayesian methods using the Metropolis-Hastings (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions were used in combination with standard Bayesian method: the AR(1) plus Normal model independent of time (Model 1), the AR(1) plus Normal model dependent on time (Model 2) and the AR(1) plus Multi-normal model (Model 3). The results reveal that the Bayesian modularization method provides the most accurate streamflow estimates measured by the Nash-Sutcliffe efficiency and provide the best in uncertainty estimates for low, medium and entire flows compared to standard Bayesian methods. The study thus provides a new approach for reducing the impact of high flows on the discharge uncertainty assessment of hydrological models via Bayesian method.
Predicting Software Suitability Using a Bayesian Belief Network
NASA Technical Reports Server (NTRS)
Beaver, Justin M.; Schiavone, Guy A.; Berrios, Joseph S.
2005-01-01
The ability to reliably predict the end quality of software under development presents a significant advantage for a development team. It provides an opportunity to address high risk components earlier in the development life cycle, when their impact is minimized. This research proposes a model that captures the evolution of the quality of a software product, and provides reliable forecasts of the end quality of the software being developed in terms of product suitability. Development team skill, software process maturity, and software problem complexity are hypothesized as driving factors of software product quality. The cause-effect relationships between these factors and the elements of software suitability are modeled using Bayesian Belief Networks, a machine learning method. This research presents a Bayesian Network for software quality, and the techniques used to quantify the factors that influence and represent software quality. The developed model is found to be effective in predicting the end product quality of small-scale software development efforts.
Enhancing the Modeling of PFOA Pharmacokinetics with Bayesian Analysis
The detail sufficient to describe the pharmacokinetics (PK) for perfluorooctanoic acid (PFOA) and the methods necessary to combine information from multiple data sets are both subjects of ongoing investigation. Bayesian analysis provides tools to accommodate these goals. We exa...
Bayesian Covariate Selection in Mixed-Effects Models For Longitudinal Shape Analysis
Muralidharan, Prasanna; Fishbaugh, James; Kim, Eun Young; Johnson, Hans J.; Paulsen, Jane S.; Gerig, Guido; Fletcher, P. Thomas
2016-01-01
The goal of longitudinal shape analysis is to understand how anatomical shape changes over time, in response to biological processes, including growth, aging, or disease. In many imaging studies, it is also critical to understand how these shape changes are affected by other factors, such as sex, disease diagnosis, IQ, etc. Current approaches to longitudinal shape analysis have focused on modeling age-related shape changes, but have not included the ability to handle covariates. In this paper, we present a novel Bayesian mixed-effects shape model that incorporates simultaneous relationships between longitudinal shape data and multiple predictors or covariates to the model. Moreover, we place an Automatic Relevance Determination (ARD) prior on the parameters, that lets us automatically select which covariates are most relevant to the model based on observed data. We evaluate our proposed model and inference procedure on a longitudinal study of Huntington's disease from PREDICT-HD. We first show the utility of the ARD prior for model selection in a univariate modeling of striatal volume, and next we apply the full high-dimensional longitudinal shape model to putamen shapes. PMID:28090246
A Bayesian Approach for Summarizing and Modeling Time-Series Exposure Data with Left Censoring.
Houseman, E Andres; Virji, M Abbas
2017-08-01
Direct reading instruments are valuable tools for measuring exposure as they provide real-time measurements for rapid decision making. However, their use is limited to general survey applications in part due to issues related to their performance. Moreover, statistical analysis of real-time data is complicated by autocorrelation among successive measurements, non-stationary time series, and the presence of left-censoring due to limit-of-detection (LOD). A Bayesian framework is proposed that accounts for non-stationary autocorrelation and LOD issues in exposure time-series data in order to model workplace factors that affect exposure and estimate summary statistics for tasks or other covariates of interest. A spline-based approach is used to model non-stationary autocorrelation with relatively few assumptions about autocorrelation structure. Left-censoring is addressed by integrating over the left tail of the distribution. The model is fit using Markov-Chain Monte Carlo within a Bayesian paradigm. The method can flexibly account for hierarchical relationships, random effects and fixed effects of covariates. The method is implemented using the rjags package in R, and is illustrated by applying it to real-time exposure data. Estimates for task means and covariates from the Bayesian model are compared to those from conventional frequentist models including linear regression, mixed-effects, and time-series models with different autocorrelation structures. Simulations studies are also conducted to evaluate method performance. Simulation studies with percent of measurements below the LOD ranging from 0 to 50% showed lowest root mean squared errors for task means and the least biased standard deviations from the Bayesian model compared to the frequentist models across all levels of LOD. In the application, task means from the Bayesian model were similar to means from the frequentist models, while the standard deviations were different. Parameter estimates for covariates were significant in some frequentist models, but in the Bayesian model their credible intervals contained zero; such discrepancies were observed in multiple datasets. Variance components from the Bayesian model reflected substantial autocorrelation, consistent with the frequentist models, except for the auto-regressive moving average model. Plots of means from the Bayesian model showed good fit to the observed data. The proposed Bayesian model provides an approach for modeling non-stationary autocorrelation in a hierarchical modeling framework to estimate task means, standard deviations, quantiles, and parameter estimates for covariates that are less biased and have better performance characteristics than some of the contemporary methods. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2017.
Rowley, Mark I.; Coolen, Anthonius C. C.; Vojnovic, Borivoj; Barber, Paul R.
2016-01-01
We present novel Bayesian methods for the analysis of exponential decay data that exploit the evidence carried by every detected decay event and enables robust extension to advanced processing. Our algorithms are presented in the context of fluorescence lifetime imaging microscopy (FLIM) and particular attention has been paid to model the time-domain system (based on time-correlated single photon counting) with unprecedented accuracy. We present estimates of decay parameters for mono- and bi-exponential systems, offering up to a factor of two improvement in accuracy compared to previous popular techniques. Results of the analysis of synthetic and experimental data are presented, and areas where the superior precision of our techniques can be exploited in Förster Resonance Energy Transfer (FRET) experiments are described. Furthermore, we demonstrate two advanced processing methods: decay model selection to choose between differing models such as mono- and bi-exponential, and the simultaneous estimation of instrument and decay parameters. PMID:27355322
Garrard, Lili; Price, Larry R.; Bott, Marjorie J.; Gajewski, Byron J.
2016-01-01
Item response theory (IRT) models provide an appropriate alternative to the classical ordinal confirmatory factor analysis (CFA) during the development of patient-reported outcome measures (PROMs). Current literature has identified the assessment of IRT model fit as both challenging and underdeveloped (Sinharay & Johnson, 2003; Sinharay, Johnson, & Stern, 2006). This study evaluates the performance of Ordinal Bayesian Instrument Development (OBID), a Bayesian IRT model with a probit link function approach, through applications in two breast cancer-related instrument development studies. The primary focus is to investigate an appropriate method for comparing Bayesian IRT models in PROMs development. An exact Bayesian leave-one-out cross-validation (LOO-CV) approach (Vehtari & Lampinen, 2002) is implemented to assess prior selection for the item discrimination parameter in the IRT model and subject content experts’ bias (in a statistical sense and not to be confused with psychometric bias as in differential item functioning) toward the estimation of item-to-domain correlations. Results support the utilization of content subject experts’ information in establishing evidence for construct validity when sample size is small. However, the incorporation of subject experts’ content information in the OBID approach can be sensitive to the level of expertise of the recruited experts. More stringent efforts need to be invested in the appropriate selection of subject experts to efficiently use the OBID approach and reduce potential bias during PROMs development. PMID:27667878
Garrard, Lili; Price, Larry R; Bott, Marjorie J; Gajewski, Byron J
2016-10-01
Item response theory (IRT) models provide an appropriate alternative to the classical ordinal confirmatory factor analysis (CFA) during the development of patient-reported outcome measures (PROMs). Current literature has identified the assessment of IRT model fit as both challenging and underdeveloped (Sinharay & Johnson, 2003; Sinharay, Johnson, & Stern, 2006). This study evaluates the performance of Ordinal Bayesian Instrument Development (OBID), a Bayesian IRT model with a probit link function approach, through applications in two breast cancer-related instrument development studies. The primary focus is to investigate an appropriate method for comparing Bayesian IRT models in PROMs development. An exact Bayesian leave-one-out cross-validation (LOO-CV) approach (Vehtari & Lampinen, 2002) is implemented to assess prior selection for the item discrimination parameter in the IRT model and subject content experts' bias (in a statistical sense and not to be confused with psychometric bias as in differential item functioning) toward the estimation of item-to-domain correlations. Results support the utilization of content subject experts' information in establishing evidence for construct validity when sample size is small. However, the incorporation of subject experts' content information in the OBID approach can be sensitive to the level of expertise of the recruited experts. More stringent efforts need to be invested in the appropriate selection of subject experts to efficiently use the OBID approach and reduce potential bias during PROMs development.
Bayesian statistics: estimating plant demographic parameters
James S. Clark; Michael Lavine
2001-01-01
There are times when external information should be brought tobear on an ecological analysis. experiments are never conducted in a knowledge-free context. The inference we draw from an observation may depend on everything else we know about the process. Bayesian analysis is a method that brings outside evidence into the analysis of experimental and observational data...
BCM: toolkit for Bayesian analysis of Computational Models using samplers.
Thijssen, Bram; Dijkstra, Tjeerd M H; Heskes, Tom; Wessels, Lodewyk F A
2016-10-21
Computational models in biology are characterized by a large degree of uncertainty. This uncertainty can be analyzed with Bayesian statistics, however, the sampling algorithms that are frequently used for calculating Bayesian statistical estimates are computationally demanding, and each algorithm has unique advantages and disadvantages. It is typically unclear, before starting an analysis, which algorithm will perform well on a given computational model. We present BCM, a toolkit for the Bayesian analysis of Computational Models using samplers. It provides efficient, multithreaded implementations of eleven algorithms for sampling from posterior probability distributions and for calculating marginal likelihoods. BCM includes tools to simplify the process of model specification and scripts for visualizing the results. The flexible architecture allows it to be used on diverse types of biological computational models. In an example inference task using a model of the cell cycle based on ordinary differential equations, BCM is significantly more efficient than existing software packages, allowing more challenging inference problems to be solved. BCM represents an efficient one-stop-shop for computational modelers wishing to use sampler-based Bayesian statistics.
Cau, Andrea
2017-01-01
Bayesian phylogenetic methods integrating simultaneously morphological and stratigraphic information have been applied increasingly among paleontologists. Most of these studies have used Bayesian methods as an alternative to the widely-used parsimony analysis, to infer macroevolutionary patterns and relationships among species-level or higher taxa. Among recently introduced Bayesian methodologies, the Fossilized Birth-Death (FBD) model allows incorporation of hypotheses on ancestor-descendant relationships in phylogenetic analyses including fossil taxa. Here, the FBD model is used to infer the relationships among an ingroup formed exclusively by fossil individuals, i.e., dipnoan tooth plates from four localities in the Ain el Guettar Formation of Tunisia. Previous analyses of this sample compared the results of phylogenetic analysis using parsimony with stratigraphic methods, inferred a high diversity (five or more genera) in the Ain el Guettar Formation, and interpreted it as an artifact inflated by depositional factors. In the analysis performed here, the uncertainty on the chronostratigraphic relationships among the specimens was included among the prior settings. The results of the analysis confirm the referral of most of the specimens to the taxa Asiatoceratodus , Equinoxiodus, Lavocatodus and Neoceratodus , but reject those to Ceratodus and Ferganoceratodus . The resulting phylogeny constrained the evolution of the Tunisian sample exclusively in the Early Cretaceous, contrasting with the previous scenario inferred by the stratigraphically-calibrated topology resulting from parsimony analysis. The phylogenetic framework also suggests that (1) the sampled localities are laterally equivalent, (2) but three localities are restricted to the youngest part of the section; both results are in agreement with previous stratigraphic analyses of these localities. The FBD model of specimen-level units provides a novel tool for phylogenetic inference among fossils but also for independent tests of stratigraphic scenarios.
Bayesian Analysis of Longitudinal Data Using Growth Curve Models
ERIC Educational Resources Information Center
Zhang, Zhiyong; Hamagami, Fumiaki; Wang, Lijuan Lijuan; Nesselroade, John R.; Grimm, Kevin J.
2007-01-01
Bayesian methods for analyzing longitudinal data in social and behavioral research are recommended for their ability to incorporate prior information in estimating simple and complex models. We first summarize the basics of Bayesian methods before presenting an empirical example in which we fit a latent basis growth curve model to achievement data…
Harrison, Jay M; Breeze, Matthew L; Harrigan, George G
2011-08-01
Statistical comparisons of compositional data generated on genetically modified (GM) crops and their near-isogenic conventional (non-GM) counterparts typically rely on classical significance testing. This manuscript presents an introduction to Bayesian methods for compositional analysis along with recommendations for model validation. The approach is illustrated using protein and fat data from two herbicide tolerant GM soybeans (MON87708 and MON87708×MON89788) and a conventional comparator grown in the US in 2008 and 2009. Guidelines recommended by the US Food and Drug Administration (FDA) in conducting Bayesian analyses of clinical studies on medical devices were followed. This study is the first Bayesian approach to GM and non-GM compositional comparisons. The evaluation presented here supports a conclusion that a Bayesian approach to analyzing compositional data can provide meaningful and interpretable results. We further describe the importance of method validation and approaches to model checking if Bayesian approaches to compositional data analysis are to be considered viable by scientists involved in GM research and regulation. Copyright © 2011 Elsevier Inc. All rights reserved.
A Bayesian Approach to the Overlap Analysis of Epidemiologically Linked Traits.
Asimit, Jennifer L; Panoutsopoulou, Kalliope; Wheeler, Eleanor; Berndt, Sonja I; Cordell, Heather J; Morris, Andrew P; Zeggini, Eleftheria; Barroso, Inês
2015-12-01
Diseases often cooccur in individuals more often than expected by chance, and may be explained by shared underlying genetic etiology. A common approach to genetic overlap analyses is to use summary genome-wide association study data to identify single-nucleotide polymorphisms (SNPs) that are associated with multiple traits at a selected P-value threshold. However, P-values do not account for differences in power, whereas Bayes' factors (BFs) do, and may be approximated using summary statistics. We use simulation studies to compare the power of frequentist and Bayesian approaches with overlap analyses, and to decide on appropriate thresholds for comparison between the two methods. It is empirically illustrated that BFs have the advantage over P-values of a decreasing type I error rate as study size increases for single-disease associations. Consequently, the overlap analysis of traits from different-sized studies encounters issues in fair P-value threshold selection, whereas BFs are adjusted automatically. Extensive simulations show that Bayesian overlap analyses tend to have higher power than those that assess association strength with P-values, particularly in low-power scenarios. Calibration tables between BFs and P-values are provided for a range of sample sizes, as well as an approximation approach for sample sizes that are not in the calibration table. Although P-values are sometimes thought more intuitive, these tables assist in removing the opaqueness of Bayesian thresholds and may also be used in the selection of a BF threshold to meet a certain type I error rate. An application of our methods is used to identify variants associated with both obesity and osteoarthritis. © 2015 The Authors. *Genetic Epidemiology published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter
2017-02-01
It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.
Bayesian analysis of rare events
NASA Astrophysics Data System (ADS)
Straub, Daniel; Papaioannou, Iason; Betz, Wolfgang
2016-06-01
In many areas of engineering and science there is an interest in predicting the probability of rare events, in particular in applications related to safety and security. Increasingly, such predictions are made through computer models of physical systems in an uncertainty quantification framework. Additionally, with advances in IT, monitoring and sensor technology, an increasing amount of data on the performance of the systems is collected. This data can be used to reduce uncertainty, improve the probability estimates and consequently enhance the management of rare events and associated risks. Bayesian analysis is the ideal method to include the data into the probabilistic model. It ensures a consistent probabilistic treatment of uncertainty, which is central in the prediction of rare events, where extrapolation from the domain of observation is common. We present a framework for performing Bayesian updating of rare event probabilities, termed BUS. It is based on a reinterpretation of the classical rejection-sampling approach to Bayesian analysis, which enables the use of established methods for estimating probabilities of rare events. By drawing upon these methods, the framework makes use of their computational efficiency. These methods include the First-Order Reliability Method (FORM), tailored importance sampling (IS) methods and Subset Simulation (SuS). In this contribution, we briefly review these methods in the context of the BUS framework and investigate their applicability to Bayesian analysis of rare events in different settings. We find that, for some applications, FORM can be highly efficient and is surprisingly accurate, enabling Bayesian analysis of rare events with just a few model evaluations. In a general setting, BUS implemented through IS and SuS is more robust and flexible.
Pruvot, M; Kutz, S; Barkema, H W; De Buck, J; Orsel, K
2014-11-01
Mycobacterium avium subsp. paratuberculosis (MAP) and Neospora caninum (NC) are two pathogens causing important production limiting diseases in the cattle industry. Significant impacts of MAP and NC have been reported on dairy cattle herds, but little is known about the importance, risk factors and transmission patterns in western Canadian cow-calf herds. In this cross-sectional study, the prevalence of MAP and NC infection in southwest Alberta cow-calf herds was estimated, risk factors for NC were identified, and the reproductive impacts of the two pathogens were assessed. Blood and fecal samples were collected from 840 cows on 28 cow-calf operations. Individual cow and herd management information was collected by self-administered questionnaires and one-on-one interviews. Bayesian estimates of the true prevalence of MAP and NC were computed, and bivariable and multivariable statistical analysis were done to assess the association between the NC serological status and ranch management risk factors, and the clinical effects of the two pathogens. Bayesian estimates of true prevalence indicated that 20% (95% probability interval: 8-38%) of herds had at least one MAP-positive cow, with a within-herd prevalence in positive herds of 22% (8-45%). From the Bayesian posterior distributions of NC prevalence, the median herd-level prevalence was 66% (33-95%) with 10% (4-21%) cow-level prevalence in positive herds. Multivariable analysis indicated that introducing purchased animals in the herd might increase the risk of NC. The negative association of NC with proper carcass disposal and presence of horses on ranch (possibly in relation to herd monitoring and guarding activities), may suggest the importance of wild carnivores in the dynamics of this pathogen in the study area. We also observed an association between MAP and NC serological status and the number of abortions. Additional studies should be done to further examine specific risk factors for MAP and NC, assess the consequences on the reproductive performances in cow-calf herds, and evaluate the overall impact of these pathogens on cow-calf operations. Copyright © 2014 Elsevier B.V. All rights reserved.
Walter, W. David; Smith, Rick; Vanderklok, Mike; VerCauterren, Kurt C.
2014-01-01
Bovine tuberculosis is a bacterial disease caused by Mycobacterium bovis in livestock and wildlife with hosts that include Eurasian badgers (Meles meles), brushtail possum (Trichosurus vulpecula), and white-tailed deer (Odocoileus virginianus). Risk-assessment efforts in Michigan have been initiated on farms to minimize interactions of cattle with wildlife hosts but research onM. bovis on cattle farms has not investigated the spatial context of disease epidemiology. To incorporate spatially explicit data, initial likelihood of infection probabilities for cattle farms tested for M. bovis, prevalence of M. bovis in white-tailed deer, deer density, and environmental variables for each farm were modeled in a Bayesian hierarchical framework. We used geo-referenced locations of 762 cattle farms that have been tested for M. bovis, white-tailed deer prevalence, and several environmental variables that may lead to long-term survival and viability of M. bovis on farms and surrounding habitats (i.e., soil type, habitat type). Bayesian hierarchical analyses identified deer prevalence and proportion of sandy soil within our sampling grid as the most supported model. Analysis of cattle farms tested for M. bovisidentified that for every 1% increase in sandy soil resulted in an increase in odds of infection by 4%. Our analysis revealed that the influence of prevalence of M. bovis in white-tailed deer was still a concern even after considerable efforts to prevent cattle interactions with white-tailed deer through on-farm mitigation and reduction in the deer population. Cattle farms test positive for M. bovis annually in our study area suggesting that the potential for an environmental source either on farms or in the surrounding landscape may contributing to new or re-infections with M. bovis. Our research provides an initial assessment of potential environmental factors that could be incorporated into additional modeling efforts as more knowledge of deer herd factors and cattle farm prevalence is documented.
Abdat, F; Leclercq, S; Cuny, X; Tissot, C
2014-09-01
A probabilistic approach has been developed to extract recurrent serious Occupational Accident with Movement Disturbance (OAMD) scenarios from narrative texts within a prevention framework. Relevant data extracted from 143 accounts was initially coded as logical combinations of generic accident factors. A Bayesian Network (BN)-based model was then built for OAMDs using these data and expert knowledge. A data clustering process was subsequently performed to group the OAMDs into similar classes from generic factor occurrence and pattern standpoints. Finally, the Most Probable Explanation (MPE) was evaluated and identified as the associated recurrent scenario for each class. Using this approach, 8 scenarios were extracted to describe 143 OAMDs in the construction and metallurgy sectors. Their recurrent nature is discussed. Probable generic factor combinations provide a fair representation of particularly serious OAMDs, as described in narrative texts. This work represents a real contribution to raising company awareness of the variety of circumstances, in which these accidents occur, to progressing in the prevention of such accidents and to developing an analysis framework dedicated to this kind of accident. Copyright © 2014 Elsevier Ltd. All rights reserved.
A guide to Bayesian model selection for ecologists
Hooten, Mevin B.; Hobbs, N.T.
2015-01-01
The steady upward trend in the use of model selection and Bayesian methods in ecological research has made it clear that both approaches to inference are important for modern analysis of models and data. However, in teaching Bayesian methods and in working with our research colleagues, we have noticed a general dissatisfaction with the available literature on Bayesian model selection and multimodel inference. Students and researchers new to Bayesian methods quickly find that the published advice on model selection is often preferential in its treatment of options for analysis, frequently advocating one particular method above others. The recent appearance of many articles and textbooks on Bayesian modeling has provided welcome background on relevant approaches to model selection in the Bayesian framework, but most of these are either very narrowly focused in scope or inaccessible to ecologists. Moreover, the methodological details of Bayesian model selection approaches are spread thinly throughout the literature, appearing in journals from many different fields. Our aim with this guide is to condense the large body of literature on Bayesian approaches to model selection and multimodel inference and present it specifically for quantitative ecologists as neutrally as possible. We also bring to light a few important and fundamental concepts relating directly to model selection that seem to have gone unnoticed in the ecological literature. Throughout, we provide only a minimal discussion of philosophy, preferring instead to examine the breadth of approaches as well as their practical advantages and disadvantages. This guide serves as a reference for ecologists using Bayesian methods, so that they can better understand their options and can make an informed choice that is best aligned with their goals for inference.
BATSE gamma-ray burst line search. 2: Bayesian consistency methodology
NASA Technical Reports Server (NTRS)
Band, D. L.; Ford, L. A.; Matteson, J. L.; Briggs, M.; Paciesas, W.; Pendleton, G.; Preece, R.; Palmer, D.; Teegarden, B.; Schaefer, B.
1994-01-01
We describe a Bayesian methodology to evaluate the consistency between the reported Ginga and Burst and Transient Source Experiment (BATSE) detections of absorption features in gamma-ray burst spectra. Currently no features have been detected by BATSE, but this methodology will still be applicable if and when such features are discovered. The Bayesian methodology permits the comparison of hypotheses regarding the two detectors' observations and makes explicit the subjective aspects of our analysis (e.g., the quantification of our confidence in detector performance). We also present non-Bayesian consistency statistics. Based on preliminary calculations of line detectability, we find that both the Bayesian and non-Bayesian techniques show that the BATSE and Ginga observations are consistent given our understanding of these detectors.
Application of Bayesian Approach in Cancer Clinical Trial
Bhattacharjee, Atanu
2014-01-01
The application of Bayesian approach in clinical trials becomes more useful over classical method. It is beneficial from design to analysis phase. The straight forward statement is possible to obtain through Bayesian about the drug treatment effect. Complex computational problems are simple to handle with Bayesian techniques. The technique is only feasible to performing presence of prior information of the data. The inference is possible to establish through posterior estimates. However, some limitations are present in this method. The objective of this work was to explore the several merits and demerits of Bayesian approach in cancer research. The review of the technique will be helpful for the clinical researcher involved in the oncology to explore the limitation and power of Bayesian techniques. PMID:29147387
Zhang, Shaobai; Hu, Wenbiao; Zhuang, Guihua
2018-01-01
Evidence indicated that socio-environmental factors were associated with occurrence of Japanese encephalitis (JE). This study explored the association of climate and socioeconomic factors with JE (2006–2014) in Shaanxi, China. JE data at the county level in Shaanxi were supplied by Shaanxi Center for Disease Control and Prevention. Population and socioeconomic data were obtained from the China Population Census in 2010 and statistical yearbooks. Meteorological data were acquired from the China Meteorological Administration. A Bayesian conditional autoregressive model was used to examine the association of meteorological and socioeconomic factors with JE. A total of 1197 JE cases were included in this study. Urbanization rate was inversely associated with JE incidence during the whole study period. Meteorological variables were significantly associated with JE incidence between 2012 and 2014. The excessive precipitation at lag of 1–2 months in the north of Shaanxi in June 2013 had an impact on the increase of local JE incidence. The spatial residual variations indicated that the whole study area had more stable risk (0.80–1.19 across all the counties) between 2012 and 2014 than earlier years. Public health interventions need to be implemented to reduce JE incidence, especially in rural areas and after extreme weather. PMID:29584661
Onisko, Agnieszka; Druzdzel, Marek J; Austin, R Marshall
2016-01-01
Classical statistics is a well-established approach in the analysis of medical data. While the medical community seems to be familiar with the concept of a statistical analysis and its interpretation, the Bayesian approach, argued by many of its proponents to be superior to the classical frequentist approach, is still not well-recognized in the analysis of medical data. The goal of this study is to encourage data analysts to use the Bayesian approach, such as modeling with graphical probabilistic networks, as an insightful alternative to classical statistical analysis of medical data. This paper offers a comparison of two approaches to analysis of medical time series data: (1) classical statistical approach, such as the Kaplan-Meier estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian network modeling. Our comparison is based on time series cervical cancer screening data collected at Magee-Womens Hospital, University of Pittsburgh Medical Center over 10 years. The main outcomes of our comparison are cervical cancer risk assessments produced by the three approaches. However, our analysis discusses also several aspects of the comparison, such as modeling assumptions, model building, dealing with incomplete data, individualized risk assessment, results interpretation, and model validation. Our study shows that the Bayesian approach is (1) much more flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, which is more cumbersome for classical statistical approaches.
Quantile regression and Bayesian cluster detection to identify radon prone areas.
Sarra, Annalina; Fontanella, Lara; Valentini, Pasquale; Palermi, Sergio
2016-11-01
Albeit the dominant source of radon in indoor environments is the geology of the territory, many studies have demonstrated that indoor radon concentrations also depend on dwelling-specific characteristics. Following a stepwise analysis, in this study we propose a combined approach to delineate radon prone areas. We first investigate the impact of various building covariates on indoor radon concentrations. To achieve a more complete picture of this association, we exploit the flexible formulation of a Bayesian spatial quantile regression, which is also equipped with parameters that controls the spatial dependence across data. The quantitative knowledge of the influence of each significant building-specific factor on the measured radon levels is employed to predict the radon concentrations that would have been found if the sampled buildings had possessed standard characteristics. Those normalised radon measures should reflect the geogenic radon potential of the underlying ground, which is a quantity directly related to the geological environment. The second stage of the analysis is aimed at identifying radon prone areas, and to this end, we adopt a Bayesian model for spatial cluster detection using as reference unit the building with standard characteristics. The case study is based on a data set of more than 2000 indoor radon measures, available for the Abruzzo region (Central Italy) and collected by the Agency of Environmental Protection of Abruzzo, during several indoor radon monitoring surveys. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spatiotemporal Bayesian analysis of Lyme disease in New York state, 1990-2000.
Chen, Haiyan; Stratton, Howard H; Caraco, Thomas B; White, Dennis J
2006-07-01
Mapping ordinarily increases our understanding of nontrivial spatial and temporal heterogeneities in disease rates. However, the large number of parameters required by the corresponding statistical models often complicates detailed analysis. This study investigates the feasibility of a fully Bayesian hierarchical regression approach to the problem and identifies how it outperforms two more popular methods: crude rate estimates (CRE) and empirical Bayes standardization (EBS). In particular, we apply a fully Bayesian approach to the spatiotemporal analysis of Lyme disease incidence in New York state for the period 1990-2000. These results are compared with those obtained by CRE and EBS in Chen et al. (2005). We show that the fully Bayesian regression model not only gives more reliable estimates of disease rates than the other two approaches but also allows for tractable models that can accommodate more numerous sources of variation and unknown parameters.
Bayesian Inference for Functional Dynamics Exploring in fMRI Data.
Guo, Xuan; Liu, Bing; Chen, Le; Chen, Guantao; Pan, Yi; Zhang, Jing
2016-01-01
This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM), Bayesian Connectivity Change Point Model (BCCPM), and Dynamic Bayesian Variable Partition Model (DBVPM), and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.
Karabatsos, George
2017-02-01
Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected functionals and values of covariates. The software is illustrated through the BNP regression analysis of real data.
Bayesian Forecasting Tool to Predict the Need for Antidote in Acute Acetaminophen Overdose.
Desrochers, Julie; Wojciechowski, Jessica; Klein-Schwartz, Wendy; Gobburu, Jogarao V S; Gopalakrishnan, Mathangi
2017-08-01
Acetaminophen (APAP) overdose is the leading cause of acute liver injury in the United States. Patients with elevated plasma acetaminophen concentrations (PACs) require hepatoprotective treatment with N-acetylcysteine (NAC). These patients have been primarily risk-stratified using the Rumack-Matthew nomogram. Previous studies of acute APAP overdoses found that the nomogram failed to accurately predict the need for the antidote. The objectives of this study were to develop a population pharmacokinetic (PK) model for APAP following acute overdose and evaluate the utility of population PK model-based Bayesian forecasting in NAC administration decisions. Limited APAP concentrations from a retrospective cohort of acute overdosed subjects from the Maryland Poison Center were used to develop the population PK model and to investigate the effect of type of APAP products and other prognostic factors. The externally validated population PK model was used a prior for Bayesian forecasting to predict the individual PK profile when one or two observed PACs were available. The utility of Bayesian forecasted APAP concentration-time profiles inferred from one (first) or two (first and second) PAC observations were also tested in their ability to predict the observed NAC decisions. A one-compartment model with first-order absorption and elimination adequately described the data with single activated charcoal and APAP products as significant covariates on absorption and bioavailability. The Bayesian forecasted individual concentration-time profiles had acceptable bias (6.2% and 9.8%) and accuracy (40.5% and 41.9%) when either one or two PACs were considered, respectively. The sensitivity and negative predictive value of the Bayesian forecasted NAC decisions using one PAC were 84% and 92.6%, respectively. The population PK analysis provided a platform for acceptably predicting an individual's concentration-time profile following acute APAP overdose with at least one PAC, and the individual's covariate profile, and can potentially be used for making early NAC administration decisions. © 2017 Pharmacotherapy Publications, Inc.
Schmidt, Paul; Schmid, Volker J; Gaser, Christian; Buck, Dorothea; Bührlen, Susanne; Förschler, Annette; Mühlau, Mark
2013-01-01
Aiming at iron-related T2-hypointensity, which is related to normal aging and neurodegenerative processes, we here present two practicable approaches, based on Bayesian inference, for preprocessing and statistical analysis of a complex set of structural MRI data. In particular, Markov Chain Monte Carlo methods were used to simulate posterior distributions. First, we rendered a segmentation algorithm that uses outlier detection based on model checking techniques within a Bayesian mixture model. Second, we rendered an analytical tool comprising a Bayesian regression model with smoothness priors (in the form of Gaussian Markov random fields) mitigating the necessity to smooth data prior to statistical analysis. For validation, we used simulated data and MRI data of 27 healthy controls (age: [Formula: see text]; range, [Formula: see text]). We first observed robust segmentation of both simulated T2-hypointensities and gray-matter regions known to be T2-hypointense. Second, simulated data and images of segmented T2-hypointensity were analyzed. We found not only robust identification of simulated effects but also a biologically plausible age-related increase of T2-hypointensity primarily within the dentate nucleus but also within the globus pallidus, substantia nigra, and red nucleus. Our results indicate that fully Bayesian inference can successfully be applied for preprocessing and statistical analysis of structural MRI data.
Bayes factors and multimodel inference
Link, W.A.; Barker, R.J.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.
2009-01-01
Multimodel inference has two main themes: model selection, and model averaging. Model averaging is a means of making inference conditional on a model set, rather than on a selected model, allowing formal recognition of the uncertainty associated with model choice. The Bayesian paradigm provides a natural framework for model averaging, and provides a context for evaluation of the commonly used AIC weights. We review Bayesian multimodel inference, noting the importance of Bayes factors. Noting the sensitivity of Bayes factors to the choice of priors on parameters, we define and propose nonpreferential priors as offering a reasonable standard for objective multimodel inference.
2D Bayesian automated tilted-ring fitting of disc galaxies in large H I galaxy surveys: 2DBAT
NASA Astrophysics Data System (ADS)
Oh, Se-Heon; Staveley-Smith, Lister; Spekkens, Kristine; Kamphuis, Peter; Koribalski, Bärbel S.
2018-01-01
We present a novel algorithm based on a Bayesian method for 2D tilted-ring analysis of disc galaxy velocity fields. Compared to the conventional algorithms based on a chi-squared minimization procedure, this new Bayesian-based algorithm suffers less from local minima of the model parameters even with highly multimodal posterior distributions. Moreover, the Bayesian analysis, implemented via Markov Chain Monte Carlo sampling, only requires broad ranges of posterior distributions of the parameters, which makes the fitting procedure fully automated. This feature will be essential when performing kinematic analysis on the large number of resolved galaxies expected to be detected in neutral hydrogen (H I) surveys with the Square Kilometre Array and its pathfinders. The so-called 2D Bayesian Automated Tilted-ring fitter (2DBAT) implements Bayesian fits of 2D tilted-ring models in order to derive rotation curves of galaxies. We explore 2DBAT performance on (a) artificial H I data cubes built based on representative rotation curves of intermediate-mass and massive spiral galaxies, and (b) Australia Telescope Compact Array H I data from the Local Volume H I Survey. We find that 2DBAT works best for well-resolved galaxies with intermediate inclinations (20° < i < 70°), complementing 3D techniques better suited to modelling inclined galaxies.
Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.
Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J
2010-12-01
Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies conservation planning. Journal compilation © 2010 Society for Conservation Biology. No claim to original US government works.
Bayesian spatio-temporal discard model in a demersal trawl fishery
NASA Astrophysics Data System (ADS)
Grazia Pennino, M.; Muñoz, Facundo; Conesa, David; López-Quílez, Antonio; Bellido, José M.
2014-07-01
Spatial management of discards has recently been proposed as a useful tool for the protection of juveniles, by reducing discard rates and can be used as a buffer against management errors and recruitment failure. In this study Bayesian hierarchical spatial models have been used to analyze about 440 trawl fishing operations of two different metiers, sampled between 2009 and 2012, in order to improve our understanding of factors that influence the quantity of discards and to identify their spatio-temporal distribution in the study area. Our analysis showed that the relative importance of each variable was different for each metier, with a few similarities. In particular, the random vessel effect and seasonal variability were identified as main driving variables for both metiers. Predictive maps of the abundance of discards and maps of the posterior mean of the spatial component show several hot spots with high discard concentration for each metier. We argue how the seasonal/spatial effects, and the knowledge about the factors influential to discarding, could potentially be exploited as potential mitigation measures for future fisheries management strategies. However, misidentification of hotspots and uncertain predictions can culminate in inappropriate mitigation practices which can sometimes be irreversible. The proposed Bayesian spatial method overcomes these issues, since it offers a unified approach which allows the incorporation of spatial random-effect terms, spatial correlation of the variables and the uncertainty of the parameters in the modeling process, resulting in a better quantification of the uncertainty and accurate predictions.
ERIC Educational Resources Information Center
Wang, Qiu; Diemer, Matthew A.; Maier, Kimberly S.
2013-01-01
This study integrated Bayesian hierarchical modeling and receiver operating characteristic analysis (BROCA) to evaluate how interest strength (IS) and interest differentiation (ID) predicted low–socioeconomic status (SES) youth's interest-major congruence (IMC). Using large-scale Kuder Career Search online-assessment data, this study fit three…
Metrics for evaluating performance and uncertainty of Bayesian network models
Bruce G. Marcot
2012-01-01
This paper presents a selected set of existing and new metrics for gauging Bayesian network model performance and uncertainty. Selected existing and new metrics are discussed for conducting model sensitivity analysis (variance reduction, entropy reduction, case file simulation); evaluating scenarios (influence analysis); depicting model complexity (numbers of model...
Monte Carlo Algorithms for a Bayesian Analysis of the Cosmic Microwave Background
NASA Technical Reports Server (NTRS)
Jewell, Jeffrey B.; Eriksen, H. K.; ODwyer, I. J.; Wandelt, B. D.; Gorski, K.; Knox, L.; Chu, M.
2006-01-01
A viewgraph presentation on the review of Bayesian approach to Cosmic Microwave Background (CMB) analysis, numerical implementation with Gibbs sampling, a summary of application to WMAP I and work in progress with generalizations to polarization, foregrounds, asymmetric beams, and 1/f noise is given.
Bayesian analysis of rare events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straub, Daniel, E-mail: straub@tum.de; Papaioannou, Iason; Betz, Wolfgang
2016-06-01
In many areas of engineering and science there is an interest in predicting the probability of rare events, in particular in applications related to safety and security. Increasingly, such predictions are made through computer models of physical systems in an uncertainty quantification framework. Additionally, with advances in IT, monitoring and sensor technology, an increasing amount of data on the performance of the systems is collected. This data can be used to reduce uncertainty, improve the probability estimates and consequently enhance the management of rare events and associated risks. Bayesian analysis is the ideal method to include the data into themore » probabilistic model. It ensures a consistent probabilistic treatment of uncertainty, which is central in the prediction of rare events, where extrapolation from the domain of observation is common. We present a framework for performing Bayesian updating of rare event probabilities, termed BUS. It is based on a reinterpretation of the classical rejection-sampling approach to Bayesian analysis, which enables the use of established methods for estimating probabilities of rare events. By drawing upon these methods, the framework makes use of their computational efficiency. These methods include the First-Order Reliability Method (FORM), tailored importance sampling (IS) methods and Subset Simulation (SuS). In this contribution, we briefly review these methods in the context of the BUS framework and investigate their applicability to Bayesian analysis of rare events in different settings. We find that, for some applications, FORM can be highly efficient and is surprisingly accurate, enabling Bayesian analysis of rare events with just a few model evaluations. In a general setting, BUS implemented through IS and SuS is more robust and flexible.« less
Rhodes, Kirsty M; Turner, Rebecca M; White, Ian R; Jackson, Dan; Spiegelhalter, David J; Higgins, Julian P T
2016-12-20
Many meta-analyses combine results from only a small number of studies, a situation in which the between-study variance is imprecisely estimated when standard methods are applied. Bayesian meta-analysis allows incorporation of external evidence on heterogeneity, providing the potential for more robust inference on the effect size of interest. We present a method for performing Bayesian meta-analysis using data augmentation, in which we represent an informative conjugate prior for between-study variance by pseudo data and use meta-regression for estimation. To assist in this, we derive predictive inverse-gamma distributions for the between-study variance expected in future meta-analyses. These may serve as priors for heterogeneity in new meta-analyses. In a simulation study, we compare approximate Bayesian methods using meta-regression and pseudo data against fully Bayesian approaches based on importance sampling techniques and Markov chain Monte Carlo (MCMC). We compare the frequentist properties of these Bayesian methods with those of the commonly used frequentist DerSimonian and Laird procedure. The method is implemented in standard statistical software and provides a less complex alternative to standard MCMC approaches. An importance sampling approach produces almost identical results to standard MCMC approaches, and results obtained through meta-regression and pseudo data are very similar. On average, data augmentation provides closer results to MCMC, if implemented using restricted maximum likelihood estimation rather than DerSimonian and Laird or maximum likelihood estimation. The methods are applied to real datasets, and an extension to network meta-analysis is described. The proposed method facilitates Bayesian meta-analysis in a way that is accessible to applied researchers. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Revisiting crash spatial heterogeneity: A Bayesian spatially varying coefficients approach.
Xu, Pengpeng; Huang, Helai; Dong, Ni; Wong, S C
2017-01-01
This study was performed to investigate the spatially varying relationships between crash frequency and related risk factors. A Bayesian spatially varying coefficients model was elaborately introduced as a methodological alternative to simultaneously account for the unstructured and spatially structured heterogeneity of the regression coefficients in predicting crash frequencies. The proposed method was appealing in that the parameters were modeled via a conditional autoregressive prior distribution, which involved a single set of random effects and a spatial correlation parameter with extreme values corresponding to pure unstructured or pure spatially correlated random effects. A case study using a three-year crash dataset from the Hillsborough County, Florida, was conducted to illustrate the proposed model. Empirical analysis confirmed the presence of both unstructured and spatially correlated variations in the effects of contributory factors on severe crash occurrences. The findings also suggested that ignoring spatially structured heterogeneity may result in biased parameter estimates and incorrect inferences, while assuming the regression coefficients to be spatially clustered only is probably subject to the issue of over-smoothness. Copyright © 2016 Elsevier Ltd. All rights reserved.
Iglesias, Juan Eugenio; Sabuncu, Mert Rory; Van Leemput, Koen
2013-10-01
Many segmentation algorithms in medical image analysis use Bayesian modeling to augment local image appearance with prior anatomical knowledge. Such methods often contain a large number of free parameters that are first estimated and then kept fixed during the actual segmentation process. However, a faithful Bayesian analysis would marginalize over such parameters, accounting for their uncertainty by considering all possible values they may take. Here we propose to incorporate this uncertainty into Bayesian segmentation methods in order to improve the inference process. In particular, we approximate the required marginalization over model parameters using computationally efficient Markov chain Monte Carlo techniques. We illustrate the proposed approach using a recently developed Bayesian method for the segmentation of hippocampal subfields in brain MRI scans, showing a significant improvement in an Alzheimer's disease classification task. As an additional benefit, the technique also allows one to compute informative "error bars" on the volume estimates of individual structures. Copyright © 2013 Elsevier B.V. All rights reserved.
Iglesias, Juan Eugenio; Sabuncu, Mert Rory; Leemput, Koen Van
2013-01-01
Many segmentation algorithms in medical image analysis use Bayesian modeling to augment local image appearance with prior anatomical knowledge. Such methods often contain a large number of free parameters that are first estimated and then kept fixed during the actual segmentation process. However, a faithful Bayesian analysis would marginalize over such parameters, accounting for their uncertainty by considering all possible values they may take. Here we propose to incorporate this uncertainty into Bayesian segmentation methods in order to improve the inference process. In particular, we approximate the required marginalization over model parameters using computationally efficient Markov chain Monte Carlo techniques. We illustrate the proposed approach using a recently developed Bayesian method for the segmentation of hippocampal subfields in brain MRI scans, showing a significant improvement in an Alzheimer’s disease classification task. As an additional benefit, the technique also allows one to compute informative “error bars” on the volume estimates of individual structures. PMID:23773521
Sironi, Emanuele; Taroni, Franco; Baldinotti, Claudio; Nardi, Cosimo; Norelli, Gian-Aristide; Gallidabino, Matteo; Pinchi, Vilma
2017-11-14
The present study aimed to investigate the performance of a Bayesian method in the evaluation of dental age-related evidence collected by means of a geometrical approximation procedure of the pulp chamber volume. Measurement of this volume was based on three-dimensional cone beam computed tomography images. The Bayesian method was applied by means of a probabilistic graphical model, namely a Bayesian network. Performance of that method was investigated in terms of accuracy and bias of the decisional outcomes. Influence of an informed elicitation of the prior belief of chronological age was also studied by means of a sensitivity analysis. Outcomes in terms of accuracy were adequate with standard requirements for forensic adult age estimation. Findings also indicated that the Bayesian method does not show a particular tendency towards under- or overestimation of the age variable. Outcomes of the sensitivity analysis showed that results on estimation are improved with a ration elicitation of the prior probabilities of age.
Chen, Cong; Zhang, Guohui; Liu, Xiaoyue Cathy; Ci, Yusheng; Huang, Helai; Ma, Jianming; Chen, Yanyan; Guan, Hongzhi
2016-12-01
There is a high potential of severe injury outcomes in traffic crashes on rural interstate highways due to the significant amount of high speed traffic on these corridors. Hierarchical Bayesian models are capable of incorporating between-crash variance and within-crash correlations into traffic crash data analysis and are increasingly utilized in traffic crash severity analysis. This paper applies a hierarchical Bayesian logistic model to examine the significant factors at crash and vehicle/driver levels and their heterogeneous impacts on driver injury severity in rural interstate highway crashes. Analysis results indicate that the majority of the total variance is induced by the between-crash variance, showing the appropriateness of the utilized hierarchical modeling approach. Three crash-level variables and six vehicle/driver-level variables are found significant in predicting driver injury severities: road curve, maximum vehicle damage in a crash, number of vehicles in a crash, wet road surface, vehicle type, driver age, driver gender, driver seatbelt use and driver alcohol or drug involvement. Among these variables, road curve, functional and disabled vehicle damage in crash, single-vehicle crashes, female drivers, senior drivers, motorcycles and driver alcohol or drug involvement tend to increase the odds of drivers being incapably injured or killed in rural interstate crashes, while wet road surface, male drivers and driver seatbelt use are more likely to decrease the probability of severe driver injuries. The developed methodology and estimation results provide insightful understanding of the internal mechanism of rural interstate crashes and beneficial references for developing effective countermeasures for rural interstate crash prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of nasopharyngeal carcinoma risk factors with Bayesian networks.
Aussem, Alex; de Morais, Sérgio Rodrigues; Corbex, Marilys
2012-01-01
We propose a new graphical framework for extracting the relevant dietary, social and environmental risk factors that are associated with an increased risk of nasopharyngeal carcinoma (NPC) on a case-control epidemiologic study that consists of 1289 subjects and 150 risk factors. This framework builds on the use of Bayesian networks (BNs) for representing statistical dependencies between the random variables. We discuss a novel constraint-based procedure, called Hybrid Parents and Children (HPC), that builds recursively a local graph that includes all the relevant features statistically associated to the NPC, without having to find the whole BN first. The local graph is afterwards directed by the domain expert according to his knowledge. It provides a statistical profile of the recruited population, and meanwhile helps identify the risk factors associated to NPC. Extensive experiments on synthetic data sampled from known BNs show that the HPC outperforms state-of-the-art algorithms that appeared in the recent literature. From a biological perspective, the present study confirms that chemical products, pesticides and domestic fume intake from incomplete combustion of coal and wood are significantly associated with NPC risk. These results suggest that industrial workers are often exposed to noxious chemicals and poisonous substances that are used in the course of manufacturing. This study also supports previous findings that the consumption of a number of preserved food items, like house made proteins and sheep fat, are a major risk factor for NPC. BNs are valuable data mining tools for the analysis of epidemiologic data. They can explicitly combine both expert knowledge from the field and information inferred from the data. These techniques therefore merit consideration as valuable alternatives to traditional multivariate regression techniques in epidemiologic studies. Copyright © 2011 Elsevier B.V. All rights reserved.
Photoacoustic discrimination of vascular and pigmented lesions using classical and Bayesian methods
NASA Astrophysics Data System (ADS)
Swearingen, Jennifer A.; Holan, Scott H.; Feldman, Mary M.; Viator, John A.
2010-01-01
Discrimination of pigmented and vascular lesions in skin can be difficult due to factors such as size, subungual location, and the nature of lesions containing both melanin and vascularity. Misdiagnosis may lead to precancerous or cancerous lesions not receiving proper medical care. To aid in the rapid and accurate diagnosis of such pathologies, we develop a photoacoustic system to determine the nature of skin lesions in vivo. By irradiating skin with two laser wavelengths, 422 and 530 nm, we induce photoacoustic responses, and the relative response at these two wavelengths indicates whether the lesion is pigmented or vascular. This response is due to the distinct absorption spectrum of melanin and hemoglobin. In particular, pigmented lesions have ratios of photoacoustic amplitudes of approximately 1.4 to 1 at the two wavelengths, while vascular lesions have ratios of about 4.0 to 1. Furthermore, we consider two statistical methods for conducting classification of lesions: standard multivariate analysis classification techniques and a Bayesian-model-based approach. We study 15 human subjects with eight vascular and seven pigmented lesions. Using the classical method, we achieve a perfect classification rate, while the Bayesian approach has an error rate of 20%.
Predicting forest insect flight activity: A Bayesian network approach
Stephen M. Pawson; Bruce G. Marcot; Owen G. Woodberry
2017-01-01
Daily flight activity patterns of forest insects are influenced by temporal and meteorological conditions. Temperature and time of day are frequently cited as key drivers of activity; however, complex interactions between multiple contributing factors have also been proposed. Here, we report individual Bayesian network models to assess the probability of flight...
Predicting site locations for biomass using facilities with Bayesian methods
Timothy M. Young; James H. Perdue; Xia Huang
2017-01-01
Logistic regression models combined with Bayesian inference were developed to predict locations and quantify factors that influence the siting of biomass-using facilities that use woody biomass in the Southeastern United States. Predictions were developed for two groups of mills, one representing larger capacity mills similar to pulp and paper mills (Group II...
A Bayesian Approach to Person Fit Analysis in Item Response Theory Models. Research Report.
ERIC Educational Resources Information Center
Glas, Cees A. W.; Meijer, Rob R.
A Bayesian approach to the evaluation of person fit in item response theory (IRT) models is presented. In a posterior predictive check, the observed value on a discrepancy variable is positioned in its posterior distribution. In a Bayesian framework, a Markov Chain Monte Carlo procedure can be used to generate samples of the posterior distribution…
Gucciardi, Daniel F; Zhang, Chun-Qing; Ponnusamy, Vellapandian; Si, Gangyan; Stenling, Andreas
2016-04-01
The aims of this study were to assess the cross-cultural invariance of athletes' self-reports of mental toughness and to introduce and illustrate the application of approximate measurement invariance using Bayesian estimation for sport and exercise psychology scholars. Athletes from Australia (n = 353, Mage = 19.13, SD = 3.27, men = 161), China (n = 254, Mage = 17.82, SD = 2.28, men = 138), and Malaysia (n = 341, Mage = 19.13, SD = 3.27, men = 200) provided a cross-sectional snapshot of their mental toughness. The cross-cultural invariance of the mental toughness inventory in terms of (a) the factor structure (configural invariance), (b) factor loadings (metric invariance), and (c) item intercepts (scalar invariance) was tested using an approximate measurement framework with Bayesian estimation. Results indicated that approximate metric and scalar invariance was established. From a methodological standpoint, this study demonstrated the usefulness and flexibility of Bayesian estimation for single-sample and multigroup analyses of measurement instruments. Substantively, the current findings suggest that the measurement of mental toughness requires cultural adjustments to better capture the contextually salient (emic) aspects of this concept.
Bayesian Latent Class Analysis Tutorial.
Li, Yuelin; Lord-Bessen, Jennifer; Shiyko, Mariya; Loeb, Rebecca
2018-01-01
This article is a how-to guide on Bayesian computation using Gibbs sampling, demonstrated in the context of Latent Class Analysis (LCA). It is written for students in quantitative psychology or related fields who have a working knowledge of Bayes Theorem and conditional probability and have experience in writing computer programs in the statistical language R . The overall goals are to provide an accessible and self-contained tutorial, along with a practical computation tool. We begin with how Bayesian computation is typically described in academic articles. Technical difficulties are addressed by a hypothetical, worked-out example. We show how Bayesian computation can be broken down into a series of simpler calculations, which can then be assembled together to complete a computationally more complex model. The details are described much more explicitly than what is typically available in elementary introductions to Bayesian modeling so that readers are not overwhelmed by the mathematics. Moreover, the provided computer program shows how Bayesian LCA can be implemented with relative ease. The computer program is then applied in a large, real-world data set and explained line-by-line. We outline the general steps in how to extend these considerations to other methodological applications. We conclude with suggestions for further readings.
Beavers, D P; Beavers, K M; Miller, M; Stamey, J; Messina, M J
2012-03-01
To determine whether and to what degree exposure to isoflavone-containing soy products affects EF. Endothelial dysfunction has been identified as an independent coronary heart disease risk factor and a strong predictor of long-term cardiovascular morbidity and mortality. Data on the effects of exposure to isoflavone-containing soy products on EF are conflicting. A comprehensive literature search was conducted using the PUBMED database (National Library of Medicine, Bethesda, MD) inclusively through August 21, 2009 on RCTs using the keywords: soy, isoflavone, phytoestrogen, EF, flow mediated vasodilation, and FMD. A Bayesian meta-analysis was conducted to provide a comprehensive account of the effect of isoflavone-containing soy products on EF, as measured by FMD. A total of 17 RCTs were selected as having sufficient data for study inclusion. The overall mean absolute change in FMD (95% Bayesian CI) for isoflavone-containing soy product interventions was 1.15% (-0.52, 2.75). When the effects of separate interventions were considered, the treatment effect for isolated isoflavones was 1.98% (0.07, 3.97) compared to 0.72% (-1.39, 2.90) for isoflavone-containing soy protein. The models were not improved when considering study-specific effects such as cuff measurement location, prescribed dietary modification, and impaired baseline FMD. Cumulative evidence from the RCTs included in this meta-analysis indicates that exposure to soy isoflavones can modestly, but significantly, improve EF as measured by FMD. Therefore, exposure to isoflavone supplements may beneficially influence vascular health. Copyright © 2010 Elsevier B.V. All rights reserved.
Bayesian multimodel inference for dose-response studies
Link, W.A.; Albers, P.H.
2007-01-01
Statistical inference in dose?response studies is model-based: The analyst posits a mathematical model of the relation between exposure and response, estimates parameters of the model, and reports conclusions conditional on the model. Such analyses rarely include any accounting for the uncertainties associated with model selection. The Bayesian inferential system provides a convenient framework for model selection and multimodel inference. In this paper we briefly describe the Bayesian paradigm and Bayesian multimodel inference. We then present a family of models for multinomial dose?response data and apply Bayesian multimodel inferential methods to the analysis of data on the reproductive success of American kestrels (Falco sparveriuss) exposed to various sublethal dietary concentrations of methylmercury.
Experienced quality factors: qualitative evaluation approach to audiovisual quality
NASA Astrophysics Data System (ADS)
Jumisko-Pyykkö, Satu; Häkkinen, Jukka; Nyman, Göte
2007-02-01
Subjective evaluation is used to identify impairment factors of multimedia quality. The final quality is often formulated via quantitative experiments, but this approach has its constraints, as subject's quality interpretations, experiences and quality evaluation criteria are disregarded. To identify these quality evaluation factors, this study examined qualitatively the criteria participants used to evaluate audiovisual video quality. A semi-structured interview was conducted with 60 participants after a subjective audiovisual quality evaluation experiment. The assessment compared several, relatively low audio-video bitrate ratios with five different television contents on mobile device. In the analysis, methodological triangulation (grounded theory, Bayesian networks and correspondence analysis) was applied to approach the qualitative quality. The results showed that the most important evaluation criteria were the factors of visual quality, contents, factors of audio quality, usefulness - followability and audiovisual interaction. Several relations between the quality factors and the similarities between the contents were identified. As a research methodological recommendation, the focus on content and usage related factors need to be further examined to improve the quality evaluation experiments.
Swartz, Michael D; Cai, Yi; Chan, Wenyaw; Symanski, Elaine; Mitchell, Laura E; Danysh, Heather E; Langlois, Peter H; Lupo, Philip J
2015-02-09
While there is evidence that maternal exposure to benzene is associated with spina bifida in offspring, to our knowledge there have been no assessments to evaluate the role of multiple hazardous air pollutants (HAPs) simultaneously on the risk of this relatively common birth defect. In the current study, we evaluated the association between maternal exposure to HAPs identified by the United States Environmental Protection Agency (U.S. EPA) and spina bifida in offspring using hierarchical Bayesian modeling that includes Stochastic Search Variable Selection (SSVS). The Texas Birth Defects Registry provided data on spina bifida cases delivered between 1999 and 2004. The control group was a random sample of unaffected live births, frequency matched to cases on year of birth. Census tract-level estimates of annual HAP levels were obtained from the U.S. EPA's 1999 Assessment System for Population Exposure Nationwide. Using the distribution among controls, exposure was categorized as high exposure (>95(th) percentile), medium exposure (5(th)-95(th) percentile), and low exposure (<5(th) percentile, reference). We used hierarchical Bayesian logistic regression models with SSVS to evaluate the association between HAPs and spina bifida by computing an odds ratio (OR) for each HAP using the posterior mean, and a 95% credible interval (CI) using the 2.5(th) and 97.5(th) quantiles of the posterior samples. Based on previous assessments, any pollutant with a Bayes factor greater than 1 was selected for inclusion in a final model. Twenty-five HAPs were selected in the final analysis to represent "bins" of highly correlated HAPs (ρ > 0.80). We identified two out of 25 HAPs with a Bayes factor greater than 1: quinoline (ORhigh = 2.06, 95% CI: 1.11-3.87, Bayes factor = 1.01) and trichloroethylene (ORmedium = 2.00, 95% CI: 1.14-3.61, Bayes factor = 3.79). Overall there is evidence that quinoline and trichloroethylene may be significant contributors to the risk of spina bifida. Additionally, the use of Bayesian hierarchical models with SSVS is an alternative approach in the evaluation of multiple environmental pollutants on disease risk. This approach can be easily extended to environmental exposures, where novel approaches are needed in the context of multi-pollutant modeling.
Bayesian B-spline mapping for dynamic quantitative traits.
Xing, Jun; Li, Jiahan; Yang, Runqing; Zhou, Xiaojing; Xu, Shizhong
2012-04-01
Owing to their ability and flexibility to describe individual gene expression at different time points, random regression (RR) analyses have become a popular procedure for the genetic analysis of dynamic traits whose phenotypes are collected over time. Specifically, when modelling the dynamic patterns of gene expressions in the RR framework, B-splines have been proved successful as an alternative to orthogonal polynomials. In the so-called Bayesian B-spline quantitative trait locus (QTL) mapping, B-splines are used to characterize the patterns of QTL effects and individual-specific time-dependent environmental errors over time, and the Bayesian shrinkage estimation method is employed to estimate model parameters. Extensive simulations demonstrate that (1) in terms of statistical power, Bayesian B-spline mapping outperforms the interval mapping based on the maximum likelihood; (2) for the simulated dataset with complicated growth curve simulated by B-splines, Legendre polynomial-based Bayesian mapping is not capable of identifying the designed QTLs accurately, even when higher-order Legendre polynomials are considered and (3) for the simulated dataset using Legendre polynomials, the Bayesian B-spline mapping can find the same QTLs as those identified by Legendre polynomial analysis. All simulation results support the necessity and flexibility of B-spline in Bayesian mapping of dynamic traits. The proposed method is also applied to a real dataset, where QTLs controlling the growth trajectory of stem diameters in Populus are located.
Exoplanet Biosignatures: A Framework for Their Assessment.
Catling, David C; Krissansen-Totton, Joshua; Kiang, Nancy Y; Crisp, David; Robinson, Tyler D; DasSarma, Shiladitya; Rushby, Andrew J; Del Genio, Anthony; Bains, William; Domagal-Goldman, Shawn
2018-04-20
Finding life on exoplanets from telescopic observations is an ultimate goal of exoplanet science. Life produces gases and other substances, such as pigments, which can have distinct spectral or photometric signatures. Whether or not life is found with future data must be expressed with probabilities, requiring a framework of biosignature assessment. We present a framework in which we advocate using biogeochemical "Exo-Earth System" models to simulate potential biosignatures in spectra or photometry. Given actual observations, simulations are used to find the Bayesian likelihoods of those data occurring for scenarios with and without life. The latter includes "false positives" wherein abiotic sources mimic biosignatures. Prior knowledge of factors influencing planetary inhabitation, including previous observations, is combined with the likelihoods to give the Bayesian posterior probability of life existing on a given exoplanet. Four components of observation and analysis are necessary. (1) Characterization of stellar (e.g., age and spectrum) and exoplanetary system properties, including "external" exoplanet parameters (e.g., mass and radius), to determine an exoplanet's suitability for life. (2) Characterization of "internal" exoplanet parameters (e.g., climate) to evaluate habitability. (3) Assessment of potential biosignatures within the environmental context (components 1-2), including corroborating evidence. (4) Exclusion of false positives. We propose that resulting posterior Bayesian probabilities of life's existence map to five confidence levels, ranging from "very likely" (90-100%) to "very unlikely" (<10%) inhabited. Key Words: Bayesian statistics-Biosignatures-Drake equation-Exoplanets-Habitability-Planetary science. Astrobiology 18, xxx-xxx.
Applying Bayesian statistics to the study of psychological trauma: A suggestion for future research.
Yalch, Matthew M
2016-03-01
Several contemporary researchers have noted the virtues of Bayesian methods of data analysis. Although debates continue about whether conventional or Bayesian statistics is the "better" approach for researchers in general, there are reasons why Bayesian methods may be well suited to the study of psychological trauma in particular. This article describes how Bayesian statistics offers practical solutions to the problems of data non-normality, small sample size, and missing data common in research on psychological trauma. After a discussion of these problems and the effects they have on trauma research, this article explains the basic philosophical and statistical foundations of Bayesian statistics and how it provides solutions to these problems using an applied example. Results of the literature review and the accompanying example indicates the utility of Bayesian statistics in addressing problems common in trauma research. Bayesian statistics provides a set of methodological tools and a broader philosophical framework that is useful for trauma researchers. Methodological resources are also provided so that interested readers can learn more. (c) 2016 APA, all rights reserved).
Bayesian CP Factorization of Incomplete Tensors with Automatic Rank Determination.
Zhao, Qibin; Zhang, Liqing; Cichocki, Andrzej
2015-09-01
CANDECOMP/PARAFAC (CP) tensor factorization of incomplete data is a powerful technique for tensor completion through explicitly capturing the multilinear latent factors. The existing CP algorithms require the tensor rank to be manually specified, however, the determination of tensor rank remains a challenging problem especially for CP rank . In addition, existing approaches do not take into account uncertainty information of latent factors, as well as missing entries. To address these issues, we formulate CP factorization using a hierarchical probabilistic model and employ a fully Bayesian treatment by incorporating a sparsity-inducing prior over multiple latent factors and the appropriate hyperpriors over all hyperparameters, resulting in automatic rank determination. To learn the model, we develop an efficient deterministic Bayesian inference algorithm, which scales linearly with data size. Our method is characterized as a tuning parameter-free approach, which can effectively infer underlying multilinear factors with a low-rank constraint, while also providing predictive distributions over missing entries. Extensive simulations on synthetic data illustrate the intrinsic capability of our method to recover the ground-truth of CP rank and prevent the overfitting problem, even when a large amount of entries are missing. Moreover, the results from real-world applications, including image inpainting and facial image synthesis, demonstrate that our method outperforms state-of-the-art approaches for both tensor factorization and tensor completion in terms of predictive performance.
Bayesian Network Meta-Analysis for Unordered Categorical Outcomes with Incomplete Data
ERIC Educational Resources Information Center
Schmid, Christopher H.; Trikalinos, Thomas A.; Olkin, Ingram
2014-01-01
We develop a Bayesian multinomial network meta-analysis model for unordered (nominal) categorical outcomes that allows for partially observed data in which exact event counts may not be known for each category. This model properly accounts for correlations of counts in mutually exclusive categories and enables proper comparison and ranking of…
Bayesian Meta-Analysis of Cronbach's Coefficient Alpha to Evaluate Informative Hypotheses
ERIC Educational Resources Information Center
Okada, Kensuke
2015-01-01
This paper proposes a new method to evaluate informative hypotheses for meta-analysis of Cronbach's coefficient alpha using a Bayesian approach. The coefficient alpha is one of the most widely used reliability indices. In meta-analyses of reliability, researchers typically form specific informative hypotheses beforehand, such as "alpha of…
ERIC Educational Resources Information Center
Zhang, Zhidong
2016-01-01
This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…
ERIC Educational Resources Information Center
Zwick, Rebecca; Lenaburg, Lubella
2009-01-01
In certain data analyses (e.g., multiple discriminant analysis and multinomial log-linear modeling), classification decisions are made based on the estimated posterior probabilities that individuals belong to each of several distinct categories. In the Bayesian network literature, this type of classification is often accomplished by assigning…
Tian, Ting; McLachlan, Geoffrey J.; Dieters, Mark J.; Basford, Kaye E.
2015-01-01
It is a common occurrence in plant breeding programs to observe missing values in three-way three-mode multi-environment trial (MET) data. We proposed modifications of models for estimating missing observations for these data arrays, and developed a novel approach in terms of hierarchical clustering. Multiple imputation (MI) was used in four ways, multiple agglomerative hierarchical clustering, normal distribution model, normal regression model, and predictive mean match. The later three models used both Bayesian analysis and non-Bayesian analysis, while the first approach used a clustering procedure with randomly selected attributes and assigned real values from the nearest neighbour to the one with missing observations. Different proportions of data entries in six complete datasets were randomly selected to be missing and the MI methods were compared based on the efficiency and accuracy of estimating those values. The results indicated that the models using Bayesian analysis had slightly higher accuracy of estimation performance than those using non-Bayesian analysis but they were more time-consuming. However, the novel approach of multiple agglomerative hierarchical clustering demonstrated the overall best performances. PMID:26689369
Tian, Ting; McLachlan, Geoffrey J; Dieters, Mark J; Basford, Kaye E
2015-01-01
It is a common occurrence in plant breeding programs to observe missing values in three-way three-mode multi-environment trial (MET) data. We proposed modifications of models for estimating missing observations for these data arrays, and developed a novel approach in terms of hierarchical clustering. Multiple imputation (MI) was used in four ways, multiple agglomerative hierarchical clustering, normal distribution model, normal regression model, and predictive mean match. The later three models used both Bayesian analysis and non-Bayesian analysis, while the first approach used a clustering procedure with randomly selected attributes and assigned real values from the nearest neighbour to the one with missing observations. Different proportions of data entries in six complete datasets were randomly selected to be missing and the MI methods were compared based on the efficiency and accuracy of estimating those values. The results indicated that the models using Bayesian analysis had slightly higher accuracy of estimation performance than those using non-Bayesian analysis but they were more time-consuming. However, the novel approach of multiple agglomerative hierarchical clustering demonstrated the overall best performances.
Approximate string matching algorithms for limited-vocabulary OCR output correction
NASA Astrophysics Data System (ADS)
Lasko, Thomas A.; Hauser, Susan E.
2000-12-01
Five methods for matching words mistranslated by optical character recognition to their most likely match in a reference dictionary were tested on data from the archives of the National Library of Medicine. The methods, including an adaptation of the cross correlation algorithm, the generic edit distance algorithm, the edit distance algorithm with a probabilistic substitution matrix, Bayesian analysis, and Bayesian analysis on an actively thinned reference dictionary were implemented and their accuracy rates compared. Of the five, the Bayesian algorithm produced the most correct matches (87%), and had the advantage of producing scores that have a useful and practical interpretation.
Bayesian conditional-independence modeling of the AIDS epidemic in England and Wales
NASA Astrophysics Data System (ADS)
Gilks, Walter R.; De Angelis, Daniela; Day, Nicholas E.
We describe the use of conditional-independence modeling, Bayesian inference and Markov chain Monte Carlo, to model and project the HIV-AIDS epidemic in homosexual/bisexual males in England and Wales. Complexity in this analysis arises through selectively missing data, indirectly observed underlying processes, and measurement error. Our emphasis is on presentation and discussion of the concepts, not on the technicalities of this analysis, which can be found elsewhere [D. De Angelis, W.R. Gilks, N.E. Day, Bayesian projection of the the acquired immune deficiency syndrome epidemic (with discussion), Applied Statistics, in press].
Time-varying nonstationary multivariate risk analysis using a dynamic Bayesian copula
NASA Astrophysics Data System (ADS)
Sarhadi, Ali; Burn, Donald H.; Concepción Ausín, María.; Wiper, Michael P.
2016-03-01
A time-varying risk analysis is proposed for an adaptive design framework in nonstationary conditions arising from climate change. A Bayesian, dynamic conditional copula is developed for modeling the time-varying dependence structure between mixed continuous and discrete multiattributes of multidimensional hydrometeorological phenomena. Joint Bayesian inference is carried out to fit the marginals and copula in an illustrative example using an adaptive, Gibbs Markov Chain Monte Carlo (MCMC) sampler. Posterior mean estimates and credible intervals are provided for the model parameters and the Deviance Information Criterion (DIC) is used to select the model that best captures different forms of nonstationarity over time. This study also introduces a fully Bayesian, time-varying joint return period for multivariate time-dependent risk analysis in nonstationary environments. The results demonstrate that the nature and the risk of extreme-climate multidimensional processes are changed over time under the impact of climate change, and accordingly the long-term decision making strategies should be updated based on the anomalies of the nonstationary environment.
Bayesian model reduction and empirical Bayes for group (DCM) studies
Friston, Karl J.; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E.; van Wijk, Bernadette C.M.; Ziegler, Gabriel; Zeidman, Peter
2016-01-01
This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level – e.g., dynamic causal models – and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These applications of Bayesian model reduction allow one to consider parametric random effects and make inferences about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical background to these procedures and illustrate their application using a worked example. This example uses a simulated mismatch negativity study of schizophrenia. We illustrate the robustness of Bayesian model reduction to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we consider the application of these empirical Bayesian procedures to classification and prediction. PMID:26569570
NASA Astrophysics Data System (ADS)
Figueira, P.; Faria, J. P.; Adibekyan, V. Zh.; Oshagh, M.; Santos, N. C.
2016-11-01
We apply the Bayesian framework to assess the presence of a correlation between two quantities. To do so, we estimate the probability distribution of the parameter of interest, ρ, characterizing the strength of the correlation. We provide an implementation of these ideas and concepts using python programming language and the pyMC module in a very short (˜ 130 lines of code, heavily commented) and user-friendly program. We used this tool to assess the presence and properties of the correlation between planetary surface gravity and stellar activity level as measured by the log(R^' }_{ {HK}}) indicator. The results of the Bayesian analysis are qualitatively similar to those obtained via p-value analysis, and support the presence of a correlation in the data. The results are more robust in their derivation and more informative, revealing interesting features such as asymmetric posterior distributions or markedly different credible intervals, and allowing for a deeper exploration. We encourage the reader interested in this kind of problem to apply our code to his/her own scientific problems. The full understanding of what the Bayesian framework is can only be gained through the insight that comes by handling priors, assessing the convergence of Monte Carlo runs, and a multitude of other practical problems. We hope to contribute so that Bayesian analysis becomes a tool in the toolkit of researchers, and they understand by experience its advantages and limitations.
Tang, Z H; Geng, Z M; Chen, C; Si, S B; Cai, Z Q; Song, T Q; Gong, P; Jiang, L; Qiu, Y H; He, Y; Zhai, W L; Li, S P; Zhang, Y C; Yang, Y
2018-05-01
Objective: To investigate the clinical value of Bayesian network in predicting survival of patients with advanced gallbladder cancer(GBC)who underwent curative intent surgery. Methods: The clinical data of patients with advanced GBC who underwent curative intent surgery in 9 institutions from January 2010 to December 2015 were analyzed retrospectively.A median survival time model based on a tree augmented naïve Bayes algorithm was established by Bayesia Lab software.The survival time, number of metastatic lymph nodes(NMLN), T stage, pathological grade, margin, jaundice, liver invasion, age, sex and tumor morphology were included in this model.Confusion matrix, the receiver operating characteristic curve and area under the curve were used to evaluate the accuracy of the model.A priori statistical analysis of these 10 variables and a posterior analysis(survival time as the target variable, the remaining factors as the attribute variables)was performed.The importance rankings of each variable was calculated with the polymorphic Birnbaum importance calculation based on the posterior analysis results.The survival probability forecast table was constructed based on the top 4 prognosis factors. The survival curve was drawn by the Kaplan-Meier method, and differences in survival curves were compared using the Log-rank test. Results: A total of 316 patients were enrolled, including 109 males and 207 females.The ratio of male to female was 1.0∶1.9, the age was (62.0±10.8)years.There was 298 cases(94.3%) R0 resection and 18 cases(5.7%) R1 resection.T staging: 287 cases(90.8%) T3 and 29 cases(9.2%) T4.The median survival time(MST) was 23.77 months, and the 1, 3, 5-year survival rates were 67.4%, 40.8%, 32.0%, respectively.For the Bayesian model, the number of correctly predicted cases was 121(≤23.77 months) and 115(>23.77 months) respectively, leading to a 74.86% accuracy of this model.The prior probability of survival time was 0.503 2(≤23.77 months) and 0.496 8(>23.77 months), the importance ranking showed that NMLN(0.366 6), margin(0.350 1), T stage(0.319 2) and pathological grade(0.258 9) were the top 4 prognosis factors influencing the postoperative MST.These four factors were taken as observation variables to get the probability of patients in different survival periods.Basing on these results, a survival prediction score system including NMLN, margin, T stage and pathological grade was designed, the median survival time(month) of 4-9 points were 66.8, 42.4, 26.0, 9.0, 7.5 and 2.3, respectively, there was a statistically significant difference in the different points( P <0.01). Conclusions: The survival prediction model of GBC based on Bayesian network has high accuracy.NMLN, margin, T staging and pathological grade are the top 4 risk factors affecting the survival of patients with advanced GBC who underwent curative resection.The survival prediction score system based on these four factors could be used to predict the survival and to guide the decision making of patients with advanced GBC.
Li, Shi; Mukherjee, Bhramar; Batterman, Stuart; Ghosh, Malay
2013-12-01
Case-crossover designs are widely used to study short-term exposure effects on the risk of acute adverse health events. While the frequentist literature on this topic is vast, there is no Bayesian work in this general area. The contribution of this paper is twofold. First, the paper establishes Bayesian equivalence results that require characterization of the set of priors under which the posterior distributions of the risk ratio parameters based on a case-crossover and time-series analysis are identical. Second, the paper studies inferential issues under case-crossover designs in a Bayesian framework. Traditionally, a conditional logistic regression is used for inference on risk-ratio parameters in case-crossover studies. We consider instead a more general full likelihood-based approach which makes less restrictive assumptions on the risk functions. Formulation of a full likelihood leads to growth in the number of parameters proportional to the sample size. We propose a semi-parametric Bayesian approach using a Dirichlet process prior to handle the random nuisance parameters that appear in a full likelihood formulation. We carry out a simulation study to compare the Bayesian methods based on full and conditional likelihood with the standard frequentist approaches for case-crossover and time-series analysis. The proposed methods are illustrated through the Detroit Asthma Morbidity, Air Quality and Traffic study, which examines the association between acute asthma risk and ambient air pollutant concentrations. © 2013, The International Biometric Society.
A General Structure for Legal Arguments about Evidence Using Bayesian Networks
ERIC Educational Resources Information Center
Fenton, Norman; Neil, Martin; Lagnado, David A.
2013-01-01
A Bayesian network (BN) is a graphical model of uncertainty that is especially well suited to legal arguments. It enables us to visualize and model dependencies between different hypotheses and pieces of evidence and to calculate the revised probability beliefs about all uncertain factors when any piece of new evidence is presented. Although BNs…
B.G. Marcot; J.D. Steventon; G.D. Sutherland; R.K. McCann
2006-01-01
We provide practical guidelines for developing, testing, and revising Bayesian belief networks (BBNs). Primary steps in this process include creating influence diagrams of the hypothesized "causal web" of key factors affecting a species or ecological outcome of interest; developing a first, alpha-level BBN model from the influence diagram; revising the model...
Slicing cluster mass functions with a Bayesian razor
NASA Astrophysics Data System (ADS)
Sealfon, C. D.
2010-08-01
We apply a Bayesian ``razor" to forecast Bayes factors between different parameterizations of the galaxy cluster mass function. To demonstrate this approach, we calculate the minimum size N-body simulation needed for strong evidence favoring a two-parameter mass function over one-parameter mass functions and visa versa, as a function of the minimum cluster mass.
Development of a Bayesian Belief Network Runway Incursion and Excursion Model
NASA Technical Reports Server (NTRS)
Green, Lawrence L.
2014-01-01
In a previous work, a statistical analysis of runway incursion (RI) event data was conducted to ascertain the relevance of this data to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to several of the AvSP top ten TC and identified numerous primary causes and contributing factors of RI events. The statistical analysis served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events, also previously reported. Through literature searches and data analysis, this RI event network has now been extended to also model runway excursion (RE) events. These RI and RE event networks have been further modified and vetted by a Subject Matter Expert (SME) panel. The combined system-level BBN model will allow NASA to generically model the causes of RI and RE events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of runway safety incidents/accidents, and to improve runway safety in general. The development and structure of the BBN for both RI and RE events are documented in this paper.
Yu, Farong; Yu, Fahong; Pang, Junfeng; Kilpatrick, C William; McGuire, Peter M; Wang, Yingxiang; Lu, Shunqing; Woods, Charles A
2006-03-01
With modified DNA extraction and purification protocols, the complete cytochrome b gene sequences (1140 bp) were determined from degraded museum specimens. Molecular analysis and morphological examination of cranial characteristics of the giant flying squirrels of Petaurista philippensis complex (P. grandis, P. hainana, and P. yunanensis) and other Petaurista species yielded new insights into long-standing controversies in the Petaurista systematics. Patterns of genetic variations and morphological differences observed in this study indicate that P. hainana, P. albiventer, and P. yunanensis can be recognized as distinct species, and P. grandis and P. petaurista are conspecific populations. Phylogenetic relationships reconstructed by using parsimony, likelihood, and Bayesian methods reveal that, with P. leucogenys as the basal branch, all Petaurista groups formed two distinct clades. Petaurista philippensis, P. hainana, P. yunanensis, and P. albiventer are clustered in the same clade, while P. grandis shows a close relationship to P. petaurista. Deduced divergence times based on Bayesian analysis and the transversional substitution at the third codon suggest that the retreating of glaciers and upheavals or movements of tectonic plates in the Pliocene-Pleistocene were the major factors responsible for the present geographical distributions of Petaurista groups.
Development of a Bayesian Belief Network Runway Incursion Model
NASA Technical Reports Server (NTRS)
Green, Lawrence L.
2014-01-01
In a previous paper, a statistical analysis of runway incursion (RI) events was conducted to ascertain their relevance to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to perhaps several of the AvSP top ten TC. That data also identified several primary causes and contributing factors for RI events that served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events. The system-level BBN model will allow NASA to generically model the causes of RI events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of RI events in particular, and to improve runway safety in general. The development, structure and assessment of that BBN for RI events by a Subject Matter Expert panel are documented in this paper.
A Bayesian modelling framework for tornado occurrences in North America
NASA Astrophysics Data System (ADS)
Cheng, Vincent Y. S.; Arhonditsis, George B.; Sills, David M. L.; Gough, William A.; Auld, Heather
2015-03-01
Tornadoes represent one of nature’s most hazardous phenomena that have been responsible for significant destruction and devastating fatalities. Here we present a Bayesian modelling approach for elucidating the spatiotemporal patterns of tornado activity in North America. Our analysis shows a significant increase in the Canadian Prairies and the Northern Great Plains during the summer, indicating a clear transition of tornado activity from the United States to Canada. The linkage between monthly-averaged atmospheric variables and likelihood of tornado events is characterized by distinct seasonality; the convective available potential energy is the predominant factor in the summer; vertical wind shear appears to have a strong signature primarily in the winter and secondarily in the summer; and storm relative environmental helicity is most influential in the spring. The present probabilistic mapping can be used to draw inference on the likelihood of tornado occurrence in any location in North America within a selected time period of the year.
A Bayesian modelling framework for tornado occurrences in North America.
Cheng, Vincent Y S; Arhonditsis, George B; Sills, David M L; Gough, William A; Auld, Heather
2015-03-25
Tornadoes represent one of nature's most hazardous phenomena that have been responsible for significant destruction and devastating fatalities. Here we present a Bayesian modelling approach for elucidating the spatiotemporal patterns of tornado activity in North America. Our analysis shows a significant increase in the Canadian Prairies and the Northern Great Plains during the summer, indicating a clear transition of tornado activity from the United States to Canada. The linkage between monthly-averaged atmospheric variables and likelihood of tornado events is characterized by distinct seasonality; the convective available potential energy is the predominant factor in the summer; vertical wind shear appears to have a strong signature primarily in the winter and secondarily in the summer; and storm relative environmental helicity is most influential in the spring. The present probabilistic mapping can be used to draw inference on the likelihood of tornado occurrence in any location in North America within a selected time period of the year.
The approach of Bayesian model indicates media awareness of medical errors
NASA Astrophysics Data System (ADS)
Ravichandran, K.; Arulchelvan, S.
2016-06-01
This research study brings out the factors behind the increase in medical malpractices in the Indian subcontinent in the present day environment and impacts of television media awareness towards it. Increased media reporting of medical malpractices and errors lead to hospitals taking corrective action and improve the quality of medical services that they provide. The model of Cultivation Theory can be used to measure the influence of media in creating awareness of medical errors. The patient's perceptions of various errors rendered by the medical industry from different parts of India were taken up for this study. Bayesian method was used for data analysis and it gives absolute values to indicate satisfaction of the recommended values. To find out the impact of maintaining medical records of a family online by the family doctor in reducing medical malpractices which creates the importance of service quality in medical industry through the ICT.
Upadhyay, S K; Mukherjee, Bhaswati; Gupta, Ashutosh
2009-09-01
Several models for studies related to tensile strength of materials are proposed in the literature where the size or length component has been taken to be an important factor for studying the specimens' failure behaviour. An important model, developed on the basis of cumulative damage approach, is the three-parameter extension of the Birnbaum-Saunders fatigue model that incorporates size of the specimen as an additional variable. This model is a strong competitor of the commonly used Weibull model and stands better than the traditional models, which do not incorporate the size effect. The paper considers two such cumulative damage models, checks their compatibility with a real dataset, compares them with some of the recent toolkits, and finally recommends a model, which appears an appropriate one. Throughout the study is Bayesian based on Markov chain Monte Carlo simulation.
Bayesian analysis of multiple direct detection experiments
NASA Astrophysics Data System (ADS)
Arina, Chiara
2014-12-01
Bayesian methods offer a coherent and efficient framework for implementing uncertainties into induction problems. In this article, we review how this approach applies to the analysis of dark matter direct detection experiments. In particular we discuss the exclusion limit of XENON100 and the debated hints of detection under the hypothesis of a WIMP signal. Within parameter inference, marginalizing consistently over uncertainties to extract robust posterior probability distributions, we find that the claimed tension between XENON100 and the other experiments can be partially alleviated in isospin violating scenario, while elastic scattering model appears to be compatible with the frequentist statistical approach. We then move to model comparison, for which Bayesian methods are particularly well suited. Firstly, we investigate the annual modulation seen in CoGeNT data, finding that there is weak evidence for a modulation. Modulation models due to other physics compare unfavorably with the WIMP models, paying the price for their excessive complexity. Secondly, we confront several coherent scattering models to determine the current best physical scenario compatible with the experimental hints. We find that exothermic and inelastic dark matter are moderatly disfavored against the elastic scenario, while the isospin violating model has a similar evidence. Lastly the Bayes' factor gives inconclusive evidence for an incompatibility between the data sets of XENON100 and the hints of detection. The same question assessed with goodness of fit would indicate a 2 σ discrepancy. This suggests that more data are therefore needed to settle this question.
Steingroever, Helen; Pachur, Thorsten; Šmíra, Martin; Lee, Michael D
2018-06-01
The Iowa Gambling Task (IGT) is one of the most popular experimental paradigms for comparing complex decision-making across groups. Most commonly, IGT behavior is analyzed using frequentist tests to compare performance across groups, and to compare inferred parameters of cognitive models developed for the IGT. Here, we present a Bayesian alternative based on Bayesian repeated-measures ANOVA for comparing performance, and a suite of three complementary model-based methods for assessing the cognitive processes underlying IGT performance. The three model-based methods involve Bayesian hierarchical parameter estimation, Bayes factor model comparison, and Bayesian latent-mixture modeling. We illustrate these Bayesian methods by applying them to test the extent to which differences in intuitive versus deliberate decision style are associated with differences in IGT performance. The results show that intuitive and deliberate decision-makers behave similarly on the IGT, and the modeling analyses consistently suggest that both groups of decision-makers rely on similar cognitive processes. Our results challenge the notion that individual differences in intuitive and deliberate decision styles have a broad impact on decision-making. They also highlight the advantages of Bayesian methods, especially their ability to quantify evidence in favor of the null hypothesis, and that they allow model-based analyses to incorporate hierarchical and latent-mixture structures.
Uncertainty in Ecohydrological Modeling in an Arid Region Determined with Bayesian Methods
Yang, Junjun; He, Zhibin; Du, Jun; Chen, Longfei; Zhu, Xi
2016-01-01
In arid regions, water resources are a key forcing factor in ecosystem circulation, and soil moisture is the critical link that constrains plant and animal life on the soil surface and underground. Simulation of soil moisture in arid ecosystems is inherently difficult due to high variability. We assessed the applicability of the process-oriented CoupModel for forecasting of soil water relations in arid regions. We used vertical soil moisture profiling for model calibration. We determined that model-structural uncertainty constituted the largest error; the model did not capture the extremes of low soil moisture in the desert-oasis ecotone (DOE), particularly below 40 cm soil depth. Our results showed that total uncertainty in soil moisture prediction was improved when input and output data, parameter value array, and structure errors were characterized explicitly. Bayesian analysis was applied with prior information to reduce uncertainty. The need to provide independent descriptions of uncertainty analysis (UA) in the input and output data was demonstrated. Application of soil moisture simulation in arid regions will be useful for dune-stabilization and revegetation efforts in the DOE. PMID:26963523
Building a maintenance policy through a multi-criterion decision-making model
NASA Astrophysics Data System (ADS)
Faghihinia, Elahe; Mollaverdi, Naser
2012-08-01
A major competitive advantage of production and service systems is establishing a proper maintenance policy. Therefore, maintenance managers should make maintenance decisions that best fit their systems. Multi-criterion decision-making methods can take into account a number of aspects associated with the competitiveness factors of a system. This paper presents a multi-criterion decision-aided maintenance model with three criteria that have more influence on decision making: reliability, maintenance cost, and maintenance downtime. The Bayesian approach has been applied to confront maintenance failure data shortage. Therefore, the model seeks to make the best compromise between these three criteria and establish replacement intervals using Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE II), integrating the Bayesian approach with regard to the preference of the decision maker to the problem. Finally, using a numerical application, the model has been illustrated, and for a visual realization and an illustrative sensitivity analysis, PROMETHEE GAIA (the visual interactive module) has been used. Use of PROMETHEE II and PROMETHEE GAIA has been made with Decision Lab software. A sensitivity analysis has been made to verify the robustness of certain parameters of the model.
The Bayesian approach to reporting GSR analysis results: some first-hand experiences
NASA Astrophysics Data System (ADS)
Charles, Sebastien; Nys, Bart
2010-06-01
The use of Bayesian principles in the reporting of forensic findings has been a matter of interest for some years. Recently, also the GSR community is gradually exploring the advantages of this method, or rather approach, for writing reports. Since last year, our GSR group is adapting reporting procedures to the use of Bayesian principles. The police and magistrates find the reports more directly accessible and useful in their part of the criminal investigation. In the lab we find that, through applying the Bayesian principles, unnecessary analyses can be eliminated and thus time can be freed on the instruments.
ERIC Educational Resources Information Center
Leventhal, Brian C.; Stone, Clement A.
2018-01-01
Interest in Bayesian analysis of item response theory (IRT) models has grown tremendously due to the appeal of the paradigm among psychometricians, advantages of these methods when analyzing complex models, and availability of general-purpose software. Possible models include models which reflect multidimensionality due to designed test structure,…
ERIC Educational Resources Information Center
Tsiouris, John; Mann, Rachel; Patti, Paul; Sturmey, Peter
2004-01-01
Clinicians need to know the likelihood of a condition given a positive or negative diagnostic test. In this study a Bayesian analysis of the Clinical Behavior Checklist for Persons with Intellectual Disabilities (CBCPID) to predict depression in people with intellectual disability was conducted. The CBCPID was administered to 92 adults with…
Bayesian analysis of heterogeneous treatment effects for patient-centered outcomes research.
Henderson, Nicholas C; Louis, Thomas A; Wang, Chenguang; Varadhan, Ravi
2016-01-01
Evaluation of heterogeneity of treatment effect (HTE) is an essential aspect of personalized medicine and patient-centered outcomes research. Our goal in this article is to promote the use of Bayesian methods for subgroup analysis and to lower the barriers to their implementation by describing the ways in which the companion software beanz can facilitate these types of analyses. To advance this goal, we describe several key Bayesian models for investigating HTE and outline the ways in which they are well-suited to address many of the commonly cited challenges in the study of HTE. Topics highlighted include shrinkage estimation, model choice, sensitivity analysis, and posterior predictive checking. A case study is presented in which we demonstrate the use of the methods discussed.
Enhancements of Bayesian Blocks; Application to Large Light Curve Databases
NASA Technical Reports Server (NTRS)
Scargle, Jeff
2015-01-01
Bayesian Blocks are optimal piecewise linear representations (step function fits) of light-curves. The simple algorithm implementing this idea, using dynamic programming, has been extended to include more data modes and fitness metrics, multivariate analysis, and data on the circle (Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations, Scargle, Norris, Jackson and Chiang 2013, ApJ, 764, 167), as well as new results on background subtraction and refinement of the procedure for precise timing of transient events in sparse data. Example demonstrations will include exploratory analysis of the Kepler light curve archive in a search for "star-tickling" signals from extraterrestrial civilizations. (The Cepheid Galactic Internet, Learned, Kudritzki, Pakvasa1, and Zee, 2008, arXiv: 0809.0339; Walkowicz et al., in progress).
Carvalho, Pedro; Marques, Rui Cunha
2016-02-15
This study aims to search for economies of size and scope in the Portuguese water sector applying Bayesian and classical statistics to make inference in stochastic frontier analysis (SFA). This study proves the usefulness and advantages of the application of Bayesian statistics for making inference in SFA over traditional SFA which just uses classical statistics. The resulting Bayesian methods allow overcoming some problems that arise in the application of the traditional SFA, such as the bias in small samples and skewness of residuals. In the present case study of the water sector in Portugal, these Bayesian methods provide more plausible and acceptable results. Based on the results obtained we found that there are important economies of output density, economies of size, economies of vertical integration and economies of scope in the Portuguese water sector, pointing out to the huge advantages in undertaking mergers by joining the retail and wholesale components and by joining the drinking water and wastewater services. Copyright © 2015 Elsevier B.V. All rights reserved.
Spatial analysis to identify hotspots of prevalence of schizophrenia.
Moreno, Berta; García-Alonso, Carlos R; Negrín Hernández, Miguel A; Torres-González, Francisco; Salvador-Carulla, Luis
2008-10-01
The geographical distribution of mental health disorders is useful information for epidemiological research and health services planning. To determine the existence of geographical hotspots with a high prevalence of schizophrenia in a mental health area in Spain. The study included 774 patients with schizophrenia who were users of the community mental health care service in the area of South Granada. Spatial analysis (Kernel estimation) and Bayesian relative risks were used to locate potential hotspots. Availability and accessibility were both rated in each zone and spatial algebra was applied to identify hotspots in a particular zone. The age-corrected prevalence rate of schizophrenia was 2.86 per 1,000 population in the South Granada area. Bayesian analysis showed a relative risk varying from 0.43 to 2.33. The area analysed had a non-uniform spatial distribution of schizophrenia, with one main hotspot (zone S2). This zone had poor accessibility to and availability of mental health services. A municipality-based variation exists in the prevalence of schizophrenia and related disorders in the study area. Spatial analysis techniques are useful tools to analyse the heterogeneous distribution of a variable and to explain genetic/environmental factors in hotspots related with a lack of easy availability of and accessibility to adequate health care services.
Yang, Jingjing; Cox, Dennis D; Lee, Jong Soo; Ren, Peng; Choi, Taeryon
2017-12-01
Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum, which are usually collected on discretized grids with measurement errors. In order to accurately smooth noisy functional observations and deal with the issue of high-dimensional observation grids, we propose a novel Bayesian method based on the Bayesian hierarchical model with a Gaussian-Wishart process prior and basis function representations. We first derive an induced model for the basis-function coefficients of the functional data, and then use this model to conduct posterior inference through Markov chain Monte Carlo methods. Compared to the standard Bayesian inference that suffers serious computational burden and instability in analyzing high-dimensional functional data, our method greatly improves the computational scalability and stability, while inheriting the advantage of simultaneously smoothing raw observations and estimating the mean-covariance functions in a nonparametric way. In addition, our method can naturally handle functional data observed on random or uncommon grids. Simulation and real studies demonstrate that our method produces similar results to those obtainable by the standard Bayesian inference with low-dimensional common grids, while efficiently smoothing and estimating functional data with random and high-dimensional observation grids when the standard Bayesian inference fails. In conclusion, our method can efficiently smooth and estimate high-dimensional functional data, providing one way to resolve the curse of dimensionality for Bayesian functional data analysis with Gaussian-Wishart processes. © 2017, The International Biometric Society.
Mouiche, M. M. M.; Bayang, H. N.; Assana, E.; Feussom, K. J. M.; Manchang, T. K.; Zoli, P. A.
2018-01-01
A cross-sectional seroprevalence study was conducted on cattle in the North and Adamawa Regions of Cameroon to investigate the status of bovine brucellosis and identify potential risk factors. The diagnosis was carried out using the Rose Bengal Plate test (RBPT) and indirect ELISA (i-ELISA), while questionnaires were used to evaluate risk factors for bovine brucellosis in cattle. The Bayesian approach was used to evaluate the diagnostic tests' sensitivity and specificity. The overall individual level (n = 1031) and herd level (n = 82) seroprevalence were 5.4% (0.4–10.5) and 25.6% (16.2–35.0), respectively. Bayesian analysis revealed sensitivity of 58.3% (26.4–92.7) and 89.6% (80.4–99.4) and specificity of 92.1% (88.7–95.2) and 95.7% (91.1–99.7) for RBPT and i-ELISA, respectively. Management related factors such as region, locality, herd size, and knowledge of brucellosis and animal related factors such as sex and age were significantly associated with seropositivity of brucellosis. Zoonotic brucellosis is a neglected disease in Cameroon. The study highlights the need for control measures and the need to raise public awareness of the zoonotic occurrence and transmission of bovine brucellosis in the country. An integrated disease control strategy mimicking the one health approach involving medical personnel, veterinarians, related stakeholders, and affected communities cannot be overemphasized. PMID:29535853
Baker, Robert L; Leong, Wen Fung; An, Nan; Brock, Marcus T; Rubin, Matthew J; Welch, Stephen; Weinig, Cynthia
2018-02-01
We develop Bayesian function-valued trait models that mathematically isolate genetic mechanisms underlying leaf growth trajectories by factoring out genotype-specific differences in photosynthesis. Remote sensing data can be used instead of leaf-level physiological measurements. Characterizing the genetic basis of traits that vary during ontogeny and affect plant performance is a major goal in evolutionary biology and agronomy. Describing genetic programs that specifically regulate morphological traits can be complicated by genotypic differences in physiological traits. We describe the growth trajectories of leaves using novel Bayesian function-valued trait (FVT) modeling approaches in Brassica rapa recombinant inbred lines raised in heterogeneous field settings. While frequentist approaches estimate parameter values by treating each experimental replicate discretely, Bayesian models can utilize information in the global dataset, potentially leading to more robust trait estimation. We illustrate this principle by estimating growth asymptotes in the face of missing data and comparing heritabilities of growth trajectory parameters estimated by Bayesian and frequentist approaches. Using pseudo-Bayes factors, we compare the performance of an initial Bayesian logistic growth model and a model that incorporates carbon assimilation (A max ) as a cofactor, thus statistically accounting for genotypic differences in carbon resources. We further evaluate two remotely sensed spectroradiometric indices, photochemical reflectance (pri2) and MERIS Terrestrial Chlorophyll Index (mtci) as covariates in lieu of A max , because these two indices were genetically correlated with A max across years and treatments yet allow much higher throughput compared to direct leaf-level gas-exchange measurements. For leaf lengths in uncrowded settings, including A max improves model fit over the initial model. The mtci and pri2 indices also outperform direct A max measurements. Of particular importance for evolutionary biologists and plant breeders, hierarchical Bayesian models estimating FVT parameters improve heritabilities compared to frequentist approaches.
Generative models for discovering sparse distributed representations.
Hinton, G E; Ghahramani, Z
1997-01-01
We describe a hierarchical, generative model that can be viewed as a nonlinear generalization of factor analysis and can be implemented in a neural network. The model uses bottom-up, top-down and lateral connections to perform Bayesian perceptual inference correctly. Once perceptual inference has been performed the connection strengths can be updated using a very simple learning rule that only requires locally available information. We demonstrate that the network learns to extract sparse, distributed, hierarchical representations. PMID:9304685
Bayesian Group Bridge for Bi-level Variable Selection.
Mallick, Himel; Yi, Nengjun
2017-06-01
A Bayesian bi-level variable selection method (BAGB: Bayesian Analysis of Group Bridge) is developed for regularized regression and classification. This new development is motivated by grouped data, where generic variables can be divided into multiple groups, with variables in the same group being mechanistically related or statistically correlated. As an alternative to frequentist group variable selection methods, BAGB incorporates structural information among predictors through a group-wise shrinkage prior. Posterior computation proceeds via an efficient MCMC algorithm. In addition to the usual ease-of-interpretation of hierarchical linear models, the Bayesian formulation produces valid standard errors, a feature that is notably absent in the frequentist framework. Empirical evidence of the attractiveness of the method is illustrated by extensive Monte Carlo simulations and real data analysis. Finally, several extensions of this new approach are presented, providing a unified framework for bi-level variable selection in general models with flexible penalties.
Bayesian analysis of CCDM models
NASA Astrophysics Data System (ADS)
Jesus, J. F.; Valentim, R.; Andrade-Oliveira, F.
2017-09-01
Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, produces a negative pressure term which can be used to explain the accelerated expansion of the Universe. In this work we tested six different spatially flat models for matter creation using statistical criteria, in light of SNe Ia data: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Bayesian Evidence (BE). These criteria allow to compare models considering goodness of fit and number of free parameters, penalizing excess of complexity. We find that JO model is slightly favoured over LJO/ΛCDM model, however, neither of these, nor Γ = 3αH0 model can be discarded from the current analysis. Three other scenarios are discarded either because poor fitting or because of the excess of free parameters. A method of increasing Bayesian evidence through reparameterization in order to reducing parameter degeneracy is also developed.
ERIC Educational Resources Information Center
Dombrowski, Stefan C.; Golay, Philippe; McGill, Ryan J.; Canivez, Gary L.
2018-01-01
Bayesian structural equation modeling (BSEM) was used to investigate the latent structure of the Differential Ability Scales-Second Edition core battery using the standardization sample normative data for ages 7-17. Results revealed plausibility of a three-factor model, consistent with publisher theory, expressed as either a higher-order (HO) or a…
The additive effects of the TM6SF2 E167K and PNPLA3 I148M polymorphisms on lipid metabolism
Chen, Lizhen; Du, Shuixian; Lu, Linlin; Lin, Zhonghua; Jin, Wenwen; Hu, Doudou; Jiang, Xiangjun; Xin, Yongning; Xuan, Shiying
2017-01-01
There is a genetic susceptibility for nonalcoholic fatty liver disease (NAFLD). To examine the role of genetic factors in the disease, a Bayesian analysis was performed to model gene relationships in NAFLD pathogenesis. The Bayesian analysis indicated a potential gene interaction between the TM6SF2 and PNPLA3 genes. Next, to explore the underlying mechanism at the cellular level, we evaluated the additive effects between the TM6SF2 E167K and PNPLA3 I148M polymorphisms on lipid metabolism. Hepa 1-6 cells were transfected with a control vector or with overexpression vectors for TM6SF2/PNPLA3-wild type, TM6SF2-mutant type, PNPLA3-mutant type, or TM6SF2/PNPLA3-mutant type. Commercial kits were used to measure triglyceride and total cholesterol levels in each of the five groups. The mRNA and protein expression levels of sterol regulatory element-binding transcription factor 1c and fatty acid synthase were analyzed using real-time PCR and western blotting. The triglyceride and total cholesterol contents were significantly different among the groups. The triglyceride and total cholesterol contents and the sterol regulatory element-binding transcription factor 1c and fatty acid synthase mRNA and protein expression levels were significantly higher in the TM6SF2/PNPLA3-mutant type group than in the TM6SF2-mutant type group or the PNPLA3-mutant type group. The TM6SF2 E167K and PNPLA3 I148M polymorphisms may have additive effects on lipid metabolism by increasing the expression of sterol regulatory element-binding transcription factor 1c and fatty acid synthase. PMID:29088779
The additive effects of the TM6SF2 E167K and PNPLA3 I148M polymorphisms on lipid metabolism.
Chen, Lizhen; Du, Shuixian; Lu, Linlin; Lin, Zhonghua; Jin, Wenwen; Hu, Doudou; Jiang, Xiangjun; Xin, Yongning; Xuan, Shiying
2017-09-26
There is a genetic susceptibility for nonalcoholic fatty liver disease (NAFLD). To examine the role of genetic factors in the disease, a Bayesian analysis was performed to model gene relationships in NAFLD pathogenesis. The Bayesian analysis indicated a potential gene interaction between the TM6SF2 and PNPLA3 genes. Next, to explore the underlying mechanism at the cellular level, we evaluated the additive effects between the TM6SF2 E167K and PNPLA3 I148M polymorphisms on lipid metabolism. Hepa 1-6 cells were transfected with a control vector or with overexpression vectors for TM6SF2/PNPLA3-wild type, TM6SF2-mutant type, PNPLA3-mutant type, or TM6SF2/PNPLA3-mutant type. Commercial kits were used to measure triglyceride and total cholesterol levels in each of the five groups. The mRNA and protein expression levels of sterol regulatory element-binding transcription factor 1c and fatty acid synthase were analyzed using real-time PCR and western blotting. The triglyceride and total cholesterol contents were significantly different among the groups. The triglyceride and total cholesterol contents and the sterol regulatory element-binding transcription factor 1c and fatty acid synthase mRNA and protein expression levels were significantly higher in the TM6SF2/PNPLA3-mutant type group than in the TM6SF2-mutant type group or the PNPLA3-mutant type group. The TM6SF2 E167K and PNPLA3 I148M polymorphisms may have additive effects on lipid metabolism by increasing the expression of sterol regulatory element-binding transcription factor 1c and fatty acid synthase.
Bayesian model selection validates a biokinetic model for zirconium processing in humans
2012-01-01
Background In radiation protection, biokinetic models for zirconium processing are of crucial importance in dose estimation and further risk analysis for humans exposed to this radioactive substance. They provide limiting values of detrimental effects and build the basis for applications in internal dosimetry, the prediction for radioactive zirconium retention in various organs as well as retrospective dosimetry. Multi-compartmental models are the tool of choice for simulating the processing of zirconium. Although easily interpretable, determining the exact compartment structure and interaction mechanisms is generally daunting. In the context of observing the dynamics of multiple compartments, Bayesian methods provide efficient tools for model inference and selection. Results We are the first to apply a Markov chain Monte Carlo approach to compute Bayes factors for the evaluation of two competing models for zirconium processing in the human body after ingestion. Based on in vivo measurements of human plasma and urine levels we were able to show that a recently published model is superior to the standard model of the International Commission on Radiological Protection. The Bayes factors were estimated by means of the numerically stable thermodynamic integration in combination with a recently developed copula-based Metropolis-Hastings sampler. Conclusions In contrast to the standard model the novel model predicts lower accretion of zirconium in bones. This results in lower levels of noxious doses for exposed individuals. Moreover, the Bayesian approach allows for retrospective dose assessment, including credible intervals for the initially ingested zirconium, in a significantly more reliable fashion than previously possible. All methods presented here are readily applicable to many modeling tasks in systems biology. PMID:22863152
Iocca, Oreste; Farcomeni, Alessio; Pardiñas Lopez, Simon; Talib, Huzefa S
2017-01-01
To conduct a traditional meta-analysis and a Bayesian Network meta-analysis to synthesize the information coming from randomized controlled trials on different socket grafting materials and combine the resulting indirect evidence in order to make inferences on treatments that have not been compared directly. RCTs were identified for inclusion in the systematic review and subsequent statistical analysis. Bone height and width remodelling were selected as the chosen summary measures for comparison. First, a series of pairwise meta-analyses were performed and overall mean difference (MD) in mm with 95% CI was calculated between grafted versus non-grafted sockets. Then, a Bayesian Network meta-analysis was performed to draw indirect conclusions on which grafting materials can be considered most likely the best compared to the others. From the six included studies, seven comparisons were obtained. Traditional meta-analysis showed statistically significant results in favour of grafting the socket compared to no-graft both for height (MD 1.02, 95% CI 0.44-1.59, p value < 0.001) than for width (MD 1.52 95% CI 1.18-1.86, p value <0.000001) remodelling. Bayesian Network meta-analysis allowed to obtain a rank of intervention efficacy. On the basis of the results of the present analysis, socket grafting seems to be more favourable than unassisted socket healing. Moreover, Bayesian Network meta-analysis indicates that freeze-dried bone graft plus membrane is the most likely effective in the reduction of bone height remodelling. Autologous bone marrow resulted the most likely effective when width remodelling was considered. Studies with larger samples and less risk of bias should be conducted in the future in order to further strengthen the results of this analysis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Browne, Erica N; Rathinam, Sivakumar R; Kanakath, Anuradha; Thundikandy, Radhika; Babu, Manohar; Lietman, Thomas M; Acharya, Nisha R
2017-02-01
To conduct a Bayesian analysis of a randomized clinical trial (RCT) for non-infectious uveitis using expert opinion as a subjective prior belief. A RCT was conducted to determine which antimetabolite, methotrexate or mycophenolate mofetil, is more effective as an initial corticosteroid-sparing agent for the treatment of intermediate, posterior, and pan-uveitis. Before the release of trial results, expert opinion on the relative effectiveness of these two medications was collected via online survey. Members of the American Uveitis Society executive committee were invited to provide an estimate for the relative decrease in efficacy with a 95% credible interval (CrI). A prior probability distribution was created from experts' estimates. A Bayesian analysis was performed using the constructed expert prior probability distribution and the trial's primary outcome. A total of 11 of the 12 invited uveitis specialists provided estimates. Eight of 11 experts (73%) believed mycophenolate mofetil is more effective. The group prior belief was that the odds of treatment success for patients taking mycophenolate mofetil were 1.4-fold the odds of those taking methotrexate (95% CrI 0.03-45.0). The odds of treatment success with mycophenolate mofetil compared to methotrexate was 0.4 from the RCT (95% confidence interval 0.1-1.2) and 0.7 (95% CrI 0.2-1.7) from the Bayesian analysis. A Bayesian analysis combining expert belief with the trial's result did not indicate preference for one drug. However, the wide credible interval leaves open the possibility of a substantial treatment effect. This suggests clinical equipoise necessary to allow a larger, more definitive RCT.
Inhaled Cannabis for Chronic Neuropathic Pain: A Meta-analysis of Individual Patient Data.
Andreae, Michael H; Carter, George M; Shaparin, Naum; Suslov, Kathryn; Ellis, Ronald J; Ware, Mark A; Abrams, Donald I; Prasad, Hannah; Wilsey, Barth; Indyk, Debbie; Johnson, Matthew; Sacks, Henry S
2015-12-01
Chronic neuropathic pain, the most frequent condition affecting the peripheral nervous system, remains underdiagnosed and difficult to treat. Inhaled cannabis may alleviate chronic neuropathic pain. Our objective was to synthesize the evidence on the use of inhaled cannabis for chronic neuropathic pain. We performed a systematic review and a meta-analysis of individual patient data. We registered our protocol with PROSPERO CRD42011001182. We searched in Cochrane Central, PubMed, EMBASE, and AMED. We considered all randomized controlled trials investigating chronic painful neuropathy and comparing inhaled cannabis with placebo. We pooled treatment effects following a hierarchical random-effects Bayesian responder model for the population-averaged subject-specific effect. Our evidence synthesis of individual patient data from 178 participants with 405 observed responses in 5 randomized controlled trials following patients for days to weeks provides evidence that inhaled cannabis results in short-term reductions in chronic neuropathic pain for 1 in every 5 to 6 patients treated (number needed to treat = 5.6 with a Bayesian 95% credible interval ranging between 3.4 and 14). Our inferences were insensitive to model assumptions, priors, and parameter choices. We caution that the small number of studies and participants, the short follow-up, shortcomings in allocation concealment, and considerable attrition limit the conclusions that can be drawn from the review. The Bayes factor is 332, corresponding to a posterior probability of effect of 99.7%. This novel Bayesian meta-analysis of individual patient data from 5 randomized trials suggests that inhaled cannabis may provide short-term relief for 1 in 5 to 6 patients with neuropathic pain. Pragmatic trials are needed to evaluate the long-term benefits and risks of this treatment. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.
Using robust Bayesian network to estimate the residuals of fluoroquinolone antibiotic in soil.
Li, Xuewen; Xie, Yunfeng; Li, Lianfa; Yang, Xunfeng; Wang, Ning; Wang, Jinfeng
2015-11-01
Prediction of antibiotic pollution and its consequences is difficult, due to the uncertainties and complexities associated with multiple related factors. This article employed domain knowledge and spatial data to construct a Bayesian network (BN) model to assess fluoroquinolone antibiotic (FQs) pollution in the soil of an intensive vegetable cultivation area. The results show: (1) The relationships between FQs pollution and contributory factors: Three factors (cultivation methods, crop rotations, and chicken manure types) were consistently identified as predictors in the topological structures of three FQs, indicating their importance in FQs pollution; deduced with domain knowledge, the cultivation methods are determined by the crop rotations, which require different nutrients (derived from the manure) according to different plant biomass. (2) The performance of BN model: The integrative robust Bayesian network model achieved the highest detection probability (pd) of high-risk and receiver operating characteristic (ROC) area, since it incorporates domain knowledge and model uncertainty. Our encouraging findings have implications for the use of BN as a robust approach to assessment of FQs pollution and for informing decisions on appropriate remedial measures.
Bayesian linearized amplitude-versus-frequency inversion for quality factor and its application
NASA Astrophysics Data System (ADS)
Yang, Xinchao; Teng, Long; Li, Jingnan; Cheng, Jiubing
2018-06-01
We propose a straightforward attenuation inversion method by utilizing the amplitude-versus-frequency (AVF) characteristics of seismic data. A new linearized approximation equation of the angle and frequency dependent reflectivity in viscoelastic media is derived. We then use the presented equation to implement the Bayesian linear AVF inversion. The inversion result includes not only P-wave and S-wave velocities, and densities, but also P-wave and S-wave quality factors. Synthetic tests show that the AVF inversion surpasses the AVA inversion for quality factor estimation. However, a higher signal noise ratio (SNR) of data is necessary for the AVF inversion. To show its feasibility, we apply both the new Bayesian AVF inversion and conventional AVA inversion to a tight gas reservoir data in Sichuan Basin in China. Considering the SNR of the field data, a combination of AVF inversion for attenuation parameters and AVA inversion for elastic parameters is recommended. The result reveals that attenuation estimations could serve as a useful complement in combination with the AVA inversion results for the detection of tight gas reservoirs.
Online Variational Bayesian Filtering-Based Mobile Target Tracking in Wireless Sensor Networks
Zhou, Bingpeng; Chen, Qingchun; Li, Tiffany Jing; Xiao, Pei
2014-01-01
The received signal strength (RSS)-based online tracking for a mobile node in wireless sensor networks (WSNs) is investigated in this paper. Firstly, a multi-layer dynamic Bayesian network (MDBN) is introduced to characterize the target mobility with either directional or undirected movement. In particular, it is proposed to employ the Wishart distribution to approximate the time-varying RSS measurement precision's randomness due to the target movement. It is shown that the proposed MDBN offers a more general analysis model via incorporating the underlying statistical information of both the target movement and observations, which can be utilized to improve the online tracking capability by exploiting the Bayesian statistics. Secondly, based on the MDBN model, a mean-field variational Bayesian filtering (VBF) algorithm is developed to realize the online tracking of a mobile target in the presence of nonlinear observations and time-varying RSS precision, wherein the traditional Bayesian filtering scheme cannot be directly employed. Thirdly, a joint optimization between the real-time velocity and its prior expectation is proposed to enable online velocity tracking in the proposed online tacking scheme. Finally, the associated Bayesian Cramer–Rao Lower Bound (BCRLB) analysis and numerical simulations are conducted. Our analysis unveils that, by exploiting the potential state information via the general MDBN model, the proposed VBF algorithm provides a promising solution to the online tracking of a mobile node in WSNs. In addition, it is shown that the final tracking accuracy linearly scales with its expectation when the RSS measurement precision is time-varying. PMID:25393784
Model-based Bayesian inference for ROC data analysis
NASA Astrophysics Data System (ADS)
Lei, Tianhu; Bae, K. Ty
2013-03-01
This paper presents a study of model-based Bayesian inference to Receiver Operating Characteristics (ROC) data. The model is a simple version of general non-linear regression model. Different from Dorfman model, it uses a probit link function with a covariate variable having zero-one two values to express binormal distributions in a single formula. Model also includes a scale parameter. Bayesian inference is implemented by Markov Chain Monte Carlo (MCMC) method carried out by Bayesian analysis Using Gibbs Sampling (BUGS). Contrast to the classical statistical theory, Bayesian approach considers model parameters as random variables characterized by prior distributions. With substantial amount of simulated samples generated by sampling algorithm, posterior distributions of parameters as well as parameters themselves can be accurately estimated. MCMC-based BUGS adopts Adaptive Rejection Sampling (ARS) protocol which requires the probability density function (pdf) which samples are drawing from be log concave with respect to the targeted parameters. Our study corrects a common misconception and proves that pdf of this regression model is log concave with respect to its scale parameter. Therefore, ARS's requirement is satisfied and a Gaussian prior which is conjugate and possesses many analytic and computational advantages is assigned to the scale parameter. A cohort of 20 simulated data sets and 20 simulations from each data set are used in our study. Output analysis and convergence diagnostics for MCMC method are assessed by CODA package. Models and methods by using continuous Gaussian prior and discrete categorical prior are compared. Intensive simulations and performance measures are given to illustrate our practice in the framework of model-based Bayesian inference using MCMC method.
Rabelo, Cleverton Correa; Feres, Magda; Gonçalves, Cristiane; Figueiredo, Luciene C; Faveri, Marcelo; Tu, Yu-Kang; Chambrone, Leandro
2015-07-01
The aim of this study was to assess the effect of systemic antibiotic therapy on the treatment of aggressive periodontitis (AgP). This study was conducted and reported in accordance with the PRISMA statement. The MEDLINE, EMBASE and CENTRAL databases were searched up to June 2014 for randomized clinical trials comparing the treatment of subjects with AgP with either scaling and root planing (SRP) alone or associated with systemic antibiotics. Bayesian network meta-analysis was prepared using the Bayesian random-effects hierarchical models and the outcomes reported at 6-month post-treatment. Out of 350 papers identified, 14 studies were eligible. Greater gain in clinical attachment (CA) (mean difference [MD]: 1.08 mm; p < 0.0001) and reduction in probing depth (PD) (MD: 1.05 mm; p < 0.00001) were observed for SRP + metronidazole (Mtz), and for SRP + Mtz + amoxicillin (Amx) (MD: 0.45 mm, MD: 0.53 mm, respectively; p < 0.00001) than SRP alone/placebo. Bayesian network meta-analysis showed additional benefits in CA gain and PD reduction when SRP was associated with systemic antibiotics. SRP plus systemic antibiotics led to an additional clinical effect compared with SRP alone in the treatment of AgP. Of the antibiotic protocols available for inclusion into the Bayesian network meta-analysis, Mtz and Mtz/Amx provided to the most beneficial outcomes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ali, Syed Shujait; Yu, Yan; Pfosser, Martin; Wetschnig, Wolfgang
2012-01-01
Background and Aims Subfamily Hyacinthoideae (Hyacinthaceae) comprises more than 400 species. Members are distributed in sub-Saharan Africa, Madagascar, India, eastern Asia, the Mediterranean region and Eurasia. Hyacinthoideae, like many other plant lineages, show disjunct distribution patterns. The aim of this study was to reconstruct the biogeographical history of Hyacinthoideae based on phylogenetic analyses, to find the possible ancestral range of Hyacinthoideae and to identify factors responsible for the current disjunct distribution pattern. Methods Parsimony and Bayesian approaches were applied to obtain phylogenetic trees, based on sequences of the trnL-F region. Biogeographical inferences were obtained by applying statistical dispersal-vicariance analysis (S-DIVA) and Bayesian binary MCMC (BBM) analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies). Key Results S-DIVA and BBM analyses suggest that the Hyacinthoideae clade seem to have originated in sub-Saharan Africa. Dispersal and vicariance played vital roles in creating the disjunct distribution pattern. Results also suggest an early dispersal to the Mediterranean region, and thus the northward route (from sub-Saharan Africa to Mediterranean) of dispersal is plausible for members of subfamily Hyacinthoideae. Conclusions Biogeographical analyses reveal that subfamily Hyacinthoideae has originated in sub-Saharan Africa. S-DIVA indicates an early dispersal event to the Mediterranean region followed by a vicariance event, which resulted in Hyacintheae and Massonieae tribes. By contrast, BBM analysis favours dispersal to the Mediterranean region, eastern Asia and Europe. Biogeographical analysis suggests that sub-Saharan Africa and the Mediterranean region have played vital roles as centres of diversification and radiation within subfamily Hyacinthoideae. In this bimodal distribution pattern, sub-Saharan Africa is the primary centre of diversity and the Mediterranean region is the secondary centre of diversity. Sub-Saharan Africa was the source area for radiation toward Madagascar, the Mediterranean region and India. Radiations occurred from the Mediterranean region to eastern Asia, Europe, western Asia and India. PMID:22039008
Extreme Rainfall Analysis using Bayesian Hierarchical Modeling in the Willamette River Basin, Oregon
NASA Astrophysics Data System (ADS)
Love, C. A.; Skahill, B. E.; AghaKouchak, A.; Karlovits, G. S.; England, J. F.; Duren, A. M.
2016-12-01
We present preliminary results of ongoing research directed at evaluating the worth of including various covariate data to support extreme rainfall analysis in the Willamette River basin using Bayesian hierarchical modeling (BHM). We also compare the BHM derived extreme rainfall estimates with their respective counterparts obtained from a traditional regional frequency analysis (RFA) using the same set of rain gage extreme rainfall data. The U.S. Army Corps of Engineers (USACE) Portland District operates thirteen dams in the 11,478 square mile Willamette River basin (WRB) located in northwestern Oregon, a major tributary of the Columbia River whose 187 miles long main stem, the Willamette River, flows northward between the Coastal and Cascade Ranges. The WRB contains approximately two-thirds of Oregon's population and 20 of the 25 most populous cities in the state. Extreme rainfall estimates are required to support risk-informed hydrologic analyses for these projects as part of the USACE Dam Safety Program. We analyze daily annual rainfall maxima data for the WRB utilizing the spatial BHM R package "spatial.gev.bma", which has been shown to be efficient in developing coherent maps of extreme rainfall by return level. Our intent is to profile for the USACE an alternate methodology to a RFA which was developed in 2008 due to the lack of an official NOAA Atlas 14 update for the state of Oregon. Unlike RFA, the advantage of a BHM-based analysis of hydrometeorological extremes is its ability to account for non-stationarity while providing robust estimates of uncertainty. BHM also allows for the inclusion of geographical and climatological factors which we show for the WRB influence regional rainfall extremes. Moreover, the Bayesian framework permits one to combine additional data types into the analysis; for example, information derived via elicitation and causal information expansion data, both being additional opportunities for future related research.
Bayesian model reduction and empirical Bayes for group (DCM) studies.
Friston, Karl J; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E; van Wijk, Bernadette C M; Ziegler, Gabriel; Zeidman, Peter
2016-03-01
This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level - e.g., dynamic causal models - and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These applications of Bayesian model reduction allow one to consider parametric random effects and make inferences about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical background to these procedures and illustrate their application using a worked example. This example uses a simulated mismatch negativity study of schizophrenia. We illustrate the robustness of Bayesian model reduction to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we consider the application of these empirical Bayesian procedures to classification and prediction. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Tarasov, Sergei; Génier, François
2015-01-01
Scarabaeine dung beetles are the dominant dung feeding group of insects and are widely used as model organisms in conservation, ecology and developmental biology. Due to the conflicts among 13 recently published phylogenies dealing with the higher-level relationships of dung beetles, the phylogeny of this lineage remains largely unresolved. In this study, we conduct rigorous phylogenetic analyses of dung beetles, based on an unprecedented taxon sample (110 taxa) and detailed investigation of morphology (205 characters). We provide the description of morphology and thoroughly illustrate the used characters. Along with parsimony, traditionally used in the analysis of morphological data, we also apply the Bayesian method with a novel approach that uses anatomy ontology for matrix partitioning. This approach allows for heterogeneity in evolutionary rates among characters from different anatomical regions. Anatomy ontology generates a number of parameter-partition schemes which we compare using Bayes factor. We also test the effect of inclusion of autapomorphies in the morphological analysis, which hitherto has not been examined. Generally, schemes with more parameters were favored in the Bayesian comparison suggesting that characters located on different body regions evolve at different rates and that partitioning of the data matrix using anatomy ontology is reasonable; however, trees from the parsimony and all the Bayesian analyses were quite consistent. The hypothesized phylogeny reveals many novel clades and provides additional support for some clades recovered in previous analyses. Our results provide a solid basis for a new classification of dung beetles, in which the taxonomic limits of the tribes Dichotomiini, Deltochilini and Coprini are restricted and many new tribes must be described. Based on the consistency of the phylogeny with biogeography, we speculate that dung beetles may have originated in the Mesozoic contrary to the traditional view pointing to a Cenozoic origin. PMID:25781019
Klopfenstein, Ned B; Stewart, Jane E; Ota, Yuko; Hanna, John W; Richardson, Bryce A; Ross-Davis, Amy L; Elías-Román, Rubén D; Korhonen, Kari; Keča, Nenad; Iturritxa, Eugenia; Alvarado-Rosales, Dionicio; Solheim, Halvor; Brazee, Nicholas J; Łakomy, Piotr; Cleary, Michelle R; Hasegawa, Eri; Kikuchi, Taisei; Garza-Ocañas, Fortunato; Tsopelas, Panaghiotis; Rigling, Daniel; Prospero, Simone; Tsykun, Tetyana; Bérubé, Jean A; Stefani, Franck O P; Jafarpour, Saeideh; Antonín, Vladimír; Tomšovský, Michal; McDonald, Geral I; Woodward, Stephen; Kim, Mee-Sook
2017-01-01
Armillaria possesses several intriguing characteristics that have inspired wide interest in understanding phylogenetic relationships within and among species of this genus. Nuclear ribosomal DNA sequence-based analyses of Armillaria provide only limited information for phylogenetic studies among widely divergent taxa. More recent studies have shown that translation elongation factor 1-α (tef1) sequences are highly informative for phylogenetic analysis of Armillaria species within diverse global regions. This study used Neighbor-net and coalescence-based Bayesian analyses to examine phylogenetic relationships of newly determined and existing tef1 sequences derived from diverse Armillaria species from across the Northern Hemisphere, with Southern Hemisphere Armillaria species included for reference. Based on the Bayesian analysis of tef1 sequences, Armillaria species from the Northern Hemisphere are generally contained within the following four superclades, which are named according to the specific epithet of the most frequently cited species within the superclade: (i) Socialis/Tabescens (exannulate) superclade including Eurasian A. ectypa, North American A. socialis (A. tabescens), and Eurasian A. socialis (A. tabescens) clades; (ii) Mellea superclade including undescribed annulate North American Armillaria sp. (Mexico) and four separate clades of A. mellea (Europe and Iran, eastern Asia, and two groups from North America); (iii) Gallica superclade including Armillaria Nag E (Japan), multiple clades of A. gallica (Asia and Europe), A. calvescens (eastern North America), A. cepistipes (North America), A. altimontana (western USA), A. nabsnona (North America and Japan), and at least two A. gallica clades (North America); and (iv) Solidipes/Ostoyae superclade including two A. solidipes/ostoyae clades (North America), A. gemina (eastern USA), A. solidipes/ostoyae (Eurasia), A. cepistipes (Europe and Japan), A. sinapina (North America and Japan), and A. borealis (Eurasia) clade 2. Of note is that A. borealis (Eurasia) clade 1 appears basal to the Solidipes/Ostoyae and Gallica superclades. The Neighbor-net analysis showed similar phylogenetic relationships. This study further demonstrates the utility of tef1 for global phylogenetic studies of Armillaria species and provides critical insights into multiple taxonomic issues that warrant further study.
Cheng, Ji; Iorio, Alfonso; Marcucci, Maura; Romanov, Vadim; Pullenayegum, Eleanor M; Marshall, John K; Thabane, Lehana
2016-01-01
Background Developing inhibitors is a rare event during the treatment of hemophilia A. The multifacets and uncertainty surrounding the development of inhibitors further complicate the process of estimating inhibitor rate from the limited data. Bayesian statistical modeling provides a useful tool in generating, enhancing, and exploring the evidence through incorporating all the available information. Methods We built our Bayesian analysis using three study cases to estimate the inhibitor rates of patients with hemophilia A in three different scenarios: Case 1, a single cohort of previously treated patients (PTPs) or previously untreated patients; Case 2, a meta-analysis of PTP cohorts; and Case 3, a previously unexplored patient population – patients with baseline low-titer inhibitor or history of inhibitor development. The data used in this study were extracted from three published ADVATE (antihemophilic factor [recombinant] is a product of Baxter for treating hemophilia A) post-authorization surveillance studies. Noninformative and informative priors were applied to Bayesian standard (Case 1) or random-effects (Case 2 and Case 3) logistic models. Bayesian probabilities of satisfying three meaningful thresholds of the risk of developing a clinical significant inhibitor (10/100, 5/100 [high rates], and 1/86 [the Food and Drug Administration mandated cutoff rate in PTPs]) were calculated. The effect of discounting prior information or scaling up the study data was evaluated. Results Results based on noninformative priors were similar to the classical approach. Using priors from PTPs lowered the point estimate and narrowed the 95% credible intervals (Case 1: from 1.3 [0.5, 2.7] to 0.8 [0.5, 1.1]; Case 2: from 1.9 [0.6, 6.0] to 0.8 [0.5, 1.1]; Case 3: 2.3 [0.5, 6.8] to 0.7 [0.5, 1.1]). All probabilities of satisfying a threshold of 1/86 were above 0.65. Increasing the number of patients by two and ten times substantially narrowed the credible intervals for the single cohort study (1.4 [0.7, 2.3] and 1.4 [1.1, 1.8], respectively). Increasing the number of studies by two and ten times for the multiple study scenarios (Case 2: 1.9 [0.6, 4.0] and 1.9 [1.5, 2.6]; Case 3: 2.4 [0.9, 5.0] and 2.6 [1.9, 3.5], respectively) had a similar effect. Conclusion Bayesian approach as a robust, transparent, and reproducible analytic method can be efficiently used to estimate the inhibitor rate of hemophilia A in complex clinical settings. PMID:27822129
Cheng, Ji; Iorio, Alfonso; Marcucci, Maura; Romanov, Vadim; Pullenayegum, Eleanor M; Marshall, John K; Thabane, Lehana
2016-01-01
Developing inhibitors is a rare event during the treatment of hemophilia A. The multifacets and uncertainty surrounding the development of inhibitors further complicate the process of estimating inhibitor rate from the limited data. Bayesian statistical modeling provides a useful tool in generating, enhancing, and exploring the evidence through incorporating all the available information. We built our Bayesian analysis using three study cases to estimate the inhibitor rates of patients with hemophilia A in three different scenarios: Case 1, a single cohort of previously treated patients (PTPs) or previously untreated patients; Case 2, a meta-analysis of PTP cohorts; and Case 3, a previously unexplored patient population - patients with baseline low-titer inhibitor or history of inhibitor development. The data used in this study were extracted from three published ADVATE (antihemophilic factor [recombinant] is a product of Baxter for treating hemophilia A) post-authorization surveillance studies. Noninformative and informative priors were applied to Bayesian standard (Case 1) or random-effects (Case 2 and Case 3) logistic models. Bayesian probabilities of satisfying three meaningful thresholds of the risk of developing a clinical significant inhibitor (10/100, 5/100 [high rates], and 1/86 [the Food and Drug Administration mandated cutoff rate in PTPs]) were calculated. The effect of discounting prior information or scaling up the study data was evaluated. Results based on noninformative priors were similar to the classical approach. Using priors from PTPs lowered the point estimate and narrowed the 95% credible intervals (Case 1: from 1.3 [0.5, 2.7] to 0.8 [0.5, 1.1]; Case 2: from 1.9 [0.6, 6.0] to 0.8 [0.5, 1.1]; Case 3: 2.3 [0.5, 6.8] to 0.7 [0.5, 1.1]). All probabilities of satisfying a threshold of 1/86 were above 0.65. Increasing the number of patients by two and ten times substantially narrowed the credible intervals for the single cohort study (1.4 [0.7, 2.3] and 1.4 [1.1, 1.8], respectively). Increasing the number of studies by two and ten times for the multiple study scenarios (Case 2: 1.9 [0.6, 4.0] and 1.9 [1.5, 2.6]; Case 3: 2.4 [0.9, 5.0] and 2.6 [1.9, 3.5], respectively) had a similar effect. Bayesian approach as a robust, transparent, and reproducible analytic method can be efficiently used to estimate the inhibitor rate of hemophilia A in complex clinical settings.
Maritime Transportation Risk Assessment of Tianjin Port with Bayesian Belief Networks.
Zhang, Jinfen; Teixeira, Ângelo P; Guedes Soares, C; Yan, Xinping; Liu, Kezhong
2016-06-01
This article develops a Bayesian belief network model for the prediction of accident consequences in the Tianjin port. The study starts with a statistical analysis of historical accident data of six years from 2008 to 2013. Then a Bayesian belief network is constructed to express the dependencies between the indicator variables and accident consequences. The statistics and expert knowledge are synthesized in the Bayesian belief network model to obtain the probability distribution of the consequences. By a sensitivity analysis, several indicator variables that have influence on the consequences are identified, including navigational area, ship type and time of the day. The results indicate that the consequences are most sensitive to the position where the accidents occurred, followed by time of day and ship length. The results also reflect that the navigational risk of the Tianjin port is at the acceptable level, despite that there is more room of improvement. These results can be used by the Maritime Safety Administration to take effective measures to enhance maritime safety in the Tianjin port. © 2016 Society for Risk Analysis.
Risk Assessment for Mobile Systems Through a Multilayered Hierarchical Bayesian Network.
Li, Shancang; Tryfonas, Theo; Russell, Gordon; Andriotis, Panagiotis
2016-08-01
Mobile systems are facing a number of application vulnerabilities that can be combined together and utilized to penetrate systems with devastating impact. When assessing the overall security of a mobile system, it is important to assess the security risks posed by each mobile applications (apps), thus gaining a stronger understanding of any vulnerabilities present. This paper aims at developing a three-layer framework that assesses the potential risks which apps introduce within the Android mobile systems. A Bayesian risk graphical model is proposed to evaluate risk propagation in a layered risk architecture. By integrating static analysis, dynamic analysis, and behavior analysis in a hierarchical framework, the risks and their propagation through each layer are well modeled by the Bayesian risk graph, which can quantitatively analyze risks faced to both apps and mobile systems. The proposed hierarchical Bayesian risk graph model offers a novel way to investigate the security risks in mobile environment and enables users and administrators to evaluate the potential risks. This strategy allows to strengthen both app security as well as the security of the entire system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb-Robertson, Bobbie-Jo M.; Corley, Courtney D.; McCue, Lee Ann
The field of bioforensics is focused on the analysis of evidence from a biocrime. Existing laboratory analyses can identify the specific strain of an organism in the evidence, as well signatures of the specific culture batch of organisms, such as low-frequency contaminants or indicators of growth and processing methods. To link these disparate types of physical data to potential suspects, investigators may need to identify institutions or individuals whose access to strains and culturing practices match those identified from the evidence. In this work we present a Bayesian statistical network to fuse different types of analytical measurements that predict themore » production environment of a Yersinia pestis sample under investigation with automated test processing of scientific publications to identify institutions with a history of growing Y. pestis under similar conditions. Furthermore, the textual and experimental signatures were evaluated recursively to determine the overall sensitivity of the network across all levels of false positives. We illustrate that institutions associated with several specific culturing practices can be accurately selected based on the experimental signature from only a few analytical measurements. These findings demonstrate that similar Bayesian networks can be generated generically for many organisms of interest and their deployment is not prohibitive due to either computational or experimental factors.« less
Matthews, Luke J.; Tehrani, Jamie J.; Jordan, Fiona M.; Collard, Mark; Nunn, Charles L.
2011-01-01
Background Archaeologists and anthropologists have long recognized that different cultural complexes may have distinct descent histories, but they have lacked analytical techniques capable of easily identifying such incongruence. Here, we show how Bayesian phylogenetic analysis can be used to identify incongruent cultural histories. We employ the approach to investigate Iranian tribal textile traditions. Methods We used Bayes factor comparisons in a phylogenetic framework to test two models of cultural evolution: the hierarchically integrated system hypothesis and the multiple coherent units hypothesis. In the hierarchically integrated system hypothesis, a core tradition of characters evolves through descent with modification and characters peripheral to the core are exchanged among contemporaneous populations. In the multiple coherent units hypothesis, a core tradition does not exist. Rather, there are several cultural units consisting of sets of characters that have different histories of descent. Results For the Iranian textiles, the Bayesian phylogenetic analyses supported the multiple coherent units hypothesis over the hierarchically integrated system hypothesis. Our analyses suggest that pile-weave designs represent a distinct cultural unit that has a different phylogenetic history compared to other textile characters. Conclusions The results from the Iranian textiles are consistent with the available ethnographic evidence, which suggests that the commercial rug market has influenced pile-rug designs but not the techniques or designs incorporated in the other textiles produced by the tribes. We anticipate that Bayesian phylogenetic tests for inferring cultural units will be of great value for researchers interested in studying the evolution of cultural traits including language, behavior, and material culture. PMID:21559083
Embedding the results of focussed Bayesian fusion into a global context
NASA Astrophysics Data System (ADS)
Sander, Jennifer; Heizmann, Michael
2014-05-01
Bayesian statistics offers a well-founded and powerful fusion methodology also for the fusion of heterogeneous information sources. However, except in special cases, the needed posterior distribution is not analytically derivable. As consequence, Bayesian fusion may cause unacceptably high computational and storage costs in practice. Local Bayesian fusion approaches aim at reducing the complexity of the Bayesian fusion methodology significantly. This is done by concentrating the actual Bayesian fusion on the potentially most task relevant parts of the domain of the Properties of Interest. Our research on these approaches is motivated by an analogy to criminal investigations where criminalists pursue clues also only locally. This publication follows previous publications on a special local Bayesian fusion technique called focussed Bayesian fusion. Here, the actual calculation of the posterior distribution gets completely restricted to a suitably chosen local context. By this, the global posterior distribution is not completely determined. Strategies for using the results of a focussed Bayesian analysis appropriately are needed. In this publication, we primarily contrast different ways of embedding the results of focussed Bayesian fusion explicitly into a global context. To obtain a unique global posterior distribution, we analyze the application of the Maximum Entropy Principle that has been shown to be successfully applicable in metrology and in different other areas. To address the special need for making further decisions subsequently to the actual fusion task, we further analyze criteria for decision making under partial information.
A Bayesian model averaging approach with non-informative priors for cost-effectiveness analyses.
Conigliani, Caterina
2010-07-20
We consider the problem of assessing new and existing technologies for their cost-effectiveness in the case where data on both costs and effects are available from a clinical trial, and we address it by means of the cost-effectiveness acceptability curve. The main difficulty in these analyses is that cost data usually exhibit highly skew and heavy-tailed distributions, so that it can be extremely difficult to produce realistic probabilistic models for the underlying population distribution. Here, in order to integrate the uncertainty about the model into the analysis of cost data and into cost-effectiveness analyses, we consider an approach based on Bayesian model averaging (BMA) in the particular case of weak prior informations about the unknown parameters of the different models involved in the procedure. The main consequence of this assumption is that the marginal densities required by BMA are undetermined. However, in accordance with the theory of partial Bayes factors and in particular of fractional Bayes factors, we suggest replacing each marginal density with a ratio of integrals that can be efficiently computed via path sampling. Copyright (c) 2010 John Wiley & Sons, Ltd.
Mertens, Ulf Kai; Voss, Andreas; Radev, Stefan
2018-01-01
We give an overview of the basic principles of approximate Bayesian computation (ABC), a class of stochastic methods that enable flexible and likelihood-free model comparison and parameter estimation. Our new open-source software called ABrox is used to illustrate ABC for model comparison on two prominent statistical tests, the two-sample t-test and the Levene-Test. We further highlight the flexibility of ABC compared to classical Bayesian hypothesis testing by computing an approximate Bayes factor for two multinomial processing tree models. Last but not least, throughout the paper, we introduce ABrox using the accompanied graphical user interface.
NASA Astrophysics Data System (ADS)
Garcia Urquia, E. L.; Braun, A.; Yamagishi, H.
2016-12-01
Tegucigalpa, the capital city of Honduras, experiences rainfall-induced landslides on a yearly basis. The high precipitation regime and the rugged topography the city has been built in couple with the lack of a proper urban expansion plan to contribute to the occurrence of landslides during the rainy season. Thousands of inhabitants live at risk of losing their belongings due to the construction of precarious shelters in landslide-prone areas on mountainous terrains and next to the riverbanks. Therefore, the city is in the need for landslide susceptibility and hazard maps to aid in the regulation of future development. Major challenges in the context of highly dynamic urbanizing areas are the overlap of natural and anthropogenic slope destabilizing factors, as well as the availability and accuracy of data. Data-driven multivariate techniques have proven to be powerful in discovering interrelations between factors, identifying important factors in large datasets, capturing non-linear problems and coping with noisy and incomplete data. This analysis focuses on the creation of a landslide susceptibility map using different methods from the field of data mining, Artificial Neural Networks (ANN), Bayesian Networks (BN) and Decision Trees (DT). The input dataset of the study contains geomorphological and hydrological factors derived from a digital elevation model with a 10 m resolution, lithological factors derived from a geological map, and anthropogenic factors, such as information on the development stage of the neighborhoods in Tegucigalpa and road density. Moreover, a landslide inventory map that was developed in 2014 through aerial photo interpretation was used as target variable in the analysis. The analysis covers an area of roughly 100 km2, while 8.95 km2 are occupied by landslides. In a first step, the dataset was explored by assessing and improving the data quality, identifying unimportant variables and finding interrelations. Then, based on a training partition of the dataset, the ANN, BN and DT were optimized for the prediction of landslides. The predictive power and ability to generalize of the resulting models were assessed in a test partition and evaluated using success rate curves, skill scores and by ensuring the spatial plausibility of the prediction.
Phylogeny of sipunculan worms: A combined analysis of four gene regions and morphology.
Schulze, Anja; Cutler, Edward B; Giribet, Gonzalo
2007-01-01
The intra-phyletic relationships of sipunculan worms were analyzed based on DNA sequence data from four gene regions and 58 morphological characters. Initially we analyzed the data under direct optimization using parsimony as optimality criterion. An implied alignment resulting from the direct optimization analysis was subsequently utilized to perform a Bayesian analysis with mixed models for the different data partitions. For this we applied a doublet model for the stem regions of the 18S rRNA. Both analyses support monophyly of Sipuncula and most of the same clades within the phylum. The analyses differ with respect to the relationships among the major groups but whereas the deep nodes in the direct optimization analysis generally show low jackknife support, they are supported by 100% posterior probability in the Bayesian analysis. Direct optimization has been useful for handling sequences of unequal length and generating conservative phylogenetic hypotheses whereas the Bayesian analysis under mixed models provided high resolution in the basal nodes of the tree.
Bayesian Parameter Inference and Model Selection by Population Annealing in Systems Biology
Murakami, Yohei
2014-01-01
Parameter inference and model selection are very important for mathematical modeling in systems biology. Bayesian statistics can be used to conduct both parameter inference and model selection. Especially, the framework named approximate Bayesian computation is often used for parameter inference and model selection in systems biology. However, Monte Carlo methods needs to be used to compute Bayesian posterior distributions. In addition, the posterior distributions of parameters are sometimes almost uniform or very similar to their prior distributions. In such cases, it is difficult to choose one specific value of parameter with high credibility as the representative value of the distribution. To overcome the problems, we introduced one of the population Monte Carlo algorithms, population annealing. Although population annealing is usually used in statistical mechanics, we showed that population annealing can be used to compute Bayesian posterior distributions in the approximate Bayesian computation framework. To deal with un-identifiability of the representative values of parameters, we proposed to run the simulations with the parameter ensemble sampled from the posterior distribution, named “posterior parameter ensemble”. We showed that population annealing is an efficient and convenient algorithm to generate posterior parameter ensemble. We also showed that the simulations with the posterior parameter ensemble can, not only reproduce the data used for parameter inference, but also capture and predict the data which was not used for parameter inference. Lastly, we introduced the marginal likelihood in the approximate Bayesian computation framework for Bayesian model selection. We showed that population annealing enables us to compute the marginal likelihood in the approximate Bayesian computation framework and conduct model selection depending on the Bayes factor. PMID:25089832
Bayesian Networks for Modeling Dredging Decisions
2011-10-01
change scenarios. Arctic Expert elicitation Netica Bacon et al . 2002 Identify factors that might lead to a change in land use from farming to...tree) algorithms developed by Lauritzen and Spiegelhalter (1988) and Jensen et al . (1990). Statistical inference is simply the process of...causality when constructing a Bayesian network (Kjaerulff and Madsen 2008, Darwiche 2009, Marcot et al . 2006). A knowledge representation approach is the
Wei Wu; James Clark; James Vose
2010-01-01
Hierarchical Bayesian (HB) modeling allows for multiple sources of uncertainty by factoring complex relationships into conditional distributions that can be used to draw inference and make predictions. We applied an HB model to estimate the parameters and state variables of a parsimonious hydrological model â GR4J â by coherently assimilating the uncertainties from the...
ERIC Educational Resources Information Center
Page, Robert; Satake, Eiki
2017-01-01
While interest in Bayesian statistics has been growing in statistics education, the treatment of the topic is still inadequate in both textbooks and the classroom. Because so many fields of study lead to careers that involve a decision-making process requiring an understanding of Bayesian methods, it is becoming increasingly clear that Bayesian…
Semiparametric Thurstonian Models for Recurrent Choices: A Bayesian Analysis
ERIC Educational Resources Information Center
Ansari, Asim; Iyengar, Raghuram
2006-01-01
We develop semiparametric Bayesian Thurstonian models for analyzing repeated choice decisions involving multinomial, multivariate binary or multivariate ordinal data. Our modeling framework has multiple components that together yield considerable flexibility in modeling preference utilities, cross-sectional heterogeneity and parameter-driven…
Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis
NASA Astrophysics Data System (ADS)
Chernoded, Andrey; Dudko, Lev; Myagkov, Igor; Volkov, Petr
2017-10-01
Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.
A Bayesian test for Hardy–Weinberg equilibrium of biallelic X-chromosomal markers
Puig, X; Ginebra, J; Graffelman, J
2017-01-01
The X chromosome is a relatively large chromosome, harboring a lot of genetic information. Much of the statistical analysis of X-chromosomal information is complicated by the fact that males only have one copy. Recently, frequentist statistical tests for Hardy–Weinberg equilibrium have been proposed specifically for dealing with markers on the X chromosome. Bayesian test procedures for Hardy–Weinberg equilibrium for the autosomes have been described, but Bayesian work on the X chromosome in this context is lacking. This paper gives the first Bayesian approach for testing Hardy–Weinberg equilibrium with biallelic markers at the X chromosome. Marginal and joint posterior distributions for the inbreeding coefficient in females and the male to female allele frequency ratio are computed, and used for statistical inference. The paper gives a detailed account of the proposed Bayesian test, and illustrates it with data from the 1000 Genomes project. In that implementation, a novel approach to tackle multiple testing from a Bayesian perspective through posterior predictive checks is used. PMID:28900292
Murray, Aja Louise; Booth, Tom; Eisner, Manuel; Obsuth, Ingrid; Ribeaud, Denis
2018-05-22
Whether or not importance should be placed on an all-encompassing general factor of psychopathology (or p factor) in classifying, researching, diagnosing, and treating psychiatric disorders depends (among other issues) on the extent to which comorbidity is symptom-general rather than staying largely within the confines of narrower transdiagnostic factors such as internalizing and externalizing. In this study, we compared three methods of estimating p factor strength. We compared omega hierarchical and explained common variance calculated from confirmatory factor analysis (CFA) bifactor models with maximum likelihood (ML) estimation, from exploratory structural equation modeling/exploratory factor analysis models with a bifactor rotation, and from Bayesian structural equation modeling (BSEM) bifactor models. Our simulation results suggested that BSEM with small variance priors on secondary loadings might be the preferred option. However, CFA with ML also performed well provided secondary loadings were modeled. We provide two empirical examples of applying the three methodologies using a normative sample of youth (z-proso, n = 1,286) and a university counseling sample (n = 359).
Eastwood, John G; Jalaludin, Bin B; Kemp, Lynn A
2014-01-01
A recent criticism of social epidemiological studies, and multi-level studies in particular has been a paucity of theory. We will present here the protocol for a study that aims to build a theory of the social epidemiology of maternal depression. We use a critical realist approach which is trans-disciplinary, encompassing both quantitative and qualitative traditions, and that assumes both ontological and hierarchical stratification of reality. We describe a critical realist Explanatory Theory Building Method comprising of an: 1) emergent phase, 2) construction phase, and 3) confirmatory phase. A concurrent triangulated mixed method multilevel cross-sectional study design is described. The Emergent Phase uses: interviews, focus groups, exploratory data analysis, exploratory factor analysis, regression, and multilevel Bayesian spatial data analysis to detect and describe phenomena. Abductive and retroductive reasoning will be applied to: categorical principal component analysis, exploratory factor analysis, regression, coding of concepts and categories, constant comparative analysis, drawing of conceptual networks, and situational analysis to generate theoretical concepts. The Theory Construction Phase will include: 1) defining stratified levels; 2) analytic resolution; 3) abductive reasoning; 4) comparative analysis (triangulation); 5) retroduction; 6) postulate and proposition development; 7) comparison and assessment of theories; and 8) conceptual frameworks and model development. The strength of the critical realist methodology described is the extent to which this paradigm is able to support the epistemological, ontological, axiological, methodological and rhetorical positions of both quantitative and qualitative research in the field of social epidemiology. The extensive multilevel Bayesian studies, intensive qualitative studies, latent variable theory, abductive triangulation, and Inference to Best Explanation provide a strong foundation for Theory Construction. The study will contribute to defining the role that realism and mixed methods can play in explaining the social determinants and developmental origins of health and disease.
Uncertainty Analysis and Parameter Estimation For Nearshore Hydrodynamic Models
NASA Astrophysics Data System (ADS)
Ardani, S.; Kaihatu, J. M.
2012-12-01
Numerical models represent deterministic approaches used for the relevant physical processes in the nearshore. Complexity of the physics of the model and uncertainty involved in the model inputs compel us to apply a stochastic approach to analyze the robustness of the model. The Bayesian inverse problem is one powerful way to estimate the important input model parameters (determined by apriori sensitivity analysis) and can be used for uncertainty analysis of the outputs. Bayesian techniques can be used to find the range of most probable parameters based on the probability of the observed data and the residual errors. In this study, the effect of input data involving lateral (Neumann) boundary conditions, bathymetry and off-shore wave conditions on nearshore numerical models are considered. Monte Carlo simulation is applied to a deterministic numerical model (the Delft3D modeling suite for coupled waves and flow) for the resulting uncertainty analysis of the outputs (wave height, flow velocity, mean sea level and etc.). Uncertainty analysis of outputs is performed by random sampling from the input probability distribution functions and running the model as required until convergence to the consistent results is achieved. The case study used in this analysis is the Duck94 experiment, which was conducted at the U.S. Army Field Research Facility at Duck, North Carolina, USA in the fall of 1994. The joint probability of model parameters relevant for the Duck94 experiments will be found using the Bayesian approach. We will further show that, by using Bayesian techniques to estimate the optimized model parameters as inputs and applying them for uncertainty analysis, we can obtain more consistent results than using the prior information for input data which means that the variation of the uncertain parameter will be decreased and the probability of the observed data will improve as well. Keywords: Monte Carlo Simulation, Delft3D, uncertainty analysis, Bayesian techniques, MCMC
Automated Bayesian model development for frequency detection in biological time series.
Granqvist, Emma; Oldroyd, Giles E D; Morris, Richard J
2011-06-24
A first step in building a mathematical model of a biological system is often the analysis of the temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains contain the complete knowledge of the system. However, for truncated, noisy time series with background trends this unique mapping breaks down and the question reduces to an inference problem of identifying the most probable frequencies. In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages over conventional methods by applying it to a number of test cases, including two types of biological time series. Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy, posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles highlights the problem of time series with limited length. The results show that the Bayesian frequency detection approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for modelling the data without pre-processing. Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy time series, and the requirement for uniformly sampled data. Biological time series often deviate significantly from the requirements of optimality for Fourier transformation. In this paper we present an alternative approach based on Bayesian inference. We show the value of placing spectral analysis in the framework of Bayesian inference and demonstrate how model comparison can automate this procedure.
Automated Bayesian model development for frequency detection in biological time series
2011-01-01
Background A first step in building a mathematical model of a biological system is often the analysis of the temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains contain the complete knowledge of the system. However, for truncated, noisy time series with background trends this unique mapping breaks down and the question reduces to an inference problem of identifying the most probable frequencies. Results In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages over conventional methods by applying it to a number of test cases, including two types of biological time series. Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy, posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles highlights the problem of time series with limited length. The results show that the Bayesian frequency detection approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for modelling the data without pre-processing. Conclusions Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy time series, and the requirement for uniformly sampled data. Biological time series often deviate significantly from the requirements of optimality for Fourier transformation. In this paper we present an alternative approach based on Bayesian inference. We show the value of placing spectral analysis in the framework of Bayesian inference and demonstrate how model comparison can automate this procedure. PMID:21702910
Bayesian ensemble refinement by replica simulations and reweighting.
Hummer, Gerhard; Köfinger, Jürgen
2015-12-28
We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.
Bayesian ensemble refinement by replica simulations and reweighting
NASA Astrophysics Data System (ADS)
Hummer, Gerhard; Köfinger, Jürgen
2015-12-01
We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.
Burn, Robert W.; Underwood, Fiona M.; Blanc, Julian
2011-01-01
Elephant poaching and the ivory trade remain high on the agenda at meetings of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Well-informed debates require robust estimates of trends, the spatial distribution of poaching, and drivers of poaching. We present an analysis of trends and drivers of an indicator of elephant poaching of all elephant species. The site-based monitoring system known as Monitoring the Illegal Killing of Elephants (MIKE), set up by the 10th Conference of the Parties of CITES in 1997, produces carcass encounter data reported mainly by anti-poaching patrols. Data analyzed were site by year totals of 6,337 carcasses from 66 sites in Africa and Asia from 2002–2009. Analysis of these observational data is a serious challenge to traditional statistical methods because of the opportunistic and non-random nature of patrols, and the heterogeneity across sites. Adopting a Bayesian hierarchical modeling approach, we used the proportion of carcasses that were illegally killed (PIKE) as a poaching index, to estimate the trend and the effects of site- and country-level factors associated with poaching. Important drivers of illegal killing that emerged at country level were poor governance and low levels of human development, and at site level, forest cover and area of the site in regions where human population density is low. After a drop from 2002, PIKE remained fairly constant from 2003 until 2006, after which it increased until 2008. The results for 2009 indicate a decline. Sites with PIKE ranging from the lowest to the highest were identified. The results of the analysis provide a sound information base for scientific evidence-based decision making in the CITES process. PMID:21912670
Burn, Robert W; Underwood, Fiona M; Blanc, Julian
2011-01-01
Elephant poaching and the ivory trade remain high on the agenda at meetings of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Well-informed debates require robust estimates of trends, the spatial distribution of poaching, and drivers of poaching. We present an analysis of trends and drivers of an indicator of elephant poaching of all elephant species. The site-based monitoring system known as Monitoring the Illegal Killing of Elephants (MIKE), set up by the 10(th) Conference of the Parties of CITES in 1997, produces carcass encounter data reported mainly by anti-poaching patrols. Data analyzed were site by year totals of 6,337 carcasses from 66 sites in Africa and Asia from 2002-2009. Analysis of these observational data is a serious challenge to traditional statistical methods because of the opportunistic and non-random nature of patrols, and the heterogeneity across sites. Adopting a bayesian hierarchical modeling approach, we used the proportion of carcasses that were illegally killed (PIKE) as a poaching index, to estimate the trend and the effects of site- and country-level factors associated with poaching. Important drivers of illegal killing that emerged at country level were poor governance and low levels of human development, and at site level, forest cover and area of the site in regions where human population density is low. After a drop from 2002, PIKE remained fairly constant from 2003 until 2006, after which it increased until 2008. The results for 2009 indicate a decline. Sites with PIKE ranging from the lowest to the highest were identified. The results of the analysis provide a sound information base for scientific evidence-based decision making in the CITES process.
Häggström, Jenny; Cipriano, Mariateresa; Forshell, Linus Plym; Persson, Emma; Hammarsten, Peter; Stella, Nephi; Fowler, Christopher J
2014-08-01
The endocannabinoid system regulates cancer cell proliferation, and in prostate cancer a high cannabinoid CB1 receptor expression is associated with a poor prognosis. Down-stream mediators of CB1 receptor signaling in prostate cancer are known, but information on potential upstream regulators is lacking. Data from a well-characterized tumor tissue microarray were used for a Bayesian network analysis using the max-min hill-climbing method. In non-malignant tissue samples, a directionality of pEGFR (the phosphorylated form of the epidermal growth factor receptor) → CB1 receptors were found regardless as to whether the endocannabinoid metabolizing enzyme fatty acid amide hydrolase (FAAH) was included as a parameter. A similar result was found in the tumor tissue, but only when FAAH was included in the analysis. A second regulatory pathway, from the growth factor receptor ErbB2 → FAAH was also identified in the tumor samples. Transfection of AT1 prostate cancer cells with CB1 receptors induced a sensitivity to the growth-inhibiting effects of the CB receptor agonist CP55,940. The sensitivity was not dependent upon the level of receptor expression. Thus a high CB1 receptor expression alone does not drive the cells towards a survival phenotype in the presence of a CB receptor agonist. The data identify two potential regulators of the endocannabinoid system in prostate cancer and allow the construction of a model of a dysregulated endocannabinoid signaling network in this tumor. Further studies should be designed to test the veracity of the predictions of the network analysis in prostate cancer and other solid tumors. © 2014 The Authors. The Prostate published by Wiley Periodicals, Inc.
Brase, Gary L.; Hill, W. Trey
2015-01-01
Bayesian reasoning, defined here as the updating of a posterior probability following new information, has historically been problematic for humans. Classic psychology experiments have tested human Bayesian reasoning through the use of word problems and have evaluated each participant’s performance against the normatively correct answer provided by Bayes’ theorem. The standard finding is of generally poor performance. Over the past two decades, though, progress has been made on how to improve Bayesian reasoning. Most notably, research has demonstrated that the use of frequencies in a natural sampling framework—as opposed to single-event probabilities—can improve participants’ Bayesian estimates. Furthermore, pictorial aids and certain individual difference factors also can play significant roles in Bayesian reasoning success. The mechanics of how to build tasks which show these improvements is not under much debate. The explanations for why naturally sampled frequencies and pictures help Bayesian reasoning remain hotly contested, however, with many researchers falling into ingrained “camps” organized around two dominant theoretical perspectives. The present paper evaluates the merits of these theoretical perspectives, including the weight of empirical evidence, theoretical coherence, and predictive power. By these criteria, the ecological rationality approach is clearly better than the heuristics and biases view. Progress in the study of Bayesian reasoning will depend on continued research that honestly, vigorously, and consistently engages across these different theoretical accounts rather than staying “siloed” within one particular perspective. The process of science requires an understanding of competing points of view, with the ultimate goal being integration. PMID:25873904
Brase, Gary L; Hill, W Trey
2015-01-01
Bayesian reasoning, defined here as the updating of a posterior probability following new information, has historically been problematic for humans. Classic psychology experiments have tested human Bayesian reasoning through the use of word problems and have evaluated each participant's performance against the normatively correct answer provided by Bayes' theorem. The standard finding is of generally poor performance. Over the past two decades, though, progress has been made on how to improve Bayesian reasoning. Most notably, research has demonstrated that the use of frequencies in a natural sampling framework-as opposed to single-event probabilities-can improve participants' Bayesian estimates. Furthermore, pictorial aids and certain individual difference factors also can play significant roles in Bayesian reasoning success. The mechanics of how to build tasks which show these improvements is not under much debate. The explanations for why naturally sampled frequencies and pictures help Bayesian reasoning remain hotly contested, however, with many researchers falling into ingrained "camps" organized around two dominant theoretical perspectives. The present paper evaluates the merits of these theoretical perspectives, including the weight of empirical evidence, theoretical coherence, and predictive power. By these criteria, the ecological rationality approach is clearly better than the heuristics and biases view. Progress in the study of Bayesian reasoning will depend on continued research that honestly, vigorously, and consistently engages across these different theoretical accounts rather than staying "siloed" within one particular perspective. The process of science requires an understanding of competing points of view, with the ultimate goal being integration.
Chamberlain, Daniel B; Chamberlain, James M
2017-01-01
We demonstrate the application of a Bayesian approach to a recent negative clinical trial result. A Bayesian analysis of such a trial can provide a more useful interpretation of results and can incorporate previous evidence. This was a secondary analysis of the efficacy and safety results of the Pediatric Seizure Study, a randomized clinical trial of lorazepam versus diazepam for pediatric status epilepticus. We included the published results from the only prospective pediatric study of status in a Bayesian hierarchic model, and we performed sensitivity analyses on the amount of pooling between studies. We evaluated 3 summary analyses for the results: superiority, noninferiority (margin <-10%), and practical equivalence (within ±10%). Consistent with the original study's classic analysis of study results, we did not demonstrate superiority of lorazepam over diazepam. There is a 95% probability that the true efficacy of lorazepam is in the range of 66% to 80%. For both the efficacy and safety outcomes, there was greater than 95% probability that lorazepam is noninferior to diazepam, and there was greater than 90% probability that the 2 medications are practically equivalent. The results were largely driven by the current study because of the sample sizes of our study (n=273) and the previous pediatric study (n=61). Because Bayesian analysis estimates the probability of one or more hypotheses, such an approach can provide more useful information about the meaning of the results of a negative trial outcome. In the case of pediatric status epilepticus, it is highly likely that lorazepam is noninferior and practically equivalent to diazepam. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Browne, Erica N; Rathinam, Sivakumar R; Kanakath, Anuradha; Thundikandy, Radhika; Babu, Manohar; Lietman, Thomas M; Acharya, Nisha R
2017-01-01
Purpose To conduct a Bayesian analysis of a randomized clinical trial (RCT) for non-infectious uveitis using expert opinion as a subjective prior belief. Methods A RCT was conducted to determine which antimetabolite, methotrexate or mycophenolate mofetil, is more effective as an initial corticosteroid-sparing agent for the treatment of intermediate, posterior, and pan- uveitis. Before the release of trial results, expert opinion on the relative effectiveness of these two medications was collected via online survey. Members of the American Uveitis Society executive committee were invited to provide an estimate for the relative decrease in efficacy with a 95% credible interval (CrI). A prior probability distribution was created from experts’ estimates. A Bayesian analysis was performed using the constructed expert prior probability distribution and the trial’s primary outcome. Results 11 of 12 invited uveitis specialists provided estimates. Eight of 11 experts (73%) believed mycophenolate mofetil is more effective. The group prior belief was that the odds of treatment success for patients taking mycophenolate mofetil were 1.4-fold the odds of those taking methotrexate (95% CrI 0.03 – 45.0). The odds of treatment success with mycophenolate mofetil compared to methotrexate was 0.4 from the RCT (95% confidence interval 0.1–1.2) and 0.7 (95% CrI 0.2–1.7) from the Bayesian analysis. Conclusions A Bayesian analysis combining expert belief with the trial’s result did not indicate preference for one drug. However, the wide credible interval leaves open the possibility of a substantial treatment effect. This suggests clinical equipoise necessary to allow a larger, more definitive RCT. PMID:27982726
BATS: a Bayesian user-friendly software for analyzing time series microarray experiments.
Angelini, Claudia; Cutillo, Luisa; De Canditiis, Daniela; Mutarelli, Margherita; Pensky, Marianna
2008-10-06
Gene expression levels in a given cell can be influenced by different factors, namely pharmacological or medical treatments. The response to a given stimulus is usually different for different genes and may depend on time. One of the goals of modern molecular biology is the high-throughput identification of genes associated with a particular treatment or a biological process of interest. From methodological and computational point of view, analyzing high-dimensional time course microarray data requires very specific set of tools which are usually not included in standard software packages. Recently, the authors of this paper developed a fully Bayesian approach which allows one to identify differentially expressed genes in a 'one-sample' time-course microarray experiment, to rank them and to estimate their expression profiles. The method is based on explicit expressions for calculations and, hence, very computationally efficient. The software package BATS (Bayesian Analysis of Time Series) presented here implements the methodology described above. It allows an user to automatically identify and rank differentially expressed genes and to estimate their expression profiles when at least 5-6 time points are available. The package has a user-friendly interface. BATS successfully manages various technical difficulties which arise in time-course microarray experiments, such as a small number of observations, non-uniform sampling intervals and replicated or missing data. BATS is a free user-friendly software for the analysis of both simulated and real microarray time course experiments. The software, the user manual and a brief illustrative example are freely available online at the BATS website: http://www.na.iac.cnr.it/bats.
NASA Astrophysics Data System (ADS)
Gomes, Guilherme J. C.; Vrugt, Jasper A.; Vargas, Eurípedes A.
2016-04-01
The depth to bedrock controls a myriad of processes by influencing subsurface flow paths, erosion rates, soil moisture, and water uptake by plant roots. As hillslope interiors are very difficult and costly to illuminate and access, the topography of the bedrock surface is largely unknown. This essay is concerned with the prediction of spatial patterns in the depth to bedrock (DTB) using high-resolution topographic data, numerical modeling, and Bayesian analysis. Our DTB model builds on the bottom-up control on fresh-bedrock topography hypothesis of Rempe and Dietrich (2014) and includes a mass movement and bedrock-valley morphology term to extent the usefulness and general applicability of the model. We reconcile the DTB model with field observations using Bayesian analysis with the DREAM algorithm. We investigate explicitly the benefits of using spatially distributed parameter values to account implicitly, and in a relatively simple way, for rock mass heterogeneities that are very difficult, if not impossible, to characterize adequately in the field. We illustrate our method using an artificial data set of bedrock depth observations and then evaluate our DTB model with real-world data collected at the Papagaio river basin in Rio de Janeiro, Brazil. Our results demonstrate that the DTB model predicts accurately the observed bedrock depth data. The posterior mean DTB simulation is shown to be in good agreement with the measured data. The posterior prediction uncertainty of the DTB model can be propagated forward through hydromechanical models to derive probabilistic estimates of factors of safety.
Wang, Ling; Abdel-Aty, Mohamed; Wang, Xuesong; Yu, Rongjie
2018-02-01
There have been plenty of traffic safety studies based on average daily traffic (ADT), average hourly traffic (AHT), or microscopic traffic at 5 min intervals. Nevertheless, not enough research has compared the performance of these three types of safety studies, and seldom of previous studies have intended to find whether the results of one type of study is transferable to the other two studies. First, this study built three models: a Bayesian Poisson-lognormal model to estimate the daily crash frequency using ADT, a Bayesian Poisson-lognormal model to estimate the hourly crash frequency using AHT, and a Bayesian logistic regression model for the real-time safety analysis using microscopic traffic. The model results showed that the crash contributing factors found by different models were comparable but not the same. Four variables, i.e., the logarithm of volume, the standard deviation of speed, the logarithm of segment length, and the existence of diverge segment, were positively significant in the three models. Additionally, weaving segments experienced higher daily and hourly crash frequencies than merge and basic segments. Then, each of the ADT-based, AHT-based, and real-time models was used to estimate safety conditions at different levels: daily and hourly, meanwhile, the real-time model was also used in 5 min intervals. The results uncovered that the ADT- and AHT-based safety models performed similar in predicting daily and hourly crash frequencies, and the real-time safety model was able to provide hourly crash frequency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assessment of parametric uncertainty for groundwater reactive transport modeling,
Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun
2014-01-01
The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood functions, improve model calibration, and reduce predictive uncertainty in other groundwater reactive transport and environmental modeling.
Bayes factor design analysis: Planning for compelling evidence.
Schönbrodt, Felix D; Wagenmakers, Eric-Jan
2018-02-01
A sizeable literature exists on the use of frequentist power analysis in the null-hypothesis significance testing (NHST) paradigm to facilitate the design of informative experiments. In contrast, there is almost no literature that discusses the design of experiments when Bayes factors (BFs) are used as a measure of evidence. Here we explore Bayes Factor Design Analysis (BFDA) as a useful tool to design studies for maximum efficiency and informativeness. We elaborate on three possible BF designs, (a) a fixed-n design, (b) an open-ended Sequential Bayes Factor (SBF) design, where researchers can test after each participant and can stop data collection whenever there is strong evidence for either [Formula: see text] or [Formula: see text], and (c) a modified SBF design that defines a maximal sample size where data collection is stopped regardless of the current state of evidence. We demonstrate how the properties of each design (i.e., expected strength of evidence, expected sample size, expected probability of misleading evidence, expected probability of weak evidence) can be evaluated using Monte Carlo simulations and equip researchers with the necessary information to compute their own Bayesian design analyses.
Turner, Rebecca M; Jackson, Dan; Wei, Yinghui; Thompson, Simon G; Higgins, Julian P T
2015-01-01
Numerous meta-analyses in healthcare research combine results from only a small number of studies, for which the variance representing between-study heterogeneity is estimated imprecisely. A Bayesian approach to estimation allows external evidence on the expected magnitude of heterogeneity to be incorporated. The aim of this paper is to provide tools that improve the accessibility of Bayesian meta-analysis. We present two methods for implementing Bayesian meta-analysis, using numerical integration and importance sampling techniques. Based on 14 886 binary outcome meta-analyses in the Cochrane Database of Systematic Reviews, we derive a novel set of predictive distributions for the degree of heterogeneity expected in 80 settings depending on the outcomes assessed and comparisons made. These can be used as prior distributions for heterogeneity in future meta-analyses. The two methods are implemented in R, for which code is provided. Both methods produce equivalent results to standard but more complex Markov chain Monte Carlo approaches. The priors are derived as log-normal distributions for the between-study variance, applicable to meta-analyses of binary outcomes on the log odds-ratio scale. The methods are applied to two example meta-analyses, incorporating the relevant predictive distributions as prior distributions for between-study heterogeneity. We have provided resources to facilitate Bayesian meta-analysis, in a form accessible to applied researchers, which allow relevant prior information on the degree of heterogeneity to be incorporated. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:25475839
Buddhavarapu, Prasad; Smit, Andre F; Prozzi, Jorge A
2015-07-01
Permeable friction course (PFC), a porous hot-mix asphalt, is typically applied to improve wet weather safety on high-speed roadways in Texas. In order to warrant expensive PFC construction, a statistical evaluation of its safety benefits is essential. Generally, the literature on the effectiveness of porous mixes in reducing wet-weather crashes is limited and often inconclusive. In this study, the safety effectiveness of PFC was evaluated using a fully Bayesian before-after safety analysis. First, two groups of road segments overlaid with PFC and non-PFC material were identified across Texas; the non-PFC or reference road segments selected were similar to their PFC counterparts in terms of site specific features. Second, a negative binomial data generating process was assumed to model the underlying distribution of crash counts of PFC and reference road segments to perform Bayesian inference on the safety effectiveness. A data-augmentation based computationally efficient algorithm was employed for a fully Bayesian estimation. The statistical analysis shows that PFC is not effective in reducing wet weather crashes. It should be noted that the findings of this study are in agreement with the existing literature, although these studies were not based on a fully Bayesian statistical analysis. Our study suggests that the safety effectiveness of PFC road surfaces, or any other safety infrastructure, largely relies on its interrelationship with the road user. The results suggest that the safety infrastructure must be properly used to reap the benefits of the substantial investments. Copyright © 2015 Elsevier Ltd. All rights reserved.
A fully Bayesian method for jointly fitting instrumental calibration and X-ray spectral models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jin; Yu, Yaming; Van Dyk, David A.
2014-10-20
Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is 'pragmatic' in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use amore » principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.« less
Bayesian Techniques for Plasma Theory to Bridge the Gap Between Space and Lab Plasmas
NASA Astrophysics Data System (ADS)
Crabtree, Chris; Ganguli, Gurudas; Tejero, Erik
2017-10-01
We will show how Bayesian techniques provide a general data analysis methodology that is better suited to investigate phenomena that require a nonlinear theory for an explanation. We will provide short examples of how Bayesian techniques have been successfully used in the radiation belts to provide precise nonlinear spectral estimates of whistler mode chorus and how these techniques have been verified in laboratory plasmas. We will demonstrate how Bayesian techniques allow for the direct competition of different physical theories with data acting as the necessary arbitrator. This work is supported by the Naval Research Laboratory base program and by the National Aeronautics and Space Administration under Grant No. NNH15AZ90I.
A Two-Step Bayesian Approach for Propensity Score Analysis: Simulations and Case Study.
Kaplan, David; Chen, Jianshen
2012-07-01
A two-step Bayesian propensity score approach is introduced that incorporates prior information in the propensity score equation and outcome equation without the problems associated with simultaneous Bayesian propensity score approaches. The corresponding variance estimators are also provided. The two-step Bayesian propensity score is provided for three methods of implementation: propensity score stratification, weighting, and optimal full matching. Three simulation studies and one case study are presented to elaborate the proposed two-step Bayesian propensity score approach. Results of the simulation studies reveal that greater precision in the propensity score equation yields better recovery of the frequentist-based treatment effect. A slight advantage is shown for the Bayesian approach in small samples. Results also reveal that greater precision around the wrong treatment effect can lead to seriously distorted results. However, greater precision around the correct treatment effect parameter yields quite good results, with slight improvement seen with greater precision in the propensity score equation. A comparison of coverage rates for the conventional frequentist approach and proposed Bayesian approach is also provided. The case study reveals that credible intervals are wider than frequentist confidence intervals when priors are non-informative.
Meteorological analysis of symptom data for people with seasonal affective disorder.
Sarran, Christophe; Albers, Casper; Sachon, Patrick; Meesters, Ybe
2017-11-01
It is thought that variation in natural light levels affect people with Seasonal Affective Disorder (SAD). Several meteorological factors related to luminance can be forecast but little is known about which factors are most indicative of worsening SAD symptoms. The aim of this meteorological analysis is to determine which factors are linked to SAD symptoms. The symptoms of 291 individuals with SAD in and near Groningen have been evaluated over the period 2003-2009. Meteorological factors linked to periods of low natural light (sunshine, global radiation, horizontal visibility, cloud cover and mist) and others (temperature, humidity and pressure) were obtained from weather observation stations. A Bayesian zero adjusted auto-correlated multilevel Poisson model was carried out to assess which variables influence the SAD symptom score BDI-II. The outcome of the study suggests that the variable sunshine duration, for both the current and previous week, and global radiation for the previous week, are significantly linked to SAD symptoms. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Dengue on islands: a Bayesian approach to understanding the global ecology of dengue viruses.
Feldstein, Leora R; Brownstein, John S; Brady, Oliver J; Hay, Simon I; Johansson, Michael A
2015-05-01
Transmission of dengue viruses (DENV), the most common arboviral pathogens globally, is influenced by many climatic and socioeconomic factors. However, the relative contributions of these factors on a global scale are unclear. We randomly selected 94 islands stratified by socioeconomic and geographic characteristics. With a Bayesian model, we assessed factors contributing to the probability of islands having a history of any dengue outbreaks and of having frequent outbreaks. Minimum temperature was strongly associated with suitability for DENV transmission. Islands with a minimum monthly temperature of greater than 14.8°C (95% CI: 12.4-16.6°C) were predicted to be suitable for DENV transmission. Increased population size and precipitation were associated with increased outbreak frequency, but did not capture all of the variability. Predictions for 48 testing islands verified these findings. This analysis clarified two key components of DENV ecology: minimum temperature was the most important determinant of suitability; and endemicity was more likely in areas with high precipitation and large, but not necessarily dense, populations. Wealth and connectivity, in contrast, had no discernable effects. This model adds to our knowledge of global determinants of dengue risk and provides a basis for understanding the ecology of dengue endemicity. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.
Abanto-Valle, C. A.; Bandyopadhyay, D.; Lachos, V. H.; Enriquez, I.
2009-01-01
A Bayesian analysis of stochastic volatility (SV) models using the class of symmetric scale mixtures of normal (SMN) distributions is considered. In the face of non-normality, this provides an appealing robust alternative to the routine use of the normal distribution. Specific distributions examined include the normal, student-t, slash and the variance gamma distributions. Using a Bayesian paradigm, an efficient Markov chain Monte Carlo (MCMC) algorithm is introduced for parameter estimation. Moreover, the mixing parameters obtained as a by-product of the scale mixture representation can be used to identify outliers. The methods developed are applied to analyze daily stock returns data on S&P500 index. Bayesian model selection criteria as well as out-of- sample forecasting results reveal that the SV models based on heavy-tailed SMN distributions provide significant improvement in model fit as well as prediction to the S&P500 index data over the usual normal model. PMID:20730043
NASA Astrophysics Data System (ADS)
Reis, D. S.; Stedinger, J. R.; Martins, E. S.
2005-10-01
This paper develops a Bayesian approach to analysis of a generalized least squares (GLS) regression model for regional analyses of hydrologic data. The new approach allows computation of the posterior distributions of the parameters and the model error variance using a quasi-analytic approach. Two regional skew estimation studies illustrate the value of the Bayesian GLS approach for regional statistical analysis of a shape parameter and demonstrate that regional skew models can be relatively precise with effective record lengths in excess of 60 years. With Bayesian GLS the marginal posterior distribution of the model error variance and the corresponding mean and variance of the parameters can be computed directly, thereby providing a simple but important extension of the regional GLS regression procedures popularized by Tasker and Stedinger (1989), which is sensitive to the likely values of the model error variance when it is small relative to the sampling error in the at-site estimator.
Vilar, M J; Ranta, J; Virtanen, S; Korkeala, H
2015-01-01
Bayesian analysis was used to estimate the pig's and herd's true prevalence of enteropathogenic Yersinia in serum samples collected from Finnish pig farms. The sensitivity and specificity of the diagnostic test were also estimated for the commercially available ELISA which is used for antibody detection against enteropathogenic Yersinia. The Bayesian analysis was performed in two steps; the first step estimated the prior true prevalence of enteropathogenic Yersinia with data obtained from a systematic review of the literature. In the second step, data of the apparent prevalence (cross-sectional study data), prior true prevalence (first step), and estimated sensitivity and specificity of the diagnostic methods were used for building the Bayesian model. The true prevalence of Yersinia in slaughter-age pigs was 67.5% (95% PI 63.2-70.9). The true prevalence of Yersinia in sows was 74.0% (95% PI 57.3-82.4). The estimates of sensitivity and specificity values of the ELISA were 79.5% and 96.9%.
ERIC Educational Resources Information Center
Chung, Hwan; Anthony, James C.
2013-01-01
This article presents a multiple-group latent class-profile analysis (LCPA) by taking a Bayesian approach in which a Markov chain Monte Carlo simulation is employed to achieve more robust estimates for latent growth patterns. This article describes and addresses a label-switching problem that involves the LCPA likelihood function, which has…
Bayesian Logic Programs for Plan Recognition and Machine Reading
2012-12-01
models is that they can handle both uncertainty and structured/ relational data. As a result, they are widely used in domains like social network...data. As a result, they are widely used in domains like social net- work analysis, biological data analysis, and natural language processing. Bayesian...the Story Understanding data set. (b) The logical representation of the observations. (c) The set of ground rules obtained from logical abduction
Fan, Yan; Zhang, Chenglin; Wu, Wendan; He, Wei; Zhang, Li; Ma, Xiao
2017-10-16
Indigofera pseudotinctoria Mats is an agronomically and economically important perennial legume shrub with a high forage yield, protein content and strong adaptability, which is subject to natural habitat fragmentation and serious human disturbance. Until now, our knowledge of the genetic relationships and intraspecific genetic diversity for its wild collections is still poor, especially at small spatial scales. Here amplified fragment length polymorphism (AFLP) technology was employed for analysis of genetic diversity, differentiation, and structure of 364 genotypes of I. pseudotinctoria from 15 natural locations in Wushan Montain, a highly structured mountain with typical karst landforms in Southwest China. We also tested whether eco-climate factors has affected genetic structure by correlating genetic diversity with habitat features. A total of 515 distinctly scoreable bands were generated, and 324 of them were polymorphic. The polymorphic information content (PIC) ranged from 0.694 to 0.890 with an average of 0.789 per primer pair. On species level, Nei's gene diversity ( H j ), the Bayesian genetic diversity index ( H B ) and the Shannon information index ( I ) were 0.2465, 0.2363 and 0.3772, respectively. The high differentiation among all sampling sites was detected ( F ST = 0.2217, G ST = 0.1746, G' ST = 0.2060, θ B = 0.1844), and instead, gene flow among accessions ( N m = 1.1819) was restricted. The population genetic structure resolved by the UPGMA tree, principal coordinate analysis, and Bayesian-based cluster analyses irrefutably grouped all accessions into two distinct clusters, i.e., lowland and highland groups. The population genetic structure resolved by the UPGMA tree, principal coordinate analysis, and Bayesian-based cluster analyses irrefutably grouped all accessions into two distinct clusters, i.e., lowland and highland groups. This structure pattern may indicate joint effects by the neutral evolution and natural selection. Restricted N m was observed across all accessions, and genetic barriers were detected between adjacent accessions due to specifically geographical landform.
Validation of the thermal challenge problem using Bayesian Belief Networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarland, John; Swiler, Laura Painton
The thermal challenge problem has been developed at Sandia National Laboratories as a testbed for demonstrating various types of validation approaches and prediction methods. This report discusses one particular methodology to assess the validity of a computational model given experimental data. This methodology is based on Bayesian Belief Networks (BBNs) and can incorporate uncertainty in experimental measurements, in physical quantities, and model uncertainties. The approach uses the prior and posterior distributions of model output to compute a validation metric based on Bayesian hypothesis testing (a Bayes' factor). This report discusses various aspects of the BBN, specifically in the context ofmore » the thermal challenge problem. A BBN is developed for a given set of experimental data in a particular experimental configuration. The development of the BBN and the method for ''solving'' the BBN to develop the posterior distribution of model output through Monte Carlo Markov Chain sampling is discussed in detail. The use of the BBN to compute a Bayes' factor is demonstrated.« less
Bayesian Models for Astrophysical Data Using R, JAGS, Python, and Stan
NASA Astrophysics Data System (ADS)
Hilbe, Joseph M.; de Souza, Rafael S.; Ishida, Emille E. O.
2017-05-01
This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.
Review of Reliability-Based Design Optimization Approach and Its Integration with Bayesian Method
NASA Astrophysics Data System (ADS)
Zhang, Xiangnan
2018-03-01
A lot of uncertain factors lie in practical engineering, such as external load environment, material property, geometrical shape, initial condition, boundary condition, etc. Reliability method measures the structural safety condition and determine the optimal design parameter combination based on the probabilistic theory. Reliability-based design optimization (RBDO) is the most commonly used approach to minimize the structural cost or other performance under uncertainty variables which combines the reliability theory and optimization. However, it cannot handle the various incomplete information. The Bayesian approach is utilized to incorporate this kind of incomplete information in its uncertainty quantification. In this paper, the RBDO approach and its integration with Bayesian method are introduced.
Mohammed, Seid; Asfaw, Zeytu G
2018-01-01
The term malnutrition generally refers to both under-nutrition and over-nutrition, but this study uses the term to refer solely to a deficiency of nutrition. In Ethiopia, child malnutrition is one of the most serious public health problem and the highest in the world. The purpose of the present study was to identify the high risk factors of malnutrition and test different statistical models for childhood malnutrition and, thereafter weighing the preferable model through model comparison criteria. Bayesian Gaussian regression model was used to analyze the effect of selected socioeconomic, demographic, health and environmental covariates on malnutrition under five years old child's. Inference was made using Bayesian approach based on Markov Chain Monte Carlo (MCMC) simulation techniques in BayesX. The study found that the variables such as sex of a child, preceding birth interval, age of the child, father's education level, source of water, mother's body mass index, head of household sex, mother's age at birth, wealth index, birth order, diarrhea, child's size at birth and duration of breast feeding showed significant effects on children's malnutrition in Ethiopia. The age of child, mother's age at birth and mother's body mass index could also be important factors with a non linear effect for the child's malnutrition in Ethiopia. Thus, the present study emphasizes a special care on variables such as sex of child, preceding birth interval, father's education level, source of water, sex of head of household, wealth index, birth order, diarrhea, child's size at birth, duration of breast feeding, age of child, mother's age at birth and mother's body mass index to combat childhood malnutrition in developing countries.
NASA Astrophysics Data System (ADS)
Lee, Chieh-Han; Yu, Hwa-Lung; Chien, Lung-Chang
2014-05-01
Dengue fever has been identified as one of the most widespread vector-borne diseases in tropical and sub-tropical. In the last decade, dengue is an emerging infectious disease epidemic in Taiwan especially in the southern area where have annually high incidences. For the purpose of disease prevention and control, an early warning system is urgently needed. Previous studies have showed significant relationships between climate variables, in particular, rainfall and temperature, and the temporal epidemic patterns of dengue cases. However, the transmission of the dengue fever is a complex interactive process that mostly understated the composite space-time effects of dengue fever. This study proposes developing a one-week ahead warning system of dengue fever epidemics in the southern Taiwan that considered nonlinear associations between weekly dengue cases and meteorological factors across space and time. The early warning system based on an integration of distributed lag nonlinear model (DLNM) and stochastic Bayesian Maximum Entropy (BME) analysis. The study identified the most significant meteorological measures including weekly minimum temperature and maximum 24-hour rainfall with continuous 15-week lagged time to dengue cases variation under condition of uncertainty. Subsequently, the combination of nonlinear lagged effects of climate variables and space-time dependence function is implemented via a Bayesian framework to predict dengue fever occurrences in the southern Taiwan during 2012. The result shows the early warning system is useful for providing potential outbreak spatio-temporal prediction of dengue fever distribution. In conclusion, the proposed approach can provide a practical disease control tool for environmental regulators seeking more effective strategies for dengue fever prevention.
Fossil Signatures Using Elemental Abundance Distributions and Bayesian Probabilistic Classification
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Storrie-Lombardi, Michael C.
2004-01-01
Elemental abundances (C6, N7, O8, Na11, Mg12, Al3, P15, S16, Cl17, K19, Ca20, Ti22, Mn25, Fe26, and Ni28) were obtained for a set of terrestrial fossils and the rock matrix surrounding them. Principal Component Analysis extracted five factors accounting for the 92.5% of the data variance, i.e. information content, of the elemental abundance data. Hierarchical Cluster Analysis provided unsupervised sample classification distinguishing fossil from matrix samples on the basis of either raw abundances or PCA input that agreed strongly with visual classification. A stochastic, non-linear Artificial Neural Network produced a Bayesian probability of correct sample classification. The results provide a quantitative probabilistic methodology for discriminating terrestrial fossils from the surrounding rock matrix using chemical information. To demonstrate the applicability of these techniques to the assessment of meteoritic samples or in situ extraterrestrial exploration, we present preliminary data on samples of the Orgueil meteorite. In both systems an elemental signature produces target classification decisions remarkably consistent with morphological classification by a human expert using only structural (visual) information. We discuss the possibility of implementing a complexity analysis metric capable of automating certain image analysis and pattern recognition abilities of the human eye using low magnification optical microscopy images and discuss the extension of this technique across multiple scales.
Bayesian Inference on Malignant Breast Cancer in Nigeria: A Diagnosis of MCMC Convergence
Ogunsakin, Ropo Ebenezer; Siaka, Lougue
2017-01-01
Background: There has been no previous study to classify malignant breast tumor in details based on Markov Chain Monte Carlo (MCMC) convergence in Western, Nigeria. This study therefore aims to profile patients living with benign and malignant breast tumor in two different hospitals among women of Western Nigeria, with a focus on prognostic factors and MCMC convergence. Materials and Methods: A hospital-based record was used to identify prognostic factors for malignant breast cancer among women of Western Nigeria. This paper describes Bayesian inference and demonstrates its usage to estimation of parameters of the logistic regression via Markov Chain Monte Carlo (MCMC) algorithm. The result of the Bayesian approach is compared with the classical statistics. Results: The mean age of the respondents was 42.2 ±16.6 years with 52% of the women aged between 35-49 years. The results of both techniques suggest that age and women with at least high school education have a significantly higher risk of being diagnosed with malignant breast tumors than benign breast tumors. The results also indicate a reduction of standard errors is associated with the coefficients obtained from the Bayesian approach. In addition, simulation result reveal that women with at least high school are 1.3 times more at risk of having malignant breast lesion in western Nigeria compared to benign breast lesion. Conclusion: We concluded that more efforts are required towards creating awareness and advocacy campaigns on how the prevalence of malignant breast lesions can be reduced, especially among women. The application of Bayesian produces precise estimates for modeling malignant breast cancer. PMID:29072396
Toward an ecological analysis of Bayesian inferences: how task characteristics influence responses
Hafenbrädl, Sebastian; Hoffrage, Ulrich
2015-01-01
In research on Bayesian inferences, the specific tasks, with their narratives and characteristics, are typically seen as exchangeable vehicles that merely transport the structure of the problem to research participants. In the present paper, we explore whether, and possibly how, task characteristics that are usually ignored influence participants’ responses in these tasks. We focus on both quantitative dimensions of the tasks, such as their base rates, hit rates, and false-alarm rates, as well as qualitative characteristics, such as whether the task involves a norm violation or not, whether the stakes are high or low, and whether the focus is on the individual case or on the numbers. Using a data set of 19 different tasks presented to 500 different participants who provided a total of 1,773 responses, we analyze these responses in two ways: first, on the level of the numerical estimates themselves, and second, on the level of various response strategies, Bayesian and non-Bayesian, that might have produced the estimates. We identified various contingencies, and most of the task characteristics had an influence on participants’ responses. Typically, this influence has been stronger when the numerical information in the tasks was presented in terms of probabilities or percentages, compared to natural frequencies – and this effect cannot be fully explained by a higher proportion of Bayesian responses when natural frequencies were used. One characteristic that did not seem to influence participants’ response strategy was the numerical value of the Bayesian solution itself. Our exploratory study is a first step toward an ecological analysis of Bayesian inferences, and highlights new avenues for future research. PMID:26300791
Hip fracture in the elderly: a re-analysis of the EPIDOS study with causal Bayesian networks.
Caillet, Pascal; Klemm, Sarah; Ducher, Michel; Aussem, Alexandre; Schott, Anne-Marie
2015-01-01
Hip fractures commonly result in permanent disability, institutionalization or death in elderly. Existing hip-fracture predicting tools are underused in clinical practice, partly due to their lack of intuitive interpretation. By use of a graphical layer, Bayesian network models could increase the attractiveness of fracture prediction tools. Our aim was to study the potential contribution of a causal Bayesian network in this clinical setting. A logistic regression was performed as a standard control approach to check the robustness of the causal Bayesian network approach. EPIDOS is a multicenter study, conducted in an ambulatory care setting in five French cities between 1992 and 1996 and updated in 2010. The study included 7598 women aged 75 years or older, in which fractures were assessed quarterly during 4 years. A causal Bayesian network and a logistic regression were performed on EPIDOS data to describe major variables involved in hip fractures occurrences. Both models had similar association estimations and predictive performances. They detected gait speed and mineral bone density as variables the most involved in the fracture process. The causal Bayesian network showed that gait speed and bone mineral density were directly connected to fracture and seem to mediate the influence of all the other variables included in our model. The logistic regression approach detected multiple interactions involving psychotropic drug use, age and bone mineral density. Both approaches retrieved similar variables as predictors of hip fractures. However, Bayesian network highlighted the whole web of relation between the variables involved in the analysis, suggesting a possible mechanism leading to hip fracture. According to the latter results, intervention focusing concomitantly on gait speed and bone mineral density may be necessary for an optimal prevention of hip fracture occurrence in elderly people.
Bashari, Hossein; Naghipour, Ali Asghar; Khajeddin, Seyed Jamaleddin; Sangoony, Hamed; Tahmasebi, Pejman
2016-09-01
Identifying areas that have a high risk of burning is a main component of fire management planning. Although the available tools can predict the fire risks, these are poor in accommodating uncertainties in their predictions. In this study, we accommodated uncertainty in wildfire prediction using Bayesian belief networks (BBNs). An influence diagram was developed to identify the factors influencing wildfire in arid and semi-arid areas of Iran, and it was populated with probabilities to produce a BBNs model. The behavior of the model was tested using scenario and sensitivity analysis. Land cover/use, mean annual rainfall, mean annual temperature, elevation, and livestock density were recognized as the main variables determining wildfire occurrence. The produced model had good accuracy as its ROC area under the curve was 0.986. The model could be applied in both predictive and diagnostic analysis for answering "what if" and "how" questions. The probabilistic relationships within the model can be updated over time using observation and monitoring data. The wildfire BBN model may be updated as new knowledge emerges; hence, it can be used to support the process of adaptive management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, M.A.; Booker, J.M.
1990-01-01
Expert opinion is frequently used in probabilistic safety assessment (PSA), particularly in estimating low probability events. In this paper, we discuss some of the common problems encountered in eliciting and analyzing expert opinion data and offer solutions or recommendations. The problems are: that experts are not naturally Bayesian. People fail to update their existing information to account for new information as it becomes available, as would be predicted by the Bayesian philosophy; that experts cannot be fully calibrated. To calibrate experts, the feedback from the known quantities must be immediate, frequent, and specific to the task; that experts are limitedmore » in the number of things that they can mentally juggle at a time to 7 {plus minus} 2; that data gatherers and analysts can introduce bias by unintentionally causing an altering of the expert's thinking or answers; that the level of detail the data, or granularity, can affect the analyses; and the conditioning effect poses difficulties in gathering and analyzing of the expert data. The data that the expert gives can be conditioned on a variety of factors that can affect the analysis and the interpretation of the results. 31 refs.« less
Bayesian flood forecasting methods: A review
NASA Astrophysics Data System (ADS)
Han, Shasha; Coulibaly, Paulin
2017-08-01
Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been developed and widely applied, but there is still room for improvements. Future research in the context of Bayesian flood forecasting should be on assimilation of various sources of newly available information and improvement of predictive performance assessment methods.
NASA Astrophysics Data System (ADS)
Fox, Neil I.; Micheas, Athanasios C.; Peng, Yuqiang
2016-07-01
This paper introduces the use of Bayesian full Procrustes shape analysis in object-oriented meteorological applications. In particular, the Procrustes methodology is used to generate mean forecast precipitation fields from a set of ensemble forecasts. This approach has advantages over other ensemble averaging techniques in that it can produce a forecast that retains the morphological features of the precipitation structures and present the range of forecast outcomes represented by the ensemble. The production of the ensemble mean avoids the problems of smoothing that result from simple pixel or cell averaging, while producing credible sets that retain information on ensemble spread. Also in this paper, the full Bayesian Procrustes scheme is used as an object verification tool for precipitation forecasts. This is an extension of a previously presented Procrustes shape analysis based verification approach into a full Bayesian format designed to handle the verification of precipitation forecasts that match objects from an ensemble of forecast fields to a single truth image. The methodology is tested on radar reflectivity nowcasts produced in the Warning Decision Support System - Integrated Information (WDSS-II) by varying parameters in the K-means cluster tracking scheme.
Bayesian analysis of non-homogeneous Markov chains: application to mental health data.
Sung, Minje; Soyer, Refik; Nhan, Nguyen
2007-07-10
In this paper we present a formal treatment of non-homogeneous Markov chains by introducing a hierarchical Bayesian framework. Our work is motivated by the analysis of correlated categorical data which arise in assessment of psychiatric treatment programs. In our development, we introduce a Markovian structure to describe the non-homogeneity of transition patterns. In doing so, we introduce a logistic regression set-up for Markov chains and incorporate covariates in our model. We present a Bayesian model using Markov chain Monte Carlo methods and develop inference procedures to address issues encountered in the analyses of data from psychiatric treatment programs. Our model and inference procedures are implemented to some real data from a psychiatric treatment study. Copyright 2006 John Wiley & Sons, Ltd.
A FAST BAYESIAN METHOD FOR UPDATING AND FORECASTING HOURLY OZONE LEVELS
A Bayesian hierarchical space-time model is proposed by combining information from real-time ambient AIRNow air monitoring data, and output from a computer simulation model known as the Community Multi-scale Air Quality (Eta-CMAQ) forecast model. A model validation analysis shows...
NASA Astrophysics Data System (ADS)
Freni, Gabriele; Mannina, Giorgio
In urban drainage modelling, uncertainty analysis is of undoubted necessity. However, uncertainty analysis in urban water-quality modelling is still in its infancy and only few studies have been carried out. Therefore, several methodological aspects still need to be experienced and clarified especially regarding water quality modelling. The use of the Bayesian approach for uncertainty analysis has been stimulated by its rigorous theoretical framework and by the possibility of evaluating the impact of new knowledge on the modelling predictions. Nevertheless, the Bayesian approach relies on some restrictive hypotheses that are not present in less formal methods like the Generalised Likelihood Uncertainty Estimation (GLUE). One crucial point in the application of Bayesian method is the formulation of a likelihood function that is conditioned by the hypotheses made regarding model residuals. Statistical transformations, such as the use of Box-Cox equation, are generally used to ensure the homoscedasticity of residuals. However, this practice may affect the reliability of the analysis leading to a wrong uncertainty estimation. The present paper aims to explore the influence of the Box-Cox equation for environmental water quality models. To this end, five cases were considered one of which was the “real” residuals distributions (i.e. drawn from available data). The analysis was applied to the Nocella experimental catchment (Italy) which is an agricultural and semi-urbanised basin where two sewer systems, two wastewater treatment plants and a river reach were monitored during both dry and wet weather periods. The results show that the uncertainty estimation is greatly affected by residual transformation and a wrong assumption may also affect the evaluation of model uncertainty. The use of less formal methods always provide an overestimation of modelling uncertainty with respect to Bayesian method but such effect is reduced if a wrong assumption is made regarding the residuals distribution. If residuals are not normally distributed, the uncertainty is over-estimated if Box-Cox transformation is not applied or non-calibrated parameter is used.
Dokoumetzidis, Aristides; Aarons, Leon
2005-08-01
We investigated the propagation of population pharmacokinetic information across clinical studies by applying Bayesian techniques. The aim was to summarize the population pharmacokinetic estimates of a study in appropriate statistical distributions in order to use them as Bayesian priors in consequent population pharmacokinetic analyses. Various data sets of simulated and real clinical data were fitted with WinBUGS, with and without informative priors. The posterior estimates of fittings with non-informative priors were used to build parametric informative priors and the whole procedure was carried on in a consecutive manner. The posterior distributions of the fittings with informative priors where compared to those of the meta-analysis fittings of the respective combinations of data sets. Good agreement was found, for the simulated and experimental datasets when the populations were exchangeable, with the posterior distribution from the fittings with the prior to be nearly identical to the ones estimated with meta-analysis. However, when populations were not exchangeble an alternative parametric form for the prior, the natural conjugate prior, had to be used in order to have consistent results. In conclusion, the results of a population pharmacokinetic analysis may be summarized in Bayesian prior distributions that can be used consecutively with other analyses. The procedure is an alternative to meta-analysis and gives comparable results. It has the advantage that it is faster than the meta-analysis, due to the large datasets used with the latter and can be performed when the data included in the prior are not actually available.
NASA Astrophysics Data System (ADS)
Kim, Jin-Young; Kwon, Hyun-Han; Kim, Hung-Soo
2015-04-01
The existing regional frequency analysis has disadvantages in that it is difficult to consider geographical characteristics in estimating areal rainfall. In this regard, this study aims to develop a hierarchical Bayesian model based nonstationary regional frequency analysis in that spatial patterns of the design rainfall with geographical information (e.g. latitude, longitude and altitude) are explicitly incorporated. This study assumes that the parameters of Gumbel (or GEV distribution) are a function of geographical characteristics within a general linear regression framework. Posterior distribution of the regression parameters are estimated by Bayesian Markov Chain Monte Carlo (MCMC) method, and the identified functional relationship is used to spatially interpolate the parameters of the distributions by using digital elevation models (DEM) as inputs. The proposed model is applied to derive design rainfalls over the entire Han-river watershed. It was found that the proposed Bayesian regional frequency analysis model showed similar results compared to L-moment based regional frequency analysis. In addition, the model showed an advantage in terms of quantifying uncertainty of the design rainfall and estimating the area rainfall considering geographical information. Finally, comprehensive discussion on design rainfall in the context of nonstationary will be presented. KEYWORDS: Regional frequency analysis, Nonstationary, Spatial information, Bayesian Acknowledgement This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
Groth, Katrina M.; Smith, Curtis L.; Swiler, Laura P.
2014-04-05
In the past several years, several international agencies have begun to collect data on human performance in nuclear power plant simulators [1]. This data provides a valuable opportunity to improve human reliability analysis (HRA), but there improvements will not be realized without implementation of Bayesian methods. Bayesian methods are widely used in to incorporate sparse data into models in many parts of probabilistic risk assessment (PRA), but Bayesian methods have not been adopted by the HRA community. In this article, we provide a Bayesian methodology to formally use simulator data to refine the human error probabilities (HEPs) assigned by existingmore » HRA methods. We demonstrate the methodology with a case study, wherein we use simulator data from the Halden Reactor Project to update the probability assignments from the SPAR-H method. The case study demonstrates the ability to use performance data, even sparse data, to improve existing HRA methods. Furthermore, this paper also serves as a demonstration of the value of Bayesian methods to improve the technical basis of HRA.« less
Zhao, Wei; Cella, Massimo; Della Pasqua, Oscar; Burger, David; Jacqz-Aigrain, Evelyne
2012-01-01
AIMS To develop a population pharmacokinetic model for abacavir in HIV-infected infants and toddlers, which will be used to describe both once and twice daily pharmacokinetic profiles, identify covariates that explain variability and propose optimal time points to optimize the area under the concentration–time curve (AUC) targeted dosage and individualize therapy. METHODS The pharmacokinetics of abacavir was described with plasma concentrations from 23 patients using nonlinear mixed-effects modelling (NONMEM) software. A two-compartment model with first-order absorption and elimination was developed. The final model was validated using bootstrap, visual predictive check and normalized prediction distribution errors. The Bayesian estimator was validated using the cross-validation and simulation–estimation method. RESULTS The typical population pharmacokinetic parameters and relative standard errors (RSE) were apparent systemic clearance (CL) 13.4 l h−1 (RSE 6.3%), apparent central volume of distribution 4.94 l (RSE 28.7%), apparent peripheral volume of distribution 8.12 l (RSE14.2%), apparent intercompartment clearance 1.25 l h−1 (RSE 16.9%) and absorption rate constant 0.758 h−1 (RSE 5.8%). The covariate analysis identified weight as the individual factor influencing the apparent oral clearance: CL = 13.4 × (weight/12)1.14. The maximum a posteriori probability Bayesian estimator, based on three concentrations measured at 0, 1 or 2, and 3 h after drug intake allowed predicting individual AUC0–t. CONCLUSIONS The population pharmacokinetic model developed for abacavir in HIV-infected infants and toddlers accurately described both once and twice daily pharmacokinetic profiles. The maximum a posteriori probability Bayesian estimator of AUC0–t was developed from the final model and can be used routinely to optimize individual dosing. PMID:21988586
Gajewski, Byron J.; Lee, Robert; Dunton, Nancy
2012-01-01
Data Envelopment Analysis (DEA) is the most commonly used approach for evaluating healthcare efficiency (Hollingsworth, 2008), but a long-standing concern is that DEA assumes that data are measured without error. This is quite unlikely, and DEA and other efficiency analysis techniques may yield biased efficiency estimates if it is not realized (Gajewski, Lee, Bott, Piamjariyakul and Taunton, 2009; Ruggiero, 2004). We propose to address measurement error systematically using a Bayesian method (Bayesian DEA). We will apply Bayesian DEA to data from the National Database of Nursing Quality Indicators® (NDNQI®) to estimate nursing units’ efficiency. Several external reliability studies inform the posterior distribution of the measurement error on the DEA variables. We will discuss the case of generalizing the approach to situations where an external reliability study is not feasible. PMID:23328796
Yen, A M-F; Liou, H-H; Lin, H-L; Chen, T H-H
2006-01-01
The study aimed to develop a predictive model to deal with data fraught with heterogeneity that cannot be explained by sampling variation or measured covariates. The random-effect Poisson regression model was first proposed to deal with over-dispersion for data fraught with heterogeneity after making allowance for measured covariates. Bayesian acyclic graphic model in conjunction with Markov Chain Monte Carlo (MCMC) technique was then applied to estimate the parameters of both relevant covariates and random effect. Predictive distribution was then generated to compare the predicted with the observed for the Bayesian model with and without random effect. Data from repeated measurement of episodes among 44 patients with intractable epilepsy were used as an illustration. The application of Poisson regression without taking heterogeneity into account to epilepsy data yielded a large value of heterogeneity (heterogeneity factor = 17.90, deviance = 1485, degree of freedom (df) = 83). After taking the random effect into account, the value of heterogeneity factor was greatly reduced (heterogeneity factor = 0.52, deviance = 42.5, df = 81). The Pearson chi2 for the comparison between the expected seizure frequencies and the observed ones at two and three months of the model with and without random effect were 34.27 (p = 1.00) and 1799.90 (p < 0.0001), respectively. The Bayesian acyclic model using the MCMC method was demonstrated to have great potential for disease prediction while data show over-dispersion attributed either to correlated property or to subject-to-subject variability.
A Bayesian Missing Data Framework for Generalized Multiple Outcome Mixed Treatment Comparisons
ERIC Educational Resources Information Center
Hong, Hwanhee; Chu, Haitao; Zhang, Jing; Carlin, Bradley P.
2016-01-01
Bayesian statistical approaches to mixed treatment comparisons (MTCs) are becoming more popular because of their flexibility and interpretability. Many randomized clinical trials report multiple outcomes with possible inherent correlations. Moreover, MTC data are typically sparse (although richer than standard meta-analysis, comparing only two…
Multi-Scale Validation of a Nanodiamond Drug Delivery System and Multi-Scale Engineering Education
ERIC Educational Resources Information Center
Schwalbe, Michelle Kristin
2010-01-01
This dissertation has two primary concerns: (i) evaluating the uncertainty and prediction capabilities of a nanodiamond drug delivery model using Bayesian calibration and bias correction, and (ii) determining conceptual difficulties of multi-scale analysis from an engineering education perspective. A Bayesian uncertainty quantification scheme…
In our previous research, we showed that robust Bayesian methods can be used in environmental modeling to define a set of probability distributions for key parameters that captures the effects of expert disagreement, ambiguity, or ignorance. This entire set can then be update...
Pig Data and Bayesian Inference on Multinomial Probabilities
ERIC Educational Resources Information Center
Kern, John C.
2006-01-01
Bayesian inference on multinomial probabilities is conducted based on data collected from the game Pass the Pigs[R]. Prior information on these probabilities is readily available from the instruction manual, and is easily incorporated in a Dirichlet prior. Posterior analysis of the scoring probabilities quantifies the discrepancy between empirical…
Child and Adolescent Clinical Features Preceding Adult Suicide Attempts.
Serra, Giulia; Koukopoulos, Athanasios; De Chiara, Lavinia; Napoletano, Flavia; Koukopoulos, Alexia; Sani, Gabriele; Faedda, Gianni L; Girardi, Paolo; Reginaldi, Daniela; Baldessarini, Ross J
2017-07-03
The objective of this study was to identify the predictive value of juvenile factors for adult suicidal behavior. We reviewed clinical records to compare factors identified in childhood and adolescence between adult suicidal versus nonsuicidal major affective disorder subjects. Suicide attempts occurred in 23.1% of subjects. Age-at-first-symptom was 14.2 vs. 20.2 years among suicidal versus nonsuicidal subjects (p < 0.0001). More prevalent in suicidal versus non-suicidal subjects by multivariate analysis were: depressive symptoms, hyper-emotionality, younger-at-first-affective-episode, family suicide history, childhood mood-swings, and adolescence low self-esteem. Presence of one factor yielded a Bayesian sensitivity of 64%, specificity of 50%, and negative predictive power of 86%. Several juvenile factors were associated with adult suicidal behavior; their absence was strongly associated with a lack of adult suicidal behavior.
Hagos, Seifu; Hailemariam, Damen; WoldeHanna, Tasew; Lindtjørn, Bernt
2017-01-01
Understanding the spatial distribution of stunting and underlying factors operating at meso-scale is of paramount importance for intervention designing and implementations. Yet, little is known about the spatial distribution of stunting and some discrepancies are documented on the relative importance of reported risk factors. Therefore, the present study aims at exploring the spatial distribution of stunting at meso- (district) scale, and evaluates the effect of spatial dependency on the identification of risk factors and their relative contribution to the occurrence of stunting and severe stunting in a rural area of Ethiopia. A community based cross sectional study was conducted to measure the occurrence of stunting and severe stunting among children aged 0-59 months. Additionally, we collected relevant information on anthropometric measures, dietary habits, parent and child-related demographic and socio-economic status. Latitude and longitude of surveyed households were also recorded. Local Anselin Moran's I was calculated to investigate the spatial variation of stunting prevalence and identify potential local pockets (hotspots) of high prevalence. Finally, we employed a Bayesian geo-statistical model, which accounted for spatial dependency structure in the data, to identify potential risk factors for stunting in the study area. Overall, the prevalence of stunting and severe stunting in the district was 43.7% [95%CI: 40.9, 46.4] and 21.3% [95%CI: 19.5, 23.3] respectively. We identified statistically significant clusters of high prevalence of stunting (hotspots) in the eastern part of the district and clusters of low prevalence (cold spots) in the western. We found out that the inclusion of spatial structure of the data into the Bayesian model has shown to improve the fit for stunting model. The Bayesian geo-statistical model indicated that the risk of stunting increased as the child's age increased (OR 4.74; 95% Bayesian credible interval [BCI]:3.35-6.58) and among boys (OR 1.28; 95%BCI; 1.12-1.45). However, maternal education and household food security were found to be protective against stunting and severe stunting. Stunting prevalence may vary across space at different scale. For this, it's important that nutrition studies and, more importantly, control interventions take into account this spatial heterogeneity in the distribution of nutritional deficits and their underlying associated factors. The findings of this study also indicated that interventions integrating household food insecurity in nutrition programs in the district might help to avert the burden of stunting.
Assessing Requirements Volatility and Risk Using Bayesian Networks
NASA Technical Reports Server (NTRS)
Russell, Michael S.
2010-01-01
There are many factors that affect the level of requirements volatility a system experiences over its lifecycle and the risk that volatility imparts. Improper requirements generation, undocumented user expectations, conflicting design decisions, and anticipated / unanticipated world states are representative of these volatility factors. Combined, these volatility factors can increase programmatic risk and adversely affect successful system development. This paper proposes that a Bayesian Network can be used to support reasonable judgments concerning the most likely sources and types of requirements volatility a developing system will experience prior to starting development and by doing so it is possible to predict the level of requirements volatility the system will experience over its lifecycle. This assessment offers valuable insight to the system's developers, particularly by providing a starting point for risk mitigation planning and execution.
Metis: A Pure Metropolis Markov Chain Monte Carlo Bayesian Inference Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, Cameron Russell; Mckigney, Edward Allen
The use of Bayesian inference in data analysis has become the standard for large scienti c experiments [1, 2]. The Monte Carlo Codes Group(XCP-3) at Los Alamos has developed a simple set of algorithms currently implemented in C++ and Python to easily perform at-prior Markov Chain Monte Carlo Bayesian inference with pure Metropolis sampling. These implementations are designed to be user friendly and extensible for customization based on speci c application requirements. This document describes the algorithmic choices made and presents two use cases.
Krishnamurthy, Krish
2013-12-01
The intrinsic quantitative nature of NMR is increasingly exploited in areas ranging from complex mixture analysis (as in metabolomics and reaction monitoring) to quality assurance/control. Complex NMR spectra are more common than not, and therefore, extraction of quantitative information generally involves significant prior knowledge and/or operator interaction to characterize resonances of interest. Moreover, in most NMR-based metabolomic experiments, the signals from metabolites are normally present as a mixture of overlapping resonances, making quantification difficult. Time-domain Bayesian approaches have been reported to be better than conventional frequency-domain analysis at identifying subtle changes in signal amplitude. We discuss an approach that exploits Bayesian analysis to achieve a complete reduction to amplitude frequency table (CRAFT) in an automated and time-efficient fashion - thus converting the time-domain FID to a frequency-amplitude table. CRAFT uses a two-step approach to FID analysis. First, the FID is digitally filtered and downsampled to several sub FIDs, and secondly, these sub FIDs are then modeled as sums of decaying sinusoids using the Bayesian approach. CRAFT tables can be used for further data mining of quantitative information using fingerprint chemical shifts of compounds of interest and/or statistical analysis of modulation of chemical quantity in a biological study (metabolomics) or process study (reaction monitoring) or quality assurance/control. The basic principles behind this approach as well as results to evaluate the effectiveness of this approach in mixture analysis are presented. Copyright © 2013 John Wiley & Sons, Ltd.
Monden, Rei; de Vos, Stijn; Morey, Richard; Wagenmakers, Eric-Jan; de Jonge, Peter; Roest, Annelieke M
2016-12-01
The Food and Drug Administration (FDA) uses a p < 0.05 null-hypothesis significance testing framework to evaluate "substantial evidence" for drug efficacy. This framework only allows dichotomous conclusions and does not quantify the strength of evidence supporting efficacy. The efficacy of FDA-approved antidepressants for the treatment of anxiety disorders was re-evaluated in a Bayesian framework that quantifies the strength of the evidence. Data from 58 double-blind placebo-controlled trials were retrieved from the FDA for the second-generation antidepressants for the treatment of anxiety disorders. Bayes factors (BFs) were calculated for all treatment arms compared to placebo and were compared with the corresponding p-values and the FDA conclusion categories. BFs ranged from 0.07 to 131,400, indicating a range of no support of evidence to strong evidence for the efficacy. Results also indicate a varying strength of evidence between the trials with p < 0.05. In sum, there were large differences in BFs across trials. Among trials providing "substantial evidence" according to the FDA, only 27 out of 59 dose groups obtained strong support for efficacy according to the typically used cutoff of BF ≥ 20. The Bayesian framework can provide valuable information on the strength of the evidence for drug efficacy. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Bayesian estimation of differential transcript usage from RNA-seq data.
Papastamoulis, Panagiotis; Rattray, Magnus
2017-11-27
Next generation sequencing allows the identification of genes consisting of differentially expressed transcripts, a term which usually refers to changes in the overall expression level. A specific type of differential expression is differential transcript usage (DTU) and targets changes in the relative within gene expression of a transcript. The contribution of this paper is to: (a) extend the use of cjBitSeq to the DTU context, a previously introduced Bayesian model which is originally designed for identifying changes in overall expression levels and (b) propose a Bayesian version of DRIMSeq, a frequentist model for inferring DTU. cjBitSeq is a read based model and performs fully Bayesian inference by MCMC sampling on the space of latent state of each transcript per gene. BayesDRIMSeq is a count based model and estimates the Bayes Factor of a DTU model against a null model using Laplace's approximation. The proposed models are benchmarked against the existing ones using a recent independent simulation study as well as a real RNA-seq dataset. Our results suggest that the Bayesian methods exhibit similar performance with DRIMSeq in terms of precision/recall but offer better calibration of False Discovery Rate.
Development of uncertainty-based work injury model using Bayesian structural equation modelling.
Chatterjee, Snehamoy
2014-01-01
This paper proposed a Bayesian method-based structural equation model (SEM) of miners' work injury for an underground coal mine in India. The environmental and behavioural variables for work injury were identified and causal relationships were developed. For Bayesian modelling, prior distributions of SEM parameters are necessary to develop the model. In this paper, two approaches were adopted to obtain prior distribution for factor loading parameters and structural parameters of SEM. In the first approach, the prior distributions were considered as a fixed distribution function with specific parameter values, whereas, in the second approach, prior distributions of the parameters were generated from experts' opinions. The posterior distributions of these parameters were obtained by applying Bayesian rule. The Markov Chain Monte Carlo sampling in the form Gibbs sampling was applied for sampling from the posterior distribution. The results revealed that all coefficients of structural and measurement model parameters are statistically significant in experts' opinion-based priors, whereas, two coefficients are not statistically significant when fixed prior-based distributions are applied. The error statistics reveals that Bayesian structural model provides reasonably good fit of work injury with high coefficient of determination (0.91) and less mean squared error as compared to traditional SEM.
Tree Biomass Estimation of Chinese fir (Cunninghamia lanceolata) Based on Bayesian Method
Zhang, Jianguo
2013-01-01
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is the most important conifer species for timber production with huge distribution area in southern China. Accurate estimation of biomass is required for accounting and monitoring Chinese forest carbon stocking. In the study, allometric equation was used to analyze tree biomass of Chinese fir. The common methods for estimating allometric model have taken the classical approach based on the frequency interpretation of probability. However, many different biotic and abiotic factors introduce variability in Chinese fir biomass model, suggesting that parameters of biomass model are better represented by probability distributions rather than fixed values as classical method. To deal with the problem, Bayesian method was used for estimating Chinese fir biomass model. In the Bayesian framework, two priors were introduced: non-informative priors and informative priors. For informative priors, 32 biomass equations of Chinese fir were collected from published literature in the paper. The parameter distributions from published literature were regarded as prior distributions in Bayesian model for estimating Chinese fir biomass. Therefore, the Bayesian method with informative priors was better than non-informative priors and classical method, which provides a reasonable method for estimating Chinese fir biomass. PMID:24278198
Tree biomass estimation of Chinese fir (Cunninghamia lanceolata) based on Bayesian method.
Zhang, Xiongqing; Duan, Aiguo; Zhang, Jianguo
2013-01-01
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is the most important conifer species for timber production with huge distribution area in southern China. Accurate estimation of biomass is required for accounting and monitoring Chinese forest carbon stocking. In the study, allometric equation W = a(D2H)b was used to analyze tree biomass of Chinese fir. The common methods for estimating allometric model have taken the classical approach based on the frequency interpretation of probability. However, many different biotic and abiotic factors introduce variability in Chinese fir biomass model, suggesting that parameters of biomass model are better represented by probability distributions rather than fixed values as classical method. To deal with the problem, Bayesian method was used for estimating Chinese fir biomass model. In the Bayesian framework, two priors were introduced: non-informative priors and informative priors. For informative priors, 32 biomass equations of Chinese fir were collected from published literature in the paper. The parameter distributions from published literature were regarded as prior distributions in Bayesian model for estimating Chinese fir biomass. Therefore, the Bayesian method with informative priors was better than non-informative priors and classical method, which provides a reasonable method for estimating Chinese fir biomass.
Sam Rossman,; McCabe, Elizabeth Berens; Nelio B. Barros,; Hasand Gandhi,; Peggy H. Ostrom,; Stricker, Craig A.; Randall S. Wells,
2015-01-01
This study examines resource use (diet, habitat use, and trophic level) within and among demographic groups (males, females, and juveniles) of bottlenose dolphins (Tursiops truncatus). We analyzed the δ13C and δ15N values of 15 prey species constituting 84% of the species found in stomach contents. We used these data to establish a trophic enrichment factor (TEF) to inform dietary analysis using a Bayesian isotope mixing model. We document a TEF of 0‰ and 2.0‰ for δ13C and δ15N, respectively. The dietary results showed that all demographic groups relied heavily on low trophic level seagrass-associated prey. Bayesian standard ellipse areas (SEAb) were calculated to assess diversity in resource use. The SEAb of females was nearly four times larger than that of males indicating varied resource use, likely a consequence of small home ranges and habitat specialization. Juveniles possessed an intermediate SEAb, generally feeding at a lower trophic level compared to females, potentially an effect of natal philopatry and immature foraging skills. The small SEAb of males reflects a high degree of specialization on seagrass associated prey. Patterns in resource use by the demographic groups are likely linked to differences in the relative importance of social and ecological factors.
Shankar, Jyoti; Solis, Norma V.; Mounaud, Stephanie; Szpakowski, Sebastian; Liu, Hong; Losada, Liliana; Nierman, William C.; Filler, Scott G.
2015-01-01
Receipt of broad-spectrum antibiotics enhances Candida albicans colonization of the GI tract, a risk factor for haematogenously-disseminated candidiasis. To understand how antibiotics influence C. albicans colonization, we treated mice orally with vancomycin or a combination of penicillin, streptomycin, and gentamicin (PSG) and then inoculated them with C. albicans by gavage. Only PSG treatment resulted in sustained, high-level GI colonization with C. albicans. Furthermore, PSG reduced bacterial diversity in the colon much more than vancomycin. Both antibiotic regimens significantly reduced IL-17A, IL-21, IL-22 and IFN-γ mRNA levels in the terminal ileum but had limited effect on the GI fungal microbiome. Through a series of models that employed Bayesian model averaging, we investigated the associations between antibiotic treatment, GI microbiota, and host immune response and their collective impact on C. albicans colonization. Our analysis revealed that bacterial genera were typically associated with either C. albicans colonization or altered cytokine expression but not with both. The only exception was Veillonella, which was associated with both increased C. albicans colonization and reduced IL-21 expression. Overall, antibiotic-induced changes in the bacterial microbiome were much more consistent determinants of C. albicans colonization than either the GI fungal microbiota or the GI immune response. PMID:25644850
Luan, Hui; Minaker, Leia M; Law, Jane
2016-08-22
Findings of whether marginalized neighbourhoods have less healthy retail food environments (RFE) are mixed across countries, in part because inconsistent approaches have been used to characterize RFE 'healthfulness' and marginalization, and researchers have used non-spatial statistical methods to respond to this ultimately spatial issue. This study uses in-store features to categorize healthy and less healthy food outlets. Bayesian spatial hierarchical models are applied to explore the association between marginalization dimensions and RFE healthfulness (i.e., relative healthy food access that modelled via a probability distribution) at various geographical scales. Marginalization dimensions are derived from a spatial latent factor model. Zero-inflation occurring at the walkable-distance scale is accounted for with a spatial hurdle model. Neighbourhoods with higher residential instability, material deprivation, and population density are more likely to have access to healthy food outlets within a walkable distance from a binary 'have' or 'not have' access perspective. At the walkable distance scale however, materially deprived neighbourhoods are found to have less healthy RFE (lower relative healthy food access). Food intervention programs should be developed for striking the balance between healthy and less healthy food access in the study region as well as improving opportunities for residents to buy and consume foods consistent with dietary recommendations.
Noh, Wonjung; Seomun, Gyeongae
2015-06-01
This study was conducted to develop key performance indicators (KPIs) for home care nursing (HCN) based on a balanced scorecard, and to construct a performance prediction model of strategic objectives using the Bayesian Belief Network (BBN). This methodological study included four steps: establishment of KPIs, performance prediction modeling, development of a performance prediction model using BBN, and simulation of a suggested nursing management strategy. An HCN expert group and a staff group participated. The content validity index was analyzed using STATA 13.0, and BBN was analyzed using HUGIN 8.0. We generated a list of KPIs composed of 4 perspectives, 10 strategic objectives, and 31 KPIs. In the validity test of the performance prediction model, the factor with the greatest variance for increasing profit was maximum cost reduction of HCN services. The factor with the smallest variance for increasing profit was a minimum image improvement for HCN. During sensitivity analysis, the probability of the expert group did not affect the sensitivity. Furthermore, simulation of a 10% image improvement predicted the most effective way to increase profit. KPIs of HCN can estimate financial and non-financial performance. The performance prediction model for HCN will be useful to improve performance.
NASA Astrophysics Data System (ADS)
Arregui, Iñigo
2018-01-01
In contrast to the situation in a laboratory, the study of the solar atmosphere has to be pursued without direct access to the physical conditions of interest. Information is therefore incomplete and uncertain and inference methods need to be employed to diagnose the physical conditions and processes. One of such methods, solar atmospheric seismology, makes use of observed and theoretically predicted properties of waves to infer plasma and magnetic field properties. A recent development in solar atmospheric seismology consists in the use of inversion and model comparison methods based on Bayesian analysis. In this paper, the philosophy and methodology of Bayesian analysis are first explained. Then, we provide an account of what has been achieved so far from the application of these techniques to solar atmospheric seismology and a prospect of possible future extensions.
Bayesian evidence computation for model selection in non-linear geoacoustic inference problems.
Dettmer, Jan; Dosso, Stan E; Osler, John C
2010-12-01
This paper applies a general Bayesian inference approach, based on Bayesian evidence computation, to geoacoustic inversion of interface-wave dispersion data. Quantitative model selection is carried out by computing the evidence (normalizing constants) for several model parameterizations using annealed importance sampling. The resulting posterior probability density estimate is compared to estimates obtained from Metropolis-Hastings sampling to ensure consistent results. The approach is applied to invert interface-wave dispersion data collected on the Scotian Shelf, off the east coast of Canada for the sediment shear-wave velocity profile. Results are consistent with previous work on these data but extend the analysis to a rigorous approach including model selection and uncertainty analysis. The results are also consistent with core samples and seismic reflection measurements carried out in the area.
Şenel, Talat; Cengiz, Mehmet Ali
2016-01-01
In today's world, Public expenditures on health are one of the most important issues for governments. These increased expenditures are putting pressure on public budgets. Therefore, health policy makers have focused on the performance of their health systems and many countries have introduced reforms to improve the performance of their health systems. This study investigates the most important determinants of healthcare efficiency for OECD countries using second stage approach for Bayesian Stochastic Frontier Analysis (BSFA). There are two steps in this study. First we measure 29 OECD countries' healthcare efficiency by BSFA using the data from the OECD Health Database. At second stage, we expose the multiple relationships between the healthcare efficiency and characteristics of healthcare systems across OECD countries using Bayesian beta regression.
Lenert, Leslie; Lurie, Jon; Coleman, Robert; Klosterman, Heidrun; Blaschke, Terrence
1990-01-01
In this paper, we will describe an advanced drug dosing program, Aminoglycoside Therapy Manager that reasons using Bayesian pharmacokinetic modeling and symbolic modeling of patient status and drug response. Our design is similar to the design of the Digitalis Therapy Advisor program, but extends previous work by incorporating a Bayesian pharmacokinetic model, a “meta-level” analysis of drug concentrations to identify sampling errors and changes in pharmacokinetics, and including the results of the “meta-level” analysis in reasoning for dosing and therapeutic monitoring recommendations. The program is user friendly and runs on low cost general-purpose hardware. Validation studies show that the program is as accurate in predicting future drug concentrations as an expert using commercial Bayesian forecasting software.
Applications of Bayesian spectrum representation in acoustics
NASA Astrophysics Data System (ADS)
Botts, Jonathan M.
This dissertation utilizes a Bayesian inference framework to enhance the solution of inverse problems where the forward model maps to acoustic spectra. A Bayesian solution to filter design inverts a acoustic spectra to pole-zero locations of a discrete-time filter model. Spatial sound field analysis with a spherical microphone array is a data analysis problem that requires inversion of spatio-temporal spectra to directions of arrival. As with many inverse problems, a probabilistic analysis results in richer solutions than can be achieved with ad-hoc methods. In the filter design problem, the Bayesian inversion results in globally optimal coefficient estimates as well as an estimate the most concise filter capable of representing the given spectrum, within a single framework. This approach is demonstrated on synthetic spectra, head-related transfer function spectra, and measured acoustic reflection spectra. The Bayesian model-based analysis of spatial room impulse responses is presented as an analogous problem with equally rich solution. The model selection mechanism provides an estimate of the number of arrivals, which is necessary to properly infer the directions of simultaneous arrivals. Although, spectrum inversion problems are fairly ubiquitous, the scope of this dissertation has been limited to these two and derivative problems. The Bayesian approach to filter design is demonstrated on an artificial spectrum to illustrate the model comparison mechanism and then on measured head-related transfer functions to show the potential range of application. Coupled with sampling methods, the Bayesian approach is shown to outperform least-squares filter design methods commonly used in commercial software, confirming the need for a global search of the parameter space. The resulting designs are shown to be comparable to those that result from global optimization methods, but the Bayesian approach has the added advantage of a filter length estimate within the same unified framework. The application to reflection data is useful for representing frequency-dependent impedance boundaries in finite difference acoustic simulations. Furthermore, since the filter transfer function is a parametric model, it can be modified to incorporate arbitrary frequency weighting and account for the band-limited nature of measured reflection spectra. Finally, the model is modified to compensate for dispersive error in the finite difference simulation, from the filter design process. Stemming from the filter boundary problem, the implementation of pressure sources in finite difference simulation is addressed in order to assure that schemes properly converge. A class of parameterized source functions is proposed and shown to offer straightforward control of residual error in the simulation. Guided by the notion that the solution to be approximated affects the approximation error, sources are designed which reduce residual dispersive error to the size of round-off errors. The early part of a room impulse response can be characterized by a series of isolated plane waves. Measured with an array of microphones, plane waves map to a directional response of the array or spatial intensity map. Probabilistic inversion of this response results in estimates of the number and directions of image source arrivals. The model-based inversion is shown to avoid ambiguities associated with peak-finding or inspection of the spatial intensity map. For this problem, determining the number of arrivals in a given frame is critical for properly inferring the state of the sound field. This analysis is effectively compression of the spatial room response, which is useful for analysis or encoding of the spatial sound field. Parametric, model-based formulations of these problems enhance the solution in all cases, and a Bayesian interpretation provides a principled approach to model comparison and parameter estimation. v
Bayesian Sensitivity Analysis of Statistical Models with Missing Data
ZHU, HONGTU; IBRAHIM, JOSEPH G.; TANG, NIANSHENG
2013-01-01
Methods for handling missing data depend strongly on the mechanism that generated the missing values, such as missing completely at random (MCAR) or missing at random (MAR), as well as other distributional and modeling assumptions at various stages. It is well known that the resulting estimates and tests may be sensitive to these assumptions as well as to outlying observations. In this paper, we introduce various perturbations to modeling assumptions and individual observations, and then develop a formal sensitivity analysis to assess these perturbations in the Bayesian analysis of statistical models with missing data. We develop a geometric framework, called the Bayesian perturbation manifold, to characterize the intrinsic structure of these perturbations. We propose several intrinsic influence measures to perform sensitivity analysis and quantify the effect of various perturbations to statistical models. We use the proposed sensitivity analysis procedure to systematically investigate the tenability of the non-ignorable missing at random (NMAR) assumption. Simulation studies are conducted to evaluate our methods, and a dataset is analyzed to illustrate the use of our diagnostic measures. PMID:24753718
Understanding the complex relationships underlying hot flashes: a Bayesian network approach.
Smith, Rebecca L; Gallicchio, Lisa M; Flaws, Jodi A
2018-02-01
The mechanism underlying hot flashes is not well-understood, primarily because of complex relationships between and among hot flashes and their risk factors. We explored those relationships using a Bayesian network approach based on a 2006 to 2015 cohort study of hot flashes among 776 female residents, 45 to 54 years old, in the Baltimore area. Bayesian networks were fit for each outcome (current hot flashes, hot flashes before the end of the study, hot flash severity, hot flash frequency, and age at first hot flashes) separately and together with a list of risk factors (estrogen, progesterone, testosterone, body mass index and obesity, race, income level, education level, smoking history, drinking history, and activity level). Each fitting was conducted separately on all women and only perimenopausal women, at enrollment and 4 years after enrollment. Hormone levels, almost always interrelated, were the most common variable linked to hot flashes; hormone levels were sometimes related to body mass index, but were not directly related to any other risk factors. Smoking was also frequently associated with increased likelihood of severe symptoms, but not through an antiestrogenic pathway. The age at first hot flashes was related only to race. All other factors were either not related to outcomes or were mediated entirely by race, hormone levels, or smoking. These models can serve as a guide for design of studies into the causal network underlying hot flashes.
An efficient Bayesian meta-analysis approach for studying cross-phenotype genetic associations
Majumdar, Arunabha; Haldar, Tanushree; Bhattacharya, Sourabh; Witte, John S.
2018-01-01
Simultaneous analysis of genetic associations with multiple phenotypes may reveal shared genetic susceptibility across traits (pleiotropy). For a locus exhibiting overall pleiotropy, it is important to identify which specific traits underlie this association. We propose a Bayesian meta-analysis approach (termed CPBayes) that uses summary-level data across multiple phenotypes to simultaneously measure the evidence of aggregate-level pleiotropic association and estimate an optimal subset of traits associated with the risk locus. This method uses a unified Bayesian statistical framework based on a spike and slab prior. CPBayes performs a fully Bayesian analysis by employing the Markov Chain Monte Carlo (MCMC) technique Gibbs sampling. It takes into account heterogeneity in the size and direction of the genetic effects across traits. It can be applied to both cohort data and separate studies of multiple traits having overlapping or non-overlapping subjects. Simulations show that CPBayes can produce higher accuracy in the selection of associated traits underlying a pleiotropic signal than the subset-based meta-analysis ASSET. We used CPBayes to undertake a genome-wide pleiotropic association study of 22 traits in the large Kaiser GERA cohort and detected six independent pleiotropic loci associated with at least two phenotypes. This includes a locus at chromosomal region 1q24.2 which exhibits an association simultaneously with the risk of five different diseases: Dermatophytosis, Hemorrhoids, Iron Deficiency, Osteoporosis and Peripheral Vascular Disease. We provide an R-package ‘CPBayes’ implementing the proposed method. PMID:29432419
Revised standards for statistical evidence.
Johnson, Valen E
2013-11-26
Recent advances in Bayesian hypothesis testing have led to the development of uniformly most powerful Bayesian tests, which represent an objective, default class of Bayesian hypothesis tests that have the same rejection regions as classical significance tests. Based on the correspondence between these two classes of tests, it is possible to equate the size of classical hypothesis tests with evidence thresholds in Bayesian tests, and to equate P values with Bayes factors. An examination of these connections suggest that recent concerns over the lack of reproducibility of scientific studies can be attributed largely to the conduct of significance tests at unjustifiably high levels of significance. To correct this problem, evidence thresholds required for the declaration of a significant finding should be increased to 25-50:1, and to 100-200:1 for the declaration of a highly significant finding. In terms of classical hypothesis tests, these evidence standards mandate the conduct of tests at the 0.005 or 0.001 level of significance.
ERIC Educational Resources Information Center
Lee, Sik-Yum; Song, Xin-Yuan; Cai, Jing-Heng
2010-01-01
Analysis of ordered binary and unordered binary data has received considerable attention in social and psychological research. This article introduces a Bayesian approach, which has several nice features in practical applications, for analyzing nonlinear structural equation models with dichotomous data. We demonstrate how to use the software…
Bayesian Statistics in Educational Research: A Look at the Current State of Affairs
ERIC Educational Resources Information Center
König, Christoph; van de Schoot, Rens
2018-01-01
The ability of a scientific discipline to build cumulative knowledge depends on its predominant method of data analysis. A steady accumulation of knowledge requires approaches which allow researchers to consider results from comparable prior research. Bayesian statistics is especially relevant for establishing a cumulative scientific discipline,…
Bayesian Finite Mixtures for Nonlinear Modeling of Educational Data.
ERIC Educational Resources Information Center
Tirri, Henry; And Others
A Bayesian approach for finding latent classes in data is discussed. The approach uses finite mixture models to describe the underlying structure in the data and demonstrate that the possibility of using full joint probability models raises interesting new prospects for exploratory data analysis. The concepts and methods discussed are illustrated…
Bayesian Analysis of Structural Equation Models with Nonlinear Covariates and Latent Variables
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lee, Sik-Yum
2006-01-01
In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…
USDA-ARS?s Scientific Manuscript database
As a first step towards the genetic mapping of quantitative trait loci (QTL) affecting stress response variation in rainbow trout, we performed complex segregation analyses (CSA) fitting mixed inheritance models of plasma cortisol using Bayesian methods in large full-sib families of rainbow trout. ...
A Hierarchical Bayesian Procedure for Two-Mode Cluster Analysis
ERIC Educational Resources Information Center
DeSarbo, Wayne S.; Fong, Duncan K. H.; Liechty, John; Saxton, M. Kim
2004-01-01
This manuscript introduces a new Bayesian finite mixture methodology for the joint clustering of row and column stimuli/objects associated with two-mode asymmetric proximity, dominance, or profile data. That is, common clusters are derived which partition both the row and column stimuli/objects simultaneously into the same derived set of clusters.…
Reducing uncertainty in Climate Response Time Scale by Bayesian Analysis of the 8.2 ka event
NASA Astrophysics Data System (ADS)
Lorenz, A.; Held, H.; Bauer, E.; Schneider von Deimling, T.
2009-04-01
We analyze the possibility of uncertainty reduction in Climate Response Time Scale by utilizing Greenland ice-core data that contain the 8.2 ka event within a Bayesian model-data intercomparison with the Earth system model of intermediate complexity, CLIMBER-2.3. Within a stochastic version of the model it has been possible to mimic the 8.2 ka event within a plausible experimental setting and with relatively good accuracy considering the timing of the event in comparison to other modeling exercises [1]. The simulation of the centennial cold event is effectively determined by the oceanic cooling rate which depends largely on the ocean diffusivity described by diffusion coefficients of relatively wide uncertainty ranges. The idea now is to discriminate between the different values of diffusivities according to their likelihood to rightly represent the duration of the 8.2 ka event and thus to exploit the paleo data to constrain uncertainty in model parameters in analogue to [2]. Implementing this inverse Bayesian Analysis with this model the technical difficulty arises to establish the related likelihood numerically in addition to the uncertain model parameters: While mainstream uncertainty analyses can assume a quasi-Gaussian shape of likelihood, with weather fluctuating around a long term mean, the 8.2 ka event as a highly nonlinear effect precludes such an a priori assumption. As a result of this study [3] the Bayesian Analysis showed a reduction of uncertainty in vertical ocean diffusivity parameters of factor 2 compared to prior knowledge. This learning effect on the model parameters is propagated to other model outputs of interest; e.g. the inverse ocean heat capacity, which is important for the dominant time scale of climate response to anthropogenic forcing which, in combination with climate sensitivity, strongly influences the climate systems reaction for the near- and medium-term future. 1 References [1] E. Bauer, A. Ganopolski, M. Montoya: Simulation of the cold climate event 8200 years ago by meltwater outburst from lake Agassiz. Paleoceanography 19:PA3014, (2004) [2] T. Schneider von Deimling, H. Held, A. Ganopolski, S. Rahmstorf, Climate sensitivity estimated from ensemble simulations of glacial climates, Climate Dynamics 27, 149-163, DOI 10.1007/s00382-006-0126-8 (2006). [3] A. Lorenz, Diploma Thesis, U Potsdam (2007).
Exact Bayesian p-values for a test of independence in a 2 × 2 contingency table with missing data.
Lin, Yan; Lipsitz, Stuart R; Sinha, Debajyoti; Fitzmaurice, Garrett; Lipshultz, Steven
2017-01-01
Altham (Altham PME. Exact Bayesian analysis of a 2 × 2 contingency table, and Fisher's "exact" significance test. J R Stat Soc B 1969; 31: 261-269) showed that a one-sided p-value from Fisher's exact test of independence in a 2 × 2 contingency table is equal to the posterior probability of negative association in the 2 × 2 contingency table under a Bayesian analysis using an improper prior. We derive an extension of Fisher's exact test p-value in the presence of missing data, assuming the missing data mechanism is ignorable (i.e., missing at random or completely at random). Further, we propose Bayesian p-values for a test of independence in a 2 × 2 contingency table with missing data using alternative priors; we also present results from a simulation study exploring the Type I error rate and power of the proposed exact test p-values. An example, using data on the association between blood pressure and a cardiac enzyme, is presented to illustrate the methods.
Bayesian Modeling for Identification and Estimation of the Learning Effects of Pointing Tasks
NASA Astrophysics Data System (ADS)
Kyo, Koki
Recently, in the field of human-computer interaction, a model containing the systematic factor and human factor has been proposed to evaluate the performance of the input devices of a computer. This is called the SH-model. In this paper, in order to extend the range of application of the SH-model, we propose some new models based on the Box-Cox transformation and apply a Bayesian modeling method for identification and estimation of the learning effects of pointing tasks. We consider the parameters describing the learning effect as random variables and introduce smoothness priors for them. Illustrative results show that the newly-proposed models work well.
Exoplanet Biosignatures: Future Directions
Bains, William; Cronin, Leroy; DasSarma, Shiladitya; Danielache, Sebastian; Domagal-Goldman, Shawn; Kacar, Betul; Kiang, Nancy Y.; Lenardic, Adrian; Reinhard, Christopher T.; Moore, William; Schwieterman, Edward W.; Shkolnik, Evgenya L.; Smith, Harrison B.
2018-01-01
Abstract We introduce a Bayesian method for guiding future directions for detection of life on exoplanets. We describe empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those emerging from better understanding stellar environment, planetary climate and geophysics, geochemical cycling, the universalities of physics and chemistry, the contingencies of evolutionary history, the properties of life as an emergent complex system, and the mechanisms driving the emergence of life. We provide examples for how the Bayesian formalism could guide future search strategies, including determining observations to prioritize or deciding between targeted searches or larger lower resolution surveys to generate ensemble statistics and address how a Bayesian methodology could constrain the prior probability of life with or without a positive detection. Key Words: Exoplanets—Biosignatures—Life detection—Bayesian analysis. Astrobiology 18, 779–824. PMID:29938538
Population forecasts for Bangladesh, using a Bayesian methodology.
Mahsin, Md; Hossain, Syed Shahadat
2012-12-01
Population projection for many developing countries could be quite a challenging task for the demographers mostly due to lack of availability of enough reliable data. The objective of this paper is to present an overview of the existing methods for population forecasting and to propose an alternative based on the Bayesian statistics, combining the formality of inference. The analysis has been made using Markov Chain Monte Carlo (MCMC) technique for Bayesian methodology available with the software WinBUGS. Convergence diagnostic techniques available with the WinBUGS software have been applied to ensure the convergence of the chains necessary for the implementation of MCMC. The Bayesian approach allows for the use of observed data and expert judgements by means of appropriate priors, and a more realistic population forecasts, along with associated uncertainty, has been possible.
Exoplanet Biosignatures: Future Directions.
Walker, Sara I; Bains, William; Cronin, Leroy; DasSarma, Shiladitya; Danielache, Sebastian; Domagal-Goldman, Shawn; Kacar, Betul; Kiang, Nancy Y; Lenardic, Adrian; Reinhard, Christopher T; Moore, William; Schwieterman, Edward W; Shkolnik, Evgenya L; Smith, Harrison B
2018-06-01
We introduce a Bayesian method for guiding future directions for detection of life on exoplanets. We describe empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those emerging from better understanding stellar environment, planetary climate and geophysics, geochemical cycling, the universalities of physics and chemistry, the contingencies of evolutionary history, the properties of life as an emergent complex system, and the mechanisms driving the emergence of life. We provide examples for how the Bayesian formalism could guide future search strategies, including determining observations to prioritize or deciding between targeted searches or larger lower resolution surveys to generate ensemble statistics and address how a Bayesian methodology could constrain the prior probability of life with or without a positive detection. Key Words: Exoplanets-Biosignatures-Life detection-Bayesian analysis. Astrobiology 18, 779-824.
Bayesian Estimation of Small Effects in Exercise and Sports Science.
Mengersen, Kerrie L; Drovandi, Christopher C; Robert, Christian P; Pyne, David B; Gore, Christopher J
2016-01-01
The aim of this paper is to provide a Bayesian formulation of the so-called magnitude-based inference approach to quantifying and interpreting effects, and in a case study example provide accurate probabilistic statements that correspond to the intended magnitude-based inferences. The model is described in the context of a published small-scale athlete study which employed a magnitude-based inference approach to compare the effect of two altitude training regimens (live high-train low (LHTL), and intermittent hypoxic exposure (IHE)) on running performance and blood measurements of elite triathletes. The posterior distributions, and corresponding point and interval estimates, for the parameters and associated effects and comparisons of interest, were estimated using Markov chain Monte Carlo simulations. The Bayesian analysis was shown to provide more direct probabilistic comparisons of treatments and able to identify small effects of interest. The approach avoided asymptotic assumptions and overcame issues such as multiple testing. Bayesian analysis of unscaled effects showed a probability of 0.96 that LHTL yields a substantially greater increase in hemoglobin mass than IHE, a 0.93 probability of a substantially greater improvement in running economy and a greater than 0.96 probability that both IHE and LHTL yield a substantially greater improvement in maximum blood lactate concentration compared to a Placebo. The conclusions are consistent with those obtained using a 'magnitude-based inference' approach that has been promoted in the field. The paper demonstrates that a fully Bayesian analysis is a simple and effective way of analysing small effects, providing a rich set of results that are straightforward to interpret in terms of probabilistic statements.
Bayesian network representing system dynamics in risk analysis of nuclear systems
NASA Astrophysics Data System (ADS)
Varuttamaseni, Athi
2011-12-01
A dynamic Bayesian network (DBN) model is used in conjunction with the alternating conditional expectation (ACE) regression method to analyze the risk associated with the loss of feedwater accident coupled with a subsequent initiation of the feed and bleed operation in the Zion-1 nuclear power plant. The use of the DBN allows the joint probability distribution to be factorized, enabling the analysis to be done on many simpler network structures rather than on one complicated structure. The construction of the DBN model assumes conditional independence relations among certain key reactor parameters. The choice of parameter to model is based on considerations of the macroscopic balance statements governing the behavior of the reactor under a quasi-static assumption. The DBN is used to relate the peak clad temperature to a set of independent variables that are known to be important in determining the success of the feed and bleed operation. A simple linear relationship is then used to relate the clad temperature to the core damage probability. To obtain a quantitative relationship among different nodes in the DBN, surrogates of the RELAP5 reactor transient analysis code are used. These surrogates are generated by applying the ACE algorithm to output data obtained from about 50 RELAP5 cases covering a wide range of the selected independent variables. These surrogates allow important safety parameters such as the fuel clad temperature to be expressed as a function of key reactor parameters such as the coolant temperature and pressure together with important independent variables such as the scram delay time. The time-dependent core damage probability is calculated by sampling the independent variables from their probability distributions and propagate the information up through the Bayesian network to give the clad temperature. With the knowledge of the clad temperature and the assumption that the core damage probability has a one-to-one relationship to it, we have calculated the core damage probably as a function of transient time. The use of the DBN model in combination with ACE allows risk analysis to be performed with much less effort than if the analysis were done using the standard techniques.
Shiino, Teiichiro; Hattori, Junko; Yokomaku, Yoshiyuki; Iwatani, Yasumasa; Sugiura, Wataru
2014-01-01
Background One major circulating HIV-1 subtype in Southeast Asian countries is CRF01_AE, but little is known about its epidemiology in Japan. We conducted a molecular phylodynamic study of patients newly diagnosed with CRF01_AE from 2003 to 2010. Methods Plasma samples from patients registered in Japanese Drug Resistance HIV-1 Surveillance Network were analyzed for protease-reverse transcriptase sequences; all sequences undergo subtyping and phylogenetic analysis using distance-matrix-based, maximum likelihood and Bayesian coalescent Markov Chain Monte Carlo (MCMC) phylogenetic inferences. Transmission clusters were identified using interior branch test and depth-first searches for sub-tree partitions. Times of most recent common ancestor (tMRCAs) of significant clusters were estimated using Bayesian MCMC analysis. Results Among 3618 patient registered in our network, 243 were infected with CRF01_AE. The majority of individuals with CRF01_AE were Japanese, predominantly male, and reported heterosexual contact as their risk factor. We found 5 large clusters with ≥5 members and 25 small clusters consisting of pairs of individuals with highly related CRF01_AE strains. The earliest cluster showed a tMRCA of 1996, and consisted of individuals with their known risk as heterosexual contacts. The other four large clusters showed later tMRCAs between 2000 and 2002 with members including intravenous drug users (IVDU) and non-Japanese, but not men who have sex with men (MSM). In contrast, small clusters included a high frequency of individuals reporting MSM risk factors. Phylogenetic analysis also showed that some individuals infected with HIV strains spread in East and South-eastern Asian countries. Conclusions Introduction of CRF01_AE viruses into Japan is estimated to have occurred in the 1990s. CFR01_AE spread via heterosexual behavior, then among persons connected with non-Japanese, IVDU, and MSM. Phylogenetic analysis demonstrated that some viral variants are largely restricted to Japan, while others have a broad geographic distribution. PMID:25025900
Method for Automatic Selection of Parameters in Normal Tissue Complication Probability Modeling.
Christophides, Damianos; Appelt, Ane L; Gusnanto, Arief; Lilley, John; Sebag-Montefiore, David
2018-07-01
To present a fully automatic method to generate multiparameter normal tissue complication probability (NTCP) models and compare its results with those of a published model, using the same patient cohort. Data were analyzed from 345 rectal cancer patients treated with external radiation therapy to predict the risk of patients developing grade 1 or ≥2 cystitis. In total, 23 clinical factors were included in the analysis as candidate predictors of cystitis. Principal component analysis was used to decompose the bladder dose-volume histogram into 8 principal components, explaining more than 95% of the variance. The data set of clinical factors and principal components was divided into training (70%) and test (30%) data sets, with the training data set used by the algorithm to compute an NTCP model. The first step of the algorithm was to obtain a bootstrap sample, followed by multicollinearity reduction using the variance inflation factor and genetic algorithm optimization to determine an ordinal logistic regression model that minimizes the Bayesian information criterion. The process was repeated 100 times, and the model with the minimum Bayesian information criterion was recorded on each iteration. The most frequent model was selected as the final "automatically generated model" (AGM). The published model and AGM were fitted on the training data sets, and the risk of cystitis was calculated. The 2 models had no significant differences in predictive performance, both for the training and test data sets (P value > .05) and found similar clinical and dosimetric factors as predictors. Both models exhibited good explanatory performance on the training data set (P values > .44), which was reduced on the test data sets (P values < .05). The predictive value of the AGM is equivalent to that of the expert-derived published model. It demonstrates potential in saving time, tackling problems with a large number of parameters, and standardizing variable selection in NTCP modeling. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
Link, William; Sauer, John R.
2016-01-01
The analysis of ecological data has changed in two important ways over the last 15 years. The development and easy availability of Bayesian computational methods has allowed and encouraged the fitting of complex hierarchical models. At the same time, there has been increasing emphasis on acknowledging and accounting for model uncertainty. Unfortunately, the ability to fit complex models has outstripped the development of tools for model selection and model evaluation: familiar model selection tools such as Akaike's information criterion and the deviance information criterion are widely known to be inadequate for hierarchical models. In addition, little attention has been paid to the evaluation of model adequacy in context of hierarchical modeling, i.e., to the evaluation of fit for a single model. In this paper, we describe Bayesian cross-validation, which provides tools for model selection and evaluation. We describe the Bayesian predictive information criterion and a Bayesian approximation to the BPIC known as the Watanabe-Akaike information criterion. We illustrate the use of these tools for model selection, and the use of Bayesian cross-validation as a tool for model evaluation, using three large data sets from the North American Breeding Bird Survey.
Classifying emotion in Twitter using Bayesian network
NASA Astrophysics Data System (ADS)
Surya Asriadie, Muhammad; Syahrul Mubarok, Mohamad; Adiwijaya
2018-03-01
Language is used to express not only facts, but also emotions. Emotions are noticeable from behavior up to the social media statuses written by a person. Analysis of emotions in a text is done in a variety of media such as Twitter. This paper studies classification of emotions on twitter using Bayesian network because of its ability to model uncertainty and relationships between features. The result is two models based on Bayesian network which are Full Bayesian Network (FBN) and Bayesian Network with Mood Indicator (BNM). FBN is a massive Bayesian network where each word is treated as a node. The study shows the method used to train FBN is not very effective to create the best model and performs worse compared to Naive Bayes. F1-score for FBN is 53.71%, while for Naive Bayes is 54.07%. BNM is proposed as an alternative method which is based on the improvement of Multinomial Naive Bayes and has much lower computational complexity compared to FBN. Even though it’s not better compared to FBN, the resulting model successfully improves the performance of Multinomial Naive Bayes. F1-Score for Multinomial Naive Bayes model is 51.49%, while for BNM is 52.14%.
Zonta, Zivko J; Flotats, Xavier; Magrí, Albert
2014-08-01
The procedure commonly used for the assessment of the parameters included in activated sludge models (ASMs) relies on the estimation of their optimal value within a confidence region (i.e. frequentist inference). Once optimal values are estimated, parameter uncertainty is computed through the covariance matrix. However, alternative approaches based on the consideration of the model parameters as probability distributions (i.e. Bayesian inference), may be of interest. The aim of this work is to apply (and compare) both Bayesian and frequentist inference methods when assessing uncertainty for an ASM-type model, which considers intracellular storage and biomass growth, simultaneously. Practical identifiability was addressed exclusively considering respirometric profiles based on the oxygen uptake rate and with the aid of probabilistic global sensitivity analysis. Parameter uncertainty was thus estimated according to both the Bayesian and frequentist inferential procedures. Results were compared in order to evidence the strengths and weaknesses of both approaches. Since it was demonstrated that Bayesian inference could be reduced to a frequentist approach under particular hypotheses, the former can be considered as a more generalist methodology. Hence, the use of Bayesian inference is encouraged for tackling inferential issues in ASM environments.
Li, Yan; Li, Xiang; Ma, Weiya; Dong, Zigang
2014-08-12
The epidermal growth factor receptor (EGFR) is aberrantly activated in various cancer cells and an important target for cancer treatment. Deep understanding of EGFR conformational changes between the active and inactive states is of pharmaceutical interest. Here we present a strategy combining multiply targeted molecular dynamics simulations, unbiased molecular dynamics simulations, and Bayesian clustering to investigate transition pathways during the activation/inactivation process of EGFR kinase domain. Two distinct pathways between the active and inactive forms are designed, explored, and compared. Based on Bayesian clustering and rough two-dimensional free energy surfaces, the energy-favorable pathway is recognized, though DFG-flip happens in both pathways. In addition, another pathway with different intermediate states appears in our simulations. Comparison of distinct pathways also indicates that disruption of the Lys745-Glu762 interaction is critically important in DFG-flip while movement of the A-loop significantly facilitates the conformational change. Our simulations yield new insights into EGFR conformational transitions. Moreover, our results verify that this approach is valid and efficient in sampling of protein conformational changes and comparison of distinct pathways.
A Gaussian random field model for similarity-based smoothing in Bayesian disease mapping.
Baptista, Helena; Mendes, Jorge M; MacNab, Ying C; Xavier, Miguel; Caldas-de-Almeida, José
2016-08-01
Conditionally specified Gaussian Markov random field (GMRF) models with adjacency-based neighbourhood weight matrix, commonly known as neighbourhood-based GMRF models, have been the mainstream approach to spatial smoothing in Bayesian disease mapping. In the present paper, we propose a conditionally specified Gaussian random field (GRF) model with a similarity-based non-spatial weight matrix to facilitate non-spatial smoothing in Bayesian disease mapping. The model, named similarity-based GRF, is motivated for modelling disease mapping data in situations where the underlying small area relative risks and the associated determinant factors do not vary systematically in space, and the similarity is defined by "similarity" with respect to the associated disease determinant factors. The neighbourhood-based GMRF and the similarity-based GRF are compared and accessed via a simulation study and by two case studies, using new data on alcohol abuse in Portugal collected by the World Mental Health Survey Initiative and the well-known lip cancer data in Scotland. In the presence of disease data with no evidence of positive spatial correlation, the simulation study showed a consistent gain in efficiency from the similarity-based GRF, compared with the adjacency-based GMRF with the determinant risk factors as covariate. This new approach broadens the scope of the existing conditional autocorrelation models. © The Author(s) 2016.
Development of a Bayesian model to estimate health care outcomes in the severely wounded
Stojadinovic, Alexander; Eberhardt, John; Brown, Trevor S; Hawksworth, Jason S; Gage, Frederick; Tadaki, Douglas K; Forsberg, Jonathan A; Davis, Thomas A; Potter, Benjamin K; Dunne, James R; Elster, E A
2010-01-01
Background: Graphical probabilistic models have the ability to provide insights as to how clinical factors are conditionally related. These models can be used to help us understand factors influencing health care outcomes and resource utilization, and to estimate morbidity and clinical outcomes in trauma patient populations. Study design: Thirty-two combat casualties with severe extremity injuries enrolled in a prospective observational study were analyzed using step-wise machine-learned Bayesian belief network (BBN) and step-wise logistic regression (LR). Models were evaluated using 10-fold cross-validation to calculate area-under-the-curve (AUC) from receiver operating characteristics (ROC) curves. Results: Our BBN showed important associations between various factors in our data set that could not be developed using standard regression methods. Cross-validated ROC curve analysis showed that our BBN model was a robust representation of our data domain and that LR models trained on these findings were also robust: hospital-acquired infection (AUC: LR, 0.81; BBN, 0.79), intensive care unit length of stay (AUC: LR, 0.97; BBN, 0.81), and wound healing (AUC: LR, 0.91; BBN, 0.72) showed strong AUC. Conclusions: A BBN model can effectively represent clinical outcomes and biomarkers in patients hospitalized after severe wounding, and is confirmed by 10-fold cross-validation and further confirmed through logistic regression modeling. The method warrants further development and independent validation in other, more diverse patient populations. PMID:21197361
Wang, Tianli; Baron, Kyle; Zhong, Wei; Brundage, Richard; Elmquist, William
2014-03-01
The current study presents a Bayesian approach to non-compartmental analysis (NCA), which provides the accurate and precise estimate of AUC 0 (∞) and any AUC 0 (∞) -based NCA parameter or derivation. In order to assess the performance of the proposed method, 1,000 simulated datasets were generated in different scenarios. A Bayesian method was used to estimate the tissue and plasma AUC 0 (∞) s and the tissue-to-plasma AUC 0 (∞) ratio. The posterior medians and the coverage of 95% credible intervals for the true parameter values were examined. The method was applied to laboratory data from a mice brain distribution study with serial sacrifice design for illustration. Bayesian NCA approach is accurate and precise in point estimation of the AUC 0 (∞) and the partition coefficient under a serial sacrifice design. It also provides a consistently good variance estimate, even considering the variability of the data and the physiological structure of the pharmacokinetic model. The application in the case study obtained a physiologically reasonable posterior distribution of AUC, with a posterior median close to the value estimated by classic Bailer-type methods. This Bayesian NCA approach for sparse data analysis provides statistical inference on the variability of AUC 0 (∞) -based parameters such as partition coefficient and drug targeting index, so that the comparison of these parameters following destructive sampling becomes statistically feasible.
An ecological analysis of pertussis disease in Minnesota, 2009-2013.
Iroh Tam, P Y; Menk, J S; Hughes, J; Kulasingam, S L
2016-03-01
The increase in pertussis cases in Minnesota in the last decade has been mainly attributed to the switch from whole cell to acellular pertussis [as part of the diphtheria, tetanus and acellular pertussis vaccine (DTaP)]. It is unclear, however, to what degree community-level risk factors also contribute. Understanding these factors can help inform public health policy-makers about where else to target resources. We performed an ecological analysis within Minnesota to identify risk factors at the county level using a Bayesian Poisson generalized linear areal model to account for spatial dependence. Univariate analyses suggested an association between increased pertussis rates at the county level and white maternal ethnicity, being US born, urban counties and average household size. In the multivariable analysis, the rate of pertussis was 1·79 times greater for urban vs. rural counties and 4·75 times greater for counties with a one-person larger average household size. Pertussis rates in counties with higher (i.e. 4+DTaP) receipt in children were 0·97 times lower. Examining county-level factors associated with varying levels of pertussis may help identify those counties that would most benefit from targeted interventions and increased resource allocation.
Quantum state estimation when qubits are lost: a no-data-left-behind approach
Williams, Brian P.; Lougovski, Pavel
2017-04-06
We present an approach to Bayesian mean estimation of quantum states using hyperspherical parametrization and an experiment-specific likelihood which allows utilization of all available data, even when qubits are lost. With this method, we report the first closed-form Bayesian mean and maximum likelihood estimates for the ideal single qubit. Due to computational constraints, we utilize numerical sampling to determine the Bayesian mean estimate for a photonic two-qubit experiment in which our novel analysis reduces burdens associated with experimental asymmetries and inefficiencies. This method can be applied to quantum states of any dimension and experimental complexity.
Potential of SNP markers for the characterization of Brazilian cassava germplasm.
de Oliveira, Eder Jorge; Ferreira, Cláudia Fortes; da Silva Santos, Vanderlei; de Jesus, Onildo Nunes; Oliveira, Gilmara Alvarenga Fachardo; da Silva, Maiane Suzarte
2014-06-01
High-throughput markers, such as SNPs, along with different methodologies were used to evaluate the applicability of the Bayesian approach and the multivariate analysis in structuring the genetic diversity in cassavas. The objective of the present work was to evaluate the diversity and genetic structure of the largest cassava germplasm bank in Brazil. Complementary methodological approaches such as discriminant analysis of principal components (DAPC), Bayesian analysis and molecular analysis of variance (AMOVA) were used to understand the structure and diversity of 1,280 accessions genotyped using 402 single nucleotide polymorphism markers. The genetic diversity (0.327) and the average observed heterozygosity (0.322) were high considering the bi-allelic markers. In terms of population, the presence of a complex genetic structure was observed indicating the formation of 30 clusters by DAPC and 34 clusters by Bayesian analysis. Both methodologies presented difficulties and controversies in terms of the allocation of some accessions to specific clusters. However, the clusters suggested by the DAPC analysis seemed to be more consistent for presenting higher probability of allocation of the accessions within the clusters. Prior information related to breeding patterns and geographic origins of the accessions were not sufficient for providing clear differentiation between the clusters according to the AMOVA analysis. In contrast, the F ST was maximized when considering the clusters suggested by the Bayesian and DAPC analyses. The high frequency of germplasm exchange between producers and the subsequent alteration of the name of the same material may be one of the causes of the low association between genetic diversity and geographic origin. The results of this study may benefit cassava germplasm conservation programs, and contribute to the maximization of genetic gains in breeding programs.
The Analysis of the Contribution of Human Factors to the In-Flight Loss of Control Accidents
NASA Technical Reports Server (NTRS)
Ancel, Ersin; Shih, Ann T.
2012-01-01
In-flight loss of control (LOC) is currently the leading cause of fatal accidents based on various commercial aircraft accident statistics. As the Next Generation Air Transportation System (NextGen) emerges, new contributing factors leading to LOC are anticipated. The NASA Aviation Safety Program (AvSP), along with other aviation agencies and communities are actively developing safety products to mitigate the LOC risk. This paper discusses the approach used to construct a generic integrated LOC accident framework (LOCAF) model based on a detailed review of LOC accidents over the past two decades. The LOCAF model is comprised of causal factors from the domain of human factors, aircraft system component failures, and atmospheric environment. The multiple interdependent causal factors are expressed in an Object-Oriented Bayesian belief network. In addition to predicting the likelihood of LOC accident occurrence, the system-level integrated LOCAF model is able to evaluate the impact of new safety technology products developed in AvSP. This provides valuable information to decision makers in strategizing NASA's aviation safety technology portfolio. The focus of this paper is on the analysis of human causal factors in the model, including the contributions from flight crew and maintenance workers. The Human Factors Analysis and Classification System (HFACS) taxonomy was used to develop human related causal factors. The preliminary results from the baseline LOCAF model are also presented.
NASA Astrophysics Data System (ADS)
Iskandar, Ismed; Satria Gondokaryono, Yudi
2016-02-01
In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range between the true value and the maximum likelihood estimated value lines.
Missing value imputation: with application to handwriting data
NASA Astrophysics Data System (ADS)
Xu, Zhen; Srihari, Sargur N.
2015-01-01
Missing values make pattern analysis difficult, particularly with limited available data. In longitudinal research, missing values accumulate, thereby aggravating the problem. Here we consider how to deal with temporal data with missing values in handwriting analysis. In the task of studying development of individuality of handwriting, we encountered the fact that feature values are missing for several individuals at several time instances. Six algorithms, i.e., random imputation, mean imputation, most likely independent value imputation, and three methods based on Bayesian network (static Bayesian network, parameter EM, and structural EM), are compared with children's handwriting data. We evaluate the accuracy and robustness of the algorithms under different ratios of missing data and missing values, and useful conclusions are given. Specifically, static Bayesian network is used for our data which contain around 5% missing data to provide adequate accuracy and low computational cost.
Bayesian estimation of dynamic matching function for U-V analysis in Japan
NASA Astrophysics Data System (ADS)
Kyo, Koki; Noda, Hideo; Kitagawa, Genshiro
2012-05-01
In this paper we propose a Bayesian method for analyzing unemployment dynamics. We derive a Beveridge curve for unemployment and vacancy (U-V) analysis from a Bayesian model based on a labor market matching function. In our framework, the efficiency of matching and the elasticities of new hiring with respect to unemployment and vacancy are regarded as time varying parameters. To construct a flexible model and obtain reasonable estimates in an underdetermined estimation problem, we treat the time varying parameters as random variables and introduce smoothness priors. The model is then described in a state space representation, enabling the parameter estimation to be carried out using Kalman filter and fixed interval smoothing. In such a representation, dynamic features of the cyclic unemployment rate and the structural-frictional unemployment rate can be accurately captured.
ERIC Educational Resources Information Center
Galbraith, Craig S.; Merrill, Gregory B.; Kline, Doug M.
2012-01-01
In this study we investigate the underlying relational structure between student evaluations of teaching effectiveness (SETEs) and achievement of student learning outcomes in 116 business related courses. Utilizing traditional statistical techniques, a neural network analysis and a Bayesian data reduction and classification algorithm, we find…
Korsgaard, Inge Riis; Lund, Mogens Sandø; Sorensen, Daniel; Gianola, Daniel; Madsen, Per; Jensen, Just
2003-01-01
A fully Bayesian analysis using Gibbs sampling and data augmentation in a multivariate model of Gaussian, right censored, and grouped Gaussian traits is described. The grouped Gaussian traits are either ordered categorical traits (with more than two categories) or binary traits, where the grouping is determined via thresholds on the underlying Gaussian scale, the liability scale. Allowances are made for unequal models, unknown covariance matrices and missing data. Having outlined the theory, strategies for implementation are reviewed. These include joint sampling of location parameters; efficient sampling from the fully conditional posterior distribution of augmented data, a multivariate truncated normal distribution; and sampling from the conditional inverse Wishart distribution, the fully conditional posterior distribution of the residual covariance matrix. Finally, a simulated dataset was analysed to illustrate the methodology. This paper concentrates on a model where residuals associated with liabilities of the binary traits are assumed to be independent. A Bayesian analysis using Gibbs sampling is outlined for the model where this assumption is relaxed. PMID:12633531
NASA Astrophysics Data System (ADS)
Sadegh, Mojtaba; Ragno, Elisa; AghaKouchak, Amir
2017-06-01
We present a newly developed Multivariate Copula Analysis Toolbox (MvCAT) which includes a wide range of copula families with different levels of complexity. MvCAT employs a Bayesian framework with a residual-based Gaussian likelihood function for inferring copula parameters and estimating the underlying uncertainties. The contribution of this paper is threefold: (a) providing a Bayesian framework to approximate the predictive uncertainties of fitted copulas, (b) introducing a hybrid-evolution Markov Chain Monte Carlo (MCMC) approach designed for numerical estimation of the posterior distribution of copula parameters, and (c) enabling the community to explore a wide range of copulas and evaluate them relative to the fitting uncertainties. We show that the commonly used local optimization methods for copula parameter estimation often get trapped in local minima. The proposed method, however, addresses this limitation and improves describing the dependence structure. MvCAT also enables evaluation of uncertainties relative to the length of record, which is fundamental to a wide range of applications such as multivariate frequency analysis.
NASA Astrophysics Data System (ADS)
Wilting, Jens; Lehnertz, Klaus
2015-08-01
We investigate a recently published analysis framework based on Bayesian inference for the time-resolved characterization of interaction properties of noisy, coupled dynamical systems. It promises wide applicability and a better time resolution than well-established methods. At the example of representative model systems, we show that the analysis framework has the same weaknesses as previous methods, particularly when investigating interacting, structurally different non-linear oscillators. We also inspect the tracking of time-varying interaction properties and propose a further modification of the algorithm, which improves the reliability of obtained results. We exemplarily investigate the suitability of this algorithm to infer strength and direction of interactions between various regions of the human brain during an epileptic seizure. Within the limitations of the applicability of this analysis tool, we show that the modified algorithm indeed allows a better time resolution through Bayesian inference when compared to previous methods based on least square fits.
Park, Sun-Kyeong; Lee, Min-Young; Jang, Eun-Jin; Kim, Hye-Lin; Ha, Dong-Mun; Lee, Eui-Kyung
2017-01-01
The purpose of this study was to compare the discontinuation rates of tofacitinib and biologics (tumour necrosis factor inhibitors (TNFi), abatacept, rituximab, and tocilizumab) in rheumatoid arthritis (RA) patients considering inadequate responses (IRs) to previous treatment(s). Randomised controlled trials of tofacitinib and biologics - reporting at least one total discontinuation, discontinuation due to lack of efficacy (LOE), and discontinuation due to adverse events (AEs) - were identified through systematic review. The analyses were conducted for patients with IRs to conventional synthetic disease-modifying anti-rheumatic drugs (cDMARDs) and for patients with biologics-IR, separately. Bayesian network meta-analysis was used to estimate rate ratio (RR) of a biologic relative to tofacitinib with 95% credible interval (CrI), and probability of RR being <1 (P[RR<1]). The analyses of 34 studies showed no significant differences in discontinuation rates between tofacitinib and biologics in the cDMARDs-IR group. In the biologics-IR group, however, TNFi (RR 0.17, 95% CrI 0.01-3.61, P[RR<1] 92.0%) and rituximab (RR 0.20, 95% CrI 0.01-2.91, P[RR<1] 92.3%) showed significantly lower total discontinuation rates than tofacitinib did. Despite the difference, discontinuation cases owing to LOE and AEs revealed that tofacitinib was comparable to the biologics. The comparability of discontinuation rate between tofacitinib and biologics was different based on previous treatments and discontinuation reasons: LOE, AEs, and total (due to other reasons). Therefore, those factors need to be considered to decide the optimal treatment strategy.
A novel Bayesian change-point algorithm for genome-wide analysis of diverse ChIPseq data types.
Xing, Haipeng; Liao, Willey; Mo, Yifan; Zhang, Michael Q
2012-12-10
ChIPseq is a widely used technique for investigating protein-DNA interactions. Read density profiles are generated by using next-sequencing of protein-bound DNA and aligning the short reads to a reference genome. Enriched regions are revealed as peaks, which often differ dramatically in shape, depending on the target protein(1). For example, transcription factors often bind in a site- and sequence-specific manner and tend to produce punctate peaks, while histone modifications are more pervasive and are characterized by broad, diffuse islands of enrichment(2). Reliably identifying these regions was the focus of our work. Algorithms for analyzing ChIPseq data have employed various methodologies, from heuristics(3-5) to more rigorous statistical models, e.g. Hidden Markov Models (HMMs)(6-8). We sought a solution that minimized the necessity for difficult-to-define, ad hoc parameters that often compromise resolution and lessen the intuitive usability of the tool. With respect to HMM-based methods, we aimed to curtail parameter estimation procedures and simple, finite state classifications that are often utilized. Additionally, conventional ChIPseq data analysis involves categorization of the expected read density profiles as either punctate or diffuse followed by subsequent application of the appropriate tool. We further aimed to replace the need for these two distinct models with a single, more versatile model, which can capably address the entire spectrum of data types. To meet these objectives, we first constructed a statistical framework that naturally modeled ChIPseq data structures using a cutting edge advance in HMMs(9), which utilizes only explicit formulas-an innovation crucial to its performance advantages. More sophisticated then heuristic models, our HMM accommodates infinite hidden states through a Bayesian model. We applied it to identifying reasonable change points in read density, which further define segments of enrichment. Our analysis revealed how our Bayesian Change Point (BCP) algorithm had a reduced computational complexity-evidenced by an abridged run time and memory footprint. The BCP algorithm was successfully applied to both punctate peak and diffuse island identification with robust accuracy and limited user-defined parameters. This illustrated both its versatility and ease of use. Consequently, we believe it can be implemented readily across broad ranges of data types and end users in a manner that is easily compared and contrasted, making it a great tool for ChIPseq data analysis that can aid in collaboration and corroboration between research groups. Here, we demonstrate the application of BCP to existing transcription factor(10,11) and epigenetic data(12) to illustrate its usefulness.
NASA Astrophysics Data System (ADS)
Wang, Hongrui; Wang, Cheng; Wang, Ying; Gao, Xiong; Yu, Chen
2017-06-01
This paper presents a Bayesian approach using Metropolis-Hastings Markov Chain Monte Carlo algorithm and applies this method for daily river flow rate forecast and uncertainty quantification for Zhujiachuan River using data collected from Qiaotoubao Gage Station and other 13 gage stations in Zhujiachuan watershed in China. The proposed method is also compared with the conventional maximum likelihood estimation (MLE) for parameter estimation and quantification of associated uncertainties. While the Bayesian method performs similarly in estimating the mean value of daily flow rate, it performs over the conventional MLE method on uncertainty quantification, providing relatively narrower reliable interval than the MLE confidence interval and thus more precise estimation by using the related information from regional gage stations. The Bayesian MCMC method might be more favorable in the uncertainty analysis and risk management.
Bayesian estimates of the incidence of rare cancers in Europe.
Botta, Laura; Capocaccia, Riccardo; Trama, Annalisa; Herrmann, Christian; Salmerón, Diego; De Angelis, Roberta; Mallone, Sandra; Bidoli, Ettore; Marcos-Gragera, Rafael; Dudek-Godeau, Dorota; Gatta, Gemma; Cleries, Ramon
2018-04-21
The RARECAREnet project has updated the estimates of the burden of the 198 rare cancers in each European country. Suspecting that scant data could affect the reliability of statistical analysis, we employed a Bayesian approach to estimate the incidence of these cancers. We analyzed about 2,000,000 rare cancers diagnosed in 2000-2007 provided by 83 population-based cancer registries from 27 European countries. We considered European incidence rates (IRs), calculated over all the data available in RARECAREnet, as a valid a priori to merge with country-specific observed data. Therefore we provided (1) Bayesian estimates of IRs and the yearly numbers of cases of rare cancers in each country; (2) the expected time (T) in years needed to observe one new case; and (3) practical criteria to decide when to use the Bayesian approach. Bayesian and classical estimates did not differ much; substantial differences (>10%) ranged from 77 rare cancers in Iceland to 14 in England. The smaller the population the larger the number of rare cancers needing a Bayesian approach. Bayesian estimates were useful for cancers with fewer than 150 observed cases in a country during the study period; this occurred mostly when the population of the country is small. For the first time the Bayesian estimates of IRs and the yearly expected numbers of cases for each rare cancer in each individual European country were calculated. Moreover, the indicator T is useful to convey incidence estimates for exceptionally rare cancers and in small countries; it far exceeds the professional lifespan of a medical doctor. Copyright © 2018 Elsevier Ltd. All rights reserved.
Non-ignorable missingness in logistic regression.
Wang, Joanna J J; Bartlett, Mark; Ryan, Louise
2017-08-30
Nonresponses and missing data are common in observational studies. Ignoring or inadequately handling missing data may lead to biased parameter estimation, incorrect standard errors and, as a consequence, incorrect statistical inference and conclusions. We present a strategy for modelling non-ignorable missingness where the probability of nonresponse depends on the outcome. Using a simple case of logistic regression, we quantify the bias in regression estimates and show the observed likelihood is non-identifiable under non-ignorable missing data mechanism. We then adopt a selection model factorisation of the joint distribution as the basis for a sensitivity analysis to study changes in estimated parameters and the robustness of study conclusions against different assumptions. A Bayesian framework for model estimation is used as it provides a flexible approach for incorporating different missing data assumptions and conducting sensitivity analysis. Using simulated data, we explore the performance of the Bayesian selection model in correcting for bias in a logistic regression. We then implement our strategy using survey data from the 45 and Up Study to investigate factors associated with worsening health from the baseline to follow-up survey. Our findings have practical implications for the use of the 45 and Up Study data to answer important research questions relating to health and quality-of-life. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Genetic Structure of Bluefin Tuna in the Mediterranean Sea Correlates with Environmental Variables
Riccioni, Giulia; Stagioni, Marco; Landi, Monica; Ferrara, Giorgia; Barbujani, Guido; Tinti, Fausto
2013-01-01
Background Atlantic Bluefin Tuna (ABFT) shows complex demography and ecological variation in the Mediterranean Sea. Genetic surveys have detected significant, although weak, signals of population structuring; catch series analyses and tagging programs identified complex ABFT spatial dynamics and migration patterns. Here, we tested the hypothesis that the genetic structure of the ABFT in the Mediterranean is correlated with mean surface temperature and salinity. Methodology We used six samples collected from Western and Central Mediterranean integrated with a new sample collected from the recently identified easternmost reproductive area of Levantine Sea. To assess population structure in the Mediterranean we used a multidisciplinary framework combining classical population genetics, spatial and Bayesian clustering methods and a multivariate approach based on factor analysis. Conclusions FST analysis and Bayesian clustering methods detected several subpopulations in the Mediterranean, a result also supported by multivariate analyses. In addition, we identified significant correlations of genetic diversity with mean salinity and surface temperature values revealing that ABFT is genetically structured along two environmental gradients. These results suggest that a preference for some spawning habitat conditions could contribute to shape ABFT genetic structuring in the Mediterranean. However, further studies should be performed to assess to what extent ABFT spawning behaviour in the Mediterranean Sea can be affected by environmental variation. PMID:24260341
NASA Astrophysics Data System (ADS)
Han, Feng; Zheng, Yi
2018-06-01
Significant Input uncertainty is a major source of error in watershed water quality (WWQ) modeling. It remains challenging to address the input uncertainty in a rigorous Bayesian framework. This study develops the Bayesian Analysis of Input and Parametric Uncertainties (BAIPU), an approach for the joint analysis of input and parametric uncertainties through a tight coupling of Markov Chain Monte Carlo (MCMC) analysis and Bayesian Model Averaging (BMA). The formal likelihood function for this approach is derived considering a lag-1 autocorrelated, heteroscedastic, and Skew Exponential Power (SEP) distributed error model. A series of numerical experiments were performed based on a synthetic nitrate pollution case and on a real study case in the Newport Bay Watershed, California. The Soil and Water Assessment Tool (SWAT) and Differential Evolution Adaptive Metropolis (DREAM(ZS)) were used as the representative WWQ model and MCMC algorithm, respectively. The major findings include the following: (1) the BAIPU can be implemented and used to appropriately identify the uncertain parameters and characterize the predictive uncertainty; (2) the compensation effect between the input and parametric uncertainties can seriously mislead the modeling based management decisions, if the input uncertainty is not explicitly accounted for; (3) the BAIPU accounts for the interaction between the input and parametric uncertainties and therefore provides more accurate calibration and uncertainty results than a sequential analysis of the uncertainties; and (4) the BAIPU quantifies the credibility of different input assumptions on a statistical basis and can be implemented as an effective inverse modeling approach to the joint inference of parameters and inputs.
Lo, Benjamin W. Y.; Macdonald, R. Loch; Baker, Andrew; Levine, Mitchell A. H.
2013-01-01
Objective. The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH). Methods. The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients). Results. Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs). Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique) denoted cut-off points for poor prognosis at greater than 2.5 clusters. Discussion. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication. PMID:23690884
Bayesian state space models for dynamic genetic network construction across multiple tissues.
Liang, Yulan; Kelemen, Arpad
2016-08-01
Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.
On the uncertainty in single molecule fluorescent lifetime and energy emission measurements
NASA Technical Reports Server (NTRS)
Brown, Emery N.; Zhang, Zhenhua; Mccollom, Alex D.
1995-01-01
Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least square methods agree and are optimal when the number of detected photons is large however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67% of those can be noise and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous poisson processes, we derive the exact joint arrival time probably density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. the ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background nose and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.
On the Uncertainty in Single Molecule Fluorescent Lifetime and Energy Emission Measurements
NASA Technical Reports Server (NTRS)
Brown, Emery N.; Zhang, Zhenhua; McCollom, Alex D.
1996-01-01
Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least squares methods agree and are optimal when the number of detected photons is large, however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67 percent of those can be noise, and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous Poisson processes, we derive the exact joint arrival time probability density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. The ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background noise and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.
Bayesian Analysis of Biogeography when the Number of Areas is Large
Landis, Michael J.; Matzke, Nicholas J.; Moore, Brian R.; Huelsenbeck, John P.
2013-01-01
Historical biogeography is increasingly studied from an explicitly statistical perspective, using stochastic models to describe the evolution of species range as a continuous-time Markov process of dispersal between and extinction within a set of discrete geographic areas. The main constraint of these methods is the computational limit on the number of areas that can be specified. We propose a Bayesian approach for inferring biogeographic history that extends the application of biogeographic models to the analysis of more realistic problems that involve a large number of areas. Our solution is based on a “data-augmentation” approach, in which we first populate the tree with a history of biogeographic events that is consistent with the observed species ranges at the tips of the tree. We then calculate the likelihood of a given history by adopting a mechanistic interpretation of the instantaneous-rate matrix, which specifies both the exponential waiting times between biogeographic events and the relative probabilities of each biogeographic change. We develop this approach in a Bayesian framework, marginalizing over all possible biogeographic histories using Markov chain Monte Carlo (MCMC). Besides dramatically increasing the number of areas that can be accommodated in a biogeographic analysis, our method allows the parameters of a given biogeographic model to be estimated and different biogeographic models to be objectively compared. Our approach is implemented in the program, BayArea. [ancestral area analysis; Bayesian biogeographic inference; data augmentation; historical biogeography; Markov chain Monte Carlo.] PMID:23736102
A Defence of the AR4’s Bayesian Approach to Quantifying Uncertainty
NASA Astrophysics Data System (ADS)
Vezer, M. A.
2009-12-01
The field of climate change research is a kimberlite pipe filled with philosophic diamonds waiting to be mined and analyzed by philosophers. Within the scientific literature on climate change, there is much philosophical dialogue regarding the methods and implications of climate studies. To this date, however, discourse regarding the philosophy of climate science has been confined predominately to scientific - rather than philosophical - investigations. In this paper, I hope to bring one such issue to the surface for explicit philosophical analysis: The purpose of this paper is to address a philosophical debate pertaining to the expressions of uncertainty in the International Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), which, as will be noted, has received significant attention in scientific journals and books, as well as sporadic glances from the popular press. My thesis is that the AR4’s Bayesian method of uncertainty analysis and uncertainty expression is justifiable on pragmatic grounds: it overcomes problems associated with vagueness, thereby facilitating communication between scientists and policy makers such that the latter can formulate decision analyses in response to the views of the former. Further, I argue that the most pronounced criticisms against the AR4’s Bayesian approach, which are outlined below, are misguided. §1 Introduction Central to AR4 is a list of terms related to uncertainty that in colloquial conversations would be considered vague. The IPCC attempts to reduce the vagueness of its expressions of uncertainty by calibrating uncertainty terms with numerical probability values derived from a subjective Bayesian methodology. This style of analysis and expression has stimulated some controversy, as critics reject as inappropriate and even misleading the association of uncertainty terms with Bayesian probabilities. [...] The format of the paper is as follows. The investigation begins (§2) with an explanation of background considerations relevant to the IPCC and its use of uncertainty expressions. It then (§3) outlines some general philosophical worries regarding vague expressions and (§4) relates those worries to the AR4 and its method of dealing with them, which is a subjective Bayesian probability analysis. The next phase of the paper (§5) examines the notions of ‘objective’ and ‘subjective’ probability interpretations and compares the IPCC’s subjective Bayesian strategy with a frequentist approach. It then (§6) addresses objections to that methodology, and concludes (§7) that those objections are wrongheaded.
Factors contributing to academic achievement: a Bayesian structure equation modelling study
NASA Astrophysics Data System (ADS)
Payandeh Najafabadi, Amir T.; Omidi Najafabadi, Maryam; Farid-Rohani, Mohammad Reza
2013-06-01
In Iran, high school graduates enter university after taking a very difficult entrance exam called the Konkoor. Therefore, only the top-performing students are admitted by universities to continue their bachelor's education in statistics. Surprisingly, statistically, most of such students fall into the following categories: (1) do not succeed in their education despite their excellent performance on the Konkoor and in high school; (2) graduate with a grade point average (GPA) that is considerably lower than their high school GPA; (3) continue their master's education in majors other than statistics and (4) try to find jobs unrelated to statistics. This article employs the well-known and powerful statistical technique, the Bayesian structural equation modelling (SEM), to study the academic success of recent graduates who have studied statistics at Shahid Beheshti University in Iran. This research: (i) considered academic success as a latent variable, which was measured by GPA and other academic success (see below) of students in the target population; (ii) employed the Bayesian SEM, which works properly for small sample sizes and ordinal variables; (iii), which is taken from the literature, developed five main factors that affected academic success and (iv) considered several standard psychological tests and measured characteristics such as 'self-esteem' and 'anxiety'. We then study the impact of such factors on the academic success of the target population. Six factors that positively impact student academic success were identified in the following order of relative impact (from greatest to least): 'Teaching-Evaluation', 'Learner', 'Environment', 'Family', 'Curriculum' and 'Teaching Knowledge'. Particularly, influential variables within each factor have also been noted.
Turi, Christina E; Murch, Susan J
2013-07-09
Ethnobotanical research and the study of plants used for rituals, ceremonies and to connect with the spirit world have led to the discovery of many novel psychoactive compounds such as nicotine, caffeine, and cocaine. In North America, spiritual and ceremonial uses of plants are well documented and can be accessed online via the University of Michigan's Native American Ethnobotany Database. The objective of the study was to compare Residual, Bayesian, Binomial and Imprecise Dirichlet Model (IDM) analyses of ritual, ceremonial and spiritual plants in Moerman's ethnobotanical database and to identify genera that may be good candidates for the discovery of novel psychoactive compounds. The database was queried with the following format "Family Name AND Ceremonial OR Spiritual" for 263 North American botanical families. Spiritual and ceremonial flora consisted of 86 families with 517 species belonging to 292 genera. Spiritual taxa were then grouped further into ceremonial medicines and items categories. Residual, Bayesian, Binomial and IDM analysis were performed to identify over and under-utilized families. The 4 statistical approaches were in good agreement when identifying under-utilized families but large families (>393 species) were underemphasized by Binomial, Bayesian and IDM approaches for over-utilization. Residual, Binomial, and IDM analysis identified similar families as over-utilized in the medium (92-392 species) and small (<92 species) classes. The families Apiaceae, Asteraceae, Ericacea, Pinaceae and Salicaceae were identified as significantly over-utilized as ceremonial medicines in medium and large sized families. Analysis of genera within the Apiaceae and Asteraceae suggest that the genus Ligusticum and Artemisia are good candidates for facilitating the discovery of novel psychoactive compounds. The 4 statistical approaches were not consistent in the selection of over-utilization of flora. Residual analysis revealed overall trends that were supported by Binomial analysis when separated into small, medium and large families. The Bayesian, Binomial and IDM approaches identified different genera as potentially important. Species belonging to the genus Artemisia and Ligusticum were most consistently identified and may be valuable in future studies of the ethnopharmacology. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Eastwood, John Graeme; Kemp, Lynn Ann; Jalaludin, Bin Badrudin; Phung, Hai Ngoc
2013-01-01
The aim of the study reported here is to explore ecological covariate and latent variable associations with perinatal depressive symptoms in South Western Sydney for the purpose of informing subsequent theory generation of perinatal context, depression, and the developmental origins of health and disease. Mothers (n = 15,389) delivering in 2002 and 2003 were assessed at two to three weeks after delivery for risk factors for depressive symptoms. The binary outcome variables were Edinburgh Postnatal Depression Scale (EPDS)> 9 and > 12. Aggregated EPDS > 9 was analyzed for 101 suburbs. Suburb-level variables were drawn from the 2001 Australian Census, New South Wales Crime Statistics, and aggregated individual-level risk factors. Analysis included exploratory factor analysis, univariate and multivariate likelihood, and Bayesian linear regression with conditional autoregressive components. The exploratory factor analysis identified six factors: neighborhood adversity, social cohesion, health behaviors, housing quality, social services, and support networks. Variables associated with neighborhood adversity, social cohesion, social networks, and ethnic diversity were consistently associated with aggregated depressive symptoms. The findings support the theoretical proposition that neighborhood adversity causes maternal psychological distress and depression within the context of social buffers including social networks, social cohesion, and social services.
Bayesian wavelet PCA methodology for turbomachinery damage diagnosis under uncertainty
NASA Astrophysics Data System (ADS)
Xu, Shengli; Jiang, Xiaomo; Huang, Jinzhi; Yang, Shuhua; Wang, Xiaofang
2016-12-01
Centrifugal compressor often suffers various defects such as impeller cracking, resulting in forced outage of the total plant. Damage diagnostics and condition monitoring of such a turbomachinery system has become an increasingly important and powerful tool to prevent potential failure in components and reduce unplanned forced outage and further maintenance costs, while improving reliability, availability and maintainability of a turbomachinery system. This paper presents a probabilistic signal processing methodology for damage diagnostics using multiple time history data collected from different locations of a turbomachine, considering data uncertainty and multivariate correlation. The proposed methodology is based on the integration of three advanced state-of-the-art data mining techniques: discrete wavelet packet transform, Bayesian hypothesis testing, and probabilistic principal component analysis. The multiresolution wavelet analysis approach is employed to decompose a time series signal into different levels of wavelet coefficients. These coefficients represent multiple time-frequency resolutions of a signal. Bayesian hypothesis testing is then applied to each level of wavelet coefficient to remove possible imperfections. The ratio of posterior odds Bayesian approach provides a direct means to assess whether there is imperfection in the decomposed coefficients, thus avoiding over-denoising. Power spectral density estimated by the Welch method is utilized to evaluate the effectiveness of Bayesian wavelet cleansing method. Furthermore, the probabilistic principal component analysis approach is developed to reduce dimensionality of multiple time series and to address multivariate correlation and data uncertainty for damage diagnostics. The proposed methodology and generalized framework is demonstrated with a set of sensor data collected from a real-world centrifugal compressor with impeller cracks, through both time series and contour analyses of vibration signal and principal components.
Substantial advantage of a combined Bayesian and genotyping approach in testosterone doping tests.
Schulze, Jenny Jakobsson; Lundmark, Jonas; Garle, Mats; Ekström, Lena; Sottas, Pierre-Edouard; Rane, Anders
2009-03-01
Testosterone abuse is conventionally assessed by the urinary testosterone/epitestosterone (T/E) ratio, levels above 4.0 being considered suspicious. A deletion polymorphism in the gene coding for UGT2B17 is strongly associated with reduced testosterone glucuronide (TG) levels in urine. Many of the individuals devoid of the gene would not reach a T/E ratio of 4.0 after testosterone intake. Future test programs will most likely shift from population based- to individual-based T/E cut-off ratios using Bayesian inference. A longitudinal analysis is dependent on an individual's true negative baseline T/E ratio. The aim was to investigate whether it is possible to increase the sensitivity and specificity of the T/E test by addition of UGT2B17 genotype information in a Bayesian framework. A single intramuscular dose of 500mg testosterone enanthate was given to 55 healthy male volunteers with either two, one or no allele (ins/ins, ins/del or del/del) of the UGT2B17 gene. Urinary excretion of TG and the T/E ratio was measured during 15 days. The Bayesian analysis was conducted to calculate the individual T/E cut-off ratio. When adding the genotype information, the program returned lower individual cut-off ratios in all del/del subjects increasing the sensitivity of the test considerably. It will be difficult, if not impossible, to discriminate between a true negative baseline T/E value and a false negative one without knowledge of the UGT2B17 genotype. UGT2B17 genotype information is crucial, both to decide which initial cut-off ratio to use for an individual, and for increasing the sensitivity of the Bayesian analysis.
Phan, Kevin; Xie, Ashleigh; Kumar, Narendra; Wong, Sophia; Medi, Caroline; La Meir, Mark; Yan, Tristan D
2015-08-01
Simplified maze procedures involving radiofrequency, cryoenergy and microwave energy sources have been increasingly utilized for surgical treatment of atrial fibrillation as an alternative to the traditional cut-and-sew approach. In the absence of direct comparisons, a Bayesian network meta-analysis is another alternative to assess the relative effect of different treatments, using indirect evidence. A Bayesian meta-analysis of indirect evidence was performed using 16 published randomized trials identified from 6 databases. Rank probability analysis was used to rank each intervention in terms of their probability of having the best outcome. Sinus rhythm prevalence beyond the 12-month follow-up was similar between the cut-and-sew, microwave and radiofrequency approaches, which were all ranked better than cryoablation (respectively, 39, 36, and 25 vs 1%). The cut-and-sew maze was ranked worst in terms of mortality outcomes compared with microwave, radiofrequency and cryoenergy (2 vs 19, 34, and 24%, respectively). The cut-and-sew maze procedure was associated with significantly lower stroke rates compared with microwave ablation [odds ratio <0.01; 95% confidence interval 0.00, 0.82], and ranked the best in terms of pacemaker requirements compared with microwave, radiofrequency and cryoenergy (81 vs 14, and 1, <0.01% respectively). Bayesian rank probability analysis shows that the cut-and-sew approach is associated with the best outcomes in terms of sinus rhythm prevalence and stroke outcomes, and remains the gold standard approach for AF treatment. Given the limitations of indirect comparison analysis, these results should be viewed with caution and not over-interpreted. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Dolz, Roser; Valle, Rosa; Perera, Carmen L.; Bertran, Kateri; Frías, Maria T.; Majó, Natàlia; Ganges, Llilianne; Pérez, Lester J.
2013-01-01
Background Infectious bursal disease is a highly contagious and acute viral disease caused by the infectious bursal disease virus (IBDV); it affects all major poultry producing areas of the world. The current study was designed to rigorously measure the global phylogeographic dynamics of IBDV strains to gain insight into viral population expansion as well as the emergence, spread and pattern of the geographical structure of very virulent IBDV (vvIBDV) strains. Methodology/Principal Findings Sequences of the hyper-variable region of the VP2 (HVR-VP2) gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank database; Cuban sequences were obtained in the current work. All sequences were analysed by Bayesian phylogeographic analysis, implemented in the Bayesian Evolutionary Analysis Sampling Trees (BEAST), Bayesian Tip-association Significance testing (BaTS) and Spatial Phylogenetic Reconstruction of Evolutionary Dynamics (SPREAD) software packages. Selection pressure on the HVR-VP2 was also assessed. The phylogeographic association-trait analysis showed that viruses sampled from individual countries tend to cluster together, suggesting a geographic pattern for IBDV strains. Spatial analysis from this study revealed that strains carrying sequences that were linked to increased virulence of IBDV appeared in Iran in 1981 and spread to Western Europe (Belgium) in 1987, Africa (Egypt) around 1990, East Asia (China and Japan) in 1993, the Caribbean Region (Cuba) by 1995 and South America (Brazil) around 2000. Selection pressure analysis showed that several codons in the HVR-VP2 region were under purifying selection. Conclusions/Significance To our knowledge, this work is the first study applying the Bayesian phylogeographic reconstruction approach to analyse the emergence and spread of vvIBDV strains worldwide. PMID:23805195
Alfonso-Morales, Abdulahi; Martínez-Pérez, Orlando; Dolz, Roser; Valle, Rosa; Perera, Carmen L; Bertran, Kateri; Frías, Maria T; Majó, Natàlia; Ganges, Llilianne; Pérez, Lester J
2013-01-01
Infectious bursal disease is a highly contagious and acute viral disease caused by the infectious bursal disease virus (IBDV); it affects all major poultry producing areas of the world. The current study was designed to rigorously measure the global phylogeographic dynamics of IBDV strains to gain insight into viral population expansion as well as the emergence, spread and pattern of the geographical structure of very virulent IBDV (vvIBDV) strains. Sequences of the hyper-variable region of the VP2 (HVR-VP2) gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank database; Cuban sequences were obtained in the current work. All sequences were analysed by Bayesian phylogeographic analysis, implemented in the Bayesian Evolutionary Analysis Sampling Trees (BEAST), Bayesian Tip-association Significance testing (BaTS) and Spatial Phylogenetic Reconstruction of Evolutionary Dynamics (SPREAD) software packages. Selection pressure on the HVR-VP2 was also assessed. The phylogeographic association-trait analysis showed that viruses sampled from individual countries tend to cluster together, suggesting a geographic pattern for IBDV strains. Spatial analysis from this study revealed that strains carrying sequences that were linked to increased virulence of IBDV appeared in Iran in 1981 and spread to Western Europe (Belgium) in 1987, Africa (Egypt) around 1990, East Asia (China and Japan) in 1993, the Caribbean Region (Cuba) by 1995 and South America (Brazil) around 2000. Selection pressure analysis showed that several codons in the HVR-VP2 region were under purifying selection. To our knowledge, this work is the first study applying the Bayesian phylogeographic reconstruction approach to analyse the emergence and spread of vvIBDV strains worldwide.
A Comparison of the β-Substitution Method and a Bayesian Method for Analyzing Left-Censored Data
Huynh, Tran; Quick, Harrison; Ramachandran, Gurumurthy; Banerjee, Sudipto; Stenzel, Mark; Sandler, Dale P.; Engel, Lawrence S.; Kwok, Richard K.; Blair, Aaron; Stewart, Patricia A.
2016-01-01
Classical statistical methods for analyzing exposure data with values below the detection limits are well described in the occupational hygiene literature, but an evaluation of a Bayesian approach for handling such data is currently lacking. Here, we first describe a Bayesian framework for analyzing censored data. We then present the results of a simulation study conducted to compare the β-substitution method with a Bayesian method for exposure datasets drawn from lognormal distributions and mixed lognormal distributions with varying sample sizes, geometric standard deviations (GSDs), and censoring for single and multiple limits of detection. For each set of factors, estimates for the arithmetic mean (AM), geometric mean, GSD, and the 95th percentile (X0.95) of the exposure distribution were obtained. We evaluated the performance of each method using relative bias, the root mean squared error (rMSE), and coverage (the proportion of the computed 95% uncertainty intervals containing the true value). The Bayesian method using non-informative priors and the β-substitution method were generally comparable in bias and rMSE when estimating the AM and GM. For the GSD and the 95th percentile, the Bayesian method with non-informative priors was more biased and had a higher rMSE than the β-substitution method, but use of more informative priors generally improved the Bayesian method’s performance, making both the bias and the rMSE more comparable to the β-substitution method. An advantage of the Bayesian method is that it provided estimates of uncertainty for these parameters of interest and good coverage, whereas the β-substitution method only provided estimates of uncertainty for the AM, and coverage was not as consistent. Selection of one or the other method depends on the needs of the practitioner, the availability of prior information, and the distribution characteristics of the measurement data. We suggest the use of Bayesian methods if the practitioner has the computational resources and prior information, as the method would generally provide accurate estimates and also provides the distributions of all of the parameters, which could be useful for making decisions in some applications. PMID:26209598
NASA Astrophysics Data System (ADS)
Norros, Veera; Laine, Marko; Lignell, Risto; Thingstad, Frede
2017-10-01
Methods for extracting empirically and theoretically sound parameter values are urgently needed in aquatic ecosystem modelling to describe key flows and their variation in the system. Here, we compare three Bayesian formulations for mechanistic model parameterization that differ in their assumptions about the variation in parameter values between various datasets: 1) global analysis - no variation, 2) separate analysis - independent variation and 3) hierarchical analysis - variation arising from a shared distribution defined by hyperparameters. We tested these methods, using computer-generated and empirical data, coupled with simplified and reasonably realistic plankton food web models, respectively. While all methods were adequate, the simulated example demonstrated that a well-designed hierarchical analysis can result in the most accurate and precise parameter estimates and predictions, due to its ability to combine information across datasets. However, our results also highlighted sensitivity to hyperparameter prior distributions as an important caveat of hierarchical analysis. In the more complex empirical example, hierarchical analysis was able to combine precise identification of parameter values with reasonably good predictive performance, although the ranking of the methods was less straightforward. We conclude that hierarchical Bayesian analysis is a promising tool for identifying key ecosystem-functioning parameters and their variation from empirical datasets.
Tenan, Matthew S; Tweedell, Andrew J; Haynes, Courtney A
2017-12-01
The onset of muscle activity, as measured by electromyography (EMG), is a commonly applied metric in biomechanics. Intramuscular EMG is often used to examine deep musculature and there are currently no studies examining the effectiveness of algorithms for intramuscular EMG onset. The present study examines standard surface EMG onset algorithms (linear envelope, Teager-Kaiser Energy Operator, and sample entropy) and novel algorithms (time series mean-variance analysis, sequential/batch processing with parametric and nonparametric methods, and Bayesian changepoint analysis). Thirteen male and 5 female subjects had intramuscular EMG collected during isolated biceps brachii and vastus lateralis contractions, resulting in 103 trials. EMG onset was visually determined twice by 3 blinded reviewers. Since the reliability of visual onset was high (ICC (1,1) : 0.92), the mean of the 6 visual assessments was contrasted with the algorithmic approaches. Poorly performing algorithms were stepwise eliminated via (1) root mean square error analysis, (2) algorithm failure to identify onset/premature onset, (3) linear regression analysis, and (4) Bland-Altman plots. The top performing algorithms were all based on Bayesian changepoint analysis of rectified EMG and were statistically indistinguishable from visual analysis. Bayesian changepoint analysis has the potential to produce more reliable, accurate, and objective intramuscular EMG onset results than standard methodologies.
Quantitative trait nucleotide analysis using Bayesian model selection.
Blangero, John; Goring, Harald H H; Kent, Jack W; Williams, Jeff T; Peterson, Charles P; Almasy, Laura; Dyer, Thomas D
2005-10-01
Although much attention has been given to statistical genetic methods for the initial localization and fine mapping of quantitative trait loci (QTLs), little methodological work has been done to date on the problem of statistically identifying the most likely functional polymorphisms using sequence data. In this paper we provide a general statistical genetic framework, called Bayesian quantitative trait nucleotide (BQTN) analysis, for assessing the likely functional status of genetic variants. The approach requires the initial enumeration of all genetic variants in a set of resequenced individuals. These polymorphisms are then typed in a large number of individuals (potentially in families), and marker variation is related to quantitative phenotypic variation using Bayesian model selection and averaging. For each sequence variant a posterior probability of effect is obtained and can be used to prioritize additional molecular functional experiments. An example of this quantitative nucleotide analysis is provided using the GAW12 simulated data. The results show that the BQTN method may be useful for choosing the most likely functional variants within a gene (or set of genes). We also include instructions on how to use our computer program, SOLAR, for association analysis and BQTN analysis.
Bayesian data analysis tools for atomic physics
NASA Astrophysics Data System (ADS)
Trassinelli, Martino
2017-10-01
We present an introduction to some concepts of Bayesian data analysis in the context of atomic physics. Starting from basic rules of probability, we present the Bayes' theorem and its applications. In particular we discuss about how to calculate simple and joint probability distributions and the Bayesian evidence, a model dependent quantity that allows to assign probabilities to different hypotheses from the analysis of a same data set. To give some practical examples, these methods are applied to two concrete cases. In the first example, the presence or not of a satellite line in an atomic spectrum is investigated. In the second example, we determine the most probable model among a set of possible profiles from the analysis of a statistically poor spectrum. We show also how to calculate the probability distribution of the main spectral component without having to determine uniquely the spectrum modeling. For these two studies, we implement the program Nested_fit to calculate the different probability distributions and other related quantities. Nested_fit is a Fortran90/Python code developed during the last years for analysis of atomic spectra. As indicated by the name, it is based on the nested algorithm, which is presented in details together with the program itself.
2011-01-01
Background Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. Results We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism’s metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. Conclusions After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis. PMID:22784571
Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup
2011-01-01
Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.
Bayesian structured additive regression modeling of epidemic data: application to cholera
2012-01-01
Background A significant interest in spatial epidemiology lies in identifying associated risk factors which enhances the risk of infection. Most studies, however, make no, or limited use of the spatial structure of the data, as well as possible nonlinear effects of the risk factors. Methods We develop a Bayesian Structured Additive Regression model for cholera epidemic data. Model estimation and inference is based on fully Bayesian approach via Markov Chain Monte Carlo (MCMC) simulations. The model is applied to cholera epidemic data in the Kumasi Metropolis, Ghana. Proximity to refuse dumps, density of refuse dumps, and proximity to potential cholera reservoirs were modeled as continuous functions; presence of slum settlers and population density were modeled as fixed effects, whereas spatial references to the communities were modeled as structured and unstructured spatial effects. Results We observe that the risk of cholera is associated with slum settlements and high population density. The risk of cholera is equal and lower for communities with fewer refuse dumps, but variable and higher for communities with more refuse dumps. The risk is also lower for communities distant from refuse dumps and potential cholera reservoirs. The results also indicate distinct spatial variation in the risk of cholera infection. Conclusion The study highlights the usefulness of Bayesian semi-parametric regression model analyzing public health data. These findings could serve as novel information to help health planners and policy makers in making effective decisions to control or prevent cholera epidemics. PMID:22866662
Boysen, Courtney; Davis, Elizabeth G.; Beard, Laurie A.; Lubbers, Brian V.; Raghavan, Ram K.
2015-01-01
Kansas witnessed an unprecedented outbreak in Corynebacterium pseudotuberculosis infection among horses, a disease commonly referred to as pigeon fever during fall 2012. Bayesian geostatistical models were developed to identify key environmental and climatic risk factors associated with C. pseudotuberculosis infection in horses. Positive infection status among horses (cases) was determined by positive test results for characteristic abscess formation, positive bacterial culture on purulent material obtained from a lanced abscess (n = 82), or positive serologic evidence of exposure to organism (≥1:512)(n = 11). Horses negative for these tests (n = 172)(controls) were considered free of infection. Information pertaining to horse demographics and stabled location were obtained through review of medical records and/or contact with horse owners via telephone. Covariate information for environmental and climatic determinants were obtained from USDA (soil attributes), USGS (land use/land cover), and NASA MODIS and NASA Prediction of Worldwide Renewable Resources (climate). Candidate covariates were screened using univariate regression models followed by Bayesian geostatistical models with and without covariates. The best performing model indicated a protective effect for higher soil moisture content (OR = 0.53, 95% CrI = 0.25, 0.71), and detrimental effects for higher land surface temperature (≥35°C) (OR = 2.81, 95% CrI = 2.21, 3.85) and habitat fragmentation (OR = 1.31, 95% CrI = 1.27, 2.22) for C. pseudotuberculosis infection status in horses, while age, gender and breed had no effect. Preventative and ecoclimatic significance of these findings are discussed. PMID:26473728
Calibrated birth-death phylogenetic time-tree priors for bayesian inference.
Heled, Joseph; Drummond, Alexei J
2015-05-01
Here we introduce a general class of multiple calibration birth-death tree priors for use in Bayesian phylogenetic inference. All tree priors in this class separate ancestral node heights into a set of "calibrated nodes" and "uncalibrated nodes" such that the marginal distribution of the calibrated nodes is user-specified whereas the density ratio of the birth-death prior is retained for trees with equal values for the calibrated nodes. We describe two formulations, one in which the calibration information informs the prior on ranked tree topologies, through the (conditional) prior, and the other which factorizes the prior on divergence times and ranked topologies, thus allowing uniform, or any arbitrary prior distribution on ranked topologies. Although the first of these formulations has some attractive properties, the algorithm we present for computing its prior density is computationally intensive. However, the second formulation is always faster and computationally efficient for up to six calibrations. We demonstrate the utility of the new class of multiple-calibration tree priors using both small simulations and a real-world analysis and compare the results to existing schemes. The two new calibrated tree priors described in this article offer greater flexibility and control of prior specification in calibrated time-tree inference and divergence time dating, and will remove the need for indirect approaches to the assessment of the combined effect of calibration densities and tree priors in Bayesian phylogenetic inference. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Boysen, Courtney; Davis, Elizabeth G; Beard, Laurie A; Lubbers, Brian V; Raghavan, Ram K
2015-01-01
Kansas witnessed an unprecedented outbreak in Corynebacterium pseudotuberculosis infection among horses, a disease commonly referred to as pigeon fever during fall 2012. Bayesian geostatistical models were developed to identify key environmental and climatic risk factors associated with C. pseudotuberculosis infection in horses. Positive infection status among horses (cases) was determined by positive test results for characteristic abscess formation, positive bacterial culture on purulent material obtained from a lanced abscess (n = 82), or positive serologic evidence of exposure to organism (≥ 1:512)(n = 11). Horses negative for these tests (n = 172)(controls) were considered free of infection. Information pertaining to horse demographics and stabled location were obtained through review of medical records and/or contact with horse owners via telephone. Covariate information for environmental and climatic determinants were obtained from USDA (soil attributes), USGS (land use/land cover), and NASA MODIS and NASA Prediction of Worldwide Renewable Resources (climate). Candidate covariates were screened using univariate regression models followed by Bayesian geostatistical models with and without covariates. The best performing model indicated a protective effect for higher soil moisture content (OR = 0.53, 95% CrI = 0.25, 0.71), and detrimental effects for higher land surface temperature (≥ 35°C) (OR = 2.81, 95% CrI = 2.21, 3.85) and habitat fragmentation (OR = 1.31, 95% CrI = 1.27, 2.22) for C. pseudotuberculosis infection status in horses, while age, gender and breed had no effect. Preventative and ecoclimatic significance of these findings are discussed.
Faverial, Julie; Cornet, Denis; Paul, Jacky; Sierra, Jorge
2016-01-01
Previous studies indicated that the quality of tropical composts is poorer than that of composts produced in temperate regions. The aim of this study was to test the type of manure, the use of co-composting with green waste, and the stabilization method for their ability to improve compost quality in the tropics. We produced 68 composts and vermicomposts that were analysed for their C, lignin and NPK contents throughout the composting process. Bayesian networks were used to assess the mechanisms controlling compost quality. The concentration effect, for C and lignin, and the initial blend quality, for NPK content, were the main factors affecting compost quality. Cattle manure composts presented the highest C and lignin contents, and poultry litter composts exhibited the highest NPK content. Co-composting improved quality by enhancing the concentration effect, which reduced the impact of C and nutrient losses. Vermicomposting did not improve compost quality; co-composting without earthworms thus appears to be a suitable stabilization method under the conditions of this study because it produced high quality composts and is easier to implement.
A Gender Identification System for Customers in a Shop Using Infrared Area Scanners
NASA Astrophysics Data System (ADS)
Tajima, Takuya; Kimura, Haruhiko; Abe, Takehiko; Abe, Koji; Nakamoto, Yoshinori
Information about customers in shops plays an important role in marketing analysis. Currently, in convenience stores and supermarkets, the identification of customer's gender is examined by clerks. On the other hand, gender identification systems using camera images are investigated. However, these systems have a problem of invading human privacies in identifying attributes of customers. The proposed system identifies gender by using infrared area scanners and Bayesian network. In the proposed system, since infrared area scanners do not take customers' images directly, invasion of privacies are not occurred. The proposed method uses three parameters of height, walking speed and pace for humans. In general, it is shown that these parameters have factors of sexual distinction in humans, and Bayesian network is designed with these three parameters. The proposed method resolves the existent problems of restricting the locations where the systems are set and invading human privacies. Experimental results using data obtained from 450 people show that the identification rate for the proposed method was 91.3% on the average of both of male and female identifications.
When decision heuristics and science collide.
Yu, Erica C; Sprenger, Amber M; Thomas, Rick P; Dougherty, Michael R
2014-04-01
The ongoing discussion among scientists about null-hypothesis significance testing and Bayesian data analysis has led to speculation about the practices and consequences of "researcher degrees of freedom." This article advances this debate by asking the broader questions that we, as scientists, should be asking: How do scientists make decisions in the course of doing research, and what is the impact of these decisions on scientific conclusions? We asked practicing scientists to collect data in a simulated research environment, and our findings show that some scientists use data collection heuristics that deviate from prescribed methodology. Monte Carlo simulations show that data collection heuristics based on p values lead to biases in estimated effect sizes and Bayes factors and to increases in both false-positive and false-negative rates, depending on the specific heuristic. We also show that using Bayesian data collection methods does not eliminate these biases. Thus, our study highlights the little appreciated fact that the process of doing science is a behavioral endeavor that can bias statistical description and inference in a manner that transcends adherence to any particular statistical framework.
Roetker, Nicholas S; Page, C David; Yonker, James A; Chang, Vicky; Roan, Carol L; Herd, Pamela; Hauser, Taissa S; Hauser, Robert M; Atwood, Craig S
2013-10-01
We examined depression within a multidimensional framework consisting of genetic, environmental, and sociobehavioral factors and, using machine learning algorithms, explored interactions among these factors that might better explain the etiology of depressive symptoms. We measured current depressive symptoms using the Center for Epidemiologic Studies Depression Scale (n = 6378 participants in the Wisconsin Longitudinal Study). Genetic factors were 78 single nucleotide polymorphisms (SNPs); environmental factors-13 stressful life events (SLEs), plus a composite proportion of SLEs index; and sociobehavioral factors-18 personality, intelligence, and other health or behavioral measures. We performed traditional SNP associations via logistic regression likelihood ratio testing and explored interactions with support vector machines and Bayesian networks. After correction for multiple testing, we found no significant single genotypic associations with depressive symptoms. Machine learning algorithms showed no evidence of interactions. Naïve Bayes produced the best models in both subsets and included only environmental and sociobehavioral factors. We found no single or interactive associations with genetic factors and depressive symptoms. Various environmental and sociobehavioral factors were more predictive of depressive symptoms, yet their impacts were independent of one another. A genome-wide analysis of genetic alterations using machine learning methodologies will provide a framework for identifying genetic-environmental-sociobehavioral interactions in depressive symptoms.
ERIC Educational Resources Information Center
Tsutakawa, Robert K.; Lin, Hsin Ying
Item response curves for a set of binary responses are studied from a Bayesian viewpoint of estimating the item parameters. For the two-parameter logistic model with normally distributed ability, restricted bivariate beta priors are used to illustrate the computation of the posterior mode via the EM algorithm. The procedure is illustrated by data…
Spatial quantile regression using INLA with applications to childhood overweight in Malawi.
Mtambo, Owen P L; Masangwi, Salule J; Kazembe, Lawrence N M
2015-04-01
Analyses of childhood overweight have mainly used mean regression. However, using quantile regression is more appropriate as it provides flexibility to analyse the determinants of overweight corresponding to quantiles of interest. The main objective of this study was to fit a Bayesian additive quantile regression model with structured spatial effects for childhood overweight in Malawi using the 2010 Malawi DHS data. Inference was fully Bayesian using R-INLA package. The significant determinants of childhood overweight ranged from socio-demographic factors such as type of residence to child and maternal factors such as child age and maternal BMI. We observed significant positive structured spatial effects on childhood overweight in some districts of Malawi. We recommended that the childhood malnutrition policy makers should consider timely interventions based on risk factors as identified in this paper including spatial targets of interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jensch, Antje; Thomaseth, Caterina; Radde, Nicole E
2017-01-25
Positive and negative feedback loops are ubiquitous motifs in biochemical signaling pathways. The mitogen-activated protein kinase (MAPK) pathway module is part of many distinct signaling networks and comprises several of these motifs, whose functioning depends on the cell line at hand and on the particular context. The maintainance of specificity of the response of the MAPK module to distinct stimuli has become a key paradigm especially in PC-12 cells, where the same module leads to different cell fates, depending on the stimulating growth factor. This cell fate is regulated by differences in the ERK (MAPK) activation profile, which shows a transient response upon stimulation with EGF, while the response is sustained in case of NGF. This behavior was explained by different effective network topologies. It is widely believed that this sustained response requires a bistable system. In this study we present a sampling-based Bayesian model analysis on a dataset, in which PC-12 cells have been stimulated with different growth factors. This is combined with novel analysis methods to investigate the role of feedback interconnections to shape ERK response. Results strongly suggest that, besides bistability, an additional effect called quasi-bistability can contribute to explain the observed responses of the system to different stimuli. Quasi-bistability is the ability of a monostable system to maintain two distinct states over a long time period upon a transient signal, which is also related to positive feedback, but cannot be detected by standard steady state analysis methods. Although applied on a specific example, our framework is generic enough to be also relevant for other regulatory network modeling studies that comprise positive feedback to explain cellular decision making processes. Overall, this study advices to focus not only on steady states, but also to take transient behavior into account in the analysis.
Liu, Guang-ying; Zheng, Yang; Deng, Yan; Gao, Yan-yan; Wang, Lie
2013-01-01
Background Although transfusion-transmitted infection of hepatitis B virus (HBV) threatens the blood safety of China, the nationwide circumstance of HBV infection among blood donors is still unclear. Objectives To comprehensively estimate the prevalence of HBsAg positive and HBV occult infection (OBI) among Chinese volunteer blood donors through bayesian meta-analysis. Methods We performed an electronic search in Pub-Med, Web of Knowledge, Medline, Wanfang Data and CNKI, complemented by a hand search of relevant reference lists. Two authors independently extracted data from the eligible studies. Then two bayesian random-effect meta-analyses were performed, followed by bayesian meta-regressions. Results 5957412 and 571227 donors were identified in HBsAg group and OBI group, respectively. The pooled prevalence of HBsAg group and OBI group among donors is 1.085% (95% credible interval [CI] 0.859%∼1.398%) and 0.094% (95% CI 0.0578%∼0.1655%). For HBsAg group, subgroup analysis shows the more developed area has a lower prevalence than the less developed area; meta-regression indicates there is a significant decreasing trend in HBsAg positive prevalence with sampling year (beta = −0.1202, 95% −0.2081∼−0.0312). Conclusion Blood safety against HBV infection in China is suffering serious threats and the government should take effective measures to improve this situation. PMID:24236110
Alderman, Phillip D.; Stanfill, Bryan
2016-10-06
Recent international efforts have brought renewed emphasis on the comparison of different agricultural systems models. Thus far, analysis of model-ensemble simulated results has not clearly differentiated between ensemble prediction uncertainties due to model structural differences per se and those due to parameter value uncertainties. Additionally, despite increasing use of Bayesian parameter estimation approaches with field-scale crop models, inadequate attention has been given to the full posterior distributions for estimated parameters. The objectives of this study were to quantify the impact of parameter value uncertainty on prediction uncertainty for modeling spring wheat phenology using Bayesian analysis and to assess the relativemore » contributions of model-structure-driven and parameter-value-driven uncertainty to overall prediction uncertainty. This study used a random walk Metropolis algorithm to estimate parameters for 30 spring wheat genotypes using nine phenology models based on multi-location trial data for days to heading and days to maturity. Across all cases, parameter-driven uncertainty accounted for between 19 and 52% of predictive uncertainty, while model-structure-driven uncertainty accounted for between 12 and 64%. Here, this study demonstrated the importance of quantifying both model-structure- and parameter-value-driven uncertainty when assessing overall prediction uncertainty in modeling spring wheat phenology. More generally, Bayesian parameter estimation provided a useful framework for quantifying and analyzing sources of prediction uncertainty.« less
Multiscale hidden Markov models for photon-limited imaging
NASA Astrophysics Data System (ADS)
Nowak, Robert D.
1999-06-01
Photon-limited image analysis is often hindered by low signal-to-noise ratios. A novel Bayesian multiscale modeling and analysis method is developed in this paper to assist in these challenging situations. In addition to providing a very natural and useful framework for modeling an d processing images, Bayesian multiscale analysis is often much less computationally demanding compared to classical Markov random field models. This paper focuses on a probabilistic graph model called the multiscale hidden Markov model (MHMM), which captures the key inter-scale dependencies present in natural image intensities. The MHMM framework presented here is specifically designed for photon-limited imagin applications involving Poisson statistics, and applications to image intensity analysis are examined.
Numerical study on the sequential Bayesian approach for radioactive materials detection
NASA Astrophysics Data System (ADS)
Qingpei, Xiang; Dongfeng, Tian; Jianyu, Zhu; Fanhua, Hao; Ge, Ding; Jun, Zeng
2013-01-01
A new detection method, based on the sequential Bayesian approach proposed by Candy et al., offers new horizons for the research of radioactive detection. Compared with the commonly adopted detection methods incorporated with statistical theory, the sequential Bayesian approach offers the advantages of shorter verification time during the analysis of spectra that contain low total counts, especially in complex radionuclide components. In this paper, a simulation experiment platform implanted with the methodology of sequential Bayesian approach was developed. Events sequences of γ-rays associating with the true parameters of a LaBr3(Ce) detector were obtained based on an events sequence generator using Monte Carlo sampling theory to study the performance of the sequential Bayesian approach. The numerical experimental results are in accordance with those of Candy. Moreover, the relationship between the detection model and the event generator, respectively represented by the expected detection rate (Am) and the tested detection rate (Gm) parameters, is investigated. To achieve an optimal performance for this processor, the interval of the tested detection rate as a function of the expected detection rate is also presented.
Posterior Predictive Bayesian Phylogenetic Model Selection
Lewis, Paul O.; Xie, Wangang; Chen, Ming-Hui; Fan, Yu; Kuo, Lynn
2014-01-01
We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The Gelfand–Ghosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-fit (GGg), which distinguishes this method from the posterior predictive P-value approach. The conditional predictive ordinate (CPO) method provides a site-specific measure of model fit useful for exploratory analyses and can be combined over sites yielding the log pseudomarginal likelihood (LPML) which is useful as an overall measure of model fit. CPO provides a useful cross-validation approach that is computationally efficient, requiring only a sample from the posterior distribution (no additional simulation is required). Both GG and CPO add new perspectives to Bayesian phylogenetic model selection based on the predictive abilities of models and complement the perspective provided by the marginal likelihood (including Bayes Factor comparisons) based solely on the fit of competing models to observed data. [Bayesian; conditional predictive ordinate; CPO; L-measure; LPML; model selection; phylogenetics; posterior predictive.] PMID:24193892
A Bayesian network model for predicting type 2 diabetes risk based on electronic health records
NASA Astrophysics Data System (ADS)
Xie, Jiang; Liu, Yan; Zeng, Xu; Zhang, Wu; Mei, Zhen
2017-07-01
An extensive, in-depth study of diabetes risk factors (DBRF) is of crucial importance to prevent (or reduce) the chance of suffering from type 2 diabetes (T2D). Accumulation of electronic health records (EHRs) makes it possible to build nonlinear relationships between risk factors and diabetes. However, the current DBRF researches mainly focus on qualitative analyses, and the inconformity of physical examination items makes the risk factors likely to be lost, which drives us to study the novel machine learning approach for risk model development. In this paper, we use Bayesian networks (BNs) to analyze the relationship between physical examination information and T2D, and to quantify the link between risk factors and T2D. Furthermore, with the quantitative analyses of DBRF, we adopt EHR and propose a machine learning approach based on BNs to predict the risk of T2D. The experiments demonstrate that our approach can lead to better predictive performance than the classical risk model.
Bayesian Computation for Log-Gaussian Cox Processes: A Comparative Analysis of Methods
Teng, Ming; Nathoo, Farouk S.; Johnson, Timothy D.
2017-01-01
The Log-Gaussian Cox Process is a commonly used model for the analysis of spatial point pattern data. Fitting this model is difficult because of its doubly-stochastic property, i.e., it is an hierarchical combination of a Poisson process at the first level and a Gaussian Process at the second level. Various methods have been proposed to estimate such a process, including traditional likelihood-based approaches as well as Bayesian methods. We focus here on Bayesian methods and several approaches that have been considered for model fitting within this framework, including Hamiltonian Monte Carlo, the Integrated nested Laplace approximation, and Variational Bayes. We consider these approaches and make comparisons with respect to statistical and computational efficiency. These comparisons are made through several simulation studies as well as through two applications, the first examining ecological data and the second involving neuroimaging data. PMID:29200537
Introduction of Bayesian network in risk analysis of maritime accidents in Bangladesh
NASA Astrophysics Data System (ADS)
Rahman, Sohanur
2017-12-01
Due to the unique geographic location, complex navigation environment and intense vessel traffic, a considerable number of maritime accidents occurred in Bangladesh which caused serious loss of life, property and environmental contamination. Based on the historical data of maritime accidents from 1981 to 2015, which has been collected from Department of Shipping (DOS) and Bangladesh Inland Water Transport Authority (BIWTA), this paper conducted a risk analysis of maritime accidents by applying Bayesian network. In order to conduct this study, a Bayesian network model has been developed to find out the relation among parameters and the probability of them which affect accidents based on the accident investigation report of Bangladesh. Furthermore, number of accidents in different categories has also been investigated in this paper. Finally, some viable recommendations have been proposed in order to ensure greater safety of inland vessels in Bangladesh.
Assessing noninferiority in a three-arm trial using the Bayesian approach.
Ghosh, Pulak; Nathoo, Farouk; Gönen, Mithat; Tiwari, Ram C
2011-07-10
Non-inferiority trials, which aim to demonstrate that a test product is not worse than a competitor by more than a pre-specified small amount, are of great importance to the pharmaceutical community. As a result, methodology for designing and analyzing such trials is required, and developing new methods for such analysis is an important area of statistical research. The three-arm trial consists of a placebo, a reference and an experimental treatment, and simultaneously tests the superiority of the reference over the placebo along with comparing this reference to an experimental treatment. In this paper, we consider the analysis of non-inferiority trials using Bayesian methods which incorporate both parametric as well as semi-parametric models. The resulting testing approach is both flexible and robust. The benefit of the proposed Bayesian methods is assessed via simulation, based on a study examining home-based blood pressure interventions. Copyright © 2011 John Wiley & Sons, Ltd.
Applying Bayesian belief networks in rapid response situations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, William L; Deborah, Leishman, A.; Van Eeckhout, Edward
2008-01-01
The authors have developed an enhanced Bayesian analysis tool called the Integrated Knowledge Engine (IKE) for monitoring and surveillance. The enhancements are suited for Rapid Response Situations where decisions must be made based on uncertain and incomplete evidence from many diverse and heterogeneous sources. The enhancements extend the probabilistic results of the traditional Bayesian analysis by (1) better quantifying uncertainty arising from model parameter uncertainty and uncertain evidence, (2) optimizing the collection of evidence to reach conclusions more quickly, and (3) allowing the analyst to determine the influence of the remaining evidence that cannot be obtained in the time allowed.more » These extended features give the analyst and decision maker a better comprehension of the adequacy of the acquired evidence and hence the quality of the hurried decisions. They also describe two example systems where the above features are highlighted.« less