NASA Astrophysics Data System (ADS)
Nowak, W.; de Barros, F. P. J.; Rubin, Y.
2009-04-01
Geostatistical optimal design optimizes subsurface exploration for maximum information towards task-specific prediction goals. Until recently, geostatistical design studies have assumed that the geostatistical description (i.e., the mean, trends, covariance models and their parameters) is given a priori, even if only few or no data offer support for such assumptions. This is in contradiction with the fact that the bulk of data acquisition is merely being planned at this stage. We believe that geostatistical design should comply with the following four guidelines: 1. Avoid unjustified a priori assumptions on the geostatistical description such as claiming certainty in the geostatistical model, but to acknowledge the inevitable uncertainty of geostatistical descriptions, 2. Reduce geostatistical model uncertainty as secondary design objective, 3. Rate this secondary objective optimal for the overall prediction goal and 4. Be robust even under inaccurate geostatistical assumptions. Bayesian Geostatistical Design (Diggle und Lophaven, 2006) follows the above four guidelines by considering uncertain covariance model parameters. These authors considered a kriging-like prediction task, using the spatial average of the estimation variance as objective function for the design. We transfer their concept from kriging-like applications to geostatistical inverse problems, thus generalizing towards arbitrary hydrogeological or geophysical data and prediction goals. A remaining concern is that we deem it inappropriate to consider parametric uncertainty only within a single covariance model. The Matérn family of covariance functions has an additional shape parameter, and so allows for uncertain smoothness and shape of the covariance function (Zhang and Rubin, submitted to WRR). Controlling model shape by a parameter converts covariance model selection to parameter identification and resembles Bayesian model averaging over a continuous spectrum of covariance models. We illustrate
Preferential sampling and Bayesian geostatistics: Statistical modeling and examples.
Cecconi, Lorenzo; Grisotto, Laura; Catelan, Dolores; Lagazio, Corrado; Berrocal, Veronica; Biggeri, Annibale
2016-08-01
Preferential sampling refers to any situation in which the spatial process and the sampling locations are not stochastically independent. In this paper, we present two examples of geostatistical analysis in which the usual assumption of stochastic independence between the point process and the measurement process is violated. To account for preferential sampling, we specify a flexible and general Bayesian geostatistical model that includes a shared spatial random component. We apply the proposed model to two different case studies that allow us to highlight three different modeling and inferential aspects of geostatistical modeling under preferential sampling: (1) continuous or finite spatial sampling frame; (2) underlying causal model and relevant covariates; and (3) inferential goals related to mean prediction surface or prediction uncertainty.
Geostatistical models are appropriate for spatially distributed data measured at irregularly spaced locations. We propose an efficient Markov chain Monte Carlo (MCMC) algorithm for fitting Bayesian geostatistical models with substantial numbers of unknown parameters to sizable...
Geostatistical models are appropriate for spatially distributed data measured at irregularly spaced locations. We propose an efficient Markov chain Monte Carlo (MCMC) algorithm for fitting Bayesian geostatistical models with substantial numbers of unknown parameters to sizable...
Bayesian Geostatistical Modeling of Leishmaniasis Incidence in Brazil
Karagiannis-Voules, Dimitrios-Alexios; Scholte, Ronaldo G. C.; Guimarães, Luiz H.; Utzinger, Jürg; Vounatsou, Penelope
2013-01-01
Background Leishmaniasis is endemic in 98 countries with an estimated 350 million people at risk and approximately 2 million cases annually. Brazil is one of the most severely affected countries. Methodology We applied Bayesian geostatistical negative binomial models to analyze reported incidence data of cutaneous and visceral leishmaniasis in Brazil covering a 10-year period (2001–2010). Particular emphasis was placed on spatial and temporal patterns. The models were fitted using integrated nested Laplace approximations to perform fast approximate Bayesian inference. Bayesian variable selection was employed to determine the most important climatic, environmental, and socioeconomic predictors of cutaneous and visceral leishmaniasis. Principal Findings For both types of leishmaniasis, precipitation and socioeconomic proxies were identified as important risk factors. The predicted number of cases in 2010 were 30,189 (standard deviation [SD]: 7,676) for cutaneous leishmaniasis and 4,889 (SD: 288) for visceral leishmaniasis. Our risk maps predicted the highest numbers of infected people in the states of Minas Gerais and Pará for visceral and cutaneous leishmaniasis, respectively. Conclusions/Significance Our spatially explicit, high-resolution incidence maps identified priority areas where leishmaniasis control efforts should be targeted with the ultimate goal to reduce disease incidence. PMID:23675545
Bayesian Geostatistical Modeling of Malaria Indicator Survey Data in Angola
Gosoniu, Laura; Veta, Andre Mia; Vounatsou, Penelope
2010-01-01
The 2006–2007 Angola Malaria Indicator Survey (AMIS) is the first nationally representative household survey in the country assessing coverage of the key malaria control interventions and measuring malaria-related burden among children under 5 years of age. In this paper, the Angolan MIS data were analyzed to produce the first smooth map of parasitaemia prevalence based on contemporary nationwide empirical data in the country. Bayesian geostatistical models were fitted to assess the effect of interventions after adjusting for environmental, climatic and socio-economic factors. Non-linear relationships between parasitaemia risk and environmental predictors were modeled by categorizing the covariates and by employing two non-parametric approaches, the B-splines and the P-splines. The results of the model validation showed that the categorical model was able to better capture the relationship between parasitaemia prevalence and the environmental factors. Model fit and prediction were handled within a Bayesian framework using Markov chain Monte Carlo (MCMC) simulations. Combining estimates of parasitaemia prevalence with the number of children under we obtained estimates of the number of infected children in the country. The population-adjusted prevalence ranges from in Namibe province to in Malanje province. The odds of parasitaemia in children living in a household with at least ITNs per person was by 41% lower (CI: 14%, 60%) than in those with fewer ITNs. The estimates of the number of parasitaemic children produced in this paper are important for planning and implementing malaria control interventions and for monitoring the impact of prevention and control activities. PMID:20351775
Malaria risk in Nigeria: Bayesian geostatistical modelling of 2010 malaria indicator survey data.
Adigun, Abbas B; Gajere, Efron N; Oresanya, Olusola; Vounatsou, Penelope
2015-04-14
In 2010, the National Malaria Control Programme with the support of Roll Back Malaria partners implemented a nationally representative Malaria Indicator Survey (MIS), which assembled malaria burden and control intervention related data. The MIS data were analysed to produce a contemporary smooth map of malaria risk and evaluate the control interventions effects on parasitaemia risk after controlling for environmental/climatic, demographic and socioeconomic characteristics. A Bayesian geostatistical logistic regression model was fitted on the observed parasitological prevalence data. Important environmental/climatic risk factors of parasitaemia were identified by applying Bayesian variable selection within geostatistical model. The best model was employed to predict the disease risk over a grid of 4 km(2) resolution. Validation was carried out to assess model predictive performance. Various measures of control intervention coverage were derived to estimate the effects of interventions on parasitaemia risk after adjusting for environmental, socioeconomic and demographic factors. Normalized difference vegetation index and rainfall were identified as important environmental/climatic predictors of malaria risk. The population adjusted risk estimates ranges from 6.46% in Lagos state to 43.33% in Borno. Interventions appear to not have important effect on malaria risk. The odds of parasitaemia appears to be on downward trend with improved socioeconomic status and living in rural areas increases the odds of testing positive to malaria parasites. Older children also have elevated risk of malaria infection. The produced maps and estimates of parasitaemic children give an important synoptic view of current parasite prevalence in the country. Control activities will find it a useful tool in identifying priority areas for intervention.
Schur, Nadine; Hürlimann, Eveline; Stensgaard, Anna-Sofie; Chimfwembe, Kingford; Mushinge, Gabriel; Simoonga, Christopher; Kabatereine, Narcis B; Kristensen, Thomas K; Utzinger, Jürg; Vounatsou, Penelope
2013-11-01
Schistosomiasis remains one of the most prevalent parasitic diseases in the tropics and subtropics, but current statistics are outdated due to demographic and ecological transformations and ongoing control efforts. Reliable risk estimates are important to plan and evaluate interventions in a spatially explicit and cost-effective manner. We analysed a large ensemble of georeferenced survey data derived from an open-access neglected tropical diseases database to create smooth empirical prevalence maps for Schistosoma mansoni and Schistosoma haematobium for a total of 13 countries of eastern Africa. Bayesian geostatistical models based on climatic and other environmental data were used to account for potential spatial clustering in spatially structured exposures. Geostatistical variable selection was employed to reduce the set of covariates. Alignment factors were implemented to combine surveys on different age-groups and to acquire separate estimates for individuals aged ≤20 years and entire communities. Prevalence estimates were combined with population statistics to obtain country-specific numbers of Schistosoma infections. We estimate that 122 million individuals in eastern Africa are currently infected with either S. mansoni, or S. haematobium, or both species concurrently. Country-specific population-adjusted prevalence estimates range between 12.9% (Uganda) and 34.5% (Mozambique) for S. mansoni and between 11.9% (Djibouti) and 40.9% (Mozambique) for S. haematobium. Our models revealed that infection risk in Burundi, Eritrea, Ethiopia, Kenya, Rwanda, Somalia and Sudan might be considerably higher than previously reported, while in Mozambique and Tanzania, the risk might be lower than current estimates suggest. Our empirical, large-scale, high-resolution infection risk estimates for S. mansoni and S. haematobium in eastern Africa can guide future control interventions and provide a benchmark for subsequent monitoring and evaluation activities. Copyright © 2011
Sedda, Luigi; Mweempwa, Cornelius; Ducheyne, Els; De Pus, Claudia; Hendrickx, Guy; Rogers, David J.
2014-01-01
For the first time a Bayesian geostatistical version of the Moran Curve, a logarithmic form of the Ricker stock recruitment curve, is proposed that is able to give an estimate of net change in population demographic rates considering components such as fertility and density dependent and density independent mortalities. The method is applied to spatio-temporally referenced count data of tsetse flies obtained from fly-rounds. The model is a linear regression with three components: population rate of change estimated from the Moran curve, an explicit spatio-temporal covariance, and the observation error optimised within a Bayesian framework. The model was applied to the three main climate seasons of Zambia (rainy – January to April, cold-dry – May to August, and hot-dry – September to December) taking into account land surface temperature and (seasonally changing) cattle distribution. The model shows a maximum positive net change during the hot-dry season and a minimum between the rainy and cold-dry seasons. Density independent losses are correlated positively with day-time land surface temperature and negatively with night-time land surface temperature and cattle distribution. The inclusion of density dependent mortality increases considerably the goodness of fit of the model. Cross validation with an independent dataset taken from the same area resulted in a very accurate estimate of tsetse catches. In general, the overall framework provides an important tool for vector control and eradication by identifying vector population concentrations and local vector demographic rates. It can also be applied to the case of sustainable harvesting of natural populations. PMID:24755848
Predictive risk mapping of schistosomiasis in Brazil using Bayesian geostatistical models.
Scholte, Ronaldo G C; Gosoniu, Laura; Malone, John B; Chammartin, Frédérique; Utzinger, Jürg; Vounatsou, Penelope
2014-04-01
Schistosomiasis is one of the most common parasitic diseases in tropical and subtropical areas, including Brazil. A national control programme was initiated in Brazil in the mid-1970s and proved successful in terms of morbidity control, as the number of cases with hepato-splenic involvement was reduced significantly. To consolidate control and move towards elimination, there is a need for reliable maps on the spatial distribution of schistosomiasis, so that interventions can target communities at highest risk. The purpose of this study was to map the distribution of Schistosoma mansoni in Brazil. We utilized readily available prevalence data from the national schistosomiasis control programme for the years 2005-2009, derived remotely sensed climatic and environmental data and obtained socioeconomic data from various sources. Data were collated into a geographical information system and Bayesian geostatistical models were developed. Model-based maps identified important risk factors related to the transmission of S. mansoni and confirmed that environmental variables are closely associated with indices of poverty. Our smoothed predictive risk map, including uncertainty, highlights priority areas for intervention, namely the northern parts of North and Southeast regions and the eastern part of Northeast region. Our predictive risk map provides a useful tool for to strengthen existing surveillance-response mechanisms. Copyright © 2014. Published by Elsevier B.V.
Giardina, Federica; Gosoniu, Laura; Konate, Lassana; Diouf, Mame Birame; Perry, Robert; Gaye, Oumar; Faye, Ousmane; Vounatsou, Penelope
2012-01-01
The Research Center for Human Development in Dakar (CRDH) with the technical assistance of ICF Macro and the National Malaria Control Programme (NMCP) conducted in 2008/2009 the Senegal Malaria Indicator Survey (SMIS), the first nationally representative household survey collecting parasitological data and malaria-related indicators. In this paper, we present spatially explicit parasitaemia risk estimates and number of infected children below 5 years. Geostatistical Zero-Inflated Binomial models (ZIB) were developed to take into account the large number of zero-prevalence survey locations (70%) in the data. Bayesian variable selection methods were incorporated within a geostatistical framework in order to choose the best set of environmental and climatic covariates associated with the parasitaemia risk. Model validation confirmed that the ZIB model had a better predictive ability than the standard Binomial analogue. Markov chain Monte Carlo (MCMC) methods were used for inference. Several insecticide treated nets (ITN) coverage indicators were calculated to assess the effectiveness of interventions. After adjusting for climatic and socio-economic factors, the presence of at least one ITN per every two household members and living in urban areas reduced the odds of parasitaemia by 86% and 81% respectively. Posterior estimates of the ORs related to the wealth index show a decreasing trend with the quintiles. Infection odds appear to be increasing with age. The population-adjusted prevalence ranges from 0.12% in Thillé-Boubacar to 13.1% in Dabo. Tambacounda has the highest population-adjusted predicted prevalence (8.08%) whereas the region with the highest estimated number of infected children under the age of 5 years is Kolda (13940). The contemporary map and estimates of malaria burden identify the priority areas for future control interventions and provide baseline information for monitoring and evaluation. Zero-Inflated formulations are more appropriate in
Hagos, Seifu; Hailemariam, Damen; WoldeHanna, Tasew; Lindtjørn, Bernt
2017-01-01
Background Understanding the spatial distribution of stunting and underlying factors operating at meso-scale is of paramount importance for intervention designing and implementations. Yet, little is known about the spatial distribution of stunting and some discrepancies are documented on the relative importance of reported risk factors. Therefore, the present study aims at exploring the spatial distribution of stunting at meso- (district) scale, and evaluates the effect of spatial dependency on the identification of risk factors and their relative contribution to the occurrence of stunting and severe stunting in a rural area of Ethiopia. Methods A community based cross sectional study was conducted to measure the occurrence of stunting and severe stunting among children aged 0–59 months. Additionally, we collected relevant information on anthropometric measures, dietary habits, parent and child-related demographic and socio-economic status. Latitude and longitude of surveyed households were also recorded. Local Anselin Moran's I was calculated to investigate the spatial variation of stunting prevalence and identify potential local pockets (hotspots) of high prevalence. Finally, we employed a Bayesian geo-statistical model, which accounted for spatial dependency structure in the data, to identify potential risk factors for stunting in the study area. Results Overall, the prevalence of stunting and severe stunting in the district was 43.7% [95%CI: 40.9, 46.4] and 21.3% [95%CI: 19.5, 23.3] respectively. We identified statistically significant clusters of high prevalence of stunting (hotspots) in the eastern part of the district and clusters of low prevalence (cold spots) in the western. We found out that the inclusion of spatial structure of the data into the Bayesian model has shown to improve the fit for stunting model. The Bayesian geo-statistical model indicated that the risk of stunting increased as the child’s age increased (OR 4.74; 95% Bayesian credible
Kara G. Eby
2010-08-01
At the Idaho National Laboratory (INL) Cs-137 concentrations above the U.S. Environmental Protection Agency risk-based threshold of 0.23 pCi/g may increase the risk of human mortality due to cancer. As a leader in nuclear research, the INL has been conducting nuclear activities for decades. Elevated anthropogenic radionuclide levels including Cs-137 are a result of atmospheric weapons testing, the Chernobyl accident, and nuclear activities occurring at the INL site. Therefore environmental monitoring and long-term surveillance of Cs-137 is required to evaluate risk. However, due to the large land area involved, frequent and comprehensive monitoring is limited. Developing a spatial model that predicts Cs-137 concentrations at unsampled locations will enhance the spatial characterization of Cs-137 in surface soils, provide guidance for an efficient monitoring program, and pinpoint areas requiring mitigation strategies. The predictive model presented herein is based on applied geostatistics using a Bayesian analysis of environmental characteristics across the INL site, which provides kriging spatial maps of both Cs-137 estimates and prediction errors. Comparisons are presented of two different kriging methods, showing that the use of secondary information (i.e., environmental characteristics) can provide improved prediction performance in some areas of the INL site.
Mapping malaria risk among children in Côte d'Ivoire using Bayesian geo-statistical models.
Raso, Giovanna; Schur, Nadine; Utzinger, Jürg; Koudou, Benjamin G; Tchicaya, Emile S; Rohner, Fabian; N'goran, Eliézer K; Silué, Kigbafori D; Matthys, Barbara; Assi, Serge; Tanner, Marcel; Vounatsou, Penelope
2012-05-09
In Côte d'Ivoire, an estimated 767,000 disability-adjusted life years are due to malaria, placing the country at position number 14 with regard to the global burden of malaria. Risk maps are important to guide control interventions, and hence, the aim of this study was to predict the geographical distribution of malaria infection risk in children aged <16 years in Côte d'Ivoire at high spatial resolution. Using different data sources, a systematic review was carried out to compile and geo-reference survey data on Plasmodium spp. infection prevalence in Côte d'Ivoire, focusing on children aged <16 years. The period from 1988 to 2007 was covered. A suite of Bayesian geo-statistical logistic regression models was fitted to analyse malaria risk. Non-spatial models with and without exchangeable random effect parameters were compared to stationary and non-stationary spatial models. Non-stationarity was modelled assuming that the underlying spatial process is a mixture of separate stationary processes in each ecological zone. The best fitting model based on the deviance information criterion was used to predict Plasmodium spp. infection risk for entire Côte d'Ivoire, including uncertainty. Overall, 235 data points at 170 unique survey locations with malaria prevalence data for individuals aged <16 years were extracted. Most data points (n = 182, 77.4%) were collected between 2000 and 2007. A Bayesian non-stationary regression model showed the best fit with annualized rainfall and maximum land surface temperature identified as significant environmental covariates. This model was used to predict malaria infection risk at non-sampled locations. High-risk areas were mainly found in the north-central and western area, while relatively low-risk areas were located in the north at the country border, in the north-east, in the south-east around Abidjan, and in the central-west between two high prevalence areas. The malaria risk map at high spatial resolution gives an
Scholte, Ronaldo G C; Schur, Nadine; Bavia, Maria E; Carvalho, Edgar M; Chammartin, Frédérique; Utzinger, Jürg; Vounatsou, Penelope
2013-11-01
Soil-transmitted helminths (Ascaris lumbricoides, Trichuris trichiura and hookworm) negatively impact the health and wellbeing of hundreds of millions of people, particularly in tropical and subtropical countries, including Brazil. Reliable maps of the spatial distribution and estimates of the number of infected people are required for the control and eventual elimination of soil-transmitted helminthiasis. We used advanced Bayesian geostatistical modelling, coupled with geographical information systems and remote sensing to visualize the distribution of the three soil-transmitted helminth species in Brazil. Remotely sensed climatic and environmental data, along with socioeconomic variables from readily available databases were employed as predictors. Our models provided mean prevalence estimates for A. lumbricoides, T. trichiura and hookworm of 15.6%, 10.1% and 2.5%, respectively. By considering infection risk and population numbers at the unit of the municipality, we estimate that 29.7 million Brazilians are infected with A. lumbricoides, 19.2 million with T. trichiura and 4.7 million with hookworm. Our model-based maps identified important risk factors related to the transmission of soiltransmitted helminths and confirm that environmental variables are closely associated with indices of poverty. Our smoothed risk maps, including uncertainty, highlight areas where soil-transmitted helminthiasis control interventions are most urgently required, namely in the North and along most of the coastal areas of Brazil. We believe that our predictive risk maps are useful for disease control managers for prioritising control interventions and for providing a tool for more efficient surveillance-response mechanisms.
2013-01-01
Background Soil-transmitted helminth infections affect tens of millions of individuals in the People’s Republic of China (P.R. China). There is a need for high-resolution estimates of at-risk areas and number of people infected to enhance spatial targeting of control interventions. However, such information is not yet available for P.R. China. Methods A geo-referenced database compiling surveys pertaining to soil-transmitted helminthiasis, carried out from 2000 onwards in P.R. China, was established. Bayesian geostatistical models relating the observed survey data with potential climatic, environmental and socioeconomic predictors were developed and used to predict at-risk areas at high spatial resolution. Predictors were extracted from remote sensing and other readily accessible open-source databases. Advanced Bayesian variable selection methods were employed to develop a parsimonious model. Results Our results indicate that the prevalence of soil-transmitted helminth infections in P.R. China considerably decreased from 2005 onwards. Yet, some 144 million people were estimated to be infected in 2010. High prevalence (>20%) of the roundworm Ascaris lumbricoides infection was predicted for large areas of Guizhou province, the southern part of Hubei and Sichuan provinces, while the northern part and the south-eastern coastal-line areas of P.R. China had low prevalence (<5%). High infection prevalence (>20%) with hookworm was found in Hainan, the eastern part of Sichuan and the southern part of Yunnan provinces. High infection prevalence (>20%) with the whipworm Trichuris trichiura was found in a few small areas of south P.R. China. Very low prevalence (<0.1%) of hookworm and whipworm infections were predicted for the northern parts of P.R. China. Conclusions We present the first model-based estimates for soil-transmitted helminth infections throughout P.R. China at high spatial resolution. Our prediction maps provide useful information for the spatial targeting of
A Bayesian geostatistical transfer function approach to tracer test analysis
NASA Astrophysics Data System (ADS)
Fienen, Michael N.; Luo, Jian; Kitanidis, Peter K.
2006-07-01
Reactive transport modeling is often used in support of bioremediation and chemical treatment planning and design. There remains a pressing need for practical and efficient models that do not require (or assume attainable) the high level of characterization needed by complex numerical models. We focus on a linear systems or transfer function approach to the problem of reactive tracer transport in a heterogeneous saprolite aquifer. Transfer functions are obtained through the Bayesian geostatistical inverse method applied to tracer injection histories and breakthrough curves. We employ nonparametric transfer functions, which require minimal assumptions about shape and structure. The resulting flexibility empowers the data to determine the nature of the transfer function with minimal prior assumptions. Nonnegativity is enforced through a reflected Brownian motion stochastic model. The inverse method enables us to quantify uncertainty and to generate conditional realizations of the transfer function. Complex information about a hydrogeologic system is distilled into a relatively simple but rigorously obtained function that describes the transport behavior of the system between two wells. The resulting transfer functions are valuable in reactive transport models based on traveltime and streamline methods. The information contained in the data, particularly in the case of strong heterogeneity, is not overextended but is fully used. This is the first application of Bayesian geostatistical inversion to transfer functions in hydrogeology but the methodology can be extended to any linear system.
Oluwole, Akinola S; Ekpo, Uwem F; Karagiannis-Voules, Dimitrios-Alexios; Abe, Eniola M; Olamiju, Francisca O; Isiyaku, Sunday; Okoronkwo, Chukwu; Saka, Yisa; Nebe, Obiageli J; Braide, Eka I; Mafiana, Chiedu F; Utzinger, Jürg; Vounatsou, Penelope
2015-04-01
The acceleration of the control of soil-transmitted helminth (STH) infections in Nigeria, emphasizing preventive chemotherapy, has become imperative in light of the global fight against neglected tropical diseases. Predictive risk maps are an important tool to guide and support control activities. STH infection prevalence data were obtained from surveys carried out in 2011 using standard protocols. Data were geo-referenced and collated in a nationwide, geographic information system database. Bayesian geostatistical models with remotely sensed environmental covariates and variable selection procedures were utilized to predict the spatial distribution of STH infections in Nigeria. We found that hookworm, Ascaris lumbricoides, and Trichuris trichiura infections are endemic in 482 (86.8%), 305 (55.0%), and 55 (9.9%) locations, respectively. Hookworm and A. lumbricoides infection co-exist in 16 states, while the three species are co-endemic in 12 states. Overall, STHs are endemic in 20 of the 36 states of Nigeria, including the Federal Capital Territory of Abuja. The observed prevalence at endemic locations ranged from 1.7% to 51.7% for hookworm, from 1.6% to 77.8% for A. lumbricoides, and from 1.0% to 25.5% for T. trichiura. Model-based predictions ranged from 0.7% to 51.0% for hookworm, from 0.1% to 82.6% for A. lumbricoides, and from 0.0% to 18.5% for T. trichiura. Our models suggest that day land surface temperature and dense vegetation are important predictors of the spatial distribution of STH infection in Nigeria. In 2011, a total of 5.7 million (13.8%) school-aged children were predicted to be infected with STHs in Nigeria. Mass treatment at the local government area level for annual or bi-annual treatment of the school-aged population in Nigeria in 2011, based on World Health Organization prevalence thresholds, were estimated at 10.2 million tablets. The predictive risk maps and estimated deworming needs presented here will be helpful for escalating the control
Oluwole, Akinola S.; Ekpo, Uwem F.; Karagiannis-Voules, Dimitrios-Alexios; Abe, Eniola M.; Olamiju, Francisca O.; Isiyaku, Sunday; Okoronkwo, Chukwu; Saka, Yisa; Nebe, Obiageli J.; Braide, Eka I.; Mafiana, Chiedu F.; Utzinger, Jürg; Vounatsou, Penelope
2015-01-01
Background The acceleration of the control of soil-transmitted helminth (STH) infections in Nigeria, emphasizing preventive chemotherapy, has become imperative in light of the global fight against neglected tropical diseases. Predictive risk maps are an important tool to guide and support control activities. Methodology STH infection prevalence data were obtained from surveys carried out in 2011 using standard protocols. Data were geo-referenced and collated in a nationwide, geographic information system database. Bayesian geostatistical models with remotely sensed environmental covariates and variable selection procedures were utilized to predict the spatial distribution of STH infections in Nigeria. Principal Findings We found that hookworm, Ascaris lumbricoides, and Trichuris trichiura infections are endemic in 482 (86.8%), 305 (55.0%), and 55 (9.9%) locations, respectively. Hookworm and A. lumbricoides infection co-exist in 16 states, while the three species are co-endemic in 12 states. Overall, STHs are endemic in 20 of the 36 states of Nigeria, including the Federal Capital Territory of Abuja. The observed prevalence at endemic locations ranged from 1.7% to 51.7% for hookworm, from 1.6% to 77.8% for A. lumbricoides, and from 1.0% to 25.5% for T. trichiura. Model-based predictions ranged from 0.7% to 51.0% for hookworm, from 0.1% to 82.6% for A. lumbricoides, and from 0.0% to 18.5% for T. trichiura. Our models suggest that day land surface temperature and dense vegetation are important predictors of the spatial distribution of STH infection in Nigeria. In 2011, a total of 5.7 million (13.8%) school-aged children were predicted to be infected with STHs in Nigeria. Mass treatment at the local government area level for annual or bi-annual treatment of the school-aged population in Nigeria in 2011, based on World Health Organization prevalence thresholds, were estimated at 10.2 million tablets. Conclusions/Significance The predictive risk maps and estimated
Model Selection for Geostatistical Models
Hoeting, Jennifer A.; Davis, Richard A.; Merton, Andrew A.; Thompson, Sandra E.
2006-02-01
We consider the problem of model selection for geospatial data. Spatial correlation is typically ignored in the selection of explanatory variables and this can influence model selection results. For example, the inclusion or exclusion of particular explanatory variables may not be apparent when spatial correlation is ignored. To address this problem, we consider the Akaike Information Criterion (AIC) as applied to a geostatistical model. We offer a heuristic derivation of the AIC in this context and provide simulation results that show that using AIC for a geostatistical model is superior to the often used approach of ignoring spatial correlation in the selection of explanatory variables. These ideas are further demonstrated via a model for lizard abundance. We also employ the principle of minimum description length (MDL) to variable selection for the geostatistical model. The effect of sampling design on the selection of explanatory covariates is also explored.
Model selection for geostatistical models.
Hoeting, Jennifer A; Davis, Richard A; Merton, Andrew A; Thompson, Sandra E
2006-02-01
We consider the problem of model selection for geospatial data. Spatial correlation is often ignored in the selection of explanatory variables, and this can influence model selection results. For example, the importance of particular explanatory variables may not be apparent when spatial correlation is ignored. To address this problem, we consider the Akaike Information Criterion (AIC) as applied to a geostatistical model. We offer a heuristic derivation of the AIC in this context and provide simulation results that show that using AIC for a geostatistical model is superior to the often-used traditional approach of ignoring spatial correlation in the selection of explanatory variables. These ideas are further demonstrated via a model for lizard abundance. We also apply the principle of minimum description length (MDL) to variable selection for the geostatistical model. The effect of sampling design on the selection of explanatory covariates is also explored. R software to implement the geostatistical model selection methods described in this paper is available in the Supplement.
An interactive Bayesian geostatistical inverse protocol for hydraulic tomography
Fienen, Michael N.; Clemo, Tom; Kitanidis, Peter K.
2008-01-01
Hydraulic tomography is a powerful technique for characterizing heterogeneous hydrogeologic parameters. An explicit trade-off between characterization based on measurement misfit and subjective characterization using prior information is presented. We apply a Bayesian geostatistical inverse approach that is well suited to accommodate a flexible model with the level of complexity driven by the data and explicitly considering uncertainty. Prior information is incorporated through the selection of a parameter covariance model characterizing continuity and providing stability. Often, discontinuities in the parameter field, typically caused by geologic contacts between contrasting lithologic units, necessitate subdivision into zones across which there is no correlation among hydraulic parameters. We propose an interactive protocol in which zonation candidates are implied from the data and are evaluated using cross validation and expert knowledge. Uncertainty introduced by limited knowledge of dynamic regional conditions is mitigated by using drawdown rather than native head values. An adjoint state formulation of MODFLOW-2000 is used to calculate sensitivities which are used both for the solution to the inverse problem and to guide protocol decisions. The protocol is tested using synthetic two-dimensional steady state examples in which the wells are located at the edge of the region of interest.
Geostatistical Modeling of Pore Velocity
Devary, J.L.; Doctor, P.G.
1981-06-01
A significant part of evaluating a geologic formation as a nuclear waste repository involves the modeling of contaminant transport in the surrounding media in the event the repository is breached. The commonly used contaminant transport models are deterministic. However, the spatial variability of hydrologic field parameters introduces uncertainties into contaminant transport predictions. This paper discusses the application of geostatistical techniques to the modeling of spatially varying hydrologic field parameters required as input to contaminant transport analyses. Kriging estimation techniques were applied to Hanford Reservation field data to calculate hydraulic conductivity and the ground-water potential gradients. These quantities were statistically combined to estimate the groundwater pore velocity and to characterize the pore velocity estimation error. Combining geostatistical modeling techniques with product error propagation techniques results in an effective stochastic characterization of groundwater pore velocity, a hydrologic parameter required for contaminant transport analyses.
Bayesian geostatistics in health cartography: the perspective of malaria.
Patil, Anand P; Gething, Peter W; Piel, Frédéric B; Hay, Simon I
2011-06-01
Maps of parasite prevalences and other aspects of infectious diseases that vary in space are widely used in parasitology. However, spatial parasitological datasets rarely, if ever, have sufficient coverage to allow exact determination of such maps. Bayesian geostatistics (BG) is a method for finding a large sample of maps that can explain a dataset, in which maps that do a better job of explaining the data are more likely to be represented. This sample represents the knowledge that the analyst has gained from the data about the unknown true map. BG provides a conceptually simple way to convert these samples to predictions of features of the unknown map, for example regional averages. These predictions account for each map in the sample, yielding an appropriate level of predictive precision.
Bayesian geostatistics in health cartography: the perspective of malaria
Patil, Anand P.; Gething, Peter W.; Piel, Frédéric B.; Hay, Simon I.
2011-01-01
Maps of parasite prevalences and other aspects of infectious diseases that vary in space are widely used in parasitology. However, spatial parasitological datasets rarely, if ever, have sufficient coverage to allow exact determination of such maps. Bayesian geostatistics (BG) is a method for finding a large sample of maps that can explain a dataset, in which maps that do a better job of explaining the data are more likely to be represented. This sample represents the knowledge that the analyst has gained from the data about the unknown true map. BG provides a conceptually simple way to convert these samples to predictions of features of the unknown map, for example regional averages. These predictions account for each map in the sample, yielding an appropriate level of predictive precision. PMID:21420361
Fienen, Michael N.; D'Oria, Marco; Doherty, John E.; Hunt, Randall J.
2013-01-01
The application bgaPEST is a highly parameterized inversion software package implementing the Bayesian Geostatistical Approach in a framework compatible with the parameter estimation suite PEST. Highly parameterized inversion refers to cases in which parameters are distributed in space or time and are correlated with one another. The Bayesian aspect of bgaPEST is related to Bayesian probability theory in which prior information about parameters is formally revised on the basis of the calibration dataset used for the inversion. Conceptually, this approach formalizes the conditionality of estimated parameters on the speciﬁc data and model available. The geostatistical component of the method refers to the way in which prior information about the parameters is used. A geostatistical autocorrelation function is used to enforce structure on the parameters to avoid overﬁtting and unrealistic results. Bayesian Geostatistical Approach is designed to provide the smoothest solution that is consistent with the data. Optionally, users can specify a level of ﬁt or estimate a balance between ﬁt and model complexity informed by the data. Groundwater and surface-water applications are used as examples in this text, but the possible uses of bgaPEST extend to any distributed parameter applications.
NASA Astrophysics Data System (ADS)
Troldborg, M.; Nowak, W.; Binning, P. J.; Bjerg, P. L.
2012-12-01
Estimates of mass discharge (mass/time) are increasingly being used when assessing risks of groundwater contamination and designing remedial systems at contaminated sites. Mass discharge estimates are, however, prone to rather large uncertainties as they integrate uncertain spatial distributions of both concentration and groundwater flow velocities. For risk assessments or any other decisions that are being based on mass discharge estimates, it is essential to address these uncertainties. We present a novel Bayesian geostatistical approach for quantifying the uncertainty of the mass discharge across a multilevel control plane. The method decouples the flow and transport simulation and has the advantage of avoiding the heavy computational burden of three-dimensional numerical flow and transport simulation coupled with geostatistical inversion. It may therefore be of practical relevance to practitioners compared to existing methods that are either too simple or computationally demanding. The method is based on conditional geostatistical simulation and accounts for i) heterogeneity of both the flow field and the concentration distribution through Bayesian geostatistics (including the uncertainty in covariance functions), ii) measurement uncertainty, and iii) uncertain source zone geometry and transport parameters. The method generates multiple equally likely realizations of the spatial flow and concentration distribution, which all honour the measured data at the control plane. The flow realizations are generated by analytical co-simulation of the hydraulic conductivity and the hydraulic gradient across the control plane. These realizations are made consistent with measurements of both hydraulic conductivity and head at the site. An analytical macro-dispersive transport solution is employed to simulate the mean concentration distribution across the control plane, and a geostatistical model of the Box-Cox transformed concentration data is used to simulate observed
NASA Astrophysics Data System (ADS)
Troldborg, Mads; Nowak, Wolfgang; Lange, Ida V.; Santos, Marta C.; Binning, Philip J.; Bjerg, Poul L.
2012-09-01
Mass discharge estimates are increasingly being used when assessing risks of groundwater contamination and designing remedial systems at contaminated sites. Such estimates are, however, rather uncertain as they integrate uncertain spatial distributions of both concentration and groundwater flow. Here a geostatistical simulation method for quantifying the uncertainty of the mass discharge across a multilevel control plane is presented. The method accounts for (1) heterogeneity of both the flow field and the concentration distribution through Bayesian geostatistics, (2) measurement uncertainty, and (3) uncertain source zone and transport parameters. The method generates conditional realizations of the spatial flow and concentration distribution. An analytical macrodispersive transport solution is employed to simulate the mean concentration distribution, and a geostatistical model of the Box-Cox transformed concentration data is used to simulate observed deviations from this mean solution. By combining the flow and concentration realizations, a mass discharge probability distribution is obtained. The method has the advantage of avoiding the heavy computational burden of three-dimensional numerical flow and transport simulation coupled with geostatistical inversion. It may therefore be of practical relevance to practitioners compared to existing methods that are either too simple or computationally demanding. The method is demonstrated on a field site contaminated with chlorinated ethenes. For this site, we show that including a physically meaningful concentration trend and the cosimulation of hydraulic conductivity and hydraulic gradient across the transect helps constrain the mass discharge uncertainty. The number of sampling points required for accurate mass discharge estimation and the relative influence of different data types on mass discharge uncertainty is discussed.
Analysis of dengue fever risk using geostatistics model in bone regency
NASA Astrophysics Data System (ADS)
Amran, Stang, Mallongi, Anwar
2017-03-01
This research aim is to analysis of dengue fever risk based on Geostatistics model in Bone Regency. Risk levels of dengue fever are denoted by parameter of Binomial distribution. Effect of temperature, rainfalls, elevation, and larvae abundance are investigated through Geostatistics model. Bayesian hierarchical method is used in estimation process. Using dengue fever data in eleven locations this research shows that temperature and rainfall have significant effect of dengue fever risk in Bone regency.
NASA Astrophysics Data System (ADS)
Painter, S. L.; Jiang, Y.; Woodbury, A. D.
2002-12-01
The Edwards Aquifer, a highly heterogeneous karst aquifer located in south central Texas, is the sole source of drinking water for more than one million people. Hydraulic conductivity (K) measurements in the Edwards Aquifer are sparse, highly variable (log-K variance of 6.4), and are mostly from single-well drawdown tests that are appropriate for the spatial scale of a few meters. To support ongoing efforts to develop a groundwater management (MODFLOW) model of the San Antonio segment of the Edwards Aquifer, a multistep procedure was developed to assign hydraulic parameters to the 402 m x 402 m computational cells intended for the management model. The approach used a combination of nonparametric geostatistical analysis, stochastic simulation, numerical upscaling, and automatic model calibration based on Bayesian updating [1,2]. Indicator correlograms reveal a nested spatial structure in the well-test K of the confined zone, with practical correlation ranges of 3,600 and 15,000 meters and a large nugget effect. The fitted geostatistical model was used in unconditional stochastic simulations by the sequential indicator simulation method. The resulting realizations of K, defined at the scale of the well tests, were then numerically upscaled to the block scale. A new geostatistical model was fitted to the upscaled values. The upscaled model was then used to cokrige the block-scale K based on the well-test K. The resulting K map was then converted to transmissivity (T) using deterministically mapped aquifer thickness. When tested in a forward groundwater model, the upscaled T reproduced hydraulic heads better than a simple kriging of the well-test values (mean error of -3.9 meter and mean-absolute-error of 12 meters, as compared with -13 and 17 meters for the simple kriging). As the final step in the study, the upscaled T map was used as the prior distribution in an inverse procedure based on Bayesian updating [1,2]. When input to the forward groundwater model, the
Boysen, Courtney; Davis, Elizabeth G.; Beard, Laurie A.; Lubbers, Brian V.; Raghavan, Ram K.
2015-01-01
Kansas witnessed an unprecedented outbreak in Corynebacterium pseudotuberculosis infection among horses, a disease commonly referred to as pigeon fever during fall 2012. Bayesian geostatistical models were developed to identify key environmental and climatic risk factors associated with C. pseudotuberculosis infection in horses. Positive infection status among horses (cases) was determined by positive test results for characteristic abscess formation, positive bacterial culture on purulent material obtained from a lanced abscess (n = 82), or positive serologic evidence of exposure to organism (≥1:512)(n = 11). Horses negative for these tests (n = 172)(controls) were considered free of infection. Information pertaining to horse demographics and stabled location were obtained through review of medical records and/or contact with horse owners via telephone. Covariate information for environmental and climatic determinants were obtained from USDA (soil attributes), USGS (land use/land cover), and NASA MODIS and NASA Prediction of Worldwide Renewable Resources (climate). Candidate covariates were screened using univariate regression models followed by Bayesian geostatistical models with and without covariates. The best performing model indicated a protective effect for higher soil moisture content (OR = 0.53, 95% CrI = 0.25, 0.71), and detrimental effects for higher land surface temperature (≥35°C) (OR = 2.81, 95% CrI = 2.21, 3.85) and habitat fragmentation (OR = 1.31, 95% CrI = 1.27, 2.22) for C. pseudotuberculosis infection status in horses, while age, gender and breed had no effect. Preventative and ecoclimatic significance of these findings are discussed. PMID:26473728
Boysen, Courtney; Davis, Elizabeth G; Beard, Laurie A; Lubbers, Brian V; Raghavan, Ram K
2015-01-01
Kansas witnessed an unprecedented outbreak in Corynebacterium pseudotuberculosis infection among horses, a disease commonly referred to as pigeon fever during fall 2012. Bayesian geostatistical models were developed to identify key environmental and climatic risk factors associated with C. pseudotuberculosis infection in horses. Positive infection status among horses (cases) was determined by positive test results for characteristic abscess formation, positive bacterial culture on purulent material obtained from a lanced abscess (n = 82), or positive serologic evidence of exposure to organism (≥ 1:512)(n = 11). Horses negative for these tests (n = 172)(controls) were considered free of infection. Information pertaining to horse demographics and stabled location were obtained through review of medical records and/or contact with horse owners via telephone. Covariate information for environmental and climatic determinants were obtained from USDA (soil attributes), USGS (land use/land cover), and NASA MODIS and NASA Prediction of Worldwide Renewable Resources (climate). Candidate covariates were screened using univariate regression models followed by Bayesian geostatistical models with and without covariates. The best performing model indicated a protective effect for higher soil moisture content (OR = 0.53, 95% CrI = 0.25, 0.71), and detrimental effects for higher land surface temperature (≥ 35°C) (OR = 2.81, 95% CrI = 2.21, 3.85) and habitat fragmentation (OR = 1.31, 95% CrI = 1.27, 2.22) for C. pseudotuberculosis infection status in horses, while age, gender and breed had no effect. Preventative and ecoclimatic significance of these findings are discussed.
A PC-Windows-Based program for geostatistical modeling application
Wu, G.G.; Yang, A.P.
1994-12-31
This paper describes a technically advanced, user-friendly, PC-Windows{sup TM} based reservoir simulation tool (SIMTOOLS) that allows construction of realistic reservoir models using a geostatistical approach. This PC-Windows based product has three application tools: Digitizing, mapping, and geostatistics. It has been designed primarily to enable reservoir engineers to apply the geostatistical gridding technique in mapping and reservoir simulation practices.
Geostatistics: models and tools for the earth sciences
Journel, A.G.
1986-01-01
The probability construct underlying geostatistical methodology is recalled, stressing that stationary is a property of the model rather than of the phenomenon being represented. Geostatistics is more then interpolation and kriging(s) is more than linear interpolation through ordinary kriging. A few common misconceptions are addressed.
High Performance Geostatistical Modeling of Biospheric Resources
NASA Astrophysics Data System (ADS)
Pedelty, J. A.; Morisette, J. T.; Smith, J. A.; Schnase, J. L.; Crosier, C. S.; Stohlgren, T. J.
2004-12-01
We are using parallel geostatistical codes to study spatial relationships among biospheric resources in several study areas. For example, spatial statistical models based on large- and small-scale variability have been used to predict species richness of both native and exotic plants (hot spots of diversity) and patterns of exotic plant invasion. However, broader use of geostastics in natural resource modeling, especially at regional and national scales, has been limited due to the large computing requirements of these applications. To address this problem, we implemented parallel versions of the kriging spatial interpolation algorithm. The first uses the Message Passing Interface (MPI) in a master/slave paradigm on an open source Linux Beowulf cluster, while the second is implemented with the new proprietary Xgrid distributed processing system on an Xserve G5 cluster from Apple Computer, Inc. These techniques are proving effective and provide the basis for a national decision support capability for invasive species management that is being jointly developed by NASA and the US Geological Survey.
[Geostatistical modeling of Ascaris lumbricoides infection].
Fortes, Bruno de Paula Menezes Drumond; Ortiz Valencia, Luis Iván; Ribeiro, Simone do Vale; Medronho, Roberto de Andrade
2004-01-01
The following study intends to model the spatial distribution of ascariasis, through the use of geoprocessing and geostatistic analysis. The database used in the study was taken from the PAISQUA project, including a coproparasitologic and domiciliary survey, conducted in 19 selected census tracts of Rio de Janeiro State, Brazil, randomly selecting a group of 1,550 children aged 1 to 9 years old plotting them in their respective domicile's centroids. Risk maps of Ascaris lumbricoides were generated by indicator kriging. The estimated and observed values from the cross-validation were compared using a ROC curve. An isotropic spherical semivariogram model with a range of 30m and nugget effect of 50% was employed in ordinary indicator kriging to create a map of probability of A. lumbricoides infection. The area under the ROC curve indicated a significant global accuracy. The occurrence of disease could be estimated in the study area, and a risk map was elaborated through the use ordinary kriging. The spatial statistics analysis has proven itself adequate for predicting the occurrence of ascariasis, unrestricted to the regions political boundaries.
Quantifying natural delta variability using a multiple-point geostatistics prior uncertainty model
NASA Astrophysics Data System (ADS)
Scheidt, Céline; Fernandes, Anjali M.; Paola, Chris; Caers, Jef
2016-10-01
We address the question of quantifying uncertainty associated with autogenic pattern variability in a channelized transport system by means of a modern geostatistical method. This question has considerable relevance for practical subsurface applications as well, particularly those related to uncertainty quantification relying on Bayesian approaches. Specifically, we show how the autogenic variability in a laboratory experiment can be represented and reproduced by a multiple-point geostatistical prior uncertainty model. The latter geostatistical method requires selection of a limited set of training images from which a possibly infinite set of geostatistical model realizations, mimicking the training image patterns, can be generated. To that end, we investigate two methods to determine how many training images and what training images should be provided to reproduce natural autogenic variability. The first method relies on distance-based clustering of overhead snapshots of the experiment; the second method relies on a rate of change quantification by means of a computer vision algorithm termed the demon algorithm. We show quantitatively that with either training image selection method, we can statistically reproduce the natural variability of the delta formed in the experiment. In addition, we study the nature of the patterns represented in the set of training images as a representation of the "eigenpatterns" of the natural system. The eigenpattern in the training image sets display patterns consistent with previous physical interpretations of the fundamental modes of this type of delta system: a highly channelized, incisional mode; a poorly channelized, depositional mode; and an intermediate mode between the two.
NASA Astrophysics Data System (ADS)
Fienen, M.; Hunt, R.; Krabbenhoft, D.; Clemo, T.
2009-08-01
Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical environment. Different types of data, such as groundwater flow and transport, inform different aspects of hydrogeologic parameter values (hydraulic conductivity in this case) which, in turn, determine flow paths. This work combines flow and transport information to estimate a unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach. Parameter flexibility is allowed by using a highly parameterized approach with the level of complexity informed by the data. Despite the effort to adhere to the ideal of minimal a priori structure imposed on the problem, extreme contrasts in parameters can result in the need to censor correlation across hydrostratigraphic bounding surfaces. These partitions segregate parameters into facies associations. With an iterative approach in which partitions are based on inspection of initial estimates, flow path interpretation is progressively refined through the inclusion of more types of data. Head observations, stable oxygen isotopes (18O/16O ratios), and tritium are all used to progressively refine flow path delineation on an isthmus between two lakes in the Trout Lake watershed, northern Wisconsin, United States. Despite allowing significant parameter freedom by estimating many distributed parameter values, a smooth field is obtained.
Fienen, M.; Hunt, R.; Krabbenhoft, D.; Clemo, T.
2009-01-01
Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical environment. Different types of data, such as groundwater flow and transport, inform different aspects of hydrogeologie parameter values (hydraulic conductivity in this case) which, in turn, determine flow paths. This work combines flow and transport information to estimate a unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach. Parameter flexibility is allowed by using a highly parameterized approach with the level of complexity informed by the data. Despite the effort to adhere to the ideal of minimal a priori structure imposed on the problem, extreme contrasts in parameters can result in the need to censor correlation across hydrostratigraphic bounding surfaces. These partitions segregate parameters into faci??s associations. With an iterative approach in which partitions are based on inspection of initial estimates, flow path interpretation is progressively refined through the inclusion of more types of data. Head observations, stable oxygen isotopes (18O/16O) ratios), and tritium are all used to progressively refine flow path delineation on an isthmus between two lakes in the Trout Lake watershed, northern Wisconsin, United States. Despite allowing significant parameter freedom by estimating many distributed parameter values, a smooth field is obtained. Copyright 2009 by the American Geophysical Union.
Random spatial processes and geostatistical models for soil variables
NASA Astrophysics Data System (ADS)
Lark, R. M.
2009-04-01
Geostatistical models of soil variation have been used to considerable effect to facilitate efficient and powerful prediction of soil properties at unsampled sites or over partially sampled regions. Geostatistical models can also be used to investigate the scaling behaviour of soil process models, to design sampling strategies and to account for spatial dependence in the random effects of linear mixed models for spatial variables. However, most geostatistical models (variograms) are selected for reasons of mathematical convenience (in particular, to ensure positive definiteness of the corresponding variables). They assume some underlying spatial mathematical operator which may give a good description of observed variation of the soil, but which may not relate in any clear way to the processes that we know give rise to that observed variation in the real world. In this paper I shall argue that soil scientists should pay closer attention to the underlying operators in geostatistical models, with a view to identifying, where ever possible, operators that reflect our knowledge of processes in the soil. I shall illustrate how this can be done in the case of two problems. The first exemplar problem is the definition of operators to represent statistically processes in which the soil landscape is divided into discrete domains. This may occur at disparate scales from the landscape (outcrops, catchments, fields with different landuse) to the soil core (aggregates, rhizospheres). The operators that underly standard geostatistical models of soil variation typically describe continuous variation, and so do not offer any way to incorporate information on processes which occur in discrete domains. I shall present the Poisson Voronoi Tessellation as an alternative spatial operator, examine its corresponding variogram, and apply these to some real data. The second exemplar problem arises from different operators that are equifinal with respect to the variograms of the
Gstat: a program for geostatistical modelling, prediction and simulation
NASA Astrophysics Data System (ADS)
Pebesma, Edzer J.; Wesseling, Cees G.
1998-01-01
Gstat is a computer program for variogram modelling, and geostatistical prediction and simulation. It provides a generic implementation of the multivariable linear model with trends modelled as a linear function of coordinate polynomials or of user-defined base functions, and independent or dependent, geostatistically modelled, residuals. Simulation in gstat comprises conditional or unconditional (multi-) Gaussian sequential simulation of point values or block averages, or (multi-) indicator sequential simulation. Besides many of the popular options found in other geostatistical software packages, gstat offers the unique combination of (i) an interactive user interface for modelling variograms and generalized covariances (residual variograms), that uses the device-independent plotting program gnuplot for graphical display, (ii) support for several ascii and binary data and map file formats for input and output, (iii) a concise, intuitive and flexible command language, (iv) user customization of program defaults, (v) no built-in limits, and (vi) free, portable ANSI-C source code. This paper describes the class of problems gstat can solve, and addresses aspects of efficiency and implementation, managing geostatistical projects, and relevant technical details.
Model Diagnostics for Bayesian Networks
ERIC Educational Resources Information Center
Sinharay, Sandip
2006-01-01
Bayesian networks are frequently used in educational assessments primarily for learning about students' knowledge and skills. There is a lack of works on assessing fit of Bayesian networks. This article employs the posterior predictive model checking method, a popular Bayesian model checking tool, to assess fit of simple Bayesian networks. A…
Geostatistical model to estimate in stream pollutant loads and concentrations.
NASA Astrophysics Data System (ADS)
Polus, E.; Flipo, N.; de Fouquet, C.; Poulin, M.
2009-04-01
Models that estimate loads and concentrations of pollutants in streams can roughly be classified into two categories: physically-based and stochastic models. While the first ones tend to reproduce physical processes that occur in streams, the stochastic models consider loads and concentrations as random variables. This work is interesting in such models and particularly in geostatistical models, which provide an estimate of loads and concentrations and the joint measurement of uncertainty also: the estimation variance. Along a stream network that can be modelled as a graph, most of usual geostatistical covariance or variogram models are not valid anymore. Based on recent models applied on tree graphs, we present a covariance or variogram construction combining one-dimensional Random Functions (RF) defined on each path between sources and the outlet. The model properties are examined, namely the consistency conditions at the confluences for different variables. In practice, the scarcity of spatial data makes a precise inference of covariances difficult. Can then a phenomenological model be used to guide the geostatistical modelling? To answer this question the example of a portion of the Seine River (France) is examined, where both measurement data and the outputs of the physically-based model ProSe are used. The comparison between both data sets shows an excellent agreement for discharges and a consistent one for nitrate concentrations. Nevertheless, a detailed exploratory analysis brings to light the importance of the boundary conditions, which ones are not consistent with the downstream measurements. The agreement between data and modelled values can be improved thanks to a reconstruction of consistent boundary conditions by cokriging. This is an example of the usefulness of using jointly physically-based models and geostatistics. The next step is a joint modelling of discharges, loads and concentrations along the stream network. This modelling should improve the
Kennedy, Paula L; Woodbury, Allan D
2002-01-01
In ground water flow and transport modeling, the heterogeneous nature of porous media has a considerable effect on the resulting flow and solute transport. Some method of generating the heterogeneous field from a limited dataset of uncertain measurements is required. Bayesian updating is one method that interpolates from an uncertain dataset using the statistics of the underlying probability distribution function. In this paper, Bayesian updating was used to determine the heterogeneous natural log transmissivity field for a carbonate and a sandstone aquifer in southern Manitoba. It was determined that the transmissivity in m2/sec followed a natural log normal distribution for both aquifers with a mean of -7.2 and - 8.0 for the carbonate and sandstone aquifers, respectively. The variograms were calculated using an estimator developed by Li and Lake (1994). Fractal nature was not evident in the variogram from either aquifer. The Bayesian updating heterogeneous field provided good results even in cases where little data was available. A large transmissivity zone in the sandstone aquifer was created by the Bayesian procedure, which is not a reflection of any deterministic consideration, but is a natural outcome of updating a prior probability distribution function with observations. The statistical model returns a result that is very reasonable; that is homogeneous in regions where little or no information is available to alter an initial state. No long range correlation trends or fractal behavior of the log-transmissivity field was observed in either aquifer over a distance of about 300 km.
Hanks, Ephraim M.; Schliep, Erin M.; Hooten, Mevin B.; Hoeting, Jennifer A.
2015-01-01
In spatial generalized linear mixed models (SGLMMs), covariates that are spatially smooth are often collinear with spatially smooth random effects. This phenomenon is known as spatial confounding and has been studied primarily in the case where the spatial support of the process being studied is discrete (e.g., areal spatial data). In this case, the most common approach suggested is restricted spatial regression (RSR) in which the spatial random effects are constrained to be orthogonal to the fixed effects. We consider spatial confounding and RSR in the geostatistical (continuous spatial support) setting. We show that RSR provides computational benefits relative to the confounded SGLMM, but that Bayesian credible intervals under RSR can be inappropriately narrow under model misspecification. We propose a posterior predictive approach to alleviating this potential problem and discuss the appropriateness of RSR in a variety of situations. We illustrate RSR and SGLMM approaches through simulation studies and an analysis of malaria frequencies in The Gambia, Africa.
Fractal and geostatistical methods for modeling of a fracture network
Chiles, J.P.
1988-08-01
The modeling of fracture networks is useful for fluid flow and rock mechanics studies. About 6600 fracture traces were recorded on drifts of a uranium mine in a granite massif. The traces have an extension of 0.20-20 m. The network was studied by fractal and by geostatistical methods but can be considered neither as a fractal with a constant dimension nor a set of purely randomly located fractures. Two kinds of generalization of conventional models can still provide more flexibility for the characterization of the network: (a) a nonscaling fractal model with variable similarity dimension (for a 2-D network of traces, the dimension varying from 2 for the 10-m scale to 1 for the centimeter scale, (b) a parent-daughter model with a regionalized density; the geostatistical study allows a 3-D model to be established where: fractures are assumed to be discs; fractures are grouped in clusters or swarms; and fracturation density is regionalized (with two ranges at about 30 and 300 m). The fractal model is easy to fit and to simulate along a line, but 2-D and 3-D simulations are more difficult. The geostatistical model is more complex, but easy to simulate, even in 3-D.
NASA Astrophysics Data System (ADS)
Hu, L.; Montzka, S. A.; Miller, B.; Andrews, A. E.; Miller, J. B.; Lehman, S.; Sweeney, C.; Miller, S. M.; Thoning, K. W.; Siso, C.; Atlas, E. L.; Blake, D. R.; De Gouw, J. A.; Gilman, J.; Dutton, G. S.; Elkins, J. W.; Hall, B. D.; Chen, H.; Fischer, M. L.; Mountain, M. E.; Nehrkorn, T.; Biraud, S.; Tans, P. P.
2015-12-01
Global atmospheric observations suggest substantial ongoing emissions of carbon tetrachloride (CCl4) despite a 100% phase-out of production for dispersive uses since 1996 in developed countries and 2010 in other countries. Little progress has been made in understanding the causes of these ongoing emissions or identifying their contributing sources. In this study, we employed multiple inverse modeling techniques (i.e. Bayesian and geostatistical inversions) to assimilate CCl4 mole fractions observed from the National Oceanic and Atmospheric Administration (NOAA) flask-air sampling network over the US, and quantify its national and regional emissions during 2008 - 2012. Average national total emissions of CCl4 between 2008 and 2012 determined from these observations and an ensemble of inversions range between 2.1 and 6.1 Gg yr-1. This emission is substantially larger than the mean of 0.06 Gg/yr reported to the US EPA Toxics Release Inventory over these years, suggesting that under-reported emissions or non-reporting sources make up the bulk of CCl4 emissions from the US. But while the inventory does not account for the magnitude of observationally-derived CCl4 emissions, the regional distribution of derived and inventory emissions is similar. Furthermore, when considered relative to the distribution of uncapped landfills or population, the variability in measured mole fractions was most consistent with the distribution of industrial sources (i.e., those from the Toxics Release Inventory). Our results suggest that emissions from the US only account for a small fraction of the global on-going emissions of CCl4 (30 - 80 Gg yr-1 over this period). Finally, to ascertain the importance of the US emissions relative to the unaccounted global emission rate we considered multiple approaches to extrapolate our results to other countries and the globe.
Stochastic Local Interaction (SLI) model: Bridging machine learning and geostatistics
NASA Astrophysics Data System (ADS)
Hristopulos, Dionissios T.
2015-12-01
Machine learning and geostatistics are powerful mathematical frameworks for modeling spatial data. Both approaches, however, suffer from poor scaling of the required computational resources for large data applications. We present the Stochastic Local Interaction (SLI) model, which employs a local representation to improve computational efficiency. SLI combines geostatistics and machine learning with ideas from statistical physics and computational geometry. It is based on a joint probability density function defined by an energy functional which involves local interactions implemented by means of kernel functions with adaptive local kernel bandwidths. SLI is expressed in terms of an explicit, typically sparse, precision (inverse covariance) matrix. This representation leads to a semi-analytical expression for interpolation (prediction), which is valid in any number of dimensions and avoids the computationally costly covariance matrix inversion.
Lai, Ying-Si; Zhou, Xiao-Nong; Pan, Zhi-Heng; Utzinger, Jürg; Vounatsou, Penelope
2017-03-01
Clonorchiasis, one of the most important food-borne trematodiases, affects more than 12 million people in the People's Republic of China (P.R. China). Spatially explicit risk estimates of Clonorchis sinensis infection are needed in order to target control interventions. Georeferenced survey data pertaining to infection prevalence of C. sinensis in P.R. China from 2000 onwards were obtained via a systematic review in PubMed, ISI Web of Science, Chinese National Knowledge Internet, and Wanfang Data from January 1, 2000 until January 10, 2016, with no restriction of language or study design. Additional disease data were provided by the National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention in Shanghai. Environmental and socioeconomic proxies were extracted from remote-sensing and other data sources. Bayesian variable selection was carried out to identify the most important predictors of C. sinensis risk. Geostatistical models were applied to quantify the association between infection risk and the predictors of the disease, and to predict the risk of infection across P.R. China at high spatial resolution (over a grid with grid cell size of 5×5 km). We obtained clonorchiasis survey data at 633 unique locations in P.R. China. We observed that the risk of C. sinensis infection increased over time, particularly from 2005 onwards. We estimate that around 14.8 million (95% Bayesian credible interval 13.8-15.8 million) people in P.R. China were infected with C. sinensis in 2010. Highly endemic areas (≥ 20%) were concentrated in southern and northeastern parts of the country. The provinces with the highest risk of infection and the largest number of infected people were Guangdong, Guangxi, and Heilongjiang. Our results provide spatially relevant information for guiding clonorchiasis control interventions in P.R. China. The trend toward higher risk of C. sinensis infection in the recent past urges the Chinese government to pay more
3D vadose zone modeling using geostatistical inferences
Knutson, C.F.; Lee, C.B.
1991-01-01
In developing a 3D model of the 600 ft thick interbedded basalt and sediment complex that constitutes the vadose zone at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL) geostatistical data were captured for 12--15 parameters (e.g. permeability, porosity, saturation, etc. and flow height, flow width, flow internal zonation, etc.). This two scale data set was generated from studies of subsurface core and geophysical log suites at RWMC and from surface outcrop exposures located at the Box Canyon of the Big Lost River and from Hell's Half Acre lava field all located in the general RWMC area. Based on these currently available data, it is possible to build a 3D stochastic model that utilizes: cumulative distribution functions obtained from the geostatistical data; backstripping and rebuilding of stratigraphic units; an expert'' system that incorporates rules based on expert geologic analysis and experimentally derived geostatistics for providing: (a) a structural and isopach map of each layer, (b) a realization of the flow geometry of each basalt flow unit, and (c) a realization of the internal flow parameters (eg permeability, porosity, and saturation) for each flow. 10 refs., 4 figs., 1 tab.
Chen, Xingyuan; Murakami, Haruko; Hahn, Melanie S.; Hammond, Glenn E.; Rockhold, Mark L.; Zachara, John M.; Rubin, Yoram
2012-06-01
Tracer testing under natural or forced gradient flow holds the potential to provide useful information for characterizing subsurface properties, through monitoring, modeling and interpretation of the tracer plume migration in an aquifer. Non-reactive tracer experiments were conducted at the Hanford 300 Area, along with constant-rate injection tests and electromagnetic borehole flowmeter (EBF) profiling. A Bayesian data assimilation technique, the method of anchored distributions (MAD) [Rubin et al., 2010], was applied to assimilate the experimental tracer test data with the other types of data and to infer the three-dimensional heterogeneous structure of the hydraulic conductivity in the saturated zone of the Hanford formation. In this study, the Bayesian prior information on the underlying random hydraulic conductivity field was obtained from previous field characterization efforts using the constant-rate injection tests and the EBF data. The posterior distribution of the conductivity field was obtained by further conditioning the field on the temporal moments of tracer breakthrough curves at various observation wells. MAD was implemented with the massively-parallel three-dimensional flow and transport code PFLOTRAN to cope with the highly transient flow boundary conditions at the site and to meet the computational demands of MAD. A synthetic study proved that the proposed method could effectively invert tracer test data to capture the essential spatial heterogeneity of the three-dimensional hydraulic conductivity field. Application of MAD to actual field data shows that the hydrogeological model, when conditioned on the tracer test data, can reproduce the tracer transport behavior better than the field characterized without the tracer test data. This study successfully demonstrates that MAD can sequentially assimilate multi-scale multi-type field data through a consistent Bayesian framework.
NASA Astrophysics Data System (ADS)
Chen, Xingyuan; Murakami, Haruko; Hahn, Melanie S.; Hammond, Glenn E.; Rockhold, Mark L.; Zachara, John M.; Rubin, Yoram
2012-06-01
Tracer tests performed under natural or forced gradient flow conditions can provide useful information for characterizing subsurface properties, through monitoring, modeling, and interpretation of the tracer plume migration in an aquifer. Nonreactive tracer experiments were conducted at the Hanford 300 Area, along with constant-rate injection tests and electromagnetic borehole flowmeter tests. A Bayesian data assimilation technique, the method of anchored distributions (MAD) (Rubin et al., 2010), was applied to assimilate the experimental tracer test data with the other types of data and to infer the three-dimensional heterogeneous structure of the hydraulic conductivity in the saturated zone of the Hanford formation.In this study, the Bayesian prior information on the underlying random hydraulic conductivity field was obtained from previous field characterization efforts using constant-rate injection and borehole flowmeter test data. The posterior distribution of the conductivity field was obtained by further conditioning the field on the temporal moments of tracer breakthrough curves at various observation wells. MAD was implemented with the massively parallel three-dimensional flow and transport code PFLOTRAN to cope with the highly transient flow boundary conditions at the site and to meet the computational demands of MAD. A synthetic study proved that the proposed method could effectively invert tracer test data to capture the essential spatial heterogeneity of the three-dimensional hydraulic conductivity field. Application of MAD to actual field tracer data at the Hanford 300 Area demonstrates that inverting for spatial heterogeneity of hydraulic conductivity under transient flow conditions is challenging and more work is needed.
Slater, Hannah; Michael, Edwin
2013-01-01
There is increasing interest to control or eradicate the major neglected tropical diseases. Accurate modelling of the geographic distributions of parasitic infections will be crucial to this endeavour. We used 664 community level infection prevalence data collated from the published literature in conjunction with eight environmental variables, altitude and population density, and a multivariate Bayesian generalized linear spatial model that allows explicit accounting for spatial autocorrelation and incorporation of uncertainty in input data and model parameters, to construct the first spatially-explicit map describing LF prevalence distribution in Africa. We also ran the best-fit model against predictions made by the HADCM3 and CCCMA climate models for 2050 to predict the likely distributions of LF under future climate and population changes. We show that LF prevalence is strongly influenced by spatial autocorrelation between locations but is only weakly associated with environmental covariates. Infection prevalence, however, is found to be related to variations in population density. All associations with key environmental/demographic variables appear to be complex and non-linear. LF prevalence is predicted to be highly heterogenous across Africa, with high prevalences (>20%) estimated to occur primarily along coastal West and East Africa, and lowest prevalences predicted for the central part of the continent. Error maps, however, indicate a need for further surveys to overcome problems with data scarcity in the latter and other regions. Analysis of future changes in prevalence indicates that population growth rather than climate change per se will represent the dominant factor in the predicted increase/decrease and spread of LF on the continent. We indicate that these results could play an important role in aiding the development of strategies that are best able to achieve the goals of parasite elimination locally and globally in a manner that may also account
Slater, Hannah; Michael, Edwin
2013-01-01
There is increasing interest to control or eradicate the major neglected tropical diseases. Accurate modelling of the geographic distributions of parasitic infections will be crucial to this endeavour. We used 664 community level infection prevalence data collated from the published literature in conjunction with eight environmental variables, altitude and population density, and a multivariate Bayesian generalized linear spatial model that allows explicit accounting for spatial autocorrelation and incorporation of uncertainty in input data and model parameters, to construct the first spatially-explicit map describing LF prevalence distribution in Africa. We also ran the best-fit model against predictions made by the HADCM3 and CCCMA climate models for 2050 to predict the likely distributions of LF under future climate and population changes. We show that LF prevalence is strongly influenced by spatial autocorrelation between locations but is only weakly associated with environmental covariates. Infection prevalence, however, is found to be related to variations in population density. All associations with key environmental/demographic variables appear to be complex and non-linear. LF prevalence is predicted to be highly heterogenous across Africa, with high prevalences (>20%) estimated to occur primarily along coastal West and East Africa, and lowest prevalences predicted for the central part of the continent. Error maps, however, indicate a need for further surveys to overcome problems with data scarcity in the latter and other regions. Analysis of future changes in prevalence indicates that population growth rather than climate change per se will represent the dominant factor in the predicted increase/decrease and spread of LF on the continent. We indicate that these results could play an important role in aiding the development of strategies that are best able to achieve the goals of parasite elimination locally and globally in a manner that may also account
Model-Based Geostatistical Mapping of the Prevalence of Onchocerca volvulus in West Africa
O’Hanlon, Simon J.; Slater, Hannah C.; Cheke, Robert A.; Boatin, Boakye A.; Coffeng, Luc E.; Pion, Sébastien D. S.; Boussinesq, Michel; Zouré, Honorat G. M.; Stolk, Wilma A.; Basáñez, María-Gloria
2016-01-01
Background The initial endemicity (pre-control prevalence) of onchocerciasis has been shown to be an important determinant of the feasibility of elimination by mass ivermectin distribution. We present the first geostatistical map of microfilarial prevalence in the former Onchocerciasis Control Programme in West Africa (OCP) before commencement of antivectorial and antiparasitic interventions. Methods and Findings Pre-control microfilarial prevalence data from 737 villages across the 11 constituent countries in the OCP epidemiological database were used as ground-truth data. These 737 data points, plus a set of statistically selected environmental covariates, were used in a Bayesian model-based geostatistical (B-MBG) approach to generate a continuous surface (at pixel resolution of 5 km x 5km) of microfilarial prevalence in West Africa prior to the commencement of the OCP. Uncertainty in model predictions was measured using a suite of validation statistics, performed on bootstrap samples of held-out validation data. The mean Pearson’s correlation between observed and estimated prevalence at validation locations was 0.693; the mean prediction error (average difference between observed and estimated values) was 0.77%, and the mean absolute prediction error (average magnitude of difference between observed and estimated values) was 12.2%. Within OCP boundaries, 17.8 million people were deemed to have been at risk, 7.55 million to have been infected, and mean microfilarial prevalence to have been 45% (range: 2–90%) in 1975. Conclusions and Significance This is the first map of initial onchocerciasis prevalence in West Africa using B-MBG. Important environmental predictors of infection prevalence were identified and used in a model out-performing those without spatial random effects or environmental covariates. Results may be compared with recent epidemiological mapping efforts to find areas of persisting transmission. These methods may be extended to areas where
Analysis of runoff extremes using spatial hierarchical Bayesian modeling
NASA Astrophysics Data System (ADS)
Reza Najafi, Mohammad; Moradkhani, Hamid
2013-10-01
A spatial hierarchical Bayesian method is developed to model the extreme runoffs over two spatial domains in Columbia River Basin, USA. This method combines the limited number of data from different locations. The two spatial domains contain 31 and 20 gage stations, respectively, with daily streamflow records ranging from 30 to over 130 years. The generalized Pareto distribution (GPD) is employed for the analysis of extremes. Temporally independent data are generated using declustering procedure, where runoff extremes are first grouped into clusters and then the maximum of each cluster is retained. The GPD scale parameter is modeled based on a Gaussian geostatistical process and additional variables including the latitude, longitude, elevation, and drainage area are incorporated by means of a hierarchy. Metropolis-Hasting within Gibbs Sampler is used to infer the parameters of the GPD and the geostatistical process to estimate the return levels across the basins. The performance of the hierarchical Bayesian model is evaluated by comparing the estimates of 100 year return level floods with the maximum likelihood estimates at sites that are not used during the parameter inference process. Various prior distributions are used to assess the sensitivity of the posterior distributions. The selected model is then employed to estimate floods with different return levels in time slices of 15 years in order to detect possible trends in runoff extremes. The results show cyclic variations in the spatial average of the 100 year return level floods across the basins with consistent increasing trends distinguishable in some areas.
Bayesian analysis of CCDM models
NASA Astrophysics Data System (ADS)
Jesus, J. F.; Valentim, R.; Andrade-Oliveira, F.
2017-09-01
Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, produces a negative pressure term which can be used to explain the accelerated expansion of the Universe. In this work we tested six different spatially flat models for matter creation using statistical criteria, in light of SNe Ia data: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Bayesian Evidence (BE). These criteria allow to compare models considering goodness of fit and number of free parameters, penalizing excess of complexity. We find that JO model is slightly favoured over LJO/ΛCDM model, however, neither of these, nor Γ = 3αH0 model can be discarded from the current analysis. Three other scenarios are discarded either because poor fitting or because of the excess of free parameters. A method of increasing Bayesian evidence through reparameterization in order to reducing parameter degeneracy is also developed.
Geostatistical Modeling of Evolving Landscapes by Means of Image Quilting
NASA Astrophysics Data System (ADS)
Mendes, J. H.; Caers, J.; Scheidt, C.
2015-12-01
Realistic geological representation of subsurface heterogeneity remains an important outstanding challenge. While many geostatistical methods exist for representing sedimentary systems, such as multiple-point geostatistics, rule-based methods or Boolean methods, the question of what the prior uncertainty on parameters (or training images) of such algorithms are, remains outstanding. In this initial work, we investigate the use of flume experiments to constrain better such prior uncertainty and to start understanding what information should be provided to geostatistical algorithms. In particular, we study the use of image quilting as a novel multiple-point method for generating fast geostatistical realizations once a training image is provided. Image quilting is a method emanating from computer graphics where patterns are extracted from training images and then stochastically quilted along a raster path to create stochastic variation of the stated training image. In this initial study, we use a flume experiment and extract 10 training images as representative for the variability of the evolving landscape over a period of 136 minutes. The training images consists of wet/dry regions obtained from overhead shots taken over the flume experiment. To investigate whether such image quilting reproduces the same variability of the evolving landscape in terms of wet/dry regions, we generate multiple realizations with all 10 training images and compare that variability with the variability seen in the entire flume experiment. By proper tuning of the quilting parameters we find generally reasonable agreement with the flume experiment.
NASA Astrophysics Data System (ADS)
Reyes, J.; Vizuete, W.; Serre, M. L.; Xu, Y.
2015-12-01
The EPA employs a vast monitoring network to measure ambient PM2.5 concentrations across the United States with one of its goals being to quantify exposure within the population. However, there are several areas of the country with sparse monitoring spatially and temporally. One means to fill in these monitoring gaps is to use PM2.5 modeled estimates from Chemical Transport Models (CTMs) specifically the Community Multi-scale Air Quality (CMAQ) model. CMAQ is able to provide complete spatial coverage but is subject to systematic and random error due to model uncertainty. Due to the deterministic nature of CMAQ, often these uncertainties are not quantified. Much effort is employed to quantify the efficacy of these models through different metrics of model performance. Currently evaluation is specific to only locations with observed data. Multiyear studies across the United States are challenging because the error and model performance of CMAQ are not uniform over such large space/time domains. Error changes regionally and temporally. Because of the complex mix of species that constitute PM2.5, CMAQ error is also a function of increasing PM2.5 concentration. To address this issue we introduce a model performance evaluation for PM2.5 CMAQ that is regionalized and non-linear. This model performance evaluation leads to error quantification for each CMAQ grid. Areas and time periods of error being better qualified. The regionalized error correction approach is non-linear and is therefore more flexible at characterizing model performance than approaches that rely on linearity assumptions and assume homoscedasticity of CMAQ predictions errors. Corrected CMAQ data are then incorporated into the modern geostatistical framework of Bayesian Maximum Entropy (BME). Through cross validation it is shown that incorporating error-corrected CMAQ data leads to more accurate estimates than just using observed data by themselves.
Bayesian Model Averaging for Propensity Score Analysis
ERIC Educational Resources Information Center
Kaplan, David; Chen, Jianshen
2013-01-01
The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…
Introduction to Bayesian modelling in dental research.
Gilthorpe, M S; Maddick, I H; Petrie, A
2000-12-01
To explain the concepts and application of Bayesian modelling and how it can be applied to the analysis of dental research data. Methodological in nature, this article introduces Bayesian modelling through hypothetical dental examples. The synthesis of RCT results with previous evidence, including expert opinion, is used to illustrate full Bayesian modelling. Meta-analysis, in the form of empirical Bayesian modelling, is introduced. An example of full Bayesian modelling is described for the synthesis of evidence from several studies that investigate the success of root canal treatment. Hierarchical (Bayesian) modelling is demonstrated for a survey of childhood caries, where surface data is nested within subjects. Bayesian methods enhance interpretation of research evidence through the synthesis of information from multiple sources. Bayesian modelling is now readily accessible to clinical researchers and is able to augment the application of clinical decision making in the development of guidelines and clinical practice.
Bayesian stable isotope mixing models
In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...
Bayesian stable isotope mixing models
In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...
Use of geostatistical modeling to capture complex geology in finite-element analyses
Rautman, C.A.; Longenbaugh, R.S.; Ryder, E.E.
1995-12-01
This paper summarizes a number of transient thermal analyses performed for a representative two-dimensional cross section of volcanic tuffs at Yucca Mountain using the finite element, nonlinear heat-conduction code COYOTE-II. In addition to conventional design analyses, in which material properties are formulated as a uniform single material and as horizontally layered, internally uniform matters, an attempt was made to increase the resemblance of the thermal property field to the actual geology by creating two fairly complex, geologically realistic models. The first model was created by digitizing an existing two-dimensional geologic cross section of Yucca Mountain. The second model was created using conditional geostatistical simulation. Direct mapping of geostatistically generated material property fields onto finite element computational meshes was demonstrated to yield temperature fields approximately equivalent to those generated through more conventional procedures. However, the ability to use the geostatistical models offers a means of simplifying the physical-process analyses.
Geostatistical modeling of a heterogeneous site bordering the Venice lagoon, Italy.
Trevisani, Sebastiano; Fabbri, Paolo
2010-01-01
Geostatistical methods are well suited for analyzing the local and spatial uncertainties that accompany the modeling of highly heterogeneous three-dimensional (3D) geological architectures. The spatial modeling of 3D hydrogeological architectures is crucial for polluted site characterization, in regards to both groundwater modeling and planning remediation procedures. From this perspective, the polluted site of Porto Marghera, located on the periphery of the Venice lagoon, represents an interesting example. For this site, the available dense spatial sampling network, with 769 boreholes over an area of 6 km(2), allows us to evaluate the high geological heterogeneity by means of indicator kriging and sequential indicator simulation. We show that geostatistical methodologies and ad hoc post processing of geostatistical analysis results allow us to effectively analyze the high hydrogeological heterogeneity of the studied site.
Bayesian kinematic earthquake source models
NASA Astrophysics Data System (ADS)
Minson, S. E.; Simons, M.; Beck, J. L.; Genrich, J. F.; Galetzka, J. E.; Chowdhury, F.; Owen, S. E.; Webb, F.; Comte, D.; Glass, B.; Leiva, C.; Ortega, F. H.
2009-12-01
Most coseismic, postseismic, and interseismic slip models are based on highly regularized optimizations which yield one solution which satisfies the data given a particular set of regularizing constraints. This regularization hampers our ability to answer basic questions such as whether seismic and aseismic slip overlap or instead rupture separate portions of the fault zone. We present a Bayesian methodology for generating kinematic earthquake source models with a focus on large subduction zone earthquakes. Unlike classical optimization approaches, Bayesian techniques sample the ensemble of all acceptable models presented as an a posteriori probability density function (PDF), and thus we can explore the entire solution space to determine, for example, which model parameters are well determined and which are not, or what is the likelihood that two slip distributions overlap in space. Bayesian sampling also has the advantage that all a priori knowledge of the source process can be used to mold the a posteriori ensemble of models. Although very powerful, Bayesian methods have up to now been of limited use in geophysical modeling because they are only computationally feasible for problems with a small number of free parameters due to what is called the "curse of dimensionality." However, our methodology can successfully sample solution spaces of many hundreds of parameters, which is sufficient to produce finite fault kinematic earthquake models. Our algorithm is a modification of the tempered Markov chain Monte Carlo (tempered MCMC or TMCMC) method. In our algorithm, we sample a "tempered" a posteriori PDF using many MCMC simulations running in parallel and evolutionary computation in which models which fit the data poorly are preferentially eliminated in favor of models which better predict the data. We present results for both synthetic test problems as well as for the 2007 Mw 7.8 Tocopilla, Chile earthquake, the latter of which is constrained by InSAR, local high
Brain lesion detection in MRI with fuzzy and geostatistical models.
Pham, Tuan D
2010-01-01
Automated image detection of white matter changes of the brain is essentially helpful in providing a quantitative measure for studying the association of white matter lesions with other types of biomedical data. Such study allows the possibility of several medical hypothesis validations which lead to therapeutic treatment and prevention. This paper presents a new clustering-based segmentation approach for detecting white matter changes in magnetic resonance imaging with particular reference to cognitive decline in the elderly. The proposed method is formulated using the principles of fuzzy c-means algorithm and geostatistics.
Frequentist tests for Bayesian models
NASA Astrophysics Data System (ADS)
Lucy, L. B.
2016-04-01
Analogues of the frequentist chi-square and F tests are proposed for testing goodness-of-fit and consistency for Bayesian models. Simple examples exhibit these tests' detection of inconsistency between consecutive experiments with identical parameters, when the first experiment provides the prior for the second. In a related analysis, a quantitative measure is derived for judging the degree of tension between two different experiments with partially overlapping parameter vectors.
Bayesian Model Averaging for Propensity Score Analysis.
Kaplan, David; Chen, Jianshen
2014-01-01
This article considers Bayesian model averaging as a means of addressing uncertainty in the selection of variables in the propensity score equation. We investigate an approximate Bayesian model averaging approach based on the model-averaged propensity score estimates produced by the R package BMA but that ignores uncertainty in the propensity score. We also provide a fully Bayesian model averaging approach via Markov chain Monte Carlo sampling (MCMC) to account for uncertainty in both parameters and models. A detailed study of our approach examines the differences in the causal estimate when incorporating noninformative versus informative priors in the model averaging stage. We examine these approaches under common methods of propensity score implementation. In addition, we evaluate the impact of changing the size of Occam's window used to narrow down the range of possible models. We also assess the predictive performance of both Bayesian model averaging propensity score approaches and compare it with the case without Bayesian model averaging. Overall, results show that both Bayesian model averaging propensity score approaches recover the treatment effect estimates well and generally provide larger uncertainty estimates, as expected. Both Bayesian model averaging approaches offer slightly better prediction of the propensity score compared with the Bayesian approach with a single propensity score equation. Covariate balance checks for the case study show that both Bayesian model averaging approaches offer good balance. The fully Bayesian model averaging approach also provides posterior probability intervals of the balance indices.
NASA Astrophysics Data System (ADS)
Yan, Hongxiang; Moradkhani, Hamid
2016-08-01
Assimilation of satellite soil moisture and streamflow data into a distributed hydrologic model has received increasing attention over the past few years. This study provides a detailed analysis of the joint and separate assimilation of streamflow and Advanced Scatterometer (ASCAT) surface soil moisture into a distributed Sacramento Soil Moisture Accounting (SAC-SMA) model, with the use of recently developed particle filter-Markov chain Monte Carlo (PF-MCMC) method. Performance is assessed over the Salt River Watershed in Arizona, which is one of the watersheds without anthropogenic effects in Model Parameter Estimation Experiment (MOPEX). A total of five data assimilation (DA) scenarios are designed and the effects of the locations of streamflow gauges and the ASCAT soil moisture on the predictions of soil moisture and streamflow are assessed. In addition, a geostatistical model is introduced to overcome the significantly biased satellite soil moisture and also discontinuity issue. The results indicate that: (1) solely assimilating outlet streamflow can lead to biased soil moisture estimation; (2) when the study area can only be partially covered by the satellite data, the geostatistical approach can estimate the soil moisture for those uncovered grid cells; (3) joint assimilation of streamflow and soil moisture from geostatistical modeling can further improve the surface soil moisture prediction. This study recommends that the geostatistical model is a helpful tool to aid the remote sensing technique and the hydrologic DA study.
Bayesian population receptive field modelling.
Zeidman, Peter; Silson, Edward Harry; Schwarzkopf, Dietrich Samuel; Baker, Chris Ian; Penny, Will
2017-09-08
We introduce a probabilistic (Bayesian) framework and associated software toolbox for mapping population receptive fields (pRFs) based on fMRI data. This generic approach is intended to work with stimuli of any dimension and is demonstrated and validated in the context of 2D retinotopic mapping. The framework enables the experimenter to specify generative (encoding) models of fMRI timeseries, in which experimental stimuli enter a pRF model of neural activity, which in turns drives a nonlinear model of neurovascular coupling and Blood Oxygenation Level Dependent (BOLD) response. The neuronal and haemodynamic parameters are estimated together on a voxel-by-voxel or region-of-interest basis using a Bayesian estimation algorithm (variational Laplace). This offers several novel contributions to receptive field modelling. The variance/covariance of parameters are estimated, enabling receptive fields to be plotted while properly representing uncertainty about pRF size and location. Variability in the haemodynamic response across the brain is accounted for. Furthermore, the framework introduces formal hypothesis testing to pRF analysis, enabling competing models to be evaluated based on their log model evidence (approximated by the variational free energy), which represents the optimal tradeoff between accuracy and complexity. Using simulations and empirical data, we found that parameters typically used to represent pRF size and neuronal scaling are strongly correlated, which is taken into account by the Bayesian methods we describe when making inferences. We used the framework to compare the evidence for six variants of pRF model using 7 T functional MRI data and we found a circular Difference of Gaussians (DoG) model to be the best explanation for our data overall. We hope this framework will prove useful for mapping stimulus spaces with any number of dimensions onto the anatomy of the brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Flexible Bayesian Human Fecundity Models.
Kim, Sungduk; Sundaram, Rajeshwari; Buck Louis, Germaine M; Pyper, Cecilia
2012-12-01
Human fecundity is an issue of considerable interest for both epidemiological and clinical audiences, and is dependent upon a couple's biologic capacity for reproduction coupled with behaviors that place a couple at risk for pregnancy. Bayesian hierarchical models have been proposed to better model the conception probabilities by accounting for the acts of intercourse around the day of ovulation, i.e., during the fertile window. These models can be viewed in the framework of a generalized nonlinear model with an exponential link. However, a fixed choice of link function may not always provide the best fit, leading to potentially biased estimates for probability of conception. Motivated by this, we propose a general class of models for fecundity by relaxing the choice of the link function under the generalized nonlinear model framework. We use a sample from the Oxford Conception Study (OCS) to illustrate the utility and fit of this general class of models for estimating human conception. Our findings reinforce the need for attention to be paid to the choice of link function in modeling conception, as it may bias the estimation of conception probabilities. Various properties of the proposed models are examined and a Markov chain Monte Carlo sampling algorithm was developed for implementing the Bayesian computations. The deviance information criterion measure and logarithm of pseudo marginal likelihood are used for guiding the choice of links. The supplemental material section contains technical details of the proof of the theorem stated in the paper, and contains further simulation results and analysis.
Integrated geostatistics for modeling fluid contacts and shales in Prudhoe Bay
Perez, G.; Chopra, A.K.; Severson, C.D.
1997-12-01
Geostatistics techniques are being used increasingly to model reservoir heterogeneity at a wide range of scales. A variety of techniques is now available with differing underlying assumptions, complexity, and applications. This paper introduces a novel method of geostatistics to model dynamic gas-oil contacts and shales in the Prudhoe Bay reservoir. The method integrates reservoir description and surveillance data within the same geostatistical framework. Surveillance logs and shale data are transformed to indicator variables. These variables are used to evaluate vertical and horizontal spatial correlation and cross-correlation of gas and shale at different times and to develop variogram models. Conditional simulation techniques are used to generate multiple three-dimensional (3D) descriptions of gas and shales that provide a measure of uncertainty. These techniques capture the complex 3D distribution of gas-oil contacts through time. The authors compare results of the geostatistical method with conventional techniques as well as with infill wells drilled after the study. Predicted gas-oil contacts and shale distributions are in close agreement with gas-oil contacts observed at infill wells.
Monte Carlo Analysis of Reservoir Models Using Seismic Data and Geostatistical Models
NASA Astrophysics Data System (ADS)
Zunino, A.; Mosegaard, K.; Lange, K.; Melnikova, Y.; Hansen, T. M.
2013-12-01
We present a study on the analysis of petroleum reservoir models consistent with seismic data and geostatistical constraints performed on a synthetic reservoir model. Our aim is to invert directly for structure and rock bulk properties of the target reservoir zone. To infer the rock facies, porosity and oil saturation seismology alone is not sufficient but a rock physics model must be taken into account, which links the unknown properties to the elastic parameters. We then combine a rock physics model with a simple convolutional approach for seismic waves to invert the "measured" seismograms. To solve this inverse problem, we employ a Markov chain Monte Carlo (MCMC) method, because it offers the possibility to handle non-linearity, complex and multi-step forward models and provides realistic estimates of uncertainties. However, for large data sets the MCMC method may be impractical because of a very high computational demand. To face this challenge one strategy is to feed the algorithm with realistic models, hence relying on proper prior information. To address this problem, we utilize an algorithm drawn from geostatistics to generate geologically plausible models which represent samples of the prior distribution. The geostatistical algorithm learns the multiple-point statistics from prototype models (in the form of training images), then generates thousands of different models which are accepted or rejected by a Metropolis sampler. To further reduce the computation time we parallelize the software and run it on multi-core machines. The solution of the inverse problem is then represented by a collection of reservoir models in terms of facies, porosity and oil saturation, which constitute samples of the posterior distribution. We are finally able to produce probability maps of the properties we are interested in by performing statistical analysis on the collection of solutions.
Bayesian Networks for Social Modeling
Whitney, Paul D.; White, Amanda M.; Walsh, Stephen J.; Dalton, Angela C.; Brothers, Alan J.
2011-03-28
This paper describes a body of work developed over the past five years. The work addresses the use of Bayesian network (BN) models for representing and predicting social/organizational behaviors. The topics covered include model construction, validation, and use. These topics show the bulk of the lifetime of such model, beginning with construction, moving to validation and other aspects of model ‘critiquing’, and finally demonstrating how the modeling approach might be used to inform policy analysis. To conclude, we discuss limitations of using BN for this activity and suggest remedies to address those limitations. The primary benefits of using a well-developed computational, mathematical, and statistical modeling structure, such as BN, are 1) there are significant computational, theoretical and capability bases on which to build 2) ability to empirically critique the model, and potentially evaluate competing models for a social/behavioral phenomena.
NASA Astrophysics Data System (ADS)
Kosack, Christian; Vogt, Christian; Rath, Volker; Marquart, Gabriele
2010-05-01
The knowledge of the permeability distribution at depth is of primary concern for any geothermal reservoir engineering. However, permeability might change over orders of magnitude even for a single rock type and is additionally controlled by tectonic or engineered fracturing of the rocks. During reservoir exploration pumping tests are regularly performed where tracer marked water is pumped in one borehole and retrieved at one or a few others. At the European Enhanced Geothermal System (EGS) test site at Soultz-sous-Forêts three wells had been drilled in the granitic bedrock down to 4 to 5 km and were hydraulically stimulated to enhance the hydraulic connectivity between the wells. In July 2005, a tracer circulation test was carried out in order to estimate the changes of the hydraulic properties. Therefore a tracer was injected into the well GPK3 for 19 hours at a rate of 0.015 m3 s-1 and a concentration of 0.389 mol m-3. Tracer concentration was measured in the production wells over the following 5 months, while the produced water was re-injected into GPK3. This experiment demonstrated a good hydraulic connection between GPK3 and one of the production wells, GPK2, while a very low connectivity was observed in the other one, GPK4. We tested three different approaches simulating the pumping experiment with the numerical simulator shemat_suite in a simplified 3D model of the site in order to study their respective potential to estimate a reliable permeability distribution for the Soultz reservoir: A full-physics gradient-based Bayesian inversion, a massive Monte Carlo approach with geostatistic analysis, and an Ensemble-Kalman-Filter (EnKF) assimilation. A common feature in all models is a high permeability zone which acts as main flow area and transports most of the tracer. It is assumed to be associated with the fault zone cutting through the boreholes GPK2 and GPK3. With the Bayesian Inversion we were able to estimate a parameter set consisting of porosity
A mixed-model moving-average approach to geostatistical modeling in stream networks.
Peterson, Erin E; Ver Hoef, Jay M
2010-03-01
Spatial autocorrelation is an intrinsic characteristic in freshwater stream environments where nested watersheds and flow connectivity may produce patterns that are not captured by Euclidean distance. Yet, many common autocovariance functions used in geostatistical models are statistically invalid when Euclidean distance is replaced with hydrologic distance. We use simple worked examples to illustrate a recently developed moving-average approach used to construct two types of valid autocovariance models that are based on hydrologic distances. These models were designed to represent the spatial configuration, longitudinal connectivity, discharge, and flow direction in a stream network. They also exhibit a different covariance structure than Euclidean models and represent a true difference in the way that spatial relationships are represented. Nevertheless, the multi-scale complexities of stream environments may not be fully captured using a model based on one covariance structure. We advocate using a variance component approach, which allows a mixture of autocovariance models (Euclidean and stream models) to be incorporated into a single geostatistical model. As an example, we fit and compare "mixed models," based on multiple covariance structures, for a biological indicator. The mixed model proves to be a flexible approach because many sources of information can be incorporated into a single model.
Modeling Diagnostic Assessments with Bayesian Networks
ERIC Educational Resources Information Center
Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego
2007-01-01
This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…
Modeling Diagnostic Assessments with Bayesian Networks
ERIC Educational Resources Information Center
Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego
2007-01-01
This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…
Geostatistical applications in ground-water modeling in south-central Kansas
Ma, T.-S.; Sophocleous, M.; Yu, Y.-S.
1999-01-01
This paper emphasizes the supportive role of geostatistics in applying ground-water models. Field data of 1994 ground-water level, bedrock, and saltwater-freshwater interface elevations in south-central Kansas were collected and analyzed using the geostatistical approach. Ordinary kriging was adopted to estimate initial conditions for ground-water levels and topography of the Permian bedrock at the nodes of a finite difference grid used in a three-dimensional numerical model. Cokriging was used to estimate initial conditions for the saltwater-freshwater interface. An assessment of uncertainties in the estimated data is presented. The kriged and cokriged estimation variances were analyzed to evaluate the adequacy of data employed in the modeling. Although water levels and bedrock elevations are well described by spherical semivariogram models, additional data are required for better cokriging estimation of the interface data. The geostatistically analyzed data were employed in a numerical model of the Siefkes site in the project area. Results indicate that the computed chloride concentrations and ground-water drawdowns reproduced the observed data satisfactorily.This paper emphasizes the supportive role of geostatistics in applying ground-water models. Field data of 1994 ground-water level, bedrock, and saltwater-freshwater interface elevations in south-central Kansas were collected and analyzed using the geostatistical approach. Ordinary kriging was adopted to estimate initial conditions for ground-water levels and topography of the Permian bedrock at the nodes of a finite difference grid used in a three-dimensional numerical model. Cokriging was used to estimate initial conditions for the saltwater-freshwater interface. An assessment of uncertainties in the estimated data is presented. The kriged and cokriged estimation variances were analyzed to evaluate the adequacy of data employed in the modeling. Although water levels and bedrock elevations are well described
Validation and comparison of geostatistical and spline models for spatial stream networks.
Rushworth, A M; Peterson, E E; Ver Hoef, J M; Bowman, A W
2015-08-01
Scientists need appropriate spatial-statistical models to account for the unique features of stream network data. Recent advances provide a growing methodological toolbox for modelling these data, but general-purpose statistical software has only recently emerged, with little information about when to use different approaches. We implemented a simulation study to evaluate and validate geostatistical models that use continuous distances, and penalised spline models that use a finite discrete approximation for stream networks. Data were simulated from the geostatistical model, with performance measured by empirical prediction and fixed effects estimation. We found that both models were comparable in terms of squared error, with a slight advantage for the geostatistical models. Generally, both methods were unbiased and had valid confidence intervals. The most marked differences were found for confidence intervals on fixed-effect parameter estimates, where, for small sample sizes, the spline models underestimated variance. However, the penalised spline models were always more computationally efficient, which may be important for real-time prediction and estimation. Thus, decisions about which method to use must be influenced by the size and format of the data set, in addition to the characteristics of the environmental process and the modelling goals. ©2015 The Authors. Environmetrics published by John Wiley & Sons, Ltd.
A geostatistical methodology to assess the accuracy of unsaturated flow models
Smoot, J.L.; Williams, R.E.
1996-04-01
The Pacific Northwest National Laboratory spatiotemporal movement of water injected into (PNNL) has developed a Hydrologic unsaturated sediments at the Hanford Site in Evaluation Methodology (HEM) to assist the Washington State was used to develop a new U.S. Nuclear Regulatory Commission in method for evaluating mathematical model evaluating the potential that infiltrating meteoric predictions. Measured water content data were water will produce leachate at commercial low- interpolated geostatistically to a 16 x 16 x 36 level radioactive waste disposal sites. Two key grid at several time intervals. Then a issues are raised in the HEM: (1) evaluation of mathematical model was used to predict water mathematical models that predict facility content at the same grid locations at the selected performance, and (2) estimation of the times. Node-by-node comparison of the uncertainty associated with these mathematical mathematical model predictions with the model predictions. The technical objective of geostatistically interpolated values was this research is to adapt geostatistical tools conducted. The method facilitates a complete commonly used for model parameter estimation accounting and categorization of model error at to the problem of estimating the spatial every node. The comparison suggests that distribution of the dependent variable to be model results generally are within measurement calculated by the model. To fulfill this error. The worst model error occurs in silt objective, a database describing the lenses and is in excess of measurement error.
Bayesian Models of Individual Differences
Powell, Georgie; Meredith, Zoe; McMillin, Rebecca; Freeman, Tom C. A.
2016-01-01
According to Bayesian models, perception and cognition depend on the optimal combination of noisy incoming evidence with prior knowledge of the world. Individual differences in perception should therefore be jointly determined by a person’s sensitivity to incoming evidence and his or her prior expectations. It has been proposed that individuals with autism have flatter prior distributions than do nonautistic individuals, which suggests that prior variance is linked to the degree of autistic traits in the general population. We tested this idea by studying how perceived speed changes during pursuit eye movement and at low contrast. We found that individual differences in these two motion phenomena were predicted by differences in thresholds and autistic traits when combined in a quantitative Bayesian model. Our findings therefore support the flatter-prior hypothesis and suggest that individual differences in prior expectations are more systematic than previously thought. In order to be revealed, however, individual differences in sensitivity must also be taken into account. PMID:27770059
Properties of the Bayesian Knowledge Tracing Model
ERIC Educational Resources Information Center
van de Sande, Brett
2013-01-01
Bayesian Knowledge Tracing is used very widely to model student learning. It comes in two different forms: The first form is the Bayesian Knowledge Tracing "hidden Markov model" which predicts the probability of correct application of a skill as a function of the number of previous opportunities to apply that skill and the model…
Properties of the Bayesian Knowledge Tracing Model
ERIC Educational Resources Information Center
van de Sande, Brett
2013-01-01
Bayesian Knowledge Tracing is used very widely to model student learning. It comes in two different forms: The first form is the Bayesian Knowledge Tracing "hidden Markov model" which predicts the probability of correct application of a skill as a function of the number of previous opportunities to apply that skill and the model…
Bayesian inference for OPC modeling
NASA Astrophysics Data System (ADS)
Burbine, Andrew; Sturtevant, John; Fryer, David; Smith, Bruce W.
2016-03-01
The use of optical proximity correction (OPC) demands increasingly accurate models of the photolithographic process. Model building and inference techniques in the data science community have seen great strides in the past two decades which make better use of available information. This paper aims to demonstrate the predictive power of Bayesian inference as a method for parameter selection in lithographic models by quantifying the uncertainty associated with model inputs and wafer data. Specifically, the method combines the model builder's prior information about each modelling assumption with the maximization of each observation's likelihood as a Student's t-distributed random variable. Through the use of a Markov chain Monte Carlo (MCMC) algorithm, a model's parameter space is explored to find the most credible parameter values. During parameter exploration, the parameters' posterior distributions are generated by applying Bayes' rule, using a likelihood function and the a priori knowledge supplied. The MCMC algorithm used, an affine invariant ensemble sampler (AIES), is implemented by initializing many walkers which semiindependently explore the space. The convergence of these walkers to global maxima of the likelihood volume determine the parameter values' highest density intervals (HDI) to reveal champion models. We show that this method of parameter selection provides insights into the data that traditional methods do not and outline continued experiments to vet the method.
NASA Astrophysics Data System (ADS)
Linde, Niklas; Lochbühler, Tobias; Dogan, Mine; Van Dam, Remke L.
2015-12-01
We propose a new framework to compare alternative geostatistical descriptions of a given site. Multiple realizations of each of the considered geostatistical models and their corresponding tomograms (based on inversion of noise-contaminated simulated data) are used as a multivariate training image. The training image is scanned with a direct sampling algorithm to obtain conditional realizations of hydraulic conductivity that are not only in agreement with the geostatistical model, but also honor the spatially varying resolution of the site-specific tomogram. Model comparison is based on the quality of the simulated geophysical data from the ensemble of conditional realizations. The tomogram in this study is obtained by inversion of cross-hole ground-penetrating radar (GPR) first-arrival travel time data acquired at the MAcro-Dispersion Experiment (MADE) site in Mississippi (USA). Various heterogeneity descriptions ranging from multi-Gaussian fields to fields with complex multiple-point statistics inferred from outcrops are considered. Under the assumption that the relationship between porosity and hydraulic conductivity inferred from local measurements is valid, we find that conditioned multi-Gaussian realizations and derivatives thereof can explain the crosshole geophysical data. A training image based on an aquifer analog from Germany was found to be in better agreement with the geophysical data than the one based on the local outcrop, which appears to under-represent high hydraulic conductivity zones. These findings are only based on the information content in a single resolution-limited tomogram and extending the analysis to tracer or higher resolution surface GPR data might lead to different conclusions (e.g., that discrete facies boundaries are necessary). Our framework makes it possible to identify inadequate geostatistical models and petrophysical relationships, effectively narrowing the space of possible heterogeneity representations.
A conceptual sedimentological-geostatistical model of aquifer heterogeneity based on outcrop studies
Davis, J.M.
1994-01-01
Three outcrop studies were conducted in deposits of different depositional environments. At each site, permeability measurements were obtained with an air-minipermeameter developed as part of this study. In addition, the geological units were mapped with either surveying, photographs, or both. Geostatistical analysis of the permeability data was performed to estimate the characteristics of the probability distribution function and the spatial correlation structure. The information obtained from the geological mapping was then compared with the results of the geostatistical analysis for any relationships that may exist. The main field site was located in the Albuquerque Basin of central New Mexico at an outcrop of the Pliocene-Pleistocene Sierra Ladrones Formation. The second study was conducted on the walls of waste pits in alluvial fan deposits at the Nevada Test Site. The third study was conducted on an outcrop of an eolian deposit (miocene) south of Socorro, New Mexico. The results of the three studies were then used to construct a conceptual model relating depositional environment to geostatistical models of heterogeneity. The model presented is largely qualitative but provides a basis for further hypothesis formulation and testing.
Karagiannis-Voules, Dimitrios-Alexios; Odermatt, Peter; Biedermann, Patricia; Khieu, Virak; Schär, Fabian; Muth, Sinuon; Utzinger, Jürg; Vounatsou, Penelope
2015-01-01
Soil-transmitted helminth infections are intimately connected with poverty. Yet, there is a paucity of using socioeconomic proxies in spatially explicit risk profiling. We compiled household-level socioeconomic data pertaining to sanitation, drinking-water, education and nutrition from readily available Demographic and Health Surveys, Multiple Indicator Cluster Surveys and World Health Surveys for Cambodia and aggregated the data at village level. We conducted a systematic review to identify parasitological surveys and made every effort possible to extract, georeference and upload the data in the open source Global Neglected Tropical Diseases database. Bayesian geostatistical models were employed to spatially align the village-aggregated socioeconomic predictors with the soil-transmitted helminth infection data. The risk of soil-transmitted helminth infection was predicted at a grid of 1×1km covering Cambodia. Additionally, two separate individual-level spatial analyses were carried out, for Takeo and Preah Vihear provinces, to assess and quantify the association between soil-transmitted helminth infection and socioeconomic indicators at an individual level. Overall, we obtained socioeconomic proxies from 1624 locations across the country. Surveys focussing on soil-transmitted helminth infections were extracted from 16 sources reporting data from 238 unique locations. We found that the risk of soil-transmitted helminth infection from 2000 onwards was considerably lower than in surveys conducted earlier. Population-adjusted prevalences for school-aged children from 2000 onwards were 28.7% for hookworm, 1.5% for Ascaris lumbricoides and 0.9% for Trichuris trichiura. Surprisingly, at the country-wide analyses, we did not find any significant association between soil-transmitted helminth infection and village-aggregated socioeconomic proxies. Based also on the individual-level analyses we conclude that socioeconomic proxies might not be good predictors at an
Bayesian Calibration of Microsimulation Models.
Rutter, Carolyn M; Miglioretti, Diana L; Savarino, James E
2009-12-01
Microsimulation models that describe disease processes synthesize information from multiple sources and can be used to estimate the effects of screening and treatment on cancer incidence and mortality at a population level. These models are characterized by simulation of individual event histories for an idealized population of interest. Microsimulation models are complex and invariably include parameters that are not well informed by existing data. Therefore, a key component of model development is the choice of parameter values. Microsimulation model parameter values are selected to reproduce expected or known results though the process of model calibration. Calibration may be done by perturbing model parameters one at a time or by using a search algorithm. As an alternative, we propose a Bayesian method to calibrate microsimulation models that uses Markov chain Monte Carlo. We show that this approach converges to the target distribution and use a simulation study to demonstrate its finite-sample performance. Although computationally intensive, this approach has several advantages over previously proposed methods, including the use of statistical criteria to select parameter values, simultaneous calibration of multiple parameters to multiple data sources, incorporation of information via prior distributions, description of parameter identifiability, and the ability to obtain interval estimates of model parameters. We develop a microsimulation model for colorectal cancer and use our proposed method to calibrate model parameters. The microsimulation model provides a good fit to the calibration data. We find evidence that some parameters are identified primarily through prior distributions. Our results underscore the need to incorporate multiple sources of variability (i.e., due to calibration data, unknown parameters, and estimated parameters and predicted values) when calibrating and applying microsimulation models.
2D Forward Modeling of Gravity Data Using Geostatistically Generated Subsurface Density Variations
NASA Astrophysics Data System (ADS)
Phelps, G. A.
2015-12-01
Two-dimensional (2D) forward models of synthetic gravity anomalies are calculated and compared to observed gravity anomalies using geostatistical models of density variations in the subsurface, constrained by geologic data. These models have an advantage over forward gravity models generated using polygonal bodies of homogeneous density because the homogeneous density restriction is relaxed, allowing density variations internal to geologic bodies to be considered. By discretizing the subsurface and calculating the cumulative gravitational effect of each cell, multiple forward models can be generated for a given geologic body, which expands the exploration of the solution space. Furthermore, the stochastic models can be designed to match the observed statistical properties of the internal densities of the geologic units being modeled. The results of such stochastically generated forward gravity models can then be compared with the observed data. To test this modeling approach, we compared stochastic forward gravity models of 2D geologic cross-sections to gravity data collected along a profile across the Vaca Fault near Fairfield, California. Three conceptual geologic models were created, each representing a distinct fault block scenario (normal, strike-slip, reverse) with four rock units in each model. Using fixed rock unit boundaries, the units were populated with geostatistically generated density values, characterized by their respective histogram and vertical variogram. The horizontal variogram could not be estimated because of lack of data, and was therefore left as a free parameter. Each fault block model had multiple geostatistical realizations of density associated with it. Forward models of gravity were then generated from the fault block model realizations, and rejection sampling was used to determine viable fault block density models. Given the constraints on subsurface density, the normal and strike-slip fault model were the most likely.
NASA Astrophysics Data System (ADS)
Muthusamy, Manoranjan; Schellart, Alma; Tait, Simon; Heuvelink, Gerard B. M.
2017-04-01
Geostatistical methods have been used to analyse the spatial correlation structure of rainfall at various spatial scales, but its application to estimate the level of uncertainty in rainfall upscaling has not been fully explored mainly due to its inherent complexity and demanding data requirements. In this study we presented a method to overcome these challenges and predict AARI together with associated uncertainty using geostatistical upscaling. Rainfall data collected from a cluster of eight paired rain gauges in a 400 × 200 sq. m. urban catchment are used in combination with spatial stochastic simulation to obtain optimal predictions of the spatially averaged rainfall intensity at any point in time within the urban catchment. The uncertainty in the prediction of catchment average rainfall intensity is obtained for multiple combinations of intensity ranges and temporal averaging intervals. The two main challenges addressed in this study are scarcity of rainfall measurement locations and non-normality of rainfall data, both of which need to be considered when adopting a geostatistical approach. Scarcity of measurement points is dealt with by pooling sample variograms of repeated rainfall measurements with similar characteristics. Normality of rainfall data is achieved through the use of Normal Score Transformation. Geostatistical models in the form of variograms are derived for transformed rainfall intensity. Next spatial stochastic simulation which is robust to nonlinear data transformation is applied to produce realisations of rainfall fields. These realisations in transformed space are first back-transformed and next spatially aggregated to derive a random sample of the spatially averaged rainfall intensity. This study shows that for small time and space scales the use of a single geostatistical model based on a single variogram is not appropriate and a distinction between rainfall intensity classes and length of temporal averaging intervals should be made
Bayesian model selection and isocurvature perturbations
NASA Astrophysics Data System (ADS)
Beltrán, María; García-Bellido, Juan; Lesgourgues, Julien; Liddle, Andrew R.; Slosar, Anže
2005-03-01
Present cosmological data are well explained assuming purely adiabatic perturbations, but an admixture of isocurvature perturbations is also permitted. We use a Bayesian framework to compare the performance of cosmological models including isocurvature modes with the purely adiabatic case; this framework automatically and consistently penalizes models which use more parameters to fit the data. We compute the Bayesian evidence for fits to a data set comprised of WMAP and other microwave anisotropy data, the galaxy power spectrum from 2dFGRS and SDSS, and Type Ia supernovae luminosity distances. We find that Bayesian model selection favors the purely adiabatic models, but so far only at low significance.
Chonggang Xu; Hong S. He; Yuanman Hu; Yu Chang; Xiuzhen Li; Rencang Bu
2005-01-01
Geostatistical stochastic simulation is always combined with Monte Carlo method to quantify the uncertainty in spatial model simulations. However, due to the relatively long running time of spatially explicit forest models as a result of their complexity, it is always infeasible to generate hundreds or thousands of Monte Carlo simulations. Thus, it is of great...
Sparse Bayesian infinite factor models
Bhattacharya, A.; Dunson, D. B.
2011-01-01
We focus on sparse modelling of high-dimensional covariance matrices using Bayesian latent factor models. We propose a multiplicative gamma process shrinkage prior on the factor loadings which allows introduction of infinitely many factors, with the loadings increasingly shrunk towards zero as the column index increases. We use our prior on a parameter-expanded loading matrix to avoid the order dependence typical in factor analysis models and develop an efficient Gibbs sampler that scales well as data dimensionality increases. The gain in efficiency is achieved by the joint conjugacy property of the proposed prior, which allows block updating of the loadings matrix. We propose an adaptive Gibbs sampler for automatically truncating the infinite loading matrix through selection of the number of important factors. Theoretical results are provided on the support of the prior and truncation approximation bounds. A fast algorithm is proposed to produce approximate Bayes estimates. Latent factor regression methods are developed for prediction and variable selection in applications with high-dimensional correlated predictors. Operating characteristics are assessed through simulation studies, and the approach is applied to predict survival times from gene expression data. PMID:23049129
NASA Astrophysics Data System (ADS)
Schöniger, Anneli; Illman, Walter A.; Wöhling, Thomas; Nowak, Wolfgang
2015-12-01
Groundwater modelers face the challenge of how to assign representative parameter values to the studied aquifer. Several approaches are available to parameterize spatial heterogeneity in aquifer parameters. They differ in their conceptualization and complexity, ranging from homogeneous models to heterogeneous random fields. While it is common practice to invest more effort into data collection for models with a finer resolution of heterogeneities, there is a lack of advice which amount of data is required to justify a certain level of model complexity. In this study, we propose to use concepts related to Bayesian model selection to identify this balance. We demonstrate our approach on the characterization of a heterogeneous aquifer via hydraulic tomography in a sandbox experiment (Illman et al., 2010). We consider four increasingly complex parameterizations of hydraulic conductivity: (1) Effective homogeneous medium, (2) geology-based zonation, (3) interpolation by pilot points, and (4) geostatistical random fields. First, we investigate the shift in justified complexity with increasing amount of available data by constructing a model confusion matrix. This matrix indicates the maximum level of complexity that can be justified given a specific experimental setup. Second, we determine which parameterization is most adequate given the observed drawdown data. Third, we test how the different parameterizations perform in a validation setup. The results of our test case indicate that aquifer characterization via hydraulic tomography does not necessarily require (or justify) a geostatistical description. Instead, a zonation-based model might be a more robust choice, but only if the zonation is geologically adequate.
Bayesian Methods for High Dimensional Linear Models
Mallick, Himel; Yi, Nengjun
2013-01-01
In this article, we present a selective overview of some recent developments in Bayesian model and variable selection methods for high dimensional linear models. While most of the reviews in literature are based on conventional methods, we focus on recently developed methods, which have proven to be successful in dealing with high dimensional variable selection. First, we give a brief overview of the traditional model selection methods (viz. Mallow’s Cp, AIC, BIC, DIC), followed by a discussion on some recently developed methods (viz. EBIC, regularization), which have occupied the minds of many statisticians. Then, we review high dimensional Bayesian methods with a particular emphasis on Bayesian regularization methods, which have been used extensively in recent years. We conclude by briefly addressing the asymptotic behaviors of Bayesian variable selection methods for high dimensional linear models under different regularity conditions. PMID:24511433
Bayesian Modeling of a Human MMORPG Player
NASA Astrophysics Data System (ADS)
Synnaeve, Gabriel; Bessière, Pierre
2011-03-01
This paper describes an application of Bayesian programming to the control of an autonomous avatar in a multiplayer role-playing game (the example is based on World of Warcraft). We model a particular task, which consists of choosing what to do and to select which target in a situation where allies and foes are present. We explain the model in Bayesian programming and show how we could learn the conditional probabilities from data gathered during human-played sessions.
NASA Astrophysics Data System (ADS)
Yan, Hongxiang; Moradkhani, Hamid; Abbaszadeh, Peyman
2017-04-01
Assimilation of satellite soil moisture and streamflow data into hydrologic models using has received increasing attention over the past few years. Currently, these observations are increasingly used to improve the model streamflow and soil moisture predictions. However, the performance of this land data assimilation (DA) system still suffers from two limitations: 1) satellite data scarcity and quality; and 2) particle weight degeneration. In order to overcome these two limitations, we propose two possible solutions in this study. First, the general Gaussian geostatistical approach is proposed to overcome the limitation in the space/time resolution of satellite soil moisture products thus improving their accuracy at uncovered/biased grid cells. Secondly, an evolutionary PF approach based on Genetic Algorithm (GA) and Markov Chain Monte Carlo (MCMC), the so-called EPF-MCMC, is developed to further reduce weight degeneration and improve the robustness of the land DA system. This study provides a detailed analysis of the joint and separate assimilation of streamflow and satellite soil moisture into a distributed Sacramento Soil Moisture Accounting (SAC-SMA) model, with the use of recently developed EPF-MCMC and the general Gaussian geostatistical approach. Performance is assessed over several basins in the USA selected from Model Parameter Estimation Experiment (MOPEX) and located in different climate regions. The results indicate that: 1) the general Gaussian approach can predict the soil moisture at uncovered grid cells within the expected satellite data quality threshold; 2) assimilation of satellite soil moisture inferred from the general Gaussian model can significantly improve the soil moisture predictions; and 3) in terms of both deterministic and probabilistic measures, the EPF-MCMC can achieve better streamflow predictions. These results recommend that the geostatistical model is a helpful tool to aid the remote sensing technique and the EPF-MCMC is a
Can Geostatistical Models Represent Nature's Variability? An Analysis Using Flume Experiments
NASA Astrophysics Data System (ADS)
Scheidt, C.; Fernandes, A. M.; Paola, C.; Caers, J.
2015-12-01
The lack of understanding in the Earth's geological and physical processes governing sediment deposition render subsurface modeling subject to large uncertainty. Geostatistics is often used to model uncertainty because of its capability to stochastically generate spatially varying realizations of the subsurface. These methods can generate a range of realizations of a given pattern - but how representative are these of the full natural variability? And how can we identify the minimum set of images that represent this natural variability? Here we use this minimum set to define the geostatistical prior model: a set of training images that represent the range of patterns generated by autogenic variability in the sedimentary environment under study. The proper definition of the prior model is essential in capturing the variability of the depositional patterns. This work starts with a set of overhead images from an experimental basin that showed ongoing autogenic variability. We use the images to analyze the essential characteristics of this suite of patterns. In particular, our goal is to define a prior model (a minimal set of selected training images) such that geostatistical algorithms, when applied to this set, can reproduce the full measured variability. A necessary prerequisite is to define a measure of variability. In this study, we measure variability using a dissimilarity distance between the images. The distance indicates whether two snapshots contain similar depositional patterns. To reproduce the variability in the images, we apply an MPS algorithm to the set of selected snapshots of the sedimentary basin that serve as training images. The training images are chosen from among the initial set by using the distance measure to ensure that only dissimilar images are chosen. Preliminary investigations show that MPS can reproduce fairly accurately the natural variability of the experimental depositional system. Furthermore, the selected training images provide
NASA Astrophysics Data System (ADS)
Golay, Jean; Kanevski, Mikhaïl
2013-04-01
The present research deals with the exploration and modeling of a complex dataset of 200 measurement points of sediment pollution by heavy metals in Lake Geneva. The fundamental idea was to use multivariate Artificial Neural Networks (ANN) along with geostatistical models and tools in order to improve the accuracy and the interpretability of data modeling. The results obtained with ANN were compared to those of traditional geostatistical algorithms like ordinary (co)kriging and (co)kriging with an external drift. Exploratory data analysis highlighted a great variety of relationships (i.e. linear, non-linear, independence) between the 11 variables of the dataset (i.e. Cadmium, Mercury, Zinc, Copper, Titanium, Chromium, Vanadium and Nickel as well as the spatial coordinates of the measurement points and their depth). Then, exploratory spatial data analysis (i.e. anisotropic variography, local spatial correlations and moving window statistics) was carried out. It was shown that the different phenomena to be modeled were characterized by high spatial anisotropies, complex spatial correlation structures and heteroscedasticity. A feature selection procedure based on General Regression Neural Networks (GRNN) was also applied to create subsets of variables enabling to improve the predictions during the modeling phase. The basic modeling was conducted using a Multilayer Perceptron (MLP) which is a workhorse of ANN. MLP models are robust and highly flexible tools which can incorporate in a nonlinear manner different kind of high-dimensional information. In the present research, the input layer was made of either two (spatial coordinates) or three neurons (when depth as auxiliary information could possibly capture an underlying trend) and the output layer was composed of one (univariate MLP) to eight neurons corresponding to the heavy metals of the dataset (multivariate MLP). MLP models with three input neurons can be referred to as Artificial Neural Networks with EXternal
A Gibbs sampler for inequality-constrained geostatistical interpolation and inverse modeling
NASA Astrophysics Data System (ADS)
Michalak, Anna M.
2008-09-01
Interpolation and inverse modeling problems are ubiquitous in environmental sciences. In many applications, the parameters being estimated or mapped have physical constraints, such as nonnegativity (e.g. concentration, hydraulic conductivity), solubility limits, censored data (e.g. due to dry wells or detection limits), and other physical boundaries or missing data. Geostatistical interpolation and inverse modeling techniques have often been applied for estimating such parameters, but these methods typically cannot enforce physical constraints. This paper describes a statistically rigorous and computationally efficient Gibbs sampler, a Markov chain Monte Carlo technique, based on an a priori truncated Gaussian distribution model, which allows for multiple and variable physical constraints to be enforced within a geostatistical framework. Sample interpolation and inverse modeling applications confirm that estimates, uncertainty bounds and conditional simulations reflect the specified constraints, leading to conclusions that are more consistent with the underlying conceptual model, and provide a more accurate measure of the posterior uncertainty of the parameters being estimated. In addition, especially in inverse modeling applications, a posteriori confidence bounds are narrower even in areas where constraints are not imposed. The method is applicable in multiple dimensions, for data with or without measurement error, and with any variogram model.
Bayesian Hierarchical Modeling for Big Data Fusion in Soil Hydrology
NASA Astrophysics Data System (ADS)
Mohanty, B.; Kathuria, D.; Katzfuss, M.
2016-12-01
Soil moisture datasets from remote sensing (RS) platforms (such as SMOS and SMAP) and reanalysis products from land surface models are typically available on a coarse spatial granularity of several square km. Ground based sensors on the other hand provide observations on a finer spatial scale (meter scale or less) but are sparsely available. Soil moisture is affected by high variability due to complex interactions between geologic, topographic, vegetation and atmospheric variables. Hydrologic processes usually occur at a scale of 1 km or less and therefore spatially ubiquitous and temporally periodic soil moisture products at this scale are required to aid local decision makers in agriculture, weather prediction and reservoir operations. Past literature has largely focused on downscaling RS soil moisture for a small extent of a field or a watershed and hence the applicability of such products has been limited. The present study employs a spatial Bayesian Hierarchical Model (BHM) to derive soil moisture products at a spatial scale of 1 km for the state of Oklahoma by fusing point scale Mesonet data and coarse scale RS data for soil moisture and its auxiliary covariates such as precipitation, topography, soil texture and vegetation. It is seen that the BHM model handles change of support problems easily while performing accurate uncertainty quantification arising from measurement errors and imperfect retrieval algorithms. The computational challenge arising due to the large number of measurements is tackled by utilizing basis function approaches and likelihood approximations. The BHM model can be considered as a complex Bayesian extension of traditional geostatistical prediction methods (such as Kriging) for large datasets in the presence of uncertainties.
Building on crossvalidation for increasing the quality of geostatistical modeling
Olea, R.A.
2012-01-01
The random function is a mathematical model commonly used in the assessment of uncertainty associated with a spatially correlated attribute that has been partially sampled. There are multiple algorithms for modeling such random functions, all sharing the requirement of specifying various parameters that have critical influence on the results. The importance of finding ways to compare the methods and setting parameters to obtain results that better model uncertainty has increased as these algorithms have grown in number and complexity. Crossvalidation has been used in spatial statistics, mostly in kriging, for the analysis of mean square errors. An appeal of this approach is its ability to work with the same empirical sample available for running the algorithms. This paper goes beyond checking estimates by formulating a function sensitive to conditional bias. Under ideal conditions, such function turns into a straight line, which can be used as a reference for preparing measures of performance. Applied to kriging, deviations from the ideal line provide sensitivity to the semivariogram lacking in crossvalidation of kriging errors and are more sensitive to conditional bias than analyses of errors. In terms of stochastic simulation, in addition to finding better parameters, the deviations allow comparison of the realizations resulting from the applications of different methods. Examples show improvements of about 30% in the deviations and approximately 10% in the square root of mean square errors between reasonable starting modelling and the solutions according to the new criteria. ?? 2011 US Government.
Bayesian Data-Model Fit Assessment for Structural Equation Modeling
ERIC Educational Resources Information Center
Levy, Roy
2011-01-01
Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…
Bayesian Data-Model Fit Assessment for Structural Equation Modeling
ERIC Educational Resources Information Center
Levy, Roy
2011-01-01
Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…
Joint space-time geostatistical model for air quality surveillance
NASA Astrophysics Data System (ADS)
Russo, A.; Soares, A.; Pereira, M. J.
2009-04-01
Air pollution and peoples' generalized concern about air quality are, nowadays, considered to be a global problem. Although the introduction of rigid air pollution regulations has reduced pollution from industry and power stations, the growing number of cars on the road poses a new pollution problem. Considering the characteristics of the atmospheric circulation and also the residence times of certain pollutants in the atmosphere, a generalized and growing interest on air quality issues led to research intensification and publication of several articles with quite different levels of scientific depth. As most natural phenomena, air quality can be seen as a space-time process, where space-time relationships have usually quite different characteristics and levels of uncertainty. As a result, the simultaneous integration of space and time is not an easy task to perform. This problem is overcome by a variety of methodologies. The use of stochastic models and neural networks to characterize space-time dispersion of air quality is becoming a common practice. The main objective of this work is to produce an air quality model which allows forecasting critical concentration episodes of a certain pollutant by means of a hybrid approach, based on the combined use of neural network models and stochastic simulations. A stochastic simulation of the spatial component with a space-time trend model is proposed to characterize critical situations, taking into account data from the past and a space-time trend from the recent past. To identify near future critical episodes, predicted values from neural networks are used at each monitoring station. In this paper, we describe the design of a hybrid forecasting tool for ambient NO2 concentrations in Lisbon, Portugal.
PCTO-SIM: Multiple-point geostatistical modeling using parallel conditional texture optimization
NASA Astrophysics Data System (ADS)
Pourfard, Mohammadreza; Abdollahifard, Mohammad J.; Faez, Karim; Motamedi, Sayed Ahmad; Hosseinian, Tahmineh
2017-05-01
Multiple-point Geostatistics is a well-known general statistical framework by which complex geological phenomena have been modeled efficiently. Pixel-based and patch-based are two major categories of these methods. In this paper, the optimization-based category is used which has a dual concept in texture synthesis as texture optimization. Our extended version of texture optimization uses the energy concept to model geological phenomena. While honoring the hard point, the minimization of our proposed cost function forces simulation grid pixels to be as similar as possible to training images. Our algorithm has a self-enrichment capability and creates a richer training database from a sparser one through mixing the information of all surrounding patches of the simulation nodes. Therefore, it preserves pattern continuity in both continuous and categorical variables very well. It also shows a fuzzy result in its every realization similar to the expected result of multi realizations of other statistical models. While the main core of most previous Multiple-point Geostatistics methods is sequential, the parallel main core of our algorithm enabled it to use GPU efficiently to reduce the CPU time. One new validation method for MPS has also been proposed in this paper.
Del Monego, Maurici; Ribeiro, Paulo Justiniano; Ramos, Patrícia
2015-04-01
In this work, kriging with covariates is used to model and map the spatial distribution of salinity measurements gathered by an autonomous underwater vehicle in a sea outfall monitoring campaign aiming to distinguish the effluent plume from the receiving waters and characterize its spatial variability in the vicinity of the discharge. Four different geostatistical linear models for salinity were assumed, where the distance to diffuser, the west-east positioning, and the south-north positioning were used as covariates. Sample variograms were fitted by the Matèrn models using weighted least squares and maximum likelihood estimation methods as a way to detect eventual discrepancies. Typically, the maximum likelihood method estimated very low ranges which have limited the kriging process. So, at least for these data sets, weighted least squares showed to be the most appropriate estimation method for variogram fitting. The kriged maps show clearly the spatial variation of salinity, and it is possible to identify the effluent plume in the area studied. The results obtained show some guidelines for sewage monitoring if a geostatistical analysis of the data is in mind. It is important to treat properly the existence of anomalous values and to adopt a sampling strategy that includes transects parallel and perpendicular to the effluent dispersion.
Bayesian modeling of unknown diseases for biosurveillance.
Shen, Yanna; Cooper, Gregory F
2009-11-14
This paper investigates Bayesian modeling of unknown causes of events in the context of disease-outbreak detection. We introduce a Bayesian approach that models and detects both (1) known diseases (e.g., influenza and anthrax) by using informative prior probabilities and (2) unknown diseases (e.g., a new, highly contagious respiratory virus that has never been seen before) by using relatively non-informative prior probabilities. We report the results of simulation experiments which support that this modeling method can improve the detection of new disease outbreaks in a population. A key contribution of this paper is that it introduces a Bayesian approach for jointly modeling both known and unknown causes of events. Such modeling has broad applicability in medical informatics, where the space of known causes of outcomes of interest is seldom complete.
Current Challenges in Bayesian Model Choice
NASA Astrophysics Data System (ADS)
Clyde, M. A.; Berger, J. O.; Bullard, F.; Ford, E. B.; Jefferys, W. H.; Luo, R.; Paulo, R.; Loredo, T.
2007-11-01
Model selection (and the related issue of model uncertainty) arises in many astronomical problems, and, in particular, has been one of the focal areas of the Exoplanet working group under the SAMSI (Statistics and Applied Mathematical Sciences Institute) Astrostatistcs Exoplanet program. We provide an overview of the Bayesian approach to model selection and highlight the challenges involved in implementing Bayesian model choice in four stylized problems. We review some of the current methods used by statisticians and astronomers and present recent developments in the area. We discuss the applicability, computational challenges, and performance of suggested methods and conclude with recommendations and open questions.
NASA Astrophysics Data System (ADS)
Atzberger, C.; Richter, K.
2009-09-01
The robust and accurate retrieval of vegetation biophysical variables using radiative transfer models (RTM) is seriously hampered by the ill-posedness of the inverse problem. With this research we further develop our previously published (object-based) inversion approach [Atzberger (2004)]. The object-based RTM inversion takes advantage of the geostatistical fact that the biophysical characteristics of nearby pixel are generally more similar than those at a larger distance. A two-step inversion based on PROSPECT+SAIL generated look-up-tables is presented that can be easily implemented and adapted to other radiative transfer models. The approach takes into account the spectral signatures of neighboring pixel and optimizes a common value of the average leaf angle (ALA) for all pixel of a given image object, such as an agricultural field. Using a large set of leaf area index (LAI) measurements (n = 58) acquired over six different crops of the Barrax test site, Spain), we demonstrate that the proposed geostatistical regularization yields in most cases more accurate and spatially consistent results compared to the traditional (pixel-based) inversion. Pros and cons of the approach are discussed and possible future extensions presented.
An Integrated Bayesian Model for DIF Analysis
ERIC Educational Resources Information Center
Soares, Tufi M.; Goncalves, Flavio B.; Gamerman, Dani
2009-01-01
In this article, an integrated Bayesian model for differential item functioning (DIF) analysis is proposed. The model is integrated in the sense of modeling the responses along with the DIF analysis. This approach allows DIF detection and explanation in a simultaneous setup. Previous empirical studies and/or subjective beliefs about the item…
Posterior Predictive Model Checking in Bayesian Networks
ERIC Educational Resources Information Center
Crawford, Aaron
2014-01-01
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…
Posterior Predictive Model Checking in Bayesian Networks
ERIC Educational Resources Information Center
Crawford, Aaron
2014-01-01
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…
Bayesian modeling of flexible cognitive control
Jiang, Jiefeng; Heller, Katherine; Egner, Tobias
2014-01-01
“Cognitive control” describes endogenous guidance of behavior in situations where routine stimulus-response associations are suboptimal for achieving a desired goal. The computational and neural mechanisms underlying this capacity remain poorly understood. We examine recent advances stemming from the application of a Bayesian learner perspective that provides optimal prediction for control processes. In reviewing the application of Bayesian models to cognitive control, we note that an important limitation in current models is a lack of a plausible mechanism for the flexible adjustment of control over conflict levels changing at varying temporal scales. We then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-driven learning mechanism that modulates dynamically the relative dependence on recent and remote experiences in its prediction of future control demand. We conclude that the emergent Bayesian perspective on computational mechanisms of cognitive control holds considerable promise, especially if future studies can identify neural substrates of the variables encoded by these models, and determine the nature (Bayesian or otherwise) of their neural implementation. PMID:24929218
Bayesian modeling of flexible cognitive control.
Jiang, Jiefeng; Heller, Katherine; Egner, Tobias
2014-10-01
"Cognitive control" describes endogenous guidance of behavior in situations where routine stimulus-response associations are suboptimal for achieving a desired goal. The computational and neural mechanisms underlying this capacity remain poorly understood. We examine recent advances stemming from the application of a Bayesian learner perspective that provides optimal prediction for control processes. In reviewing the application of Bayesian models to cognitive control, we note that an important limitation in current models is a lack of a plausible mechanism for the flexible adjustment of control over conflict levels changing at varying temporal scales. We then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-driven learning mechanism that modulates dynamically the relative dependence on recent and remote experiences in its prediction of future control demand. We conclude that the emergent Bayesian perspective on computational mechanisms of cognitive control holds considerable promise, especially if future studies can identify neural substrates of the variables encoded by these models, and determine the nature (Bayesian or otherwise) of their neural implementation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Local Geostatistical Models and Big Data in Hydrological and Ecological Applications
NASA Astrophysics Data System (ADS)
Hristopulos, Dionissios
2015-04-01
The advent of the big data era creates new opportunities for environmental and ecological modelling but also presents significant challenges. The availability of remote sensing images and low-cost wireless sensor networks implies that spatiotemporal environmental data to cover larger spatial domains at higher spatial and temporal resolution for longer time windows. Handling such voluminous data presents several technical and scientific challenges. In particular, the geostatistical methods used to process spatiotemporal data need to overcome the dimensionality curse associated with the need to store and invert large covariance matrices. There are various mathematical approaches for addressing the dimensionality problem, including change of basis, dimensionality reduction, hierarchical schemes, and local approximations. We present a Stochastic Local Interaction (SLI) model that can be used to model local correlations in spatial data. SLI is a random field model suitable for data on discrete supports (i.e., regular lattices or irregular sampling grids). The degree of localization is determined by means of kernel functions and appropriate bandwidths. The strength of the correlations is determined by means of coefficients. In the "plain vanilla" version the parameter set involves scale and rigidity coefficients as well as a characteristic length. The latter determines in connection with the rigidity coefficient the correlation length of the random field. The SLI model is based on statistical field theory and extends previous research on Spartan spatial random fields [2,3] from continuum spaces to explicitly discrete supports. The SLI kernel functions employ adaptive bandwidths learned from the sampling spatial distribution [1]. The SLI precision matrix is expressed explicitly in terms of the model parameter and the kernel function. Hence, covariance matrix inversion is not necessary for parameter inference that is based on leave-one-out cross validation. This property
NASA Astrophysics Data System (ADS)
Huysmans, Marijke; Dassargues, Alain
2014-05-01
In heterogeneous environments with complex geological structures, analysis of pumping and tracer tests is often problematic. Standard interpretation methods do not account for heterogeneity or simulate this heterogeneity introducing empirical zonation of the calibrated parameters or using variogram-based geostatistical techniques that are often not able to describe realistic heterogeneity in complex geological environments where e.g. sedimentary structures, multi-facies deposits, structures with large connectivity or curvi-linear structures can be present. Multiple-point geostatistics aims to overcome the limitations of the variogram and can be applied in different research domains to simulate heterogeneity in complex environments. In this project, multiple-point geostatistics is applied to the interpretation of pumping tests and a tracer test in an actual case of a sandy heterogeneous aquifer. This study allows to deduce the main advantages and disadvantages of this technique compared to variogram-based techniques for interpretation of pumping tests and tracer tests. A pumping test and a tracer test were performed in the same sandbar deposit consisting of cross-bedded units composed of materials with different grain sizes and hydraulic conductivities. The pumping test and the tracer test are analyzed with a local 3D groundwater model in which fine-scale sedimentary heterogeneity is modelled using multiple-point geostatistics. To reduce CPU and RAM requirements of the multiple-point geostatistical simulation steps, edge properties indicating the presence of irregularly-shaped surfaces are directly simulated. Results show that for the pumping test as well as for the tracer test, incorporating heterogeneity results in a better fit between observed and calculated drawdowns/concentrations. The improvement of the fit is however not as large as expected. In this paper, the reasons for these somewhat unsatisfactory results are explored and recommendations for future
Piel, Frédéric B; Patil, Anand P; Howes, Rosalind E; Nyangiri, Oscar A; Gething, Peter W; Dewi, Mewahyu; Temperley, William H; Williams, Thomas N; Weatherall, David J; Hay, Simon I
2013-01-01
Summary Background Reliable estimates of populations affected by diseases are necessary to guide efficient allocation of public health resources. Sickle haemoglobin (HbS) is the most common and clinically significant haemoglobin structural variant, but no contemporary estimates exist of the global populations affected. Moreover, the precision of available national estimates of heterozygous (AS) and homozygous (SS) neonates is unknown. We aimed to provide evidence-based estimates at various scales, with uncertainty measures. Methods Using a database of sickle haemoglobin surveys, we created a contemporary global map of HbS allele frequency distribution within a Bayesian geostatistical model. The pairing of this map with demographic data enabled calculation of global, regional, and national estimates of the annual number of AS and SS neonates. Subnational estimates were also calculated in data-rich areas. Findings Our map shows subnational spatial heterogeneities and high allele frequencies across most of sub-Saharan Africa, the Middle East, and India, as well as gene flow following migrations to western Europe and the eastern coast of the Americas. Accounting for local heterogeneities and demographic factors, we estimated that the global number of neonates affected by HbS in 2010 included 5 476 000 (IQR 5 291 000–5 679 000) AS neonates and 312 000 (294 000–330 000) SS neonates. These global estimates are higher than previous conservative estimates. Important differences predicted at the national level are discussed. Interpretation HbS will have an increasing effect on public health systems. Our estimates can help countries and the international community gauge the need for appropriate diagnoses and genetic counselling to reduce the number of neonates affected. Similar mapping and modelling methods could be used for other inherited disorders. Funding The Wellcome Trust. PMID:23103089
Piel, Frédéric B; Patil, Anand P; Howes, Rosalind E; Nyangiri, Oscar A; Gething, Peter W; Dewi, Mewahyu; Temperley, William H; Williams, Thomas N; Weatherall, David J; Hay, Simon I
2013-01-12
Reliable estimates of populations affected by diseases are necessary to guide efficient allocation of public health resources. Sickle haemoglobin (HbS) is the most common and clinically significant haemoglobin structural variant, but no contemporary estimates exist of the global populations affected. Moreover, the precision of available national estimates of heterozygous (AS) and homozygous (SS) neonates is unknown. We aimed to provide evidence-based estimates at various scales, with uncertainty measures. Using a database of sickle haemoglobin surveys, we created a contemporary global map of HbS allele frequency distribution within a Bayesian geostatistical model. The pairing of this map with demographic data enabled calculation of global, regional, and national estimates of the annual number of AS and SS neonates. Subnational estimates were also calculated in data-rich areas. Our map shows subnational spatial heterogeneities and high allele frequencies across most of sub-Saharan Africa, the Middle East, and India, as well as gene flow following migrations to western Europe and the eastern coast of the Americas. Accounting for local heterogeneities and demographic factors, we estimated that the global number of neonates affected by HbS in 2010 included 5,476,000 (IQR 5,291,000-5,679,000) AS neonates and 312,000 (294,000-330,000) SS neonates. These global estimates are higher than previous conservative estimates. Important differences predicted at the national level are discussed. HbS will have an increasing effect on public health systems. Our estimates can help countries and the international community gauge the need for appropriate diagnoses and genetic counselling to reduce the number of neonates affected. Similar mapping and modelling methods could be used for other inherited disorders. The Wellcome Trust. Copyright © 2013 Elsevier Ltd. All rights reserved.
Modelling the presence of disease under spatial misalignment using Bayesian latent Gaussian models.
Barber, Xavier; Conesa, David; Lladosa, Silvia; López-Quílez, Antonio
2016-04-18
Modelling patterns of the spatial incidence of diseases using local environmental factors has been a growing problem in the last few years. Geostatistical models have become popular lately because they allow estimating and predicting the underlying disease risk and relating it with possible risk factors. Our approach to these models is based on the fact that the presence/absence of a disease can be expressed with a hierarchical Bayesian spatial model that incorporates the information provided by the geographical and environmental characteristics of the region of interest. Nevertheless, our main interest here is to tackle the misalignment problem arising when information about possible covariates are partially (or totally) different than those of the observed locations and those in which we want to predict. As a result, we present two different models depending on the fact that there is uncertainty on the covariates or not. In both cases, Bayesian inference on the parameters and prediction of presence/absence in new locations are made by considering the model as a latent Gaussian model, which allows the use of the integrated nested Laplace approximation. In particular, the spatial effect is implemented with the stochastic partial differential equation approach. The methodology is evaluated on the presence of the Fasciola hepatica in Galicia, a North-West region of Spain.
Heterogeneous Factor Analysis Models: A Bayesian Approach.
ERIC Educational Resources Information Center
Ansari, Asim; Jedidi, Kamel; Dube, Laurette
2002-01-01
Developed Markov Chain Monte Carlo procedures to perform Bayesian inference, model checking, and model comparison in heterogeneous factor analysis. Tested the approach with synthetic data and data from a consumption emotion study involving 54 consumers. Results show that traditional psychometric methods cannot fully capture the heterogeneity in…
Survey of Bayesian Models for Modelling of Stochastic Temporal Processes
Ng, B
2006-10-12
This survey gives an overview of popular generative models used in the modeling of stochastic temporal systems. In particular, this survey is organized into two parts. The first part discusses the discrete-time representations of dynamic Bayesian networks and dynamic relational probabilistic models, while the second part discusses the continuous-time representation of continuous-time Bayesian networks.
Modelling ambient ozone in an urban area using an objective model and geostatistical algorithms
NASA Astrophysics Data System (ADS)
Moral, Francisco J.; Rebollo, Francisco J.; Valiente, Pablo; López, Fernando; Muñoz de la Peña, Arsenio
2012-12-01
Ground-level tropospheric ozone is one of the air pollutants of most concern. Ozone levels continue to exceed both target values and the long-term objectives established in EU legislation to protect human health and prevent damage to ecosystems, agricultural crops and materials. Researchers or decision-makers frequently need information about atmospheric pollution patterns in urbanized areas. The preparation of this type of information is a complex task, due to the influence of several factors and their variability over time. In this work, some results of urban ozone distribution patterns in the city of Badajoz, which is the largest (140,000 inhabitants) and most industrialized city in Extremadura region (southwest Spain) are shown. Twelve sampling campaigns, one per month, were carried out to measure ambient air ozone concentrations, during periods that were selected according to favourable conditions to ozone production, using an automatic portable analyzer. Later, to evaluate the overall ozone level at each sampling location during the time interval considered, the measured ozone data were analysed using a new methodology based on the formulation of the Rasch model. As a result, a measure of overall ozone level which consolidates the monthly ground-level ozone measurements was obtained, getting moreover information about the influence on the overall ozone level of each monthly ozone measure. Finally, overall ozone level at locations where no measurements were available was estimated with geostatistical techniques and hazard assessment maps based on the spatial distribution of ozone were also generated.
NASA Astrophysics Data System (ADS)
Muthusamy, Manoranjan; Schellart, Alma; Tait, Simon; Heuvelink, Gerard B. M.
2017-02-01
In this study we develop a method to estimate the spatially averaged rainfall intensity together with associated level of uncertainty using geostatistical upscaling. Rainfall data collected from a cluster of eight paired rain gauges in a 400 m × 200 m urban catchment are used in combination with spatial stochastic simulation to obtain optimal predictions of the spatially averaged rainfall intensity at any point in time within the urban catchment. The uncertainty in the prediction of catchment average rainfall intensity is obtained for multiple combinations of intensity ranges and temporal averaging intervals. The two main challenges addressed in this study are scarcity of rainfall measurement locations and non-normality of rainfall data, both of which need to be considered when adopting a geostatistical approach. Scarcity of measurement points is dealt with by pooling sample variograms of repeated rainfall measurements with similar characteristics. Normality of rainfall data is achieved through the use of normal score transformation. Geostatistical models in the form of variograms are derived for transformed rainfall intensity. Next spatial stochastic simulation which is robust to nonlinear data transformation is applied to produce realisations of rainfall fields. These realisations in transformed space are first back-transformed and next spatially aggregated to derive a random sample of the spatially averaged rainfall intensity. Results show that the prediction uncertainty comes mainly from two sources: spatial variability of rainfall and measurement error. At smaller temporal averaging intervals both these effects are high, resulting in a relatively high uncertainty in prediction. With longer temporal averaging intervals the uncertainty becomes lower due to stronger spatial correlation of rainfall data and relatively smaller measurement error. Results also show that the measurement error increases with decreasing rainfall intensity resulting in a higher
Geostatistical three-dimensional modeling of oolite shoals, St. Louis Limestone, southwest Kansas
Qi, L.; Carr, T.R.; Goldstein, R.H.
2007-01-01
In the Hugoton embayment of southwestern Kansas, reservoirs composed of relatively thin (<4 m; <13.1 ft) oolitic deposits within the St. Louis Limestone have produced more than 300 million bbl of oil. The geometry and distribution of oolitic deposits control the heterogeneity of the reservoirs, resulting in exploration challenges and relatively low recovery. Geostatistical three-dimensional (3-D) models were constructed to quantify the geometry and spatial distribution of oolitic reservoirs, and the continuity of flow units within Big Bow and Sand Arroyo Creek fields. Lithofacies in uncored wells were predicted from digital logs using a neural network. The tilting effect from the Laramide orogeny was removed to construct restored structural surfaces at the time of deposition. Well data and structural maps were integrated to build 3-D models of oolitic reservoirs using stochastic simulations with geometry data. Three-dimensional models provide insights into the distribution, the external and internal geometry of oolitic deposits, and the sedimentologic processes that generated reservoir intervals. The structural highs and general structural trend had a significant impact on the distribution and orientation of the oolitic complexes. The depositional pattern and connectivity analysis suggest an overall aggradation of shallow-marine deposits during pulses of relative sea level rise followed by deepening near the top of the St. Louis Limestone. Cemented oolitic deposits were modeled as barriers and baffles and tend to concentrate at the edge of oolitic complexes. Spatial distribution of porous oolitic deposits controls the internal geometry of rock properties. Integrated geostatistical modeling methods can be applicable to other complex carbonate or siliciclastic reservoirs in shallow-marine settings. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.
Bayesian modeling in virtual high throughput screening.
Klon, Anthony E
2009-06-01
Naïve Bayesian classifiers are a relatively recent addition to the arsenal of tools available to computational chemists. These classifiers fall into a class of algorithms referred to broadly as machine learning algorithms. Bayesian classifiers may be used in conjunction with classical modeling techniques to assist in the rapid virtual screening of large compound libraries in a systematic manner with a minimum of human intervention. This approach allows computational scientists to concentrate their efforts on their core strengths of model building. Bayesian classifiers have an added advantage of being able to handle a variety of numerical or binary data such as physicochemical properties or molecular fingerprints, making the addition of new parameters to existing models a relatively straightforward process. As a result, during a drug discovery project these classifiers can better evolve with the needs of the projects from general models in the lead finding stages to increasingly precise models in the lead optimization stages that are of particular interest to a specific medicinal chemistry team. Although other machine learning algorithms abound, Bayesian classifiers have been shown to compare favorably under most working conditions and have been shown to be tolerant of noisy experimental data.
Enhancing multiple-point geostatistical modeling: 1. Graph theory and pattern adjustment
NASA Astrophysics Data System (ADS)
Tahmasebi, Pejman; Sahimi, Muhammad
2016-03-01
In recent years, higher-order geostatistical methods have been used for modeling of a wide variety of large-scale porous media, such as groundwater aquifers and oil reservoirs. Their popularity stems from their ability to account for qualitative data and the great flexibility that they offer for conditioning the models to hard (quantitative) data, which endow them with the capability for generating realistic realizations of porous formations with very complex channels, as well as features that are mainly a barrier to fluid flow. One group of such models consists of pattern-based methods that use a set of data points for generating stochastic realizations by which the large-scale structure and highly-connected features are reproduced accurately. The cross correlation-based simulation (CCSIM) algorithm, proposed previously by the authors, is a member of this group that has been shown to be capable of simulating multimillion cell models in a matter of a few CPU seconds. The method is, however, sensitive to pattern's specifications, such as boundaries and the number of replicates. In this paper the original CCSIM algorithm is reconsidered and two significant improvements are proposed for accurately reproducing large-scale patterns of heterogeneities in porous media. First, an effective boundary-correction method based on the graph theory is presented by which one identifies the optimal cutting path/surface for removing the patchiness and discontinuities in the realization of a porous medium. Next, a new pattern adjustment method is proposed that automatically transfers the features in a pattern to one that seamlessly matches the surrounding patterns. The original CCSIM algorithm is then combined with the two methods and is tested using various complex two- and three-dimensional examples. It should, however, be emphasized that the methods that we propose in this paper are applicable to other pattern-based geostatistical simulation methods.
Hierarchical Bayesian Models of Subtask Learning
ERIC Educational Resources Information Center
Anglim, Jeromy; Wynton, Sarah K. A.
2015-01-01
The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…
Hierarchical Bayesian Models of Subtask Learning
ERIC Educational Resources Information Center
Anglim, Jeromy; Wynton, Sarah K. A.
2015-01-01
The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…
Geostatistical modeling of a portion of the alluvial aquifer of Mexico City
NASA Astrophysics Data System (ADS)
Morales-Casique, E.; Medina-Ortega, P.; Escolero-Fuentes, O.; Hernandez Espriu, A.
2012-12-01
Mexico City is one of the largest cities in the world and the pressure exerted on water resources generates problems such as intensive groundwater exploitation, subsidence and groundwater pollution. Most of the main aquifer under exploitation underlies lacustrine sediments and it is composed of a highly heterogeneous mixture of alluvial deposits and volcanic rocks. Lithological records from 113 production water wells are analyzed using indicator geostatistics. The different lithological categories are grouped into four hydrofacies, where a hydrofacies is a set of lithological categories which have similar hydraulic properties. An exponential variogram model was fitted to each hydrofacies by minimizing cross validation errors. The data is then kriged to obtain the three-dimensional distribution of each hydrofacies within the alluvial aquifer of Mexico City.
Objective Bayesian model selection for Cox regression.
Held, Leonhard; Gravestock, Isaac; Sabanés Bové, Daniel
2016-12-20
There is now a large literature on objective Bayesian model selection in the linear model based on the g-prior. The methodology has been recently extended to generalized linear models using test-based Bayes factors. In this paper, we show that test-based Bayes factors can also be applied to the Cox proportional hazards model. If the goal is to select a single model, then both the maximum a posteriori and the median probability model can be calculated. For clinical prediction of survival, we shrink the model-specific log hazard ratio estimates with subsequent calculation of the Breslow estimate of the cumulative baseline hazard function. A Bayesian model average can also be employed. We illustrate the proposed methodology with the analysis of survival data on primary biliary cirrhosis patients and the development of a clinical prediction model for future cardiovascular events based on data from the Second Manifestations of ARTerial disease (SMART) cohort study. Cross-validation is applied to compare the predictive performance with alternative model selection approaches based on Harrell's c-Index, the calibration slope and the integrated Brier score. Finally, a novel application of Bayesian variable selection to optimal conditional prediction via landmarking is described. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Goovaerts, P.; Avruskin, G.; Meliker, J.; Slotnick, M.; Jacquez, G.; Nriagu, J.
2003-12-01
Assessment of the health risks associated with exposure to elevated levels of arsenic in drinking water has become the subject of considerable interest and some controversy in both regulatory and public health communities. The objective of this research is to explore the factors that have contributed to the observed geographic co-clustering in bladder cancer mortality and arsenic concentrations in drinking water in Michigan. A corner stone is the building of a probabilistic space-time model of arsenic concentrations, accounting for information collected at private residential wells and the hydrogeochemistry of the area. Because of the small changes in concentration observed in time, the study has focused on the spatial variability of arsenic, which can be considerable over very short distances. Various geostatistical techniques, based either on lognormal or indicator transforms of the data to accommodate the highly skewed distribution, have been compared using a cross validation procedure. The most promising approach involves a soft indicator coding of arsenic measurements, which allows one to account for data below the detection limit and the magnitude of measurement errors. Prior probabilities of exceeding various arsenic thresholds are also derived from secondary information, such as type of bedrock and surficial material, well casing depth, using logistic regression. Both well and secondary data are combined using kriging, leading to a non-parametric assessment of the uncertainty attached to arsenic concentration at each node of a 500m grid. This geostatistical model can be used to map either the expected arsenic concentration, the probability that it exceeds any giventhreshold, or the variance of the prediction indicating where supplementary information should be collected. The accuracy and precision of these local probability distributions is assessed using cross validation.
Forward modeling of gravity data using geostatistically generated subsurface density variations
Phelps, Geoffrey
2016-01-01
Using geostatistical models of density variations in the subsurface, constrained by geologic data, forward models of gravity anomalies can be generated by discretizing the subsurface and calculating the cumulative effect of each cell (pixel). The results of such stochastically generated forward gravity anomalies can be compared with the observed gravity anomalies to find density models that match the observed data. These models have an advantage over forward gravity anomalies generated using polygonal bodies of homogeneous density because generating numerous realizations explores a larger region of the solution space. The stochastic modeling can be thought of as dividing the forward model into two components: that due to the shape of each geologic unit and that due to the heterogeneous distribution of density within each geologic unit. The modeling demonstrates that the internally heterogeneous distribution of density within each geologic unit can contribute significantly to the resulting calculated forward gravity anomaly. Furthermore, the stochastic models match observed statistical properties of geologic units, the solution space is more broadly explored by producing a suite of successful models, and the likelihood of a particular conceptual geologic model can be compared. The Vaca Fault near Travis Air Force Base, California, can be successfully modeled as a normal or strike-slip fault, with the normal fault model being slightly more probable. It can also be modeled as a reverse fault, although this structural geologic configuration is highly unlikely given the realizations we explored.
Normativity, interpretation, and Bayesian models
Oaksford, Mike
2014-01-01
It has been suggested that evaluative normativity should be expunged from the psychology of reasoning. A broadly Davidsonian response to these arguments is presented. It is suggested that two distinctions, between different types of rationality, are more permeable than this argument requires and that the fundamental objection is to selecting theories that make the most rational sense of the data. It is argued that this is inevitable consequence of radical interpretation where understanding others requires assuming they share our own norms of reasoning. This requires evaluative normativity and it is shown that when asked to evaluate others’ arguments participants conform to rational Bayesian norms. It is suggested that logic and probability are not in competition and that the variety of norms is more limited than the arguments against evaluative normativity suppose. Moreover, the universality of belief ascription suggests that many of our norms are universal and hence evaluative. It is concluded that the union of evaluative normativity and descriptive psychology implicit in Davidson and apparent in the psychology of reasoning is a good thing. PMID:24860519
Hierarchical Bayesian model updating for structural identification
NASA Astrophysics Data System (ADS)
Behmanesh, Iman; Moaveni, Babak; Lombaert, Geert; Papadimitriou, Costas
2015-12-01
A new probabilistic finite element (FE) model updating technique based on Hierarchical Bayesian modeling is proposed for identification of civil structural systems under changing ambient/environmental conditions. The performance of the proposed technique is investigated for (1) uncertainty quantification of model updating parameters, and (2) probabilistic damage identification of the structural systems. Accurate estimation of the uncertainty in modeling parameters such as mass or stiffness is a challenging task. Several Bayesian model updating frameworks have been proposed in the literature that can successfully provide the "parameter estimation uncertainty" of model parameters with the assumption that there is no underlying inherent variability in the updating parameters. However, this assumption may not be valid for civil structures where structural mass and stiffness have inherent variability due to different sources of uncertainty such as changing ambient temperature, temperature gradient, wind speed, and traffic loads. Hierarchical Bayesian model updating is capable of predicting the overall uncertainty/variability of updating parameters by assuming time-variability of the underlying linear system. A general solution based on Gibbs Sampler is proposed to estimate the joint probability distributions of the updating parameters. The performance of the proposed Hierarchical approach is evaluated numerically for uncertainty quantification and damage identification of a 3-story shear building model. Effects of modeling errors and incomplete modal data are considered in the numerical study.
Bayesian network modelling of upper gastrointestinal bleeding
NASA Astrophysics Data System (ADS)
Aisha, Nazziwa; Shohaimi, Shamarina; Adam, Mohd Bakri
2013-09-01
Bayesian networks are graphical probabilistic models that represent causal and other relationships between domain variables. In the context of medical decision making, these models have been explored to help in medical diagnosis and prognosis. In this paper, we discuss the Bayesian network formalism in building medical support systems and we learn a tree augmented naive Bayes Network (TAN) from gastrointestinal bleeding data. The accuracy of the TAN in classifying the source of gastrointestinal bleeding into upper or lower source is obtained. The TAN achieves a high classification accuracy of 86% and an area under curve of 92%. A sensitivity analysis of the model shows relatively high levels of entropy reduction for color of the stool, history of gastrointestinal bleeding, consistency and the ratio of blood urea nitrogen to creatinine. The TAN facilitates the identification of the source of GIB and requires further validation.
Bayesian Recurrent Neural Network for Language Modeling.
Chien, Jen-Tzung; Ku, Yuan-Chu
2016-02-01
A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.
Bayesian Model Selection for Group Studies
Stephan, Klaas Enno; Penny, Will D.; Daunizeau, Jean; Moran, Rosalyn J.; Friston, Karl J.
2009-01-01
Bayesian model selection (BMS) is a powerful method for determining the most likely among a set of competing hypotheses about the mechanisms that generated observed data. BMS has recently found widespread application in neuroimaging, particularly in the context of dynamic causal modelling (DCM). However, so far, combining BMS results from several subjects has relied on simple (fixed effects) metrics, e.g. the group Bayes factor (GBF), that do not account for group heterogeneity or outliers. In this paper, we compare the GBF with two random effects methods for BMS at the between-subject or group level. These methods provide inference on model-space using a classical and Bayesian perspective respectively. First, a classical (frequentist) approach uses the log model evidence as a subject-specific summary statistic. This enables one to use analysis of variance to test for differences in log-evidences over models, relative to inter-subject differences. We then consider the same problem in Bayesian terms and describe a novel hierarchical model, which is optimised to furnish a probability density on the models themselves. This new variational Bayes method rests on treating the model as a random variable and estimating the parameters of a Dirichlet distribution which describes the probabilities for all models considered. These probabilities then define a multinomial distribution over model space, allowing one to compute how likely it is that a specific model generated the data of a randomly chosen subject as well as the exceedance probability of one model being more likely than any other model. Using empirical and synthetic data, we show that optimising a conditional density of the model probabilities, given the log-evidences for each model over subjects, is more informative and appropriate than both the GBF and frequentist tests of the log-evidences. In particular, we found that the hierarchical Bayesian approach is considerably more robust than either of the other
Bayesian model selection analysis of WMAP3
Parkinson, David; Mukherjee, Pia; Liddle, Andrew R.
2006-06-15
We present a Bayesian model selection analysis of WMAP3 data using our code CosmoNest. We focus on the density perturbation spectral index n{sub S} and the tensor-to-scalar ratio r, which define the plane of slow-roll inflationary models. We find that while the Bayesian evidence supports the conclusion that n{sub S}{ne}1, the data are not yet powerful enough to do so at a strong or decisive level. If tensors are assumed absent, the current odds are approximately 8 to 1 in favor of n{sub S}{ne}1 under our assumptions, when WMAP3 data is used together with external data sets. WMAP3 data on its own is unable to distinguish between the two models. Further, inclusion of r as a parameter weakens the conclusion against the Harrison-Zel'dovich case (n{sub S}=1, r=0), albeit in a prior-dependent way. In appendices we describe the CosmoNest code in detail, noting its ability to supply posterior samples as well as to accurately compute the Bayesian evidence. We make a first public release of CosmoNest, now available at www.cosmonest.org.
NASA Astrophysics Data System (ADS)
Blessent, Daniela; Therrien, René; Lemieux, Jean-Michel
2011-12-01
This paper presents numerical simulations of a series of hydraulic interference tests conducted in crystalline bedrock at Olkiluoto (Finland), a potential site for the disposal of the Finnish high-level nuclear waste. The tests are in a block of crystalline bedrock of about 0.03 km3 that contains low-transmissivity fractures. Fracture density, orientation, and fracture transmissivity are estimated from Posiva Flow Log (PFL) measurements in boreholes drilled in the rock block. On the basis of those data, a geostatistical approach relying on a transitional probability and Markov chain models is used to define a conceptual model based on stochastic fractured rock facies. Four facies are defined, from sparsely fractured bedrock to highly fractured bedrock. Using this conceptual model, three-dimensional groundwater flow is then simulated to reproduce interference pumping tests in either open or packed-off boreholes. Hydraulic conductivities of the fracture facies are estimated through automatic calibration using either hydraulic heads or both hydraulic heads and PFL flow rates as targets for calibration. The latter option produces a narrower confidence interval for the calibrated hydraulic conductivities, therefore reducing the associated uncertainty and demonstrating the usefulness of the measured PFL flow rates. Furthermore, the stochastic facies conceptual model is a suitable alternative to discrete fracture network models to simulate fluid flow in fractured geological media.
Gething, Peter W.; Noor, Abdisalan M.; Gikandi, Priscilla W.; Hay, Simon I.; Nixon, Mark S.; Snow, Robert W.; Atkinson, Peter M.
2009-01-01
Basic health system data such as the number of patients utilising different health facilities and the types of illness for which they are being treated are critical for managing service provision. These data requirements are generally addressed with some form of national Health Management Information System (HMIS) which coordinates the routine collection and compilation of data from national health facilities. HMIS in most developing countries are characterised by widespread under-reporting. Here we present a method to adjust incomplete data to allow prediction of national outpatient treatment burdens. We demonstrate this method with the example of outpatient treatments for malaria within the Kenyan HMIS. Three alternative modelling frameworks were developed and tested in which space-time geostatistical prediction algorithms were used to predict the monthly tally of treatments for presumed malaria cases (MC) at facilities where such records were missing. Models were compared by a cross-validation exercise and the model found to most accurately predict MC incorporated available data on the total number of patients visiting each facility each month. A space-time stochastic simulation framework to accompany this model was developed and tested in order to provide estimates of both local and regional prediction uncertainty. The level of accuracy provided by the predictive model, and the accompanying estimates of uncertainty around the predictions, demonstrate how this tool can mitigate the uncertainties caused by missing data, substantially enhancing the utility of existing HMIS data to health-service decision-makers. PMID:19325928
Schur, Nadine; Hürlimann, Eveline; Garba, Amadou; Traoré, Mamadou S.; Ndir, Omar; Ratard, Raoult C.; Tchuem Tchuenté, Louis-Albert; Kristensen, Thomas K.; Utzinger, Jürg; Vounatsou, Penelope
2011-01-01
Background Schistosomiasis is a water-based disease that is believed to affect over 200 million people with an estimated 97% of the infections concentrated in Africa. However, these statistics are largely based on population re-adjusted data originally published by Utroska and colleagues more than 20 years ago. Hence, these estimates are outdated due to large-scale preventive chemotherapy programs, improved sanitation, water resources development and management, among other reasons. For planning, coordination, and evaluation of control activities, it is essential to possess reliable schistosomiasis prevalence maps. Methodology We analyzed survey data compiled on a newly established open-access global neglected tropical diseases database (i) to create smooth empirical prevalence maps for Schistosoma mansoni and S. haematobium for individuals aged ≤20 years in West Africa, including Cameroon, and (ii) to derive country-specific prevalence estimates. We used Bayesian geostatistical models based on environmental predictors to take into account potential clustering due to common spatially structured exposures. Prediction at unobserved locations was facilitated by joint kriging. Principal Findings Our models revealed that 50.8 million individuals aged ≤20 years in West Africa are infected with either S. mansoni, or S. haematobium, or both species concurrently. The country prevalence estimates ranged between 0.5% (The Gambia) and 37.1% (Liberia) for S. mansoni, and between 17.6% (The Gambia) and 51.6% (Sierra Leone) for S. haematobium. We observed that the combined prevalence for both schistosome species is two-fold lower in Gambia than previously reported, while we found an almost two-fold higher estimate for Liberia (58.3%) than reported before (30.0%). Our predictions are likely to overestimate overall country prevalence, since modeling was based on children and adolescents up to the age of 20 years who are at highest risk of infection. Conclusion/Significance We
NASA Astrophysics Data System (ADS)
Dai, Heng; Chen, Xingyuan; Ye, Ming; Song, Xuehang; Zachara, John M.
2017-05-01
Sensitivity analysis is an important tool for development and improvement of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study, we developed a new sensitivity analysis method that integrates the concept of variance-based method with a hierarchical uncertainty quantification framework. Different uncertain inputs are grouped and organized into a multilayer framework based on their characteristics and dependency relationships to reduce the dimensionality of the sensitivity analysis. A set of new sensitivity indices are defined for the grouped inputs using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially distributed input variables.
Bayesian structural equation modeling in sport and exercise psychology.
Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus
2015-08-01
Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.
Three case studies in the Bayesian analysis of cognitive models.
Lee, Michael D
2008-02-01
Bayesian statistical inference offers a principled and comprehensive approach for relating psychological models to data. This article presents Bayesian analyses of three influential psychological models: multidimensional scaling models of stimulus representation, the generalized context model of category learning, and a signal detection theory model of decision making. In each case, the model is recast as a probabilistic graphical model and is evaluated in relation to a previously considered data set. In each case, it is shown that Bayesian inference is able to provide answers to important theoretical and empirical questions easily and coherently. The generality of the Bayesian approach and its potential for the understanding of models and data in psychology are discussed.
Bayesian Nonparametric Models for Multiway Data Analysis.
Xu, Zenglin; Yan, Feng; Qi, Yuan
2015-02-01
Tensor decomposition is a powerful computational tool for multiway data analysis. Many popular tensor decomposition approaches-such as the Tucker decomposition and CANDECOMP/PARAFAC (CP)-amount to multi-linear factorization. They are insufficient to model (i) complex interactions between data entities, (ii) various data types (e.g., missing data and binary data), and (iii) noisy observations and outliers. To address these issues, we propose tensor-variate latent nonparametric Bayesian models for multiway data analysis. We name these models InfTucker. These new models essentially conduct Tucker decomposition in an infinite feature space. Unlike classical tensor decomposition models, our new approaches handle both continuous and binary data in a probabilistic framework. Unlike previous Bayesian models on matrices and tensors, our models are based on latent Gaussian or t processes with nonlinear covariance functions. Moreover, on network data, our models reduce to nonparametric stochastic blockmodels and can be used to discover latent groups and predict missing interactions. To learn the models efficiently from data, we develop a variational inference technique and explore properties of the Kronecker product for computational efficiency. Compared with a classical variational implementation, this technique reduces both time and space complexities by several orders of magnitude. On real multiway and network data, our new models achieved significantly higher prediction accuracy than state-of-art tensor decomposition methods and blockmodels.
Howes, Rosalind E.; Piel, Frédéric B.; Patil, Anand P.; Nyangiri, Oscar A.; Gething, Peter W.; Dewi, Mewahyu; Hogg, Mariana M.; Battle, Katherine E.; Padilla, Carmencita D.; Baird, J. Kevin; Hay, Simon I.
2012-01-01
Background Primaquine is a key drug for malaria elimination. In addition to being the only drug active against the dormant relapsing forms of Plasmodium vivax, primaquine is the sole effective treatment of infectious P. falciparum gametocytes, and may interrupt transmission and help contain the spread of artemisinin resistance. However, primaquine can trigger haemolysis in patients with a deficiency in glucose-6-phosphate dehydrogenase (G6PDd). Poor information is available about the distribution of individuals at risk of primaquine-induced haemolysis. We present a continuous evidence-based prevalence map of G6PDd and estimates of affected populations, together with a national index of relative haemolytic risk. Methods and Findings Representative community surveys of phenotypic G6PDd prevalence were identified for 1,734 spatially unique sites. These surveys formed the evidence-base for a Bayesian geostatistical model adapted to the gene's X-linked inheritance, which predicted a G6PDd allele frequency map across malaria endemic countries (MECs) and generated population-weighted estimates of affected populations. Highest median prevalence (peaking at 32.5%) was predicted across sub-Saharan Africa and the Arabian Peninsula. Although G6PDd prevalence was generally lower across central and southeast Asia, rarely exceeding 20%, the majority of G6PDd individuals (67.5% median estimate) were from Asian countries. We estimated a G6PDd allele frequency of 8.0% (interquartile range: 7.4–8.8) across MECs, and 5.3% (4.4–6.7) within malaria-eliminating countries. The reliability of the map is contingent on the underlying data informing the model; population heterogeneity can only be represented by the available surveys, and important weaknesses exist in the map across data-sparse regions. Uncertainty metrics are used to quantify some aspects of these limitations in the map. Finally, we assembled a database of G6PDd variant occurrences to inform a national-level index of
Geostatistical Procedures for Developing Three-Dimensional Aquifer Models from Drillers' Logs
NASA Astrophysics Data System (ADS)
Bohling, G.; Helm, C.
2013-12-01
The Hydrostratigraphic Drilling Record Assessment (HyDRA) project is developing procedures for employing the vast but highly qualitative hydrostratigraphic information contained in drillers' logs in the development of quantitative three-dimensional (3D) depictions of subsurface properties for use in flow and transport models to support groundwater management practices. One of the project's objectives is to develop protocols for 3D interpolation of lithological data from drillers' logs, properly accounting for the categorical nature of these data. This poster describes the geostatistical procedures developed to accomplish this objective. Using a translation table currently containing over 62,000 unique sediment descriptions encountered during the transcription of over 15,000 logs in the Kansas High Plains aquifer, the sediment descriptions are translated into 71 standardized terms, which are then mapped into a small number of categories associated with different representative property (e.g., hydraulic conductivity [K]) values. Each log is partitioned into regular intervals and the proportion of each K category within each interval is computed. To properly account for their compositional nature, a logratio transform is applied to the proportions. The transformed values are then kriged to the 3D model grid and backtransformed to determine the proportion of each category within each model cell. Various summary measures can then be computed from the proportions, including a proportion-weighted average K and an entropy measure representing the degree of mixing of categories within each cell. We also describe a related cross-validation procedure for assessing log quality.
BAYESIAN MODEL DETERMINATION FOR GEOSTATISTICAL REGRESSION MODELS. (R829095C001)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
BAYESIAN MODEL DETERMINATION FOR GEOSTATISTICAL REGRESSION MODELS. (R829095C001)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Warnery, E; Ielsch, G; Lajaunie, C; Cale, E; Wackernagel, H; Debayle, C; Guillevic, J
2015-01-01
information, which is exhaustive throughout France, could help in estimating the telluric gamma dose rates. Such an approach is possible using multivariate geostatistics and cokriging. Multi-collocated cokriging has been performed on 1*1 km(2) cells over the domain. This model used gamma dose rate measurement results and GUP classes. Our results provide useful information on the variability of the natural terrestrial gamma radiation in France ('natural background') and exposure data for epidemiological studies and risk assessment from low dose chronic exposures. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Bayesian nonparametric meta-analysis model.
Karabatsos, George; Talbott, Elizabeth; Walker, Stephen G
2015-03-01
In a meta-analysis, it is important to specify a model that adequately describes the effect-size distribution of the underlying population of studies. The conventional normal fixed-effect and normal random-effects models assume a normal effect-size population distribution, conditionally on parameters and covariates. For estimating the mean overall effect size, such models may be adequate, but for prediction, they surely are not if the effect-size distribution exhibits non-normal behavior. To address this issue, we propose a Bayesian nonparametric meta-analysis model, which can describe a wider range of effect-size distributions, including unimodal symmetric distributions, as well as skewed and more multimodal distributions. We demonstrate our model through the analysis of real meta-analytic data arising from behavioral-genetic research. We compare the predictive performance of the Bayesian nonparametric model against various conventional and more modern normal fixed-effects and random-effects models. Copyright © 2014 John Wiley & Sons, Ltd.
Bayesian variable selection for latent class models.
Ghosh, Joyee; Herring, Amy H; Siega-Riz, Anna Maria
2011-09-01
In this article, we develop a latent class model with class probabilities that depend on subject-specific covariates. One of our major goals is to identify important predictors of latent classes. We consider methodology that allows estimation of latent classes while allowing for variable selection uncertainty. We propose a Bayesian variable selection approach and implement a stochastic search Gibbs sampler for posterior computation to obtain model-averaged estimates of quantities of interest such as marginal inclusion probabilities of predictors. Our methods are illustrated through simulation studies and application to data on weight gain during pregnancy, where it is of interest to identify important predictors of latent weight gain classes.
NASA Astrophysics Data System (ADS)
Vasquez, D. A.; Swift, J. N.; Tan, S.; Darrah, T. H.
2013-12-01
The integration of precise geochemical analyses with quantitative engineering modeling into an interactive GIS system allows for a sophisticated and efficient method of reservoir engineering and characterization. Geographic Information Systems (GIS) is utilized as an advanced technique for oil field reservoir analysis by combining field engineering and geological/geochemical spatial datasets with the available systematic modeling and mapping methods to integrate the information into a spatially correlated first-hand approach in defining surface and subsurface characteristics. Three key methods of analysis include: 1) Geostatistical modeling to create a static and volumetric 3-dimensional representation of the geological body, 2) Numerical modeling to develop a dynamic and interactive 2-dimensional model of fluid flow across the reservoir and 3) Noble gas geochemistry to further define the physical conditions, components and history of the geologic system. Results thus far include using engineering algorithms for interpolating electrical well log properties across the field (spontaneous potential, resistivity) yielding a highly accurate and high-resolution 3D model of rock properties. Results so far also include using numerical finite difference methods (crank-nicholson) to solve for equations describing the distribution of pressure across field yielding a 2D simulation model of fluid flow across reservoir. Ongoing noble gas geochemistry results will also include determination of the source, thermal maturity and the extent/style of fluid migration (connectivity, continuity and directionality). Future work will include developing an inverse engineering algorithm to model for permeability, porosity and water saturation.This combination of new and efficient technological and analytical capabilities is geared to provide a better understanding of the field geology and hydrocarbon dynamics system with applications to determine the presence of hydrocarbon pay zones (or
Moving beyond qualitative evaluations of Bayesian models of cognition.
Hemmer, Pernille; Tauber, Sean; Steyvers, Mark
2015-06-01
Bayesian models of cognition provide a powerful way to understand the behavior and goals of individuals from a computational point of view. Much of the focus in the Bayesian cognitive modeling approach has been on qualitative model evaluations, where predictions from the models are compared to data that is often averaged over individuals. In many cognitive tasks, however, there are pervasive individual differences. We introduce an approach to directly infer individual differences related to subjective mental representations within the framework of Bayesian models of cognition. In this approach, Bayesian data analysis methods are used to estimate cognitive parameters and motivate the inference process within a Bayesian cognitive model. We illustrate this integrative Bayesian approach on a model of memory. We apply the model to behavioral data from a memory experiment involving the recall of heights of people. A cross-validation analysis shows that the Bayesian memory model with inferred subjective priors predicts withheld data better than a Bayesian model where the priors are based on environmental statistics. In addition, the model with inferred priors at the individual subject level led to the best overall generalization performance, suggesting that individual differences are important to consider in Bayesian models of cognition.
A Bayesian Shrinkage Approach for AMMI Models.
da Silva, Carlos Pereira; de Oliveira, Luciano Antonio; Nuvunga, Joel Jorge; Pamplona, Andrezza Kéllen Alves; Balestre, Marcio
2015-01-01
Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior
A Bayesian Shrinkage Approach for AMMI Models
de Oliveira, Luciano Antonio; Nuvunga, Joel Jorge; Pamplona, Andrezza Kéllen Alves
2015-01-01
Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior
Sampling design optimisation for rainfall prediction using a non-stationary geostatistical model
NASA Astrophysics Data System (ADS)
Wadoux, Alexandre M. J.-C.; Brus, Dick J.; Rico-Ramirez, Miguel A.; Heuvelink, Gerard B. M.
2017-09-01
The accuracy of spatial predictions of rainfall by merging rain-gauge and radar data is partly determined by the sampling design of the rain-gauge network. Optimising the locations of the rain-gauges may increase the accuracy of the predictions. Existing spatial sampling design optimisation methods are based on minimisation of the spatially averaged prediction error variance under the assumption of intrinsic stationarity. Over the past years, substantial progress has been made to deal with non-stationary spatial processes in kriging. Various well-documented geostatistical models relax the assumption of stationarity in the mean, while recent studies show the importance of considering non-stationarity in the variance for environmental processes occurring in complex landscapes. We optimised the sampling locations of rain-gauges using an extension of the Kriging with External Drift (KED) model for prediction of rainfall fields. The model incorporates both non-stationarity in the mean and in the variance, which are modelled as functions of external covariates such as radar imagery, distance to radar station and radar beam blockage. Spatial predictions are made repeatedly over time, each time recalibrating the model. The space-time averaged KED variance was minimised by Spatial Simulated Annealing (SSA). The methodology was tested using a case study predicting daily rainfall in the north of England for a one-year period. Results show that (i) the proposed non-stationary variance model outperforms the stationary variance model, and (ii) a small but significant decrease of the rainfall prediction error variance is obtained with the optimised rain-gauge network. In particular, it pays off to place rain-gauges at locations where the radar imagery is inaccurate, while keeping the distribution over the study area sufficiently uniform.
The applications of model-based geostatistics in helminth epidemiology and control.
Magalhães, Ricardo J Soares; Clements, Archie C A; Patil, Anand P; Gething, Peter W; Brooker, Simon
2011-01-01
Funding agencies are dedicating substantial resources to tackle helminth infections. Reliable maps of the distribution of helminth infection can assist these efforts by targeting control resources to areas of greatest need. The ability to define the distribution of infection at regional, national and subnational levels has been enhanced greatly by the increased availability of good quality survey data and the use of model-based geostatistics (MBG), enabling spatial prediction in unsampled locations. A major advantage of MBG risk mapping approaches is that they provide a flexible statistical platform for handling and representing different sources of uncertainty, providing plausible and robust information on the spatial distribution of infections to inform the design and implementation of control programmes. Focussing on schistosomiasis and soil-transmitted helminthiasis, with additional examples for lymphatic filariasis and onchocerciasis, we review the progress made to date with the application of MBG tools in large-scale, real-world control programmes and propose a general framework for their application to inform integrative spatial planning of helminth disease control programmes.
Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models
ERIC Educational Resources Information Center
Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum
2011-01-01
Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…
Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models
ERIC Educational Resources Information Center
Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum
2011-01-01
Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…
NASA Astrophysics Data System (ADS)
You, Jiong; Pei, Zhiyuan
2015-01-01
With the development of remote sensing technology, its applications in agriculture monitoring systems, crop mapping accuracy, and spatial distribution are more and more being explored by administrators and users. Uncertainty in crop mapping is profoundly affected by the spatial pattern of spectral reflectance values obtained from the applied remote sensing data. Errors in remotely sensed crop cover information and the propagation in derivative products need to be quantified and handled correctly. Therefore, this study discusses the methods of error modeling for uncertainty characterization in crop mapping using GF-1 multispectral imagery. An error modeling framework based on geostatistics is proposed, which introduced the sequential Gaussian simulation algorithm to explore the relationship between classification errors and the spectral signature from remote sensing data source. On this basis, a misclassification probability model to produce a spatially explicit classification error probability surface for the map of a crop is developed, which realizes the uncertainty characterization for crop mapping. In this process, trend surface analysis was carried out to generate a spatially varying mean response and the corresponding residual response with spatial variation for the spectral bands of GF-1 multispectral imagery. Variogram models were employed to measure the spatial dependence in the spectral bands and the derived misclassification probability surfaces. Simulated spectral data and classification results were quantitatively analyzed. Through experiments using data sets from a region in the low rolling country located at the Yangtze River valley, it was found that GF-1 multispectral imagery can be used for crop mapping with a good overall performance, the proposal error modeling framework can be used to quantify the uncertainty in crop mapping, and the misclassification probability model can summarize the spatial variation in map accuracy and is helpful for
NASA Astrophysics Data System (ADS)
Trainor, W. J.; Knight, R. J.; Caers, J. K.
2007-12-01
In order to effectively manage groundwater resources, water agencies have begun to incorporate precipitation, temperature, stream-gauge, land-cover and groundwater level data into their aquifer models. For Western States in particular, stored groundwater is an important provider for agriculture and human consumption. But the estimates of groundwater quantity are arguably the most uncertain in the water balance equation. Current practice in constructing subsurface models relies on substandard and incomplete data due due, in large part, to budgetary constraints. Once a final model has been developed, the possible inaccuracies in the geological scenarios are rarely examined or investigated. How wrong can the subsurface model be while still giving accurate prediction results? How sensitive is the model response to perturbations in the subsurface parameters and long-term irrigation, precipitation and recharge conditions? This study examines these questions through a sensitivity analysis. The "working" aquifers of California's agricultural central coast were used as analog systems for the construction of this sensitivity study. The fluvial geologic interpretations of these coastal aquifer systems were used in Boolean (object-oriented) and multiple-point geostatistical algorithms to create many alternative permeability fields, reflecting the uncertainty in the spatial distribution and geological scenario of the subsurface permeability field. Two sets of models were created using SNESIM, a multiple-point geostatistical algorithm. SNESIM is able to generate a stochastic facies realization using a training image (TI -- a conceptual idea of geologic system) with rotation and affinity maps. The first set of models are higher entropy, representing less continuous clay layers. These were created from a TI of clay ellipses (which was created using GSLIB Ellipsim program). The second set of models are more heterogeneous by using a fluvial TI within SNESIM. All the realizations
Model feedback in Bayesian propensity score estimation.
Zigler, Corwin M; Watts, Krista; Yeh, Robert W; Wang, Yun; Coull, Brent A; Dominici, Francesca
2013-03-01
Methods based on the propensity score comprise one set of valuable tools for comparative effectiveness research and for estimating causal effects more generally. These methods typically consist of two distinct stages: (1) a propensity score stage where a model is fit to predict the propensity to receive treatment (the propensity score), and (2) an outcome stage where responses are compared in treated and untreated units having similar values of the estimated propensity score. Traditional techniques conduct estimation in these two stages separately; estimates from the first stage are treated as fixed and known for use in the second stage. Bayesian methods have natural appeal in these settings because separate likelihoods for the two stages can be combined into a single joint likelihood, with estimation of the two stages carried out simultaneously. One key feature of joint estimation in this context is "feedback" between the outcome stage and the propensity score stage, meaning that quantities in a model for the outcome contribute information to posterior distributions of quantities in the model for the propensity score. We provide a rigorous assessment of Bayesian propensity score estimation to show that model feedback can produce poor estimates of causal effects absent strategies that augment propensity score adjustment with adjustment for individual covariates. We illustrate this phenomenon with a simulation study and with a comparative effectiveness investigation of carotid artery stenting versus carotid endarterectomy among 123,286 Medicare beneficiaries hospitlized for stroke in 2006 and 2007.
Experience With Bayesian Image Based Surface Modeling
NASA Technical Reports Server (NTRS)
Stutz, John C.
2005-01-01
Bayesian surface modeling from images requires modeling both the surface and the image generation process, in order to optimize the models by comparing actual and generated images. Thus it differs greatly, both conceptually and in computational difficulty, from conventional stereo surface recovery techniques. But it offers the possibility of using any number of images, taken under quite different conditions, and by different instruments that provide independent and often complementary information, to generate a single surface model that fuses all available information. I describe an implemented system, with a brief introduction to the underlying mathematical models and the compromises made for computational efficiency. I describe successes and failures achieved on actual imagery, where we went wrong and what we did right, and how our approach could be improved. Lastly I discuss how the same approach can be extended to distinct types of instruments, to achieve true sensor fusion.
A Hierarchical Bayesian Model for Crowd Emotions
Urizar, Oscar J.; Baig, Mirza S.; Barakova, Emilia I.; Regazzoni, Carlo S.; Marcenaro, Lucio; Rauterberg, Matthias
2016-01-01
Estimation of emotions is an essential aspect in developing intelligent systems intended for crowded environments. However, emotion estimation in crowds remains a challenging problem due to the complexity in which human emotions are manifested and the capability of a system to perceive them in such conditions. This paper proposes a hierarchical Bayesian model to learn in unsupervised manner the behavior of individuals and of the crowd as a single entity, and explore the relation between behavior and emotions to infer emotional states. Information about the motion patterns of individuals are described using a self-organizing map, and a hierarchical Bayesian network builds probabilistic models to identify behaviors and infer the emotional state of individuals and the crowd. This model is trained and tested using data produced from simulated scenarios that resemble real-life environments. The conducted experiments tested the efficiency of our method to learn, detect and associate behaviors with emotional states yielding accuracy levels of 74% for individuals and 81% for the crowd, similar in performance with existing methods for pedestrian behavior detection but with novel concepts regarding the analysis of crowds. PMID:27458366
NASA Astrophysics Data System (ADS)
Wingle, William L.; Poeter, Eileen P.; McKenna, Sean A.
1999-05-01
UNCERT is a 2D and 3D geostatistics, uncertainty analysis and visualization software package applied to ground water flow and contaminant transport modeling. It is a collection of modules that provides tools for linear regression, univariate statistics, semivariogram analysis, inverse-distance gridding, trend-surface analysis, simple and ordinary kriging and discrete conditional indicator simulation. Graphical user interfaces for MODFLOW and MT3D, ground water flow and contaminant transport models, are provided for streamlined data input and result analysis. Visualization tools are included for displaying data input and output. These include, but are not limited to, 2D and 3D scatter plots, histograms, box and whisker plots, 2D contour maps, surface renderings of 2D gridded data and 3D views of gridded data. By design, UNCERT's graphical user interface and visualization tools facilitate model design and analysis. There are few built in restrictions on data set sizes and each module (with two exceptions) can be run in either graphical or batch mode. UNCERT is in the public domain and is available from the World Wide Web with complete on-line and printable (PDF) documentation. UNCERT is written in ANSI-C with a small amount of FORTRAN77, for UNIX workstations running X-Windows and Motif (or Lesstif). This article discusses the features of each module and demonstrates how they can be used individually and in combination. The tools are applicable to a wide range of fields and are currently used by researchers in the ground water, mining, mathematics, chemistry and geophysics, to name a few disciplines.
NASA Astrophysics Data System (ADS)
Lei, Qinghua; Latham, John-Paul; Tsang, Chin-Fu; Xiang, Jiansheng; Lang, Philipp
2015-07-01
A new approach to upscaling two-dimensional fracture network models is proposed for preserving geostatistical and geomechanical characteristics of a smaller-scale "source" fracture pattern. First, the scaling properties of an outcrop system are examined in terms of spatial organization, lengths, connectivity, and normal/shear displacements using fractal geometry and power law relations. The fracture pattern is observed to be nonfractal with the fractal dimension D ≈ 2, while its length distribution tends to follow a power law with the exponent 2 < a < 3. To introduce a realistic distribution of fracture aperture and shear displacement, a geomechanical model using the combined finite-discrete element method captures the response of a fractured rock sample with a domain size L = 2 m under in situ stresses. Next, a novel scheme accommodating discrete-time random walks in recursive self-referencing lattices is developed to nucleate and propagate fractures together with their stress- and scale-dependent attributes into larger domains of up to 54 m × 54 m. The advantages of this approach include preserving the nonplanarity of natural cracks, capturing the existence of long fractures, retaining the realism of variable apertures, and respecting the stress dependency of displacement-length correlations. Hydraulic behavior of multiscale growth realizations is modeled by single-phase flow simulation, where distinct permeability scaling trends are observed for different geomechanical scenarios. A transition zone is identified where flow structure shifts from extremely channeled to distributed as the network scale increases. The results of this paper have implications for upscaling network characteristics for reservoir simulation.
Spatially-dependent Bayesian model selection for disease mapping.
Carroll, Rachel; Lawson, Andrew B; Faes, Christel; Kirby, Russell S; Aregay, Mehreteab; Watjou, Kevin
2016-01-01
In disease mapping where predictor effects are to be modeled, it is often the case that sets of predictors are fixed, and the aim is to choose between fixed model sets. Model selection methods, both Bayesian model selection and Bayesian model averaging, are approaches within the Bayesian paradigm for achieving this aim. In the spatial context, model selection could have a spatial component in the sense that some models may be more appropriate for certain areas of a study region than others. In this work, we examine the use of spatially referenced Bayesian model averaging and Bayesian model selection via a large-scale simulation study accompanied by a small-scale case study. Our results suggest that BMS performs well when a strong regression signature is found.
Bayesian hierarchical modeling of drug stability data.
Chen, Jie; Zhong, Jinglin; Nie, Lei
2008-06-15
Stability data are commonly analyzed using linear fixed or random effect model. The linear fixed effect model does not take into account the batch-to-batch variation, whereas the random effect model may suffer from the unreliable shelf-life estimates due to small sample size. Moreover, both methods do not utilize any prior information that might have been available. In this article, we propose a Bayesian hierarchical approach to modeling drug stability data. Under this hierarchical structure, we first use Bayes factor to test the poolability of batches. Given the decision on poolability of batches, we then estimate the shelf-life that applies to all batches. The approach is illustrated with two example data sets and its performance is compared in simulation studies with that of the commonly used frequentist methods. (c) 2008 John Wiley & Sons, Ltd.
Bayesian Hierarchical Models to Augment the Mediterranean Forecast System
2016-06-07
Bayesian Hierarchical Models to Augment the Mediterranean Forecast System Ralph F. Milliff Colorado Research Associates Division NorthWest...last year. Our goal is to develop an ensemble ocean forecast methodology, using Bayesian Hierarchical Modelling (BHM) tools. The ocean ensemble...geostrophy model introduced by Royle et al. (1998). The second objective involves the accurate representation of forecast error covariance evolution in
Hopes and Cautions in Implementing Bayesian Structural Equation Modeling
ERIC Educational Resources Information Center
MacCallum, Robert C.; Edwards, Michael C.; Cai, Li
2012-01-01
Muthen and Asparouhov (2012) have proposed and demonstrated an approach to model specification and estimation in structural equation modeling (SEM) using Bayesian methods. Their contribution builds on previous work in this area by (a) focusing on the translation of conventional SEM models into a Bayesian framework wherein parameters fixed at zero…
Jones, Matt; Love, Bradley C
2011-08-01
The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls
NASA Astrophysics Data System (ADS)
Matiatos, Ioannis; Varouhakis, Emmanouil A.; Papadopoulou, Maria P.
2015-04-01
level and nitrate concentrations were produced and compared with those obtained from groundwater and mass transport numerical models. Preliminary results showed similar efficiency of the spatiotemporal geostatistical method with the numerical models. However data requirements of the former model were significantly less. Advantages and disadvantages of the methods performance were analysed and discussed indicating the characteristics of the different approaches.
Improving randomness characterization through Bayesian model selection.
Díaz Hernández Rojas, Rafael; Solís, Aldo; Angulo Martínez, Alí M; U'Ren, Alfred B; Hirsch, Jorge G; Marsili, Matteo; Pérez Castillo, Isaac
2017-06-08
Random number generation plays an essential role in technology with important applications in areas ranging from cryptography to Monte Carlo methods, and other probabilistic algorithms. All such applications require high-quality sources of random numbers, yet effective methods for assessing whether a source produce truly random sequences are still missing. Current methods either do not rely on a formal description of randomness (NIST test suite) on the one hand, or are inapplicable in principle (the characterization derived from the Algorithmic Theory of Information), on the other, for they require testing all the possible computer programs that could produce the sequence to be analysed. Here we present a rigorous method that overcomes these problems based on Bayesian model selection. We derive analytic expressions for a model's likelihood which is then used to compute its posterior distribution. Our method proves to be more rigorous than NIST's suite and Borel-Normality criterion and its implementation is straightforward. We applied our method to an experimental device based on the process of spontaneous parametric downconversion to confirm it behaves as a genuine quantum random number generator. As our approach relies on Bayesian inference our scheme transcends individual sequence analysis, leading to a characterization of the source itself.
Bayesian Inference for Nonnegative Matrix Factorisation Models
Cemgil, Ali Taylan
2009-01-01
We describe nonnegative matrix factorisation (NMF) with a Kullback-Leibler (KL) error measure in a statistical framework, with a hierarchical generative model consisting of an observation and a prior component. Omitting the prior leads to the standard KL-NMF algorithms as special cases, where maximum likelihood parameter estimation is carried out via the Expectation-Maximisation (EM) algorithm. Starting from this view, we develop full Bayesian inference via variational Bayes or Monte Carlo. Our construction retains conjugacy and enables us to develop more powerful models while retaining attractive features of standard NMF such as monotonic convergence and easy implementation. We illustrate our approach on model order selection and image reconstruction. PMID:19536273
Bayesian model of human color constancy
Brainard, David H.; Longère, Philippe; Delahunt, Peter B.; Freeman, William T.; Kraft, James M.; Xiao, Bei
2008-01-01
Vision is difficult because images are ambiguous about the structure of the world. For object color, the ambiguity arises because the same object reflects a different spectrum to the eye under different illuminations. Human vision typically does a good job of resolving this ambiguity—an ability known as color constancy. The past 20 years have seen an explosion of work on color constancy, with advances in both experimental methods and computational algorithms. Here, we connect these two lines of research by developing a quantitative model of human color constancy. The model includes an explicit link between psychophysical data and illuminant estimates obtained via a Bayesian algorithm. The model is fit to the data through a parameterization of the prior distribution of illuminant spectral properties. The fit to the data is good, and the derived prior provides a succinct description of human performance. PMID:17209734
Effect on Prediction when Modeling Covariates in Bayesian Nonparametric Models.
Cruz-Marcelo, Alejandro; Rosner, Gary L; Müller, Peter; Stewart, Clinton F
2013-04-01
In biomedical research, it is often of interest to characterize biologic processes giving rise to observations and to make predictions of future observations. Bayesian nonparametric methods provide a means for carrying out Bayesian inference making as few assumptions about restrictive parametric models as possible. There are several proposals in the literature for extending Bayesian nonparametric models to include dependence on covariates. Limited attention, however, has been directed to the following two aspects. In this article, we examine the effect on fitting and predictive performance of incorporating covariates in a class of Bayesian nonparametric models by one of two primary ways: either in the weights or in the locations of a discrete random probability measure. We show that different strategies for incorporating continuous covariates in Bayesian nonparametric models can result in big differences when used for prediction, even though they lead to otherwise similar posterior inferences. When one needs the predictive density, as in optimal design, and this density is a mixture, it is better to make the weights depend on the covariates. We demonstrate these points via a simulated data example and in an application in which one wants to determine the optimal dose of an anticancer drug used in pediatric oncology.
Merging Digital Surface Models Implementing Bayesian Approaches
NASA Astrophysics Data System (ADS)
Sadeq, H.; Drummond, J.; Li, Z.
2016-06-01
In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades). It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.
Bayesian model of Snellen visual acuity.
Nestares, Oscar; Navarro, Rafael; Antona, Beatriz
2003-07-01
A Bayesian model of Snellen visual acuity (VA) has been developed that, as far as we know, is the first one that includes the three main stages of VA: (1) optical degradations, (2) neural image representation and contrast thresholding, and (3) character recognition. The retinal image of a Snellen test chart is obtained from experimental wave-aberration data. Then a subband image decomposition with a set of visual channels tuned to different spatial frequencies and orientations is applied to the retinal image, as in standard computational models of early cortical image representation. A neural threshold is applied to the contrast responses to include the effect of the neural contrast sensitivity. The resulting image representation is the base of a Bayesian pattern-recognition method robust to the presence of optical aberrations. The model is applied to images containing sets of letter optotypes at different scales, and the number of correct answers is obtained at each scale; the final output is the decimal Snellen VA. The model has no free parameters to adjust. The main input data are the eye's optical aberrations, and standard values are used for all other parameters, including the Stiles-Crawford effect, visual channels, and neural contrast threshold, when no subject specific values are available. When aberrations are large, Snellen VA involving pattern recognition differs from grating acuity, which is based on a simpler detection (or orientation-discrimination) task and hence is basically unaffected by phase distortions introduced by the optical transfer function. A preliminary test of the model in one subject produced close agreement between actual measurements and predicted VA values. Two examples are also included: (1) application of the method to the prediction of the VAin refractive-surgery patients and (2) simulation of the VA attainable by correcting ocular aberrations.
Bayesian model of Snellen visual acuity
NASA Astrophysics Data System (ADS)
Nestares, Oscar; Navarro, Rafael; Antona, Beatriz
2003-07-01
A Bayesian model of Snellen visual acuity (VA) has been developed that, as far as we know, is the first one that includes the three main stages of VA: (1) optical degradations, (2) neural image representation and contrast thresholding, and (3) character recognition. The retinal image of a Snellen test chart is obtained from experimental wave-aberration data. Then a subband image decomposition with a set of visual channels tuned to different spatial frequencies and orientations is applied to the retinal image, as in standard computational models of early cortical image representation. A neural threshold is applied to the contrast responses to include the effect of the neural contrast sensitivity. The resulting image representation is the base of a Bayesian pattern-recognition method robust to the presence of optical aberrations. The model is applied to images containing sets of letter optotypes at different scales, and the number of correct answers is obtained at each scale; the final output is the decimal Snellen VA. The model has no free parameters to adjust. The main input data are the eyes optical aberrations, and standard values are used for all other parameters, including the StilesCrawford effect, visual channels, and neural contrast threshold, when no subject specific values are available. When aberrations are large, Snellen VA involving pattern recognition differs from grating acuity, which is based on a simpler detection (or orientation-discrimination) task and hence is basically unaffected by phase distortions introduced by the optical transfer function. A preliminary test of the model in one subject produced close agreement between actual measurements and predicted VA values. Two examples are also included: (1) application of the method to the prediction of the VA in refractive-surgery patients and (2) simulation of the VA attainable by correcting ocular aberrations. 2003 Optical Society of America
Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
Orbanz, Peter; Roy, Daniel M
2015-02-01
The natural habitat of most Bayesian methods is data represented by exchangeable sequences of observations, for which de Finetti's theorem provides the theoretical foundation. Dirichlet process clustering, Gaussian process regression, and many other parametric and nonparametric Bayesian models fall within the remit of this framework; many problems arising in modern data analysis do not. This article provides an introduction to Bayesian models of graphs, matrices, and other data that can be modeled by random structures. We describe results in probability theory that generalize de Finetti's theorem to such data and discuss their relevance to nonparametric Bayesian modeling. With the basic ideas in place, we survey example models available in the literature; applications of such models include collaborative filtering, link prediction, and graph and network analysis. We also highlight connections to recent developments in graph theory and probability, and sketch the more general mathematical foundation of Bayesian methods for other types of data beyond sequences and arrays.
A Bayesian Analysis of Finite Mixtures in the LISREL Model.
ERIC Educational Resources Information Center
Zhu, Hong-Tu; Lee, Sik-Yum
2001-01-01
Proposes a Bayesian framework for estimating finite mixtures of the LISREL model. The model augments the observed data of the manifest variables with the latent variables and allocation variables and uses the Gibbs sampler to obtain the Bayesian solution. Discusses other associated statistical inferences. (SLD)
NASA Astrophysics Data System (ADS)
Cecinati, Francesca; Rico-Ramirez, Miguel Angel; Heuvelink, Gerard B. M.; Han, Dawei
2017-05-01
The application of radar quantitative precipitation estimation (QPE) to hydrology and water quality models can be preferred to interpolated rainfall point measurements because of the wide coverage that radars can provide, together with a good spatio-temporal resolutions. Nonetheless, it is often limited by the proneness of radar QPE to a multitude of errors. Although radar errors have been widely studied and techniques have been developed to correct most of them, residual errors are still intrinsic in radar QPE. An estimation of uncertainty of radar QPE and an assessment of uncertainty propagation in modelling applications is important to quantify the relative importance of the uncertainty associated to radar rainfall input in the overall modelling uncertainty. A suitable tool for this purpose is the generation of radar rainfall ensembles. An ensemble is the representation of the rainfall field and its uncertainty through a collection of possible alternative rainfall fields, produced according to the observed errors, their spatial characteristics, and their probability distribution. The errors are derived from a comparison between radar QPE and ground point measurements. The novelty of the proposed ensemble generator is that it is based on a geostatistical approach that assures a fast and robust generation of synthetic error fields, based on the time-variant characteristics of errors. The method is developed to meet the requirement of operational applications to large datasets. The method is applied to a case study in Northern England, using the UK Met Office NIMROD radar composites at 1 km resolution and at 1 h accumulation on an area of 180 km by 180 km. The errors are estimated using a network of 199 tipping bucket rain gauges from the Environment Agency. 183 of the rain gauges are used for the error modelling, while 16 are kept apart for validation. The validation is done by comparing the radar rainfall ensemble with the values recorded by the validation rain
Viswanathan, Hari S; Robinson, Bruce A; Gable, Carl W; Carey, James W
2003-01-01
Retardation of certain radionuclides due to sorption to zeolitic minerals is considered one of the major barriers to contaminant transport in the unsaturated zone of Yucca Mountain. However, zeolitically altered areas are lower in permeability than unaltered regions, which raises the possibility that contaminants might bypass the sorptive zeolites. The relationship between hydrologic and chemical properties must be understood to predict the transport of radionuclides through zeolitically altered areas. In this study, we incorporate mineralogical information into an unsaturated zone transport model using geostatistical techniques to correlate zeolitic abundance to hydrologic and chemical properties. Geostatistical methods are used to develop variograms, kriging maps, and conditional simulations of zeolitic abundance. We then investigate, using flow and transport modeling on a heterogeneous field, the relationship between percent zeolitic alteration, permeability changes due to alteration, sorption due to alteration, and their overall effect on radionuclide transport. We compare these geostatistical simulations to a simplified threshold method in which each spatial location in the model is assigned either zeolitic or vitric properties based on the zeolitic abundance at that location. A key conclusion is that retardation due to sorption predicted by using the continuous distribution is larger than the retardation predicted by the threshold method. The reason for larger retardation when using the continuous distribution is a small but significant sorption at locations with low zeolitic abundance. If, for practical reasons, models with homogeneous properties within each layer are used, we recommend setting nonzero K(d)s in the vitric tuffs to mimic the more rigorous continuous distribution simulations. Regions with high zeolitic abundance may not be as effective in retarding radionuclides such as Neptunium since these rocks are lower in permeability and contaminants can
Modeling Error Distributions of Growth Curve Models through Bayesian Methods
ERIC Educational Resources Information Center
Zhang, Zhiyong
2016-01-01
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is…
A multivariate Bayesian model for embryonic growth.
Willemsen, Sten P; Eilers, Paul H C; Steegers-Theunissen, Régine P M; Lesaffre, Emmanuel
2015-04-15
Most longitudinal growth curve models evaluate the evolution of each of the anthropometric measurements separately. When applied to a 'reference population', this exercise leads to univariate reference curves against which new individuals can be evaluated. However, growth should be evaluated in totality, that is, by evaluating all body characteristics jointly. Recently, Cole et al. suggested the Superimposition by Translation and Rotation (SITAR) model, which expresses individual growth curves by three subject-specific parameters indicating their deviation from a flexible overall growth curve. This model allows the characterization of normal growth in a flexible though compact manner. In this paper, we generalize the SITAR model in a Bayesian way to multiple dimensions. The multivariate SITAR model allows us to create multivariate reference regions, which is advantageous for prediction. The usefulness of the model is illustrated on longitudinal measurements of embryonic growth obtained in the first semester of pregnancy, collected in the ongoing Rotterdam Predict study. Further, we demonstrate how the model can be used to find determinants of embryonic growth.
Bayesian model selection for LISA pathfinder
NASA Astrophysics Data System (ADS)
Karnesis, Nikolaos; Nofrarias, Miquel; Sopuerta, Carlos F.; Gibert, Ferran; Armano, Michele; Audley, Heather; Congedo, Giuseppe; Diepholz, Ingo; Ferraioli, Luigi; Hewitson, Martin; Hueller, Mauro; Korsakova, Natalia; McNamara, Paul W.; Plagnol, Eric; Vitale, Stefano
2014-03-01
The main goal of the LISA Pathfinder (LPF) mission is to fully characterize the acceleration noise models and to test key technologies for future space-based gravitational-wave observatories similar to the eLISA concept. The data analysis team has developed complex three-dimensional models of the LISA Technology Package (LTP) experiment onboard the LPF. These models are used for simulations, but, more importantly, they will be used for parameter estimation purposes during flight operations. One of the tasks of the data analysis team is to identify the physical effects that contribute significantly to the properties of the instrument noise. A way of approaching this problem is to recover the essential parameters of a LTP model fitting the data. Thus, we want to define the simplest model that efficiently explains the observations. To do so, adopting a Bayesian framework, one has to estimate the so-called Bayes factor between two competing models. In our analysis, we use three main different methods to estimate it: the reversible jump Markov chain Monte Carlo method, the Schwarz criterion, and the Laplace approximation. They are applied to simulated LPF experiments in which the most probable LTP model that explains the observations is recovered. The same type of analysis presented in this paper is expected to be followed during flight operations. Moreover, the correlation of the output of the aforementioned methods with the design of the experiment is explored.
Lee, K.H.
1997-09-01
Numerical and geostatistical analyses show that the artificial smoothing effect of kriging removes high permeability flow paths from hydrogeologic data sets, reducing simulated contaminant transport rates in heterogeneous vadose zone systems. therefore, kriging alone is not recommended for estimating the spatial distribution of soil hydraulic properties for contaminant transport analysis at vadose zone sites. Vadose zone transport if modeled more effectively by combining kriging with stochastic simulation to better represent the high degree of spatial variability usually found in the hydraulic properties of field soils. However, kriging is a viable technique for estimating the initial mass distribution of contaminants in the subsurface.
Bayesian methods for spatial upscaling of process-based forest ecosystem models
NASA Astrophysics Data System (ADS)
van Oijen, M.; Cameron, D.; Reinds, G.; Thomson, A.
2010-12-01
not proportional to carbon accumulation itself. In neither study was uncertainty quantification comprehensive. We therefore conclude with an overview of different upscaling methods to discuss the way forward towards a complete Bayesian framework. Six different methods of spatial upscaling are identified. The methods fall in three classes: (i) direct applications of the point-support model, (ii) extension of the point-support model with a geostatistical model, (iii) replacement of the original model with an emulator. Gaussian Process modelling can be used both for upscaling and emulation. The Bayesian perspective shows how output uncertainty can be quantified for each upscaling method. Reinds, G.J., Van Oijen, M. et al. (2008). Bayesian calibration of the VSD soil acidification model using European forest monitoring data. Geoderma 146: 475-488. Van Oijen, M. et al. (2005). Bayesian calibration of process-based forest models: bridging the gap between models and data. Tree Phys. 25: 915-927. Van Oijen, M. & Thomson, A. (2010). Towards Bayesian uncertainty quantification for forestry models used in the United Kingdom Greenhouse Gas Inventory for land use, land use change, and forestry. Clim. Change DOI:10.1007/s10584-010-9917-3.
Geostatistical simulations for radon indoor with a nested model including the housing factor.
Cafaro, C; Giovani, C; Garavaglia, M
2016-01-01
The radon prone areas definition is matter of many researches in radioecology, since radon is considered a leading cause of lung tumours, therefore the authorities ask for support to develop an appropriate sanitary prevention strategy. In this paper, we use geostatistical tools to elaborate a definition accounting for some of the available information about the dwellings. Co-kriging is the proper interpolator used in geostatistics to refine the predictions by using external covariates. In advance, co-kriging is not guaranteed to improve significantly the results obtained by applying the common lognormal kriging. Here, instead, such multivariate approach leads to reduce the cross-validation residual variance to an extent which is deemed as satisfying. Furthermore, with the application of Monte Carlo simulations, the paradigm provides a more conservative radon prone areas definition than the one previously made by lognormal kriging.
A Tutorial Introduction to Bayesian Models of Cognitive Development
ERIC Educational Resources Information Center
Perfors, Amy; Tenenbaum, Joshua B.; Griffiths, Thomas L.; Xu, Fei
2011-01-01
We present an introduction to Bayesian inference as it is used in probabilistic models of cognitive development. Our goal is to provide an intuitive and accessible guide to the "what", the "how", and the "why" of the Bayesian approach: what sorts of problems and data the framework is most relevant for, and how and why it may be useful for…
Implementing Relevance Feedback in the Bayesian Network Retrieval Model.
ERIC Educational Resources Information Center
de Campos, Luis M.; Fernandez-Luna, Juan M.; Huete, Juan F.
2003-01-01
Discussion of relevance feedback in information retrieval focuses on a proposal for the Bayesian Network Retrieval Model. Bases the proposal on the propagation of partial evidences in the Bayesian network, representing new information obtained from the user's relevance judgments to compute the posterior relevance probabilities of the documents…
Bayesian Student Modeling and the Problem of Parameter Specification.
ERIC Educational Resources Information Center
Millan, Eva; Agosta, John Mark; Perez de la Cruz, Jose Luis
2001-01-01
Discusses intelligent tutoring systems and the application of Bayesian networks to student modeling. Considers reasons for not using Bayesian networks, including the computational complexity of the algorithms and the difficulty of knowledge acquisition, and proposes an approach to simplify knowledge acquisition that applies causal independence to…
A Tutorial Introduction to Bayesian Models of Cognitive Development
ERIC Educational Resources Information Center
Perfors, Amy; Tenenbaum, Joshua B.; Griffiths, Thomas L.; Xu, Fei
2011-01-01
We present an introduction to Bayesian inference as it is used in probabilistic models of cognitive development. Our goal is to provide an intuitive and accessible guide to the "what", the "how", and the "why" of the Bayesian approach: what sorts of problems and data the framework is most relevant for, and how and why it may be useful for…
A SEMIPARAMETRIC BAYESIAN MODEL FOR CIRCULAR-LINEAR REGRESSION
We present a Bayesian approach to regress a circular variable on a linear predictor. The regression coefficients are assumed to have a nonparametric distribution with a Dirichlet process prior. The semiparametric Bayesian approach gives added flexibility to the model and is usefu...
A SEMIPARAMETRIC BAYESIAN MODEL FOR CIRCULAR-LINEAR REGRESSION
We present a Bayesian approach to regress a circular variable on a linear predictor. The regression coefficients are assumed to have a nonparametric distribution with a Dirichlet process prior. The semiparametric Bayesian approach gives added flexibility to the model and is usefu...
Advances in Bayesian Modeling in Educational Research
ERIC Educational Resources Information Center
Levy, Roy
2016-01-01
In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…
Advances in Bayesian Modeling in Educational Research
ERIC Educational Resources Information Center
Levy, Roy
2016-01-01
In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…
Bayesian analysis. II. Signal detection and model selection
NASA Astrophysics Data System (ADS)
Bretthorst, G. Larry
In the preceding. paper, Bayesian analysis was applied to the parameter estimation problem, given quadrature NMR data. Here Bayesian analysis is extended to the problem of selecting the model which is most probable in view of the data and all the prior information. In addition to the analytic calculation, two examples are given. The first example demonstrates how to use Bayesian probability theory to detect small signals in noise. The second example uses Bayesian probability theory to compute the probability of the number of decaying exponentials in simulated T1 data. The Bayesian answer to this question is essentially a microcosm of the scientific method and a quantitative statement of Ockham's razor: theorize about possible models, compare these to experiment, and select the simplest model that "best" fits the data.
NASA Astrophysics Data System (ADS)
Moradkhani, Hamid; Yan, Hongxiang
2016-04-01
Soil moisture simulation and prediction are increasingly used to characterize agricultural droughts but the process suffers from data scarcity and quality. The satellite soil moisture observations could be used to improve model predictions with data assimilation. Remote sensing products, however, are typically discontinuous in spatial-temporal coverages; while simulated soil moisture products are potentially biased due to the errors in forcing data, parameters, and deficiencies of model physics. This study attempts to provide a detailed analysis of the joint and separate assimilation of streamflow and Advanced Scatterometer (ASCAT) surface soil moisture into a fully distributed hydrologic model, with the use of recently developed particle filter-Markov chain Monte Carlo (PF-MCMC) method. A geostatistical model is introduced to overcome the satellite soil moisture discontinuity issue where satellite data does not cover the whole study region or is significantly biased, and the dominant land cover is dense vegetation. The results indicate that joint assimilation of soil moisture and streamflow has minimal effect in improving the streamflow prediction, however, the surface soil moisture field is significantly improved. The combination of DA and geostatistical approach can further improve the surface soil moisture prediction.
Bayesian analysis of the backreaction models
Kurek, Aleksandra; Bolejko, Krzysztof; Szydlowski, Marek
2010-03-15
We present a Bayesian analysis of four different types of backreaction models, which are based on the Buchert equations. In this approach, one considers a solution to the Einstein equations for a general matter distribution and then an average of various observable quantities is taken. Such an approach became of considerable interest when it was shown that it could lead to agreement with observations without resorting to dark energy. In this paper we compare the {Lambda}CDM model and the backreaction models with type Ia supernovae, baryon acoustic oscillations, and cosmic microwave background data, and find that the former is favored. However, the tested models were based on some particular assumptions about the relation between the average spatial curvature and the backreaction, as well as the relation between the curvature and curvature index. In this paper we modified the latter assumption, leaving the former unchanged. We find that, by varying the relation between the curvature and curvature index, we can obtain a better fit. Therefore, some further work is still needed--in particular, the relation between the backreaction and the curvature should be revisited in order to fully determine the feasibility of the backreaction models to mimic dark energy.
Bayesian inverse modeling for quantitative precipitation estimation
NASA Astrophysics Data System (ADS)
Schinagl, Katharina; Rieger, Christian; Simmer, Clemens; Xie, Xinxin; Friederichs, Petra
2017-04-01
Polarimetric radars provide us with a richness of precipitation related measurements. Especially the high spatial and temporal resolution make the data an important information, e.g. for hydrological modeling. However, uncertainties in the precipitation estimates are large. Their systematic assessment and quantification is thus of great importance. Polarimetric radar observables like horizontal and vertical reflectivity ZH and ZV , cross-correlation coefficient ρHV and specific differential phase KDP are related to the drop size distribution (DSD) in the scan. This relation is described by forward operators which are integrals over the DSD and scattering terms. Given the polarimetric observables, the respective forward operators and assumptions about the measurement errors, we investigate the uncertainty in the DSD parameter estimation and based on it the uncertainty of precipitation estimates. We assume that the DSD follows a Gamma model, N(D) = N0Dμ exp(-ΛD), where all three parameters are variable. This model allows us to account for the high variability of the DSD. We employ the framework of Bayesian inverse methods to derive the posterior distribution of the DSD parameters. The inverse problem is investigated in a simulated environment (SE) using the COSMO-DE numerical weather prediction model. The advantage of the SE is that - unlike in a real world application - we know the parameters we want to estimate. Thus, building the inverse model into the SE gives us the opportunity of verifying our results against the COSMO-simulated DSD-values.
Bayesian modeling of differential gene expression.
Lewin, Alex; Richardson, Sylvia; Marshall, Clare; Glazier, Anne; Aitman, Tim
2006-03-01
We present a Bayesian hierarchical model for detecting differentially expressing genes that includes simultaneous estimation of array effects, and show how to use the output for choosing lists of genes for further investigation. We give empirical evidence that expression-level dependent array effects are needed, and explore different nonlinear functions as part of our model-based approach to normalization. The model includes gene-specific variances but imposes some necessary shrinkage through a hierarchical structure. Model criticism via posterior predictive checks is discussed. Modeling the array effects (normalization) simultaneously with differential expression gives fewer false positive results. To choose a list of genes, we propose to combine various criteria (for instance, fold change and overall expression) into a single indicator variable for each gene. The posterior distribution of these variables is used to pick the list of genes, thereby taking into account uncertainty in parameter estimates. In an application to mouse knockout data, Gene Ontology annotations over- and underrepresented among the genes on the chosen list are consistent with biological expectations.
Hierarchical Bayesian models of subtask learning.
Anglim, Jeromy; Wynton, Sarah K A
2015-07-01
The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking task, which logged participant actions, enabling measurement of strategy use and subtask performance. Model comparison was performed using deviance information criterion (DIC), posterior predictive checks, plots of model fits, and model recovery simulations. Results showed that although learning tended to be monotonically decreasing and decelerating, and approaching an asymptote for all subtasks, there was substantial inconsistency in learning curves both at the group- and individual-levels. This inconsistency was most apparent when constraining both the rate and the ratio of learning to asymptote to be equal across subtasks, thereby giving learning curves only 1 parameter for scaling. The inclusion of 6 strategy covariates provided improved prediction of subtask performance capturing different subtask learning processes and subtask trade-offs. In addition, strategy use partially explained the inconsistency in subtask learning. Overall, the model provided a more nuanced representation of how complex tasks can be decomposed in terms of simpler learning mechanisms.
Geostatistics and petroleum geology
Hohn, M.E.
1988-01-01
This book examines purpose and use of geostatistics in exploration and development of oil and gas with an emphasis on appropriate and pertinent case studies. It present an overview of geostatistics. Topics covered include: The semivariogram; Linear estimation; Multivariate geostatistics; Nonlinear estimation; From indicator variables to nonparametric estimation; and More detail, less certainty; conditional simulation.
Improving Predictability of Generalized Coupled Markov Chain Model through Bayesian Inference
NASA Astrophysics Data System (ADS)
Paudyal, P.; Jeong, J. A.; Park, E.
2011-12-01
In many actual fields, conditioning hard information is often, if not always, limited and the associating uncertainties in the predictions are prevailing. To limit the uncertainties arisen from the deficiency of the required information, additional correlated information, such as geophysical soft information, may be adopted. In this study, we modified the previously developed multidimensional generalized coupled Markov chain (GCMC) model (Park, 2010), which has been presented as a robust Markovian geostatistical model, by employing the principle of Bayesian inferences to integrate hard and soft information. In the modification, a prior of GCMC conditional probabilities on categorical variables based on adjacent hard information with a generic likelihood from probability distribution functions (PDFs) of soft information on given categories are jointly used to delineate the local posterior. By the process, a local soft information and adjacent hard information can be incorporated, and an improved posterior distribution can be yielded. The developed model is applied to the northern part of Jeju Island, Korea to test its improved predictability compared to the previous model without Bayesian updating. In the predictive simulations, the hard information is acquired at randomly selected 30 locations from the original geologic map composed of four different rock types. To prepare assumed geophysical information, a hypothetical PDF is assigned to each rock type at first. After the assignment, total 216 points are selected from an equally spaced grid imposed on the map and the corresponding geophysical properties are stochastically generated from the hypothetical PDFs. Finally, based on the generated values, a kriged map is built and used as input soft information for the modified model. With the hypothetical soft data, two types of multiple realizations using the model with and without Bayesian updating are developed. From the realizations based on each model, the
Stochastic model updating utilizing Bayesian approach and Gaussian process model
NASA Astrophysics Data System (ADS)
Wan, Hua-Ping; Ren, Wei-Xin
2016-03-01
Stochastic model updating (SMU) has been increasingly applied in quantifying structural parameter uncertainty from responses variability. SMU for parameter uncertainty quantification refers to the problem of inverse uncertainty quantification (IUQ), which is a nontrivial task. Inverse problem solved with optimization usually brings about the issues of gradient computation, ill-conditionedness, and non-uniqueness. Moreover, the uncertainty present in response makes the inverse problem more complicated. In this study, Bayesian approach is adopted in SMU for parameter uncertainty quantification. The prominent strength of Bayesian approach for IUQ problem is that it solves IUQ problem in a straightforward manner, which enables it to avoid the previous issues. However, when applied to engineering structures that are modeled with a high-resolution finite element model (FEM), Bayesian approach is still computationally expensive since the commonly used Markov chain Monte Carlo (MCMC) method for Bayesian inference requires a large number of model runs to guarantee the convergence. Herein we reduce computational cost in two aspects. On the one hand, the fast-running Gaussian process model (GPM) is utilized to approximate the time-consuming high-resolution FEM. On the other hand, the advanced MCMC method using delayed rejection adaptive Metropolis (DRAM) algorithm that incorporates local adaptive strategy with global adaptive strategy is employed for Bayesian inference. In addition, we propose the use of the powerful variance-based global sensitivity analysis (GSA) in parameter selection to exclude non-influential parameters from calibration parameters, which yields a reduced-order model and thus further alleviates the computational burden. A simulated aluminum plate and a real-world complex cable-stayed pedestrian bridge are presented to illustrate the proposed framework and verify its feasibility.
Scale Mixture Models with Applications to Bayesian Inference
NASA Astrophysics Data System (ADS)
Qin, Zhaohui S.; Damien, Paul; Walker, Stephen
2003-11-01
Scale mixtures of uniform distributions are used to model non-normal data in time series and econometrics in a Bayesian framework. Heteroscedastic and skewed data models are also tackled using scale mixture of uniform distributions.
A Practical Primer on Geostatistics
Olea, Ricardo A.
2009-01-01
THE CHALLENGE Most geological phenomena are extraordinarily complex in their interrelationships and vast in their geographical extension. Ordinarily, engineers and geoscientists are faced with corporate or scientific requirements to properly prepare geological models with measurements involving a small fraction of the entire area or volume of interest. Exact description of a system such as an oil reservoir is neither feasible nor economically possible. The results are necessarily uncertain. Note that the uncertainty is not an intrinsic property of the systems; it is the result of incomplete knowledge by the observer. THE AIM OF GEOSTATISTICS The main objective of geostatistics is the characterization of spatial systems that are incompletely known, systems that are common in geology. A key difference from classical statistics is that geostatistics uses the sampling location of every measurement. Unless the measurements show spatial correlation, the application of geostatistics is pointless. Ordinarily the need for additional knowledge goes beyond a few points, which explains the display of results graphically as fishnet plots, block diagrams, and maps. GEOSTATISTICAL METHODS Geostatistics is a collection of numerical techniques for the characterization of spatial attributes using primarily two tools: probabilistic models, which are used for spatial data in a manner similar to the way in which time-series analysis characterizes temporal data, or pattern recognition techniques. The probabilistic models are used as a way to handle uncertainty in results away from sampling locations, making a radical departure from alternative approaches like inverse distance estimation methods. DIFFERENCES WITH TIME SERIES On dealing with time-series analysis, users frequently concentrate their attention on extrapolations for making forecasts. Although users of geostatistics may be interested in extrapolation, the methods work at their best interpolating. This simple difference has
A guide to Bayesian model selection for ecologists
Hooten, Mevin B.; Hobbs, N.T.
2015-01-01
The steady upward trend in the use of model selection and Bayesian methods in ecological research has made it clear that both approaches to inference are important for modern analysis of models and data. However, in teaching Bayesian methods and in working with our research colleagues, we have noticed a general dissatisfaction with the available literature on Bayesian model selection and multimodel inference. Students and researchers new to Bayesian methods quickly find that the published advice on model selection is often preferential in its treatment of options for analysis, frequently advocating one particular method above others. The recent appearance of many articles and textbooks on Bayesian modeling has provided welcome background on relevant approaches to model selection in the Bayesian framework, but most of these are either very narrowly focused in scope or inaccessible to ecologists. Moreover, the methodological details of Bayesian model selection approaches are spread thinly throughout the literature, appearing in journals from many different fields. Our aim with this guide is to condense the large body of literature on Bayesian approaches to model selection and multimodel inference and present it specifically for quantitative ecologists as neutrally as possible. We also bring to light a few important and fundamental concepts relating directly to model selection that seem to have gone unnoticed in the ecological literature. Throughout, we provide only a minimal discussion of philosophy, preferring instead to examine the breadth of approaches as well as their practical advantages and disadvantages. This guide serves as a reference for ecologists using Bayesian methods, so that they can better understand their options and can make an informed choice that is best aligned with their goals for inference.
Constructive Epistemic Modeling: A Hierarchical Bayesian Model Averaging Method
NASA Astrophysics Data System (ADS)
Tsai, F. T. C.; Elshall, A. S.
2014-12-01
Constructive epistemic modeling is the idea that our understanding of a natural system through a scientific model is a mental construct that continually develops through learning about and from the model. Using the hierarchical Bayesian model averaging (HBMA) method [1], this study shows that segregating different uncertain model components through a BMA tree of posterior model probabilities, model prediction, within-model variance, between-model variance and total model variance serves as a learning tool [2]. First, the BMA tree of posterior model probabilities permits the comparative evaluation of the candidate propositions of each uncertain model component. Second, systemic model dissection is imperative for understanding the individual contribution of each uncertain model component to the model prediction and variance. Third, the hierarchical representation of the between-model variance facilitates the prioritization of the contribution of each uncertain model component to the overall model uncertainty. We illustrate these concepts using the groundwater modeling of a siliciclastic aquifer-fault system. The sources of uncertainty considered are from geological architecture, formation dip, boundary conditions and model parameters. The study shows that the HBMA analysis helps in advancing knowledge about the model rather than forcing the model to fit a particularly understanding or merely averaging several candidate models. [1] Tsai, F. T.-C., and A. S. Elshall (2013), Hierarchical Bayesian model averaging for hydrostratigraphic modeling: Uncertainty segregation and comparative evaluation. Water Resources Research, 49, 5520-5536, doi:10.1002/wrcr.20428. [2] Elshall, A.S., and F. T.-C. Tsai (2014). Constructive epistemic modeling of groundwater flow with geological architecture and boundary condition uncertainty under Bayesian paradigm, Journal of Hydrology, 517, 105-119, doi: 10.1016/j.jhydrol.2014.05.027.
Bayesian Case-deletion Model Complexity and Information Criterion
Zhu, Hongtu; Ibrahim, Joseph G.; Chen, Qingxia
2015-01-01
We establish a connection between Bayesian case influence measures for assessing the influence of individual observations and Bayesian predictive methods for evaluating the predictive performance of a model and comparing different models fitted to the same dataset. Based on such a connection, we formally propose a new set of Bayesian case-deletion model complexity (BCMC) measures for quantifying the effective number of parameters in a given statistical model. Its properties in linear models are explored. Adding some functions of BCMC to a conditional deviance function leads to a Bayesian case-deletion information criterion (BCIC) for comparing models. We systematically investigate some properties of BCIC and its connection with other information criteria, such as the Deviance Information Criterion (DIC). We illustrate the proposed methodology on linear mixed models with simulations and a real data example. PMID:26180578
Bayesian Case-deletion Model Complexity and Information Criterion.
Zhu, Hongtu; Ibrahim, Joseph G; Chen, Qingxia
2014-10-01
We establish a connection between Bayesian case influence measures for assessing the influence of individual observations and Bayesian predictive methods for evaluating the predictive performance of a model and comparing different models fitted to the same dataset. Based on such a connection, we formally propose a new set of Bayesian case-deletion model complexity (BCMC) measures for quantifying the effective number of parameters in a given statistical model. Its properties in linear models are explored. Adding some functions of BCMC to a conditional deviance function leads to a Bayesian case-deletion information criterion (BCIC) for comparing models. We systematically investigate some properties of BCIC and its connection with other information criteria, such as the Deviance Information Criterion (DIC). We illustrate the proposed methodology on linear mixed models with simulations and a real data example.
Bayesian information criterion for censored survival models.
Volinsky, C T; Raftery, A E
2000-03-01
We investigate the Bayesian Information Criterion (BIC) for variable selection in models for censored survival data. Kass and Wasserman (1995, Journal of the American Statistical Association 90, 928-934) showed that BIC provides a close approximation to the Bayes factor when a unit-information prior on the parameter space is used. We propose a revision of the penalty term in BIC so that it is defined in terms of the number of uncensored events instead of the number of observations. For a simple censored data model, this revision results in a better approximation to the exact Bayes factor based on a conjugate unit-information prior. In the Cox proportional hazards regression model, we propose defining BIC in terms of the maximized partial likelihood. Using the number of deaths rather than the number of individuals in the BIC penalty term corresponds to a more realistic prior on the parameter space and is shown to improve predictive performance for assessing stroke risk in the Cardiovascular Health Study.
Which level of model complexity is justified by your data? A Bayesian answer
NASA Astrophysics Data System (ADS)
Schöniger, Anneli; Illman, Walter; Wöhling, Thomas; Nowak, Wolfgang
2016-04-01
When judging the plausibility and utility of a subsurface flow or transport model, the question of justifiability arises: which level of model complexity can still be justified by the available calibration data? Although it is common sense that more data are needed to reasonably constrain the parameter space of a more complex model, there is a lack of tools that can objectively quantify model justifiability as a function of the available data. We propose an approach to determine model justifiability in the context of comparing alternative conceptual models. Our approach rests on Bayesian model averaging (BMA). BMA yields posterior model probabilities that point the modeler to an optimal trade-off between model performance in reproducing a given calibration data set and model complexity. To find out which level of complexity can be justified by the available data, we disentangle the complexity component of the trade-off from its performance counterpart. Technically, we remove the performance component from the BMA analysis by replacing the actually observed data values with potential measurement values as predicted by the models. Our proposed analysis results in a "model confusion matrix". Based on this matrix, the modeler can identify the maximum level of model complexity that could possibly be justified by the available amount and type of data. As a side product, model (dis-)similarity is revealed. We have applied the model justifiability analysis to a case of aquifer characterization via hydraulic tomography. Four models of vastly different complexity have been proposed to represent the heterogeneity in hydraulic conductivity of a sandbox aquifer, ranging from a homogeneous medium to geostatistical random fields. We have used drawdown data from two to six pumping tests to condition the models and to determine model justifiability as a function of data set size. Our test case shows that a geostatistical parameterization scheme requires a substantial amount of
Nonparametric Bayesian Modeling for Automated Database Schema Matching
Ferragut, Erik M; Laska, Jason A
2015-01-01
The problem of merging databases arises in many government and commercial applications. Schema matching, a common first step, identifies equivalent fields between databases. We introduce a schema matching framework that builds nonparametric Bayesian models for each field and compares them by computing the probability that a single model could have generated both fields. Our experiments show that our method is more accurate and faster than the existing instance-based matching algorithms in part because of the use of nonparametric Bayesian models.
Ou, Chunping; St-Hilaire, André; Ouarda, Taha B M J; Conly, F Malcolm; Armstrong, Nicole; Khalil, Bahaa; Proulx-McInnis, Sandra
2012-12-01
The assessment of the adequacy of sampling locations is an important aspect in the validation of an effective and efficient water quality monitoring network. Two geostatistical approaches (e.g., kriging and Moran's I) are presented to assess multiple sampling locations. A flexible and comprehensive framework was developed for the selection of multiple sampling locations of multiple variables which was accomplished by coupling geostatistical approaches with principal component analysis (PCA) and fuzzy optimal model (FOM). The FOM was used in the integrated assessment of both multiple principal components and multiple geostatistical approaches. These integrated methods were successfully applied to the assessment of two independent water quality monitoring networks (WQMNs) of Lake Winnipeg, Canada, which respectively included 14 and 30 stations from 2006 to 2010.
Ashton, Ruth A.; Kefyalew, Takele; Rand, Alison; Sime, Heven; Assefa, Ashenafi; Mekasha, Addis; Edosa, Wasihun; Tesfaye, Gezahegn; Cano, Jorge; Teka, Hiwot; Reithinger, Richard; Pullan, Rachel L.; Drakeley, Chris J.; Brooker, Simon J.
2015-01-01
Ethiopia has a diverse ecology and geography resulting in spatial and temporal variation in malaria transmission. Evidence-based strategies are thus needed to monitor transmission intensity and target interventions. A purposive selection of dried blood spots collected during cross-sectional school-based surveys in Oromia Regional State, Ethiopia, were tested for presence of antibodies against Plasmodium falciparum and P. vivax antigens. Spatially explicit binomial models of seroprevalence were created for each species using a Bayesian framework, and used to predict seroprevalence at 5 km resolution across Oromia. School seroprevalence showed a wider prevalence range than microscopy for both P. falciparum (0–50% versus 0–12.7%) and P. vivax (0–53.7% versus 0–4.5%), respectively. The P. falciparum model incorporated environmental predictors and spatial random effects, while P. vivax seroprevalence first-order trends were not adequately explained by environmental variables, and a spatial smoothing model was developed. This is the first demonstration of serological indicators being used to detect large-scale heterogeneity in malaria transmission using samples from cross-sectional school-based surveys. The findings support the incorporation of serological indicators into periodic large-scale surveillance such as Malaria Indicator Surveys, and with particular utility for low transmission and elimination settings. PMID:25962770
When mechanism matters: Bayesian forecasting using models of ecological diffusion
Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.
2017-01-01
Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.
Bayesian approach for three-dimensional aquifer characterization at the Hanford 300 Area
Murakami, Haruko; Chen, X.; Hahn, Melanie S.; Liu, Yi; Rockhold, Mark L.; Vermeul, Vincent R.; Zachara, John M.; Rubin, Yoram
2010-10-21
This study presents a stochastic, three-dimensional characterization of a heterogeneous hydraulic conductivity field within DOE's Hanford 300 Area site, Washington, by assimilating large-scale, constant-rate injection test data with small-scale, three-dimensional electromagnetic borehole flowmeter (EBF) measurement data. We first inverted the injection test data to estimate the transmissivity field, using zeroth-order temporal moments of pressure buildup curves. We applied a newly developed Bayesian geostatistical inversion framework, the method of anchored distributions (MAD), to obtain a joint posterior distribution of geostatistical parameters and local log-transmissivities at multiple locations. The unique aspects of MAD that make it suitable for this purpose are its ability to integrate multi-scale, multi-type data within a Bayesian framework and to compute a nonparametric posterior distribution. After we combined the distribution of transmissivities with depth-discrete relative-conductivity profile from EBF data, we inferred the three-dimensional geostatistical parameters of the log-conductivity field, using the Bayesian model-based geostatistics. Such consistent use of the Bayesian approach throughout the procedure enabled us to systematically incorporate data uncertainty into the final posterior distribution. The method was tested in a synthetic study and validated using the actual data that was not part of the estimation. Results showed broader and skewed posterior distributions of geostatistical parameters except for the mean, which suggests the importance of inferring the entire distribution to quantify the parameter uncertainty.
Bayesian model reduction and empirical Bayes for group (DCM) studies.
Friston, Karl J; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E; van Wijk, Bernadette C M; Ziegler, Gabriel; Zeidman, Peter
2016-03-01
This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level - e.g., dynamic causal models - and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These applications of Bayesian model reduction allow one to consider parametric random effects and make inferences about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical background to these procedures and illustrate their application using a worked example. This example uses a simulated mismatch negativity study of schizophrenia. We illustrate the robustness of Bayesian model reduction to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we consider the application of these empirical Bayesian procedures to classification and prediction. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Bayesian model reduction and empirical Bayes for group (DCM) studies
Friston, Karl J.; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E.; van Wijk, Bernadette C.M.; Ziegler, Gabriel; Zeidman, Peter
2016-01-01
This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level – e.g., dynamic causal models – and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These applications of Bayesian model reduction allow one to consider parametric random effects and make inferences about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical background to these procedures and illustrate their application using a worked example. This example uses a simulated mismatch negativity study of schizophrenia. We illustrate the robustness of Bayesian model reduction to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we consider the application of these empirical Bayesian procedures to classification and prediction. PMID:26569570
Calibrating Bayesian Network Representations of Social-Behavioral Models
Whitney, Paul D.; Walsh, Stephen J.
2010-04-08
While human behavior has long been studied, recent and ongoing advances in computational modeling present opportunities for recasting research outcomes in human behavior. In this paper we describe how Bayesian networks can represent outcomes of human behavior research. We demonstrate a Bayesian network that represents political radicalization research – and show a corresponding visual representation of aspects of this research outcome. Since Bayesian networks can be quantitatively compared with external observations, the representation can also be used for empirical assessments of the research which the network summarizes. For a political radicalization model based on published research, we show this empirical comparison with data taken from the Minorities at Risk Organizational Behaviors database.
Multivariate Bayesian Models of Extreme Rainfall
NASA Astrophysics Data System (ADS)
Rahill-Marier, B.; Devineni, N.; Lall, U.; Farnham, D.
2013-12-01
Accounting for spatial heterogeneity in extreme rainfall has important ramifications in hydrological design and climate models alike. Traditional methods, including areal reduction factors and kriging, are sensitive to catchment shape assumptions and return periods, and do not explicitly model spatial dependence between between data points. More recent spatially dense rainfall simulators depend on newer data sources such as radar and may struggle to reproduce extremes because of physical assumptions in the model and short historical records. Rain gauges offer the longest historical record, key when considering rainfall extremes and changes over time, and particularly relevant in today's environment of designing for climate change. In this paper we propose a probabilistic approach of accounting for spatial dependence using the lengthy but spatially disparate hourly rainfall network in the greater New York City area. We build a hierarchical Bayesian model allowing extremes at one station to co-vary with concurrent rainfall fields occurring at other stations. Subsequently we pool across the extreme rainfall fields of all stations, and demonstrate that the expected catchment-wide events are significantly lower when considering spatial fields instead of maxima-only fields. We additionally demonstrate the importance of using concurrent spatial fields, rather than annual maxima, in producing covariance matrices that describe true storm dynamics. This approach is also unique in that it considers short duration storms - from one hour to twenty-four hours - rather than the daily values typically derived from rainfall gauges. The same methodology can be extended to include the radar fields available in the past decade. The hierarchical multilevel approach lends itself easily to integration of long-record parameters and short-record parameters at a station or regional level. In addition climate covariates can be introduced to support the relationship of spatial covariance with
Development of novel geostatistical tools in space-time modelling of aquifer level
NASA Astrophysics Data System (ADS)
Theodoridou, Giota; Varouchakis, Emmanouil A.; Karatzas, George P.
2017-04-01
Space-Time Residual-Kriging (STRK) is a reliable method for spatiotemporal interpolation. In this work STRK is applied to combine the estimated trend and interpolated residuals for the final prediction of the groundwater level in an unconfined aquifer. However, the proposed methodology examines apart from the lag distance, the hydraulic gradient for the calculation of the experimental space-time variogram. Spatiotemporal trend is approximated using a combined component based on a physical law that governs groundwater flow in an aquifer under pumping conditions. A Bayesian approach based on the bootstrap idea is employed to determine the uncertainty of the spatiotemporal model parameters (trend and covariance) and estimations. The interdependence of the spatiotemporal residuals is modeled using a new space-time variogram based on the product-sum approach that involves the hydraulic conductivity anisotropic ratio within the exponential function and the Spartan covariance family. The proposed methodology is applied to predict spatiotemporal groundwater level fluctuations and to investigate the uncertainty of estimations at a sparsely gauged basin on the island of Crete, Greece.
Bayesian approach to decompression sickness model parameter estimation.
Howle, L E; Weber, P W; Nichols, J M
2017-03-01
We examine both maximum likelihood and Bayesian approaches for estimating probabilistic decompression sickness model parameters. Maximum likelihood estimation treats parameters as fixed values and determines the best estimate through repeated trials, whereas the Bayesian approach treats parameters as random variables and determines the parameter probability distributions. We would ultimately like to know the probability that a parameter lies in a certain range rather than simply make statements about the repeatability of our estimator. Although both represent powerful methods of inference, for models with complex or multi-peaked likelihoods, maximum likelihood parameter estimates can prove more difficult to interpret than the estimates of the parameter distributions provided by the Bayesian approach. For models of decompression sickness, we show that while these two estimation methods are complementary, the credible intervals generated by the Bayesian approach are more naturally suited to quantifying uncertainty in the model parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.
BAYESIAN METHODS FOR REGIONAL-SCALE EUTROPHICATION MODELS. (R830887)
We demonstrate a Bayesian classification and regression tree (CART) approach to link multiple environmental stressors to biological responses and quantify uncertainty in model predictions. Such an approach can: (1) report prediction uncertainty, (2) be consistent with the amou...
BAYESIAN METHODS FOR REGIONAL-SCALE EUTROPHICATION MODELS. (R830887)
We demonstrate a Bayesian classification and regression tree (CART) approach to link multiple environmental stressors to biological responses and quantify uncertainty in model predictions. Such an approach can: (1) report prediction uncertainty, (2) be consistent with the amou...
A Generalizable Hierarchical Bayesian Model for Persistent SAR Change Detection
2012-04-01
6] K. Ranney and M. Soumekh, “Signal subspace change detection in averaged multilook sar imagery,” Geoscience and Remote Sensing, IEEE Transactions on...A Generalizable Hierarchical Bayesian Model for Persistent SAR Change Detection Gregory E. Newstadta, Edmund G. Zelniob, and Alfred O. Hero IIIa...Base, OH, 45433, USA ABSTRACT This paper proposes a hierarchical Bayesian model for multiple-pass, multiple antenna synthetic aperture radar ( SAR
Schröder, Winfried
2006-05-01
By the example of environmental monitoring, some applications of geographic information systems (GIS), geostatistics, metadata banking, and Classification and Regression Trees (CART) are presented. These tools are recommended for mapping statistically estimated hot spots of vectors and pathogens. GIS were introduced as tools for spatially modelling the real world. The modelling can be done by mapping objects according to the spatial information content of data. Additionally, this can be supported by geostatistical and multivariate statistical modelling. This is demonstrated by the example of modelling marine habitats of benthic communities and of terrestrial ecoregions. Such ecoregionalisations may be used to predict phenomena based on the statistical relation between measurements of an interesting phenomenon such as, e.g., the incidence of medically relevant species and correlated characteristics of the ecoregions. The combination of meteorological data and data on plant phenology can enhance the spatial resolution of the information on climate change. To this end, meteorological and phenological data have to be correlated. To enable this, both data sets which are from disparate monitoring networks have to be spatially connected by means of geostatistical estimation. This is demonstrated by the example of transformation of site-specific data on plant phenology into surface data. The analysis allows for spatial comparison of the phenology during the two periods 1961-1990 and 1991-2002 covering whole Germany. The changes in both plant phenology and air temperature were proved to be statistically significant. Thus, they can be combined by GIS overlay technique to enhance the spatial resolution of the information on the climate change and use them for the prediction of vector incidences at the regional scale. The localisation of such risk hot spots can be done by geometrically merging surface data on promoting factors. This is demonstrated by the example of the
NASA Astrophysics Data System (ADS)
Frystacky, H.; Osorio-Murillo, C. A.; Over, M. W.; Kalbacher, T.; Gunnell, D.; Kolditz, O.; Ames, D.; Rubin, Y.
2013-12-01
The Method of Anchored Distributions (MAD) is a Bayesian technique for characterizing the uncertainty in geostatistical model parameters. Open-source software has been developed in a modular framework such that this technique can be applied to any forward model software via a driver. This presentation is about the driver that has been developed for OpenGeoSys (OGS), open-source software that can simulate many hydrogeological processes, including couple processes. MAD allows the use of multiple data types for conditioning the spatially random fields and assessing model parameter likelihood. For example, if simulating flow and mass transport, the inversion target variable could be hydraulic conductivity and the inversion data types could be head, concentration, or both. The driver detects from the OGS files which processes and variables are being used in a given project and allows MAD to prompt the user to choose those that are to be modeled or to be treated deterministically. In this way, any combination of processes allowed by OGS can have MAD applied. As for the software, there are two versions, each with its own OGS driver. A Windows desktop version is available as a graphical user interface and is ideal for the learning and teaching environment. High-throughput computing can even be achieved with this version via HTCondor if large projects want to be pursued in a computer lab. In addition to this desktop application, a Linux version is available equipped with MPI such that it can be run in parallel on a computer cluster. All releases can be downloaded from the MAD Codeplex site given below.
Grisotto, Laura; Consonni, Dario; Cecconi, Lorenzo; Catelan, Dolores; Lagazio, Corrado; Bertazzi, Pier Alberto; Baccini, Michela; Biggeri, Annibale
2016-04-18
In this paper the focus is on environmental statistics, with the aim of estimating the concentration surface and related uncertainty of an air pollutant. We used air quality data recorded by a network of monitoring stations within a Bayesian framework to overcome difficulties in accounting for prediction uncertainty and to integrate information provided by deterministic models based on emissions meteorology and chemico-physical characteristics of the atmosphere. Several authors have proposed such integration, but all the proposed approaches rely on representativeness and completeness of existing air pollution monitoring networks. We considered the situation in which the spatial process of interest and the sampling locations are not independent. This is known in the literature as the preferential sampling problem, which if ignored in the analysis, can bias geostatistical inferences. We developed a Bayesian geostatistical model to account for preferential sampling with the main interest in statistical integration and uncertainty. We used PM10 data arising from the air quality network of the Environmental Protection Agency of Lombardy Region (Italy) and numerical outputs from the deterministic model. We specified an inhomogeneous Poisson process for the sampling locations intensities and a shared spatial random component model for the dependence between the spatial location of monitors and the pollution surface. We found greater predicted standard deviation differences in areas not properly covered by the air quality network. In conclusion, in this context inferences on prediction uncertainty may be misleading when geostatistical modelling does not take into account preferential sampling.
A tutorial introduction to Bayesian models of cognitive development.
Perfors, Amy; Tenenbaum, Joshua B; Griffiths, Thomas L; Xu, Fei
2011-09-01
We present an introduction to Bayesian inference as it is used in probabilistic models of cognitive development. Our goal is to provide an intuitive and accessible guide to the what, the how, and the why of the Bayesian approach: what sorts of problems and data the framework is most relevant for, and how and why it may be useful for developmentalists. We emphasize a qualitative understanding of Bayesian inference, but also include information about additional resources for those interested in the cognitive science applications, mathematical foundations, or machine learning details in more depth. In addition, we discuss some important interpretation issues that often arise when evaluating Bayesian models in cognitive science. Copyright © 2010 Elsevier B.V. All rights reserved.
Bayesian model evidence as a model evaluation metric
NASA Astrophysics Data System (ADS)
Guthke, Anneli; Höge, Marvin; Nowak, Wolfgang
2017-04-01
When building environmental systems models, we are typically confronted with the questions of how to choose an appropriate model (i.e., which processes to include or neglect) and how to measure its quality. Various metrics have been proposed that shall guide the modeller towards a most robust and realistic representation of the system under study. Criteria for evaluation often address aspects of accuracy (absence of bias) or of precision (absence of unnecessary variance) and need to be combined in a meaningful way in order to address the inherent bias-variance dilemma. We suggest using Bayesian model evidence (BME) as a model evaluation metric that implicitly performs a tradeoff between bias and variance. BME is typically associated with model weights in the context of Bayesian model averaging (BMA). However, it can also be seen as a model evaluation metric in a single-model context or in model comparison. It combines a measure for goodness of fit with a penalty for unjustifiable complexity. Unjustifiable refers to the fact that the appropriate level of model complexity is limited by the amount of information available for calibration. Derived in a Bayesian context, BME naturally accounts for measurement errors in the calibration data as well as for input and parameter uncertainty. BME is therefore perfectly suitable to assess model quality under uncertainty. We will explain in detail and with schematic illustrations what BME measures, i.e. how complexity is defined in the Bayesian setting and how this complexity is balanced with goodness of fit. We will further discuss how BME compares to other model evaluation metrics that address accuracy and precision such as the predictive logscore or other model selection criteria such as the AIC, BIC or KIC. Although computationally more expensive than other metrics or criteria, BME represents an appealing alternative because it provides a global measure of model quality. Even if not applicable to each and every case, we aim
Andrade, A I A S S; Stigter, T Y
2013-04-01
In this study multivariate and geostatistical methods are jointly applied to model the spatial and temporal distribution of arsenic (As) concentrations in shallow groundwater as a function of physicochemical, hydrogeological and land use parameters, as well as to assess the related uncertainty. The study site is located in the Mondego River alluvial body in Central Portugal, where maize, rice and some vegetable crops dominate. In a first analysis scatter plots are used, followed by the application of principal component analysis to two different data matrices, of 112 and 200 samples, with the aim of detecting associations between As levels and other quantitative parameters. In the following phase explanatory models of As are created through factorial regression based on correspondence analysis, integrating both quantitative and qualitative parameters. Finally, these are combined with indicator-geostatistical techniques to create maps indicating the predicted probability of As concentrations in groundwater exceeding the current global drinking water guideline of 10 μg/l. These maps further allow assessing the uncertainty and representativeness of the monitoring network. A clear effect of the redox state on the presence of As is observed, and together with significant correlations with dissolved oxygen, nitrate, sulfate, iron, manganese and alkalinity, points towards the reductive dissolution of Fe (hydr)oxides as the essential mechanism of As release. The association of high As values with rice crop, known to promote reduced environments due to ponding, further corroborates this hypothesis. An additional source of As from fertilizers cannot be excluded, as the correlation with As is higher where rice is associated with vegetables, normally associated with higher fertilization rates. The best explanatory model of As occurrence integrates the parameters season, crop type, well and water depth, nitrate and Eh, though a model without the last two parameters also gives
Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model.
Xu, Zhiguang; MacEachern, Steven; Xu, Xinyi
2015-02-01
We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.
Assessing Fit of Unidimensional Graded Response Models Using Bayesian Methods
ERIC Educational Resources Information Center
Zhu, Xiaowen; Stone, Clement A.
2011-01-01
The posterior predictive model checking method is a flexible Bayesian model-checking tool and has recently been used to assess fit of dichotomous IRT models. This paper extended previous research to polytomous IRT models. A simulation study was conducted to explore the performance of posterior predictive model checking in evaluating different…
Implementation of the Iterative Proportion Fitting Algorithm for Geostatistical Facies Modeling
Li Yupeng Deutsch, Clayton V.
2012-06-15
In geostatistics, most stochastic algorithm for simulation of categorical variables such as facies or rock types require a conditional probability distribution. The multivariate probability distribution of all the grouped locations including the unsampled location permits calculation of the conditional probability directly based on its definition. In this article, the iterative proportion fitting (IPF) algorithm is implemented to infer this multivariate probability. Using the IPF algorithm, the multivariate probability is obtained by iterative modification to an initial estimated multivariate probability using lower order bivariate probabilities as constraints. The imposed bivariate marginal probabilities are inferred from profiles along drill holes or wells. In the IPF process, a sparse matrix is used to calculate the marginal probabilities from the multivariate probability, which makes the iterative fitting more tractable and practical. This algorithm can be extended to higher order marginal probability constraints as used in multiple point statistics. The theoretical framework is developed and illustrated with estimation and simulation example.
Evaluating Individualized Reading Programs: A Bayesian Model.
ERIC Educational Resources Information Center
Maxwell, Martha
Simple Bayesian approaches can be applied to answer specific questions in evaluating an individualized reading program. A small reading and study skills program located in the counseling center of a major research university collected and compiled data on student characteristics such as class, number of sessions attended, grade point average, and…
Hwang, Kyu-Baek; Zhang, Byoung-Tak
2005-12-01
Bayesian model averaging (BMA) can resolve the overfitting problem by explicitly incorporating the model uncertainty into the analysis procedure. Hence, it can be used to improve the generalization performance of Bayesian network classifiers. Until now, BMA of Bayesian network classifiers has only been performed in some restricted forms, e.g., the model is averaged given a single node-order, because of its heavy computational burden. However, it can be hard to obtain a good node-order when the available training dataset is sparse. To alleviate this problem, we propose BMA of Bayesian network classifiers over several distinct node-orders obtained using the Markov chain Monte Carlo sampling technique. The proposed method was examined using two synthetic problems and four real-life datasets. First, we show that the proposed method is especially effective when the given dataset is very sparse. The classification accuracy of averaging over multiple node-orders was higher in most cases than that achieved using a single node-order in our experiments. We also present experimental results for test datasets with unobserved variables, where the quality of the averaged node-order is more important. Through these experiments, we show that the difference in classification performance between the cases of multiple node-orders and single node-order is related to the level of noise, confirming the relative benefit of averaging over multiple node-orders for incomplete data. We conclude that BMA of Bayesian network classifiers over multiple node-orders has an apparent advantage when the given dataset is sparse and noisy, despite the method's heavy computational cost.
Technical note: Bayesian calibration of dynamic ruminant nutrition models.
Reed, K F; Arhonditsis, G B; France, J; Kebreab, E
2016-08-01
Mechanistic models of ruminant digestion and metabolism have advanced our understanding of the processes underlying ruminant animal physiology. Deterministic modeling practices ignore the inherent variation within and among individual animals and thus have no way to assess how sources of error influence model outputs. We introduce Bayesian calibration of mathematical models to address the need for robust mechanistic modeling tools that can accommodate error analysis by remaining within the bounds of data-based parameter estimation. For the purpose of prediction, the Bayesian approach generates a posterior predictive distribution that represents the current estimate of the value of the response variable, taking into account both the uncertainty about the parameters and model residual variability. Predictions are expressed as probability distributions, thereby conveying significantly more information than point estimates in regard to uncertainty. Our study illustrates some of the technical advantages of Bayesian calibration and discusses the future perspectives in the context of animal nutrition modeling.
Application of geostatistics to risk assessment.
Thayer, William C; Griffith, Daniel A; Goodrum, Philip E; Diamond, Gary L; Hassett, James M
2003-10-01
Geostatistics offers two fundamental contributions to environmental contaminant exposure assessment: (1) a group of methods to quantitatively describe the spatial distribution of a pollutant and (2) the ability to improve estimates of the exposure point concentration by exploiting the geospatial information present in the data. The second contribution is particularly valuable when exposure estimates must be derived from small data sets, which is often the case in environmental risk assessment. This article addresses two topics related to the use of geostatistics in human and ecological risk assessments performed at hazardous waste sites: (1) the importance of assessing model assumptions when using geostatistics and (2) the use of geostatistics to improve estimates of the exposure point concentration (EPC) in the limited data scenario. The latter topic is approached here by comparing design-based estimators that are familiar to environmental risk assessors (e.g., Land's method) with geostatistics, a model-based estimator. In this report, we summarize the basics of spatial weighting of sample data, kriging, and geostatistical simulation. We then explore the two topics identified above in a case study, using soil lead concentration data from a Superfund site (a skeet and trap range). We also describe several areas where research is needed to advance the use of geostatistics in environmental risk assessment.
Using consensus bayesian network to model the reactive oxygen species regulatory pathway.
Hu, Liangdong; Wang, Limin
2013-01-01
Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.
Using Consensus Bayesian Network to Model the Reactive Oxygen Species Regulatory Pathway
Hu, Liangdong; Wang, Limin
2013-01-01
Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the Bayesian network from microarray data directly. Although large numbers of Bayesian network learning algorithms have been developed, when applying them to learn Bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn Bayesian networks contain too few microarray data. In this paper, we propose a consensus Bayesian network which is constructed by combining Bayesian networks from relevant literatures and Bayesian networks learned from microarray data. It would have a higher accuracy than the Bayesian networks learned from one database. In the experiment, we validated the Bayesian network combination algorithm on several classic machine learning databases and used the consensus Bayesian network to model the 's ROS pathway. PMID:23457624
Reservoir studies with geostatistics to forecast performance
Tang, R.W.; Behrens, R.A.; Emanuel, A.S. )
1991-05-01
In this paper example geostatistics and streamtube applications are presented for waterflood and CO{sub 2} flood in two low-permeability sandstone reservoirs. Thy hybrid approach of combining fine vertical resolution in cross-sectional models with streamtubes resulted in models that showed water channeling and provided realistic performance estimates. Results indicate that the combination of detailed geostatistical cross sections and fine-grid streamtube models offers a systematic approach for realistic performance forecasts.
Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring
Carlos Carroll; Devin S. Johnson; Jeffrey R. Dunk; William J. Zielinski
2010-01-01
Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their dataâs spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and...
Bayesian Estimation of the Logistic Positive Exponent IRT Model
ERIC Educational Resources Information Center
Bolfarine, Heleno; Bazan, Jorge Luis
2010-01-01
A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric…
Metrics for evaluating performance and uncertainty of Bayesian network models
Bruce G. Marcot
2012-01-01
This paper presents a selected set of existing and new metrics for gauging Bayesian network model performance and uncertainty. Selected existing and new metrics are discussed for conducting model sensitivity analysis (variance reduction, entropy reduction, case file simulation); evaluating scenarios (influence analysis); depicting model complexity (numbers of model...
Bayesian Estimation of the Logistic Positive Exponent IRT Model
ERIC Educational Resources Information Center
Bolfarine, Heleno; Bazan, Jorge Luis
2010-01-01
A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric…
Bayesian Models Leveraging Bioactivity and Cytotoxicity Information for Drug Discovery
Ekins, Sean; Reynolds, Robert C.; Kim, Hiyun; Koo, Mi-Sun; Ekonomidis, Marilyn; Talaue, Meliza; Paget, Steve D.; Woolhiser, Lisa K.; Lenaerts, Anne J.; Bunin, Barry A.; Connell, Nancy; Freundlich, Joel S.
2013-01-01
SUMMARY Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (HTS) data, to experimentally validate virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screen a commercial library and experimentally confirm actives with hit rates exceeding typical HTS results by 1-2 orders of magnitude. The first dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery. PMID:23521795
A Bayesian modeling approach for generalized semiparametric structural equation models.
Song, Xin-Yuan; Lu, Zhao-Hua; Cai, Jing-Heng; Ip, Edward Hak-Sing
2013-10-01
In behavioral, biomedical, and psychological studies, structural equation models (SEMs) have been widely used for assessing relationships between latent variables. Regression-type structural models based on parametric functions are often used for such purposes. In many applications, however, parametric SEMs are not adequate to capture subtle patterns in the functions over the entire range of the predictor variable. A different but equally important limitation of traditional parametric SEMs is that they are not designed to handle mixed data types-continuous, count, ordered, and unordered categorical. This paper develops a generalized semiparametric SEM that is able to handle mixed data types and to simultaneously model different functional relationships among latent variables. A structural equation of the proposed SEM is formulated using a series of unspecified smooth functions. The Bayesian P-splines approach and Markov chain Monte Carlo methods are developed to estimate the smooth functions and the unknown parameters. Moreover, we examine the relative benefits of semiparametric modeling over parametric modeling using a Bayesian model-comparison statistic, called the complete deviance information criterion (DIC). The performance of the developed methodology is evaluated using a simulation study. To illustrate the method, we used a data set derived from the National Longitudinal Survey of Youth.
Common quandaries and their practical solutions in Bayesian network modeling
Bruce G. Marcot
2017-01-01
Use and popularity of Bayesian network (BN) modeling has greatly expanded in recent years, but many common problems remain. Here, I summarize key problems in BN model construction and interpretation,along with suggested practical solutions. Problems in BN model construction include parameterizing probability values, variable definition, complex network structures,...
A General Bayesian Model for Testlets: Theory and Applications.
ERIC Educational Resources Information Center
Wang, Xiaohui; Bradlow, Eric T.; Wainer, Howard
2002-01-01
Proposes a modified version of commonly employed item response models in a fully Bayesian framework and obtains inferences under the model using Markov chain Monte Carlo techniques. Demonstrates use of the model in a series of simulations and with operational data from the North Carolina Test of Computer Skills and the Test of Spoken English…
Bayesian non-parametrics and the probabilistic approach to modelling
Ghahramani, Zoubin
2013-01-01
Modelling is fundamental to many fields of science and engineering. A model can be thought of as a representation of possible data one could predict from a system. The probabilistic approach to modelling uses probability theory to express all aspects of uncertainty in the model. The probabilistic approach is synonymous with Bayesian modelling, which simply uses the rules of probability theory in order to make predictions, compare alternative models, and learn model parameters and structure from data. This simple and elegant framework is most powerful when coupled with flexible probabilistic models. Flexibility is achieved through the use of Bayesian non-parametrics. This article provides an overview of probabilistic modelling and an accessible survey of some of the main tools in Bayesian non-parametrics. The survey covers the use of Bayesian non-parametrics for modelling unknown functions, density estimation, clustering, time-series modelling, and representing sparsity, hierarchies, and covariance structure. More specifically, it gives brief non-technical overviews of Gaussian processes, Dirichlet processes, infinite hidden Markov models, Indian buffet processes, Kingman’s coalescent, Dirichlet diffusion trees and Wishart processes. PMID:23277609
Bayesian Network Models for Local Dependence among Observable Outcome Variables
ERIC Educational Resources Information Center
Almond, Russell G.; Mulder, Joris; Hemat, Lisa A.; Yan, Duanli
2009-01-01
Bayesian network models offer a large degree of flexibility for modeling dependence among observables (item outcome variables) from the same task, which may be dependent. This article explores four design patterns for modeling locally dependent observations: (a) no context--ignores dependence among observables; (b) compensatory context--introduces…
On the Bayesian Nonparametric Generalization of IRT-Type Models
ERIC Educational Resources Information Center
San Martin, Ernesto; Jara, Alejandro; Rolin, Jean-Marie; Mouchart, Michel
2011-01-01
We study the identification and consistency of Bayesian semiparametric IRT-type models, where the uncertainty on the abilities' distribution is modeled using a prior distribution on the space of probability measures. We show that for the semiparametric Rasch Poisson counts model, simple restrictions ensure the identification of a general…
Semiparametric Thurstonian Models for Recurrent Choices: A Bayesian Analysis
ERIC Educational Resources Information Center
Ansari, Asim; Iyengar, Raghuram
2006-01-01
We develop semiparametric Bayesian Thurstonian models for analyzing repeated choice decisions involving multinomial, multivariate binary or multivariate ordinal data. Our modeling framework has multiple components that together yield considerable flexibility in modeling preference utilities, cross-sectional heterogeneity and parameter-driven…
Bayesian Network Models for Local Dependence among Observable Outcome Variables
ERIC Educational Resources Information Center
Almond, Russell G.; Mulder, Joris; Hemat, Lisa A.; Yan, Duanli
2009-01-01
Bayesian network models offer a large degree of flexibility for modeling dependence among observables (item outcome variables) from the same task, which may be dependent. This article explores four design patterns for modeling locally dependent observations: (a) no context--ignores dependence among observables; (b) compensatory context--introduces…
On the Bayesian Nonparametric Generalization of IRT-Type Models
ERIC Educational Resources Information Center
San Martin, Ernesto; Jara, Alejandro; Rolin, Jean-Marie; Mouchart, Michel
2011-01-01
We study the identification and consistency of Bayesian semiparametric IRT-type models, where the uncertainty on the abilities' distribution is modeled using a prior distribution on the space of probability measures. We show that for the semiparametric Rasch Poisson counts model, simple restrictions ensure the identification of a general…
Semiparametric Thurstonian Models for Recurrent Choices: A Bayesian Analysis
ERIC Educational Resources Information Center
Ansari, Asim; Iyengar, Raghuram
2006-01-01
We develop semiparametric Bayesian Thurstonian models for analyzing repeated choice decisions involving multinomial, multivariate binary or multivariate ordinal data. Our modeling framework has multiple components that together yield considerable flexibility in modeling preference utilities, cross-sectional heterogeneity and parameter-driven…
Bayesian Case Influence Measures for Statistical Models with Missing Data
Zhu, Hongtu; Ibrahim, Joseph G.; Cho, Hyunsoon; Tang, Niansheng
2011-01-01
We examine three Bayesian case influence measures including the φ-divergence, Cook's posterior mode distance and Cook's posterior mean distance for identifying a set of influential observations for a variety of statistical models with missing data including models for longitudinal data and latent variable models in the absence/presence of missing data. Since it can be computationally prohibitive to compute these Bayesian case influence measures in models with missing data, we derive simple first-order approximations to the three Bayesian case influence measures by using the Laplace approximation formula and examine the applications of these approximations to the identification of influential sets. All of the computations for the first-order approximations can be easily done using Markov chain Monte Carlo samples from the posterior distribution based on the full data. Simulated data and an AIDS dataset are analyzed to illustrate the methodology. PMID:23399928
Bayesian failure probability model sensitivity study. Final report
Not Available
1986-05-30
The Office of the Manager, National Communications System (OMNCS) has developed a system-level approach for estimating the effects of High-Altitude Electromagnetic Pulse (HEMP) on the connectivity of telecommunications networks. This approach incorporates a Bayesian statistical model which estimates the HEMP-induced failure probabilities of telecommunications switches and transmission facilities. The purpose of this analysis is to address the sensitivity of the Bayesian model. This is done by systematically varying two model input parameters--the number of observations, and the equipment failure rates. Throughout the study, a non-informative prior distribution is used. The sensitivity of the Bayesian model to the noninformative prior distribution is investigated from a theoretical mathematical perspective.
Back to basics for Bayesian model building in genomic selection.
Kärkkäinen, Hanni P; Sillanpää, Mikko J
2012-07-01
Numerous Bayesian methods of phenotype prediction and genomic breeding value estimation based on multilocus association models have been proposed. Computationally the methods have been based either on Markov chain Monte Carlo or on faster maximum a posteriori estimation. The demand for more accurate and more efficient estimation has led to the rapid emergence of workable methods, unfortunately at the expense of well-defined principles for Bayesian model building. In this article we go back to the basics and build a Bayesian multilocus association model for quantitative and binary traits with carefully defined hierarchical parameterization of Student's t and Laplace priors. In this treatment we consider alternative model structures, using indicator variables and polygenic terms. We make the most of the conjugate analysis, enabled by the hierarchical formulation of the prior densities, by deriving the fully conditional posterior densities of the parameters and using the acquired known distributions in building fast generalized expectation-maximization estimation algorithms.
Geostatistics and petroleum geology
Hohn, M.E.
1988-01-01
The book reviewed is designed as a practical guide to geostatistics or kriging for the petroleum geologists. The author's aim in the book is to explain geostatistics as a working tool for petroleum geologists through extensive use of case-study material mostly drawn from his own research in gas potential evaluation in West Virginia. Theory and mathematics are pared down to immediate needs.
On the Adequacy of Bayesian Evaluations of Categorization Models: Reply to Vanpaemel and Lee (2012)
ERIC Educational Resources Information Center
Wills, Andy J.; Pothos, Emmanuel M.
2012-01-01
Vanpaemel and Lee (2012) argued, and we agree, that the comparison of formal models can be facilitated by Bayesian methods. However, Bayesian methods neither precede nor supplant our proposals (Wills & Pothos, 2012), as Bayesian methods can be applied both to our proposals and to their polar opposites. Furthermore, the use of Bayesian methods to…
On the Adequacy of Bayesian Evaluations of Categorization Models: Reply to Vanpaemel and Lee (2012)
ERIC Educational Resources Information Center
Wills, Andy J.; Pothos, Emmanuel M.
2012-01-01
Vanpaemel and Lee (2012) argued, and we agree, that the comparison of formal models can be facilitated by Bayesian methods. However, Bayesian methods neither precede nor supplant our proposals (Wills & Pothos, 2012), as Bayesian methods can be applied both to our proposals and to their polar opposites. Furthermore, the use of Bayesian methods to…
Bayesian generalized linear mixed modeling of Tuberculosis using informative priors.
Ojo, Oluwatobi Blessing; Lougue, Siaka; Woldegerima, Woldegebriel Assefa
2017-01-01
TB is rated as one of the world's deadliest diseases and South Africa ranks 9th out of the 22 countries with hardest hit of TB. Although many pieces of research have been carried out on this subject, this paper steps further by inculcating past knowledge into the model, using Bayesian approach with informative prior. Bayesian statistics approach is getting popular in data analyses. But, most applications of Bayesian inference technique are limited to situations of non-informative prior, where there is no solid external information about the distribution of the parameter of interest. The main aim of this study is to profile people living with TB in South Africa. In this paper, identical regression models are fitted for classical and Bayesian approach both with non-informative and informative prior, using South Africa General Household Survey (GHS) data for the year 2014. For the Bayesian model with informative prior, South Africa General Household Survey dataset for the year 2011 to 2013 are used to set up priors for the model 2014.
Bayesian generalized linear mixed modeling of Tuberculosis using informative priors
Woldegerima, Woldegebriel Assefa
2017-01-01
TB is rated as one of the world’s deadliest diseases and South Africa ranks 9th out of the 22 countries with hardest hit of TB. Although many pieces of research have been carried out on this subject, this paper steps further by inculcating past knowledge into the model, using Bayesian approach with informative prior. Bayesian statistics approach is getting popular in data analyses. But, most applications of Bayesian inference technique are limited to situations of non-informative prior, where there is no solid external information about the distribution of the parameter of interest. The main aim of this study is to profile people living with TB in South Africa. In this paper, identical regression models are fitted for classical and Bayesian approach both with non-informative and informative prior, using South Africa General Household Survey (GHS) data for the year 2014. For the Bayesian model with informative prior, South Africa General Household Survey dataset for the year 2011 to 2013 are used to set up priors for the model 2014. PMID:28257437
Bayesian Plackett-Luce Mixture Models for Partially Ranked Data.
Mollica, Cristina; Tardella, Luca
2017-06-01
The elicitation of an ordinal judgment on multiple alternatives is often required in many psychological and behavioral experiments to investigate preference/choice orientation of a specific population. The Plackett-Luce model is one of the most popular and frequently applied parametric distributions to analyze rankings of a finite set of items. The present work introduces a Bayesian finite mixture of Plackett-Luce models to account for unobserved sample heterogeneity of partially ranked data. We describe an efficient way to incorporate the latent group structure in the data augmentation approach and the derivation of existing maximum likelihood procedures as special instances of the proposed Bayesian method. Inference can be conducted with the combination of the Expectation-Maximization algorithm for maximum a posteriori estimation and the Gibbs sampling iterative procedure. We additionally investigate several Bayesian criteria for selecting the optimal mixture configuration and describe diagnostic tools for assessing the fitness of ranking distributions conditionally and unconditionally on the number of ranked items. The utility of the novel Bayesian parametric Plackett-Luce mixture for characterizing sample heterogeneity is illustrated with several applications to simulated and real preference ranked data. We compare our method with the frequentist approach and a Bayesian nonparametric mixture model both assuming the Plackett-Luce model as a mixture component. Our analysis on real datasets reveals the importance of an accurate diagnostic check for an appropriate in-depth understanding of the heterogenous nature of the partial ranking data.
A practical primer on geostatistics
Olea, Ricardo A.
2009-01-01
The Challenge—Most geological phenomena are extraordinarily complex in their interrelationships and vast in their geographical extension. Ordinarily, engineers and geoscientists are faced with corporate or scientific requirements to properly prepare geological models with measurements involving a small fraction of the entire area or volume of interest. Exact description of a system such as an oil reservoir is neither feasible nor economically possible. The results are necessarily uncertain. Note that the uncertainty is not an intrinsic property of the systems; it is the result of incomplete knowledge by the observer.The Aim of Geostatistics—The main objective of geostatistics is the characterization of spatial systems that are incompletely known, systems that are common in geology. A key difference from classical statistics is that geostatistics uses the sampling location of every measurement. Unless the measurements show spatial correlation, the application of geostatistics is pointless. Ordinarily the need for additional knowledge goes beyond a few points, which explains the display of results graphically as fishnet plots, block diagrams, and maps.Geostatistical Methods—Geostatistics is a collection of numerical techniques for the characterization of spatial attributes using primarily two tools: probabilistic models, which are used for spatial data in a manner similar to the way in which time-series analysis characterizes temporal data, or pattern recognition techniques. The probabilistic models are used as a way to handle uncertainty in results away from sampling locations, making a radical departure from alternative approaches like inverse distance estimation methods.Differences with Time Series—On dealing with time-series analysis, users frequently concentrate their attention on extrapolations for making forecasts. Although users of geostatistics may be interested in extrapolation, the methods work at their best interpolating. This simple difference
Bayesian analysis of a disability model for lung cancer survival.
Armero, C; Cabras, S; Castellanos, M E; Perra, S; Quirós, A; Oruezábal, M J; Sánchez-Rubio, J
2016-02-01
Bayesian reasoning, survival analysis and multi-state models are used to assess survival times for Stage IV non-small-cell lung cancer patients and the evolution of the disease over time. Bayesian estimation is done using minimum informative priors for the Weibull regression survival model, leading to an automatic inferential procedure. Markov chain Monte Carlo methods have been used for approximating posterior distributions and the Bayesian information criterion has been considered for covariate selection. In particular, the posterior distribution of the transition probabilities, resulting from the multi-state model, constitutes a very interesting tool which could be useful to help oncologists and patients make efficient and effective decisions. © The Author(s) 2012.
A mixture copula Bayesian network model for multimodal genomic data.
Zhang, Qingyang; Shi, Xuan
2017-01-01
Gaussian Bayesian networks have become a widely used framework to estimate directed associations between joint Gaussian variables, where the network structure encodes the decomposition of multivariate normal density into local terms. However, the resulting estimates can be inaccurate when the normality assumption is moderately or severely violated, making it unsuitable for dealing with recent genomic data such as the Cancer Genome Atlas data. In the present paper, we propose a mixture copula Bayesian network model which provides great flexibility in modeling non-Gaussian and multimodal data for causal inference. The parameters in mixture copula functions can be efficiently estimated by a routine expectation-maximization algorithm. A heuristic search algorithm based on Bayesian information criterion is developed to estimate the network structure, and prediction can be further improved by the best-scoring network out of multiple predictions from random initial values. Our method outperforms Gaussian Bayesian networks and regular copula Bayesian networks in terms of modeling flexibility and prediction accuracy, as demonstrated using a cell signaling data set. We apply the proposed methods to the Cancer Genome Atlas data to study the genetic and epigenetic pathways that underlie serous ovarian cancer.
Involving Stakeholders in Building Integrated Fisheries Models Using Bayesian Methods
NASA Astrophysics Data System (ADS)
Haapasaari, Päivi; Mäntyniemi, Samu; Kuikka, Sakari
2013-06-01
A participatory Bayesian approach was used to investigate how the views of stakeholders could be utilized to develop models to help understand the Central Baltic herring fishery. In task one, we applied the Bayesian belief network methodology to elicit the causal assumptions of six stakeholders on factors that influence natural mortality, growth, and egg survival of the herring stock in probabilistic terms. We also integrated the expressed views into a meta-model using the Bayesian model averaging (BMA) method. In task two, we used influence diagrams to study qualitatively how the stakeholders frame the management problem of the herring fishery and elucidate what kind of causalities the different views involve. The paper combines these two tasks to assess the suitability of the methodological choices to participatory modeling in terms of both a modeling tool and participation mode. The paper also assesses the potential of the study to contribute to the development of participatory modeling practices. It is concluded that the subjective perspective to knowledge, that is fundamental in Bayesian theory, suits participatory modeling better than a positivist paradigm that seeks the objective truth. The methodology provides a flexible tool that can be adapted to different kinds of needs and challenges of participatory modeling. The ability of the approach to deal with small data sets makes it cost-effective in participatory contexts. However, the BMA methodology used in modeling the biological uncertainties is so complex that it needs further development before it can be introduced to wider use in participatory contexts.
Involving stakeholders in building integrated fisheries models using Bayesian methods.
Haapasaari, Päivi; Mäntyniemi, Samu; Kuikka, Sakari
2013-06-01
A participatory Bayesian approach was used to investigate how the views of stakeholders could be utilized to develop models to help understand the Central Baltic herring fishery. In task one, we applied the Bayesian belief network methodology to elicit the causal assumptions of six stakeholders on factors that influence natural mortality, growth, and egg survival of the herring stock in probabilistic terms. We also integrated the expressed views into a meta-model using the Bayesian model averaging (BMA) method. In task two, we used influence diagrams to study qualitatively how the stakeholders frame the management problem of the herring fishery and elucidate what kind of causalities the different views involve. The paper combines these two tasks to assess the suitability of the methodological choices to participatory modeling in terms of both a modeling tool and participation mode. The paper also assesses the potential of the study to contribute to the development of participatory modeling practices. It is concluded that the subjective perspective to knowledge, that is fundamental in Bayesian theory, suits participatory modeling better than a positivist paradigm that seeks the objective truth. The methodology provides a flexible tool that can be adapted to different kinds of needs and challenges of participatory modeling. The ability of the approach to deal with small data sets makes it cost-effective in participatory contexts. However, the BMA methodology used in modeling the biological uncertainties is so complex that it needs further development before it can be introduced to wider use in participatory contexts.
Small Sample Properties of Bayesian Multivariate Autoregressive Time Series Models
ERIC Educational Resources Information Center
Price, Larry R.
2012-01-01
The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…
Accurate phenotyping: Reconciling approaches through Bayesian model averaging
Chen, Carla Chia-Ming; Mengersen, Kerrie Lee
2017-01-01
Genetic research into complex diseases is frequently hindered by a lack of clear biomarkers for phenotype ascertainment. Phenotypes for such diseases are often identified on the basis of clinically defined criteria; however such criteria may not be suitable for understanding the genetic composition of the diseases. Various statistical approaches have been proposed for phenotype definition; however our previous studies have shown that differences in phenotypes estimated using different approaches have substantial impact on subsequent analyses. Instead of obtaining results based upon a single model, we propose a new method, using Bayesian model averaging to overcome problems associated with phenotype definition. Although Bayesian model averaging has been used in other fields of research, this is the first study that uses Bayesian model averaging to reconcile phenotypes obtained using multiple models. We illustrate the new method by applying it to simulated genetic and phenotypic data for Kofendred personality disorder—an imaginary disease with several sub-types. Two separate statistical methods were used to identify clusters of individuals with distinct phenotypes: latent class analysis and grade of membership. Bayesian model averaging was then used to combine the two clusterings for the purpose of subsequent linkage analyses. We found that causative genetic loci for the disease produced higher LOD scores using model averaging than under either individual model separately. We attribute this improvement to consolidation of the cores of phenotype clusters identified using each individual method. PMID:28423058
Small Sample Properties of Bayesian Multivariate Autoregressive Time Series Models
ERIC Educational Resources Information Center
Price, Larry R.
2012-01-01
The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…
Bayesian Finite Mixtures for Nonlinear Modeling of Educational Data.
ERIC Educational Resources Information Center
Tirri, Henry; And Others
A Bayesian approach for finding latent classes in data is discussed. The approach uses finite mixture models to describe the underlying structure in the data and demonstrate that the possibility of using full joint probability models raises interesting new prospects for exploratory data analysis. The concepts and methods discussed are illustrated…
Bayesian Analysis of Order-Statistics Models for Ranking Data.
ERIC Educational Resources Information Center
Yu, Philip L. H.
2000-01-01
Studied the order-statistics models, extending the usual normal order-statistics model into one in which the underlying random variables followed a multivariate normal distribution. Used a Bayesian approach and the Gibbs sampling technique. Applied the proposed method to analyze presidential election data from the American Psychological…
Bayesian Estimation of the DINA Model with Gibbs Sampling
ERIC Educational Resources Information Center
Culpepper, Steven Andrew
2015-01-01
A Bayesian model formulation of the deterministic inputs, noisy "and" gate (DINA) model is presented. Gibbs sampling is employed to simulate from the joint posterior distribution of item guessing and slipping parameters, subject attribute parameters, and latent class probabilities. The procedure extends concepts in Béguin and Glas,…
Bayesian Semiparametric Structural Equation Models with Latent Variables
ERIC Educational Resources Information Center
Yang, Mingan; Dunson, David B.
2010-01-01
Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…
A Bayesian Approach for Analyzing Longitudinal Structural Equation Models
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lu, Zhao-Hua; Hser, Yih-Ing; Lee, Sik-Yum
2011-01-01
This article considers a Bayesian approach for analyzing a longitudinal 2-level nonlinear structural equation model with covariates, and mixed continuous and ordered categorical variables. The first-level model is formulated for measures taken at each time point nested within individuals for investigating their characteristics that are dynamically…
A Bayesian Approach for Analyzing Longitudinal Structural Equation Models
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lu, Zhao-Hua; Hser, Yih-Ing; Lee, Sik-Yum
2011-01-01
This article considers a Bayesian approach for analyzing a longitudinal 2-level nonlinear structural equation model with covariates, and mixed continuous and ordered categorical variables. The first-level model is formulated for measures taken at each time point nested within individuals for investigating their characteristics that are dynamically…
Bayesian Estimation of the DINA Model with Gibbs Sampling
ERIC Educational Resources Information Center
Culpepper, Steven Andrew
2015-01-01
A Bayesian model formulation of the deterministic inputs, noisy "and" gate (DINA) model is presented. Gibbs sampling is employed to simulate from the joint posterior distribution of item guessing and slipping parameters, subject attribute parameters, and latent class probabilities. The procedure extends concepts in Béguin and Glas,…
Bayesian Semiparametric Structural Equation Models with Latent Variables
ERIC Educational Resources Information Center
Yang, Mingan; Dunson, David B.
2010-01-01
Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…
NASA Astrophysics Data System (ADS)
Chahal, M. K.; Brown, D. J.; Brooks, E. S.; Campbell, C.; Cobos, D. R.; Vierling, L. A.
2012-12-01
Estimating soil moisture content continuously over space and time using geo-statistical techniques supports the refinement of process-based watershed hydrology models and the application of soil process models (e.g. biogeochemical models predicting greenhouse gas fluxes) to complex landscapes. In this study, we model soil profile volumetric moisture content for five agricultural fields with loess soils in the Palouse region of Eastern Washington and Northern Idaho. Using a combination of stratification and space-filling techniques, we selected 42 representative and distributed measurement locations in the Cook Agronomy Farm (Pullman, WA) and 12 locations each in four additional grower fields that span the precipitation gradient across the Palouse. At each measurement location, soil moisture was measured on an hourly basis at five different depths (30, 60, 90, 120, and 150 cm) using Decagon 5-TE/5-TM soil moisture sensors (Decagon Devices, Pullman, WA, USA). This data was collected over three years for the Cook Agronomy Farm and one year for each of the grower fields. In addition to ordinary kriging, we explored the correlation of volumetric water content with external, spatially exhaustive indices derived from terrain models, optical remote sensing imagery, and proximal soil sensing data (electromagnetic induction and VisNIR penetrometer)
Bayesian methods for characterizing unknown parameters of material models
Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.
2016-02-04
A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed to characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.
Bayesian methods for characterizing unknown parameters of material models
Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.
2016-02-04
A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less
Bayesian log-periodic model for financial crashes
NASA Astrophysics Data System (ADS)
Rodríguez-Caballero, Carlos Vladimir; Knapik, Oskar
2014-10-01
This paper introduces a Bayesian approach in econophysics literature about financial bubbles in order to estimate the most probable time for a financial crash to occur. To this end, we propose using noninformative prior distributions to obtain posterior distributions. Since these distributions cannot be performed analytically, we develop a Markov Chain Monte Carlo algorithm to draw from posterior distributions. We consider three Bayesian models that involve normal and Student's t-distributions in the disturbances and an AR(1)-GARCH(1,1) structure only within the first case. In the empirical part of the study, we analyze a well-known example of financial bubble - the S&P 500 1987 crash - to show the usefulness of the three methods under consideration and crashes of Merval-94, Bovespa-97, IPCMX-94, Hang Seng-97 using the simplest method. The novelty of this research is that the Bayesian models provide 95% credible intervals for the estimated crash time.
Todd, M. Jason; Lowrance, R. Richard; Goovaerts, Pierre; Vellidis, George; Pringle, Catherine M.
2010-01-01
Blackwater streams are found throughout the Coastal Plain of the southeastern United States and are characterized by a series of instream floodplain swamps that play a critical role in determining the water quality of these systems. Within the state of Georgia, many of these streams are listed in violation of the state’s dissolved oxygen (DO) standard. Previous work has shown that sediment oxygen demand (SOD) is elevated in instream floodplain swamps and due to these areas of intense oxygen demand, these locations play a major role in determining the oxygen balance of the watershed as a whole. This work also showed SOD rates to be positively correlated with the concentration of total organic carbon. This study builds on previous work by using geostatistics and Sequential Gaussian Simulation to investigate the patchiness and distribution of total organic carbon (TOC) at the reach scale. This was achieved by interpolating TOC observations and simulated SOD rates based on a linear regression. Additionally, this study identifies areas within the stream system prone to high SOD at representative 3rd and 5th order locations. Results show that SOD was spatially correlated with the differences in distribution of TOC at both locations and that these differences in distribution are likely a result of the differing hydrologic regime and watershed position. Mapping of floodplain soils at the watershed scale shows that areas of organic sediment are widespread and become more prevalent in higher order streams. DO dynamics within blackwater systems are a complicated mix of natural and anthropogenic influences, but this paper illustrates the importance of instream swamps in enhancing SOD at the watershed scale. Moreover, our study illustrates the influence of instream swamps on oxygen demand while providing support that many of these systems are naturally low in DO. PMID:20938491
Todd, M Jason; Lowrance, R Richard; Goovaerts, Pierre; Vellidis, George; Pringle, Catherine M
2010-10-15
Blackwater streams are found throughout the Coastal Plain of the southeastern United States and are characterized by a series of instream floodplain swamps that play a critical role in determining the water quality of these systems. Within the state of Georgia, many of these streams are listed in violation of the state's dissolved oxygen (DO) standard. Previous work has shown that sediment oxygen demand (SOD) is elevated in instream floodplain swamps and due to these areas of intense oxygen demand, these locations play a major role in determining the oxygen balance of the watershed as a whole. This work also showed SOD rates to be positively correlated with the concentration of total organic carbon. This study builds on previous work by using geostatistics and Sequential Gaussian Simulation to investigate the patchiness and distribution of total organic carbon (TOC) at the reach scale. This was achieved by interpolating TOC observations and simulated SOD rates based on a linear regression. Additionally, this study identifies areas within the stream system prone to high SOD at representative 3rd and 5th order locations. Results show that SOD was spatially correlated with the differences in distribution of TOC at both locations and that these differences in distribution are likely a result of the differing hydrologic regime and watershed position. Mapping of floodplain soils at the watershed scale shows that areas of organic sediment are widespread and become more prevalent in higher order streams. DO dynamics within blackwater systems are a complicated mix of natural and anthropogenic influences, but this paper illustrates the importance of instream swamps in enhancing SOD at the watershed scale. Moreover, our study illustrates the influence of instream swamps on oxygen demand while providing support that many of these systems are naturally low in DO.
Flipo, Nicolas; Jeannée, Nicolas; Poulin, Michel; Even, Stéphanie; Ledoux, Emmanuel
2007-03-01
The objective of this work is to combine several approaches to better understand nitrate fate in the Grand Morin aquifers (2700 km(2)), part of the Seine basin. cawaqs results from the coupling of the hydrogeological model newsam with the hydrodynamic and biogeochemical model of river ProSe. cawaqs is coupled with the agronomic model Stics in order to simulate nitrate migration in basins. First, kriging provides a satisfactory representation of aquifer nitrate contamination from local observations, to set initial conditions for the physically based model. Then associated confidence intervals, derived from data using geostatistics, are used to validate cawaqs results. Results and evaluation obtained from the combination of these approaches are given (period 1977-1988). Then cawaqs is used to simulate nitrate fate for a 20-year period (1977-1996). The mean nitrate concentrations increase in aquifers is 0.09 mgN L(-1)yr(-1), resulting from an average infiltration flux of 3500 kgN.km(-2)yr(-1).
Bayesian comparison of voice coil impedance models for dynamic loudspeakers
NASA Astrophysics Data System (ADS)
Henderson, R. Wesley; Goggans, Paul M.
2017-06-01
Loudspeaker design requires accurate models of driver voice coil impedance. This paper examines three model classes (standard, Leach, and van Maanen) from the audio literature and compares them using Bayesian model comparison via nested sampling. Data is generated from impedance measurements of two commercial loudspeaker drivers. We conclude that, for most design tasks involving these drivers, the van Maanen model with 3 lossy inductance groups is the most appropriate model.
NASA Astrophysics Data System (ADS)
Parasyris, Antonios E.; Spanoudaki, Katerina; Kampanis, Nikolaos A.
2016-04-01
Groundwater level monitoring networks provide essential information for water resources management, especially in areas with significant groundwater exploitation for agricultural and domestic use. Given the high maintenance costs of these networks, development of tools, which can be used by regulators for efficient network design is essential. In this work, a monitoring network optimisation tool is presented. The network optimisation tool couples geostatistical modelling based on the Spartan family variogram with a genetic algorithm method and is applied to Mires basin in Crete, Greece, an area of high socioeconomic and agricultural interest, which suffers from groundwater overexploitation leading to a dramatic decrease of groundwater levels. The purpose of the optimisation tool is to determine which wells to exclude from the monitoring network because they add little or no beneficial information to groundwater level mapping of the area. Unlike previous relevant investigations, the network optimisation tool presented here uses Ordinary Kriging with the recently-established non-differentiable Spartan variogram for groundwater level mapping, which, based on a previous geostatistical study in the area leads to optimal groundwater level mapping. Seventy boreholes operate in the area for groundwater abstraction and water level monitoring. The Spartan variogram gives overall the most accurate groundwater level estimates followed closely by the power-law model. The geostatistical model is coupled to an integer genetic algorithm method programmed in MATLAB 2015a. The algorithm is used to find the set of wells whose removal leads to the minimum error between the original water level mapping using all the available wells in the network and the groundwater level mapping using the reduced well network (error is defined as the 2-norm of the difference between the original mapping matrix with 70 wells and the mapping matrix of the reduced well network). The solution to the
Model-based Bayesian inference for ROC data analysis
NASA Astrophysics Data System (ADS)
Lei, Tianhu; Bae, K. Ty
2013-03-01
This paper presents a study of model-based Bayesian inference to Receiver Operating Characteristics (ROC) data. The model is a simple version of general non-linear regression model. Different from Dorfman model, it uses a probit link function with a covariate variable having zero-one two values to express binormal distributions in a single formula. Model also includes a scale parameter. Bayesian inference is implemented by Markov Chain Monte Carlo (MCMC) method carried out by Bayesian analysis Using Gibbs Sampling (BUGS). Contrast to the classical statistical theory, Bayesian approach considers model parameters as random variables characterized by prior distributions. With substantial amount of simulated samples generated by sampling algorithm, posterior distributions of parameters as well as parameters themselves can be accurately estimated. MCMC-based BUGS adopts Adaptive Rejection Sampling (ARS) protocol which requires the probability density function (pdf) which samples are drawing from be log concave with respect to the targeted parameters. Our study corrects a common misconception and proves that pdf of this regression model is log concave with respect to its scale parameter. Therefore, ARS's requirement is satisfied and a Gaussian prior which is conjugate and possesses many analytic and computational advantages is assigned to the scale parameter. A cohort of 20 simulated data sets and 20 simulations from each data set are used in our study. Output analysis and convergence diagnostics for MCMC method are assessed by CODA package. Models and methods by using continuous Gaussian prior and discrete categorical prior are compared. Intensive simulations and performance measures are given to illustrate our practice in the framework of model-based Bayesian inference using MCMC method.
Wang, F.P.; Dai, J.; Kerans, C.
1998-11-01
In part 1 of this paper, the authors discussed the rock-fabric/petrophysical classes for dolomitized carbonate-ramp rocks, the effects of rock fabric and pore type on petrophysical properties, petrophysical models for analyzing wireline logs, the critical scales for defining geologic framework, and 3-D geologic modeling. Part 2 focuses on geophysical and engineering characterizations, including seismic modeling, reservoir geostatistics, stochastic modeling, and reservoir simulation. Synthetic seismograms of 30 to 200 Hz were generated to study the level of seismic resolution required to capture the high-frequency geologic features in dolomitized carbonate-ramp reservoirs. Outcrop data were collected to investigate effects of sampling interval and scale-up of block size on geostatistical parameters. Semivariogram analysis of outcrop data showed that the sill of log permeability decreases and the correlation length increases with an increase of horizontal block size. Permeability models were generated using conventional linear interpolation, stochastic realizations without stratigraphic constraints, and stochastic realizations with stratigraphic constraints. Simulations of a fine-scale Lawyer Canyon outcrop model were used to study the factors affecting waterflooding performance. Simulation results show that waterflooding performance depends strongly on the geometry and stacking pattern of the rock-fabric units and on the location of production and injection wells.
Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.
Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J
2010-12-01
Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies
Shortlist B: A Bayesian Model of Continuous Speech Recognition
ERIC Educational Resources Information Center
Norris, Dennis; McQueen, James M.
2008-01-01
A Bayesian model of continuous speech recognition is presented. It is based on Shortlist (D. Norris, 1994; D. Norris, J. M. McQueen, A. Cutler, & S. Butterfield, 1997) and shares many of its key assumptions: parallel competitive evaluation of multiple lexical hypotheses, phonologically abstract prelexical and lexical representations, a feedforward…
Measuring Learning Progressions Using Bayesian Modeling in Complex Assessments
ERIC Educational Resources Information Center
Rutstein, Daisy Wise
2012-01-01
This research examines issues regarding model estimation and robustness in the use of Bayesian Inference Networks (BINs) for measuring Learning Progressions (LPs). It provides background information on LPs and how they might be used in practice. Two simulation studies are performed, along with real data examples. The first study examines the case…
Shortlist B: A Bayesian Model of Continuous Speech Recognition
ERIC Educational Resources Information Center
Norris, Dennis; McQueen, James M.
2008-01-01
A Bayesian model of continuous speech recognition is presented. It is based on Shortlist (D. Norris, 1994; D. Norris, J. M. McQueen, A. Cutler, & S. Butterfield, 1997) and shares many of its key assumptions: parallel competitive evaluation of multiple lexical hypotheses, phonologically abstract prelexical and lexical representations, a feedforward…
Measuring Learning Progressions Using Bayesian Modeling in Complex Assessments
ERIC Educational Resources Information Center
Rutstein, Daisy Wise
2012-01-01
This research examines issues regarding model estimation and robustness in the use of Bayesian Inference Networks (BINs) for measuring Learning Progressions (LPs). It provides background information on LPs and how they might be used in practice. Two simulation studies are performed, along with real data examples. The first study examines the case…
Bayesian Inference and Diagnostics for the Three Parameter Logistic Model.
ERIC Educational Resources Information Center
Leonard, Tom; Novick, Melvin R.
This proposal attempts to follow in Allan Birnbaum's tradition by using Bayesian ideas to show that his mental test model possesses even broader applicability than previously realized. Birnbaum's two significant contributions to the theories of statistics and educational testing are: (1) the proof that the sufficiency and conditionality principles…
Niazi, Nabeel K; Bishop, Thomas F A; Singh, Balwant
2011-12-15
This study investigated the spatial variability of total and phosphate-extractable arsenic (As) concentrations in soil adjacent to a cattle-dip site, employing a linear mixed model-based geostatistical approach. The soil samples in the study area (n = 102 in 8.1 m(2)) were taken at the nodes of a 0.30 × 0.35 m grid. The results showed that total As concentration (0-0.2 m depth) and phosphate-extractable As concentration (at depths of 0-0.2, 0.2-0.4, and 0.4-0.6 m) in soil adjacent to the dip varied greatly. Both total and phosphate-extractable soil As concentrations significantly (p = 0.004-0.048) increased toward the cattle-dip. Using the linear mixed model, we suggest that 5 samples are sufficient to assess a dip site for soil (As) contamination (95% confidence interval of ±475.9 mg kg(-1)), but 15 samples (95% confidence interval of ±212.3 mg kg(-1)) is desirable baseline when the ultimate goal is to evaluate the effects of phytoremediation. Such guidelines on sampling requirements are crucial for the assessment of As contamination levels at other cattle-dip sites, and to determine the effect of phytoremediation on soil As.
Hedge, L H; Dafforn, K A; Simpson, S L; Johnston, E L
2017-06-30
Infrastructure associated with coastal communities is likely to not only directly displace natural systems, but also leave environmental footprints' that stretch over multiple scales. Some coastal infrastructure will, there- fore, generate a hidden layer of habitat heterogeneity in sediment systems that is not immediately observable in classical impact assessment frameworks. We examine the hidden heterogeneity associated with one of the most ubiquitous coastal modifications; dense swing moorings fields. Using a model based geo-statistical framework we highlight the variation in sedimentology throughout mooring fields and reference locations. Moorings were correlated with patches of sediment with larger particle sizes, and associated metal(loid) concentrations in these patches were depressed. Our work highlights two important ideas i) mooring fields create a mosaic of habitat in which contamination decreases and grain sizes increase close to moorings, and ii) model- based frameworks provide an information rich, easy-to-interpret way to communicate complex analyses to stakeholders. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huysmans, Marijke; Dassargues, Alain
2012-07-01
SummaryThis study investigates whether fine-scale clay drapes can cause an anisotropic pumping test response at a much larger scale. A pumping test was performed in a sandbar deposit consisting of cross-bedded units composed of materials with different grain sizes and hydraulic conductivities. The measured drawdown values in the different observation wells reveal an anisotropic or elliptically-shaped pumping cone. The major axis of the pumping ellipse is parallel with the strike of cm to m-scale clay drapes that are observed in several outcrops. To determine (1) whether this large-scale anisotropy can be the result of fine-scale clay drapes and (2) whether application of multiple-point geostatistics can improve interpretation of pumping tests, this pumping test is analyzed with a local 3D groundwater model in which fine-scale sedimentary heterogeneity is modelled using multiple-point geostatistics. To reduce CPU and RAM demand of the multiple-point geostatistical simulation step, edge properties indicating the presence of irregularly-shaped surfaces are directly simulated. Results show that the anisotropic pumping cone can be attributed to the presence of the clay drapes. Incorporating fine-scale clay drapes results in a better fit between observed and calculated drawdowns. These results thus show that fine-scale clay drapes can cause an anisotropic pumping test response at a much larger scale and that the combined approach of multiple-point geostatistics and cell edge properties is an efficient method for integrating fine-scale features in larger scale models.
Meyer, Swen; Blaschek, Michael; Duttmann, Rainer; Ludwig, Ralf
2016-02-01
According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The Water Simulation Model (WaSiM) was set up to model current and future hydrological conditions. The availability of measured meteorological and hydrological data is poor as it is common for many Mediterranean catchments. In this study we conducted a soil sampling campaign in the Rio Mannu catchment. We tested different deterministic and hybrid geostatistical interpolation methods on soil textures and tested the performance of the applied models. We calculated a new soil texture map based on the best prediction method. The soil model in WaSiM was set up with the improved new soil information. The simulation results were compared to standard soil parametrization. WaSiMs was validated with spatial evapotranspiration rates using the triangle method (Jiang and Islam, 1999). WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. The climate change impact was assessed based on differences between reference and future time series. The simulated results show a reduction of all hydrological quantities in the future in the spring season. Furthermore simulation results reveal an earlier onset of dry conditions in the catchment. We show that a solid soil model setup based on short-term field measurements can improve long-term modeling results, which is especially important
Modeling Unreliable Observations in Bayesian Networks by Credal Networks
NASA Astrophysics Data System (ADS)
Antonucci, Alessandro; Piatti, Alberto
Bayesian networks are probabilistic graphical models widely employed in AI for the implementation of knowledge-based systems. Standard inference algorithms can update the beliefs about a variable of interest in the network after the observation of some other variables. This is usually achieved under the assumption that the observations could reveal the actual states of the variables in a fully reliable way. We propose a procedure for a more general modeling of the observations, which allows for updating beliefs in different situations, including various cases of unreliable, incomplete, uncertain and also missing observations. This is achieved by augmenting the original Bayesian network with a number of auxiliary variables corresponding to the observations. For a flexible modeling of the observational process, the quantification of the relations between these auxiliary variables and those of the original Bayesian network is done by credal sets, i.e., convex sets of probability mass functions. Without any lack of generality, we show how this can be done by simply estimating the bounds of likelihoods of the observations for the different values of the observed variables. Overall, the Bayesian network is transformed into a credal network, for which a standard updating problem has to be solved. Finally, a number of transformations that might simplify the updating of the resulting credal network is provided.
Empirical evaluation of scoring functions for Bayesian network model selection.
Liu, Zhifa; Malone, Brandon; Yuan, Changhe
2012-01-01
In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world applications rather than from random processes used in previous studies and learning algorithms to select high-scoring structures rather than selecting random models. Other findings of our study support existing work, e.g., large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to the parameter settings; and the fNML performs pretty well on small datasets. We also
Empirical evaluation of scoring functions for Bayesian network model selection
2012-01-01
In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world applications rather than from random processes used in previous studies and learning algorithms to select high-scoring structures rather than selecting random models. Other findings of our study support existing work, e.g., large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to the parameter settings; and the fNML performs pretty well on small datasets. We also
A geostatistical approach to contaminant source identification
NASA Astrophysics Data System (ADS)
Snodgrass, Mark F.; Kitanidis, Peter K.
1997-04-01
A geostatistical approach to contaminant source estimation is presented. The problem is to estimate the release history of a conservative solute given point concentration measurements at some time after the release. A Bayesian framework is followed to derive the best estimate and to quantify the estimation error. The relation between this approach and common regularization and interpolation schemes is discussed. The performance of the method is demonstrated for transport in a simple one-dimensional homogeneous medium, although the approach is directly applicable to transport in two- or three-dimensional domains. The methodology produces a best estimate of the release history and a confidence interval. Conditional realizations of the release history are generated that are useful in visualization and risk assessment. The performance of the method with sparse data and large measurement error is examined. Emphasis is placed on formulating the estimation method in a computationally efficient manner. The method does not require the inversion of matrices whose size depends on the grid size used to resolve the solute release history. The issue of model validation is addressed.
Probabilistic (Bayesian) Modeling of Gene Expression in Transplant Glomerulopathy
Elster, Eric A.; Hawksworth, Jason S.; Cheng, Orlena; Leeser, David B.; Ring, Michael; Tadaki, Douglas K.; Kleiner, David E.; Eberhardt, John S.; Brown, Trevor S.; Mannon, Roslyn B.
2010-01-01
Transplant glomerulopathy (TG) is associated with rapid decline in glomerular filtration rate and poor outcome. We used low-density arrays with a novel probabilistic analysis to characterize relationships between gene transcripts and the development of TG in allograft recipients. Retrospective review identified TG in 10.8% of 963 core biopsies from 166 patients; patients with stable function were studied for comparison. The biopsies were analyzed for expression of 87 genes related to immune function and fibrosis by using real-time PCR, and a Bayesian model was generated and validated to predict histopathology based on gene expression. A total of 57 individual genes were increased in TG compared with stable function biopsies (P < 0.05). The Bayesian analysis identified critical relationships between ICAM-1, IL-10, CCL3, CD86, VCAM-1, MMP-9, MMP-7, and LAMC2 and allograft pathology. Moreover, Bayesian models predicted TG when derived from either immune function (area under the curve [95% confidence interval] of 0.875 [0.675 to 0.999], P = 0.004) or fibrosis (area under the curve [95% confidence interval] of 0.859 [0.754 to 0.963], P < 0.001) gene networks. Critical pathways in the Bayesian models were also analyzed by using the Fisher exact test and had P values <0.005. This study demonstrates that evaluating quantitative gene expression profiles with Bayesian modeling can identify significant transcriptional associations that have the potential to support the diagnostic capability of allograft histology. This integrated approach has broad implications in the field of transplant diagnostics. PMID:20688906
Bayesian model evidence for order selection and correlation testing.
Johnston, Leigh A; Mareels, Iven M Y; Egan, Gary F
2011-01-01
Model selection is a critical component of data analysis procedures, and is particularly difficult for small numbers of observations such as is typical of functional MRI datasets. In this paper we derive two Bayesian evidence-based model selection procedures that exploit the existence of an analytic form for the linear Gaussian model class. Firstly, an evidence information criterion is proposed as a model order selection procedure for auto-regressive models, outperforming the commonly employed Akaike and Bayesian information criteria in simulated data. Secondly, an evidence-based method for testing change in linear correlation between datasets is proposed, which is demonstrated to outperform both the traditional statistical test of the null hypothesis of no correlation change and the likelihood ratio test.
Highfield, Linda; Ward, Michael P; Laffan, Shawn W
2008-01-01
Modeling potential disease spread in wildlife populations is important for predicting, responding to and recovering from a foreign animal disease incursion. To make spatial epidemic predictions, the target animal species of interest must first be represented in space. We conducted a series of simulation experiments to determine how estimates of the spatial distribution of white-tailed deer impact the predicted magnitude and distribution of foot-and-mouth disease (FMD) outbreaks. Outbreaks were simulated using a susceptible-infected-recovered geographic automata model. The study region was a 9-county area (24 000 km(2)) of southern Texas. Methods used for creating deer distributions included dasymetric mapping, kriging and remotely sensed image analysis. The magnitudes and distributions of the predicted outbreaks were evaluated by comparing the median number of deer infected and median area affected (km(2)), respectively. The methods were further evaluated for similar predictive power by comparing the model predicted outputs with unweighted pair group method with arithmetic mean (UPGMA) clustering. There were significant differences in the estimated number of deer in the study region, based on the geostatistical estimation procedure used (range: 385 939-768 493). There were also substantial differences in the predicted magnitude of the FMD outbreaks (range: 1 563-8 896) and land area affected (range: 56-447 km(2)) for the different estimated animal distributions. UPGMA clustering indicated there were two main groups of distributions, and one outlier. We recommend that one distribution from each of these two groups be used to model the range of possible outbreaks. Methods included in cluster 1 (such as county-level disaggregation) could be used in conjunction with any of the methods in cluster 2, which included kriging, NDVI split by ecoregion, or disaggregation at the regional level, to represent the variability in the model predicted outbreak distributions. How
NASA Astrophysics Data System (ADS)
Koike, Katsuaki; Kubo, Taiki; Liu, Chunxue; Masoud, Alaa; Amano, Kenji; Kurihara, Arata; Matsuoka, Toshiyuki; Lanyon, Bill
2015-10-01
This study integrates 3D models of rock fractures from different sources and hydraulic properties aimed at identifying relationships between fractures and permeability. The Tono area in central Japan, chiefly overlain by Cretaceous granite, was examined because of the availability of a unique dataset from deep borehole data at 26 sites. A geostatistical method (GEOFRAC) that can incorporate orientations of sampled data was applied to 50,900 borehole fractures for spatial modeling of fractures over a 12 km by 8 km area, to a depth of 1.5 km. GEOFRAC produced a plausible 3D fracture model, in that the orientations of simulated fractures correspond to those of the sample data and the continuous fractures appeared near a known fault. Small-scale fracture distributions with dominant orientations were also characterized around the two shafts using fracture data from the shaft walls. By integrating the 3D model of hydraulic conductivity using sequential Gaussian simulation with the GEOFRAC fractures from the borehole data, the fracture sizes and directions that strongly affect permeable features were identified. Four fracture-related elements: lineaments from a shaded 10-m DEM, GEOFRAC fractures using the borehole and shaft data, and microcracks from SEM images, were used for correlating fracture attributes at different scales. The consistency of the semivariogram models of distribution densities was identified. Using an experimental relationship between hydraulic conductivity and fracture length, the fractures that typically affect the hydraulic properties at the drift scale were surmised to be in the range 100-200 m. These results are useful for a comprehensive understanding of rock fracture systems and their hydraulic characteristics at multiple scales in a target area.
Uncertainties in ozone concentrations predicted with a Lagrangian photochemical air quality model have been estimated using Bayesian Monte Carlo (BMC) analysis. Bayesian Monte Carlo analysis provides a means of combining subjective "prior" uncertainty estimates developed ...
Bayesian analysis of structural equation models with dichotomous variables.
Lee, Sik-Yum; Song, Xin-Yuan
2003-10-15
Structural equation modelling has been used extensively in the behavioural and social sciences for studying interrelationships among manifest and latent variables. Recently, its uses have been well recognized in medical research. This paper introduces a Bayesian approach to analysing general structural equation models with dichotomous variables. In the posterior analysis, the observed dichotomous data are augmented with the hypothetical missing values, which involve the latent variables in the model and the unobserved continuous measurements underlying the dichotomous data. An algorithm based on the Gibbs sampler is developed for drawing the parameters values and the hypothetical missing values from the joint posterior distributions. Useful statistics, such as the Bayesian estimates and their standard error estimates, and the highest posterior density intervals, can be obtained from the simulated observations. A posterior predictive p-value is used to test the goodness-of-fit of the posited model. The methodology is applied to a study of hypertensive patient non-adherence to medication.
Selecting Bayesian priors for stochastic rates using extended functional models
NASA Astrophysics Data System (ADS)
Gibson, Gavin J.
2003-04-01
We propose an extension to the functional modelling methods described by Dawid and Stone (1982 Ann. Stat. 10 1119-38) that leads naturally to a method for selecting vague parameter priors for Bayesian analyses involving stochastic population models. Motivated by applications from quantum optics and epidemiology, we focus on analysing observed sequences of event times obeying a non-homogeneous Poisson process, although the techniques are more widely applicable. The extended functional modelling approach is illustrated for the particular case of Bayesian estimation of the death rate in the immigration-death model from observation of the death times only. It is shown that the prior selected naturally leads to a well defined posterior density for parameters and avoids some undesirable pathologies reported by Gibson and Renshaw (2001a Inverse Problems 17 455-66, 2001b Stat. Comput. 11 347-58) for the case of exponential priors. Some limitations of the approach are also discussed.
A Bayesian nonlinear mixed-effects disease progression model.
Kim, Seongho; Jang, Hyejeong; Wu, Dongfeng; Abrams, Judith
2015-12-01
A nonlinear mixed-effects approach is developed for disease progression models that incorporate variation in age in a Bayesian framework. We further generalize the probability model for sensitivity to depend on age at diagnosis, time spent in the preclinical state and sojourn time. The developed models are then applied to the Johns Hopkins Lung Project data and the Health Insurance Plan for Greater New York data using Bayesian Markov chain Monte Carlo and are compared with the estimation method that does not consider random-effects from age. Using the developed models, we obtain not only age-specific individual-level distributions, but also population-level distributions of sensitivity, sojourn time and transition probability.
A Bayesian nonlinear mixed-effects disease progression model
Kim, Seongho; Jang, Hyejeong; Wu, Dongfeng; Abrams, Judith
2016-01-01
A nonlinear mixed-effects approach is developed for disease progression models that incorporate variation in age in a Bayesian framework. We further generalize the probability model for sensitivity to depend on age at diagnosis, time spent in the preclinical state and sojourn time. The developed models are then applied to the Johns Hopkins Lung Project data and the Health Insurance Plan for Greater New York data using Bayesian Markov chain Monte Carlo and are compared with the estimation method that does not consider random-effects from age. Using the developed models, we obtain not only age-specific individual-level distributions, but also population-level distributions of sensitivity, sojourn time and transition probability. PMID:26798562
Bayesian non parametric modelling of Higgs pair production
NASA Astrophysics Data System (ADS)
Scarpa, Bruno; Dorigo, Tommaso
2017-03-01
Statistical classification models are commonly used to separate a signal from a background. In this talk we face the problem of isolating the signal of Higgs pair production using the decay channel in which each boson decays into a pair of b-quarks. Typically in this context non parametric methods are used, such as Random Forests or different types of boosting tools. We remain in the same non-parametric framework, but we propose to face the problem following a Bayesian approach. A Dirichlet process is used as prior for the random effects in a logit model which is fitted by leveraging the Polya-Gamma data augmentation. Refinements of the model include the insertion in the simple model of P-splines to relate explanatory variables with the response and the use of Bayesian trees (BART) to describe the atoms in the Dirichlet process.
Spatial Bayesian hierarchical modelling of extreme sea states
NASA Astrophysics Data System (ADS)
Clancy, Colm; O'Sullivan, John; Sweeney, Conor; Dias, Frédéric; Parnell, Andrew C.
2016-11-01
A Bayesian hierarchical framework is used to model extreme sea states, incorporating a latent spatial process to more effectively capture the spatial variation of the extremes. The model is applied to a 34-year hindcast of significant wave height off the west coast of Ireland. The generalised Pareto distribution is fitted to declustered peaks over a threshold given by the 99.8th percentile of the data. Return levels of significant wave height are computed and compared against those from a model based on the commonly-used maximum likelihood inference method. The Bayesian spatial model produces smoother maps of return levels. Furthermore, this approach greatly reduces the uncertainty in the estimates, thus providing information on extremes which is more useful for practical applications.
Exemplar models as a mechanism for performing Bayesian inference.
Shi, Lei; Griffiths, Thomas L; Feldman, Naomi H; Sanborn, Adam N
2010-08-01
Probabilistic models have recently received much attention as accounts of human cognition. However, most research in which probabilistic models have been used has been focused on formulating the abstract problems behind cognitive tasks and their optimal solutions, rather than on mechanisms that could implement these solutions. Exemplar models are a successful class of psychological process models in which an inventory of stored examples is used to solve problems such as identification, categorization, and function learning. We show that exemplar models can be used to perform a sophisticated form of Monte Carlo approximation known as importance sampling and thus provide a way to perform approximate Bayesian inference. Simulations of Bayesian inference in speech perception, generalization along a single dimension, making predictions about everyday events, concept learning, and reconstruction from memory show that exemplar models can often account for human performance with only a few exemplars, for both simple and relatively complex prior distributions. These results suggest that exemplar models provide a possible mechanism for implementing at least some forms of Bayesian inference.
Bayesian calibration of groundwater models with input data uncertainty
NASA Astrophysics Data System (ADS)
Xu, Tianfang; Valocchi, Albert J.; Ye, Ming; Liang, Feng; Lin, Yu-Feng
2017-04-01
Effective water resources management typically relies on numerical models to analyze groundwater flow and solute transport processes. Groundwater models are often subject to input data uncertainty, as some inputs (such as recharge and well pumping rates) are estimated and subject to uncertainty. Current practices of groundwater model calibration often overlook uncertainties in input data; this can lead to biased parameter estimates and compromised predictions. Through a synthetic case study of surface-ground water interaction under changing pumping conditions and land use, we investigate the impacts of uncertain pumping and recharge rates on model calibration and uncertainty analysis. We then present a Bayesian framework of model calibration to handle uncertain input of groundwater models. The framework implements a marginalizing step to account for input data uncertainty when evaluating likelihood. It was found that not accounting for input uncertainty may lead to biased, overconfident parameter estimates because parameters could be over-adjusted to compensate for possible input data errors. Parameter compensation can have deleterious impacts when the calibrated model is used to make forecast under a scenario that is different from calibration conditions. By marginalizing input data uncertainty, the Bayesian calibration approach effectively alleviates parameter compensation and gives more accurate predictions in the synthetic case study. The marginalizing Bayesian method also decomposes prediction uncertainty into uncertainties contributed by parameters, input data, and measurements. The results underscore the need to account for input uncertainty to better inform postmodeling decision making.
Bayesian methods for assessing system reliability: models and computation.
Graves, T. L.; Hamada, Michael,
2004-01-01
There are many challenges with assessing the reliability of a system today. These challenges arise because a system may be aging and full system tests may be too expensive or can no longer be performed. Without full system testing, one must integrate (1) all science and engineering knowledge, models and simulations, (2) information and data at various levels of the system, e.g., subsystems and components and (3) information and data from similar systems, subsystems and components. The analyst must work with various data types and how the data are collected, account for measurement bias and uncertainty, deal with model and simulation uncertainty and incorporate expert knowledge. Bayesian hierarchical modeling provides a rigorous way to combine information from multiple sources and different types of information. However, an obstacle to applying Bayesian methods is the need to develop new software to analyze novel statistical models. We discuss a new statistical modeling environment, YADAS, that facilitates the development of Bayesian statistical analyses. It includes classes that help analysts specify new models, as well as classes that support the creation of new analysis algorithms. We illustrate these concepts using several examples.
A Bayesian semiparametric factor analysis model for subtype identification.
Sun, Jiehuan; Warren, Joshua L; Zhao, Hongyu
2017-04-25
Disease subtype identification (clustering) is an important problem in biomedical research. Gene expression profiles are commonly utilized to infer disease subtypes, which often lead to biologically meaningful insights into disease. Despite many successes, existing clustering methods may not perform well when genes are highly correlated and many uninformative genes are included for clustering due to the high dimensionality. In this article, we introduce a novel subtype identification method in the Bayesian setting based on gene expression profiles. This method, called BCSub, adopts an innovative semiparametric Bayesian factor analysis model to reduce the dimension of the data to a few factor scores for clustering. Specifically, the factor scores are assumed to follow the Dirichlet process mixture model in order to induce clustering. Through extensive simulation studies, we show that BCSub has improved performance over commonly used clustering methods. When applied to two gene expression datasets, our model is able to identify subtypes that are clinically more relevant than those identified from the existing methods.
Bayesian and maximum likelihood estimation of hierarchical response time models
Farrell, Simon; Ludwig, Casimir
2008-01-01
Hierarchical (or multilevel) statistical models have become increasingly popular in psychology in the last few years. We consider the application of multilevel modeling to the ex-Gaussian, a popular model of response times. Single-level estimation is compared with hierarchical estimation of parameters of the ex-Gaussian distribution. Additionally, for each approach maximum likelihood (ML) estimation is compared with Bayesian estimation. A set of simulations and analyses of parameter recovery show that although all methods perform adequately well, hierarchical methods are better able to recover the parameters of the ex-Gaussian by reducing the variability in recovered parameters. At each level, little overall difference was observed between the ML and Bayesian methods. PMID:19001592
Bayesian Estimation of Categorical Dynamic Factor Models
ERIC Educational Resources Information Center
Zhang, Zhiyong; Nesselroade, John R.
2007-01-01
Dynamic factor models have been used to analyze continuous time series behavioral data. We extend 2 main dynamic factor model variations--the direct autoregressive factor score (DAFS) model and the white noise factor score (WNFS) model--to categorical DAFS and WNFS models in the framework of the underlying variable method and illustrate them with…
Bayesian Estimation of Categorical Dynamic Factor Models
ERIC Educational Resources Information Center
Zhang, Zhiyong; Nesselroade, John R.
2007-01-01
Dynamic factor models have been used to analyze continuous time series behavioral data. We extend 2 main dynamic factor model variations--the direct autoregressive factor score (DAFS) model and the white noise factor score (WNFS) model--to categorical DAFS and WNFS models in the framework of the underlying variable method and illustrate them with…
Dummer, T J B; Yu, Z M; Nauta, L; Murimboh, J D; Parker, L
2015-02-01
Arsenic is a naturally occurring class 1 human carcinogen that is widespread in private drinking water wells throughout the province of Nova Scotia in Canada. In this paper we explore the spatial variation in toenail arsenic concentrations (arsenic body burden) in Nova Scotia. We describe the regional distribution of arsenic concentrations in private well water supplies in the province, and evaluate the geological and environmental features associated with higher levels of arsenic in well water. We develop geostatistical process models to predict high toenail arsenic concentrations and high well water arsenic concentrations, which have utility for studies where no direct measurements of arsenic body burden or arsenic exposure are available. 892 men and women who participated in the Atlantic Partnership for Tomorrow's Health Project provided both drinking water and toenail clipping samples. Information on socio-demographic, lifestyle and health factors was obtained with a set of standardized questionnaires. Anthropometric indices and arsenic concentrations in drinking water and toenails were measured. In addition, data on arsenic concentrations in 10,498 private wells were provided by the Nova Scotia Department of Environment. We utilised stepwise multivariable logistic regression modelling to develop separate statistical models to: a) predict high toenail arsenic concentrations (defined as toenail arsenic levels ≥0.12 μg g(-1)) and b) predict high well water arsenic concentrations (defined as well water arsenic levels ≥5.0 μg L(-1)). We found that the geological and environmental information that predicted well water arsenic concentrations can also be used to accurately predict toenail arsenic concentrations. We conclude that geological and environmental factors contributing to arsenic contamination in well water are the major contributing influences on arsenic body burden among Nova Scotia residents. Further studies are warranted to assess appropriate
NASA Astrophysics Data System (ADS)
Tadeu Pereira, Gener; Ribeiro de Oliveira, Ismênia; De Bortoli Teixeira, Daniel; Arantes Camargo, Livia; Rodrigo Panosso, Alan; Marques, José, Jr.
2015-04-01
Phosphorus is one of the limiting nutrients for sugarcane development in Brazilian soils. The spatial variability of this nutrient is great, defined by the properties that control its adsorption and desorption reactions. Spatial estimates to characterize this variability are based on geostatistical interpolation. Thus, the assessment of the uncertainty of estimates associated with the spatial distribution of available P (Plabile) is decisive to optimize the use of phosphate fertilizers. The purpose of this study was to evaluate the performance of sequential Gaussian simulation (sGs) and ordinary kriging (OK) in the modeling of uncertainty in available P estimates. A sampling grid with 626 points was established in a 200-ha experimental sugarcane field in Tabapuã, São Paulo State, Brazil. The soil was sampled in the crossover points of a regular grid with intervals of 50 m. From the observations, 63 points, approximately 10% of sampled points were randomly selected before the geostatistical modeling of the composition of a data set used in the validation process modeling, while the remaining 563 points were used for the predictions variable in a place not sampled. The sGs generated 200 realizations. From the realizations generated, different measures of estimation and uncertainty were obtained. The standard deviation, calculated point to point, all simulated maps provided the map of deviation, used to assess local uncertainty. The visual analysis of maps of the E-type and KO showed that the spatial patterns produced by both methods were similar, however, it was possible to observe the characteristic smoothing effect of the KO especially in regions with extreme values. The Standardized variograms of selected realizations sGs showed both range and model similar to the variogram of the Observed date of Plabile. The variogram KO showed a distinct structure of the observed data, underestimating the variability over short distances, presenting parabolic behavior near
Bayesian model updating using incomplete modal data without mode matching
NASA Astrophysics Data System (ADS)
Sun, Hao; Büyüköztürk, Oral
2016-04-01
This study investigates a new probabilistic strategy for model updating using incomplete modal data. A hierarchical Bayesian inference is employed to model the updating problem. A Markov chain Monte Carlo technique with adaptive random-work steps is used to draw parameter samples for uncertainty quantification. Mode matching between measured and predicted modal quantities is not required through model reduction. We employ an iterated improved reduced system technique for model reduction. The reduced model retains the dynamic features as close as possible to those of the model before reduction. The proposed algorithm is finally validated by an experimental example.
Application of a predictive Bayesian model to environmental accounting.
Anex, R P; Englehardt, J D
2001-03-30
Environmental accounting techniques are intended to capture important environmental costs and benefits that are often overlooked in standard accounting practices. Environmental accounting methods themselves often ignore or inadequately represent large but highly uncertain environmental costs and costs conditioned by specific prior events. Use of a predictive Bayesian model is demonstrated for the assessment of such highly uncertain environmental and contingent costs. The predictive Bayesian approach presented generates probability distributions for the quantity of interest (rather than parameters thereof). A spreadsheet implementation of a previously proposed predictive Bayesian model, extended to represent contingent costs, is described and used to evaluate whether a firm should undertake an accelerated phase-out of its PCB containing transformers. Variability and uncertainty (due to lack of information) in transformer accident frequency and severity are assessed simultaneously using a combination of historical accident data, engineering model-based cost estimates, and subjective judgement. Model results are compared using several different risk measures. Use of the model for incorporation of environmental risk management into a company's overall risk management strategy is discussed.
Application of the Bayesian dynamic survival model in medicine.
He, Jianghua; McGee, Daniel L; Niu, Xufeng
2010-02-10
The Bayesian dynamic survival model (BDSM), a time-varying coefficient survival model from the Bayesian prospective, was proposed in early 1990s but has not been widely used or discussed. In this paper, we describe the model structure of the BDSM and introduce two estimation approaches for BDSMs: the Markov Chain Monte Carlo (MCMC) approach and the linear Bayesian (LB) method. The MCMC approach estimates model parameters through sampling and is computationally intensive. With the newly developed geoadditive survival models and software BayesX, the BDSM is available for general applications. The LB approach is easier in terms of computations but it requires the prespecification of some unknown smoothing parameters. In a simulation study, we use the LB approach to show the effects of smoothing parameters on the performance of the BDSM and propose an ad hoc method for identifying appropriate values for those parameters. We also demonstrate the performance of the MCMC approach compared with the LB approach and a penalized partial likelihood method available in software R packages. A gastric cancer trial is utilized to illustrate the application of the BDSM.
Assessment of substitution model adequacy using frequentist and Bayesian methods.
Ripplinger, Jennifer; Sullivan, Jack
2010-12-01
In order to have confidence in model-based phylogenetic methods, such as maximum likelihood (ML) and Bayesian analyses, one must use an appropriate model of molecular evolution identified using statistically rigorous criteria. Although model selection methods such as the likelihood ratio test and Akaike information criterion are widely used in the phylogenetic literature, model selection methods lack the ability to reject all models if they provide an inadequate fit to the data. There are two methods, however, that assess absolute model adequacy, the frequentist Goldman-Cox (GC) test and Bayesian posterior predictive simulations (PPSs), which are commonly used in conjunction with the multinomial log likelihood test statistic. In this study, we use empirical and simulated data to evaluate the adequacy of common substitution models using both frequentist and Bayesian methods and compare the results with those obtained with model selection methods. In addition, we investigate the relationship between model adequacy and performance in ML and Bayesian analyses in terms of topology, branch lengths, and bipartition support. We show that tests of model adequacy based on the multinomial likelihood often fail to reject simple substitution models, especially when the models incorporate among-site rate variation (ASRV), and normally fail to reject less complex models than those chosen by model selection methods. In addition, we find that PPSs often fail to reject simpler models than the GC test. Use of the simplest substitution models not rejected based on fit normally results in similar but divergent estimates of tree topology and branch lengths. In addition, use of the simplest adequate substitution models can affect estimates of bipartition support, although these differences are often small with the largest differences confined to poorly supported nodes. We also find that alternative assumptions about ASRV can affect tree topology, tree length, and bipartition support. Our
Bayesian Inference of High-Dimensional Dynamical Ocean Models
NASA Astrophysics Data System (ADS)
Lin, J.; Lermusiaux, P. F. J.; Lolla, S. V. T.; Gupta, A.; Haley, P. J., Jr.
2015-12-01
This presentation addresses a holistic set of challenges in high-dimension ocean Bayesian nonlinear estimation: i) predict the probability distribution functions (pdfs) of large nonlinear dynamical systems using stochastic partial differential equations (PDEs); ii) assimilate data using Bayes' law with these pdfs; iii) predict the future data that optimally reduce uncertainties; and (iv) rank the known and learn the new model formulations themselves. Overall, we allow the joint inference of the state, equations, geometry, boundary conditions and initial conditions of dynamical models. Examples are provided for time-dependent fluid and ocean flows, including cavity, double-gyre and Strait flows with jets and eddies. The Bayesian model inference, based on limited observations, is illustrated first by the estimation of obstacle shapes and positions in fluid flows. Next, the Bayesian inference of biogeochemical reaction equations and of their states and parameters is presented, illustrating how PDE-based machine learning can rigorously guide the selection and discovery of complex ecosystem models. Finally, the inference of multiscale bottom gravity current dynamics is illustrated, motivated in part by classic overflows and dense water formation sites and their relevance to climate monitoring and dynamics. This is joint work with our MSEAS group at MIT.
A localization model to localize multiple sources using Bayesian inference
NASA Astrophysics Data System (ADS)
Dunham, Joshua Rolv
Accurate localization of a sound source in a room setting is important in both psychoacoustics and architectural acoustics. Binaural models have been proposed to explain how the brain processes and utilizes the interaural time differences (ITDs) and interaural level differences (ILDs) of sound waves arriving at the ears of a listener in determining source location. Recent work shows that applying Bayesian methods to this problem is proving fruitful. In this thesis, pink noise samples are convolved with head-related transfer functions (HRTFs) and compared to combinations of one and two anechoic speech signals convolved with different HRTFs or binaural room impulse responses (BRIRs) to simulate room positions. Through exhaustive calculation of Bayesian posterior probabilities and using a maximal likelihood approach, model selection will determine the number of sources present, and parameter estimation will result in azimuthal direction of the source(s).
A Bayesian hierarchical model for climate change detection and attribution
NASA Astrophysics Data System (ADS)
Katzfuss, Matthias; Hammerling, Dorit; Smith, Richard L.
2017-06-01
Regression-based detection and attribution methods continue to take a central role in the study of climate change and its causes. Here we propose a novel Bayesian hierarchical approach to this problem, which allows us to address several open methodological questions. Specifically, we take into account the uncertainties in the true temperature change due to imperfect measurements, the uncertainty in the true climate signal under different forcing scenarios due to the availability of only a small number of climate model simulations, and the uncertainty associated with estimating the climate variability covariance matrix, including the truncation of the number of empirical orthogonal functions (EOFs) in this covariance matrix. We apply Bayesian model averaging to assign optimal probabilistic weights to different possible truncations and incorporate all uncertainties into the inference on the regression coefficients. We provide an efficient implementation of our method in a software package and illustrate its use with a realistic application.
Bayesian restoration of ion channel records using hidden Markov models.
Rosales, R; Stark, J A; Fitzgerald, W J; Hladky, S B
2001-03-01
Hidden Markov models have been used to restore recorded signals of single ion channels buried in background noise. Parameter estimation and signal restoration are usually carried out through likelihood maximization by using variants of the Baum-Welch forward-backward procedures. This paper presents an alternative approach for dealing with this inferential task. The inferences are made by using a combination of the framework provided by Bayesian statistics and numerical methods based on Markov chain Monte Carlo stochastic simulation. The reliability of this approach is tested by using synthetic signals of known characteristics. The expectations of the model parameters estimated here are close to those calculated using the Baum-Welch algorithm, but the present methods also yield estimates of their errors. Comparisons of the results of the Bayesian Markov Chain Monte Carlo approach with those obtained by filtering and thresholding demonstrate clearly the superiority of the new methods.
Cross-validation to select Bayesian hierarchical models in phylogenetics.
Duchêne, Sebastián; Duchêne, David A; Di Giallonardo, Francesca; Eden, John-Sebastian; Geoghegan, Jemma L; Holt, Kathryn E; Ho, Simon Y W; Holmes, Edward C
2016-05-26
Recent developments in Bayesian phylogenetic models have increased the range of inferences that can be drawn from molecular sequence data. Accordingly, model selection has become an important component of phylogenetic analysis. Methods of model selection generally consider the likelihood of the data under the model in question. In the context of Bayesian phylogenetics, the most common approach involves estimating the marginal likelihood, which is typically done by integrating the likelihood across model parameters, weighted by the prior. Although this method is accurate, it is sensitive to the presence of improper priors. We explored an alternative approach based on cross-validation that is widely used in evolutionary analysis. This involves comparing models according to their predictive performance. We analysed simulated data and a range of viral and bacterial data sets using a cross-validation approach to compare a variety of molecular clock and demographic models. Our results show that cross-validation can be effective in distinguishing between strict- and relaxed-clock models and in identifying demographic models that allow growth in population size over time. In most of our empirical data analyses, the model selected using cross-validation was able to match that selected using marginal-likelihood estimation. The accuracy of cross-validation appears to improve with longer sequence data, particularly when distinguishing between relaxed-clock models. Cross-validation is a useful method for Bayesian phylogenetic model selection. This method can be readily implemented even when considering complex models where selecting an appropriate prior for all parameters may be difficult.
Slice sampling technique in Bayesian extreme of gold price modelling
NASA Astrophysics Data System (ADS)
Rostami, Mohammad; Adam, Mohd Bakri; Ibrahim, Noor Akma; Yahya, Mohamed Hisham
2013-09-01
In this paper, a simulation study of Bayesian extreme values by using Markov Chain Monte Carlo via slice sampling algorithm is implemented. We compared the accuracy of slice sampling with other methods for a Gumbel model. This study revealed that slice sampling algorithm offers more accurate and closer estimates with less RMSE than other methods . Finally we successfully employed this procedure to estimate the parameters of Malaysia extreme gold price from 2000 to 2011.
A Tutorial Introduction to Bayesian Models of Cognitive Development
2011-01-01
optimal, subject as it is to emotions , heuristics, and biases of many different sorts (e.g., Tversky & Kahneman, 1974). However, even if humans are non...and how that changes over the lifespan. Bayesian models have also had little to say about emotional regulation or psychopathology. This is not to...Werker, J., & Amano, S. (2007). Unsuper- vised learning of vowel categories from infant-directed speech. Proceedings of the National Academy of Sciences
Theory-Based Bayesian Models of Inductive Inference
2010-06-30
Oxford University Press . 28. Griffiths, T. L. and Tenenbaum, J.B. (2007). Two proposals for causal grammar. In A. Gopnik and L. Schulz (eds.). ( ausal Learning. Oxford University Press . 29. Tenenbaum. J. B.. Kemp, C, Shafto. P. (2007). Theory-based Bayesian models for inductive reasoning. In A. Feeney and E. Heit (eds.). Induction. Cambridge University Press. 30. Goodman, N. D., Tenenbaum, J. B., Griffiths. T. L.. & Feldman, J. (2008). Compositionality in rational analysis: Grammar-based induction for concept
How to Address Measurement Noise in Bayesian Model Averaging
NASA Astrophysics Data System (ADS)
Schöniger, A.; Wöhling, T.; Nowak, W.
2014-12-01
When confronted with the challenge of selecting one out of several competing conceptual models for a specific modeling task, Bayesian model averaging is a rigorous choice. It ranks the plausibility of models based on Bayes' theorem, which yields an optimal trade-off between performance and complexity. With the resulting posterior model probabilities, their individual predictions are combined into a robust weighted average and the overall predictive uncertainty (including conceptual uncertainty) can be quantified. This rigorous framework does, however, not yet explicitly consider statistical significance of measurement noise in the calibration data set. This is a major drawback, because model weights might be instable due to the uncertainty in noisy data, which may compromise the reliability of model ranking. We present a new extension to the Bayesian model averaging framework that explicitly accounts for measurement noise as a source of uncertainty for the weights. This enables modelers to assess the reliability of model ranking for a specific application and a given calibration data set. Also, the impact of measurement noise on the overall prediction uncertainty can be determined. Technically, our extension is built within a Monte Carlo framework. We repeatedly perturb the observed data with random realizations of measurement error. Then, we determine the robustness of the resulting model weights against measurement noise. We quantify the variability of posterior model weights as weighting variance. We add this new variance term to the overall prediction uncertainty analysis within the Bayesian model averaging framework to make uncertainty quantification more realistic and "complete". We illustrate the importance of our suggested extension with an application to soil-plant model selection, based on studies by Wöhling et al. (2013, 2014). Results confirm that noise in leaf area index or evaporation rate observations produces a significant amount of weighting
Bayesian Isotonic Regression Dose-response (BIRD) Model.
Li, Wen; Fu, Haoda
2016-12-21
Understanding dose-response relationship is a crucial step in drug development. There are a few parametric methods to estimate dose-response curves, such as the Emax model and the logistic model. These parametric models are easy to interpret and, hence, widely used. However, these models often require the inclusion of patients on high-dose levels; otherwise, the model parameters cannot be reliably estimated. To have robust estimation, nonparametric models are used. However, these models are not able to estimate certain important clinical parameters, such as ED50 and Emax. Furthermore, in many therapeutic areas, dose-response curves can be assumed as non-decreasing functions. This creates an additional challenge for nonparametric methods. In this paper, we propose a new Bayesian isotonic regression dose-response model which features advantages from both parametric and nonparametric models. The ED50 and Emax can be derived from this model. Simulations are provided to evaluate the Bayesian isotonic regression dose-response model performance against two parametric models. We apply this model to a data set from a diabetes dose-finding study.
Shortlist B: a Bayesian model of continuous speech recognition.
Norris, Dennis; McQueen, James M
2008-04-01
A Bayesian model of continuous speech recognition is presented. It is based on Shortlist (D. Norris, 1994; D. Norris, J. M. McQueen, A. Cutler, & S. Butterfield, 1997) and shares many of its key assumptions: parallel competitive evaluation of multiple lexical hypotheses, phonologically abstract prelexical and lexical representations, a feedforward architecture with no online feedback, and a lexical segmentation algorithm based on the viability of chunks of the input as possible words. Shortlist B is radically different from its predecessor in two respects. First, whereas Shortlist was a connectionist model based on interactive-activation principles, Shortlist B is based on Bayesian principles. Second, the input to Shortlist B is no longer a sequence of discrete phonemes; it is a sequence of multiple phoneme probabilities over 3 time slices per segment, derived from the performance of listeners in a large-scale gating study. Simulations are presented showing that the model can account for key findings: data on the segmentation of continuous speech, word frequency effects, the effects of mispronunciations on word recognition, and evidence on lexical involvement in phonemic decision making. The success of Shortlist B suggests that listeners make optimal Bayesian decisions during spoken-word recognition.
Bayesian prediction of placebo analgesia in an instrumental learning model
Jung, Won-Mo; Lee, Ye-Seul; Wallraven, Christian; Chae, Younbyoung
2017-01-01
Placebo analgesia can be primarily explained by the Pavlovian conditioning paradigm in which a passively applied cue becomes associated with less pain. In contrast, instrumental conditioning employs an active paradigm that might be more similar to clinical settings. In the present study, an instrumental conditioning paradigm involving a modified trust game in a simulated clinical situation was used to induce placebo analgesia. Additionally, Bayesian modeling was applied to predict the placebo responses of individuals based on their choices. Twenty-four participants engaged in a medical trust game in which decisions to receive treatment from either a doctor (more effective with high cost) or a pharmacy (less effective with low cost) were made after receiving a reference pain stimulus. In the conditioning session, the participants received lower levels of pain following both choices, while high pain stimuli were administered in the test session even after making the decision. The choice-dependent pain in the conditioning session was modulated in terms of both intensity and uncertainty. Participants reported significantly less pain when they chose the doctor or the pharmacy for treatment compared to the control trials. The predicted pain ratings based on Bayesian modeling showed significant correlations with the actual reports from participants for both of the choice categories. The instrumental conditioning paradigm allowed for the active choice of optional cues and was able to induce the placebo analgesia effect. Additionally, Bayesian modeling successfully predicted pain ratings in a simulated clinical situation that fits well with placebo analgesia induced by instrumental conditioning. PMID:28225816
DISSECTING MAGNETAR VARIABILITY WITH BAYESIAN HIERARCHICAL MODELS
Huppenkothen, Daniela; Elenbaas, Chris; Watts, Anna L.; Horst, Alexander J. van der; Brewer, Brendon J.; Hogg, David W.; Murray, Iain; Frean, Marcus; Levin, Yuri; Kouveliotou, Chryssa
2015-09-01
Neutron stars are a prime laboratory for testing physical processes under conditions of strong gravity, high density, and extreme magnetic fields. Among the zoo of neutron star phenomena, magnetars stand out for their bursting behavior, ranging from extremely bright, rare giant flares to numerous, less energetic recurrent bursts. The exact trigger and emission mechanisms for these bursts are not known; favored models involve either a crust fracture and subsequent energy release into the magnetosphere, or explosive reconnection of magnetic field lines. In the absence of a predictive model, understanding the physical processes responsible for magnetar burst variability is difficult. Here, we develop an empirical model that decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. The cascades of spikes that we model might be formed by avalanches of reconnection, or crust rupture aftershocks. Using Markov Chain Monte Carlo sampling augmented with reversible jumps between models with different numbers of parameters, we characterize the posterior distributions of the model parameters and the number of components per burst. We relate these model parameters to physical quantities in the system, and show for the first time that the variability within a burst does not conform to predictions from ideas of self-organized criticality. We also examine how well the properties of the spikes fit the predictions of simplified cascade models for the different trigger mechanisms.
AIC, BIC, Bayesian evidence against the interacting dark energy model
NASA Astrophysics Data System (ADS)
Szydłowski, Marek; Krawiec, Adam; Kurek, Aleksandra; Kamionka, Michał
2015-01-01
Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting CDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative—the CDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam's principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), , baryon acoustic oscillation, the Alcock-Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting CDM model when compared to the CDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the CDM model. Given the weak or almost non-existing support for the interacting CDM model and bearing in mind Occam's razor we are inclined to reject this model.
A Bayesian Nonparametric Meta-Analysis Model
ERIC Educational Resources Information Center
Karabatsos, George; Talbott, Elizabeth; Walker, Stephen G.
2015-01-01
In a meta-analysis, it is important to specify a model that adequately describes the effect-size distribution of the underlying population of studies. The conventional normal fixed-effect and normal random-effects models assume a normal effect-size population distribution, conditionally on parameters and covariates. For estimating the mean overall…
A Bayesian Nonparametric Meta-Analysis Model
ERIC Educational Resources Information Center
Karabatsos, George; Talbott, Elizabeth; Walker, Stephen G.
2015-01-01
In a meta-analysis, it is important to specify a model that adequately describes the effect-size distribution of the underlying population of studies. The conventional normal fixed-effect and normal random-effects models assume a normal effect-size population distribution, conditionally on parameters and covariates. For estimating the mean overall…
Matheron, G.; Armstrong, M.
1987-01-01
The objective of this volume of contributed chapters is to present a series of applications of geostatistics. These range from a careful variographic analysis on uranium data, through detailed studies on geologically complex deposits, right up to the latest nonlinear methods applied to deposits with highly skewed data contributions. Applications of new techniques such as the external drift method for combining well data with seismic information have also been included. The volume emphasizes geostatistics in practice. Notation has been kept to a minimum and mathematical details have been relegated to annexes.
Bayesian Transformation Models for Multivariate Survival Data
DE CASTRO, MÁRIO; CHEN, MING-HUI; IBRAHIM, JOSEPH G.; KLEIN, JOHN P.
2014-01-01
In this paper we propose a general class of gamma frailty transformation models for multivariate survival data. The transformation class includes the commonly used proportional hazards and proportional odds models. The proposed class also includes a family of cure rate models. Under an improper prior for the parameters, we establish propriety of the posterior distribution. A novel Gibbs sampling algorithm is developed for sampling from the observed data posterior distribution. A simulation study is conducted to examine the properties of the proposed methodology. An application to a data set from a cord blood transplantation study is also reported. PMID:24904194
NASA Astrophysics Data System (ADS)
Jensen, K. H.; He, X.; Sonnenborg, T. O.; Jørgensen, F.
2016-12-01
Multiple-point geostatistical simulation (MPS) of the geological structure has become popular in recent years in groundwater modeling. The method derives multi-point based structural information from a training image (TI) and as such is superior to the traditional two-point based geostatistical approach. Its application in 3D simulations has been constrained by the difficulty of constructing 3D TI. High resolution 3D electromagnetic data can be used for defining a TI but the data can also be used as secondary data for soft conditioning. An alternative approach for derived a TI is to use the object-based unconditional simulation program TiGenerator. In this study we present different MPS simulations of the geological structure for a site in Denmark based on different scenarios regarding TI and soft conditioning. The generated geostatistical realizations are used for developing groundwater models based on MODFLOW and each of these models is calibrated against hydraulic head measurements using the inversion code PEST. Based on the calibrated flow models the particle tracking code MODPATH is used to simulate probabilistic capture zones for abstraction wells. By comparing simulations of groundwater flow and probabilistic capture zone, comparable results are obtained based on TI directly derived from high resolution geophysical data and generated by theTiGenerator even for the probabilistic capture zones, which are highly sensitive to the geological structure. The study further suggests that soft conditioning in MPS is an effective way of integrating secondary data such as 3D airborne electromagnetic data (SkyTEM) leading to improved estimations of the geological structure as evidenced by the resulting hydraulic parameter values. However, care should be taken when the same data source is used for defining the TI and for soft conditioning as this may lead reduction in the uncertainty estimation.
3-D model-based Bayesian classification
Soenneland, L.; Tenneboe, P.; Gehrmann, T.; Yrke, O.
1994-12-31
The challenging task of the interpreter is to integrate different pieces of information and combine them into an earth model. The sophistication level of this earth model might vary from the simplest geometrical description to the most complex set of reservoir parameters related to the geometrical description. Obviously the sophistication level also depend on the completeness of the available information. The authors describe the interpreter`s task as a mapping between the observation space and the model space. The information available to the interpreter exists in observation space and the task is to infer a model in model-space. It is well-known that this inversion problem is non-unique. Therefore any attempt to find a solution depend son constraints being added in some manner. The solution will obviously depend on which constraints are introduced and it would be desirable to allow the interpreter to modify the constraints in a problem-dependent manner. They will present a probabilistic framework that gives the interpreter the tools to integrate the different types of information and produce constrained solutions. The constraints can be adapted to the problem at hand.
GY SAMPLING THEORY AND GEOSTATISTICS: ALTERNATE MODELS OF VARIABILITY IN CONTINUOUS MEDIA
In the sampling theory developed by Pierre Gy, sample variability is modeled as the sum of a set of seven discrete error components. The variogram used in geostatisties provides an alternate model in which several of Gy's error components are combined in a continuous mode...
GY SAMPLING THEORY AND GEOSTATISTICS: ALTERNATE MODELS OF VARIABILITY IN CONTINUOUS MEDIA
In the sampling theory developed by Pierre Gy, sample variability is modeled as the sum of a set of seven discrete error components. The variogram used in geostatisties provides an alternate model in which several of Gy's error components are combined in a continuous mode...
Accurate model selection of relaxed molecular clocks in bayesian phylogenetics.
Baele, Guy; Li, Wai Lok Sibon; Drummond, Alexei J; Suchard, Marc A; Lemey, Philippe
2013-02-01
Recent implementations of path sampling (PS) and stepping-stone sampling (SS) have been shown to outperform the harmonic mean estimator (HME) and a posterior simulation-based analog of Akaike's information criterion through Markov chain Monte Carlo (AICM), in bayesian model selection of demographic and molecular clock models. Almost simultaneously, a bayesian model averaging approach was developed that avoids conditioning on a single model but averages over a set of relaxed clock models. This approach returns estimates of the posterior probability of each clock model through which one can estimate the Bayes factor in favor of the maximum a posteriori (MAP) clock model; however, this Bayes factor estimate may suffer when the posterior probability of the MAP model approaches 1. Here, we compare these two recent developments with the HME, stabilized/smoothed HME (sHME), and AICM, using both synthetic and empirical data. Our comparison shows reassuringly that MAP identification and its Bayes factor provide similar performance to PS and SS and that these approaches considerably outperform HME, sHME, and AICM in selecting the correct underlying clock model. We also illustrate the importance of using proper priors on a large set of empirical data sets.
Bayesian Thurstonian models for ranking data using JAGS.
Johnson, Timothy R; Kuhn, Kristine M
2013-09-01
A Thurstonian model for ranking data assumes that observed rankings are consistent with those of a set of underlying continuous variables. This model is appealing since it renders ranking data amenable to familiar models for continuous response variables-namely, linear regression models. To date, however, the use of Thurstonian models for ranking data has been very rare in practice. One reason for this may be that inferences based on these models require specialized technical methods. These methods have been developed to address computational challenges involved in these models but are not easy to implement without considerable technical expertise and are not widely available in software packages. To address this limitation, we show that Bayesian Thurstonian models for ranking data can be very easily implemented with the JAGS software package. We provide JAGS model files for Thurstonian ranking models for general use, discuss their implementation, and illustrate their use in analyses.
Bayesian multi-scale modeling for aggregated disease mapping data.
Aregay, Mehreteab; Lawson, Andrew B; Faes, Christel; Kirby, Russell S
2015-09-29
In disease mapping, a scale effect due to an aggregation of data from a finer resolution level to a coarser level is a common phenomenon. This article addresses this issue using a hierarchical Bayesian modeling framework. We propose four different multiscale models. The first two models use a shared random effect that the finer level inherits from the coarser level. The third model assumes two independent convolution models at the finer and coarser levels. The fourth model applies a convolution model at the finer level, but the relative risk at the coarser level is obtained by aggregating the estimates at the finer level. We compare the models using the deviance information criterion (DIC) and Watanabe-Akaike information criterion (WAIC) that are applied to real and simulated data. The results indicate that the models with shared random effects outperform the other models on a range of criteria.
Bayesian Networks for Modeling Dredging Decisions
2011-10-01
comments and discussions on modeling of dredging activities. Dr . Andrew F. Casper of the Aquatic Ecology and Invasive Species Branch, Ecosystem Evaluation...report was written by Dr . Martin T. Schultz, Environmental Risk Assessment Branch, Environmental Processes and Engineering Division (EPED...Environmental Laboratory (EL); Thomas D. Borrowman, Environmental Engineering Branch, EPED, EL; and Dr . Mitchell J. Small, Department of Civil and Environmental
A Bayesian Random Effects Model for Testlets.
ERIC Educational Resources Information Center
Bradlow, Eric T.; Wainer, Howard; Wang, Xiaohui
1999-01-01
Proposes a parametric approach that involves a modification of standard Item Response Theory models that explicitly accounts for the nesting of items within the same testlets and that can be applied to multiple-choice sections comprising a mixture of independent items and testlets. (Author/SLD)
Predicting coastal cliff erosion using a Bayesian probabilistic model
Hapke, Cheryl J.; Plant, Nathaniel G.
2010-01-01
Regional coastal cliff retreat is difficult to model due to the episodic nature of failures and the along-shore variability of retreat events. There is a growing demand, however, for predictive models that can be used to forecast areas vulnerable to coastal erosion hazards. Increasingly, probabilistic models are being employed that require data sets of high temporal density to define the joint probability density function that relates forcing variables (e.g. wave conditions) and initial conditions (e.g. cliff geometry) to erosion events. In this study we use a multi-parameter Bayesian network to investigate correlations between key variables that control and influence variations in cliff retreat processes. The network uses Bayesian statistical methods to estimate event probabilities using existing observations. Within this framework, we forecast the spatial distribution of cliff retreat along two stretches of cliffed coast in Southern California. The input parameters are the height and slope of the cliff, a descriptor of material strength based on the dominant cliff-forming lithology, and the long-term cliff erosion rate that represents prior behavior. The model is forced using predicted wave impact hours. Results demonstrate that the Bayesian approach is well-suited to the forward modeling of coastal cliff retreat, with the correct outcomes forecast in 70–90% of the modeled transects. The model also performs well in identifying specific locations of high cliff erosion, thus providing a foundation for hazard mapping. This approach can be employed to predict cliff erosion at time-scales ranging from storm events to the impacts of sea-level rise at the century-scale.
Calibrating Subjective Probabilities Using Hierarchical Bayesian Models
NASA Astrophysics Data System (ADS)
Merkle, Edgar C.
A body of psychological research has examined the correspondence between a judge's subjective probability of an event's outcome and the event's actual outcome. The research generally shows that subjective probabilities are noisy and do not match the "true" probabilities. However, subjective probabilities are still useful for forecasting purposes if they bear some relationship to true probabilities. The purpose of the current research is to exploit relationships between subjective probabilities and outcomes to create improved, model-based probabilities for forecasting. Once the model has been trained in situations where the outcome is known, it can then be used in forecasting situations where the outcome is unknown. These concepts are demonstrated using experimental psychology data, and potential applications are discussed.
Bayesian calibration of hyperelastic constitutive models of soft tissue.
Madireddy, Sandeep; Sista, Bhargava; Vemaganti, Kumar
2016-06-01
There is inherent variability in the experimental response used to characterize the hyperelastic mechanical response of soft tissues. This has to be accounted for while estimating the parameters in the constitutive models to obtain reliable estimates of the quantities of interest. The traditional least squares method of parameter estimation does not give due importance to this variability. We use a Bayesian calibration framework based on nested Monte Carlo sampling to account for the variability in the experimental data and its effect on the estimated parameters through a systematic probability-based treatment. We consider three different constitutive models to represent the hyperelastic nature of soft tissue: Mooney-Rivlin model, exponential model, and Ogden model. Three stress-strain data sets corresponding to the deformation of agarose gel, bovine liver tissue, and porcine brain tissue are considered. Bayesian fits and parameter estimates are compared with the corresponding least squares values. Finally, we propagate the uncertainty in the parameters to a quantity of interest (QoI), namely the force-indentation response, to study the effect of model form on the values of the QoI. Our results show that the quality of the fit alone is insufficient to determine the adequacy of the model, and due importance has to be given to the maximum likelihood value, the landscape of the likelihood distribution, and model complexity. Copyright © 2015 Elsevier Ltd. All rights reserved.
DPpackage: Bayesian Semi- and Nonparametric Modeling in R
Jara, Alejandro; Hanson, Timothy E.; Quintana, Fernando A.; Müller, Peter; Rosner, Gary L.
2011-01-01
Data analysis sometimes requires the relaxation of parametric assumptions in order to gain modeling flexibility and robustness against mis-specification of the probability model. In the Bayesian context, this is accomplished by placing a prior distribution on a function space, such as the space of all probability distributions or the space of all regression functions. Unfortunately, posterior distributions ranging over function spaces are highly complex and hence sampling methods play a key role. This paper provides an introduction to a simple, yet comprehensive, set of programs for the implementation of some Bayesian non- and semi-parametric models in R, DPpackage. Currently DPpackage includes models for marginal and conditional density estimation, ROC curve analysis, interval-censored data, binary regression data, item response data, longitudinal and clustered data using generalized linear mixed models, and regression data using generalized additive models. The package also contains functions to compute pseudo-Bayes factors for model comparison, and for eliciting the precision parameter of the Dirichlet process prior. To maximize computational efficiency, the actual sampling for each model is carried out using compiled FORTRAN. PMID:21796263
Mapping soil organic carbon stocks by robust geostatistical and boosted regression models
NASA Astrophysics Data System (ADS)
Nussbaum, Madlene; Papritz, Andreas; Baltensweiler, Andri; Walthert, Lorenz
2013-04-01
Carbon (C) sequestration in forests offsets greenhouse gas emissions. Therefore, quantifying C stocks and fluxes in forest ecosystems is of interest for greenhouse gas reporting according to the Kyoto protocol. In Switzerland, the National Forest Inventory offers comprehensive data to quantify the aboveground forest biomass and its change in time. Estimating stocks of soil organic C (SOC) in forests is more difficult because the variables needed to quantify stocks vary strongly in space and precise quantification of some of them is very costly. Based on data from 1'033 plots we modeled SOC stocks of the organic layer and the mineral soil to depths of 30 cm and 100 cm for the Swiss forested area. For the statistical modeling a broad range of covariates were available: Climate data (e. g. precipitation, temperature), two elevation models (resolutions 25 and 2 m) with respective terrain attributes and spectral reflectance data representing vegetation. Furthermore, the main mapping units of an overview soil map and a coarse scale geological map were used to coarsely represent the parent material of the soils. The selection of important covariates for SOC stocks modeling out of a large set was a major challenge for the statistical modeling. We used two approaches to deal with this problem: 1) A robust restricted maximum likelihood method to fit linear regression model with spatially correlated errors. The large number of covariates was first reduced by LASSO (Least Absolute Shrinkage and Selection Operator) and then further narrowed down to a parsimonious set of important covariates by cross-validation of the robustly fitted model. To account for nonlinear dependencies of the response on the covariates interaction terms of the latter were included in model if this improved the fit. 2) A boosted structured regression model with componentwise linear least squares or componentwise smoothing splines as base procedures. The selection of important covariates was done by the
Estimating anatomical trajectories with Bayesian mixed-effects modeling.
Ziegler, G; Penny, W D; Ridgway, G R; Ourselin, S; Friston, K J
2015-11-01
We introduce a mass-univariate framework for the analysis of whole-brain structural trajectories using longitudinal Voxel-Based Morphometry data and Bayesian inference. Our approach to developmental and aging longitudinal studies characterizes heterogeneous structural growth/decline between and within groups. In particular, we propose a probabilistic generative model that parameterizes individual and ensemble average changes in brain structure using linear mixed-effects models of age and subject-specific covariates. Model inversion uses Expectation Maximization (EM), while voxelwise (empirical) priors on the size of individual differences are estimated from the data. Bayesian inference on individual and group trajectories is realized using Posterior Probability Maps (PPM). In addition to parameter inference, the framework affords comparisons of models with varying combinations of model order for fixed and random effects using model evidence. We validate the model in simulations and real MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) project. We further demonstrate how subject specific characteristics contribute to individual differences in longitudinal volume changes in healthy subjects, Mild Cognitive Impairment (MCI), and Alzheimer's Disease (AD). Copyright © 2015. Published by Elsevier Inc.
Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.
Hack, C Eric
2006-04-17
Physiologically based toxicokinetic (PBTK) and toxicodynamic (TD) models of bromate in animals and humans would improve our ability to accurately estimate the toxic doses in humans based on available animal studies. These mathematical models are often highly parameterized and must be calibrated in order for the model predictions of internal dose to adequately fit the experimentally measured doses. Highly parameterized models are difficult to calibrate and it is difficult to obtain accurate estimates of uncertainty or variability in model parameters with commonly used frequentist calibration methods, such as maximum likelihood estimation (MLE) or least squared error approaches. The Bayesian approach called Markov chain Monte Carlo (MCMC) analysis can be used to successfully calibrate these complex models. Prior knowledge about the biological system and associated model parameters is easily incorporated in this approach in the form of prior parameter distributions, and the distributions are refined or updated using experimental data to generate posterior distributions of parameter estimates. The goal of this paper is to give the non-mathematician a brief description of the Bayesian approach and Markov chain Monte Carlo analysis, how this technique is used in risk assessment, and the issues associated with this approach.
Estimating anatomical trajectories with Bayesian mixed-effects modeling
Ziegler, G.; Penny, W.D.; Ridgway, G.R.; Ourselin, S.; Friston, K.J.
2015-01-01
We introduce a mass-univariate framework for the analysis of whole-brain structural trajectories using longitudinal Voxel-Based Morphometry data and Bayesian inference. Our approach to developmental and aging longitudinal studies characterizes heterogeneous structural growth/decline between and within groups. In particular, we propose a probabilistic generative model that parameterizes individual and ensemble average changes in brain structure using linear mixed-effects models of age and subject-specific covariates. Model inversion uses Expectation Maximization (EM), while voxelwise (empirical) priors on the size of individual differences are estimated from the data. Bayesian inference on individual and group trajectories is realized using Posterior Probability Maps (PPM). In addition to parameter inference, the framework affords comparisons of models with varying combinations of model order for fixed and random effects using model evidence. We validate the model in simulations and real MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) project. We further demonstrate how subject specific characteristics contribute to individual differences in longitudinal volume changes in healthy subjects, Mild Cognitive Impairment (MCI), and Alzheimer's Disease (AD). PMID:26190405
Approximate Bayesian Computation for Diagnostic Model Calibration and Evaluation
NASA Astrophysics Data System (ADS)
Vrugt, J. A.; Sadegh, M.
2013-12-01
In this talk I will discuss theory, concepts and applications of Approximate Bayesian Computation (ABC) for diagnostic model calibration and evaluation. This statistical methodology relaxes the need for an explicit likelihood function in favor of one or multiple different summary statistics rooted in hydrologic theory that together have a more clear and compelling diagnostic power than some average measure of the size of the error residuals. A few illustrative case studies are used to demonstrate that ABC is relatively easy to implement, and readily employs signature based indices to analyze and pinpoint which part of the model is malfunctioning and in need of further improvement.
A Monte Carlo method for Bayesian inference in frailty models.
Clayton, D G
1991-06-01
Many analyses in epidemiological and prognostic studies and in studies of event history data require methods that allow for unobserved covariates or "frailties." Clayton and Cuzick (1985, Journal of the Royal Statistical Society, Series A 148, 82-117) proposed a generalization of the proportional hazards model that implemented such random effects, but the proof of the asymptotic properties of the method remains elusive, and practical experience suggests that the likelihoods may be markedly nonquadratic. This paper sets out a Bayesian representation of the model in the spirit of Kalbfleisch (1978, Journal of the Royal Statistical Society, Series B 40, 214-221) and discusses inference using Monte Carlo methods.
Lemouzy, P.
1997-08-01
In field delineation phase, uncertainty in hydrocarbon reservoir descriptions is large. To quickly examine the impact of this uncertainty on production performance, it is necessary to evaluate a large number of descriptions in relation to possible production methods (well spacing, injection rate, etc.). The method of using coarse upscaled models was first proposed by Ballin. Unlike other methods (connectivity analysis, tracer simulations), it considers parameters such as PVT, well management, etc. After a detailed review of upscaling issues, applications to water-injection cases (either with balance or imbalance of production, with or without aquifer) and to depletion of an oil reservoir with aquifer coning are presented. Much more important than the method of permeability upscaling far from wells, the need of correct upscaling of numerical well representation is pointed out Methods are proposed to accurately represent fluids volumes in coarse models. Simple methods to upscale relative permeabilities, and methods to efficiently correct numerical dispersion are proposed. Good results are obtained for water injection. The coarse upscaling method allows the performance of sensitivity analyses on model parameters at a much lower CPU cost than comprehensive simulations. Models representing extreme behaviors can be easily distinguished. For depletion of an oil reservoir showing aquifer coning, however, the method did not work property. It is our opinion that further research is required for upscaling close to wells. We therefore recombined this method for practical use in the case of water injection.
Modeling Women's Menstrual Cycles using PICI Gates in Bayesian Network.
Zagorecki, Adam; Łupińska-Dubicka, Anna; Voortman, Mark; Druzdzel, Marek J
2016-03-01
A major difficulty in building Bayesian network (BN) models is the size of conditional probability tables, which grow exponentially in the number of parents. One way of dealing with this problem is through parametric conditional probability distributions that usually require only a number of parameters that is linear in the number of parents. In this paper, we introduce a new class of parametric models, the Probabilistic Independence of Causal Influences (PICI) models, that aim at lowering the number of parameters required to specify local probability distributions, but are still capable of efficiently modeling a variety of interactions. A subset of PICI models is decomposable and this leads to significantly faster inference as compared to models that cannot be decomposed. We present an application of the proposed method to learning dynamic BNs for modeling a woman's menstrual cycle. We show that PICI models are especially useful for parameter learning from small data sets and lead to higher parameter accuracy than when learning CPTs.
Genealogical Working Distributions for Bayesian Model Testing with Phylogenetic Uncertainty.
Baele, Guy; Lemey, Philippe; Suchard, Marc A
2016-03-01
Marginal likelihood estimates to compare models using Bayes factors frequently accompany Bayesian phylogenetic inference. Approaches to estimate marginal likelihoods have garnered increased attention over the past decade. In particular, the introduction of path sampling (PS) and stepping-stone sampling (SS) into Bayesian phylogenetics has tremendously improved the accuracy of model selection. These sampling techniques are now used to evaluate complex evolutionary and population genetic models on empirical data sets, but considerable computational demands hamper their widespread adoption. Further, when very diffuse, but proper priors are specified for model parameters, numerical issues complicate the exploration of the priors, a necessary step in marginal likelihood estimation using PS or SS. To avoid such instabilities, generalized SS (GSS) has recently been proposed, introducing the concept of "working distributions" to facilitate--or shorten--the integration process that underlies marginal likelihood estimation. However, the need to fix the tree topology currently limits GSS in a coalescent-based framework. Here, we extend GSS by relaxing the fixed underlying tree topology assumption. To this purpose, we introduce a "working" distribution on the space of genealogies, which enables estimating marginal likelihoods while accommodating phylogenetic uncertainty. We propose two different "working" distributions that help GSS to outperform PS and SS in terms of accuracy when comparing demographic and evolutionary models applied to synthetic data and real-world examples. Further, we show that the use of very diffuse priors can lead to a considerable overestimation in marginal likelihood when using PS and SS, while still retrieving the correct marginal likelihood using both GSS approaches. The methods used in this article are available in BEAST, a powerful user-friendly software package to perform Bayesian evolutionary analyses. © The Author(s) 2015. Published by Oxford
Study of TEC fluctuation via stochastic models and Bayesian inversion
NASA Astrophysics Data System (ADS)
Bires, A.; Roininen, L.; Damtie, B.; Nigussie, M.; Vanhamäki, H.
2016-11-01
We propose stochastic processes to be used to model the total electron content (TEC) observation. Based on this, we model the rate of change of TEC (ROT) variation during ionospheric quiet conditions with stationary processes. During ionospheric disturbed conditions, for example, when irregularity in ionospheric electron density distribution occurs, stationarity assumption over long time periods is no longer valid. In these cases, we make the parameter estimation for short time scales, during which we can assume stationarity. We show the relationship between the new method and commonly used TEC characterization parameters ROT and the ROT Index (ROTI). We construct our parametric model within the framework of Bayesian statistical inverse problems and hence give the solution as an a posteriori probability distribution. Bayesian framework allows us to model measurement errors systematically. Similarly, we mitigate variation of TEC due to factors which are not of ionospheric origin, like due to the motion of satellites relative to the receiver, by incorporating a priori knowledge in the Bayesian model. In practical computations, we draw the so-called maximum a posteriori estimates, which are our ROT and ROTI estimates, from the posterior distribution. Because the algorithm allows to estimate ROTI at each observation time, the estimator does not depend on the period of time for ROTI computation. We verify the method by analyzing TEC data recorded by GPS receiver located in Ethiopia (11.6°N, 37.4°E). The results indicate that the TEC fluctuations caused by the ionospheric irregularity can be effectively detected and quantified from the estimated ROT and ROTI values.
NASA Astrophysics Data System (ADS)
Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine
2015-04-01
Rainfall erosivity (R-factor) is among the 6 input factors in estimating soil erosion risk by using the empirical Revised Universal Soil Loss Equation (RUSLE). R-factor is a driving force for soil erosion modelling and potentially can be used in flood risk assessments, landslides susceptibility, post-fire damage assessment, application of agricultural management practices and climate change modelling. The rainfall erosivity is extremely difficult to model at large scale (national, European) due to lack of high temporal resolution precipitation data which cover long-time series. In most cases, R-factor is estimated based on empirical equations which take into account precipitation volume. The Rainfall Erosivity Database on the European Scale (REDES) is the output of an extensive data collection of high resolution precipitation data in the 28 Member States of the European Union plus Switzerland taking place during 2013-2014 in collaboration with national meteorological/environmental services. Due to different temporal resolutions of the data (5, 10, 15, 30, 60 minutes), conversion equations have been applied in order to homogenise the database at 30-minutes interval. The 1,541 stations included in REDES have been interpolated using the Gaussian Process Regression (GPR) model using as covariates the climatic data (monthly precipitation, monthly temperature, wettest/driest month) from WorldClim Database, Digital Elevation Model and latitude/longitude. GPR has been selected among other candidate models (GAM, Regression Kriging) due the best performance both in cross validation (R2=0.63) and in fitting dataset (R2=0.72). The highest uncertainty has been noticed in North-western Scotland, North Sweden and Finland due to limited number of stations in REDES. Also, in highlands such as Alpine arch and Pyrenees the diversity of environmental features forced relatively high uncertainty. The rainfall erosivity map of Europe available at 500m resolution plus the standard error
Two Bayesian tests of the GLOMOsys Model.
Field, Sarahanne M; Wagenmakers, Eric-Jan; Newell, Ben R; Zeelenberg, René; van Ravenzwaaij, Don
2016-12-01
Priming is arguably one of the key phenomena in contemporary social psychology. Recent retractions and failed replication attempts have led to a division in the field between proponents and skeptics and have reinforced the importance of confirming certain priming effects through replication. In this study, we describe the results of 2 preregistered replication attempts of 1 experiment by Förster and Denzler (2012). In both experiments, participants first processed letters either globally or locally, then were tested using a typicality rating task. Bayes factor hypothesis tests were conducted for both experiments: Experiment 1 (N = 100) yielded an indecisive Bayes factor of 1.38, indicating that the in-lab data are 1.38 times more likely to have occurred under the null hypothesis than under the alternative. Experiment 2 (N = 908) yielded a Bayes factor of 10.84, indicating strong support for the null hypothesis that global priming does not affect participants' mean typicality ratings. The failure to replicate this priming effect challenges existing support for the GLOMO(sys) model. (PsycINFO Database Record
Geostatistical modeling of riparian forest microclimate and its implications for sampling
Eskelson, B.N.I.; Anderson, P.D.; Hagar, J.C.; Temesgen, H.
2011-01-01
Predictive models of microclimate under various site conditions in forested headwater stream - riparian areas are poorly developed, and sampling designs for characterizing underlying riparian microclimate gradients are sparse. We used riparian microclimate data collected at eight headwater streams in the Oregon Coast Range to compare ordinary kriging (OK), universal kriging (UK), and kriging with external drift (KED) for point prediction of mean maximum air temperature (Tair). Several topographic and forest structure characteristics were considered as site-specific parameters. Height above stream and distance to stream were the most important covariates in the KED models, which outperformed OK and UK in terms of root mean square error. Sample patterns were optimized based on the kriging variance and the weighted means of shortest distance criterion using the simulated annealing algorithm. The optimized sample patterns outperformed systematic sample patterns in terms of mean kriging variance mainly for small sample sizes. These findings suggest methods for increasing efficiency of microclimate monitoring in riparian areas.
NASA Astrophysics Data System (ADS)
Clark, J. S.; Rizzo, D. M.; Hession, W. C.; Watzin, M. C.; Laible, J. P.
2006-05-01
A two-dimensional hydrodynamic model (River2D) was utilized to evaluate the relationship between geomorphic conditions (as estimated using an existing rapid assessment protocol) and instream habitat quality in small Vermont streams. Six stream reaches ranging in geomorphic condition from good to poor according to the protocols were utilized for this study. We conducted detailed topographic surveys, quantified bed substrate, and measured velocity and discharge values during baseflow conditions. The reach models were calibrated with realistic roughness values based on field observations and pebble counts. After calibration, the weighted usable area (WUA) of habitat was calculated for each stream at three flows (7Q 10, median, and bankfull) using modeled parameters and habitat suitability curves for specific fish species and life stage. Brown trout (Salmo trutta), white sucker (Catostomus commersoni), and common shiner (Notropis cornutus) habitats were predicted using habitat parameters of velocity, depth, and channel substrate type for adult, juvenile, and fry stages. The predictions of reach-averaged WUA show a negative correlation to the geomorphic condition scores, indicating that the often-used rapid protocols, may not directly relate to habitat conditions at the reach spatial scale. However, the areas of high WUA are distributed in a patchy nature throughout the stream. This fluctuation of physical habitat conditions may be more important to classifying habitat than a single reach-averaged WUA score. The spatial distribution of habitat variables is not captured using either the reach-averaged WUA or geomorphic assessment scores to classify streams. Spatial analyses will be used to further evaluate the patchy nature of WUA distributions, and actual data on species distributions in the study streams will be compared to modeled habitat parameters and their spatial patterns.
Bayesian joint modeling of longitudinal and spatial survival AIDS data.
Martins, Rui; Silva, Giovani L; Andreozzi, Valeska
2016-08-30
Joint analysis of longitudinal and survival data has received increasing attention in the recent years, especially for analyzing cancer and AIDS data. As both repeated measurements (longitudinal) and time-to-event (survival) outcomes are observed in an individual, a joint modeling is more appropriate because it takes into account the dependence between the two types of responses, which are often analyzed separately. We propose a Bayesian hierarchical model for jointly modeling longitudinal and survival data considering functional time and spatial frailty effects, respectively. That is, the proposed model deals with non-linear longitudinal effects and spatial survival effects accounting for the unobserved heterogeneity among individuals living in the same region. This joint approach is applied to a cohort study of patients with HIV/AIDS in Brazil during the years 2002-2006. Our Bayesian joint model presents considerable improvements in the estimation of survival times of the Brazilian HIV/AIDS patients when compared with those obtained through a separate survival model and shows that the spatial risk of death is the same across the different Brazilian states. Copyright © 2016 John Wiley & Sons, Ltd.
Bayesian model-based inference of transcription factor activity
Rogers, Simon; Khanin, Raya; Girolami, Mark
2007-01-01
Background In many approaches to the inference and modeling of regulatory interactions using microarray data, the expression of the gene coding for the transcription factor is considered to be an accurate surrogate for the true activity of the protein it produces. There are many instances where this is inaccurate due to post-translational modifications of the transcription factor protein. Inference of the activity of the transcription factor from the expression of its targets has predominantly involved linear models that do not reflect the nonlinear nature of transcription. We extend a recent approach to inferring the transcription factor activity based on nonlinear Michaelis-Menten kinetics of transcription from maximum likelihood to fully Bayesian inference and give an example of how the model can be further developed. Results We present results on synthetic and real microarray data. Additionally, we illustrate how gene and replicate specific delays can be incorporated into the model. Conclusion We demonstrate that full Bayesian inference is appropriate in this application and has several benefits over the maximum likelihood approach, especially when the volume of data is limited. We also show the benefits of using a non-linear model over a linear model, particularly in the case of repression. PMID:17493251
A Bayesian subgroup analysis using collections of ANOVA models.
Liu, Jinzhong; Sivaganesan, Siva; Laud, Purushottam W; Müller, Peter
2017-03-20
We develop a Bayesian approach to subgroup analysis using ANOVA models with multiple covariates, extending an earlier work. We assume a two-arm clinical trial with normally distributed response variable. We also assume that the covariates for subgroup finding are categorical and are a priori specified, and parsimonious easy-to-interpret subgroups are preferable. We represent the subgroups of interest by a collection of models and use a model selection approach to finding subgroups with heterogeneous effects. We develop suitable priors for the model space and use an objective Bayesian approach that yields multiplicity adjusted posterior probabilities for the models. We use a structured algorithm based on the posterior probabilities of the models to determine which subgroup effects to report. Frequentist operating characteristics of the approach are evaluated using simulation. While our approach is applicable in more general cases, we mainly focus on the 2 × 2 case of two covariates each at two levels for ease of presentation. The approach is illustrated using a real data example.
A study of finite mixture model: Bayesian approach on financial time series data
NASA Astrophysics Data System (ADS)
Phoong, Seuk-Yen; Ismail, Mohd Tahir
2014-07-01
Recently, statistician have emphasized on the fitting finite mixture model by using Bayesian method. Finite mixture model is a mixture of distributions in modeling a statistical distribution meanwhile Bayesian method is a statistical method that use to fit the mixture model. Bayesian method is being used widely because it has asymptotic properties which provide remarkable result. In addition, Bayesian method also shows consistency characteristic which means the parameter estimates are close to the predictive distributions. In the present paper, the number of components for mixture model is studied by using Bayesian Information Criterion. Identify the number of component is important because it may lead to an invalid result. Later, the Bayesian method is utilized to fit the k-component mixture model in order to explore the relationship between rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia. Lastly, the results showed that there is a negative effect among rubber price and stock market price for all selected countries.
Welhan, John A.; Farabaugh, Renee L.; Merrick, Melissa J.; Anderson, Steven R.
2007-01-01
The spatial distribution of sediment in the eastern Snake River Plain aquifer was evaluated and modeled to improve the parameterization of hydraulic conductivity (K) for a subregional-scale ground-water flow model being developed by the U.S. Geological Survey. The aquifer is hosted within a layered series of permeable basalts within which intercalated beds of fine-grained sediment constitute local confining units. These sediments have K values as much as six orders of magnitude lower than the most permeable basalt, and previous flow-model calibrations have shown that hydraulic conductivity is sensitive to the proportion of intercalated sediment. Stratigraphic data in the form of sediment thicknesses from 333 boreholes in and around the Idaho National Laboratory were evaluated as grouped subsets of lithologic units (composite units) corresponding to their relative time-stratigraphic position. The results indicate that median sediment abundances of the stratigraphic units below the water table are statistically invariant (stationary) in a spatial sense and provide evidence of stationarity across geologic time, as well. Based on these results, the borehole data were kriged as two-dimensional spatial data sets representing the sediment content of the layers that discretize the ground-water flow model in the uppermost 300 feet of the aquifer. Multiple indicator kriging (mIK) was used to model the geographic distribution of median sediment abundance within each layer by defining the local cumulative frequency distribution (CFD) of sediment via indicator variograms defined at multiple thresholds. The mIK approach is superior to ordinary kriging because it provides a statistically best estimate of sediment abundance (the local median) drawn from the distribution of local borehole data, independent of any assumption of normality. A methodology is proposed for delineating and constraining the assignment of hydraulic conductivity zones for parameter estimation, based on the
Objective Bayesian Comparison of Constrained Analysis of Variance Models.
Consonni, Guido; Paroli, Roberta
2016-10-04
In the social sciences we are often interested in comparing models specified by parametric equality or inequality constraints. For instance, when examining three group means [Formula: see text] through an analysis of variance (ANOVA), a model may specify that [Formula: see text], while another one may state that [Formula: see text], and finally a third model may instead suggest that all means are unrestricted. This is a challenging problem, because it involves a combination of nonnested models, as well as nested models having the same dimension. We adopt an objective Bayesian approach, requiring no prior specification from the user, and derive the posterior probability of each model under consideration. Our method is based on the intrinsic prior methodology, suitably modified to accommodate equality and inequality constraints. Focussing on normal ANOVA models, a comparative assessment is carried out through simulation studies. We also present an application to real data collected in a psychological experiment.
Bayesian model comparison in cosmology with Population Monte Carlo
NASA Astrophysics Data System (ADS)
Kilbinger, Martin; Wraith, Darren; Robert, Christian P.; Benabed, Karim; Cappé, Olivier; Cardoso, Jean-François; Fort, Gersende; Prunet, Simon; Bouchet, François R.
2010-07-01
We use Bayesian model selection techniques to test extensions of the standard flat Λ cold dark matter (ΛCDM) paradigm. Dark-energy and curvature scenarios, and primordial perturbation models are considered. To that end, we calculate the Bayesian evidence in favour of each model using Population Monte Carlo (PMC), a new adaptive sampling technique which was recently applied in a cosmological context. In contrast to the case of other sampling-based inference techniques such as Markov chain Monte Carlo (MCMC), the Bayesian evidence is immediately available from the PMC sample used for parameter estimation without further computational effort, and it comes with an associated error evaluation. Also, it provides an unbiased estimator of the evidence after any fixed number of iterations and it is naturally parallelizable, in contrast with MCMC and nested sampling methods. By comparison with analytical predictions for simulated data, we show that our results obtained with PMC are reliable and robust. The variability in the evidence evaluation and the stability for various cases are estimated both from simulations and from data. For the cases we consider, the log-evidence is calculated with a precision of better than 0.08. Using a combined set of recent cosmic microwave background, type Ia supernovae and baryonic acoustic oscillation data, we find inconclusive evidence between flat ΛCDM and simple dark-energy models. A curved universe is moderately to strongly disfavoured with respect to a flat cosmology. Using physically well-motivated priors within the slow-roll approximation of inflation, we find a weak preference for a running spectral index. A Harrison-Zel'dovich spectrum is weakly disfavoured. With the current data, tensor modes are not detected; the large prior volume on the tensor-to-scalar ratio r results in moderate evidence in favour of r = 0.
Akita, Yasuyuki; Baldasano, Jose M; Beelen, Rob; Cirach, Marta; de Hoogh, Kees; Hoek, Gerard; Nieuwenhuijsen, Mark; Serre, Marc L; de Nazelle, Audrey
2014-04-15
In recognition that intraurban exposure gradients may be as large as between-city variations, recent air pollution epidemiologic studies have become increasingly interested in capturing within-city exposure gradients. In addition, because of the rapidly accumulating health data, recent studies also need to handle large study populations distributed over large geographic domains. Even though several modeling approaches have been introduced, a consistent modeling framework capturing within-city exposure variability and applicable to large geographic domains is still missing. To address these needs, we proposed a modeling framework based on the Bayesian Maximum Entropy method that integrates monitoring data and outputs from existing air quality models based on Land Use Regression (LUR) and Chemical Transport Models (CTM). The framework was applied to estimate the yearly average NO2 concentrations over the region of Catalunya in Spain. By jointly accounting for the global scale variability in the concentration from the output of CTM and the intraurban scale variability through LUR model output, the proposed framework outperformed more conventional approaches.
Predictive RANS simulations via Bayesian Model-Scenario Averaging
NASA Astrophysics Data System (ADS)
Edeling, W. N.; Cinnella, P.; Dwight, R. P.
2014-10-01
The turbulence closure model is the dominant source of error in most Reynolds-Averaged Navier-Stokes simulations, yet no reliable estimators for this error component currently exist. Here we develop a stochastic, a posteriori error estimate, calibrated to specific classes of flow. It is based on variability in model closure coefficients across multiple flow scenarios, for multiple closure models. The variability is estimated using Bayesian calibration against experimental data for each scenario, and Bayesian Model-Scenario Averaging (BMSA) is used to collate the resulting posteriors, to obtain a stochastic estimate of a Quantity of Interest (QoI) in an unmeasured (prediction) scenario. The scenario probabilities in BMSA are chosen using a sensor which automatically weights those scenarios in the calibration set which are similar to the prediction scenario. The methodology is applied to the class of turbulent boundary-layers subject to various pressure gradients. For all considered prediction scenarios the standard-deviation of the stochastic estimate is consistent with the measurement ground truth. Furthermore, the mean of the estimate is more consistently accurate than the individual model predictions.
Quantum-Like Bayesian Networks for Modeling Decision Making.
Moreira, Catarina; Wichert, Andreas
2016-01-01
In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios.
Quantum-Like Bayesian Networks for Modeling Decision Making
Moreira, Catarina; Wichert, Andreas
2016-01-01
In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios. PMID:26858669
A Bayesian Multilevel Model for Microcystin Prediction in ...
The frequency of cyanobacteria blooms in North American lakes is increasing. A major concernwith rising cyanobacteria blooms is microcystin, a common cyanobacterial hepatotoxin. Toexplore the conditions that promote high microcystin concentrations, we analyzed the US EPANational Lake Assessment (NLA) dataset collected in the summer of 2007. The NLA datasetis reported for nine eco-regions. We used the results of random forest modeling as a means ofvariable selection from which we developed a Bayesian multilevel model of microcystin concentrations.Model parameters under a multilevel modeling framework are eco-region specific, butthey are also assumed to be exchangeable across eco-regions for broad continental scaling. Theexchangeability assumption ensures that both the common patterns and eco-region specific featureswill be reflected in the model. Furthermore, the method incorporates appropriate estimatesof uncertainty. Our preliminary results show associations between microcystin and turbidity, totalnutrients, and N:P ratios. The NLA 2012 will be used for Bayesian updating. The results willhelp develop management strategies to alleviate microcystin impacts and improve lake quality. This work provides a probabilistic framework for predicting microcystin presences in lakes. It would allow for insights to be made about how changes in nutrient concentrations could potentially change toxin levels.
A Bayesian Multilevel Model for Microcystin Prediction in ...
The frequency of cyanobacteria blooms in North American lakes is increasing. A major concern with rising cyanobacteria blooms is microcystin, a common cyanobacterial hepatotoxin. To explore the conditions that promote high microcystin concentrations, we analyzed the US EPA National Lake Assessment (NLA) dataset collected in the summer of 2007. The NLA dataset is reported for nine eco-regions. We used the results of random forest modeling as a means ofvariable selection from which we developed a Bayesian multilevel model of microcystin concentrations. Model parameters under a multilevel modeling framework are eco-region specific, butthey are also assumed to be exchangeable across eco-regions for broad continental scaling. The exchangeability assumption ensures that both the common patterns and eco-region specific features will be reflected in the model. Furthermore, the method incorporates appropriate estimates of uncertainty. Our preliminary results show associations between microcystin and turbidity, total nutrients, and N:P ratios. Upon release of a comparable 2012 NLA dataset, we will apply Bayesian updating. The results will help develop management strategies to alleviate microcystin impacts and improve lake quality. This work provides a probabilistic framework for predicting microcystin presences in lakes. It would allow for insights to be made about how changes in nutrient concentrations could potentially change toxin levels.
Predictive RANS simulations via Bayesian Model-Scenario Averaging
Edeling, W.N.; Cinnella, P.; Dwight, R.P.
2014-10-15
The turbulence closure model is the dominant source of error in most Reynolds-Averaged Navier–Stokes simulations, yet no reliable estimators for this error component currently exist. Here we develop a stochastic, a posteriori error estimate, calibrated to specific classes of flow. It is based on variability in model closure coefficients across multiple flow scenarios, for multiple closure models. The variability is estimated using Bayesian calibration against experimental data for each scenario, and Bayesian Model-Scenario Averaging (BMSA) is used to collate the resulting posteriors, to obtain a stochastic estimate of a Quantity of Interest (QoI) in an unmeasured (prediction) scenario. The scenario probabilities in BMSA are chosen using a sensor which automatically weights those scenarios in the calibration set which are similar to the prediction scenario. The methodology is applied to the class of turbulent boundary-layers subject to various pressure gradients. For all considered prediction scenarios the standard-deviation of the stochastic estimate is consistent with the measurement ground truth. Furthermore, the mean of the estimate is more consistently accurate than the individual model predictions.
Bayesian Modeling of Biomolecular Assemblies with Cryo-EM Maps
Habeck, Michael
2017-01-01
A growing array of experimental techniques allows us to characterize the three-dimensional structure of large biological assemblies at increasingly higher resolution. In addition to X-ray crystallography and nuclear magnetic resonance in solution, new structure determination methods such cryo-electron microscopy (cryo-EM), crosslinking/mass spectrometry and solid-state NMR have emerged. Often it is not sufficient to use a single experimental method, but complementary data need to be collected by using multiple techniques. The integration of all datasets can only be achieved by computational means. This article describes Inferential structure determination, a Bayesian approach to integrative modeling of biomolecular complexes with hybrid structural data. I will introduce probabilistic models for cryo-EM maps and outline Markov chain Monte Carlo algorithms for sampling model structures from the posterior distribution. I will focus on rigid and flexible modeling with cryo-EM data and discuss some of the computational challenges of Bayesian inference in the context of biomolecular modeling. PMID:28382301
NASA Astrophysics Data System (ADS)
Liao, Chujiang
2015-08-01
On different degrees of desertification land, there exists different vegetation communities, and spatial structure differences are obvious among different vegetation communities. This study implemented variogram calculation using typical sample selected from the image, adopting a common global optimization method to fit them into the spherical model. The results showed that the difference is obvious among different vegetation communities for the sill and range, such as, the sill and range are smaller for sample variogram of Artemisia halodendron and Salix flavida community than that of Artemisia halodendron and Caragana microphylla community, and the range for sample variogram of Agriophyllum arenarium community is bigger than that of Artemisia halodendron and Salix flavida community, but smaller than that of Artemisia halodendron and Caragana microphylla community. Incorporating the difference of the spatial structure characterization into the vegetation classification can improve sample separation, thereby increasing the overall classification accuracy.
NASA Astrophysics Data System (ADS)
Royer, J. J.; Litaudon, J.; Filippov, L. O.; Lyubimova, T.; Maximovich, N.
2017-07-01
This work results from a cooperative scientific program between the Perm State University (Russia) and the University of Lorraine (France). Its objectives are to integrate modern 3D geomodeling in order to improve sustainable mining extraction, especially for predicting and avoiding the formation of sinkholes disaster potential zones. Systematic exploration drill holes performed in the Verkhnekamskoye potash deposit (Perm region, Russia) have been used to build a comprehensive 3D model for better understanding the spatial repartition of the ore quality (geometallurgy). A precise modelling of the mineralized layers allows an estimation of the in-situ ore reserves after interpolating by kriging the potassium (K) and magnesium (Mg) contents at the node of a regular centred grid (over a million cells). Total resources in potassium vary according to the cut-off between 4.7Gt @ 16.1 % K2O; 0.32 % MgCl2 for a cut-off grade at 13.1% K2O and 2.06 Gt @ 18.2 % K2O; 0.32 % MgCl2 at a cut-off of 16.5% K2O. Most of reserves are located in the KPI, KPII and KPIII layers, the KPI being the richest, and KPIII the largest in terms of tonnage. A systematic study of the curvature calculated along the roof of the mineralized layers points out the location of potential main faults which play a major role in the formation of sinkhole during exploitation. A risk map is then derived from this attribute.
Peterson, Erin E; Urquhart, N Scott
2006-10-01
In the United States, probability-based water quality surveys are typically used to meet the requirements of Section 305(b) of the Clean Water Act. The survey design allows an inference to be generated concerning regional stream condition, but it cannot be used to identify water quality impaired stream segments. Therefore, a rapid and cost-efficient method is needed to locate potentially impaired stream segments throughout large areas. We fit a set of geostatistical models to 312 samples of dissolved organic carbon (DOC) collected in 1996 for the Maryland Biological Stream Survey using coarse-scale watershed characteristics. The models were developed using two distance measures, straight-line distance (SLD) and weighted asymmetric hydrologic distance (WAHD). We used the Corrected Spatial Akaike Information Criterion and the mean square prediction error to compare models. The SLD models predicted more variability in DOC than models based on WAHD for every autocovariance model except the spherical model. The SLD model based on the Mariah autocovariance model showed the best fit (r(2) = 0.72). DOC demonstrated a positive relationship with the watershed attributes percent water, percent wetlands, and mean minimum temperature, but was negatively correlated to percent felsic rock type. We used universal kriging to generate predictions and prediction variances for 3083 stream segments throughout Maryland. The model predicted that 90.2% of stream kilometers had DOC values less than 5 mg/l, 6.7% were between 5 and 8 mg/l, and 3.1% of streams produced values greater than 8 mg/l. The geostatistical model generated more accurate DOC predictions than previous models, but did not fit the data equally well throughout the state. Consequently, it may be necessary to develop more than one geostatistical model to predict stream DOC throughout Maryland. Our methodology is an improvement over previous methods because additional field sampling is not necessary, inferences about regional
Assessing uncertainty in a stand growth model by Bayesian synthesis
Green, E.J.; MacFarlane, D.W.; Valentine, H.T.; Strawderman, W.E.
1999-11-01
The Bayesian synthesis method (BSYN) was used to bound the uncertainty in projections calculated with PIPESTEM, a mechanistic model of forest growth. The application furnished posterior distributions of (a) the values of the model's parameters, and (b) the values of three of the model's output variables--basal area per unit land area, average tree height, and tree density--at different points in time. Confidence or credible intervals for the output variables were obtained directly from the posterior distributions. The application also provides estimates of correlation among the parameters and output variables. BSYN, which originally was applied to a population dynamics model for bowhead whales, is generally applicable to deterministic models. Extension to two or more linked models is discussed. A simple worked example is included in an appendix.
Bayesian Variable Selection on Model Spaces Constrained by Heredity Conditions.
Taylor-Rodriguez, Daniel; Womack, Andrew; Bliznyuk, Nikolay
2016-01-01
This paper investigates Bayesian variable selection when there is a hierarchical dependence structure on the inclusion of predictors in the model. In particular, we study the type of dependence found in polynomial response surfaces of orders two and higher, whose model spaces are required to satisfy weak or strong heredity conditions. These conditions restrict the inclusion of higher-order terms depending upon the inclusion of lower-order parent terms. We develop classes of priors on the model space, investigate their theoretical and finite sample properties, and provide a Metropolis-Hastings algorithm for searching the space of models. The tools proposed allow fast and thorough exploration of model spaces that account for hierarchical polynomial structure in the predictors and provide control of the inclusion of false positives in high posterior probability models.
Bayesian Variable Selection on Model Spaces Constrained by Heredity Conditions
Taylor-Rodriguez, Daniel; Womack, Andrew; Bliznyuk, Nikolay
2016-01-01
This paper investigates Bayesian variable selection when there is a hierarchical dependence structure on the inclusion of predictors in the model. In particular, we study the type of dependence found in polynomial response surfaces of orders two and higher, whose model spaces are required to satisfy weak or strong heredity conditions. These conditions restrict the inclusion of higher-order terms depending upon the inclusion of lower-order parent terms. We develop classes of priors on the model space, investigate their theoretical and finite sample properties, and provide a Metropolis-Hastings algorithm for searching the space of models. The tools proposed allow fast and thorough exploration of model spaces that account for hierarchical polynomial structure in the predictors and provide control of the inclusion of false positives in high posterior probability models. PMID:28082825
NASA Astrophysics Data System (ADS)
Popova, Olga H.
Dental hygiene students must embody effective critical thinking skills in order to provide evidence-based comprehensive patient care. The problem addressed in this study it was not known if and to what extent concept mapping and reflective journaling activities embedded in a curriculum over a 4-week period, impacted the critical thinking skills of 22 first and second-year dental hygiene students attending a community college in the Midwest. The overarching research questions were: what is the effect of concept mapping, and what is the effect of reflective journaling on the level of critical thinking skills of first and second year dental hygiene students? This quantitative study employed a quasi-experimental, pretest-posttest design. Analysis of Covariance (ANCOVA) assessed students' mean scores of critical thinking on the California Critical Thinking Skills Test (CCTST) pretest and posttest for the concept mapping and reflective journaling treatment groups. The results of the study found an increase in CCTST posttest scores with the use of both concept mapping and reflective journaling. However, the increase in scores was not found to be statistically significant. Hence, this study identified concept mapping using Ausubel's assimilation theory and reflective journaling incorporating Johns's revision of Carper's patterns of knowing as potential instructional strategies and theoretical models to enhance undergraduate students' critical thinking skills. More research is required in this area to draw further conclusions. Keywords: Critical thinking, critical thinking development, critical thinking skills, instructional strategies, concept mapping, reflective journaling, dental hygiene, college students.
Assessing global vegetation activity using spatio-temporal Bayesian modelling
NASA Astrophysics Data System (ADS)
Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.
2016-04-01
This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support
Mixed-point geostatistical simulation: A combination of two- and multiple-point geostatistics
NASA Astrophysics Data System (ADS)
Cordua, Knud Skou; Hansen, Thomas Mejer; Gulbrandsen, Mats Lundh; Barnes, Christophe; Mosegaard, Klaus
2016-09-01
Multiple-point-based geostatistical methods are used to model complex geological structures. However, a training image containing the characteristic patterns of the Earth model has to be provided. If no training image is available, two-point (i.e., covariance-based) geostatistical methods are typically applied instead because these methods provide fewer constraints on the Earth model. This study is motivated by the case where 1-D vertical training images are available through borehole logs, whereas little or no information about horizontal dependencies exists. This problem is solved by developing theory that makes it possible to combine information from multiple- and two-point geostatistics for different directions, leading to a mixed-point geostatistical model. An example of combining information from the multiple-point-based single normal equation simulation algorithm and two-point-based sequential indicator simulation algorithm is provided. The mixed-point geostatistical model is used for conditional sequential simulation based on vertical training images from five borehole logs and a range parameter describing the horizontal dependencies.
ERIC Educational Resources Information Center
Wu, Haiyan
2013-01-01
General diagnostic models (GDMs) and Bayesian networks are mathematical frameworks that cover a wide variety of psychometric models. Both extend latent class models, and while GDMs also extend item response theory (IRT) models, Bayesian networks can be parameterized using discretized IRT. The purpose of this study is to examine similarities and…
ERIC Educational Resources Information Center
Wu, Haiyan
2013-01-01
General diagnostic models (GDMs) and Bayesian networks are mathematical frameworks that cover a wide variety of psychometric models. Both extend latent class models, and while GDMs also extend item response theory (IRT) models, Bayesian networks can be parameterized using discretized IRT. The purpose of this study is to examine similarities and…
Mapping soil water retention curves via spatial Bayesian hierarchical models
NASA Astrophysics Data System (ADS)
Yang, Wen-Hsi; Clifford, David; Minasny, Budiman
2015-05-01
Soil water retention curves are an important parameter in soil hydrological modeling. These curves are usually represented by the van Genuchten model. Two approaches have previously been taken to predict curves across a field - interpolation of field measurements followed by estimation of the van Genuchten model parameters, or estimation of the parameters according to field measurements followed by interpolation of the estimated parameters. Neither approach is ideal as, due to their two-stage nature, they fail to properly track uncertainty from one stage to the next. In this paper we address this shortcoming through a spatial Bayesian hierarchical model that fits the van Genuchten model and predicts the fields of hydraulic parameters of the van Genuchten model as well as fields of the corresponding soil water retention curves. This approach expands the van Genuchten model to a hierarchical modeling framework. In this framework, soil properties and physical or environmental factors can be treated as covariates to add into the van Genuchten model hierarchically. Consequently, the effects of covariates on the hydraulic parameters of the van Genuchten model can be identified. In addition, our approach takes advantage of Bayesian analysis to account for uncertainty and overcome the shortcomings of other existing methods. The code used to fit these models are available as an appendix to this paper. We apply this approach to data surveyed from part of the alluvial plain of the river Rhône near Yenne in Savoie, France. In this data analysis, we demonstrate how the inclusion of soil type or spatial effects can improve the van Genuchten model's predictions of soil water retention curves.
Predicting brain activity using a Bayesian spatial model.
Derado, Gordana; Bowman, F Dubois; Zhang, Lijun
2013-08-01
Increasing the clinical applicability of functional neuroimaging technology is an emerging objective, e.g. for diagnostic and treatment purposes. We propose a novel Bayesian spatial hierarchical framework for predicting follow-up neural activity based on an individual's baseline functional neuroimaging data. Our approach attempts to overcome some shortcomings of the modeling methods used in other neuroimaging settings, by borrowing strength from the spatial correlations present in the data. Our proposed methodology is applicable to data from various imaging modalities including functional magnetic resonance imaging and positron emission tomography, and we provide an illustration here using positron emission tomography data from a study of Alzheimer's disease to predict disease progression.
Theory-based Bayesian models of inductive learning and reasoning.
Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles
2006-07-01
Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.
Approximate Bayesian computation for forward modeling in cosmology
Akeret, Joël; Refregier, Alexandre; Amara, Adam; Seehars, Sebastian; Hasner, Caspar E-mail: alexandre.refregier@phys.ethz.ch E-mail: sebastian.seehars@phys.ethz.ch
2015-08-01
Bayesian inference is often used in cosmology and astrophysics to derive constraints on model parameters from observations. This approach relies on the ability to compute the likelihood of the data given a choice of model parameters. In many practical situations, the likelihood function may however be unavailable or intractable due to non-gaussian errors, non-linear measurements processes, or complex data formats such as catalogs and maps. In these cases, the simulation of mock data sets can often be made through forward modeling. We discuss how Approximate Bayesian Computation (ABC) can be used in these cases to derive an approximation to the posterior constraints using simulated data sets. This technique relies on the sampling of the parameter set, a distance metric to quantify the difference between the observation and the simulations and summary statistics to compress the information in the data. We first review the principles of ABC and discuss its implementation using a Population Monte-Carlo (PMC) algorithm and the Mahalanobis distance metric. We test the performance of the implementation using a Gaussian toy model. We then apply the ABC technique to the practical case of the calibration of image simulations for wide field cosmological surveys. We find that the ABC analysis is able to provide reliable parameter constraints for this problem and is therefore a promising technique for other applications in cosmology and astrophysics. Our implementation of the ABC PMC method is made available via a public code release.
Bayesian Sensitivity Analysis of Statistical Models with Missing Data
ZHU, HONGTU; IBRAHIM, JOSEPH G.; TANG, NIANSHENG
2013-01-01
Methods for handling missing data depend strongly on the mechanism that generated the missing values, such as missing completely at random (MCAR) or missing at random (MAR), as well as other distributional and modeling assumptions at various stages. It is well known that the resulting estimates and tests may be sensitive to these assumptions as well as to outlying observations. In this paper, we introduce various perturbations to modeling assumptions and individual observations, and then develop a formal sensitivity analysis to assess these perturbations in the Bayesian analysis of statistical models with missing data. We develop a geometric framework, called the Bayesian perturbation manifold, to characterize the intrinsic structure of these perturbations. We propose several intrinsic influence measures to perform sensitivity analysis and quantify the effect of various perturbations to statistical models. We use the proposed sensitivity analysis procedure to systematically investigate the tenability of the non-ignorable missing at random (NMAR) assumption. Simulation studies are conducted to evaluate our methods, and a dataset is analyzed to illustrate the use of our diagnostic measures. PMID:24753718
Approximate Bayesian computation for forward modeling in cosmology
NASA Astrophysics Data System (ADS)
Akeret, Joël; Refregier, Alexandre; Amara, Adam; Seehars, Sebastian; Hasner, Caspar
2015-08-01
Bayesian inference is often used in cosmology and astrophysics to derive constraints on model parameters from observations. This approach relies on the ability to compute the likelihood of the data given a choice of model parameters. In many practical situations, the likelihood function may however be unavailable or intractable due to non-gaussian errors, non-linear measurements processes, or complex data formats such as catalogs and maps. In these cases, the simulation of mock data sets can often be made through forward modeling. We discuss how Approximate Bayesian Computation (ABC) can be used in these cases to derive an approximation to the posterior constraints using simulated data sets. This technique relies on the sampling of the parameter set, a distance metric to quantify the difference between the observation and the simulations and summary statistics to compress the information in the data. We first review the principles of ABC and discuss its implementation using a Population Monte-Carlo (PMC) algorithm and the Mahalanobis distance metric. We test the performance of the implementation using a Gaussian toy model. We then apply the ABC technique to the practical case of the calibration of image simulations for wide field cosmological surveys. We find that the ABC analysis is able to provide reliable parameter constraints for this problem and is therefore a promising technique for other applications in cosmology and astrophysics. Our implementation of the ABC PMC method is made available via a public code release.
Bayesian Models for fMRI Data Analysis
Zhang, Linlin; Guindani, Michele; Vannucci, Marina
2015-01-01
Functional magnetic resonance imaging (fMRI), a noninvasive neuroimaging method that provides an indirect measure of neuronal activity by detecting blood flow changes, has experienced an explosive growth in the past years. Statistical methods play a crucial role in understanding and analyzing fMRI data. Bayesian approaches, in particular, have shown great promise in applications. A remarkable feature of fully Bayesian approaches is that they allow a flexible modeling of spatial and temporal correlations in the data. This paper provides a review of the most relevant models developed in recent years. We divide methods according to the objective of the analysis. We start from spatio-temporal models for fMRI data that detect task-related activation patterns. We then address the very important problem of estimating brain connectivity. We also touch upon methods that focus on making predictions of an individual's brain activity or a clinical or behavioral response. We conclude with a discussion of recent integrative models that aim at combining fMRI data with other imaging modalities, such as EEG/MEG and DTI data, measured on the same subjects. We also briefly discuss the emerging field of imaging genetics. PMID:25750690
Wang, Meng; Sampson, Paul D; Hu, Jianlin; Kleeman, Michael; Keller, Joshua P; Olives, Casey; Szpiro, Adam A; Vedal, Sverre; Kaufman, Joel D
2016-05-17
Assessments of long-term air pollution exposure in population studies have commonly employed land-use regression (LUR) or chemical transport modeling (CTM) techniques. Attempts to incorporate both approaches in one modeling framework are challenging. We present a novel geostatistical modeling framework, incorporating CTM predictions into a spatiotemporal LUR model with spatial smoothing to estimate spatiotemporal variability of ozone (O3) and particulate matter with diameter less than 2.5 μm (PM2.5) from 2000 to 2008 in the Los Angeles Basin. The observations include over 9 years' data from more than 20 routine monitoring sites and specific monitoring data at over 100 locations to provide more comprehensive spatial coverage of air pollutants. Our composite modeling approach outperforms separate CTM and LUR models in terms of root-mean-square error (RMSE) assessed by 10-fold cross-validation in both temporal and spatial dimensions, with larger improvement in the accuracy of predictions for O3 (RMSE [ppb] for CTM, 6.6; LUR, 4.6; composite, 3.6) than for PM2.5 (RMSE [μg/m(3)] CTM: 13.7, LUR: 3.2, composite: 3.1). Our study highlights the opportunity for future exposure assessment to make use of readily available spatiotemporal modeling methods and auxiliary gridded data that takes chemical reaction processes into account to improve the accuracy of predictions in a single spatiotemporal modeling framework.
Multivariable geostatistics in S: the gstat package
NASA Astrophysics Data System (ADS)
Pebesma, Edzer J.
2004-08-01
This paper discusses advantages and shortcomings of the S environment for multivariable geostatistics, in particular when extended with the gstat package, an extension package for the S environments (R, S-Plus). The gstat S package provides multivariable geostatistical modelling, prediction and simulation, as well as several visualisation functions. In particular, it makes the calculation, simultaneous fitting, and visualisation of a large number of direct and cross (residual) variograms very easy. Gstat was started 10 years ago and was released under the GPL in 1996; gstat.org was started in 1998. Gstat was not initially written for teaching purposes, but for research purposes, emphasising flexibility, scalability and portability. It can deal with a large number of practical issues in geostatistics, including change of support (block kriging), simple/ordinary/universal (co)kriging, fast local neighbourhood selection, flexible trend modelling, variables with different sampling configurations, and efficient simulation of large spatially correlated random fields, indicator kriging and simulation, and (directional) variogram and cross variogram modelling. The formula/models interface of the S language is used to define multivariable geostatistical models. This paper introduces the gstat S package, and discusses a number of design and implementation issues. It also draws attention to a number of papers on integration of spatial statistics software, GIS and the S environment that were presented on the spatial statistics workshop and sessions during the conference Distributed Statistical Computing 2003.
Thompson, James A; Bissett, Wesley T; Sweeney, Anne M
2014-06-07
The first step in evaluating potential geographic clusters of disease calls for an evaluation of the disease risk comparing the risk in a defined location to the risk in neighboring locations. Environmental exposures, however, represent continuous exposure levels across space not an exposure with a distinct boundary. The objectives of the current study were to adapt, apply and evaluate a geostatistical approach for identifying disease clusters. The exceedance probability for very low birth weight (VLBW; < 1.5 kg) infants was mapped using an Intrinsic Conditional Autoregressive model. The data were applied to a 20 by 20 grid of 1 km2 pixels centered on each of the 13 National Priority List Superfund Sites in Harris County, Texas. Large clusters of VLBW were identified in close proximity to four of the 13 Superfund Sites. Three of the Superfund Sites, associated with disease clusters, were located close together in central Houston and these sites may have been surrounded by a single, confluent disease cluster. Geostatistical modeling of the exceedance probability for very low birth weights identified disease clusters of varying size, shape and statistical certainty near Superfund Sites in Harris County, Texas. The approach offers considerable potential as the first step for investigating potential disease clusters.
Model Selection in Historical Research Using Approximate Bayesian Computation
Rubio-Campillo, Xavier
2016-01-01
Formal Models and History Computational models are increasingly being used to study historical dynamics. This new trend, which could be named Model-Based History, makes use of recently published datasets and innovative quantitative methods to improve our understanding of past societies based on their written sources. The extensive use of formal models allows historians to re-evaluate hypotheses formulated decades ago and still subject to debate due to the lack of an adequate quantitative framework. The initiative has the potential to transform the discipline if it solves the challenges posed by the study of historical dynamics. These difficulties are based on the complexities of modelling social interaction, and the methodological issues raised by the evaluation of formal models against data with low sample size, high variance and strong fragmentation. Case Study This work examines an alternate approach to this evaluation based on a Bayesian-inspired model selection method. The validity of the classical Lanchester’s laws of combat is examined against a dataset comprising over a thousand battles spanning 300 years. Four variations of the basic equations are discussed, including the three most common formulations (linear, squared, and logarithmic) and a new variant introducing fatigue. Approximate Bayesian Computation is then used to infer both parameter values and model selection via Bayes Factors. Impact Results indicate decisive evidence favouring the new fatigue model. The interpretation of both parameter estimations and model selection provides new insights into the factors guiding the evolution of warfare. At a methodological level, the case study shows how model selection methods can be used to guide historical research through the comparison between existing hypotheses and empirical evidence. PMID:26730953
Bayesian spatiotemporal model of fMRI data.
Quirós, Alicia; Diez, Raquel Montes; Gamerman, Dani
2010-01-01
This research describes a new Bayesian spatiotemporal model to analyse block-design BOLD fMRI studies. In the temporal dimension, we parameterise the hemodynamic response function's (HRF) shape with a potential increase of signal and a subsequent exponential decay. In the spatial dimension, we use Gaussian Markov random fields (GMRF) priors on activation characteristics parameters (location and magnitude) that embody our prior knowledge that evoked responses are spatially contiguous and locally homogeneous. The result is a spatiotemporal model with a small number of parameters, all of them interpretable. Simulations from the model are performed in order to ascertain the performance of the sampling scheme and the ability of the posterior to estimate model parameters, as well as to check the model sensitivity to signal to noise ratio. Results are shown on synthetic data and on real data from a block-design fMRI experiment.
Efficient multilevel brain tumor segmentation with integrated bayesian model classification.
Corso, J J; Sharon, E; Dube, S; El-Saden, S; Sinha, U; Yuille, A
2008-05-01
We present a new method for automatic segmentation of heterogeneous image data that takes a step toward bridging the gap between bottom-up affinity-based segmentation methods and top-down generative model based approaches. The main contribution of the paper is a Bayesian formulation for incorporating soft model assignments into the calculation of affinities, which are conventionally model free. We integrate the resulting model-aware affinities into the multilevel segmentation by weighted aggregation algorithm, and apply the technique to the task of detecting and segmenting brain tumor and edema in multichannel magnetic resonance (MR) volumes. The computationally efficient method runs orders of magnitude faster than current state-of-the-art techniques giving comparable or improved results. Our quantitative results indicate the benefit of incorporating model-aware affinities into the segmentation process for the difficult case of glioblastoma multiforme brain tumor.
Exploratory Bayesian model selection for serial genetics data.
Zhao, Jing X; Foulkes, Andrea S; George, Edward I
2005-06-01
Characterizing the process by which molecular and cellular level changes occur over time will have broad implications for clinical decision making and help further our knowledge of disease etiology across many complex diseases. However, this presents an analytic challenge due to the large number of potentially relevant biomarkers and the complex, uncharacterized relationships among them. We propose an exploratory Bayesian model selection procedure that searches for model simplicity through independence testing of multiple discrete biomarkers measured over time. Bayes factor calculations are used to identify and compare models that are best supported by the data. For large model spaces, i.e., a large number of multi-leveled biomarkers, we propose a Markov chain Monte Carlo (MCMC) stochastic search algorithm for finding promising models. We apply our procedure to explore the extent to which HIV-1 genetic changes occur independently over time.
Model Selection in Historical Research Using Approximate Bayesian Computation.
Rubio-Campillo, Xavier
2016-01-01
Computational models are increasingly being used to study historical dynamics. This new trend, which could be named Model-Based History, makes use of recently published datasets and innovative quantitative methods to improve our understanding of past societies based on their written sources. The extensive use of formal models allows historians to re-evaluate hypotheses formulated decades ago and still subject to debate due to the lack of an adequate quantitative framework. The initiative has the potential to transform the discipline if it solves the challenges posed by the study of historical dynamics. These difficulties are based on the complexities of modelling social interaction, and the methodological issues raised by the evaluation of formal models against data with low sample size, high variance and strong fragmentation. This work examines an alternate approach to this evaluation based on a Bayesian-inspired model selection method. The validity of the classical Lanchester's laws of combat is examined against a dataset comprising over a thousand battles spanning 300 years. Four variations of the basic equations are discussed, including the three most common formulations (linear, squared, and logarithmic) and a new variant introducing fatigue. Approximate Bayesian Computation is then used to infer both parameter values and model selection via Bayes Factors. Results indicate decisive evidence favouring the new fatigue model. The interpretation of both parameter estimations and model selection provides new insights into the factors guiding the evolution of warfare. At a methodological level, the case study shows how model selection methods can be used to guide historical research through the comparison between existing hypotheses and empirical evidence.
Efficient estimation of thermodynamic state incorporating Bayesian model order selection
NASA Astrophysics Data System (ADS)
Lanterman, Aaron D.; Cooper, Matthew L.; Miller, Michael I.
1999-08-01
The recognition of targets in infrared scenes is complicated by the wide variety of appearances associated with different thermodynamic states. We represent the variability in the thermodynamic signatures of targets via an expansion in terms of 'eigentanks' derived from a principal component analysis performed over the target's surface. Employing a Poisson sensor likelihood, or equivalently a likelihood based on Csiszar's I-divergence, a natural discrepancy measure for nonnegative images, yields a coupled set of nonlinear equations which must be solved to computed maximum a posteriori estimates of the thermodynamic expansion coefficients. We propose a weighted least-squares approximation to the Poisson loglikelihood for which the MAP estimates are solutions of linear equations. Bayesian model order estimation techniques are employed to choose the number of coefficients; this prevents target models with numerous eigentanks in their representation from having an unfair advantage over simple target models. The Bayesian integral is approximated by Schwarz's application of Laplace's method of integration; this technique is closely related to Rissanen's minimum description length and Wallace's minimum message length criteria. Our implementation of these techniques on Silicon Graphics computers exploits the flexible nature of their rendering engines. The implementation is illustrated in estimating the orientation of a tank and the optimum number of representative eigentanks for real data provided by the U.S. Army Night Vision and Electronic Sensors Directorate.
Fuzzy Naive Bayesian model for medical diagnostic decision support.
Wagholikar, Kavishwar B; Vijayraghavan, Sundararajan; Deshpande, Ashok W
2009-01-01
This work relates to the development of computational algorithms to provide decision support to physicians. The authors propose a Fuzzy Naive Bayesian (FNB) model for medical diagnosis, which extends the Fuzzy Bayesian approach proposed by Okuda. A physician's interview based method is described to define a orthogonal fuzzy symptom information system, required to apply the model. For the purpose of elaboration and elicitation of characteristics, the algorithm is applied to a simple simulated dataset, and compared with conventional Naive Bayes (NB) approach. As a preliminary evaluation of FNB in real world scenario, the comparison is repeated on a real fuzzy dataset of 81 patients diagnosed with infectious diseases. The case study on simulated dataset elucidates that FNB can be optimal over NB for diagnosing patients with imprecise-fuzzy information, on account of the following characteristics - 1) it can model the information that, values of some attributes are semantically closer than values of other attributes, and 2) it offers a mechanism to temper exaggerations in patient information. Although the algorithm requires precise training data, its utility for fuzzy training data is argued for. This is supported by the case study on infectious disease dataset, which indicates optimality of FNB over NB for the infectious disease domain. Further case studies on large datasets are required to establish utility of FNB.
Bayesian Learning of a Language Model from Continuous Speech
NASA Astrophysics Data System (ADS)
Neubig, Graham; Mimura, Masato; Mori, Shinsuke; Kawahara, Tatsuya
We propose a novel scheme to learn a language model (LM) for automatic speech recognition (ASR) directly from continuous speech. In the proposed method, we first generate phoneme lattices using an acoustic model with no linguistic constraints, then perform training over these phoneme lattices, simultaneously learning both lexical units and an LM. As a statistical framework for this learning problem, we use non-parametric Bayesian statistics, which make it possible to balance the learned model's complexity (such as the size of the learned vocabulary) and expressive power, and provide a principled learning algorithm through the use of Gibbs sampling. Implementation is performed using weighted finite state transducers (WFSTs), which allow for the simple handling of lattice input. Experimental results on natural, adult-directed speech demonstrate that LMs built using only continuous speech are able to significantly reduce ASR phoneme error rates. The proposed technique of joint Bayesian learning of lexical units and an LM over lattices is shown to significantly contribute to this improvement.
Bayesian model selection for characterizing genomic imprinting effects and patterns
Yang, Runqing; Wang, Xin; Wu, Zeyuan; Prows, Daniel R.; Lin, Min
2010-01-01
Motivation: Although imprinted genes have been ubiquitously observed in nature, statistical methodology still has not been systematically developed for jointly characterizing genomic imprinting effects and patterns. To detect imprinting genes influencing quantitative traits, the least square and maximum likelihood approaches for fitting a single quantitative trait loci (QTL) and Bayesian method for simultaneously modeling multiple QTLs have been adopted in various studies. Results: In a widely used F2 reciprocal mating population for mapping imprinting genes, we herein propose a genomic imprinting model which describes additive, dominance and imprinting effects of multiple imprinted quantitative trait loci (iQTL) for traits of interest. Depending upon the estimates of the above genetic effects, we categorized imprinting patterns into seven types, which provides a complete classification scheme for describing imprinting patterns. Bayesian model selection was employed to identify iQTL along with many genetic parameters in a computationally efficient manner. To make statistical inference on the imprinting types of iQTL detected, a set of Bayes factors were formulated using the posterior probabilities for the genetic effects being compared. We demonstrated the performance of the proposed method by computer simulation experiments and then applied this method to two real datasets. Our approach can be generally used to identify inheritance modes and determine the contribution of major genes for quantitative variations. Contact: annie.lin@duke.edu; runqingyang@sjtu.edu.cn PMID:19880366
Enhancing debris flow modeling parameters integrating Bayesian networks
NASA Astrophysics Data System (ADS)
Graf, C.; Stoffel, M.; Grêt-Regamey, A.
2009-04-01
Applied debris-flow modeling requires suitably constraint input parameter sets. Depending on the used model, there is a series of parameters to define before running the model. Normally, the data base describing the event, the initiation conditions, the flow behavior, the deposition process and mainly the potential range of possible debris flow events in a certain torrent is limited. There are only some scarce places in the world, where we fortunately can find valuable data sets describing event history of debris flow channels delivering information on spatial and temporal distribution of former flow paths and deposition zones. Tree-ring records in combination with detailed geomorphic mapping for instance provide such data sets over a long time span. Considering the significant loss potential associated with debris-flow disasters, it is crucial that decisions made in regard to hazard mitigation are based on a consistent assessment of the risks. This in turn necessitates a proper assessment of the uncertainties involved in the modeling of the debris-flow frequencies and intensities, the possible run out extent, as well as the estimations of the damage potential. In this study, we link a Bayesian network to a Geographic Information System in order to assess debris-flow risk. We identify the major sources of uncertainty and show the potential of Bayesian inference techniques to improve the debris-flow model. We model the flow paths and deposition zones of a highly active debris-flow channel in the Swiss Alps using the numerical 2-D model RAMMS. Because uncertainties in run-out areas cause large changes in risk estimations, we use the data of flow path and deposition zone information of reconstructed debris-flow events derived from dendrogeomorphological analysis covering more than 400 years to update the input parameters of the RAMMS model. The probabilistic model, which consistently incorporates this available information, can serve as a basis for spatial risk
Markov chain Monte Carlo simulation for Bayesian Hidden Markov Models
NASA Astrophysics Data System (ADS)
Chan, Lay Guat; Ibrahim, Adriana Irawati Nur Binti
2016-10-01
A hidden Markov model (HMM) is a mixture model which has a Markov chain with finite states as its mixing distribution. HMMs have been applied to a variety of fields, such as speech and face recognitions. The main purpose of this study is to investigate the Bayesian approach to HMMs. Using this approach, we can simulate from the parameters' posterior distribution using some Markov chain Monte Carlo (MCMC) sampling methods. HMMs seem to be useful, but there are some limitations. Therefore, by using the Mixture of Dirichlet processes Hidden Markov Model (MDPHMM) based on Yau et. al (2011), we hope to overcome these limitations. We shall conduct a simulation study using MCMC methods to investigate the performance of this model.
NASA Astrophysics Data System (ADS)
Mendes, B. S.; Draper, D.
2008-12-01
The issue of model uncertainty and model choice is central in any groundwater modeling effort [Neuman and Wierenga, 2003]; among the several approaches to the problem we favour using Bayesian statistics because it is a method that integrates in a natural way uncertainties (arising from any source) and experimental data. In this work, we experiment with several Bayesian approaches to model choice, focusing primarily on demonstrating the usefulness of the Reversible Jump Markov Chain Monte Carlo (RJMCMC) simulation method [Green, 1995]; this is an extension of the now- common MCMC methods. Standard MCMC techniques approximate posterior distributions for quantities of interest, often by creating a random walk in parameter space; RJMCMC allows the random walk to take place between parameter spaces with different dimensionalities. This fact allows us to explore state spaces that are associated with different deterministic models for experimental data. Our work is exploratory in nature; we restrict our study to comparing two simple transport models applied to a data set gathered to estimate the breakthrough curve for a tracer compound in groundwater. One model has a mean surface based on a simple advection dispersion differential equation; the second model's mean surface is also governed by a differential equation but in two dimensions. We focus on artificial data sets (in which truth is known) to see if model identification is done correctly, but we also address the issues of over and under-paramerization, and we compare RJMCMC's performance with other traditional methods for model selection and propagation of model uncertainty, including Bayesian model averaging, BIC and DIC.References Neuman and Wierenga (2003). A Comprehensive Strategy of Hydrogeologic Modeling and Uncertainty Analysis for Nuclear Facilities and Sites. NUREG/CR-6805, Division of Systems Analysis and Regulatory Effectiveness Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission
NASA Astrophysics Data System (ADS)
Li, Lu; Xu, Chong-Yu; Engeland, Kolbjørn
2013-04-01
SummaryWith respect to model calibration, parameter estimation and analysis of uncertainty sources, various regression and probabilistic approaches are used in hydrological modeling. A family of Bayesian methods, which incorporates different sources of information into a single analysis through Bayes' theorem, is widely used for uncertainty assessment. However, none of these approaches can well treat the impact of high flows in hydrological modeling. This study proposes a Bayesian modularization uncertainty assessment approach in which the highest streamflow observations are treated as suspect information that should not influence the inference of the main bulk of the model parameters. This study includes a comprehensive comparison and evaluation of uncertainty assessments by our new Bayesian modularization method and standard Bayesian methods using the Metropolis-Hastings (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions were used in combination with standard Bayesian method: the AR(1) plus Normal model independent of time (Model 1), the AR(1) plus Normal model dependent on time (Model 2) and the AR(1) plus Multi-normal model (Model 3). The results reveal that the Bayesian modularization method provides the most accurate streamflow estimates measured by the Nash-Sutcliffe efficiency and provide the best in uncertainty estimates for low, medium and entire flows compared to standard Bayesian methods. The study thus provides a new approach for reducing the impact of high flows on the discharge uncertainty assessment of hydrological models via Bayesian method.
Bayesian Dose-Response Modeling in Sparse Data
NASA Astrophysics Data System (ADS)
Kim, Steven B.
This book discusses Bayesian dose-response modeling in small samples applied to two different settings. The first setting is early phase clinical trials, and the second setting is toxicology studies in cancer risk assessment. In early phase clinical trials, experimental units are humans who are actual patients. Prior to a clinical trial, opinions from multiple subject area experts are generally more informative than the opinion of a single expert, but we may face a dilemma when they have disagreeing prior opinions. In this regard, we consider compromising the disagreement and compare two different approaches for making a decision. In addition to combining multiple opinions, we also address balancing two levels of ethics in early phase clinical trials. The first level is individual-level ethics which reflects the perspective of trial participants. The second level is population-level ethics which reflects the perspective of future patients. We extensively compare two existing statistical methods which focus on each perspective and propose a new method which balances the two conflicting perspectives. In toxicology studies, experimental units are living animals. Here we focus on a potential non-monotonic dose-response relationship which is known as hormesis. Briefly, hormesis is a phenomenon which can be characterized by a beneficial effect at low doses and a harmful effect at high doses. In cancer risk assessments, the estimation of a parameter, which is known as a benchmark dose, can be highly sensitive to a class of assumptions, monotonicity or hormesis. In this regard, we propose a robust approach which considers both monotonicity and hormesis as a possibility. In addition, We discuss statistical hypothesis testing for hormesis and consider various experimental designs for detecting hormesis based on Bayesian decision theory. Past experiments have not been optimally designed for testing for hormesis, and some Bayesian optimal designs may not be optimal under a
Semiparametric Bayesian local functional models for diffusion tensor tract statistics☆
Hua, Zhaowei; Dunson, David B.; Gilmore, John H.; Styner, Martin A.; Zhu, Hongtu
2012-01-01
We propose a semiparametric Bayesian local functional model (BFM) for the analysis of multiple diffusion properties (e.g., fractional anisotropy) along white matter fiber bundles with a set of covariates of interest, such as age and gender. BFM accounts for heterogeneity in the shape of the fiber bundle diffusion properties among subjects, while allowing the impact of the covariates to vary across subjects. A nonparametric Bayesian LPP2 prior facilitates global and local borrowings of information among subjects, while an infinite factor model flexibly represents low-dimensional structure. Local hypothesis testing and credible bands are developed to identify fiber segments, along which multiple diffusion properties are significantly associated with covariates of interest, while controlling for multiple comparisons. Moreover, BFM naturally group subjects into more homogeneous clusters. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. A simulation study is performed to evaluate the finite sample performance of BFM. We apply BFM to investigate the development of white matter diffusivities along the splenium of the corpus callosum tract and the right internal capsule tract in a clinical study of neurodevelopment in new born infants. PMID:22732565
Optimal inference with suboptimal models: Addiction and active Bayesian inference
Schwartenbeck, Philipp; FitzGerald, Thomas H.B.; Mathys, Christoph; Dolan, Ray; Wurst, Friedrich; Kronbichler, Martin; Friston, Karl
2015-01-01
When casting behaviour as active (Bayesian) inference, optimal inference is defined with respect to an agent’s beliefs – based on its generative model of the world. This contrasts with normative accounts of choice behaviour, in which optimal actions are considered in relation to the true structure of the environment – as opposed to the agent’s beliefs about worldly states (or the task). This distinction shifts an understanding of suboptimal or pathological behaviour away from aberrant inference as such, to understanding the prior beliefs of a subject that cause them to behave less ‘optimally’ than our prior beliefs suggest they should behave. Put simply, suboptimal or pathological behaviour does not speak against understanding behaviour in terms of (Bayes optimal) inference, but rather calls for a more refined understanding of the subject’s generative model upon which their (optimal) Bayesian inference is based. Here, we discuss this fundamental distinction and its implications for understanding optimality, bounded rationality and pathological (choice) behaviour. We illustrate our argument using addictive choice behaviour in a recently described ‘limited offer’ task. Our simulations of pathological choices and addictive behaviour also generate some clear hypotheses, which we hope to pursue in ongoing empirical work. PMID:25561321
Path integration mediated systematic search: a Bayesian model.
Vickerstaff, Robert J; Merkle, Tobias
2012-08-21
The systematic search behaviour is a backup system that increases the chances of desert ants finding their nest entrance after foraging when the path integrator has failed to guide them home accurately enough. Here we present a mathematical model of the systematic search that is based on extensive behavioural studies in North African desert ants Cataglyphis fortis. First, a simple search heuristic utilising Bayesian inference and a probability density function is developed. This model, which optimises the short-term nest detection probability, is then compared to three simpler search heuristics and to recorded search patterns of Cataglyphis ants. To compare the different searches a method to quantify search efficiency is established as well as an estimate of the error rate in the ants' path integrator. We demonstrate that the Bayesian search heuristic is able to automatically adapt to increasing levels of positional uncertainty to produce broader search patterns, just as desert ants do, and that it outperforms the three other search heuristics tested. The searches produced by it are also arguably the most similar in appearance to the ant's searches. Copyright © 2012 Elsevier Ltd. All rights reserved.
Advanced REACH Tool: A Bayesian Model for Occupational Exposure Assessment
McNally, Kevin; Warren, Nicholas; Fransman, Wouter; Entink, Rinke Klein; Schinkel, Jody; van Tongeren, Martie; Cherrie, John W.; Kromhout, Hans; Schneider, Thomas; Tielemans, Erik
2014-01-01
This paper describes a Bayesian model for the assessment of inhalation exposures in an occupational setting; the methodology underpins a freely available web-based application for exposure assessment, the Advanced REACH Tool (ART). The ART is a higher tier exposure tool that combines disparate sources of information within a Bayesian statistical framework. The information is obtained from expert knowledge expressed in a calibrated mechanistic model of exposure assessment, data on inter- and intra-individual variability in exposures from the literature, and context-specific exposure measurements. The ART provides central estimates and credible intervals for different percentiles of the exposure distribution, for full-shift and long-term average exposures. The ART can produce exposure estimates in the absence of measurements, but the precision of the estimates improves as more data become available. The methodology presented in this paper is able to utilize partially analogous data, a novel approach designed to make efficient use of a sparsely populated measurement database although some additional research is still required before practical implementation. The methodology is demonstrated using two worked examples: an exposure to copper pyrithione in the spraying of antifouling paints and an exposure to ethyl acetate in shoe repair. PMID:24665110
Bayesian Energy Landscape Tilting: Towards Concordant Models of Molecular Ensembles
Beauchamp, Kyle A.; Pande, Vijay S.; Das, Rhiju
2014-01-01
Predicting biological structure has remained challenging for systems such as disordered proteins that take on myriad conformations. Hybrid simulation/experiment strategies have been undermined by difficulties in evaluating errors from computational model inaccuracies and data uncertainties. Building on recent proposals from maximum entropy theory and nonequilibrium thermodynamics, we address these issues through a Bayesian energy landscape tilting (BELT) scheme for computing Bayesian hyperensembles over conformational ensembles. BELT uses Markov chain Monte Carlo to directly sample maximum-entropy conformational ensembles consistent with a set of input experimental observables. To test this framework, we apply BELT to model trialanine, starting from disagreeing simulations with the force fields ff96, ff99, ff99sbnmr-ildn, CHARMM27, and OPLS-AA. BELT incorporation of limited chemical shift and 3J measurements gives convergent values of the peptide’s α, β, and PPII conformational populations in all cases. As a test of predictive power, all five BELT hyperensembles recover set-aside measurements not used in the fitting and report accurate errors, even when starting from highly inaccurate simulations. BELT’s principled framework thus enables practical predictions for complex biomolecular systems from discordant simulations and sparse data. PMID:24655513
Perceptual decision making: drift-diffusion model is equivalent to a Bayesian model
Bitzer, Sebastian; Park, Hame; Blankenburg, Felix; Kiebel, Stefan J.
2014-01-01
Behavioral data obtained with perceptual decision making experiments are typically analyzed with the drift-diffusion model. This parsimonious model accumulates noisy pieces of evidence toward a decision bound to explain the accuracy and reaction times of subjects. Recently, Bayesian models have been proposed to explain how the brain extracts information from noisy input as typically presented in perceptual decision making tasks. It has long been known that the drift-diffusion model is tightly linked with such functional Bayesian models but the precise relationship of the two mechanisms was never made explicit. Using a Bayesian model, we derived the equations which relate parameter values between these models. In practice we show that this equivalence is useful when fitting multi-subject data. We further show that the Bayesian model suggests different decision variables which all predict equal responses and discuss how these may be discriminated based on neural correlates of accumulated evidence. In addition, we discuss extensions to the Bayesian model which would be difficult to derive for the drift-diffusion model. We suggest that these and other extensions may be highly useful for deriving new experiments which test novel hypotheses. PMID:24616689
Modeling the Climatology of Tornado Occurrence with Bayesian Inference
NASA Astrophysics Data System (ADS)
Cheng, Vincent Y. S.
Our mechanistic understanding of tornadic environments has significantly improved by the recent technological enhancements in the detection of tornadoes as well as the advances of numerical weather predictive modeling. Nonetheless, despite the decades of active research, prediction of tornado occurrence remains one of the most difficult problems in meteorological and climate science. In our efforts to develop predictive tools for tornado occurrence, there are a number of issues to overcome, such as the treatment of inconsistent tornado records, the consideration of suitable combination of atmospheric predictors, and the selection of appropriate resolution to accommodate the variability in time and space. In this dissertation, I address each of these topics by undertaking three empirical (statistical) modeling studies, where I examine the signature of different atmospheric factors influencing the tornado occurrence, the sampling biases in tornado observations, and the optimal spatiotemporal resolution for studying tornado occurrence. In the first study, I develop a novel Bayesian statistical framework to assess the probability of tornado occurrence in Canada, in which the sampling bias of tornado observations and the linkage between lightning climatology and tornadogenesis are considered. The results produced reasonable probability estimates of tornado occurrence for the under-sampled areas in the model domain. The same study also delineated the geographical variability in the lightning-tornado relationship across Canada. In the second study, I present a novel modeling framework to examine the relative importance of several key atmospheric variables (e.g., convective available potential energy, 0-3 km storm-relative helicity, 0-6 km bulk wind difference, 0-tropopause vertical wind shear) on tornado activity in North America. I found that the variable quantifying the updraft strength is more important during the warm season, whereas the effects of wind
Tests of Bayesian model selection techniques for gravitational wave astronomy
Cornish, Neil J.; Littenberg, Tyson B.
2007-10-15
The analysis of gravitational wave data involves many model selection problems. The most important example is the detection problem of selecting between the data being consistent with instrument noise alone, or instrument noise and a gravitational wave signal. The analysis of data from ground based gravitational wave detectors is mostly conducted using classical statistics, and methods such as the Neyman-Peterson criteria are used for model selection. Future space based detectors, such as the Laser Interferometer Space Antenna (LISA), are expected to produce rich data streams containing the signals from many millions of sources. Determining the number of sources that are resolvable, and the most appropriate description of each source poses a challenging model selection problem that may best be addressed in a Bayesian framework. An important class of LISA sources are the millions of low-mass binary systems within our own galaxy, tens of thousands of which will be detectable. Not only are the number of sources unknown, but so are the number of parameters required to model the waveforms. For example, a significant subset of the resolvable galactic binaries will exhibit orbital frequency evolution, while a smaller number will have measurable eccentricity. In the Bayesian approach to model selection one needs to compute the Bayes factor between competing models. Here we explore various methods for computing Bayes factors in the context of determining which galactic binaries have measurable frequency evolution. The methods explored include a reverse jump Markov chain Monte Carlo algorithm, Savage-Dickie density ratios, the Schwarz-Bayes information criterion, and the Laplace approximation to the model evidence. We find good agreement between all of the approaches.
Beck-Wörner, Christian; Raso, Giovanna; Vounatsou, Penelope; N'Goran, Eliézer K; Rigo, Gergely; Parlow, Eberhard; Utzinger, Jürg
2007-05-01
An important epidemiologic feature of schistosomiasis is the focal distribution of the disease. Thus, the identification of high-risk communities is an essential first step for targeting interventions in an efficient and cost-effective manner. We used a remotely-sensed digital elevation model (DEM), derived hydrologic features (i.e., stream order, and catchment area), and fitted Bayesian geostatistical models to assess associations between environmental factors and infection with Schistosoma mansoni among more than 4,000 school children from the region of Man in western Côte d'Ivoire. At the unit of the school, we found significant correlations between the infection prevalence of S. mansoni and stream order of the nearest river, water catchment area, and altitude. In conclusion, the use of a freely available 90 m high-resolution DEM, geographic information system applications, and Bayesian spatial modeling facilitates risk prediction for S. mansoni, and is a powerful approach for risk profiling of other neglected tropical diseases that are pervasive in the developing world.
Fast Bayesian Inference in Dirichlet Process Mixture Models.
Wang, Lianming; Dunson, David B
2011-01-01
There has been increasing interest in applying Bayesian nonparametric methods in large samples and high dimensions. As Markov chain Monte Carlo (MCMC) algorithms are often infeasible, there is a pressing need for much faster algorithms. This article proposes a fast approach for inference in Dirichlet process mixture (DPM) models. Viewing the partitioning of subjects into clusters as a model selection problem, we propose a sequential greedy search algorithm for selecting the partition. Then, when conjugate priors are chosen, the resulting posterior conditionally on the selected partition is available in closed form. This approach allows testing of parametric models versus nonparametric alternatives based on Bayes factors. We evaluate the approach using simulation studies and compare it with four other fast nonparametric methods in the literature. We apply the proposed approach to three datasets including one from a large epidemiologic study. Matlab codes for the simulation and data analyses using the proposed approach are available online in the supplemental materials.
Bayesian Inference for Duplication–Mutation with Complementarity Network Models
Persing, Adam; Beskos, Alexandros; Heine, Kari; De Iorio, Maria
2015-01-01
Abstract We observe an undirected graph G without multiple edges and self-loops, which is to represent a protein–protein interaction (PPI) network. We assume that G evolved under the duplication–mutation with complementarity (DMC) model from a seed graph, G0, and we also observe the binary forest Γ that represents the duplication history of G. A posterior density for the DMC model parameters is established, and we outline a sampling strategy by which one can perform Bayesian inference; that sampling strategy employs a particle marginal Metropolis–Hastings (PMMH) algorithm. We test our methodology on numerical examples to demonstrate a high accuracy and precision in the inference of the DMC model's mutation and homodimerization parameters. PMID:26355682
Aggregated Residential Load Modeling Using Dynamic Bayesian Networks
Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai
2014-09-28
Abstract—It is already obvious that the future power grid will have to address higher demand for power and energy, and to incorporate renewable resources of different energy generation patterns. Demand response (DR) schemes could successfully be used to manage and balance power supply and demand under operating conditions of the future power grid. To achieve that, more advanced tools for DR management of operations and planning are necessary that can estimate the available capacity from DR resources. In this research, a Dynamic Bayesian Network (DBN) is derived, trained, and tested that can model aggregated load of Heating, Ventilation, and Air Conditioning (HVAC) systems. DBNs can provide flexible and powerful tools for both operations and planing, due to their unique analytical capabilities. The DBN model accuracy and flexibility of use is demonstrated by testing the model under different operational scenarios.
Development of a Bayesian Belief Network Runway Incursion Model
NASA Technical Reports Server (NTRS)
Green, Lawrence L.
2014-01-01
In a previous paper, a statistical analysis of runway incursion (RI) events was conducted to ascertain their relevance to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to perhaps several of the AvSP top ten TC. That data also identified several primary causes and contributing factors for RI events that served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events. The system-level BBN model will allow NASA to generically model the causes of RI events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of RI events in particular, and to improve runway safety in general. The development, structure and assessment of that BBN for RI events by a Subject Matter Expert panel are documented in this paper.
A generalizable hierarchical Bayesian model for persistent SAR change detection
NASA Astrophysics Data System (ADS)
Newstadt, Gregory E.; Zelnio, Edmund G.; Hero, Alfred O., III
2012-05-01
This paper proposes a hierarchical Bayesian model for multiple-pass, multiple antenna synthetic aperture radar (SAR) systems with the goal of adaptive change detection. We model the SAR phenomenology directly, including antenna and spatial dependencies, speckle and specular noise, and stationary clutter. We extend previous work1 by estimating the antenna covariance matrix directly, leading to improved performance in high clutter regions. The proposed SAR model is also shown to be easily generalizable when additional prior information is available, such as locations of roads/intersections or smoothness priors on the target motion. The performance of our posterior inference algorithm is analyzed over a large set of measured SAR imagery. It is shown that the proposed algorithm provides competitive or better results to common change detection algorithms with additional benefits such as few tuning parameters and a characterization of the posterior distribution.
Advances in Bayesian Model Based Clustering Using Particle Learning
Merl, D M
2009-11-19
Recent work by Carvalho, Johannes, Lopes and Polson and Carvalho, Lopes, Polson and Taddy introduced a sequential Monte Carlo (SMC) alternative to traditional iterative Monte Carlo strategies (e.g. MCMC and EM) for Bayesian inference for a large class of dynamic models. The basis of SMC techniques involves representing the underlying inference problem as one of state space estimation, thus giving way to inference via particle filtering. The key insight of Carvalho et al was to construct the sequence of filtering distributions so as to make use of the posterior predictive distribution of the observable, a distribution usually only accessible in certain Bayesian settings. Access to this distribution allows a reversal of the usual propagate and resample steps characteristic of many SMC methods, thereby alleviating to a large extent many problems associated with particle degeneration. Furthermore, Carvalho et al point out that for many conjugate models the posterior distribution of the static variables can be parametrized in terms of [recursively defined] sufficient statistics of the previously observed data. For models where such sufficient statistics exist, particle learning as it is being called, is especially well suited for the analysis of streaming data do to the relative invariance of its algorithmic complexity with the number of data observations. Through a particle learning approach, a statistical model can be fit to data as the data is arriving, allowing at any instant during the observation process direct quantification of uncertainty surrounding underlying model parameters. Here we describe the use of a particle learning approach for fitting a standard Bayesian semiparametric mixture model as described in Carvalho, Lopes, Polson and Taddy. In Section 2 we briefly review the previously presented particle learning algorithm for the case of a Dirichlet process mixture of multivariate normals. In Section 3 we describe several novel extensions to the original
Bayesian inference based on dual generalized order statistics from the exponentiated Weibull model
NASA Astrophysics Data System (ADS)
Al Sobhi, Mashail M.
2015-02-01
Bayesian estimation for the two parameters and the reliability function of the exponentiated Weibull model are obtained based on dual generalized order statistics (DGOS). Also, Bayesian prediction bounds for future DGOS from exponentiated Weibull model are obtained. The symmetric and asymmetric loss functions are considered for Bayesian computations. The Markov chain Monte Carlo (MCMC) methods are used for computing the Bayes estimates and prediction bounds. The results have been specialized to the lower record values. Comparisons are made between Bayesian and maximum likelihood estimators via Monte Carlo simulation.
Road network safety evaluation using Bayesian hierarchical joint model.
Wang, Jie; Huang, Helai
2016-05-01
Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well.
Inversion of hierarchical Bayesian models using Gaussian processes.
Lomakina, Ekaterina I; Paliwal, Saee; Diaconescu, Andreea O; Brodersen, Kay H; Aponte, Eduardo A; Buhmann, Joachim M; Stephan, Klaas E
2015-09-01
Over the past decade, computational approaches to neuroimaging have increasingly made use of hierarchical Bayesian models (HBMs), either for inferring on physiological mechanisms underlying fMRI data (e.g., dynamic causal modelling, DCM) or for deriving computational trajectories (from behavioural data) which serve as regressors in general linear models. However, an unresolved problem is that standard methods for inverting the hierarchical Bayesian model are either very slow, e.g. Markov Chain Monte Carlo Methods (MCMC), or are vulnerable to local minima in non-convex optimisation problems, such as variational Bayes (VB). This article considers Gaussian process optimisation (GPO) as an alternative approach for global optimisation of sufficiently smooth and efficiently evaluable objective functions. GPO avoids being trapped in local extrema and can be computationally much more efficient than MCMC. Here, we examine the benefits of GPO for inverting HBMs commonly used in neuroimaging, including DCM for fMRI and the Hierarchical Gaussian Filter (HGF). Importantly, to achieve computational efficiency despite high-dimensional optimisation problems, we introduce a novel combination of GPO and local gradient-based search methods. The utility of this GPO implementation for DCM and HGF is evaluated against MCMC and VB, using both synthetic data from simulations and empirical data. Our results demonstrate that GPO provides parameter estimates with equivalent or better accuracy than the other techniques, but at a fraction of the computational cost required for MCMC. We anticipate that GPO will prove useful for robust and efficient inversion of high-dimensional and nonlinear models of neuroimaging data. Copyright © 2015. Published by Elsevier Inc.
Nonparametric Bayesian inference of the microcanonical stochastic block model
NASA Astrophysics Data System (ADS)
Peixoto, Tiago P.
2017-01-01
A principled approach to characterize the hidden modular structure of networks is to formulate generative models and then infer their parameters from data. When the desired structure is composed of modules or "communities," a suitable choice for this task is the stochastic block model (SBM), where nodes are divided into groups, and the placement of edges is conditioned on the group memberships. Here, we present a nonparametric Bayesian method to infer the modular structure of empirical networks, including the number of modules and their hierarchical organization. We focus on a microcanonical variant of the SBM, where the structure is imposed via hard constraints, i.e., the generated networks are not allowed to violate the patterns imposed by the model. We show how this simple model variation allows simultaneously for two important improvements over more traditional inference approaches: (1) deeper Bayesian hierarchies, with noninformative priors replaced by sequences of priors and hyperpriors, which not only remove limitations that seriously degrade the inference on large networks but also reveal structures at multiple scales; (2) a very efficient inference algorithm that scales well not only for networks with a large number of nodes and edges but also with an unlimited number of modules. We show also how this approach can be used to sample modular hierarchies from the posterior distribution, as well as to perform model selection. We discuss and analyze the differences between sampling from the posterior and simply finding the single parameter estimate that maximizes it. Furthermore, we expose a direct equivalence between our microcanonical approach and alternative derivations based on the canonical SBM.
A Semiparametric Bayesian Model for Detecting Synchrony Among Multiple Neurons
Shahbaba, Babak; Zhou, Bo; Lan, Shiwei; Ombao, Hernando; Moorman, David; Behseta, Sam
2015-01-01
We propose a scalable semiparametric Bayesian model to capture dependencies among multiple neurons by detecting their co-firing (possibly with some lag time) patterns over time. After discretizing time so there is at most one spike at each interval, the resulting sequence of 1’s (spike) and 0’s (silence) for each neuron is modeled using the logistic function of a continuous latent variable with a Gaussian process prior. For multiple neurons, the corresponding marginal distributions are coupled to their joint probability distribution using a parametric copula model. The advantages of our approach are as follows: the nonparametric component (i.e., the Gaussian process model) provides a flexible framework for modeling the underlying firing rates; the parametric component (i.e., the copula model) allows us to make inference regarding both contemporaneous and lagged relationships among neurons; using the copula model, we construct multivariate probabilistic models by separating the modeling of univariate marginal distributions from the modeling of dependence structure among variables; our method is easy to implement using a computationally efficient sampling algorithm that can be easily extended to high dimensional problems. Using simulated data, we show that our approach could correctly capture temporal dependencies in firing rates and identify synchronous neurons. We also apply our model to spike train data obtained from prefrontal cortical areas. PMID:24922500
Dynamic Bayesian Network Modeling of Game Based Diagnostic Assessments. CRESST Report 837
ERIC Educational Resources Information Center
Levy, Roy
2014-01-01
Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…
Bayesian Framework for Water Quality Model Uncertainty Estimation and Risk Management
A formal Bayesian methodology is presented for integrated model calibration and risk-based water quality management using Bayesian Monte Carlo simulation and maximum likelihood estimation (BMCML). The primary focus is on lucid integration of model calibration with risk-based wat...
Bayesian Framework for Water Quality Model Uncertainty Estimation and Risk Management
A formal Bayesian methodology is presented for integrated model calibration and risk-based water quality management using Bayesian Monte Carlo simulation and maximum likelihood estimation (BMCML). The primary focus is on lucid integration of model calibration with risk-based wat...
Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data
ERIC Educational Resources Information Center
Lee, Sik-Yum
2006-01-01
A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is used to produce the joint Bayesian estimates of…
Bayesian Statistical Model Checking with Application to Stateflow/Simulink Verification
2010-01-13
Bayesian Statistical Model Checking with Application to Stateflow/Simulink Verification Paolo Zuliani, André Platzer , Edmund M. Clarke January 13...Legay, A. Platzer , and P. Zuliani. A Bayesian approach to Model Checking biological systems. In CMSB, volume 5688 of LNCS, pages 218–234, 2009. 21 [16
A comparison of Bayesian and frequentist model selection methods for factor analysis models.
Lu, Zhao-Hua; Chow, Sy-Miin; Loken, Eric
2017-06-01
We compare the performances of well-known frequentist model fit indices (MFIs) and several Bayesian model selection criteria (MCC) as tools for cross-loading selection in factor analysis under low to moderate sample sizes, cross-loading sizes, and possible violations of distributional assumptions. The Bayesian criteria considered include the Bayes factor (BF), Bayesian Information Criterion (BIC), Deviance Information Criterion (DIC), a Bayesian leave-one-out with Pareto smoothed importance sampling (LOO-PSIS), and a Bayesian variable selection method using the spike-and-slab prior (SSP; Lu, Chow, & Loken, 2016). Simulation results indicate that of the Bayesian measures considered, the BF and the BIC showed the best balance between true positive rates and false positive rates, followed closely by the SSP. The LOO-PSIS and the DIC showed the highest true positive rates among all the measures considered, but with elevated false positive rates. In comparison, likelihood ratio tests (LRTs) are still the preferred frequentist model comparison tool, except for their higher false positive detection rates compared to the BF, BIC and SSP under violations of distributional assumptions. The root mean squared error of approximation (RMSEA) and the Tucker-Lewis index (TLI) at the conventional cut-off of approximate fit impose much more stringent "penalties" on model complexity under conditions with low cross-loading size, low sample size, and high model complexity compared with the LRTs and all other Bayesian MCC. Nevertheless, they provided a reasonable alternative to the LRTs in cases where the models cannot be readily constructed as nested within each other. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Namysłowska-Wilczyńska, Barbara
2013-03-01
The paper presents the first stage of research on a geostatistical hydrogeochemical 3D model dedicated to the horizontal and vertical spatial and time variation in the topographical, hydrological and quality parameters of underground water in the Kłodzko water intake area. The research covers the period 1977-2012. For this purpose various thematic databases, containing original data on coordinates X, Y (latitude and longitude) and Z (terrain elevation and time - years) and on regionalized variables, i.e., the underground water quality parameters in the Kłodzko water intake area determined for different analytical configurations (22 wells, 14 wells, 14 wells + 3 piezometers), were created. The data were subjected to spatial analyses using statistical methods. The input for the studies was the chemical determination of the quality parameters of underground water samples taken from the wells in the water intake area in different periods of time. Both archival data (acquired in the years 1977-1999, 1977-2011) and the latest data (collected in November 2011 and in January 2012) were analyzed. First, the underground water intake area with 22 wells was investigated. Then in order to assess the current quality of the underground water, 14 wells out of the 22 wells were selected for further chemical analyses and a collection siphon wall was included. Recently, three new piezometers were installed in the water intake area and so new water samples were taken, whereby the databases were supplemented with new chemical determinations. The variation in the topographical parameter (terrain elevation) and in the hydrogeological parameters: water abstraction level Z (with and without the land layout being taken into account) and the depth of occurrence of the water table, was examined. Subsequently, the variation in quality parameters was studied on the basis of data coming from 22 wells, then 14 wells and finally from 14 wells and 3 piezometers. The variation in: Fe, Mn, ammonium
A Bayesian Measurment Error Model for Misaligned Radiographic Data
Lennox, Kristin P.; Glascoe, Lee G.
2013-09-06
An understanding of the inherent variability in micro-computed tomography (micro-CT) data is essential to tasks such as statistical process control and the validation of radiographic simulation tools. The data present unique challenges to variability analysis due to the relatively low resolution of radiographs, and also due to minor variations from run to run which can result in misalignment or magnification changes between repeated measurements of a sample. Positioning changes artificially inflate the variability of the data in ways that mask true physical phenomena. We present a novel Bayesian nonparametric regression model that incorporates both additive and multiplicative measurement error in addition to heteroscedasticity to address this problem. We also use this model to assess the effects of sample thickness and sample position on measurement variability for an aluminum specimen. Supplementary materials for this article are available online.
A Bayesian model of context-sensitive value attribution.
Rigoli, Francesco; Friston, Karl J; Martinelli, Cristina; Selaković, Mirjana; Shergill, Sukhwinder S; Dolan, Raymond J
2016-06-22
Substantial evidence indicates that incentive value depends on an anticipation of rewards within a given context. However, the computations underlying this context sensitivity remain unknown. To address this question, we introduce a normative (Bayesian) account of how rewards map to incentive values. This assumes that the brain inverts a model of how rewards are generated. Key features of our account include (i) an influence of prior beliefs about the context in which rewards are delivered (weighted by their reliability in a Bayes-optimal fashion), (ii) the notion that incentive values correspond to precision-weighted prediction errors, (iii) and contextual information unfolding at different hierarchical levels. This formulation implies that incentive value is intrinsically context-dependent. We provide empirical support for this model by showing that incentive value is influenced by context variability and by hierarchically nested contexts. The perspective we introduce generates new empirical predictions that might help explaining psychopathologies, such as addiction.
Modeling the user preference on broadcasting contents using Bayesian networks
NASA Astrophysics Data System (ADS)
Kang, Sanggil; Lim, Jeongyeon; Kim, Munchurl
2004-01-01
In this paper, we introduce a new supervised learning method of a Bayesian network for user preference models. Unlike other preference models, our method traces the trend of a user preference as time passes. It allows us to do online learning so we do not need the exhaustive data collection. The tracing of the trend can be done by modifying the frequency of attributes in order to force the old preference to be correlated with the current preference under the assumption that the current preference is correlated with the near future preference. The objective of our learning method is to force the mutual information to be reinforced by modifying the frequency of the attributes in the old preference by providing weights to the attributes. With developing mathematical derivation of our learning method, experimental results on the learning and reasoning performance on TV genre preference using a real set of TV program watching history data.
GPU Computing in Bayesian Inference of Realized Stochastic Volatility Model
NASA Astrophysics Data System (ADS)
Takaishi, Tetsuya
2015-01-01
The realized stochastic volatility (RSV) model that utilizes the realized volatility as additional information has been proposed to infer volatility of financial time series. We consider the Bayesian inference of the RSV model by the Hybrid Monte Carlo (HMC) algorithm. The HMC algorithm can be parallelized and thus performed on the GPU for speedup. The GPU code is developed with CUDA Fortran. We compare the computational time in performing the HMC algorithm on GPU (GTX 760) and CPU (Intel i7-4770 3.4GHz) and find that the GPU can be up to 17 times faster than the CPU. We also code the program with OpenACC and find that appropriate coding can achieve the similar speedup with CUDA Fortran.
Modelling categorical covariates in Bayesian disease mapping by partition structures.
Giudici, P; Knorr-Held, L; Rasser, G
We consider the problem of mapping the risk from a disease using a series of regional counts of observed and expected cases, and information on potential risk factors. To analyse this problem from a Bayesian viewpoint, we propose a methodology which extends a spatial partition model by including categorical covariate information. Such an extension allows detection of clusters in the residual variation, reflecting further, possibly unobserved, covariates. The methodology is implemented by means of reversible jump Markov chain Monte Carlo sampling. An application is presented in order to illustrate and compare our proposed extensions with a purely spatial partition model. Here we analyse a well-known data set on lip cancer incidence in Scotland. Copyright 2000 John Wiley & Sons, Ltd.
A Bayesian Measurment Error Model for Misaligned Radiographic Data
Lennox, Kristin P.; Glascoe, Lee G.
2013-09-06
An understanding of the inherent variability in micro-computed tomography (micro-CT) data is essential to tasks such as statistical process control and the validation of radiographic simulation tools. The data present unique challenges to variability analysis due to the relatively low resolution of radiographs, and also due to minor variations from run to run which can result in misalignment or magnification changes between repeated measurements of a sample. Positioning changes artificially inflate the variability of the data in ways that mask true physical phenomena. We present a novel Bayesian nonparametric regression model that incorporates both additive and multiplicative measurement error inmore » addition to heteroscedasticity to address this problem. We also use this model to assess the effects of sample thickness and sample position on measurement variability for an aluminum specimen. Supplementary materials for this article are available online.« less
Bayesian theory of probabilistic forecasting via deterministic hydrologic model
NASA Astrophysics Data System (ADS)
Krzysztofowicz, Roman
1999-09-01
Rational decision making (for flood warning, navigation, or reservoir systems) requires that the total uncertainty about a hydrologic predictand (such as river stage, discharge, or runoff volume) be quantified in terms of a probability distribution, conditional on all available information and knowledge. Hydrologic knowledge is typically embodied in a deterministic catchment model. Fundamentals are presented of a Bayesian forecasting system (BFS) for producing a probabilistic forecast of a hydrologic predictand via any deterministic catchment model. The BFS decomposes the total uncertainty into input uncertainty and hydrologic uncertainty, which are quantified independently and then integrated into a predictive (Bayes) distribution. This distribution results from a revision of a prior (climatic) distribution, is well calibrated, and has a nonnegative ex ante economic value. The BFS is compared with Monte Carlo simulation and "ensemble forecasting" technique, none of which can alone produce a probabilistic forecast that meets requirements of rational decision making, but each can serve as a component of the BFS.
Cooper, Richard J; Krueger, Tobias; Hiscock, Kevin M; Rawlins, Barry G
2014-01-01
Mixing models have become increasingly common tools for apportioning fluvial sediment load to various sediment sources across catchments using a wide variety of Bayesian and frequentist modeling approaches. In this study, we demonstrate how different model setups can impact upon resulting source apportionment estimates in a Bayesian framework via a one-factor-at-a-time (OFAT) sensitivity analysis. We formulate 13 versions of a mixing model, each with different error assumptions and model structural choices, and apply them to sediment geochemistry data from the River Blackwater, Norfolk, UK, to apportion suspended particulate matter (SPM) contributions from three sources (arable topsoils, road verges, and subsurface material) under base flow conditions between August 2012 and August 2013. Whilst all 13 models estimate subsurface sources to be the largest contributor of SPM (median ∼76%), comparison of apportionment estimates reveal varying degrees of sensitivity to changing priors, inclusion of covariance terms, incorporation of time-variant distributions, and methods of proportion characterization. We also demonstrate differences in apportionment results between a full and an empirical Bayesian setup, and between a Bayesian and a frequentist optimization approach. This OFAT sensitivity analysis reveals that mixing model structural choices and error assumptions can significantly impact upon sediment source apportionment results, with estimated median contributions in this study varying by up to 21% between model versions. Users of mixing models are therefore strongly advised to carefully consider and justify their choice of model structure prior to conducting sediment source apportionment investigations. Key Points An OFAT sensitivity analysis of sediment fingerprinting mixing models is conducted Bayesian models display high sensitivity to error assumptions and structural choices Source apportionment results differ between Bayesian and frequentist approaches PMID
A Bayesian hierarchical model for categorical data with nonignorable nonresponse.
Green, Paul E; Park, Taesung
2003-12-01
Log-linear models have been shown to be useful for smoothing contingency tables when categorical outcomes are subject to nonignorable nonresponse. A log-linear model can be fit to an augmented data table that includes an indicator variable designating whether subjects are respondents or nonrespondents. Maximum likelihood estimates calculated from the augmented data table are known to suffer from instability due to boundary solutions. Park and Brown (1994, Journal of the American Statistical Association 89, 44-52) and Park (1998, Biometrics 54, 1579-1590) developed empirical Bayes models that tend to smooth estimates away from the boundary. In those approaches, estimates for nonrespondents were calculated using an EM algorithm by maximizing a posterior distribution. As an extension of their earlier work, we develop a Bayesian hierarchical model that incorporates a log-linear model in the prior specification. In addition, due to uncertainty in the variable selection process associated with just one log-linear model, we simultaneously consider a finite number of models using a stochastic search variable selection (SSVS) procedure due to George and McCulloch (1997, Statistica Sinica 7, 339-373). The integration of the SSVS procedure into a Markov chain Monte Carlo (MCMC) sampler is straightforward, and leads to estimates of cell frequencies for the nonrespondents that are averages resulting from several log-linear models. The methods are demonstrated with a data example involving serum creatinine levels of patients who survived renal transplants. A simulation study is conducted to investigate properties of the model.
Addressing model structural uncertainty in PUBs via Bayesian approach
NASA Astrophysics Data System (ADS)
Prieto, Cristina; Le-Vine, Nataliya; Vitolo, Claudia; Medina, Raúl
2017-04-01
A catchment is a complex system where a multitude of interrelated energy, water and vegetation processes occur at different temporal and spatial scales. A rainfall-runoff model is a simplified representation of the system, and serves as a hypothesis about catchment inner working. In predictions for ungauged basins, a common practice is to use a pre-selected model structure for a catchment, while there is usually no justification for its suitability (due to the lack of observed flows). This research aims moving beyond the 'one size fits all' problem. First, two metrics are proposed to assess suitability and adequacy of a selected model based on a) how well the model reproduces regionalised information, b) knowledge gain from considering the model over what is known from regionalisation alone. Second, dominant hydrological mechanisms (to be included into a model) are identified using the regionalised information via Bayesian approach. And third, available model structures are ranked and weighed based on their skill to support regionalised information, and then used in a multi-model ensemble to provide probabilistic predictions. The methodology is applied to basins in Northern Spain with varied hydroclimatological regimes. The results show that prediction quality is sensitive to model (or ensemble) error, quality of regionalised information, and available information content.
Diagnosing Hybrid Systems: a Bayesian Model Selection Approach
NASA Technical Reports Server (NTRS)
McIlraith, Sheila A.
2005-01-01
In this paper we examine the problem of monitoring and diagnosing noisy complex dynamical systems that are modeled as hybrid systems-models of continuous behavior, interleaved by discrete transitions. In particular, we examine continuous systems with embedded supervisory controllers that experience abrupt, partial or full failure of component devices. Building on our previous work in this area (MBCG99;MBCG00), our specific focus in this paper ins on the mathematical formulation of the hybrid monitoring and diagnosis task as a Bayesian model tracking algorithm. The nonlinear dynamics of many hybrid systems present challenges to probabilistic tracking. Further, probabilistic tracking of a system for the purposes of diagnosis is problematic because the models of the system corresponding to failure modes are numerous and generally very unlikely. To focus tracking on these unlikely models and to reduce the number of potential models under consideration, we exploit logic-based techniques for qualitative model-based diagnosis to conjecture a limited initial set of consistent candidate models. In this paper we discuss alternative tracking techniques that are relevant to different classes of hybrid systems, focusing specifically on a method for tracking multiple models of nonlinear behavior simultaneously using factored sampling and conditional density propagation. To illustrate and motivate the approach described in this paper we examine the problem of monitoring and diganosing NASA's Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.
Fast Bayesian parameter estimation for stochastic logistic growth models.
Heydari, Jonathan; Lawless, Conor; Lydall, David A; Wilkinson, Darren J
2014-08-01
The transition density of a stochastic, logistic population growth model with multiplicative intrinsic noise is analytically intractable. Inferring model parameter values by fitting such stochastic differential equation (SDE) models to data therefore requires relatively slow numerical simulation. Where such simulation is prohibitively slow, an alternative is to use model approximations which do have an analytically tractable transition density, enabling fast inference. We introduce two such approximations, with either multiplicative or additive intrinsic noise, each derived from the linear noise approximation (LNA) of a logistic growth SDE. After Bayesian inference we find that our fast LNA models, using Kalman filter recursion for computation of marginal likelihoods, give similar posterior distributions to slow, arbitrarily exact models. We also demonstrate that simulations from our LNA models better describe the characteristics of the stochastic logistic growth models than a related approach. Finally, we demonstrate that our LNA model with additive intrinsic noise and measurement error best describes an example set of longitudinal observations of microbial population size taken from a typical, genome-wide screening experiment. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Bayesian network models for error detection in radiotherapy plans
NASA Astrophysics Data System (ADS)
Kalet, Alan M.; Gennari, John H.; Ford, Eric C.; Phillips, Mark H.
2015-04-01
The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.
Bayesian network models for error detection in radiotherapy plans.
Kalet, Alan M; Gennari, John H; Ford, Eric C; Phillips, Mark H
2015-04-07
The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network's conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.
A Bayesian Attractor Model for Perceptual Decision Making
Bitzer, Sebastian; Bruineberg, Jelle; Kiebel, Stefan J.
2015-01-01
Even for simple perceptual decisions, the mechanisms that the brain employs are still under debate. Although current consensus states that the brain accumulates evidence extracted from noisy sensory information, open questions remain about how this simple model relates to other perceptual phenomena such as flexibility in decisions, decision-dependent modulation of sensory gain, or confidence about a decision. We propose a novel approach of how perceptual decisions are made by combining two influential formalisms into a new model. Specifically, we embed an attractor model of decision making into a probabilistic framework that models decision making as Bayesian inference. We show that the new model can explain decision making behaviour by fitting it to experimental data. In addition, the new model combines for the first time three important features: First, the model can update decisions in response to switches in the underlying stimulus. Second, the probabilistic formulation accounts for top-down effects that may explain recent experimental findings of decision-related gain modulation of sensory neurons. Finally, the model computes an explicit measure of confidence which we relate to recent experimental evidence for confidence computations in perceptual decision tasks. PMID:26267143
Bayesian analysis of a reduced-form air quality model.
Foley, Kristen M; Reich, Brian J; Napelenok, Sergey L
2012-07-17
Numerical air quality models are being used for assessing emission control strategies for improving ambient pollution levels across the globe. This paper applies probabilistic modeling to evaluate the effectiveness of emission reduction scenarios aimed at lowering ground-level ozone concentrations. A Bayesian hierarchical model is used to combine air quality model output and monitoring data in order to characterize the impact of emissions reductions while accounting for different degrees of uncertainty in the modeled emissions inputs. The probabilistic model predictions are weighted based on population density in order to better quantify the societal benefits/disbenefits of four hypothetical emission reduction scenarios in which domain-wide NO(x) emissions from various sectors are reduced individually and then simultaneously. Cross validation analysis shows the statistical model performs well compared to observed ozone levels. Accounting for the variability and uncertainty in the emissions and atmospheric systems being modeled is shown to impact how emission reduction scenarios would be ranked, compared to standard methodology.
Wei Wu; James Clark; James Vose
2010-01-01
Hierarchical Bayesian (HB) modeling allows for multiple sources of uncertainty by factoring complex relationships into conditional distributions that can be used to draw inference and make predictions. We applied an HB model to estimate the parameters and state variables of a parsimonious hydrological model â GR4J â by coherently assimilating the uncertainties from the...
Random vectors and spatial analysis by geostatistics for geotechnical applications
Young, D.S.
1987-08-01
Geostatistics is extended to the spatial analysis of vector variables by defining the estimation variance and vector variogram in terms of the magnitude of difference vectors. Many random variables in geotechnology are in vectorial terms rather than scalars, and its structural analysis requires those sample variable interpolations to construct and characterize structural models. A better local estimator will result in greater quality of input models; geostatistics can provide such estimators; kriging estimators. The efficiency of geostatistics for vector variables is demonstrated in a case study of rock joint orientations in geological formations. The positive cross-validation encourages application of geostatistics to spatial analysis of random vectors in geoscience as well as various geotechnical fields including optimum site characterization, rock mechanics for mining and civil structures, cavability analysis of block cavings, petroleum engineering, and hydrologic and hydraulic modelings.
A Bayesian modelling framework for tornado occurrences in North America.
Cheng, Vincent Y S; Arhonditsis, George B; Sills, David M L; Gough, William A; Auld, Heather
2015-03-25
Tornadoes represent one of nature's most hazardous phenomena that have been responsible for significant destruction and devastating fatalities. Here we present a Bayesian modelling approach for elucidating the spatiotemporal patterns of tornado activity in North America. Our analysis shows a significant increase in the Canadian Prairies and the Northern Great Plains during the summer, indicating a clear transition of tornado activity from the United States to Canada. The linkage between monthly-averaged atmospheric variables and likelihood of tornado events is characterized by distinct seasonality; the convective available potential energy is the predominant factor in the summer; vertical wind shear appears to have a strong signature primarily in the winter and secondarily in the summer; and storm relative environmental helicity is most influential in