Hierarchical Bayesian sparse image reconstruction with application to MRFM.
Dobigeon, Nicolas; Hero, Alfred O; Tourneret, Jean-Yves
2009-09-01
This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g., by maximizing the estimated posterior distribution. In our fully Bayesian approach, the posteriors of all the parameters are available. Thus, our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of the proposed hierarchical Bayesian sparse reconstruction method is illustrated on synthetic data and real data collected from a tobacco virus sample using a prototype MRFM instrument.
Bayesian image reconstruction for improving detection performance of muon tomography.
Wang, Guobao; Schultz, Larry J; Qi, Jinyi
2009-05-01
Muon tomography is a novel technology that is being developed for detecting high-Z materials in vehicles or cargo containers. Maximum likelihood methods have been developed for reconstructing the scattering density image from muon measurements. However, the instability of maximum likelihood estimation often results in noisy images and low detectability of high-Z targets. In this paper, we propose using regularization to improve the image quality of muon tomography. We formulate the muon reconstruction problem in a Bayesian framework by introducing a prior distribution on scattering density images. An iterative shrinkage algorithm is derived to maximize the log posterior distribution. At each iteration, the algorithm obtains the maximum a posteriori update by shrinking an unregularized maximum likelihood update. Inverse quadratic shrinkage functions are derived for generalized Laplacian priors and inverse cubic shrinkage functions are derived for generalized Gaussian priors. Receiver operating characteristic studies using simulated data demonstrate that the Bayesian reconstruction can greatly improve the detection performance of muon tomography.
Parallelized Bayesian inversion for three-dimensional dental X-ray imaging.
Kolehmainen, Ville; Vanne, Antti; Siltanen, Samuli; Järvenpää, Seppo; Kaipio, Jari P; Lassas, Matti; Kalke, Martti
2006-02-01
Diagnostic and operational tasks based on dental radiology often require three-dimensional (3-D) information that is not available in a single X-ray projection image. Comprehensive 3-D information about tissues can be obtained by computerized tomography (CT) imaging. However, in dental imaging a conventional CT scan may not be available or practical because of high radiation dose, low-resolution or the cost of the CT scanner equipment. In this paper, we consider a novel type of 3-D imaging modality for dental radiology. We consider situations in which projection images of the teeth are taken from a few sparsely distributed projection directions using the dentist's regular (digital) X-ray equipment and the 3-D X-ray attenuation function is reconstructed. A complication in these experiments is that the reconstruction of the 3-D structure based on a few projection images becomes an ill-posed inverse problem. Bayesian inversion is a well suited framework for reconstruction from such incomplete data. In Bayesian inversion, the ill-posed reconstruction problem is formulated in a well-posed probabilistic form in which a priori information is used to compensate for the incomplete information of the projection data. In this paper we propose a Bayesian method for 3-D reconstruction in dental radiology. The method is partially based on Kolehmainen et al. 2003. The prior model for dental structures consist of a weighted l1 and total variation (TV)-prior together with the positivity prior. The inverse problem is stated as finding the maximum a posteriori (MAP) estimate. To make the 3-D reconstruction computationally feasible, a parallelized version of an optimization algorithm is implemented for a Beowulf cluster computer. The method is tested with projection data from dental specimens and patient data. Tomosynthetic reconstructions are given as reference for the proposed method.
Bayesian image reconstruction - The pixon and optimal image modeling
NASA Technical Reports Server (NTRS)
Pina, R. K.; Puetter, R. C.
1993-01-01
In this paper we describe the optimal image model, maximum residual likelihood method (OptMRL) for image reconstruction. OptMRL is a Bayesian image reconstruction technique for removing point-spread function blurring. OptMRL uses both a goodness-of-fit criterion (GOF) and an 'image prior', i.e., a function which quantifies the a priori probability of the image. Unlike standard maximum entropy methods, which typically reconstruct the image on the data pixel grid, OptMRL varies the image model in order to find the optimal functional basis with which to represent the image. We show how an optimal basis for image representation can be selected and in doing so, develop the concept of the 'pixon' which is a generalized image cell from which this basis is constructed. By allowing both the image and the image representation to be variable, the OptMRL method greatly increases the volume of solution space over which the image is optimized. Hence the likelihood of the final reconstructed image is greatly increased. For the goodness-of-fit criterion, OptMRL uses the maximum residual likelihood probability distribution introduced previously by Pina and Puetter (1992). This GOF probability distribution, which is based on the spatial autocorrelation of the residuals, has the advantage that it ensures spatially uncorrelated image reconstruction residuals.
A novel super-resolution camera model
NASA Astrophysics Data System (ADS)
Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli
2015-05-01
Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.
NASA Astrophysics Data System (ADS)
Nunez, Jorge; Llacer, Jorge
1993-10-01
This paper describes a general Bayesian iterative algorithm with entropy prior for image reconstruction. It solves the cases of both pure Poisson data and Poisson data with Gaussian readout noise. The algorithm maintains positivity of the solution; it includes case-specific prior information (default map) and flatfield corrections; it removes background and can be accelerated to be faster than the Richardson-Lucy algorithm. In order to determine the hyperparameter that balances the entropy and liklihood terms in the Bayesian approach, we have used a liklihood cross-validation technique. Cross-validation is more robust than other methods because it is less demanding in terms of the knowledge of exact data characteristics and of the point-spread function. We have used the algorithm to reconstruct successfully images obtained in different space-and ground-based imaging situations. It has been possible to recover most of the original intended capabilities of the Hubble Space Telescope (HST) wide field and planetary camera (WFPC) and faint object camera (FOC) from images obtained in their present state. Semireal simulations for the future wide field planetary camera 2 show that even after the repair of the spherical abberration problem, image reconstruction can play a key role in improving the resolution of the cameras, well beyond the design of the Hubble instruments. We also show that ground-based images can be reconstructed successfully with the algorithm. A technique which consists of dividing the CCD observations into two frames, with one-half the exposure time each, emerges as a recommended procedure for the utilization of the described algorithms. We have compared our technique with two commonly used reconstruction algorithms: the Richardson-Lucy and the Cambridge maximum entropy algorithms.
Bayesian nonparametric dictionary learning for compressed sensing MRI.
Huang, Yue; Paisley, John; Lin, Qin; Ding, Xinghao; Fu, Xueyang; Zhang, Xiao-Ping
2014-12-01
We develop a Bayesian nonparametric model for reconstructing magnetic resonance images (MRIs) from highly undersampled k -space data. We perform dictionary learning as part of the image reconstruction process. To this end, we use the beta process as a nonparametric dictionary learning prior for representing an image patch as a sparse combination of dictionary elements. The size of the dictionary and patch-specific sparsity pattern are inferred from the data, in addition to other dictionary learning variables. Dictionary learning is performed directly on the compressed image, and so is tailored to the MRI being considered. In addition, we investigate a total variation penalty term in combination with the dictionary learning model, and show how the denoising property of dictionary learning removes dependence on regularization parameters in the noisy setting. We derive a stochastic optimization algorithm based on Markov chain Monte Carlo for the Bayesian model, and use the alternating direction method of multipliers for efficiently performing total variation minimization. We present empirical results on several MRI, which show that the proposed regularization framework can improve reconstruction accuracy over other methods.
Bayesian reconstruction and use of anatomical a priori information for emission tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowsher, J.E.; Johnson, V.E.; Turkington, T.G.
1996-10-01
A Bayesian method is presented for simultaneously segmenting and reconstructing emission computed tomography (ECT) images and for incorporating high-resolution, anatomical information into those reconstructions. The anatomical information is often available from other imaging modalities such as computed tomography (CT) or magnetic resonance imaging (MRI). The Bayesian procedure models the ECT radiopharmaceutical distribution as consisting of regions, such that radiopharmaceutical activity is similar throughout each region. It estimates the number of regions, the mean activity of each region, and the region classification and mean activity of each voxel. Anatomical information is incorporated by assigning higher prior probabilities to ECT segmentations inmore » which each ECT region stays within a single anatomical region. This approach is effective because anatomical tissue type often strongly influences radiopharmaceutical uptake. The Bayesian procedure is evaluated using physically acquired single-photon emission computed tomography (SPECT) projection data and MRI for the three-dimensional (3-D) Hoffman brain phantom. A clinically realistic count level is used. A cold lesion within the brain phantom is created during the SPECT scan but not during the MRI to demonstrate that the estimation procedure can detect ECT structure that is not present anatomically.« less
Bayesian X-ray computed tomography using a three-level hierarchical prior model
NASA Astrophysics Data System (ADS)
Wang, Li; Mohammad-Djafari, Ali; Gac, Nicolas
2017-06-01
In recent decades X-ray Computed Tomography (CT) image reconstruction has been largely developed in both medical and industrial domain. In this paper, we propose using the Bayesian inference approach with a new hierarchical prior model. In the proposed model, a generalised Student-t distribution is used to enforce the Haar transformation of images to be sparse. Comparisons with some state of the art methods are presented. It is shown that by using the proposed model, the sparsity of sparse representation of images is enforced, so that edges of images are preserved. Simulation results are also provided to demonstrate the effectiveness of the new hierarchical model for reconstruction with fewer projections.
NASA Astrophysics Data System (ADS)
Ouyang, Bing; Hou, Weilin; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.; Gong, Cuiling
2017-07-01
The compressive line sensing imaging system adopts distributed compressive sensing (CS) to acquire data and reconstruct images. Dynamic CS uses Bayesian inference to capture the correlated nature of the adjacent lines. An image reconstruction technique that incorporates dynamic CS in the distributed CS framework was developed to improve the quality of reconstructed images. The effectiveness of the technique was validated using experimental data acquired in an underwater imaging test facility. Results that demonstrate contrast and resolution improvements will be presented. The improved efficiency is desirable for unmanned aerial vehicles conducting long-duration missions.
Beyond maximum entropy: Fractal pixon-based image reconstruction
NASA Technical Reports Server (NTRS)
Puetter, R. C.; Pina, R. K.
1994-01-01
We have developed a new Bayesian image reconstruction method that has been shown to be superior to the best implementations of other methods, including Goodness-of-Fit (e.g. Least-Squares and Lucy-Richardson) and Maximum Entropy (ME). Our new method is based on the concept of the pixon, the fundamental, indivisible unit of picture information. Use of the pixon concept provides an improved image model, resulting in an image prior which is superior to that of standard ME.
Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.
Zhang, Guanglei; Liu, Fei; Liu, Jie; Luo, Jianwen; Xie, Yaoqin; Bai, Jing; Xing, Lei
2017-01-01
X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.
Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method
Liu, Fei; Luo, Jianwen; Xie, Yaoqin; Bai, Jing
2017-01-01
X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods. PMID:27576245
Direct 4D reconstruction of parametric images incorporating anato-functional joint entropy.
Tang, Jing; Kuwabara, Hiroto; Wong, Dean F; Rahmim, Arman
2010-08-07
We developed an anatomy-guided 4D closed-form algorithm to directly reconstruct parametric images from projection data for (nearly) irreversible tracers. Conventional methods consist of individually reconstructing 2D/3D PET data, followed by graphical analysis on the sequence of reconstructed image frames. The proposed direct reconstruction approach maintains the simplicity and accuracy of the expectation-maximization (EM) algorithm by extending the system matrix to include the relation between the parametric images and the measured data. A closed-form solution was achieved using a different hidden complete-data formulation within the EM framework. Furthermore, the proposed method was extended to maximum a posterior reconstruction via incorporation of MR image information, taking the joint entropy between MR and parametric PET features as the prior. Using realistic simulated noisy [(11)C]-naltrindole PET and MR brain images/data, the quantitative performance of the proposed methods was investigated. Significant improvements in terms of noise versus bias performance were demonstrated when performing direct parametric reconstruction, and additionally upon extending the algorithm to its Bayesian counterpart using the MR-PET joint entropy measure.
Hybrid-coded 3D structured illumination imaging with Bayesian estimation (Conference Presentation)
NASA Astrophysics Data System (ADS)
Chen, Hsi-Hsun; Luo, Yuan; Singh, Vijay R.
2016-03-01
Light induced fluorescent microscopy has long been developed to observe and understand the object at microscale, such as cellular sample. However, the transfer function of lense-based imaging system limits the resolution so that the fine and detailed structure of sample cannot be identified clearly. The techniques of resolution enhancement are fascinated to break the limit of resolution for objective given. In the past decades, the resolution enhancement imaging has been investigated through variety of strategies, including photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), stimulated emission depletion (STED), and structure illuminated microscopy (SIM). In those methods, only SIM can intrinsically improve the resolution limit for a system without taking the structure properties of object into account. In this paper, we develop a SIM associated with Bayesian estimation, furthermore, with optical sectioning capability rendered from HiLo processing, resulting the high resolution through 3D volume. This 3D SIM can provide the optical sectioning and resolution enhancement performance, and be robust to noise owing to the Data driven Bayesian estimation reconstruction proposed. For validating the 3D SIM, we show our simulation result of algorithm, and the experimental result demonstrating the 3D resolution enhancement.
Semi-blind sparse image reconstruction with application to MRFM.
Park, Se Un; Dobigeon, Nicolas; Hero, Alfred O
2012-09-01
We propose a solution to the image deconvolution problem where the convolution kernel or point spread function (PSF) is assumed to be only partially known. Small perturbations generated from the model are exploited to produce a few principal components explaining the PSF uncertainty in a high-dimensional space. Unlike recent developments on blind deconvolution of natural images, we assume the image is sparse in the pixel basis, a natural sparsity arising in magnetic resonance force microscopy (MRFM). Our approach adopts a Bayesian Metropolis-within-Gibbs sampling framework. The performance of our Bayesian semi-blind algorithm for sparse images is superior to previously proposed semi-blind algorithms such as the alternating minimization algorithm and blind algorithms developed for natural images. We illustrate our myopic algorithm on real MRFM tobacco virus data.
Advanced Imaging Methods for Long-Baseline Optical Interferometry
NASA Astrophysics Data System (ADS)
Le Besnerais, G.; Lacour, S.; Mugnier, L. M.; Thiebaut, E.; Perrin, G.; Meimon, S.
2008-11-01
We address the data processing methods needed for imaging with a long baseline optical interferometer. We first describe parametric reconstruction approaches and adopt a general formulation of nonparametric image reconstruction as the solution of a constrained optimization problem. Within this framework, we present two recent reconstruction methods, Mira and Wisard, representative of the two generic approaches for dealing with the missing phase information. Mira is based on an implicit approach and a direct optimization of a Bayesian criterion while Wisard adopts a self-calibration approach and an alternate minimization scheme inspired from radio-astronomy. Both methods can handle various regularization criteria. We review commonly used regularization terms and introduce an original quadratic regularization called ldquosoft support constraintrdquo that favors the object compactness. It yields images of quality comparable to nonquadratic regularizations on the synthetic data we have processed. We then perform image reconstructions, both parametric and nonparametric, on astronomical data from the IOTA interferometer, and discuss the respective roles of parametric and nonparametric approaches for optical interferometric imaging.
Cai, C; Rodet, T; Legoupil, S; Mohammad-Djafari, A
2013-11-01
Dual-energy computed tomography (DECT) makes it possible to get two fractions of basis materials without segmentation. One is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical DECT measurements are usually obtained with polychromatic x-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam polychromaticity fail to estimate the correct decomposition fractions and result in beam-hardening artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log preprocessing and the ill-conditioned water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on nonlinear forward models counting the beam polychromaticity show great potential for giving accurate fraction images. This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint maximum a posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a nonquadratic cost function. To solve it, the use of a monotone conjugate gradient algorithm with suboptimal descent steps is proposed. The performance of the proposed approach is analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also necessary to have the accurate spectrum information about the source-detector system. When dealing with experimental data, the spectrum can be predicted by a Monte Carlo simulator. For the materials between water and bone, less than 5% separation errors are observed on the estimated decomposition fractions. The proposed approach is a statistical reconstruction approach based on a nonlinear forward model counting the full beam polychromaticity and applied directly to the projections without taking negative-log. Compared to the approaches based on linear forward models and the BHA correction approaches, it has advantages in noise robustness and reconstruction accuracy.
Bayesian Abel Inversion in Quantitative X-Ray Radiography
Howard, Marylesa; Fowler, Michael; Luttman, Aaron; ...
2016-05-19
A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type andmore » scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.« less
NASA Astrophysics Data System (ADS)
Bai, Bing
2012-03-01
There has been a lot of work on total variation (TV) regularized tomographic image reconstruction recently. Many of them use gradient-based optimization algorithms with a differentiable approximation of the TV functional. In this paper we apply TV regularization in Positron Emission Tomography (PET) image reconstruction. We reconstruct the PET image in a Bayesian framework, using Poisson noise model and TV prior functional. The original optimization problem is transformed to an equivalent problem with inequality constraints by adding auxiliary variables. Then we use an interior point method with logarithmic barrier functions to solve the constrained optimization problem. In this method, a series of points approaching the solution from inside the feasible region are found by solving a sequence of subproblems characterized by an increasing positive parameter. We use preconditioned conjugate gradient (PCG) algorithm to solve the subproblems directly. The nonnegativity constraint is enforced by bend line search. The exact expression of the TV functional is used in our calculations. Simulation results show that the algorithm converges fast and the convergence is insensitive to the values of the regularization and reconstruction parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, G; Xing, L
2016-06-15
Purpose: Cone beam X-ray luminescence computed tomography (CB-XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. However, the inverse problem of CB-XLCT is seriously ill-conditioned, hindering us to achieve good image quality. In this work, a novel reconstruction method based on Bayesian theory is proposed to tackle this problem Methods: Bayesian theory provides a natural framework for utilizing various kinds of available prior information to improve the reconstruction image quality. A generalized Gaussian Markov random field (GGMRF) model is proposed here to construct the prior model of the Bayesianmore » theory. The most important feature of GGMRF model is the adjustable shape parameter p, which can be continuously adjusted from 1 to 2. The reconstruction image tends to have more edge-preserving property when p is slide to 1, while having more noise tolerance property when p is slide to 2, just like the behavior of L1 and L2 regularization methods, respectively. The proposed method provides a flexible regularization framework to adapt to a wide range of applications. Results: Numerical simulations were implemented to test the performance of the proposed method. The Digimouse atlas were employed to construct a three-dimensional mouse model, and two small cylinders were placed inside to serve as the targets. Reconstruction results show that the proposed method tends to obtain better spatial resolution with a smaller shape parameter, while better signal-to-noise image with a larger shape parameter. Quantitative indexes, contrast-to-noise ratio (CNR) and full-width at half-maximum (FWHM), were used to assess the performance of the proposed method, and confirmed its effectiveness in CB-XLCT reconstruction. Conclusion: A novel reconstruction method for CB-XLCT is proposed based on GGMRF model, which enables an adjustable performance tradeoff between L1 and L2 regularization methods. Numerical simulations were conducted to demonstrate its performance.« less
Yamaguchi, Shotaro; Wagatsuma, Kei; Miwa, Kenta; Ishii, Kenji; Inoue, Kazumasa; Fukushi, Masahiro
2018-03-01
The Bayesian penalized-likelihood reconstruction algorithm (BPL), Q.Clear, uses relative difference penalty as a regularization function to control image noise and the degree of edge-preservation in PET images. The present study aimed to determine the effects of suppression on edge artifacts due to point-spread-function (PSF) correction using a Q.Clear. Spheres of a cylindrical phantom contained a background of 5.3 kBq/mL of [ 18 F]FDG and sphere-to-background ratios (SBR) of 16, 8, 4 and 2. The background also contained water and spheres containing 21.2 kBq/mL of [ 18 F]FDG as non-background. All data were acquired using a Discovery PET/CT 710 and were reconstructed using three-dimensional ordered-subset expectation maximization with time-of-flight (TOF) and PSF correction (3D-OSEM), and Q.Clear with TOF (BPL). We investigated β-values of 200-800 using BPL. The PET images were analyzed using visual assessment and profile curves, edge variability and contrast recovery coefficients were measured. The 38- and 27-mm spheres were surrounded by higher radioactivity concentration when reconstructed with 3D-OSEM as opposed to BPL, which suppressed edge artifacts. Images of 10-mm spheres had sharper overshoot at high SBR and non-background when reconstructed with BPL. Although contrast recovery coefficients of 10-mm spheres in BPL decreased as a function of increasing β, higher penalty parameter decreased the overshoot. BPL is a feasible method for the suppression of edge artifacts of PSF correction, although this depends on SBR and sphere size. Overshoot associated with BPL caused overestimation in small spheres at high SBR. Higher penalty parameter in BPL can suppress overshoot more effectively. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Task-based data-acquisition optimization for sparse image reconstruction systems
NASA Astrophysics Data System (ADS)
Chen, Yujia; Lou, Yang; Kupinski, Matthew A.; Anastasio, Mark A.
2017-03-01
Conventional wisdom dictates that imaging hardware should be optimized by use of an ideal observer (IO) that exploits full statistical knowledge of the class of objects to be imaged, without consideration of the reconstruction method to be employed. However, accurate and tractable models of the complete object statistics are often difficult to determine in practice. Moreover, in imaging systems that employ compressive sensing concepts, imaging hardware and (sparse) image reconstruction are innately coupled technologies. We have previously proposed a sparsity-driven ideal observer (SDIO) that can be employed to optimize hardware by use of a stochastic object model that describes object sparsity. The SDIO and sparse reconstruction method can therefore be "matched" in the sense that they both utilize the same statistical information regarding the class of objects to be imaged. To efficiently compute SDIO performance, the posterior distribution is estimated by use of computational tools developed recently for variational Bayesian inference. Subsequently, the SDIO test statistic can be computed semi-analytically. The advantages of employing the SDIO instead of a Hotelling observer are systematically demonstrated in case studies in which magnetic resonance imaging (MRI) data acquisition schemes are optimized for signal detection tasks.
Beyond maximum entropy: Fractal Pixon-based image reconstruction
NASA Technical Reports Server (NTRS)
Puetter, Richard C.; Pina, R. K.
1994-01-01
We have developed a new Bayesian image reconstruction method that has been shown to be superior to the best implementations of other competing methods, including Goodness-of-Fit methods such as Least-Squares fitting and Lucy-Richardson reconstruction, as well as Maximum Entropy (ME) methods such as those embodied in the MEMSYS algorithms. Our new method is based on the concept of the pixon, the fundamental, indivisible unit of picture information. Use of the pixon concept provides an improved image model, resulting in an image prior which is superior to that of standard ME. Our past work has shown how uniform information content pixons can be used to develop a 'Super-ME' method in which entropy is maximized exactly. Recently, however, we have developed a superior pixon basis for the image, the Fractal Pixon Basis (FPB). Unlike the Uniform Pixon Basis (UPB) of our 'Super-ME' method, the FPB basis is selected by employing fractal dimensional concepts to assess the inherent structure in the image. The Fractal Pixon Basis results in the best image reconstructions to date, superior to both UPB and the best ME reconstructions. In this paper, we review the theory of the UPB and FPB pixon and apply our methodology to the reconstruction of far-infrared imaging of the galaxy M51. The results of our reconstruction are compared to published reconstructions of the same data using the Lucy-Richardson algorithm, the Maximum Correlation Method developed at IPAC, and the MEMSYS ME algorithms. The results show that our reconstructed image has a spatial resolution a factor of two better than best previous methods (and a factor of 20 finer than the width of the point response function), and detects sources two orders of magnitude fainter than other methods.
A combined reconstruction-classification method for diffuse optical tomography.
Hiltunen, P; Prince, S J D; Arridge, S
2009-11-07
We present a combined classification and reconstruction algorithm for diffuse optical tomography (DOT). DOT is a nonlinear ill-posed inverse problem. Therefore, some regularization is needed. We present a mixture of Gaussians prior, which regularizes the DOT reconstruction step. During each iteration, the parameters of a mixture model are estimated. These associate each reconstructed pixel with one of several classes based on the current estimate of the optical parameters. This classification is exploited to form a new prior distribution to regularize the reconstruction step and update the optical parameters. The algorithm can be described as an iteration between an optimization scheme with zeroth-order variable mean and variance Tikhonov regularization and an expectation-maximization scheme for estimation of the model parameters. We describe the algorithm in a general Bayesian framework. Results from simulated test cases and phantom measurements show that the algorithm enhances the contrast of the reconstructed images with good spatial accuracy. The probabilistic classifications of each image contain only a few misclassified pixels.
Brain white matter fiber estimation and tractography using Q-ball imaging and Bayesian MODEL.
Lu, Meng
2015-01-01
Diffusion tensor imaging allows for the non-invasive in vivo mapping of the brain tractography. However, fiber bundles have complex structures such as fiber crossings, fiber branchings and fibers with large curvatures that tensor imaging (DTI) cannot accurately handle. This study presents a novel brain white matter tractography method using Q-ball imaging as the data source instead of DTI, because QBI can provide accurate information about multiple fiber crossings and branchings in a single voxel using an orientation distribution function (ODF). The presented method also uses graph theory to construct the Bayesian model-based graph, so that the fiber tracking between two voxels can be represented as the shortest path in a graph. Our experiment showed that our new method can accurately handle brain white matter fiber crossings and branchings, and reconstruct brain tractograhpy both in phantom data and real brain data.
NASA Astrophysics Data System (ADS)
Isakson, Steve Wesley
2001-12-01
Well-known principles of physics explain why resolution restrictions occur in images produced by optical diffraction-limited systems. The limitations involved are present in all diffraction-limited imaging systems, including acoustical and microwave. In most circumstances, however, prior knowledge about the object and the imaging system can lead to resolution improvements. In this dissertation I outline a method to incorporate prior information into the process of reconstructing images to superresolve the object beyond the above limitations. This dissertation research develops the details of this methodology. The approach can provide the most-probable global solution employing a finite number of steps in both far-field and near-field images. In addition, in order to overcome the effects of noise present in any imaging system, this technique provides a weighted image that quantifies the likelihood of various imaging solutions. By utilizing Bayesian probability, the procedure is capable of incorporating prior information about both the object and the noise to overcome the resolution limitation present in many imaging systems. Finally I will present an imaging system capable of detecting the evanescent waves missing from far-field systems, thus improving the resolution further.
STARBLADE: STar and Artefact Removal with a Bayesian Lightweight Algorithm from Diffuse Emission
NASA Astrophysics Data System (ADS)
Knollmüller, Jakob; Frank, Philipp; Ensslin, Torsten A.
2018-05-01
STARBLADE (STar and Artefact Removal with a Bayesian Lightweight Algorithm from Diffuse Emission) separates superimposed point-like sources from a diffuse background by imposing physically motivated models as prior knowledge. The algorithm can also be used on noisy and convolved data, though performing a proper reconstruction including a deconvolution prior to the application of the algorithm is advised; the algorithm could also be used within a denoising imaging method. STARBLADE learns the correlation structure of the diffuse emission and takes it into account to determine the occurrence and strength of a superimposed point source.
Radiation dose reduction in computed tomography perfusion using spatial-temporal Bayesian methods
NASA Astrophysics Data System (ADS)
Fang, Ruogu; Raj, Ashish; Chen, Tsuhan; Sanelli, Pina C.
2012-03-01
In current computed tomography (CT) examinations, the associated X-ray radiation dose is of significant concern to patients and operators, especially CT perfusion (CTP) imaging that has higher radiation dose due to its cine scanning technique. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) parameter as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and degrade CT perfusion maps greatly if no adequate noise control is applied during image reconstruction. To capture the essential dynamics of CT perfusion, a simple spatial-temporal Bayesian method that uses a piecewise parametric model of the residual function is used, and then the model parameters are estimated from a Bayesian formulation of prior smoothness constraints on perfusion parameters. From the fitted residual function, reliable CTP parameter maps are obtained from low dose CT data. The merit of this scheme exists in the combination of analytical piecewise residual function with Bayesian framework using a simpler prior spatial constrain for CT perfusion application. On a dataset of 22 patients, this dynamic spatial-temporal Bayesian model yielded an increase in signal-tonoise-ratio (SNR) of 78% and a decrease in mean-square-error (MSE) of 40% at low dose radiation of 43mA.
BUMPER: the Bayesian User-friendly Model for Palaeo-Environmental Reconstruction
NASA Astrophysics Data System (ADS)
Holden, Phil; Birks, John; Brooks, Steve; Bush, Mark; Hwang, Grace; Matthews-Bird, Frazer; Valencia, Bryan; van Woesik, Robert
2017-04-01
We describe the Bayesian User-friendly Model for Palaeo-Environmental Reconstruction (BUMPER), a Bayesian transfer function for inferring past climate and other environmental variables from microfossil assemblages. The principal motivation for a Bayesian approach is that the palaeoenvironment is treated probabilistically, and can be updated as additional data become available. Bayesian approaches therefore provide a reconstruction-specific quantification of the uncertainty in the data and in the model parameters. BUMPER is fully self-calibrating, straightforward to apply, and computationally fast, requiring 2 seconds to build a 100-taxon model from a 100-site training-set on a standard personal computer. We apply the model's probabilistic framework to generate thousands of artificial training-sets under ideal assumptions. We then use these to demonstrate both the general applicability of the model and the sensitivity of reconstructions to the characteristics of the training-set, considering assemblage richness, taxon tolerances, and the number of training sites. We demonstrate general applicability to real data, considering three different organism types (chironomids, diatoms, pollen) and different reconstructed variables. In all of these applications an identically configured model is used, the only change being the input files that provide the training-set environment and taxon-count data.
3D tomographic reconstruction using geometrical models
NASA Astrophysics Data System (ADS)
Battle, Xavier L.; Cunningham, Gregory S.; Hanson, Kenneth M.
1997-04-01
We address the issue of reconstructing an object of constant interior density in the context of 3D tomography where there is prior knowledge about the unknown shape. We explore the direct estimation of the parameters of a chosen geometrical model from a set of radiographic measurements, rather than performing operations (segmentation for example) on a reconstructed volume. The inverse problem is posed in the Bayesian framework. A triangulated surface describes the unknown shape and the reconstruction is computed with a maximum a posteriori (MAP) estimate. The adjoint differentiation technique computes the derivatives needed for the optimization of the model parameters. We demonstrate the usefulness of the approach and emphasize the techniques of designing forward and adjoint codes. We use the system response of the University of Arizona Fast SPECT imager to illustrate this method by reconstructing the shape of a heart phantom.
Bayesian multi-scale smoothing of photon-limited images with applications to astronomy and medicine
NASA Astrophysics Data System (ADS)
White, John
Multi-scale models for smoothing Poisson signals or images have gained much attention over the past decade. A new Bayesian model is developed using the concept of the Chinese restaurant process to find structures in two-dimensional images when performing image reconstruction or smoothing. This new model performs very well when compared to other leading methodologies for the same problem. It is developed and evaluated theoretically and empirically throughout Chapter 2. The newly developed Bayesian model is extended to three-dimensional images in Chapter 3. The third dimension has numerous different applications, such as different energy spectra, another spatial index, or possibly a temporal dimension. Empirically, this method shows promise in reducing error with the use of simulation studies. A further development removes background noise in the image. This removal can further reduce the error and is done using a modeling adjustment and post-processing techniques. These details are given in Chapter 4. Applications to real world problems are given throughout. Photon-based images are common in astronomical imaging due to the collection of different types of energy such as X-Rays. Applications to real astronomical images are given, and these consist of X-ray images from the Chandra X-ray observatory satellite. Diagnostic medicine uses many types of imaging such as magnetic resonance imaging and computed tomography that can also benefit from smoothing techniques such as the one developed here. Reducing the amount of radiation a patient takes will make images more noisy, but this can be mitigated through the use of image smoothing techniques. Both types of images represent the potential real world use for these methods.
NASA Astrophysics Data System (ADS)
He, Xingyu; Tong, Ningning; Hu, Xiaowei
2018-01-01
Compressive sensing has been successfully applied to inverse synthetic aperture radar (ISAR) imaging of moving targets. By exploiting the block sparse structure of the target image, sparse solution for multiple measurement vectors (MMV) can be applied in ISAR imaging and a substantial performance improvement can be achieved. As an effective sparse recovery method, sparse Bayesian learning (SBL) for MMV involves a matrix inverse at each iteration. Its associated computational complexity grows significantly with the problem size. To address this problem, we develop a fast inverse-free (IF) SBL method for MMV. A relaxed evidence lower bound (ELBO), which is computationally more amiable than the traditional ELBO used by SBL, is obtained by invoking fundamental property for smooth functions. A variational expectation-maximization scheme is then employed to maximize the relaxed ELBO, and a computationally efficient IF-MSBL algorithm is proposed. Numerical results based on simulated and real data show that the proposed method can reconstruct row sparse signal accurately and obtain clear superresolution ISAR images. Moreover, the running time and computational complexity are reduced to a great extent compared with traditional SBL methods.
A hierarchical Bayesian method for vibration-based time domain force reconstruction problems
NASA Astrophysics Data System (ADS)
Li, Qiaofeng; Lu, Qiuhai
2018-05-01
Traditional force reconstruction techniques require prior knowledge on the force nature to determine the regularization term. When such information is unavailable, the inappropriate term is easily chosen and the reconstruction result becomes unsatisfactory. In this paper, we propose a novel method to automatically determine the appropriate q as in ℓq regularization and reconstruct the force history. The method incorporates all to-be-determined variables such as the force history, precision parameters and q into a hierarchical Bayesian formulation. The posterior distributions of variables are evaluated by a Metropolis-within-Gibbs sampler. The point estimates of variables and their uncertainties are given. Simulations of a cantilever beam and a space truss under various loading conditions validate the proposed method in providing adaptive determination of q and better reconstruction performance than existing Bayesian methods.
A denoising algorithm for CT image using low-rank sparse coding
NASA Astrophysics Data System (ADS)
Lei, Yang; Xu, Dong; Zhou, Zhengyang; Wang, Tonghe; Dong, Xue; Liu, Tian; Dhabaan, Anees; Curran, Walter J.; Yang, Xiaofeng
2018-03-01
We propose a denoising method of CT image based on low-rank sparse coding. The proposed method constructs an adaptive dictionary of image patches and estimates the sparse coding regularization parameters using the Bayesian interpretation. A low-rank approximation approach is used to simultaneously construct the dictionary and achieve sparse representation through clustering similar image patches. A variable-splitting scheme and a quadratic optimization are used to reconstruct CT image based on achieved sparse coefficients. We tested this denoising technology using phantom, brain and abdominal CT images. The experimental results showed that the proposed method delivers state-of-art denoising performance, both in terms of objective criteria and visual quality.
RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy
NASA Astrophysics Data System (ADS)
Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.
2016-02-01
We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.
The NIFTy way of Bayesian signal inference
NASA Astrophysics Data System (ADS)
Selig, Marco
2014-12-01
We introduce NIFTy, "Numerical Information Field Theory", a software package for the development of Bayesian signal inference algorithms that operate independently from any underlying spatial grid and its resolution. A large number of Bayesian and Maximum Entropy methods for 1D signal reconstruction, 2D imaging, as well as 3D tomography, appear formally similar, but one often finds individualized implementations that are neither flexible nor easily transferable. Signal inference in the framework of NIFTy can be done in an abstract way, such that algorithms, prototyped in 1D, can be applied to real world problems in higher-dimensional settings. NIFTy as a versatile library is applicable and already has been applied in 1D, 2D, 3D and spherical settings. A recent application is the D3PO algorithm targeting the non-trivial task of denoising, deconvolving, and decomposing photon observations in high energy astronomy.
EEG-fMRI Bayesian framework for neural activity estimation: a simulation study
NASA Astrophysics Data System (ADS)
Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Del Gratta, Cosimo
2016-12-01
Objective. Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. Approach. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). Main results. First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. Significance. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.
EEG-fMRI Bayesian framework for neural activity estimation: a simulation study.
Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Gratta, Cosimo Del
2016-12-01
Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.
A Bayesian Framework for Human Body Pose Tracking from Depth Image Sequences
Zhu, Youding; Fujimura, Kikuo
2010-01-01
This paper addresses the problem of accurate and robust tracking of 3D human body pose from depth image sequences. Recovering the large number of degrees of freedom in human body movements from a depth image sequence is challenging due to the need to resolve the depth ambiguity caused by self-occlusions and the difficulty to recover from tracking failure. Human body poses could be estimated through model fitting using dense correspondences between depth data and an articulated human model (local optimization method). Although it usually achieves a high accuracy due to dense correspondences, it may fail to recover from tracking failure. Alternately, human pose may be reconstructed by detecting and tracking human body anatomical landmarks (key-points) based on low-level depth image analysis. While this method (key-point based method) is robust and recovers from tracking failure, its pose estimation accuracy depends solely on image-based localization accuracy of key-points. To address these limitations, we present a flexible Bayesian framework for integrating pose estimation results obtained by methods based on key-points and local optimization. Experimental results are shown and performance comparison is presented to demonstrate the effectiveness of the proposed approach. PMID:22399933
Lunar Terrain and Albedo Reconstruction from Apollo Imagery
NASA Technical Reports Server (NTRS)
Nefian, Ara V.; Kim, Taemin; Broxton, Michael; Moratto, Zach
2010-01-01
Generating accurate three dimensional planetary models and albedo maps is becoming increasingly more important as NASA plans more robotics missions to the Moon in the coming years. This paper describes a novel approach for separation of topography and albedo maps from orbital Lunar images. Our method uses an optimal Bayesian correlator to refine the stereo disparity map and generate a set of accurate digital elevation models (DEM). The albedo maps are obtained using a multi-image formation model that relies on the derived DEMs and the Lunar- Lambert reflectance model. The method is demonstrated on a set of high resolution scanned images from the Apollo era missions.
NASA Astrophysics Data System (ADS)
Goossens, Bart; Aelterman, Jan; Luong, Hiep; Pizurica, Aleksandra; Philips, Wilfried
2013-02-01
In digital cameras and mobile phones, there is an ongoing trend to increase the image resolution, decrease the sensor size and to use lower exposure times. Because smaller sensors inherently lead to more noise and a worse spatial resolution, digital post-processing techniques are required to resolve many of the artifacts. Color filter arrays (CFAs), which use alternating patterns of color filters, are very popular because of price and power consumption reasons. However, color filter arrays require the use of a post-processing technique such as demosaicing to recover full resolution RGB images. Recently, there has been some interest in techniques that jointly perform the demosaicing and denoising. This has the advantage that the demosaicing and denoising can be performed optimally (e.g. in the MSE sense) for the considered noise model, while avoiding artifacts introduced when using demosaicing and denoising sequentially. In this paper, we will continue the research line of the wavelet-based demosaicing techniques. These approaches are computationally simple and very suited for combination with denoising. Therefore, we will derive Bayesian Minimum Squared Error (MMSE) joint demosaicing and denoising rules in the complex wavelet packet domain, taking local adaptivity into account. As an image model, we will use Gaussian Scale Mixtures, thereby taking advantage of the directionality of the complex wavelets. Our results show that this technique is well capable of reconstructing fine details in the image, while removing all of the noise, at a relatively low computational cost. In particular, the complete reconstruction (including color correction, white balancing etc) of a 12 megapixel RAW image takes 3.5 sec on a recent mid-range GPU.
On a full Bayesian inference for force reconstruction problems
NASA Astrophysics Data System (ADS)
Aucejo, M.; De Smet, O.
2018-05-01
In a previous paper, the authors introduced a flexible methodology for reconstructing mechanical sources in the frequency domain from prior local information on both their nature and location over a linear and time invariant structure. The proposed approach was derived from Bayesian statistics, because of its ability in mathematically accounting for experimenter's prior knowledge. However, since only the Maximum a Posteriori estimate was computed, the posterior uncertainty about the regularized solution given the measured vibration field, the mechanical model and the regularization parameter was not assessed. To answer this legitimate question, this paper fully exploits the Bayesian framework to provide, from a Markov Chain Monte Carlo algorithm, credible intervals and other statistical measures (mean, median, mode) for all the parameters of the force reconstruction problem.
Lasnon, Charline; Majdoub, Mohamed; Lavigne, Brice; Do, Pascal; Madelaine, Jeannick; Visvikis, Dimitris; Hatt, Mathieu; Aide, Nicolas
2016-12-01
Quantification of tumour heterogeneity in PET images has recently gained interest, but has been shown to be dependent on image reconstruction. This study aimed to evaluate the impact of the EANM/EARL accreditation program on selected 18 F-FDG heterogeneity metrics. To carry out our study, we prospectively analysed 71 tumours in 60 biopsy-proven lung cancer patient acquisitions reconstructed with unfiltered point spread function (PSF) positron emission tomography (PET) images (optimised for diagnostic purposes), PSF-reconstructed images with a 7-mm Gaussian filter (PSF 7 ) chosen to meet European Association of Nuclear Medicine (EANM) 1.0 harmonising standards, and EANM Research Ltd. (EARL)-compliant ordered subset expectation maximisation (OSEM) images. Delineation was performed with fuzzy locally adaptive Bayesian (FLAB) algorithm on PSF images and reported on PSF 7 and OSEM ones, and with a 50 % standardised uptake values (SUV) max threshold (SUV max50% ) applied independently to each image. Robust and repeatable heterogeneity metrics including 1st-order [area under the curve of the cumulative histogram (CH AUC )], 2nd-order (entropy, correlation, and dissimilarity), and 3rd-order [high-intensity larger area emphasis (HILAE) and zone percentage (ZP)] textural features (TF) were statistically compared. Volumes obtained with SUV max50% were significantly smaller than FLAB-derived ones, and were significantly smaller in PSF images compared to OSEM and PSF 7 images. PSF-reconstructed images showed significantly higher SUVmax and SUVmean values, as well as heterogeneity for CH AUC , dissimilarity, correlation, and HILAE, and a wider range of heterogeneity values than OSEM images for most of the metrics considered, especially when analysing larger tumours. Histological subtypes had no impact on TF distribution. No significant difference was observed between any of the considered metrics (SUV or heterogeneity features) that we extracted from OSEM and PSF 7 reconstructions. Furthermore, the distributions of TF for OSEM and PSF 7 reconstructions according to tumour volumes were similar for all ranges of volumes. PSF reconstruction with Gaussian filtering chosen to meet harmonising standards resulted in similar SUV values and heterogeneity information as compared to OSEM images, which validates its use within the harmonisation strategy context. However, unfiltered PSF-reconstructed images also showed higher heterogeneity according to some metrics, as well as a wider range of heterogeneity values than OSEM images for most of the metrics considered, especially when analysing larger tumours. This suggests that, whenever available, unfiltered PSF images should also be exploited to obtain the most discriminative quantitative heterogeneity features.
Optimized image acquisition for breast tomosynthesis in projection and reconstruction space.
Chawla, Amarpreet S; Lo, Joseph Y; Baker, Jay A; Samei, Ehsan
2009-11-01
Breast tomosynthesis has been an exciting new development in the field of breast imaging. While the diagnostic improvement via tomosynthesis is notable, the full potential of tomosynthesis has not yet been realized. This may be attributed to the dependency of the diagnostic quality of tomosynthesis on multiple variables, each of which needs to be optimized. Those include dose, number of angular projections, and the total angular span of those projections. In this study, the authors investigated the effects of these acquisition parameters on the overall diagnostic image quality of breast tomosynthesis in both the projection and reconstruction space. Five mastectomy specimens were imaged using a prototype tomosynthesis system. 25 angular projections of each specimen were acquired at 6.2 times typical single-view clinical dose level. Images at lower dose levels were then simulated using a noise modification routine. Each projection image was supplemented with 84 simulated 3 mm 3D lesions embedded at the center of 84 nonoverlapping ROIs. The projection images were then reconstructed using a filtered backprojection algorithm at different combinations of acquisition parameters to investigate which of the many possible combinations maximizes the performance. Performance was evaluated in terms of a Laguerre-Gauss channelized Hotelling observer model-based measure of lesion detectability. The analysis was also performed without reconstruction by combining the model results from projection images using Bayesian decision fusion algorithm. The effect of acquisition parameters on projection images and reconstructed slices were then compared to derive an optimization rule for tomosynthesis. The results indicated that projection images yield comparable but higher performance than reconstructed images. Both modes, however, offered similar trends: Performance improved with an increase in the total acquisition dose level and the angular span. Using a constant dose level and angular span, the performance rolled off beyond a certain number of projections, indicating that simply increasing the number of projections in tomosynthesis may not necessarily improve its performance. The best performance for both projection images and tomosynthesis slices was obtained for 15-17 projections spanning an angular are of approximately 45 degrees--the maximum tested in our study, and for an acquisition dose equal to single-view mammography. The optimization framework developed in this framework is applicable to other reconstruction techniques and other multiprojection systems.
Krishnan, Neeraja M; Seligmann, Hervé; Stewart, Caro-Beth; De Koning, A P Jason; Pollock, David D
2004-10-01
Reconstruction of ancestral DNA and amino acid sequences is an important means of inferring information about past evolutionary events. Such reconstructions suggest changes in molecular function and evolutionary processes over the course of evolution and are used to infer adaptation and convergence. Maximum likelihood (ML) is generally thought to provide relatively accurate reconstructed sequences compared to parsimony, but both methods lead to the inference of multiple directional changes in nucleotide frequencies in primate mitochondrial DNA (mtDNA). To better understand this surprising result, as well as to better understand how parsimony and ML differ, we constructed a series of computationally simple "conditional pathway" methods that differed in the number of substitutions allowed per site along each branch, and we also evaluated the entire Bayesian posterior frequency distribution of reconstructed ancestral states. We analyzed primate mitochondrial cytochrome b (Cyt-b) and cytochrome oxidase subunit I (COI) genes and found that ML reconstructs ancestral frequencies that are often more different from tip sequences than are parsimony reconstructions. In contrast, frequency reconstructions based on the posterior ensemble more closely resemble extant nucleotide frequencies. Simulations indicate that these differences in ancestral sequence inference are probably due to deterministic bias caused by high uncertainty in the optimization-based ancestral reconstruction methods (parsimony, ML, Bayesian maximum a posteriori). In contrast, ancestral nucleotide frequencies based on an average of the Bayesian set of credible ancestral sequences are much less biased. The methods involving simpler conditional pathway calculations have slightly reduced likelihood values compared to full likelihood calculations, but they can provide fairly unbiased nucleotide reconstructions and may be useful in more complex phylogenetic analyses than considered here due to their speed and flexibility. To determine whether biased reconstructions using optimization methods might affect inferences of functional properties, ancestral primate mitochondrial tRNA sequences were inferred and helix-forming propensities for conserved pairs were evaluated in silico. For ambiguously reconstructed nucleotides at sites with high base composition variability, ancestral tRNA sequences from Bayesian analyses were more compatible with canonical base pairing than were those inferred by other methods. Thus, nucleotide bias in reconstructed sequences apparently can lead to serious bias and inaccuracies in functional predictions.
Visual feature extraction from voxel-weighted averaging of stimulus images in 2 fMRI studies.
Hart, Corey B; Rose, William J
2013-11-01
Multiple studies have provided evidence for distributed object representation in the brain, with several recent experiments leveraging basis function estimates for partial image reconstruction from fMRI data. Using a novel combination of statistical decomposition, generalized linear models, and stimulus averaging on previously examined image sets and Bayesian regression of recorded fMRI activity during presentation of these data sets, we identify a subset of relevant voxels that appear to code for covarying object features. Using a technique we term "voxel-weighted averaging," we isolate image filters that these voxels appear to implement. The results, though very cursory, appear to have significant implications for hierarchical and deep-learning-type approaches toward the understanding of neural coding and representation.
Bayesian reconstruction of projection reconstruction NMR (PR-NMR).
Yoon, Ji Won
2014-11-01
Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. Copyright © 2014 Elsevier Ltd. All rights reserved.
EEG and MEG data analysis in SPM8.
Litvak, Vladimir; Mattout, Jérémie; Kiebel, Stefan; Phillips, Christophe; Henson, Richard; Kilner, James; Barnes, Gareth; Oostenveld, Robert; Daunizeau, Jean; Flandin, Guillaume; Penny, Will; Friston, Karl
2011-01-01
SPM is a free and open source software written in MATLAB (The MathWorks, Inc.). In addition to standard M/EEG preprocessing, we presently offer three main analysis tools: (i) statistical analysis of scalp-maps, time-frequency images, and volumetric 3D source reconstruction images based on the general linear model, with correction for multiple comparisons using random field theory; (ii) Bayesian M/EEG source reconstruction, including support for group studies, simultaneous EEG and MEG, and fMRI priors; (iii) dynamic causal modelling (DCM), an approach combining neural modelling with data analysis for which there are several variants dealing with evoked responses, steady state responses (power spectra and cross-spectra), induced responses, and phase coupling. SPM8 is integrated with the FieldTrip toolbox , making it possible for users to combine a variety of standard analysis methods with new schemes implemented in SPM and build custom analysis tools using powerful graphical user interface (GUI) and batching tools.
EEG and MEG Data Analysis in SPM8
Litvak, Vladimir; Mattout, Jérémie; Kiebel, Stefan; Phillips, Christophe; Henson, Richard; Kilner, James; Barnes, Gareth; Oostenveld, Robert; Daunizeau, Jean; Flandin, Guillaume; Penny, Will; Friston, Karl
2011-01-01
SPM is a free and open source software written in MATLAB (The MathWorks, Inc.). In addition to standard M/EEG preprocessing, we presently offer three main analysis tools: (i) statistical analysis of scalp-maps, time-frequency images, and volumetric 3D source reconstruction images based on the general linear model, with correction for multiple comparisons using random field theory; (ii) Bayesian M/EEG source reconstruction, including support for group studies, simultaneous EEG and MEG, and fMRI priors; (iii) dynamic causal modelling (DCM), an approach combining neural modelling with data analysis for which there are several variants dealing with evoked responses, steady state responses (power spectra and cross-spectra), induced responses, and phase coupling. SPM8 is integrated with the FieldTrip toolbox , making it possible for users to combine a variety of standard analysis methods with new schemes implemented in SPM and build custom analysis tools using powerful graphical user interface (GUI) and batching tools. PMID:21437221
A Bayesian analysis of redshifted 21-cm H I signal and foregrounds: simulations for LOFAR
NASA Astrophysics Data System (ADS)
Ghosh, Abhik; Koopmans, Léon V. E.; Chapman, E.; Jelić, V.
2015-09-01
Observations of the epoch of reionization (EoR) using the 21-cm hyperfine emission of neutral hydrogen (H I) promise to open an entirely new window on the formation of the first stars, galaxies and accreting black holes. In order to characterize the weak 21-cm signal, we need to develop imaging techniques that can reconstruct the extended emission very precisely. Here, we present an inversion technique for LOw Frequency ARray (LOFAR) baselines at the North Celestial Pole (NCP), based on a Bayesian formalism with optimal spatial regularization, which is used to reconstruct the diffuse foreground map directly from the simulated visibility data. We notice that the spatial regularization de-noises the images to a large extent, allowing one to recover the 21-cm power spectrum over a considerable k⊥-k∥ space in the range 0.03 Mpc-1 < k⊥ < 0.19 Mpc-1 and 0.14 Mpc-1 < k∥ < 0.35 Mpc-1 without subtracting the noise power spectrum. We find that, in combination with using generalized morphological component analysis (GMCA), a non-parametric foreground removal technique, we can mostly recover the spherical average power spectrum within 2σ statistical fluctuations for an input Gaussian random root-mean-square noise level of 60 mK in the maps after 600 h of integration over a 10-MHz bandwidth.
A Bayesian Model for Highly Accelerated Phase-Contrast MRI
Rich, Adam; Potter, Lee C.; Jin, Ning; Ash, Joshua; Simonetti, Orlando P.; Ahmad, Rizwan
2015-01-01
Purpose Phase-contrast magnetic resonance imaging (PC-MRI) is a noninvasive tool to assess cardiovascular disease by quantifying blood flow; however, low data acquisition efficiency limits the spatial and temporal resolutions, real-time application, and extensions to 4D flow imaging in clinical settings. We propose a new data processing approach called Reconstructing Velocity Encoded MRI with Approximate message passing aLgorithms (ReVEAL) that accelerates the acquisition by exploiting data structure unique to PC-MRI. Theory and Methods ReVEAL models physical correlations across space, time, and velocity encodings. The proposed Bayesian approach exploits the relationships in both magnitude and phase among velocity encodings. A fast iterative recovery algorithm is introduced based on message passing. For validation, prospectively undersampled data are processed from a pulsatile flow phantom and five healthy volunteers. Results ReVEAL is in good agreement, quantified by peak velocity and stroke volume (SV), with reference data for acceleration rates R ≤ 10. For SV, Pearson r ≥ 0.996 for phantom imaging (n = 24) and r ≥ 0.956 for prospectively accelerated in vivo imaging (n = 10) for R ≤ 10. Conclusion ReVEAL enables accurate quantification of blood flow from highly undersampled data. The technique is extensible to 4D flow imaging, where higher acceleration may be possible due to additional redundancy. PMID:26444911
Inferring the most probable maps of underground utilities using Bayesian mapping model
NASA Astrophysics Data System (ADS)
Bilal, Muhammad; Khan, Wasiq; Muggleton, Jennifer; Rustighi, Emiliano; Jenks, Hugo; Pennock, Steve R.; Atkins, Phil R.; Cohn, Anthony
2018-03-01
Mapping the Underworld (MTU), a major initiative in the UK, is focused on addressing social, environmental and economic consequences raised from the inability to locate buried underground utilities (such as pipes and cables) by developing a multi-sensor mobile device. The aim of MTU device is to locate different types of buried assets in real time with the use of automated data processing techniques and statutory records. The statutory records, even though typically being inaccurate and incomplete, provide useful prior information on what is buried under the ground and where. However, the integration of information from multiple sensors (raw data) with these qualitative maps and their visualization is challenging and requires the implementation of robust machine learning/data fusion approaches. An approach for automated creation of revised maps was developed as a Bayesian Mapping model in this paper by integrating the knowledge extracted from sensors raw data and available statutory records. The combination of statutory records with the hypotheses from sensors was for initial estimation of what might be found underground and roughly where. The maps were (re)constructed using automated image segmentation techniques for hypotheses extraction and Bayesian classification techniques for segment-manhole connections. The model consisting of image segmentation algorithm and various Bayesian classification techniques (segment recognition and expectation maximization (EM) algorithm) provided robust performance on various simulated as well as real sites in terms of predicting linear/non-linear segments and constructing refined 2D/3D maps.
3D Surface Reconstruction and Automatic Camera Calibration
NASA Technical Reports Server (NTRS)
Jalobeanu, Andre
2004-01-01
Illustrations in this view-graph presentation are presented on a Bayesian approach to 3D surface reconstruction and camera calibration.Existing methods, surface analysis and modeling,preliminary surface reconstruction results, and potential applications are addressed.
A Bayesian model for highly accelerated phase-contrast MRI.
Rich, Adam; Potter, Lee C; Jin, Ning; Ash, Joshua; Simonetti, Orlando P; Ahmad, Rizwan
2016-08-01
Phase-contrast magnetic resonance imaging is a noninvasive tool to assess cardiovascular disease by quantifying blood flow; however, low data acquisition efficiency limits the spatial and temporal resolutions, real-time application, and extensions to four-dimensional flow imaging in clinical settings. We propose a new data processing approach called Reconstructing Velocity Encoded MRI with Approximate message passing aLgorithms (ReVEAL) that accelerates the acquisition by exploiting data structure unique to phase-contrast magnetic resonance imaging. The proposed approach models physical correlations across space, time, and velocity encodings. The proposed Bayesian approach exploits the relationships in both magnitude and phase among velocity encodings. A fast iterative recovery algorithm is introduced based on message passing. For validation, prospectively undersampled data are processed from a pulsatile flow phantom and five healthy volunteers. The proposed approach is in good agreement, quantified by peak velocity and stroke volume (SV), with reference data for acceleration rates R≤10. For SV, Pearson r≥0.99 for phantom imaging (n = 24) and r≥0.96 for prospectively accelerated in vivo imaging (n = 10) for R≤10. The proposed approach enables accurate quantification of blood flow from highly undersampled data. The technique is extensible to four-dimensional flow imaging, where higher acceleration may be possible due to additional redundancy. Magn Reson Med 76:689-701, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Wavelet methods in multi-conjugate adaptive optics
NASA Astrophysics Data System (ADS)
Helin, T.; Yudytskiy, M.
2013-08-01
The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory.
F-MAP: A Bayesian approach to infer the gene regulatory network using external hints
Shahdoust, Maryam; Mahjub, Hossein; Sadeghi, Mehdi
2017-01-01
The Common topological features of related species gene regulatory networks suggest reconstruction of the network of one species by using the further information from gene expressions profile of related species. We present an algorithm to reconstruct the gene regulatory network named; F-MAP, which applies the knowledge about gene interactions from related species. Our algorithm sets a Bayesian framework to estimate the precision matrix of one species microarray gene expressions dataset to infer the Gaussian Graphical model of the network. The conjugate Wishart prior is used and the information from related species is applied to estimate the hyperparameters of the prior distribution by using the factor analysis. Applying the proposed algorithm on six related species of drosophila shows that the precision of reconstructed networks is improved considerably compared to the precision of networks constructed by other Bayesian approaches. PMID:28938012
NASA Astrophysics Data System (ADS)
Yee, Eugene
2007-04-01
Although a great deal of research effort has been focused on the forward prediction of the dispersion of contaminants (e.g., chemical and biological warfare agents) released into the turbulent atmosphere, much less work has been directed toward the inverse prediction of agent source location and strength from the measured concentration, even though the importance of this problem for a number of practical applications is obvious. In general, the inverse problem of source reconstruction is ill-posed and unsolvable without additional information. It is demonstrated that a Bayesian probabilistic inferential framework provides a natural and logically consistent method for source reconstruction from a limited number of noisy concentration data. In particular, the Bayesian approach permits one to incorporate prior knowledge about the source as well as additional information regarding both model and data errors. The latter enables a rigorous determination of the uncertainty in the inference of the source parameters (e.g., spatial location, emission rate, release time, etc.), hence extending the potential of the methodology as a tool for quantitative source reconstruction. A model (or, source-receptor relationship) that relates the source distribution to the concentration data measured by a number of sensors is formulated, and Bayesian probability theory is used to derive the posterior probability density function of the source parameters. A computationally efficient methodology for determination of the likelihood function for the problem, based on an adjoint representation of the source-receptor relationship, is described. Furthermore, we describe the application of efficient stochastic algorithms based on Markov chain Monte Carlo (MCMC) for sampling from the posterior distribution of the source parameters, the latter of which is required to undertake the Bayesian computation. The Bayesian inferential methodology for source reconstruction is validated against real dispersion data for two cases involving contaminant dispersion in highly disturbed flows over urban and complex environments where the idealizations of horizontal homogeneity and/or temporal stationarity in the flow cannot be applied to simplify the problem. Furthermore, the methodology is applied to the case of reconstruction of multiple sources.
An efficient method for model refinement in diffuse optical tomography
NASA Astrophysics Data System (ADS)
Zirak, A. R.; Khademi, M.
2007-11-01
Diffuse optical tomography (DOT) is a non-linear, ill-posed, boundary value and optimization problem which necessitates regularization. Also, Bayesian methods are suitable owing to measurements data are sparse and correlated. In such problems which are solved with iterative methods, for stabilization and better convergence, the solution space must be small. These constraints subject to extensive and overdetermined system of equations which model retrieving criteria specially total least squares (TLS) must to refine model error. Using TLS is limited to linear systems which is not achievable when applying traditional Bayesian methods. This paper presents an efficient method for model refinement using regularized total least squares (RTLS) for treating on linearized DOT problem, having maximum a posteriori (MAP) estimator and Tikhonov regulator. This is done with combination Bayesian and regularization tools as preconditioner matrices, applying them to equations and then using RTLS to the resulting linear equations. The preconditioning matrixes are guided by patient specific information as well as a priori knowledge gained from the training set. Simulation results illustrate that proposed method improves the image reconstruction performance and localize the abnormally well.
Assessment of phylogenetic sensitivity for reconstructing HIV-1 epidemiological relationships.
Beloukas, Apostolos; Magiorkinis, Emmanouil; Magiorkinis, Gkikas; Zavitsanou, Asimina; Karamitros, Timokratis; Hatzakis, Angelos; Paraskevis, Dimitrios
2012-06-01
Phylogenetic analysis has been extensively used as a tool for the reconstruction of epidemiological relations for research or for forensic purposes. It was our objective to assess the sensitivity of different phylogenetic methods and various phylogenetic programs to reconstruct epidemiological links among HIV-1 infected patients that is the probability to reveal a true transmission relationship. Multiple datasets (90) were prepared consisting of HIV-1 sequences in protease (PR) and partial reverse transcriptase (RT) sampled from patients with documented epidemiological relationship (target population), and from unrelated individuals (control population) belonging to the same HIV-1 subtype as the target population. Each dataset varied regarding the number, the geographic origin and the transmission risk groups of the sequences among the control population. Phylogenetic trees were inferred by neighbor-joining (NJ), maximum likelihood heuristics (hML) and Bayesian methods. All clusters of sequences belonging to the target population were correctly reconstructed by NJ and Bayesian methods receiving high bootstrap and posterior probability (PP) support, respectively. On the other hand, TreePuzzle failed to reconstruct or provide significant support for several clusters; high puzzling step support was associated with the inclusion of control sequences from the same geographic area as the target population. In contrary, all clusters were correctly reconstructed by hML as implemented in PhyML 3.0 receiving high bootstrap support. We report that under the conditions of our study, hML using PhyML, NJ and Bayesian methods were the most sensitive for the reconstruction of epidemiological links mostly from sexually infected individuals. Copyright © 2012 Elsevier B.V. All rights reserved.
We use Bayesian uncertainty analysis to explore how to estimate pollutant exposures from biomarker concentrations. The growing number of national databases with exposure data makes such an analysis possible. They contain datasets of pharmacokinetic biomarkers for many polluta...
Axial superresolution via multiangle TIRF microscopy with sequential imaging and photobleaching
Fu, Yan; Winter, Peter W.; Rojas, Raul; Wang, Victor; McAuliffe, Matthew; Patterson, George H.
2016-01-01
We report superresolution optical sectioning using a multiangle total internal reflection fluorescence (TIRF) microscope. TIRF images were constructed from several layers within a normal TIRF excitation zone by sequentially imaging and photobleaching the fluorescent molecules. The depth of the evanescent wave at different layers was altered by tuning the excitation light incident angle. The angle was tuned from the highest (the smallest TIRF depth) toward the critical angle (the largest TIRF depth) to preferentially photobleach fluorescence from the lower layers and allow straightforward observation of deeper structures without masking by the brighter signals closer to the coverglass. Reconstruction of the TIRF images enabled 3D imaging of biological samples with 20-nm axial resolution. Two-color imaging of epidermal growth factor (EGF) ligand and clathrin revealed the dynamics of EGF-activated clathrin-mediated endocytosis during internalization. Furthermore, Bayesian analysis of images collected during the photobleaching step of each plane enabled lateral superresolution (<100 nm) within each of the sections. PMID:27044072
PRIFIRA: General regularization using prior-conditioning for fast radio interferometric imaging†
NASA Astrophysics Data System (ADS)
Naghibzadeh, Shahrzad; van der Veen, Alle-Jan
2018-06-01
Image formation in radio astronomy is a large-scale inverse problem that is inherently ill-posed. We present a general algorithmic framework based on a Bayesian-inspired regularized maximum likelihood formulation of the radio astronomical imaging problem with a focus on diffuse emission recovery from limited noisy correlation data. The algorithm is dubbed PRIor-conditioned Fast Iterative Radio Astronomy (PRIFIRA) and is based on a direct embodiment of the regularization operator into the system by right preconditioning. The resulting system is then solved using an iterative method based on projections onto Krylov subspaces. We motivate the use of a beamformed image (which includes the classical "dirty image") as an efficient prior-conditioner. Iterative reweighting schemes generalize the algorithmic framework and can account for different regularization operators that encourage sparsity of the solution. The performance of the proposed method is evaluated based on simulated one- and two-dimensional array arrangements as well as actual data from the core stations of the Low Frequency Array radio telescope antenna configuration, and compared to state-of-the-art imaging techniques. We show the generality of the proposed method in terms of regularization schemes while maintaining a competitive reconstruction quality with the current reconstruction techniques. Furthermore, we show that exploiting Krylov subspace methods together with the proper noise-based stopping criteria results in a great improvement in imaging efficiency.
De-noising of 3D multiple-coil MR images using modified LMMSE estimator.
Yaghoobi, Nima; Hasanzadeh, Reza P R
2018-06-20
De-noising is a crucial topic in Magnetic Resonance Imaging (MRI) which focuses on less loss of Magnetic Resonance (MR) image information and details preservation during the noise suppression. Nowadays multiple-coil MRI system is preferred to single one due to its acceleration in the imaging process. Due to the fact that the model of noise in single-coil and multiple-coil MRI systems are different, the de-noising methods that mostly are adapted to single-coil MRI systems, do not work appropriately with multiple-coil one. The model of noise in single-coil MRI systems is Rician while in multiple-coil one (if no subsampling occurs in k-space or GRAPPA reconstruction process is being done in the coils), it obeys noncentral Chi (nc-χ). In this paper, a new filtering method based on the Linear Minimum Mean Square Error (LMMSE) estimator is proposed for multiple-coil MR Images ruined by nc-χ noise. In the presented method, to have an optimum similarity selection of voxels, the Bayesian Mean Square Error (BMSE) criterion is used and proved for nc-χ noise model and also a nonlocal voxel selection methodology is proposed for nc-χ distribution. The results illustrate robust and accurate performance compared to the related state-of-the-art methods, either on ideal nc-χ images or GRAPPA reconstructed ones. Copyright © 2018. Published by Elsevier Inc.
Fowler, Michael J.; Howard, Marylesa; Luttman, Aaron; ...
2015-06-03
One of the primary causes of blur in a high-energy X-ray imaging system is the shape and extent of the radiation source, or ‘spot’. It is important to be able to quantify the size of the spot as it provides a lower bound on the recoverable resolution for a radiograph, and penumbral imaging methods – which involve the analysis of blur caused by a structured aperture – can be used to obtain the spot’s spatial profile. We present a Bayesian approach for estimating the spot shape that, unlike variational methods, is robust to the initial choice of parameters. The posteriormore » is obtained from a normal likelihood, which was constructed from a weighted least squares approximation to a Poisson noise model, and prior assumptions that enforce both smoothness and non-negativity constraints. A Markov chain Monte Carlo algorithm is used to obtain samples from the target posterior, and the reconstruction and uncertainty estimates are the computed mean and variance of the samples, respectively. Lastly, synthetic data-sets are used to demonstrate accurate reconstruction, while real data taken with high-energy X-ray imaging systems are used to demonstrate applicability and feasibility.« less
Bayesian Inference for Source Reconstruction: A Real-World Application
Yee, Eugene; Hoffman, Ian; Ungar, Kurt
2014-01-01
This paper applies a Bayesian probabilistic inferential methodology for the reconstruction of the location and emission rate from an actual contaminant source (emission from the Chalk River Laboratories medical isotope production facility) using a small number of activity concentration measurements of a noble gas (Xenon-133) obtained from three stations that form part of the International Monitoring System radionuclide network. The sampling of the resulting posterior distribution of the source parameters is undertaken using a very efficient Markov chain Monte Carlo technique that utilizes a multiple-try differential evolution adaptive Metropolis algorithm with an archive of past states. It is shown that the principal difficulty in the reconstruction lay in the correct specification of the model errors (both scale and structure) for use in the Bayesian inferential methodology. In this context, two different measurement models for incorporation of the model error of the predicted concentrations are considered. The performance of both of these measurement models with respect to their accuracy and precision in the recovery of the source parameters is compared and contrasted. PMID:27379292
Brainard, David H.; Williams, David R.; Hofer, Heidi
2009-01-01
Observers use a wide range of color names, including white, to describe monochromatic flashes with a retinal size comparable to that of a single cone. We model such data as a consequence of information loss arising from trichromatic sampling. The model starts with the simulated responses of the individual L, M, and S cones actually present in the cone mosaic and uses these to reconstruct the L-, M-, and S-cone signals that were present at every image location. We incorporate the optics and the mosaic topography of individual observers, as well as the spatio-chromatic statistics of natural images. We simulated the experiment of H. Hofer, B. Singer, & D. R. Williams (2005) and predicted the color name on each simulated trial from the average chromaticity of the spot reconstructed by our model. Broad features of the data across observers emerged naturally as a consequence of the measured individual variation in the relative numbers of L, M, and S cones. The model’s output is also consistent with the appearance of larger spots and of sinusoidal contrast modulations. Finally, the model makes testable predictions for future experiments that study how color naming varies with the fine structure of the retinal mosaic. PMID:18842086
NASA Astrophysics Data System (ADS)
Xu, Ye; van Beek, Edwin J.; McLennan, Geoffrey; Guo, Junfeng; Sonka, Milan; Hoffman, Eric
2006-03-01
In this study we utilize our texture characterization software (3-D AMFM) to characterize interstitial lung diseases (including emphysema) based on MDCT generated volumetric data using 3-dimensional texture features. We have sought to test whether the scanner and reconstruction filter (kernel) type affect the classification of lung diseases using the 3-D AMFM. We collected MDCT images in three subject groups: emphysema (n=9), interstitial pulmonary fibrosis (IPF) (n=10), and normal non-smokers (n=9). In each group, images were scanned either on a Siemens Sensation 16 or 64-slice scanner, (B50f or B30 recon. kernel) or a Philips 4-slice scanner (B recon. kernel). A total of 1516 volumes of interest (VOIs; 21x21 pixels in plane) were marked by two chest imaging experts using the Iowa Pulmonary Analysis Software Suite (PASS). We calculated 24 volumetric features. Bayesian methods were used for classification. Images from different scanners/kernels were combined in all possible combinations to test how robust the tissue classification was relative to the differences in image characteristics. We used 10-fold cross validation for testing the result. Sensitivity, specificity and accuracy were calculated. One-way Analysis of Variances (ANOVA) was used to compare the classification result between the various combinations of scanner and reconstruction kernel types. This study yielded a sensitivity of 94%, 91%, 97%, and 93% for emphysema, ground-glass, honeycombing, and normal non-smoker patterns respectively using a mixture of all three subject groups. The specificity for these characterizations was 97%, 99%, 99%, and 98%, respectively. The F test result of ANOVA shows there is no significant difference (p <0.05) between different combinations of data with respect to scanner and convolution kernel type. Since different MDCT and reconstruction kernel types did not show significant differences in regards to the classification result, this study suggests that the 3-D AMFM can be generally introduced.
Makowsky, Robert; Cox, Christian L; Roelke, Corey; Chippindale, Paul T
2010-11-01
Determining the appropriate gene for phylogeny reconstruction can be a difficult process. Rapidly evolving genes tend to resolve recent relationships, but suffer from alignment issues and increased homoplasy among distantly related species. Conversely, slowly evolving genes generally perform best for deeper relationships, but lack sufficient variation to resolve recent relationships. We determine the relationship between sequence divergence and Bayesian phylogenetic reconstruction ability using both natural and simulated datasets. The natural data are based on 28 well-supported relationships within the subphylum Vertebrata. Sequences of 12 genes were acquired and Bayesian analyses were used to determine phylogenetic support for correct relationships. Simulated datasets were designed to determine whether an optimal range of sequence divergence exists across extreme phylogenetic conditions. Across all genes we found that an optimal range of divergence for resolving the correct relationships does exist, although this level of divergence expectedly depends on the distance metric. Simulated datasets show that an optimal range of sequence divergence exists across diverse topologies and models of evolution. We determine that a simple to measure property of genetic sequences (genetic distance) is related to phylogenic reconstruction ability in Bayesian analyses. This information should be useful for selecting the most informative gene to resolve any relationships, especially those that are difficult to resolve, as well as minimizing both cost and confounding information during project design. Copyright © 2010. Published by Elsevier Inc.
Reconstructing Constructivism: Causal Models, Bayesian Learning Mechanisms, and the Theory Theory
ERIC Educational Resources Information Center
Gopnik, Alison; Wellman, Henry M.
2012-01-01
We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework…
Single image super resolution algorithm based on edge interpolation in NSCT domain
NASA Astrophysics Data System (ADS)
Zhang, Mengqun; Zhang, Wei; He, Xinyu
2017-11-01
In order to preserve the texture and edge information and to improve the space resolution of single frame, a superresolution algorithm based on Contourlet (NSCT) is proposed. The original low resolution image is transformed by NSCT, and the directional sub-band coefficients of the transform domain are obtained. According to the scale factor, the high frequency sub-band coefficients are amplified by the interpolation method based on the edge direction to the desired resolution. For high frequency sub-band coefficients with noise and weak targets, Bayesian shrinkage is used to calculate the threshold value. The coefficients below the threshold are determined by the correlation among the sub-bands of the same scale to determine whether it is noise and de-noising. The anisotropic diffusion filter is used to effectively enhance the weak target in the low contrast region of the target and background. Finally, the high-frequency sub-band is amplified by the bilinear interpolation method to the desired resolution, and then combined with the high-frequency subband coefficients after de-noising and small target enhancement, the NSCT inverse transform is used to obtain the desired resolution image. In order to verify the effectiveness of the proposed algorithm, the proposed algorithm and several common image reconstruction methods are used to test the synthetic image, motion blurred image and hyperspectral image, the experimental results show that compared with the traditional single resolution algorithm, the proposed algorithm can obtain smooth edges and good texture features, and the reconstructed image structure is well preserved and the noise is suppressed to some extent.
BUMPER v1.0: a Bayesian user-friendly model for palaeo-environmental reconstruction
NASA Astrophysics Data System (ADS)
Holden, Philip B.; Birks, H. John B.; Brooks, Stephen J.; Bush, Mark B.; Hwang, Grace M.; Matthews-Bird, Frazer; Valencia, Bryan G.; van Woesik, Robert
2017-02-01
We describe the Bayesian user-friendly model for palaeo-environmental reconstruction (BUMPER), a Bayesian transfer function for inferring past climate and other environmental variables from microfossil assemblages. BUMPER is fully self-calibrating, straightforward to apply, and computationally fast, requiring ˜ 2 s to build a 100-taxon model from a 100-site training set on a standard personal computer. We apply the model's probabilistic framework to generate thousands of artificial training sets under ideal assumptions. We then use these to demonstrate the sensitivity of reconstructions to the characteristics of the training set, considering assemblage richness, taxon tolerances, and the number of training sites. We find that a useful guideline for the size of a training set is to provide, on average, at least 10 samples of each taxon. We demonstrate general applicability to real data, considering three different organism types (chironomids, diatoms, pollen) and different reconstructed variables. An identically configured model is used in each application, the only change being the input files that provide the training-set environment and taxon-count data. The performance of BUMPER is shown to be comparable with weighted average partial least squares (WAPLS) in each case. Additional artificial datasets are constructed with similar characteristics to the real data, and these are used to explore the reasons for the differing performances of the different training sets.
Bayesian hierarchical models for regional climate reconstructions of the last glacial maximum
NASA Astrophysics Data System (ADS)
Weitzel, Nils; Hense, Andreas; Ohlwein, Christian
2017-04-01
Spatio-temporal reconstructions of past climate are important for the understanding of the long term behavior of the climate system and the sensitivity to forcing changes. Unfortunately, they are subject to large uncertainties, have to deal with a complex proxy-climate structure, and a physically reasonable interpolation between the sparse proxy observations is difficult. Bayesian Hierarchical Models (BHMs) are a class of statistical models that is well suited for spatio-temporal reconstructions of past climate because they permit the inclusion of multiple sources of information (e.g. records from different proxy types, uncertain age information, output from climate simulations) and quantify uncertainties in a statistically rigorous way. BHMs in paleoclimatology typically consist of three stages which are modeled individually and are combined using Bayesian inference techniques. The data stage models the proxy-climate relation (often named transfer function), the process stage models the spatio-temporal distribution of the climate variables of interest, and the prior stage consists of prior distributions of the model parameters. For our BHMs, we translate well-known proxy-climate transfer functions for pollen to a Bayesian framework. In addition, we can include Gaussian distributed local climate information from preprocessed proxy records. The process stage combines physically reasonable spatial structures from prior distributions with proxy records which leads to a multivariate posterior probability distribution for the reconstructed climate variables. The prior distributions that constrain the possible spatial structure of the climate variables are calculated from climate simulation output. We present results from pseudoproxy tests as well as new regional reconstructions of temperatures for the last glacial maximum (LGM, ˜ 21,000 years BP). These reconstructions combine proxy data syntheses with information from climate simulations for the LGM that were performed in the PMIP3 project. The proxy data syntheses consist either of raw pollen data or of normally distributed climate data from preprocessed proxy records. Future extensions of our method contain the inclusion of other proxy types (transfer functions), the implementation of other spatial interpolation techniques, the use of age uncertainties, and the extension to spatio-temporal reconstructions of the last deglaciation. Our work is part of the PalMod project funded by the German Federal Ministry of Education and Science (BMBF).
The phylogenetic relationships of known mosquito (Diptera: Culicidae) mitogenomes.
Chu, Hongliang; Li, Chunxiao; Guo, Xiaoxia; Zhang, Hengduan; Luo, Peng; Wu, Zhonghua; Wang, Gang; Zhao, Tongyan
2018-01-01
The known mosquito mitogenomes, containing a total of 34 species, which belong to five genera, were collected from GenBank, and the practicality and effectiveness of the variation in the complete mitochondrial DNA genome and portions of mitochondrial COI gene were assessed to reconstruct the phylogeny of mosquitoes. Phylogenetic trees were reconstructed on the basis of parsimony, maximum likelihood, and Bayesian (BI) methods. It is concluded that: (1) Both mitogenomes and COI gene support the monophly of following taxa: Subgenus Nyssorhynchus, Subgenus Cellia, Anopheles albitarsis complex, Anopheles gambiae complex, and Anopheles punctulatus group; (2) Genus Aedes is not monophyletic relative to Ochlerotatus vigilax; (3) The mitogenome results indicate a close relationship between Anopheles epiroticus and Anopheles gambiae complex, Anopheles dirus complex and Anopheles punctulatus group, respectively; (4) The Bayesian posterior probability (BPP) within phylogenetic tree reconstructed by mitogenomes is higher than COI tree. The results show that phylogenetic relationships reconstructed using the mitogenomes were more similar to those based on morphological data.
Uncertainty analysis for fluorescence tomography with Monte Carlo method
NASA Astrophysics Data System (ADS)
Reinbacher-Köstinger, Alice; Freiberger, Manuel; Scharfetter, Hermann
2011-07-01
Fluorescence tomography seeks to image an inaccessible fluorophore distribution inside an object like a small animal by injecting light at the boundary and measuring the light emitted by the fluorophore. Optical parameters (e.g. the conversion efficiency or the fluorescence life-time) of certain fluorophores depend on physiologically interesting quantities like the pH value or the oxygen concentration in the tissue, which allows functional rather than just anatomical imaging. To reconstruct the concentration and the life-time from the boundary measurements, a nonlinear inverse problem has to be solved. It is, however, difficult to estimate the uncertainty of the reconstructed parameters in case of iterative algorithms and a large number of degrees of freedom. Uncertainties in fluorescence tomography applications arise from model inaccuracies, discretization errors, data noise and a priori errors. Thus, a Markov chain Monte Carlo method (MCMC) was used to consider all these uncertainty factors exploiting Bayesian formulation of conditional probabilities. A 2-D simulation experiment was carried out for a circular object with two inclusions. Both inclusions had a 2-D Gaussian distribution of the concentration and constant life-time inside of a representative area of the inclusion. Forward calculations were done with the diffusion approximation of Boltzmann's transport equation. The reconstruction results show that the percent estimation error of the lifetime parameter is by a factor of approximately 10 lower than that of the concentration. This finding suggests that lifetime imaging may provide more accurate information than concentration imaging only. The results must be interpreted with caution, however, because the chosen simulation setup represents a special case and a more detailed analysis remains to be done in future to clarify if the findings can be generalized.
NASA Astrophysics Data System (ADS)
Berkels, Benjamin; Wirth, Benedikt
2017-09-01
Nowadays, modern electron microscopes deliver images at atomic scale. The precise atomic structure encodes information about material properties. Thus, an important ingredient in the image analysis is to locate the centers of the atoms shown in micrographs as precisely as possible. Here, we consider scanning transmission electron microscopy (STEM), which acquires data in a rastering pattern, pixel by pixel. Due to this rastering combined with the magnification to atomic scale, movements of the specimen even at the nanometer scale lead to random image distortions that make precise atom localization difficult. Given a series of STEM images, we derive a Bayesian method that jointly estimates the distortion in each image and reconstructs the underlying atomic grid of the material by fitting the atom bumps with suitable bump functions. The resulting highly non-convex minimization problems are solved numerically with a trust region approach. Existence of minimizers and the model behavior for faster and faster rastering are investigated using variational techniques. The performance of the method is finally evaluated on both synthetic and real experimental data.
New Approaches For Asteroid Spin State and Shape Modeling From Delay-Doppler Radar Images
NASA Astrophysics Data System (ADS)
Raissi, Chedy; Lamee, Mehdi; Mosiane, Olorato; Vassallo, Corinne; Busch, Michael W.; Greenberg, Adam; Benner, Lance A. M.; Naidu, Shantanu P.; Duong, Nicholas
2016-10-01
Delay-Doppler radar imaging is a powerful technique to characterize the trajectories, shapes, and spin states of near-Earth asteroids; and has yielded detailed models of dozens of objects. Reconstructing objects' shapes and spins from delay-Doppler data is a computationally intensive inversion problem. Since the 1990s, delay-Doppler data has been analyzed using the SHAPE software. SHAPE performs sequential single-parameter fitting, and requires considerable computer runtime and human intervention (Hudson 1993, Magri et al. 2007). Recently, multiple-parameter fitting algorithms have been shown to more efficiently invert delay-Doppler datasets (Greenberg & Margot 2015) - decreasing runtime while improving accuracy. However, extensive human oversight of the shape modeling process is still required. We have explored two new techniques to better automate delay-Doppler shape modeling: Bayesian optimization and a machine-learning neural network.One of the most time-intensive steps of the shape modeling process is to perform a grid search to constrain the target's spin state. We have implemented a Bayesian optimization routine that uses SHAPE to autonomously search the space of spin-state parameters. To test the efficacy of this technique, we compared it to results with human-guided SHAPE for asteroids 1992 UY4, 2000 RS11, and 2008 EV5. Bayesian optimization yielded similar spin state constraints within a factor of 3 less computer runtime.The shape modeling process could be further accelerated using a deep neural network to replace iterative fitting. We have implemented a neural network with a variational autoencoder (VAE), using a subset of known asteroid shapes and a large set of synthetic radar images as inputs to train the network. Conditioning the VAE in this manner allows the user to give the network a set of radar images and get a 3D shape model as an output. Additional development will be required to train a network to reliably render shapes from delay-Doppler images.This work was supported by NASA Ames, NVIDIA, Autodesk and the SETI Institute as part of the NASA Frontier Development Lab program.
Sensor fusion V; Proceedings of the Meeting, Boston, MA, Nov. 15-17, 1992
NASA Technical Reports Server (NTRS)
Schenker, Paul S. (Editor)
1992-01-01
Topics addressed include 3D object perception, human-machine interface in multisensor systems, sensor fusion architecture, fusion of multiple and distributed sensors, interface and decision models for sensor fusion, computational networks, simple sensing for complex action, multisensor-based control, and metrology and calibration of multisensor systems. Particular attention is given to controlling 3D objects by sketching 2D views, the graphical simulation and animation environment for flexible structure robots, designing robotic systems from sensorimotor modules, cylindrical object reconstruction from a sequence of images, an accurate estimation of surface properties by integrating information using Bayesian networks, an adaptive fusion model for a distributed detection system, multiple concurrent object descriptions in support of autonomous navigation, robot control with multiple sensors and heuristic knowledge, and optical array detectors for image sensors calibration. (No individual items are abstracted in this volume)
NASA Astrophysics Data System (ADS)
O'Shaughnessy, Richard; Lange, Jacob; Healy, James; Carlos, Lousto; Shoemaker, Deirdre; Lovelace, Geoffrey; Scheel, Mark
2016-03-01
In this talk, we apply a procedure to reconstruct the parameters of sufficiently massive coalescing compact binaries via direct comparison with numerical relativity simulations. We illustrate how to use only comparisons between synthetic data and these simulations to reconstruct properties of a synthetic candidate source. We demonstrate using selected examples that we can reconstruct posterior distributions obtained by other Bayesian methods with our sparse grid. We describe how followup simulations can corroborate and improve our understanding of a candidate signal.
Phylogenetic Analyses: A Toolbox Expanding towards Bayesian Methods
Aris-Brosou, Stéphane; Xia, Xuhua
2008-01-01
The reconstruction of phylogenies is becoming an increasingly simple activity. This is mainly due to two reasons: the democratization of computing power and the increased availability of sophisticated yet user-friendly software. This review describes some of the latest additions to the phylogenetic toolbox, along with some of their theoretical and practical limitations. It is shown that Bayesian methods are under heavy development, as they offer the possibility to solve a number of long-standing issues and to integrate several steps of the phylogenetic analyses into a single framework. Specific topics include not only phylogenetic reconstruction, but also the comparison of phylogenies, the detection of adaptive evolution, and the estimation of divergence times between species. PMID:18483574
NASA Astrophysics Data System (ADS)
Gennaretti, Fabio; Huard, David; Naulier, Maud; Savard, Martine; Bégin, Christian; Arseneault, Dominique; Guiot, Joel
2017-12-01
Northeastern North America has very few millennium-long, high-resolution climate proxy records. However, very recently, a new tree-ring dataset suitable for temperature reconstructions over the last millennium was developed in the northern Quebec taiga. This dataset is composed of one δ18O and six ring width chronologies. Until now, these chronologies have only been used in independent temperature reconstructions (from δ18O or ring width) showing some differences. Here, we added to the dataset a δ13C chronology and developed a significantly improved millennium-long multiproxy reconstruction (997-2006 CE) accounting for uncertainties with a Bayesian approach that evaluates the likelihood of each proxy model. We also undertook a methodological sensitivity analysis to assess the different responses of each proxy to abrupt forcings such as strong volcanic eruptions. Ring width showed a larger response to single eruptions and a larger cumulative impact of multiple eruptions during active volcanic periods, δ18O showed intermediate responses, and δ13C was mostly insensitive to volcanic eruptions. We conclude that all reconstructions based on a single proxy can be misleading because of the possible reduced or amplified responses to specific forcing agents.
Zhang, Zhilin; Jung, Tzyy-Ping; Makeig, Scott; Rao, Bhaskar D
2013-02-01
Fetal ECG (FECG) telemonitoring is an important branch in telemedicine. The design of a telemonitoring system via a wireless body area network with low energy consumption for ambulatory use is highly desirable. As an emerging technique, compressed sensing (CS) shows great promise in compressing/reconstructing data with low energy consumption. However, due to some specific characteristics of raw FECG recordings such as nonsparsity and strong noise contamination, current CS algorithms generally fail in this application. This paper proposes to use the block sparse Bayesian learning framework to compress/reconstruct nonsparse raw FECG recordings. Experimental results show that the framework can reconstruct the raw recordings with high quality. Especially, the reconstruction does not destroy the interdependence relation among the multichannel recordings. This ensures that the independent component analysis decomposition of the reconstructed recordings has high fidelity. Furthermore, the framework allows the use of a sparse binary sensing matrix with much fewer nonzero entries to compress recordings. Particularly, each column of the matrix can contain only two nonzero entries. This shows that the framework, compared to other algorithms such as current CS algorithms and wavelet algorithms, can greatly reduce code execution in CPU in the data compression stage.
Gaussian process tomography for soft x-ray spectroscopy at WEST without equilibrium information
NASA Astrophysics Data System (ADS)
Wang, T.; Mazon, D.; Svensson, J.; Li, D.; Jardin, A.; Verdoolaege, G.
2018-06-01
Gaussian process tomography (GPT) is a recently developed tomography method based on the Bayesian probability theory [J. Svensson, JET Internal Report EFDA-JET-PR(11)24, 2011 and Li et al., Rev. Sci. Instrum. 84, 083506 (2013)]. By modeling the soft X-ray (SXR) emissivity field in a poloidal cross section as a Gaussian process, the Bayesian SXR tomography can be carried out in a robust and extremely fast way. Owing to the short execution time of the algorithm, GPT is an important candidate for providing real-time reconstructions with a view to impurity transport and fast magnetohydrodynamic control. In addition, the Bayesian formalism allows quantifying uncertainty on the inferred parameters. In this paper, the GPT technique is validated using a synthetic data set expected from the WEST tokamak, and the results are shown of its application to the reconstruction of SXR emissivity profiles measured on Tore Supra. The method is compared with the standard algorithm based on minimization of the Fisher information.
Volume measurement of cryogenic deuterium pellets by Bayesian analysis of single shadowgraphy images
NASA Astrophysics Data System (ADS)
Szepesi, T.; Kálvin, S.; Kocsis, G.; Lang, P. T.; Wittmann, C.
2008-03-01
In situ commissioning of the Blower-gun injector for launching cryogenic deuterium pellets at ASDEX Upgrade tokamak was performed. This injector is designed for high repetitive launch of small pellets for edge localised modes pacing experiments. During the investigation the final injection geometry was simulated with pellets passing to the torus through a 5.5m long guiding tube. For investigation of pellet quality at launch and after tube passage laser flash camera shadowgraphy diagnostic units before and after the tube were installed. As indicator of pellet quality we adopted the pellet mass represented by the volume of the main remaining pellet fragment. Since only two-dimensional (2D) shadow images were obtained, a reconstruction of the full three-dimensional pellet body had to be performed. For this the image was first converted into a 1-bit version prescribing an exact 2D contour. From this contour the expected value of the volume was calculated by Bayesian analysis taking into account the likely cylindrical shape of the pellet. Under appropriate injection conditions sound pellets with more than half of their nominal mass are detected after acceleration; the passage causes in average an additional loss of about 40% to the launched mass. Analyzing pellets arriving at tube exit allowed for deriving the injector's optimized operational conditions. For these more than 90% of the pellets were arriving with sound quality when operating in the frequency range 5-50Hz.
NASA Astrophysics Data System (ADS)
Volkov, D.
2017-12-01
We introduce an algorithm for the simultaneous reconstruction of faults and slip fields on those faults. We define a regularized functional to be minimized for the reconstruction. We prove that the minimum of that functional converges to the unique solution of the related fault inverse problem. Due to inherent uncertainties in measurements, rather than seeking a deterministic solution to the fault inverse problem, we consider a Bayesian approach. The advantage of such an approach is that we obtain a way of quantifying uncertainties as part of our final answer. On the downside, this Bayesian approach leads to a very large computation. To contend with the size of this computation we developed an algorithm for the numerical solution to the stochastic minimization problem which can be easily implemented on a parallel multi-core platform and we discuss techniques to save on computational time. After showing how this algorithm performs on simulated data and assessing the effect of noise, we apply it to measured data. The data was recorded during a slow slip event in Guerrero, Mexico.
NASA Astrophysics Data System (ADS)
Salucci, Marco; Tenuti, Lorenza; Nardin, Cristina; Oliveri, Giacomo; Viani, Federico; Rocca, Paolo; Massa, Andrea
2014-05-01
The application of non-destructive testing and evaluation (NDT/NDE) methodologies in civil engineering has raised a growing interest during the last years because of its potential impact in several different scenarios. As a consequence, Ground Penetrating Radar (GPR) technologies have been widely adopted as an instrument for the inspection of the structural stability of buildings and for the detection of cracks and voids. In this framework, the development and validation of GPR algorithms and methodologies represents one of the most active research areas within the ELEDIA Research Center of the University of Trento. More in detail, great efforts have been devoted towards the development of inversion techniques based on the integration of deterministic and stochastic search algorithms with multi-focusing strategies. These approaches proved to be effective in mitigating the effects of both nonlinearity and ill-posedness of microwave imaging problems, which represent the well-known issues arising in GPR inverse scattering formulations. More in detail, a regularized multi-resolution approach based on the Inexact Newton Method (INM) has been recently applied to subsurface prospecting, showing a remarkable advantage over a single-resolution implementation [1]. Moreover, the use of multi-frequency or frequency-hopping strategies to exploit the information coming from GPR data collected in time domain and transformed into its frequency components has been proposed as well. In this framework, the effectiveness of the multi-resolution multi-frequency techniques has been proven on synthetic data generated with numerical models such as GprMax [2]. The application of inversion algorithms based on Bayesian Compressive Sampling (BCS) [3][4] to GPR is currently under investigation, as well, in order to exploit their capability to provide satisfactory reconstructions in presence of single and multiple sparse scatterers [3][4]. Furthermore, multi-scaling approaches exploiting level-set-based optimization have been developed for the qualitative reconstruction of multiple and disconnected homogeneous scatterers [5]. Finally, the real-time detection and classification of subsurface scatterers has been investigated by means of learning-by-examples (LBE) techniques, such as Support Vector Machines (SVM) [6]. Acknowledgment - This work was partially supported by COST Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' References [1] M. Salucci, D. Sartori, N. Anselmi, A. Randazzo, G. Oliveri, and A. Massa, 'Imaging Buried Objects within the Second-Order Born Approximation through a Multiresolution Regularized Inexact-Newton Method', 2013 International Symposium on Electromagnetic Theory (EMTS), (Hiroshima, Japan), May 20-24 2013 (invited). [2] A. Giannopoulos, 'Modelling ground penetrating radar by GprMax', Construct. Build. Mater., vol. 19, no. 10, pp.755 -762 2005 [3] L. Poli, G. Oliveri, P. Rocca, and A. Massa, "Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illumination," IEEE Trans. Geosci. Remote Sensing, vol. 51, no. 5, pp. 2920-2936, May. 2013. [4] L. Poli, G. Oliveri, and A. Massa, "Imaging sparse metallic cylinders through a Local Shape Function Bayesian Compressive Sensing approach," Journal of Optical Society of America A, vol. 30, no. 6, pp. 1261-1272, 2013. [5] M. Benedetti, D. Lesselier, M. Lambert, and A. Massa, "Multiple shapes reconstruction by means of multi-region level sets," IEEE Trans. Geosci. Remote Sensing, vol. 48, no. 5, pp. 2330-2342, May 2010. [6] L. Lizzi, F. Viani, P. Rocca, G. Oliveri, M. Benedetti and A. Massa, "Three-dimensional real-time localization of subsurface objects - From theory to experimental validation," 2009 IEEE International Geoscience and Remote Sensing Symposium, vol. 2, pp. II-121-II-124, 12-17 July 2009.
Wagner, Roland; Helin, Tapio; Obereder, Andreas; Ramlau, Ronny
2016-02-20
The imaging quality of modern ground-based telescopes such as the planned European Extremely Large Telescope is affected by atmospheric turbulence. In consequence, they heavily depend on stable and high-performance adaptive optics (AO) systems. Using measurements of incoming light from guide stars, an AO system compensates for the effects of turbulence by adjusting so-called deformable mirror(s) (DMs) in real time. In this paper, we introduce a novel reconstruction method for ground layer adaptive optics. In the literature, a common approach to this problem is to use Bayesian inference in order to model the specific noise structure appearing due to spot elongation. This approach leads to large coupled systems with high computational effort. Recently, fast solvers of linear order, i.e., with computational complexity O(n), where n is the number of DM actuators, have emerged. However, the quality of such methods typically degrades in low flux conditions. Our key contribution is to achieve the high quality of the standard Bayesian approach while at the same time maintaining the linear order speed of the recent solvers. Our method is based on performing a separate preprocessing step before applying the cumulative reconstructor (CuReD). The efficiency and performance of the new reconstructor are demonstrated using the OCTOPUS, the official end-to-end simulation environment of the ESO for extremely large telescopes. For more specific simulations we also use the MOST toolbox.
A Bayesian Approach for Image Segmentation with Shape Priors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Hang; Yang, Qing; Parvin, Bahram
2008-06-20
Color and texture have been widely used in image segmentation; however, their performance is often hindered by scene ambiguities, overlapping objects, or missingparts. In this paper, we propose an interactive image segmentation approach with shape prior models within a Bayesian framework. Interactive features, through mouse strokes, reduce ambiguities, and the incorporation of shape priors enhances quality of the segmentation where color and/or texture are not solely adequate. The novelties of our approach are in (i) formulating the segmentation problem in a well-de?ned Bayesian framework with multiple shape priors, (ii) ef?ciently estimating parameters of the Bayesian model, and (iii) multi-object segmentationmore » through user-speci?ed priors. We demonstrate the effectiveness of our method on a set of natural and synthetic images.« less
Improving chemical species tomography of turbulent flows using covariance estimation.
Grauer, Samuel J; Hadwin, Paul J; Daun, Kyle J
2017-05-01
Chemical species tomography (CST) experiments can be divided into limited-data and full-rank cases. Both require solving ill-posed inverse problems, and thus the measurement data must be supplemented with prior information to carry out reconstructions. The Bayesian framework formalizes the role of additive information, expressed as the mean and covariance of a joint-normal prior probability density function. We present techniques for estimating the spatial covariance of a flow under limited-data and full-rank conditions. Our results show that incorporating a covariance estimate into CST reconstruction via a Bayesian prior increases the accuracy of instantaneous estimates. Improvements are especially dramatic in real-time limited-data CST, which is directly applicable to many industrially relevant experiments.
Bayesian reconstruction of transmission within outbreaks using genomic variants.
De Maio, Nicola; Worby, Colin J; Wilson, Daniel J; Stoesser, Nicole
2018-04-01
Pathogen genome sequencing can reveal details of transmission histories and is a powerful tool in the fight against infectious disease. In particular, within-host pathogen genomic variants identified through heterozygous nucleotide base calls are a potential source of information to identify linked cases and infer direction and time of transmission. However, using such data effectively to model disease transmission presents a number of challenges, including differentiating genuine variants from those observed due to sequencing error, as well as the specification of a realistic model for within-host pathogen population dynamics. Here we propose a new Bayesian approach to transmission inference, BadTrIP (BAyesian epiDemiological TRansmission Inference from Polymorphisms), that explicitly models evolution of pathogen populations in an outbreak, transmission (including transmission bottlenecks), and sequencing error. BadTrIP enables the inference of host-to-host transmission from pathogen sequencing data and epidemiological data. By assuming that genomic variants are unlinked, our method does not require the computationally intensive and unreliable reconstruction of individual haplotypes. Using simulations we show that BadTrIP is robust in most scenarios and can accurately infer transmission events by efficiently combining information from genetic and epidemiological sources; thanks to its realistic model of pathogen evolution and the inclusion of epidemiological data, BadTrIP is also more accurate than existing approaches. BadTrIP is distributed as an open source package (https://bitbucket.org/nicofmay/badtrip) for the phylogenetic software BEAST2. We apply our method to reconstruct transmission history at the early stages of the 2014 Ebola outbreak, showcasing the power of within-host genomic variants to reconstruct transmission events.
Mishra, Arabinda; Anderson, Adam W; Wu, Xi; Gore, John C; Ding, Zhaohua
2010-08-01
The purpose of this work is to design a neuronal fiber tracking algorithm, which will be more suitable for reconstruction of fibers associated with functionally important regions in the human brain. The functional activations in the brain normally occur in the gray matter regions. Hence the fibers bordering these regions are weakly myelinated, resulting in poor performance of conventional tractography methods to trace the fiber links between them. A lower fractional anisotropy in this region makes it even difficult to track the fibers in the presence of noise. In this work, the authors focused on a stochastic approach to reconstruct these fiber pathways based on a Bayesian regularization framework. To estimate the true fiber direction (propagation vector), the a priori and conditional probability density functions are calculated in advance and are modeled as multivariate normal. The variance of the estimated tensor element vector is associated with the uncertainty due to noise and partial volume averaging (PVA). An adaptive and multiple sampling of the estimated tensor element vector, which is a function of the pre-estimated variance, overcomes the effect of noise and PVA in this work. The algorithm has been rigorously tested using a variety of synthetic data sets. The quantitative comparison of the results to standard algorithms motivated the authors to implement it for in vivo DTI data analysis. The algorithm has been implemented to delineate fibers in two major language pathways (Broca's to SMA and Broca's to Wernicke's) across 12 healthy subjects. Though the mean of standard deviation was marginally bigger than conventional (Euler's) approach [P. J. Basser et al., "In vivo fiber tractography using DT-MRI data," Magn. Reson. Med. 44(4), 625-632 (2000)], the number of extracted fibers in this approach was significantly higher. The authors also compared the performance of the proposed method to Lu's method [Y. Lu et al., "Improved fiber tractography with Bayesian tensor regularization," Neuroimage 31(3), 1061-1074 (2006)] and Friman's stochastic approach [O. Friman et al., "A Bayesian approach for stochastic white matter tractography," IEEE Trans. Med. Imaging 25(8), 965-978 (2006)]. Overall performance of the approach is found to be superior to above two methods, particularly when the signal-to-noise ratio was low. The authors observed that an adaptive sampling of the tensor element vectors, estimated as a function of the variance in a Bayesian framework, can effectively delineate neuronal fibers to analyze the structure-function relationship in human brain. The simulated and in vivo results are in good agreement with the theoretical aspects of the algorithm.
Li, Haoting; Chen, Rongqing; Xu, Canhua; Liu, Benyuan; Tang, Mengxing; Yang, Lin; Dong, Xiuzhen; Fu, Feng
2017-08-21
Dynamic brain electrical impedance tomography (EIT) is a promising technique for continuously monitoring the development of cerebral injury. While there are many reconstruction algorithms available for brain EIT, there is still a lack of study to compare their performance in the context of dynamic brain monitoring. To address this problem, we develop a framework for evaluating different current algorithms with their ability to correctly identify small intracranial conductivity changes. Firstly, a simulation 3D head phantom with realistic layered structure and impedance distribution is developed. Next several reconstructing algorithms, such as back projection (BP), damped least-square (DLS), Bayesian, split Bregman (SB) and GREIT are introduced. We investigate their temporal response, noise performance, location and shape error with respect to different noise levels on the simulation phantom. The results show that the SB algorithm demonstrates superior performance in reducing image error. To further improve the location accuracy, we optimize SB by incorporating the brain structure-based conductivity distribution priors, in which differences of the conductivities between different brain tissues and the inhomogeneous conductivity distribution of the skull are considered. We compare this novel algorithm (called SB-IBCD) with SB and DLS using anatomically correct head shaped phantoms with spatial varying skull conductivity. Main results and Significance: The results showed that SB-IBCD is the most effective in unveiling small intracranial conductivity changes, where it can reduce the image error by an average of 30.0% compared to DLS.
Sun, Jiedi; Yu, Yang; Wen, Jiangtao
2017-01-01
Remote monitoring of bearing conditions, using wireless sensor network (WSN), is a developing trend in the industrial field. In complicated industrial environments, WSN face three main constraints: low energy, less memory, and low operational capability. Conventional data-compression methods, which concentrate on data compression only, cannot overcome these limitations. Aiming at these problems, this paper proposed a compressed data acquisition and reconstruction scheme based on Compressed Sensing (CS) which is a novel signal-processing technique and applied it for bearing conditions monitoring via WSN. The compressed data acquisition is realized by projection transformation and can greatly reduce the data volume, which needs the nodes to process and transmit. The reconstruction of original signals is achieved in the host computer by complicated algorithms. The bearing vibration signals not only exhibit the sparsity property, but also have specific structures. This paper introduced the block sparse Bayesian learning (BSBL) algorithm which works by utilizing the block property and inherent structures of signals to reconstruct CS sparsity coefficients of transform domains and further recover the original signals. By using the BSBL, CS reconstruction can be improved remarkably. Experiments and analyses showed that BSBL method has good performance and is suitable for practical bearing-condition monitoring. PMID:28635623
McNally, Kevin; Cotton, Richard; Cocker, John; Jones, Kate; Bartels, Mike; Rick, David; Price, Paul; Loizou, George
2012-01-01
There are numerous biomonitoring programs, both recent and ongoing, to evaluate environmental exposure of humans to chemicals. Due to the lack of exposure and kinetic data, the correlation of biomarker levels with exposure concentrations leads to difficulty in utilizing biomonitoring data for biological guidance values. Exposure reconstruction or reverse dosimetry is the retrospective interpretation of external exposure consistent with biomonitoring data. We investigated the integration of physiologically based pharmacokinetic modelling, global sensitivity analysis, Bayesian inference, and Markov chain Monte Carlo simulation to obtain a population estimate of inhalation exposure to m-xylene. We used exhaled breath and venous blood m-xylene and urinary 3-methylhippuric acid measurements from a controlled human volunteer study in order to evaluate the ability of our computational framework to predict known inhalation exposures. We also investigated the importance of model structure and dimensionality with respect to its ability to reconstruct exposure. PMID:22719759
The image recognition based on neural network and Bayesian decision
NASA Astrophysics Data System (ADS)
Wang, Chugege
2018-04-01
The artificial neural network began in 1940, which is an important part of artificial intelligence. At present, it has become a hot topic in the fields of neuroscience, computer science, brain science, mathematics, and psychology. Thomas Bayes firstly reported the Bayesian theory in 1763. After the development in the twentieth century, it has been widespread in all areas of statistics. In recent years, due to the solution of the problem of high-dimensional integral calculation, Bayesian Statistics has been improved theoretically, which solved many problems that cannot be solved by classical statistics and is also applied to the interdisciplinary fields. In this paper, the related concepts and principles of the artificial neural network are introduced. It also summarizes the basic content and principle of Bayesian Statistics, and combines the artificial neural network technology and Bayesian decision theory and implement them in all aspects of image recognition, such as enhanced face detection method based on neural network and Bayesian decision, as well as the image classification based on the Bayesian decision. It can be seen that the combination of artificial intelligence and statistical algorithms has always been the hot research topic.
Traffic Video Image Segmentation Model Based on Bayesian and Spatio-Temporal Markov Random Field
NASA Astrophysics Data System (ADS)
Zhou, Jun; Bao, Xu; Li, Dawei; Yin, Yongwen
2017-10-01
Traffic video image is a kind of dynamic image and its background and foreground is changed at any time, which results in the occlusion. In this case, using the general method is more difficult to get accurate image segmentation. A segmentation algorithm based on Bayesian and Spatio-Temporal Markov Random Field is put forward, which respectively build the energy function model of observation field and label field to motion sequence image with Markov property, then according to Bayesian' rule, use the interaction of label field and observation field, that is the relationship of label field’s prior probability and observation field’s likelihood probability, get the maximum posterior probability of label field’s estimation parameter, use the ICM model to extract the motion object, consequently the process of segmentation is finished. Finally, the segmentation methods of ST - MRF and the Bayesian combined with ST - MRF were analyzed. Experimental results: the segmentation time in Bayesian combined with ST-MRF algorithm is shorter than in ST-MRF, and the computing workload is small, especially in the heavy traffic dynamic scenes the method also can achieve better segmentation effect.
NASA Astrophysics Data System (ADS)
Huang, Alex S.; Belghith, Akram; Dastiridou, Anna; Chopra, Vikas; Zangwill, Linda M.; Weinreb, Robert N.
2017-06-01
The purpose was to create a three-dimensional (3-D) model of circumferential aqueous humor outflow (AHO) in a living human eye with an automated detection algorithm for Schlemm's canal (SC) and first-order collector channels (CC) applied to spectral-domain optical coherence tomography (SD-OCT). Anterior segment SD-OCT scans from a subject were acquired circumferentially around the limbus. A Bayesian Ridge method was used to approximate the location of the SC on infrared confocal laser scanning ophthalmoscopic images with a cross multiplication tool developed to initiate SC/CC detection automated through a fuzzy hidden Markov Chain approach. Automatic segmentation of SC and initial CC's was manually confirmed by two masked graders. Outflow pathways detected by the segmentation algorithm were reconstructed into a 3-D representation of AHO. Overall, only <1% of images (5114 total B-scans) were ungradable. Automatic segmentation algorithm performed well with SC detection 98.3% of the time and <0.1% false positive detection compared to expert grader consensus. CC was detected 84.2% of the time with 1.4% false positive detection. 3-D representation of AHO pathways demonstrated variably thicker and thinner SC with some clear CC roots. Circumferential (360 deg), automated, and validated AHO detection of angle structures in the living human eye with reconstruction was possible.
Paleoclimate reconstruction through Bayesian data assimilation
NASA Astrophysics Data System (ADS)
Fer, I.; Raiho, A.; Rollinson, C.; Dietze, M.
2017-12-01
Methods of paleoclimate reconstruction from plant-based proxy data rely on assumptions of static vegetation-climate link which is often established between modern climate and vegetation. This approach might result in biased climate constructions as it does not account for vegetation dynamics. Predictive tools such as process-based dynamic vegetation models (DVM) and their Bayesian inversion could be used to construct the link between plant-based proxy data and palaeoclimate more realistically. In other words, given the proxy data, it is possible to infer the climate that could result in that particular vegetation composition, by comparing the DVM outputs to the proxy data within a Bayesian state data assimilation framework. In this study, using fossil pollen data from five sites across the northern hardwood region of the US, we assimilate fractional composition and aboveground biomass into dynamic vegetation models, LINKAGES, LPJ-GUESS and ED2. To do this, starting from 4 Global Climate Model outputs, we generate an ensemble of downscaled meteorological drivers for the period 850-2015. Then, as a first pass, we weigh these ensembles based on their fidelity with independent paleoclimate proxies. Next, we run the models with this ensemble of drivers, and comparing the ensemble model output to the vegetation data, adjust the model state estimates towards the data. At each iteration, we also reweight the climate values that make the model and data consistent, producing a reconstructed climate time-series dataset. We validated the method using present-day datasets, as well as a synthetic dataset, and then assessed the consistency of results across ecosystem models. Our method allows the combination of multiple data types to reconstruct the paleoclimate, with associated uncertainty estimates, based on ecophysiological and ecological processes rather than phenomenological correlations with proxy data.
From scores to face templates: a model-based approach.
Mohanty, Pranab; Sarkar, Sudeep; Kasturi, Rangachar
2007-12-01
Regeneration of templates from match scores has security and privacy implications related to any biometric authentication system. We propose a novel paradigm to reconstruct face templates from match scores using a linear approach. It proceeds by first modeling the behavior of the given face recognition algorithm by an affine transformation. The goal of the modeling is to approximate the distances computed by a face recognition algorithm between two faces by distances between points, representing these faces, in an affine space. Given this space, templates from an independent image set (break-in) are matched only once with the enrolled template of the targeted subject and match scores are recorded. These scores are then used to embed the targeted subject in the approximating affine (non-orthogonal) space. Given the coordinates of the targeted subject in the affine space, the original template of the targeted subject is reconstructed using the inverse of the affine transformation. We demonstrate our ideas using three, fundamentally different, face recognition algorithms: Principal Component Analysis (PCA) with Mahalanobis cosine distance measure, Bayesian intra-extrapersonal classifier (BIC), and a feature-based commercial algorithm. To demonstrate the independence of the break-in set with the gallery set, we select face templates from two different databases: Face Recognition Grand Challenge (FRGC) and Facial Recognition Technology (FERET) Database (FERET). With an operational point set at 1 percent False Acceptance Rate (FAR) and 99 percent True Acceptance Rate (TAR) for 1,196 enrollments (FERET gallery), we show that at most 600 attempts (score computations) are required to achieve a 73 percent chance of breaking in as a randomly chosen target subject for the commercial face recognition system. With similar operational set up, we achieve a 72 percent and 100 percent chance of breaking in for the Bayesian and PCA based face recognition systems, respectively. With three different levels of score quantization, we achieve 69 percent, 68 percent and 49 percent probability of break-in, indicating the robustness of our proposed scheme to score quantization. We also show that the proposed reconstruction scheme has 47 percent more probability of breaking in as a randomly chosen target subject for the commercial system as compared to a hill climbing approach with the same number of attempts. Given that the proposed template reconstruction method uses distinct face templates to reconstruct faces, this work exposes a more severe form of vulnerability than a hill climbing kind of attack where incrementally different versions of the same face are used. Also, the ability of the proposed approach to reconstruct actual face templates of the users increases privacy concerns in biometric systems.
NASA Astrophysics Data System (ADS)
Lundquist, K. A.; Jensen, D. D.; Lucas, D. D.
2017-12-01
Atmospheric source reconstruction allows for the probabilistic estimate of source characteristics of an atmospheric release using observations of the release. Performance of the inversion depends partially on the temporal frequency and spatial scale of the observations. The objective of this study is to quantify the sensitivity of the source reconstruction method to sparse spatial and temporal observations. To this end, simulations of atmospheric transport of noble gasses are created for the 2006 nuclear test at the Punggye-ri nuclear test site. Synthetic observations are collected from the simulation, and are taken as "ground truth". Data denial techniques are used to progressively coarsen the temporal and spatial resolution of the synthetic observations, while the source reconstruction model seeks to recover the true input parameters from the synthetic observations. Reconstructed parameters considered here are source location, source timing and source quantity. Reconstruction is achieved by running an ensemble of thousands of dispersion model runs that sample from a uniform distribution of the input parameters. Machine learning is used to train a computationally-efficient surrogate model from the ensemble simulations. Monte Carlo sampling and Bayesian inversion are then used in conjunction with the surrogate model to quantify the posterior probability density functions of source input parameters. This research seeks to inform decision makers of the tradeoffs between more expensive, high frequency observations and less expensive, low frequency observations.
Bayesian inference of a historical bottleneck in a heavily exploited marine mammal.
Hoffman, J I; Grant, S M; Forcada, J; Phillips, C D
2011-10-01
Emerging Bayesian analytical approaches offer increasingly sophisticated means of reconstructing historical population dynamics from genetic data, but have been little applied to scenarios involving demographic bottlenecks. Consequently, we analysed a large mitochondrial and microsatellite dataset from the Antarctic fur seal Arctocephalus gazella, a species subjected to one of the most extreme examples of uncontrolled exploitation in history when it was reduced to the brink of extinction by the sealing industry during the late eighteenth and nineteenth centuries. Classical bottleneck tests, which exploit the fact that rare alleles are rapidly lost during demographic reduction, yielded ambiguous results. In contrast, a strong signal of recent demographic decline was detected using both Bayesian skyline plots and Approximate Bayesian Computation, the latter also allowing derivation of posterior parameter estimates that were remarkably consistent with historical observations. This was achieved using only contemporary samples, further emphasizing the potential of Bayesian approaches to address important problems in conservation and evolutionary biology. © 2011 Blackwell Publishing Ltd.
Comparing nonparametric Bayesian tree priors for clonal reconstruction of tumors.
Deshwar, Amit G; Vembu, Shankar; Morris, Quaid
2015-01-01
Statistical machine learning methods, especially nonparametric Bayesian methods, have become increasingly popular to infer clonal population structure of tumors. Here we describe the treeCRP, an extension of the Chinese restaurant process (CRP), a popular construction used in nonparametric mixture models, to infer the phylogeny and genotype of major subclonal lineages represented in the population of cancer cells. We also propose new split-merge updates tailored to the subclonal reconstruction problem that improve the mixing time of Markov chains. In comparisons with the tree-structured stick breaking prior used in PhyloSub, we demonstrate superior mixing and running time using the treeCRP with our new split-merge procedures. We also show that given the same number of samples, TSSB and treeCRP have similar ability to recover the subclonal structure of a tumor…
Ye, Chuyang; Murano, Emi; Stone, Maureen; Prince, Jerry L
2015-10-01
The tongue is a critical organ for a variety of functions, including swallowing, respiration, and speech. It contains intrinsic and extrinsic muscles that play an important role in changing its shape and position. Diffusion tensor imaging (DTI) has been used to reconstruct tongue muscle fiber tracts. However, previous studies have been unable to reconstruct the crossing fibers that occur where the tongue muscles interdigitate, which is a large percentage of the tongue volume. To resolve crossing fibers, multi-tensor models on DTI and more advanced imaging modalities, such as high angular resolution diffusion imaging (HARDI) and diffusion spectrum imaging (DSI), have been proposed. However, because of the involuntary nature of swallowing, there is insufficient time to acquire a sufficient number of diffusion gradient directions to resolve crossing fibers while the in vivo tongue is in a fixed position. In this work, we address the challenge of distinguishing interdigitated tongue muscles from limited diffusion magnetic resonance imaging by using a multi-tensor model with a fixed tensor basis and incorporating prior directional knowledge. The prior directional knowledge provides information on likely fiber directions at each voxel, and is computed with anatomical knowledge of tongue muscles. The fiber directions are estimated within a maximum a posteriori (MAP) framework, and the resulting objective function is solved using a noise-aware weighted ℓ1-norm minimization algorithm. Experiments were performed on a digital crossing phantom and in vivo tongue diffusion data including three control subjects and four patients with glossectomies. On the digital phantom, effects of parameters, noise, and prior direction accuracy were studied, and parameter settings for real data were determined. The results on the in vivo data demonstrate that the proposed method is able to resolve interdigitated tongue muscles with limited gradient directions. The distributions of the computed fiber directions in both the controls and the patients were also compared, suggesting a potential clinical use for this imaging and image analysis methodology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Korving, H; Clemens, F
2002-01-01
In recent years, decision analysis has become an important technique in many disciplines. It provides a methodology for rational decision-making allowing for uncertainties in the outcome of several possible actions to be undertaken. An example in urban drainage is the situation in which an engineer has to decide upon a major reconstruction of a system in order to prevent pollution of receiving waters due to CSOs. This paper describes the possibilities of Bayesian decision-making in urban drainage. In particular, the utility of monitoring prior to deciding on the reconstruction of a sewer system to reduce CSO emissions is studied. Our concern is with deciding whether a price should be paid for new information and which source of information is the best choice given the expected uncertainties in the outcome. The influence of specific uncertainties (sewer system data and model parameters) on the probability of CSO volumes is shown to be significant. Using Bayes' rule, to combine prior impressions with new observations, reduces the risks linked with the planning of sewer system reconstructions.
Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM☆
López, J.D.; Litvak, V.; Espinosa, J.J.; Friston, K.; Barnes, G.R.
2014-01-01
The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy—an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. PMID:24041874
Research on Bayes matting algorithm based on Gaussian mixture model
NASA Astrophysics Data System (ADS)
Quan, Wei; Jiang, Shan; Han, Cheng; Zhang, Chao; Jiang, Zhengang
2015-12-01
The digital matting problem is a classical problem of imaging. It aims at separating non-rectangular foreground objects from a background image, and compositing with a new background image. Accurate matting determines the quality of the compositing image. A Bayesian matting Algorithm Based on Gaussian Mixture Model is proposed to solve this matting problem. Firstly, the traditional Bayesian framework is improved by introducing Gaussian mixture model. Then, a weighting factor is added in order to suppress the noises of the compositing images. Finally, the effect is further improved by regulating the user's input. This algorithm is applied to matting jobs of classical images. The results are compared to the traditional Bayesian method. It is shown that our algorithm has better performance in detail such as hair. Our algorithm eliminates the noise well. And it is very effectively in dealing with the kind of work, such as interested objects with intricate boundaries.
Robust Learning of High-dimensional Biological Networks with Bayesian Networks
NASA Astrophysics Data System (ADS)
Nägele, Andreas; Dejori, Mathäus; Stetter, Martin
Structure learning of Bayesian networks applied to gene expression data has become a potentially useful method to estimate interactions between genes. However, the NP-hardness of Bayesian network structure learning renders the reconstruction of the full genetic network with thousands of genes unfeasible. Consequently, the maximal network size is usually restricted dramatically to a small set of genes (corresponding with variables in the Bayesian network). Although this feature reduction step makes structure learning computationally tractable, on the downside, the learned structure might be adversely affected due to the introduction of missing genes. Additionally, gene expression data are usually very sparse with respect to the number of samples, i.e., the number of genes is much greater than the number of different observations. Given these problems, learning robust network features from microarray data is a challenging task. This chapter presents several approaches tackling the robustness issue in order to obtain a more reliable estimation of learned network features.
Denoising, deconvolving, and decomposing photon observations. Derivation of the D3PO algorithm
NASA Astrophysics Data System (ADS)
Selig, Marco; Enßlin, Torsten A.
2015-02-01
The analysis of astronomical images is a non-trivial task. The D3PO algorithm addresses the inference problem of denoising, deconvolving, and decomposing photon observations. Its primary goal is the simultaneous but individual reconstruction of the diffuse and point-like photon flux given a single photon count image, where the fluxes are superimposed. In order to discriminate between these morphologically different signal components, a probabilistic algorithm is derived in the language of information field theory based on a hierarchical Bayesian parameter model. The signal inference exploits prior information on the spatial correlation structure of the diffuse component and the brightness distribution of the spatially uncorrelated point-like sources. A maximum a posteriori solution and a solution minimizing the Gibbs free energy of the inference problem using variational Bayesian methods are discussed. Since the derivation of the solution is not dependent on the underlying position space, the implementation of the D3PO algorithm uses the nifty package to ensure applicability to various spatial grids and at any resolution. The fidelity of the algorithm is validated by the analysis of simulated data, including a realistic high energy photon count image showing a 32 × 32 arcmin2 observation with a spatial resolution of 0.1 arcmin. In all tests the D3PO algorithm successfully denoised, deconvolved, and decomposed the data into a diffuse and a point-like signal estimate for the respective photon flux components. A copy of the code is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/574/A74
Awakening the BALROG: BAyesian Location Reconstruction Of GRBs
NASA Astrophysics Data System (ADS)
Burgess, J. Michael; Yu, Hoi-Fung; Greiner, Jochen; Mortlock, Daniel J.
2018-05-01
The accurate spatial location of gamma-ray bursts (GRBs) is crucial for both accurately characterizing their spectra and follow-up observations by other instruments. The Fermi Gamma-ray Burst Monitor (GBM) has the largest field of view for detecting GRBs as it views the entire unocculted sky, but as a non-imaging instrument it relies on the relative count rates observed in each of its 14 detectors to localize transients. Improving its ability to accurately locate GRBs and other transients is vital to the paradigm of multimessenger astronomy, including the electromagnetic follow-up of gravitational wave signals. Here we present the BAyesian Location Reconstruction Of GRBs (BALROG) method for localizing and characterizing GBM transients. Our approach eliminates the systematics of previous approaches by simultaneously fitting for the location and spectrum of a source. It also correctly incorporates the uncertainties in the location of a transient into the spectral parameters and produces reliable positional uncertainties for both well-localized sources and those for which the GBM data cannot effectively constrain the position. While computationally expensive, BALROG can be implemented to enable quick follow-up of all GBM transient signals. Also, we identify possible response problems that require attention and caution when using standard, public GBM detector response matrices. Finally, we examine the effects of including the uncertainty in location on the spectral parameters of GRB 080916C. We find that spectral parameters change and no extra components are required when these effects are included in contrast to when we use a fixed location. This finding has the potential to alter both the GRB spectral catalogues and the reported spectral composition of some well-known GRBs.
Huang, Alex S; Belghith, Akram; Dastiridou, Anna; Chopra, Vikas; Zangwill, Linda M; Weinreb, Robert N
2017-06-01
The purpose was to create a three-dimensional (3-D) model of circumferential aqueous humor outflow (AHO) in a living human eye with an automated detection algorithm for Schlemm’s canal (SC) and first-order collector channels (CC) applied to spectral-domain optical coherence tomography (SD-OCT). Anterior segment SD-OCT scans from a subject were acquired circumferentially around the limbus. A Bayesian Ridge method was used to approximate the location of the SC on infrared confocal laser scanning ophthalmoscopic images with a cross multiplication tool developed to initiate SC/CC detection automated through a fuzzy hidden Markov Chain approach. Automatic segmentation of SC and initial CC’s was manually confirmed by two masked graders. Outflow pathways detected by the segmentation algorithm were reconstructed into a 3-D representation of AHO. Overall, only <1% of images (5114 total B-scans) were ungradable. Automatic segmentation algorithm performed well with SC detection 98.3% of the time and <0.1% false positive detection compared to expert grader consensus. CC was detected 84.2% of the time with 1.4% false positive detection. 3-D representation of AHO pathways demonstrated variably thicker and thinner SC with some clear CC roots. Circumferential (360 deg), automated, and validated AHO detection of angle structures in the living human eye with reconstruction was possible.
NASA Astrophysics Data System (ADS)
Smerdon, Jason; Werner, Johannes; Fernandez-Donado, Laura; Buntgen, Ulf; Charpentier Ljungqvist, Fredrik; Esper, Jan; Fidel Gonzalez-Rouco, J.; Luterbacher, Juerg; McCarroll, Danny; Wagner, Sebastian; Wahl, Eugene; Wanner, Heinz; Zorita, Eduardo
2013-04-01
A new reconstruction of European summer (JJA) land temperatures is presented and compared to 37 forced transient simulations of the last millennium from coupled General Circulation Models (CGCMs). The reconstructions are derived from eleven annually resolved tree-ring and documentary records from ten European countries/regions, compiled as part of the Euro_Med working group contribution to the PAGES 2k Regional Network. Records were selected based upon their summer temperature signal, annual resolution, and time-continuous sampling. All tree-ring data were detrended using the Regional Curve Standardization (RCS) method to retain low-frequency variance in the resulting mean chronologies. A nested Composite-Plus-Scale (CPS) mean temperature reconstruction extending from 138 B.C.E. to 2003 C.E. was derived using nine nests reflecting the availability of predictors back in time. Each nest was calculated using a weighted composite based on the correlation of each proxy with the CRUTEM4v mean European JJA land temperature (35°-70°N, 10°W-40°E). The CPS methodology was implemented using a sliding calibration period, initially extending from 1850-1953 C.E. and incrementing by one year until reaching the final period of 1900-2003 C.E. Within each calibration step, the 50 years excluded from calibration were used for validation. Validation statistics across all reconstruction ensemble members within each nest indicate skillful reconstructions (RE: 0.42-0.64; CE: 0.26-0.54) and are all above the maximum validation statistics achieved in an ensemble of red noise benchmarking experiments. A gridded (5°x5°) European summer (JJA) temperature reconstruction back to 750 C.E. was derived using Bayesian inference together with a localized stochastic description of the underlying processes. Instrumental data are JJA means from the 5° European land grid cells in the CRUTEM4v dataset. Predictive experiments using the full proxy data were made, resulting in a multivariate distribution of temperature reconstructions from 750-2003 C.E. The mean of this distribution is the optimal estimate of the gridded JJA temperature anomalies and its width provides objective reconstruction uncertainties. The derived reconstruction is compared to withheld instrumental and proxy data to evaluate reconstruction skill on decadal-to-centennial time scales. A comparison between the mean Bayesian and CPS reconstructions indicates remarkable agreement, with a correlation during their period of overlap of 0.95. In both the Bayesian and CPS reconstructions, warm periods during the 1st, 2nd, and 7th-12th centuries compare to similar warm summer temperatures during the mid 20th century, although the 2003 summer remains the warmest single summer over the duration of the reconstructions. A relative period of cold summer temperatures is also noted from the 14th-19th centuries, consistent with the expected timing of the Little Ice Age. Comparisons between the reconstructions and the 37-member ensemble of millennium-length forced transient simulations from CGCMs, including eleven simulations from the collection of CMIP5/PMIP3 last-millennium experiments, indicate good regional agreement between reconstructions and models. Based on the separation of simulations into strong or weak scaling of total solar irradiance (TSI) forcing over the last millennium, there is some evidence that there is better agreement with the ensemble using strong TSI as forcing.
Bayesian reconstruction of gravitational wave bursts using chirplets
NASA Astrophysics Data System (ADS)
Millhouse, Margaret; Cornish, Neil; Littenberg, Tyson
2017-01-01
The BayesWave algorithm has been shown to accurately reconstruct unmodeled short duration gravitational wave bursts and to distinguish between astrophysical signals and transient noise events. BayesWave does this by using a variable number of sine-Gaussian (Morlet) wavelets to reconstruct data in multiple interferometers. While the Morlet wavelets can be summed together to produce any possible waveform, there could be other wavelet functions that improve the performance. Because we expect most astrophysical gravitational wave signals to evolve in frequency, modified Morlet wavelets with linear frequency evolution - called chirplets - may better reconstruct signals with fewer wavelets. We compare the performance of BayesWave using Morlet wavelets and chirplets on a variety of simulated signals.
A Bayesian nonparametric approach to dynamical noise reduction
NASA Astrophysics Data System (ADS)
Kaloudis, Konstantinos; Hatjispyros, Spyridon J.
2018-06-01
We propose a Bayesian nonparametric approach for the noise reduction of a given chaotic time series contaminated by dynamical noise, based on Markov Chain Monte Carlo methods. The underlying unknown noise process (possibly) exhibits heavy tailed behavior. We introduce the Dynamic Noise Reduction Replicator model with which we reconstruct the unknown dynamic equations and in parallel we replicate the dynamics under reduced noise level dynamical perturbations. The dynamic noise reduction procedure is demonstrated specifically in the case of polynomial maps. Simulations based on synthetic time series are presented.
Bayesian approach to inverse statistical mechanics.
Habeck, Michael
2014-05-01
Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.
Bayesian approach to inverse statistical mechanics
NASA Astrophysics Data System (ADS)
Habeck, Michael
2014-05-01
Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.
NASA Astrophysics Data System (ADS)
Nguyen, Thinh; Potter, Thomas; Grossman, Robert; Zhang, Yingchun
2018-06-01
Objective. Neuroimaging has been employed as a promising approach to advance our understanding of brain networks in both basic and clinical neuroscience. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) represent two neuroimaging modalities with complementary features; EEG has high temporal resolution and low spatial resolution while fMRI has high spatial resolution and low temporal resolution. Multimodal EEG inverse methods have attempted to capitalize on these properties but have been subjected to localization error. The dynamic brain transition network (DBTN) approach, a spatiotemporal fMRI constrained EEG source imaging method, has recently been developed to address these issues by solving the EEG inverse problem in a Bayesian framework, utilizing fMRI priors in a spatial and temporal variant manner. This paper presents a computer simulation study to provide a detailed characterization of the spatial and temporal accuracy of the DBTN method. Approach. Synthetic EEG data were generated in a series of computer simulations, designed to represent realistic and complex brain activity at superficial and deep sources with highly dynamical activity time-courses. The source reconstruction performance of the DBTN method was tested against the fMRI-constrained minimum norm estimates algorithm (fMRIMNE). The performances of the two inverse methods were evaluated both in terms of spatial and temporal accuracy. Main results. In comparison with the commonly used fMRIMNE method, results showed that the DBTN method produces results with increased spatial and temporal accuracy. The DBTN method also demonstrated the capability to reduce crosstalk in the reconstructed cortical time-course(s) induced by neighboring regions, mitigate depth bias and improve overall localization accuracy. Significance. The improved spatiotemporal accuracy of the reconstruction allows for an improved characterization of complex neural activity. This improvement can be extended to any subsequent brain connectivity analyses used to construct the associated dynamic brain networks.
Generalized Uncertainty Quantification for Linear Inverse Problems in X-ray Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, Michael James
2014-04-25
In industrial and engineering applications, X-ray radiography has attained wide use as a data collection protocol for the assessment of material properties in cases where direct observation is not possible. The direct measurement of nuclear materials, particularly when they are under explosive or implosive loading, is not feasible, and radiography can serve as a useful tool for obtaining indirect measurements. In such experiments, high energy X-rays are pulsed through a scene containing material of interest, and a detector records a radiograph by measuring the radiation that is not attenuated in the scene. One approach to the analysis of these radiographsmore » is to model the imaging system as an operator that acts upon the object being imaged to produce a radiograph. In this model, the goal is to solve an inverse problem to reconstruct the values of interest in the object, which are typically material properties such as density or areal density. The primary objective in this work is to provide quantitative solutions with uncertainty estimates for three separate applications in X-ray radiography: deconvolution, Abel inversion, and radiation spot shape reconstruction. For each problem, we introduce a new hierarchical Bayesian model for determining a posterior distribution on the unknowns and develop efficient Markov chain Monte Carlo (MCMC) methods for sampling from the posterior. A Poisson likelihood, based on a noise model for photon counts at the detector, is combined with a prior tailored to each application: an edge-localizing prior for deconvolution; a smoothing prior with non-negativity constraints for spot reconstruction; and a full covariance sampling prior based on a Wishart hyperprior for Abel inversion. After developing our methods in a general setting, we demonstrate each model on both synthetically generated datasets, including those from a well known radiation transport code, and real high energy radiographs taken at two U. S. Department of Energy laboratories.« less
A Markov model for blind image separation by a mean-field EM algorithm.
Tonazzini, Anna; Bedini, Luigi; Salerno, Emanuele
2006-02-01
This paper deals with blind separation of images from noisy linear mixtures with unknown coefficients, formulated as a Bayesian estimation problem. This is a flexible framework, where any kind of prior knowledge about the source images and the mixing matrix can be accounted for. In particular, we describe local correlation within the individual images through the use of Markov random field (MRF) image models. These are naturally suited to express the joint pdf of the sources in a factorized form, so that the statistical independence requirements of most independent component analysis approaches to blind source separation are retained. Our model also includes edge variables to preserve intensity discontinuities. MRF models have been proved to be very efficient in many visual reconstruction problems, such as blind image restoration, and allow separation and edge detection to be performed simultaneously. We propose an expectation-maximization algorithm with the mean field approximation to derive a procedure for estimating the mixing matrix, the sources, and their edge maps. We tested this procedure on both synthetic and real images, in the fully blind case (i.e., no prior information on mixing is exploited) and found that a source model accounting for local autocorrelation is able to increase robustness against noise, even space variant. Furthermore, when the model closely fits the source characteristics, independence is no longer a strict requirement, and cross-correlated sources can be separated, as well.
NASA Astrophysics Data System (ADS)
Croce, Pierpaolo; Zappasodi, Filippo; Merla, Arcangelo; Chiarelli, Antonio Maria
2017-08-01
Objective. Electrical and hemodynamic brain activity are linked through the neurovascular coupling process and they can be simultaneously measured through integration of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Thanks to the lack of electro-optical interference, the two procedures can be easily combined and, whereas EEG provides electrophysiological information, fNIRS can provide measurements of two hemodynamic variables, such as oxygenated and deoxygenated hemoglobin. A Bayesian sequential Monte Carlo approach (particle filter, PF) was applied to simulated recordings of electrical and neurovascular mediated hemodynamic activity, and the advantages of a unified framework were shown. Approach. Multiple neural activities and hemodynamic responses were simulated in the primary motor cortex of a subject brain. EEG and fNIRS recordings were obtained by means of forward models of volume conduction and light propagation through the head. A state space model of combined EEG and fNIRS data was built and its dynamic evolution was estimated through a Bayesian sequential Monte Carlo approach (PF). Main results. We showed the feasibility of the procedure and the improvements in both electrical and hemodynamic brain activity reconstruction when using the PF on combined EEG and fNIRS measurements. Significance. The investigated procedure allows one to combine the information provided by the two methodologies, and, by taking advantage of a physical model of the coupling between electrical and hemodynamic response, to obtain a better estimate of brain activity evolution. Despite the high computational demand, application of such an approach to in vivo recordings could fully exploit the advantages of this combined brain imaging technology.
Tomasello, Salvatore; Álvarez, Inés; Vargas, Pablo; Oberprieler, Christoph
2015-01-01
The present study provides results of multi-species coalescent species tree analyses of DNA sequences sampled from multiple nuclear and plastid regions to infer the phylogenetic relationships among the members of the subtribe Leucanthemopsidinae (Compositae, Anthemideae), to which besides the annual Castrilanthemum debeauxii (Degen, Hervier & É.Rev.) Vogt & Oberp., one of the rarest flowering plant species of the Iberian Peninsula, two other unispecific genera (Hymenostemma, Prolongoa), and the polyploidy complex of the genus Leucanthemopsis belong. Based on sequence information from two single- to low-copy nuclear regions (C16, D35, characterised by Chapman et al. (2007)), the multi-copy region of the nrDNA internal transcribed spacer regions ITS1 and ITS2, and two intergenic spacer regions of the cpDNA gene trees were reconstructed using Bayesian inference methods. For the reconstruction of a multi-locus species tree we applied three different methods: (a) analysis of concatenated sequences using Bayesian inference (MrBayes), (b) a tree reconciliation approach by minimizing the number of deep coalescences (PhyloNet), and (c) a coalescent-based species-tree method in a Bayesian framework ((∗)BEAST). All three species tree reconstruction methods unequivocally support the close relationship of the subtribe with the hitherto unclassified genus Phalacrocarpum, the sister-group relationship of Castrilanthemum with the three remaining genera of the subtribe, and the further sister-group relationship of the clade of Hymenostemma+Prolongoa with a monophyletic genus Leucanthemopsis. Dating of the (∗)BEAST phylogeny supports the long-lasting (Early Miocene, 15-22Ma) taxonomical independence and the switch from the plesiomorphic perennial to the apomorphic annual life-form assumed for the Castrilanthemum lineage that may have occurred not earlier than in the Pliocene (3Ma) when the establishment of a Mediterranean climate with summer droughts triggered evolution towards annuality. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kemppainen, R.; Vaara, T.; Joensuu, T.; Kiljunen, T.
2018-03-01
Background and Purpose. Magnetic resonance imaging (MRI) has in recent years emerged as an imaging modality to drive precise contouring of targets and organs at risk in external beam radiation therapy. Moreover, recent advances in MRI enable treatment of cancer without computed tomography (CT) simulation. A commercially available MR-only solution, MRCAT, offers a single-modality approach that provides density information for dose calculation and generation of positioning reference images. We evaluated the accuracy of patient positioning based on MRCAT digitally reconstructed radiographs (DRRs) by comparing to standard CT based workflow. Materials and Methods. Twenty consecutive prostate cancer patients being treated with external beam radiation therapy were included in the study. DRRs were generated for each patient based on the planning CT and MRCAT. The accuracy assessment was performed by manually registering the DRR images to planar kV setup images using bony landmarks. A Bayesian linear mixed effects model was used to separate systematic and random components (inter- and intra-observer variation) in the assessment. In addition, method agreement was assessed using a Bland-Altman analysis. Results. The systematic difference between MRCAT and CT based patient positioning, averaged over the study population, were found to be (mean [95% CI]) -0.49 [-0.85 to -0.13] mm, 0.11 [-0.33 to +0.57] mm and -0.05 [-0.23 to +0.36] mm in vertical, longitudinal and lateral directions, respectively. The increases in total random uncertainty were estimated to be below 0.5 mm for all directions, when using MR-only workflow instead of CT. Conclusions. The MRCAT pseudo-CT method provides clinically acceptable accuracy and precision for patient positioning for pelvic radiation therapy based on planar DRR images. Furthermore, due to the reduction of geometric uncertainty, compared to dual-modality workflow, the approach is likely to improve the total geometric accuracy of pelvic radiation therapy.
Bayesian analysis of X-ray jet features of the high redshift quasar jets observed with Chandra
NASA Astrophysics Data System (ADS)
McKeough, Kathryn; Siemiginowska, Aneta; Kashyap, Vinay; Stein, Nathan; Cheung, Chi C.
2015-01-01
X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet's relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. Results from Chandra X-ray and multi-frequency VLA imaging observations of a sample of 11 high- redshift (z > 2) quasars with kilo-parsec scale radio jets are reported. The sample consists of a set of four z ≥ 3.6 flat-spectrum radio quasars, and seven intermediate redshift (z = 2.1 - 2.9) quasars comprised of four sources with integrated steep radio spectra and three with flat radio spectra.We implement a Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) , to analyze jet features in the X-ray images of the high redshift quasars. Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. Significant detections are based on the upper bound p-value test based on LIRA simulations. The X-ray and radio properties of this sample combined are examined and compared to lower-redshift samples.This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. Work is also supported by the Chandra grant GO4-15099X.
Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM.
López, J D; Litvak, V; Espinosa, J J; Friston, K; Barnes, G R
2014-01-01
The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy-an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. © 2013. Published by Elsevier Inc. All rights reserved.
An empirical Bayes approach to network recovery using external knowledge.
Kpogbezan, Gino B; van der Vaart, Aad W; van Wieringen, Wessel N; Leday, Gwenaël G R; van de Wiel, Mark A
2017-09-01
Reconstruction of a high-dimensional network may benefit substantially from the inclusion of prior knowledge on the network topology. In the case of gene interaction networks such knowledge may come for instance from pathway repositories like KEGG, or be inferred from data of a pilot study. The Bayesian framework provides a natural means of including such prior knowledge. Based on a Bayesian Simultaneous Equation Model, we develop an appealing Empirical Bayes (EB) procedure that automatically assesses the agreement of the used prior knowledge with the data at hand. We use variational Bayes method for posterior densities approximation and compare its accuracy with that of Gibbs sampling strategy. Our method is computationally fast, and can outperform known competitors. In a simulation study, we show that accurate prior data can greatly improve the reconstruction of the network, but need not harm the reconstruction if wrong. We demonstrate the benefits of the method in an analysis of gene expression data from GEO. In particular, the edges of the recovered network have superior reproducibility (compared to that of competitors) over resampled versions of the data. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sparse Bayesian Learning for Identifying Imaging Biomarkers in AD Prediction
Shen, Li; Qi, Yuan; Kim, Sungeun; Nho, Kwangsik; Wan, Jing; Risacher, Shannon L.; Saykin, Andrew J.
2010-01-01
We apply sparse Bayesian learning methods, automatic relevance determination (ARD) and predictive ARD (PARD), to Alzheimer’s disease (AD) classification to make accurate prediction and identify critical imaging markers relevant to AD at the same time. ARD is one of the most successful Bayesian feature selection methods. PARD is a powerful Bayesian feature selection method, and provides sparse models that is easy to interpret. PARD selects the model with the best estimate of the predictive performance instead of choosing the one with the largest marginal model likelihood. Comparative study with support vector machine (SVM) shows that ARD/PARD in general outperform SVM in terms of prediction accuracy. Additional comparison with surface-based general linear model (GLM) analysis shows that regions with strongest signals are identified by both GLM and ARD/PARD. While GLM P-map returns significant regions all over the cortex, ARD/PARD provide a small number of relevant and meaningful imaging markers with predictive power, including both cortical and subcortical measures. PMID:20879451
HIV Migration Between Blood and Cerebrospinal Fluid or Semen Over Time
Chaillon, Antoine; Gianella, Sara; Wertheim, Joel O.; Richman, Douglas D.; Mehta, Sanjay R.; Smith, David M.
2014-01-01
Previous studies reported associations between neuropathogenesis and human immunodeficiency virus (HIV) compartmentalization in cerebrospinal fluid (CSF) and between sexual transmission and human immunodeficiency virus type 1 (HIV) compartmentalization in semen. It remains unclear, however, how compartmentalization dynamics change over time. To address this, we used statistical methods and Bayesian phylogenetic approaches to reconstruct temporal dynamics of HIV migration between blood and CSF and between blood and the male genital tract. We investigated 11 HIV-infected individuals with paired semen and blood samples and 4 individuals with paired CSF and blood samples. Aligned partial HIV env sequences were analyzed by (1) phylogenetic reconstruction, using a Bayesian Markov-chain Monte Carlo approach; (2) evaluation of viral compartmentalization, using tree-based and distance-based methods; and (3) analysis of migration events, using a discrete Bayesian asymmetric phylogeographic approach of diffusion with Markov jump counts estimation. Finally, we evaluated potential correlates of viral gene flow across anatomical compartments. We observed bidirectional replenishment of viral compartments and asynchronous peaks of viral migration from and to blood over time, suggesting that disruption of viral compartment is transient and directionally selected. These findings imply that viral subpopulations in anatomical sites are an active part of the whole viral population and that compartmental reservoirs could have implications in future eradication studies. PMID:24302756
Pisharady, Pramod Kumar; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe
2017-09-01
We propose a sparse Bayesian learning algorithm for improved estimation of white matter fiber parameters from compressed (under-sampled q-space) multi-shell diffusion MRI data. The multi-shell data is represented in a dictionary form using a non-monoexponential decay model of diffusion, based on continuous gamma distribution of diffusivities. The fiber volume fractions with predefined orientations, which are the unknown parameters, form the dictionary weights. These unknown parameters are estimated with a linear un-mixing framework, using a sparse Bayesian learning algorithm. A localized learning of hyperparameters at each voxel and for each possible fiber orientations improves the parameter estimation. Our experiments using synthetic data from the ISBI 2012 HARDI reconstruction challenge and in-vivo data from the Human Connectome Project demonstrate the improvements.
NASA Astrophysics Data System (ADS)
Yi, Faliu; Moon, Inkyu; Lee, Yeon H.
2015-01-01
Counting morphologically normal cells in human red blood cells (RBCs) is extremely beneficial in the health care field. We propose a three-dimensional (3-D) classification method of automatically determining the morphologically normal RBCs in the phase image of multiple human RBCs that are obtained by off-axis digital holographic microscopy (DHM). The RBC holograms are first recorded by DHM, and then the phase images of multiple RBCs are reconstructed by a computational numerical algorithm. To design the classifier, the three typical RBC shapes, which are stomatocyte, discocyte, and echinocyte, are used for training and testing. Nonmain or abnormal RBC shapes different from the three normal shapes are defined as the fourth category. Ten features, including projected surface area, average phase value, mean corpuscular hemoglobin, perimeter, mean corpuscular hemoglobin surface density, circularity, mean phase of center part, sphericity coefficient, elongation, and pallor, are extracted from each RBC after segmenting the reconstructed phase images by using a watershed transform algorithm. Moreover, four additional properties, such as projected surface area, perimeter, average phase value, and elongation, are measured from the inner part of each cell, which can give significant information beyond the previous 10 features for the separation of the RBC groups; these are verified in the experiment by the statistical method of Hotelling's T-square test. We also apply the principal component analysis algorithm to reduce the dimension number of variables and establish the Gaussian mixture densities using the projected data with the first eight principal components. Consequently, the Gaussian mixtures are used to design the discriminant functions based on Bayesian decision theory. To improve the performance of the Bayes classifier and the accuracy of estimation of its error rate, the leaving-one-out technique is applied. Experimental results show that the proposed method can yield good results for calculating the percentage of each typical normal RBC shape in a reconstructed phase image of multiple RBCs that will be favorable to the analysis of RBC-related diseases. In addition, we show that the discrimination performance for the counting of normal shapes of RBCs can be improved by using 3-D features of an RBC.
NASA Astrophysics Data System (ADS)
Dawson, A.; Trachsel, M.; Goring, S. J.; Paciorek, C. J.; McLachlan, J. S.; Jackson, S. T.; Williams, J. W.
2017-12-01
Pollen records have been extensively used to reconstruct past changes in vegetation and study the underlying processes. However, developing the statistical techniques needed to accurately represent both data and process uncertainties is a formidable challenge. Recent advances in paleoecoinformatics (e.g. the Neotoma Paleoecology Database and the European Pollen Database), Bayesian age-depth models, and process-based pollen-vegetation models, and Bayesian hierarchical modeling have pushed paleovegetation reconstructions forward to a point where multiple sources of uncertainty can be incorporated into reconstructions, which in turn enables new hypotheses to be asked and more rigorous integration of paleovegetation data with earth system models and terrestrial ecosystem models. Several kinds of pollen-vegetation models have been developed, notably LOVE/REVEALS, STEPPS, and classical transfer functions such as the modern analog technique. LOVE/REVEALS has been adopted as the standard method for the LandCover6k effort to develop quantitative reconstructions of land cover for the Holocene, while STEPPS has been developed recently as part of the PalEON project and applied to reconstruct with uncertainty shifts in forest composition in New England and the upper Midwest during the late Holocene. Each PVM has different assumptions and structure and uses different input data, but few comparisons among approaches yet exist. Here, we present new reconstructions of land cover change in northern North America during the Holocene based on LOVE/REVEALS and data drawn from the Neotoma database and compare STEPPS-based reconstructions to those from LOVE/REVEALS. These parallel developments with LOVE/REVEALS provide an opportunity to compare and contrast models, and to begin to generate continental scale reconstructions, with explicit uncertainties, that can provide a base for interdisciplinary research within the biogeosciences. We show how STEPPS provides an important benchmark for past land-cover reconstruction, and how the LandCover 6k effort in North America advances our understanding of the past by allowing cross-continent comparisons using standardized methods and quantifying the impact of humans in the early Anthropocene.
A Taxonomic Reduced-Space Pollen Model for Paleoclimate Reconstruction
NASA Astrophysics Data System (ADS)
Wahl, E. R.; Schoelzel, C.
2010-12-01
Paleoenvironmental reconstruction from fossil pollen often attempts to take advantage of the rich taxonomic diversity in such data. Here, a taxonomically "reduced-space" reconstruction model is explored that would be parsimonious in introducing parameters needing to be estimated within a Bayesian Hierarchical Modeling context. This work involves a refinement of the traditional pollen ratio method. This method is useful when one (or a few) dominant pollen type(s) in a region have a strong positive correlation with a climate variable of interest and another (or a few) dominant pollen type(s) have a strong negative correlation. When, e.g., counts of pollen taxa a and b (r >0) are combined with pollen types c and d (r <0) to form ratios of the form (a + b) / (a + b + c + d), an appropriate estimation form is the binomial logistic generalized linear model (GLM). The GLM can readily model this relationship in the forward form, pollen = g(climate), which is more physically realistic than inverse models often used in paleoclimate reconstruction [climate = f(pollen)]. The specification of the model is: rnum Bin(n,p), where E(r|T) = p = exp(η)/[1+exp(η)], and η = α + β(T); r is the pollen ratio formed as above, rnum is the ratio numerator, n is the ratio denominator (i.e., the sum of pollen counts), the denominator-specific count is (n - rnum), and T is the temperature at each site corresponding to a specific value of r. Ecological and empirical screening identified the model (Spruce+Birch) / (Spruce+Birch+Oak+Hickory) for use in temperate eastern N. America. α and β were estimated using both "traditional" and Bayesian GLM algorithms (in R). Although it includes only four pollen types, the ratio model yields more explained variation ( 80%) in the pollen-temperature relationship of the study region than a 64-taxon modern analog technique (MAT). Thus, the new pollen ratio method represents an information-rich, reduced space data model that can be efficiently employed in a BHM framework. The ratio model can directly reconstruct past temperature by solving the GLM equations for T as a function of α, β, and E(r|T): T = {ln[E(r|T)/{1-E(r|T)}]-α}/β. To enable use in paleoreconstruction, the observed r values from fossil pollen data are, by assumption, treated as unbiased estimators of the true r value at each time sampled, which can be substituted for E(r|T). Uncertainty in this reconstruction is systematically evaluated in two parts: 1) the observed r values and their corresponding n values are input as parameters into the binomial distribution, Monte Carlo random pollen count draws are made, and a new ratio value is determined for each iteration; and 2) in the "traditional" GLM the estimated SEs for α and β are used with the α and β EV estimates to yield Monte Carlo random draws for each binomial draw (assuming α and β are Gaussian), in the Bayesian GLM random draws for α and β are taken directly from their estimated posterior distribution. Both methods yield nearly identical reconstructions from varved lakes in Wisconsin where the model has been tested; slightly narrower uncertainty ranges are produced by the Bayesian model. The Little Ice Age is readily identified. Pine:Oak and Fir:Oak versions of the model used in S. California show differences from MAT-based reconstructions.
Iglesias, Juan Eugenio; Sabuncu, Mert Rory; Van Leemput, Koen
2013-10-01
Many segmentation algorithms in medical image analysis use Bayesian modeling to augment local image appearance with prior anatomical knowledge. Such methods often contain a large number of free parameters that are first estimated and then kept fixed during the actual segmentation process. However, a faithful Bayesian analysis would marginalize over such parameters, accounting for their uncertainty by considering all possible values they may take. Here we propose to incorporate this uncertainty into Bayesian segmentation methods in order to improve the inference process. In particular, we approximate the required marginalization over model parameters using computationally efficient Markov chain Monte Carlo techniques. We illustrate the proposed approach using a recently developed Bayesian method for the segmentation of hippocampal subfields in brain MRI scans, showing a significant improvement in an Alzheimer's disease classification task. As an additional benefit, the technique also allows one to compute informative "error bars" on the volume estimates of individual structures. Copyright © 2013 Elsevier B.V. All rights reserved.
Iglesias, Juan Eugenio; Sabuncu, Mert Rory; Leemput, Koen Van
2013-01-01
Many segmentation algorithms in medical image analysis use Bayesian modeling to augment local image appearance with prior anatomical knowledge. Such methods often contain a large number of free parameters that are first estimated and then kept fixed during the actual segmentation process. However, a faithful Bayesian analysis would marginalize over such parameters, accounting for their uncertainty by considering all possible values they may take. Here we propose to incorporate this uncertainty into Bayesian segmentation methods in order to improve the inference process. In particular, we approximate the required marginalization over model parameters using computationally efficient Markov chain Monte Carlo techniques. We illustrate the proposed approach using a recently developed Bayesian method for the segmentation of hippocampal subfields in brain MRI scans, showing a significant improvement in an Alzheimer’s disease classification task. As an additional benefit, the technique also allows one to compute informative “error bars” on the volume estimates of individual structures. PMID:23773521
NASA Astrophysics Data System (ADS)
Yu, Xin; Wen, Zongyong; Zhu, Zhaorong; Xia, Qiang; Shun, Lan
2016-06-01
Image classification will still be a long way in the future, although it has gone almost half a century. In fact, researchers have gained many fruits in the image classification domain, but there is still a long distance between theory and practice. However, some new methods in the artificial intelligence domain will be absorbed into the image classification domain and draw on the strength of each to offset the weakness of the other, which will open up a new prospect. Usually, networks play the role of a high-level language, as is seen in Artificial Intelligence and statistics, because networks are used to build complex model from simple components. These years, Bayesian Networks, one of probabilistic networks, are a powerful data mining technique for handling uncertainty in complex domains. In this paper, we apply Tree Augmented Naive Bayesian Networks (TAN) to texture classification of High-resolution remote sensing images and put up a new method to construct the network topology structure in terms of training accuracy based on the training samples. Since 2013, China government has started the first national geographical information census project, which mainly interprets geographical information based on high-resolution remote sensing images. Therefore, this paper tries to apply Bayesian network to remote sensing image classification, in order to improve image interpretation in the first national geographical information census project. In the experiment, we choose some remote sensing images in Beijing. Experimental results demonstrate TAN outperform than Naive Bayesian Classifier (NBC) and Maximum Likelihood Classification Method (MLC) in the overall classification accuracy. In addition, the proposed method can reduce the workload of field workers and improve the work efficiency. Although it is time consuming, it will be an attractive and effective method for assisting office operation of image interpretation.
Roksandic, Mirjana; Nikitović, Dejana; Rodríguez Suárez, Roberto; Smith, David; Kanik, Nadine; García Jordá, Dailys; Buhay, William M.
2017-01-01
The general lack of well-preserved juvenile skeletal remains from Caribbean archaeological sites has, in the past, prevented evaluations of juvenile dietary changes. Canímar Abajo (Cuba), with a large number of well-preserved juvenile and adult skeletal remains, provided a unique opportunity to fully assess juvenile paleodiets from an ancient Caribbean population. Ages for the start and the end of weaning and possible food sources used for weaning were inferred by combining the results of two Bayesian probability models that help to reduce some of the uncertainties inherent to bone collagen isotope based paleodiet reconstructions. Bone collagen (31 juveniles, 18 adult females) was used for carbon and nitrogen isotope analyses. The isotope results were assessed using two Bayesian probability models: Weaning Ages Reconstruction with Nitrogen isotopes and Stable Isotope Analyses in R. Breast milk seems to have been the most important protein source until two years of age with some supplementary food such as tropical fruits and root cultigens likely introduced earlier. After two, juvenile diets were likely continuously supplemented by starch rich foods such as root cultigens and legumes. By the age of three, the model results suggest that the weaning process was completed. Additional indications suggest that animal marine/riverine protein and maize, while part of the Canímar Abajo female diets, were likely not used to supplement juvenile diets. The combined use of both models here provided a more complete assessment of the weaning process for an ancient Caribbean population, indicating not only the start and end ages of weaning but also the relative importance of different food sources for different age juveniles. PMID:28459816
Chinique de Armas, Yadira; Roksandic, Mirjana; Nikitović, Dejana; Rodríguez Suárez, Roberto; Smith, David; Kanik, Nadine; García Jordá, Dailys; Buhay, William M
2017-01-01
The general lack of well-preserved juvenile skeletal remains from Caribbean archaeological sites has, in the past, prevented evaluations of juvenile dietary changes. Canímar Abajo (Cuba), with a large number of well-preserved juvenile and adult skeletal remains, provided a unique opportunity to fully assess juvenile paleodiets from an ancient Caribbean population. Ages for the start and the end of weaning and possible food sources used for weaning were inferred by combining the results of two Bayesian probability models that help to reduce some of the uncertainties inherent to bone collagen isotope based paleodiet reconstructions. Bone collagen (31 juveniles, 18 adult females) was used for carbon and nitrogen isotope analyses. The isotope results were assessed using two Bayesian probability models: Weaning Ages Reconstruction with Nitrogen isotopes and Stable Isotope Analyses in R. Breast milk seems to have been the most important protein source until two years of age with some supplementary food such as tropical fruits and root cultigens likely introduced earlier. After two, juvenile diets were likely continuously supplemented by starch rich foods such as root cultigens and legumes. By the age of three, the model results suggest that the weaning process was completed. Additional indications suggest that animal marine/riverine protein and maize, while part of the Canímar Abajo female diets, were likely not used to supplement juvenile diets. The combined use of both models here provided a more complete assessment of the weaning process for an ancient Caribbean population, indicating not only the start and end ages of weaning but also the relative importance of different food sources for different age juveniles.
Bayesian Image Segmentations by Potts Prior and Loopy Belief Propagation
NASA Astrophysics Data System (ADS)
Tanaka, Kazuyuki; Kataoka, Shun; Yasuda, Muneki; Waizumi, Yuji; Hsu, Chiou-Ting
2014-12-01
This paper presents a Bayesian image segmentation model based on Potts prior and loopy belief propagation. The proposed Bayesian model involves several terms, including the pairwise interactions of Potts models, and the average vectors and covariant matrices of Gauss distributions in color image modeling. These terms are often referred to as hyperparameters in statistical machine learning theory. In order to determine these hyperparameters, we propose a new scheme for hyperparameter estimation based on conditional maximization of entropy in the Potts prior. The algorithm is given based on loopy belief propagation. In addition, we compare our conditional maximum entropy framework with the conventional maximum likelihood framework, and also clarify how the first order phase transitions in loopy belief propagations for Potts models influence our hyperparameter estimation procedures.
Markov chain Monte Carlo estimation of quantum states
NASA Astrophysics Data System (ADS)
Diguglielmo, James; Messenger, Chris; Fiurášek, Jaromír; Hage, Boris; Samblowski, Aiko; Schmidt, Tabea; Schnabel, Roman
2009-03-01
We apply a Bayesian data analysis scheme known as the Markov chain Monte Carlo to the tomographic reconstruction of quantum states. This method yields a vector, known as the Markov chain, which contains the full statistical information concerning all reconstruction parameters including their statistical correlations with no a priori assumptions as to the form of the distribution from which it has been obtained. From this vector we can derive, e.g., the marginal distributions and uncertainties of all model parameters, and also of other quantities such as the purity of the reconstructed state. We demonstrate the utility of this scheme by reconstructing the Wigner function of phase-diffused squeezed states. These states possess non-Gaussian statistics and therefore represent a nontrivial case of tomographic reconstruction. We compare our results to those obtained through pure maximum-likelihood and Fisher information approaches.
Robust reconstruction of time-resolved diffraction from ultrafast streak cameras
Badali, Daniel S.; Dwayne Miller, R. J.
2017-01-01
In conjunction with ultrafast diffraction, streak cameras offer an unprecedented opportunity for recording an entire molecular movie with a single probe pulse. This is an attractive alternative to conventional pump-probe experiments and opens the door to studying irreversible dynamics. However, due to the “smearing” of the diffraction pattern across the detector, the streaking technique has thus far been limited to simple mono-crystalline samples and extreme care has been taken to avoid overlapping diffraction spots. In this article, this limitation is addressed by developing a general theory of streaking of time-dependent diffraction patterns. Understanding the underlying physics of this process leads to the development of an algorithm based on Bayesian analysis to reconstruct the time evolution of the two-dimensional diffraction pattern from a single streaked image. It is demonstrated that this approach works on diffraction peaks that overlap when streaked, which not only removes the necessity of carefully choosing the streaking direction but also extends the streaking technique to be able to study polycrystalline samples and materials with complex crystalline structures. Furthermore, it is shown that the conventional analysis of streaked diffraction can lead to erroneous interpretations of the data. PMID:28653022
Lai, Zongying; Zhang, Xinlin; Guo, Di; Du, Xiaofeng; Yang, Yonggui; Guo, Gang; Chen, Zhong; Qu, Xiaobo
2018-05-03
Multi-contrast images in magnetic resonance imaging (MRI) provide abundant contrast information reflecting the characteristics of the internal tissues of human bodies, and thus have been widely utilized in clinical diagnosis. However, long acquisition time limits the application of multi-contrast MRI. One efficient way to accelerate data acquisition is to under-sample the k-space data and then reconstruct images with sparsity constraint. However, images are compromised at high acceleration factor if images are reconstructed individually. We aim to improve the images with a jointly sparse reconstruction and Graph-based redundant wavelet transform (GBRWT). First, a sparsifying transform, GBRWT, is trained to reflect the similarity of tissue structures in multi-contrast images. Second, joint multi-contrast image reconstruction is formulated as a ℓ 2, 1 norm optimization problem under GBRWT representations. Third, the optimization problem is numerically solved using a derived alternating direction method. Experimental results in synthetic and in vivo MRI data demonstrate that the proposed joint reconstruction method can achieve lower reconstruction errors and better preserve image structures than the compared joint reconstruction methods. Besides, the proposed method outperforms single image reconstruction with joint sparsity constraint of multi-contrast images. The proposed method explores the joint sparsity of multi-contrast MRI images under graph-based redundant wavelet transform and realizes joint sparse reconstruction of multi-contrast images. Experiment demonstrate that the proposed method outperforms the compared joint reconstruction methods as well as individual reconstructions. With this high quality image reconstruction method, it is possible to achieve the high acceleration factors by exploring the complementary information provided by multi-contrast MRI.
CT image reconstruction with half precision floating-point values.
Maaß, Clemens; Baer, Matthias; Kachelrieß, Marc
2011-07-01
Analytic CT image reconstruction is a computationally demanding task. Currently, the even more demanding iterative reconstruction algorithms find their way into clinical routine because their image quality is superior to analytic image reconstruction. The authors thoroughly analyze a so far unconsidered but valuable tool of tomorrow's reconstruction hardware (CPU and GPU) that allows implementing the forward projection and backprojection steps, which are the computationally most demanding parts of any reconstruction algorithm, much more efficiently. Instead of the standard 32 bit floating-point values (float), a recently standardized floating-point value with 16 bit (half) is adopted for data representation in image domain and in rawdata domain. The reduction in the total data amount reduces the traffic on the memory bus, which is the bottleneck of today's high-performance algorithms, by 50%. In CT simulations and CT measurements, float reconstructions (gold standard) and half reconstructions are visually compared via difference images and by quantitative image quality evaluation. This is done for analytical reconstruction (filtered backprojection) and iterative reconstruction (ordered subset SART). The magnitude of quantization noise, which is caused by a reduction in the data precision of both rawdata and image data during image reconstruction, is negligible. This is clearly shown for filtered backprojection and iterative ordered subset SART reconstruction. In filtered backprojection, the implementation of the backprojection should be optimized for low data precision if the image data are represented in half format. In ordered subset SART image reconstruction, no adaptations are necessary and the convergence speed remains unchanged. Half precision floating-point values allow to speed up CT image reconstruction without compromising image quality.
NASA Astrophysics Data System (ADS)
Chen, Yihang; Xiao, Chijie; Yang, Xiaoyi; Wang, Tianbo; Xu, Tianchao; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang
2017-10-01
The Laser-driven Ion beam trace probe (LITP) is a new diagnostic method for measuring poloidal magnetic field (Bp) and radial electric field (Er) in tokamaks. LITP injects a laser-driven ion beam into the tokamak, and Bp and Er profiles can be reconstructed using tomography methods. A reconstruction code has been developed to validate the LITP theory, and both 2D reconstruction of Bp and simultaneous reconstruction of Bp and Er have been attained. To reconstruct from experimental data with noise, Maximum Entropy and Gaussian-Bayesian tomography methods were applied and improved according to the characteristics of the LITP problem. With these improved methods, a reconstruction error level below 15% has been attained with a data noise level of 10%. These methods will be further tested and applied in the following LITP experiments. Supported by the ITER-CHINA program 2015GB120001, CHINA MOST under 2012YQ030142 and National Natural Science Foundation Abstract of China under 11575014 and 11375053.
Shuman, William P; Chan, Keith T; Busey, Janet M; Mitsumori, Lee M; Choi, Eunice; Koprowicz, Kent M; Kanal, Kalpana M
2014-12-01
To investigate whether reduced radiation dose liver computed tomography (CT) images reconstructed with model-based iterative reconstruction ( MBIR model-based iterative reconstruction ) might compromise depiction of clinically relevant findings or might have decreased image quality when compared with clinical standard radiation dose CT images reconstructed with adaptive statistical iterative reconstruction ( ASIR adaptive statistical iterative reconstruction ). With institutional review board approval, informed consent, and HIPAA compliance, 50 patients (39 men, 11 women) were prospectively included who underwent liver CT. After a portal venous pass with ASIR adaptive statistical iterative reconstruction images, a 60% reduced radiation dose pass was added with MBIR model-based iterative reconstruction images. One reviewer scored ASIR adaptive statistical iterative reconstruction image quality and marked findings. Two additional independent reviewers noted whether marked findings were present on MBIR model-based iterative reconstruction images and assigned scores for relative conspicuity, spatial resolution, image noise, and image quality. Liver and aorta Hounsfield units and image noise were measured. Volume CT dose index and size-specific dose estimate ( SSDE size-specific dose estimate ) were recorded. Qualitative reviewer scores were summarized. Formal statistical inference for signal-to-noise ratio ( SNR signal-to-noise ratio ), contrast-to-noise ratio ( CNR contrast-to-noise ratio ), volume CT dose index, and SSDE size-specific dose estimate was made (paired t tests), with Bonferroni adjustment. Two independent reviewers identified all 136 ASIR adaptive statistical iterative reconstruction image findings (n = 272) on MBIR model-based iterative reconstruction images, scoring them as equal or better for conspicuity, spatial resolution, and image noise in 94.1% (256 of 272), 96.7% (263 of 272), and 99.3% (270 of 272), respectively. In 50 image sets, two reviewers (n = 100) scored overall image quality as sufficient or good with MBIR model-based iterative reconstruction in 99% (99 of 100). Liver SNR signal-to-noise ratio was significantly greater for MBIR model-based iterative reconstruction (10.8 ± 2.5 [standard deviation] vs 7.7 ± 1.4, P < .001); there was no difference for CNR contrast-to-noise ratio (2.5 ± 1.4 vs 2.4 ± 1.4, P = .45). For ASIR adaptive statistical iterative reconstruction and MBIR model-based iterative reconstruction , respectively, volume CT dose index was 15.2 mGy ± 7.6 versus 6.2 mGy ± 3.6; SSDE size-specific dose estimate was 16.4 mGy ± 6.6 versus 6.7 mGy ± 3.1 (P < .001). Liver CT images reconstructed with MBIR model-based iterative reconstruction may allow up to 59% radiation dose reduction compared with the dose with ASIR adaptive statistical iterative reconstruction , without compromising depiction of findings or image quality. © RSNA, 2014.
NASA Astrophysics Data System (ADS)
Chen, Po-Hao; Botzolakis, Emmanuel; Mohan, Suyash; Bryan, R. N.; Cook, Tessa
2016-03-01
In radiology, diagnostic errors occur either through the failure of detection or incorrect interpretation. Errors are estimated to occur in 30-35% of all exams and contribute to 40-54% of medical malpractice litigations. In this work, we focus on reducing incorrect interpretation of known imaging features. Existing literature categorizes cognitive bias leading a radiologist to an incorrect diagnosis despite having correctly recognized the abnormal imaging features: anchoring bias, framing effect, availability bias, and premature closure. Computational methods make a unique contribution, as they do not exhibit the same cognitive biases as a human. Bayesian networks formalize the diagnostic process. They modify pre-test diagnostic probabilities using clinical and imaging features, arriving at a post-test probability for each possible diagnosis. To translate Bayesian networks to clinical practice, we implemented an entirely web-based open-source software tool. In this tool, the radiologist first selects a network of choice (e.g. basal ganglia). Then, large, clearly labeled buttons displaying salient imaging features are displayed on the screen serving both as a checklist and for input. As the radiologist inputs the value of an extracted imaging feature, the conditional probabilities of each possible diagnosis are updated. The software presents its level of diagnostic discrimination using a Pareto distribution chart, updated with each additional imaging feature. Active collaboration with the clinical radiologist is a feasible approach to software design and leads to design decisions closely coupling the complex mathematics of conditional probability in Bayesian networks with practice.
Multiple sparse volumetric priors for distributed EEG source reconstruction.
Strobbe, Gregor; van Mierlo, Pieter; De Vos, Maarten; Mijović, Bogdan; Hallez, Hans; Van Huffel, Sabine; López, José David; Vandenberghe, Stefaan
2014-10-15
We revisit the multiple sparse priors (MSP) algorithm implemented in the statistical parametric mapping software (SPM) for distributed EEG source reconstruction (Friston et al., 2008). In the present implementation, multiple cortical patches are introduced as source priors based on a dipole source space restricted to a cortical surface mesh. In this note, we present a technique to construct volumetric cortical regions to introduce as source priors by restricting the dipole source space to a segmented gray matter layer and using a region growing approach. This extension allows to reconstruct brain structures besides the cortical surface and facilitates the use of more realistic volumetric head models including more layers, such as cerebrospinal fluid (CSF), compared to the standard 3-layered scalp-skull-brain head models. We illustrated the technique with ERP data and anatomical MR images in 12 subjects. Based on the segmented gray matter for each of the subjects, cortical regions were created and introduced as source priors for MSP-inversion assuming two types of head models. The standard 3-layered scalp-skull-brain head models and extended 4-layered head models including CSF. We compared these models with the current implementation by assessing the free energy corresponding with each of the reconstructions using Bayesian model selection for group studies. Strong evidence was found in favor of the volumetric MSP approach compared to the MSP approach based on cortical patches for both types of head models. Overall, the strongest evidence was found in favor of the volumetric MSP reconstructions based on the extended head models including CSF. These results were verified by comparing the reconstructed activity. The use of volumetric cortical regions as source priors is a useful complement to the present implementation as it allows to introduce more complex head models and volumetric source priors in future studies. Copyright © 2014 Elsevier Inc. All rights reserved.
Assessment of CT image quality using a Bayesian approach
NASA Astrophysics Data System (ADS)
Reginatto, M.; Anton, M.; Elster, C.
2017-08-01
One of the most promising approaches for evaluating CT image quality is task-specific quality assessment. This involves a simplified version of a clinical task, e.g. deciding whether an image belongs to the class of images that contain the signature of a lesion or not. Task-specific quality assessment can be done by model observers, which are mathematical procedures that carry out the classification task. The most widely used figure of merit for CT image quality is the area under the ROC curve (AUC), a quantity which characterizes the performance of a given model observer. In order to estimate AUC from a finite sample of images, different approaches from classical statistics have been suggested. The goal of this paper is to introduce task-specific quality assessment of CT images to metrology and to propose a novel Bayesian estimation of AUC for the channelized Hotelling observer (CHO) applied to the task of detecting a lesion at a known image location. It is assumed that signal-present and signal-absent images follow multivariate normal distributions with the same covariance matrix. The Bayesian approach results in a posterior distribution for the AUC of the CHO which provides in addition a complete characterization of the uncertainty of this figure of merit. The approach is illustrated by its application to both simulated and experimental data.
USDA-ARS?s Scientific Manuscript database
Technical Abstract. Molecular markers can provide clear insight into the introduction history of invasive species. However, inferences about recent introduction histories remain challenging, because of the stochastic demographic processes often involved. Approximate Bayesian computation (ABC) can he...
Dolz, Roser; Valle, Rosa; Perera, Carmen L.; Bertran, Kateri; Frías, Maria T.; Majó, Natàlia; Ganges, Llilianne; Pérez, Lester J.
2013-01-01
Background Infectious bursal disease is a highly contagious and acute viral disease caused by the infectious bursal disease virus (IBDV); it affects all major poultry producing areas of the world. The current study was designed to rigorously measure the global phylogeographic dynamics of IBDV strains to gain insight into viral population expansion as well as the emergence, spread and pattern of the geographical structure of very virulent IBDV (vvIBDV) strains. Methodology/Principal Findings Sequences of the hyper-variable region of the VP2 (HVR-VP2) gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank database; Cuban sequences were obtained in the current work. All sequences were analysed by Bayesian phylogeographic analysis, implemented in the Bayesian Evolutionary Analysis Sampling Trees (BEAST), Bayesian Tip-association Significance testing (BaTS) and Spatial Phylogenetic Reconstruction of Evolutionary Dynamics (SPREAD) software packages. Selection pressure on the HVR-VP2 was also assessed. The phylogeographic association-trait analysis showed that viruses sampled from individual countries tend to cluster together, suggesting a geographic pattern for IBDV strains. Spatial analysis from this study revealed that strains carrying sequences that were linked to increased virulence of IBDV appeared in Iran in 1981 and spread to Western Europe (Belgium) in 1987, Africa (Egypt) around 1990, East Asia (China and Japan) in 1993, the Caribbean Region (Cuba) by 1995 and South America (Brazil) around 2000. Selection pressure analysis showed that several codons in the HVR-VP2 region were under purifying selection. Conclusions/Significance To our knowledge, this work is the first study applying the Bayesian phylogeographic reconstruction approach to analyse the emergence and spread of vvIBDV strains worldwide. PMID:23805195
Alfonso-Morales, Abdulahi; Martínez-Pérez, Orlando; Dolz, Roser; Valle, Rosa; Perera, Carmen L; Bertran, Kateri; Frías, Maria T; Majó, Natàlia; Ganges, Llilianne; Pérez, Lester J
2013-01-01
Infectious bursal disease is a highly contagious and acute viral disease caused by the infectious bursal disease virus (IBDV); it affects all major poultry producing areas of the world. The current study was designed to rigorously measure the global phylogeographic dynamics of IBDV strains to gain insight into viral population expansion as well as the emergence, spread and pattern of the geographical structure of very virulent IBDV (vvIBDV) strains. Sequences of the hyper-variable region of the VP2 (HVR-VP2) gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank database; Cuban sequences were obtained in the current work. All sequences were analysed by Bayesian phylogeographic analysis, implemented in the Bayesian Evolutionary Analysis Sampling Trees (BEAST), Bayesian Tip-association Significance testing (BaTS) and Spatial Phylogenetic Reconstruction of Evolutionary Dynamics (SPREAD) software packages. Selection pressure on the HVR-VP2 was also assessed. The phylogeographic association-trait analysis showed that viruses sampled from individual countries tend to cluster together, suggesting a geographic pattern for IBDV strains. Spatial analysis from this study revealed that strains carrying sequences that were linked to increased virulence of IBDV appeared in Iran in 1981 and spread to Western Europe (Belgium) in 1987, Africa (Egypt) around 1990, East Asia (China and Japan) in 1993, the Caribbean Region (Cuba) by 1995 and South America (Brazil) around 2000. Selection pressure analysis showed that several codons in the HVR-VP2 region were under purifying selection. To our knowledge, this work is the first study applying the Bayesian phylogeographic reconstruction approach to analyse the emergence and spread of vvIBDV strains worldwide.
General phase regularized reconstruction using phase cycling.
Ong, Frank; Cheng, Joseph Y; Lustig, Michael
2018-07-01
To develop a general phase regularized image reconstruction method, with applications to partial Fourier imaging, water-fat imaging and flow imaging. The problem of enforcing phase constraints in reconstruction was studied under a regularized inverse problem framework. A general phase regularized reconstruction algorithm was proposed to enable various joint reconstruction of partial Fourier imaging, water-fat imaging and flow imaging, along with parallel imaging (PI) and compressed sensing (CS). Since phase regularized reconstruction is inherently non-convex and sensitive to phase wraps in the initial solution, a reconstruction technique, named phase cycling, was proposed to render the overall algorithm invariant to phase wraps. The proposed method was applied to retrospectively under-sampled in vivo datasets and compared with state of the art reconstruction methods. Phase cycling reconstructions showed reduction of artifacts compared to reconstructions without phase cycling and achieved similar performances as state of the art results in partial Fourier, water-fat and divergence-free regularized flow reconstruction. Joint reconstruction of partial Fourier + water-fat imaging + PI + CS, and partial Fourier + divergence-free regularized flow imaging + PI + CS were demonstrated. The proposed phase cycling reconstruction provides an alternative way to perform phase regularized reconstruction, without the need to perform phase unwrapping. It is robust to the choice of initial solutions and encourages the joint reconstruction of phase imaging applications. Magn Reson Med 80:112-125, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
The Bayesian Decoding of Force Stimuli from Slowly Adapting Type I Fibers in Humans.
Kasi, Patrick; Wright, James; Khamis, Heba; Birznieks, Ingvars; van Schaik, André
2016-01-01
It is well known that signals encoded by mechanoreceptors facilitate precise object manipulation in humans. It is therefore of interest to study signals encoded by the mechanoreceptors because this will contribute further towards the understanding of fundamental sensory mechanisms that are responsible for coordinating force components during object manipulation. From a practical point of view, this may suggest strategies for designing sensory-controlled biomedical devices and robotic manipulators. We use a two-stage nonlinear decoding paradigm to reconstruct the force stimulus given signals from slowly adapting type one (SA-I) tactile afferents. First, we describe a nonhomogeneous Poisson encoding model which is a function of the force stimulus and the force's rate of change. In the decoding phase, we use a recursive nonlinear Bayesian filter to reconstruct the force profile, given the SA-I spike patterns and parameters described by the encoding model. Under the current encoding model, the mode ratio of force to its derivative is: 1.26 to 1.02. This indicates that the force derivative contributes significantly to the rate of change to the SA-I afferent spike modulation. Furthermore, using recursive Bayesian decoding algorithms is advantageous because it can incorporate past and current information in order to make predictions--consistent with neural systems--with little computational resources. This makes it suitable for interfacing with prostheses.
The Bayesian Decoding of Force Stimuli from Slowly Adapting Type I Fibers in Humans
Wright, James; Khamis, Heba; Birznieks, Ingvars; van Schaik, André
2016-01-01
It is well known that signals encoded by mechanoreceptors facilitate precise object manipulation in humans. It is therefore of interest to study signals encoded by the mechanoreceptors because this will contribute further towards the understanding of fundamental sensory mechanisms that are responsible for coordinating force components during object manipulation. From a practical point of view, this may suggest strategies for designing sensory-controlled biomedical devices and robotic manipulators. We use a two-stage nonlinear decoding paradigm to reconstruct the force stimulus given signals from slowly adapting type one (SA-I) tactile afferents. First, we describe a nonhomogeneous Poisson encoding model which is a function of the force stimulus and the force’s rate of change. In the decoding phase, we use a recursive nonlinear Bayesian filter to reconstruct the force profile, given the SA-I spike patterns and parameters described by the encoding model. Under the current encoding model, the mode ratio of force to its derivative is: 1.26 to 1.02. This indicates that the force derivative contributes significantly to the rate of change to the SA-I afferent spike modulation. Furthermore, using recursive Bayesian decoding algorithms is advantageous because it can incorporate past and current information in order to make predictions—consistent with neural systems—with little computational resources. This makes it suitable for interfacing with prostheses. PMID:27077750
NASA Astrophysics Data System (ADS)
Hopcroft, Peter O.; Gallagher, Kerry; Pain, Christopher C.
2009-08-01
Collections of suitably chosen borehole profiles can be used to infer large-scale trends in ground-surface temperature (GST) histories for the past few hundred years. These reconstructions are based on a large database of carefully selected borehole temperature measurements from around the globe. Since non-climatic thermal influences are difficult to identify, representative temperature histories are derived by averaging individual reconstructions to minimize the influence of these perturbing factors. This may lead to three potentially important drawbacks: the net signal of non-climatic factors may not be zero, meaning that the average does not reflect the best estimate of past climate; the averaging over large areas restricts the useful amount of more local climate change information available; and the inversion methods used to reconstruct the past temperatures at each site must be mathematically identical and are therefore not necessarily best suited to all data sets. In this work, we avoid these issues by using a Bayesian partition model (BPM), which is computed using a trans-dimensional form of a Markov chain Monte Carlo algorithm. This then allows the number and spatial distribution of different GST histories to be inferred from a given set of borehole data by partitioning the geographical area into discrete partitions. Profiles that are heavily influenced by non-climatic factors will be partitioned separately. Conversely, profiles with climatic information, which is consistent with neighbouring profiles, will then be inferred to lie in the same partition. The geographical extent of these partitions then leads to information on the regional extent of the climatic signal. In this study, three case studies are described using synthetic and real data. The first demonstrates that the Bayesian partition model method is able to correctly partition a suite of synthetic profiles according to the inferred GST history. In the second, more realistic case, a series of temperature profiles are calculated using surface air temperatures of a global climate model simulation. In the final case, 23 real boreholes from the United Kingdom, previously used for climatic reconstructions, are examined and the results compared with a local instrumental temperature series and the previous estimate derived from the same borehole data. The results indicate that the majority (17) of the 23 boreholes are unsuitable for climatic reconstruction purposes, at least without including other thermal processes in the forward model.
Image reconstruction by domain-transform manifold learning.
Zhu, Bo; Liu, Jeremiah Z; Cauley, Stephen F; Rosen, Bruce R; Rosen, Matthew S
2018-03-21
Image reconstruction is essential for imaging applications across the physical and life sciences, including optical and radar systems, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, ultrasound imaging and radio astronomy. During image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the exact inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain, the composition of which depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. Here we present a unified framework for image reconstruction-automated transform by manifold approximation (AUTOMAP)-which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for various magnetic resonance imaging acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate that manifold learning during training results in sparse representations of domain transforms along low-dimensional data manifolds, and observe superior immunity to noise and a reduction in reconstruction artefacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate that AUTOMAP and other learned reconstruction approaches will accelerate the development of new acquisition strategies across imaging modalities.
Reconstructing the interaction between dark energy and dark matter using Gaussian processes
NASA Astrophysics Data System (ADS)
Yang, Tao; Guo, Zong-Kuan; Cai, Rong-Gen
2015-06-01
We present a nonparametric approach to reconstruct the interaction between dark energy and dark matter directly from SNIa Union 2.1 data using Gaussian processes, which is a fully Bayesian approach for smoothing data. In this method, once the equation of state (w ) of dark energy is specified, the interaction can be reconstructed as a function of redshift. For the decaying vacuum energy case with w =-1 , the reconstructed interaction is consistent with the standard Λ CDM model, namely, there is no evidence for the interaction. This also holds for the constant w cases from -0.9 to -1.1 and for the Chevallier-Polarski-Linder (CPL) parametrization case. If the equation of state deviates obviously from -1 , the reconstructed interaction exists at 95% confidence level. This shows the degeneracy between the interaction and the equation of state of dark energy when they get constraints from the observational data.
MO-C-18A-01: Advances in Model-Based 3D Image Reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, G; Pan, X; Stayman, J
2014-06-15
Recent years have seen the emergence of CT image reconstruction techniques that exploit physical models of the imaging system, photon statistics, and even the patient to achieve improved 3D image quality and/or reduction of radiation dose. With numerous advantages in comparison to conventional 3D filtered backprojection, such techniques bring a variety of challenges as well, including: a demanding computational load associated with sophisticated forward models and iterative optimization methods; nonlinearity and nonstationarity in image quality characteristics; a complex dependency on multiple free parameters; and the need to understand how best to incorporate prior information (including patient-specific prior images) within themore » reconstruction process. The advantages, however, are even greater – for example: improved image quality; reduced dose; robustness to noise and artifacts; task-specific reconstruction protocols; suitability to novel CT imaging platforms and noncircular orbits; and incorporation of known characteristics of the imager and patient that are conventionally discarded. This symposium features experts in 3D image reconstruction, image quality assessment, and the translation of such methods to emerging clinical applications. Dr. Chen will address novel methods for the incorporation of prior information in 3D and 4D CT reconstruction techniques. Dr. Pan will show recent advances in optimization-based reconstruction that enable potential reduction of dose and sampling requirements. Dr. Stayman will describe a “task-based imaging” approach that leverages models of the imaging system and patient in combination with a specification of the imaging task to optimize both the acquisition and reconstruction process. Dr. Samei will describe the development of methods for image quality assessment in such nonlinear reconstruction techniques and the use of these methods to characterize and optimize image quality and dose in a spectrum of clinical applications. Learning Objectives: Learn the general methodologies associated with model-based 3D image reconstruction. Learn the potential advantages in image quality and dose associated with model-based image reconstruction. Learn the challenges associated with computational load and image quality assessment for such reconstruction methods. Learn how imaging task can be incorporated as a means to drive optimal image acquisition and reconstruction techniques. Learn how model-based reconstruction methods can incorporate prior information to improve image quality, ease sampling requirements, and reduce dose.« less
Bayesian Models for Streamflow and River Network Reconstruction using Tree Rings
NASA Astrophysics Data System (ADS)
Ravindranath, A.; Devineni, N.
2016-12-01
Water systems face non-stationary, dynamically shifting risks due to shifting societal conditions and systematic long-term variations in climate manifesting as quasi-periodic behavior on multi-decadal time scales. Water systems are thus vulnerable to long periods of wet or dry hydroclimatic conditions. Streamflow is a major component of water systems and a primary means by which water is transported to serve ecosystems' and human needs. Thus, our concern is in understanding streamflow variability. Climate variability and impacts on water resources are crucial factors affecting streamflow, and multi-scale variability increases risk to water sustainability and systems. Dam operations are necessary for collecting water brought by streamflow while maintaining downstream ecological health. Rules governing dam operations are based on streamflow records that are woefully short compared to periods of systematic variation present in the climatic factors driving streamflow variability and non-stationarity. We use hierarchical Bayesian regression methods in order to reconstruct paleo-streamflow records for dams within a basin using paleoclimate proxies (e.g. tree rings) to guide the reconstructions. The riverine flow network for the entire basin is subsequently modeled hierarchically using feeder stream and tributary flows. This is a starting point in analyzing streamflow variability and risks to water systems, and developing a scientifically-informed dynamic risk management framework for formulating dam operations and water policies to best hedge such risks. We will apply this work to the Missouri and Delaware River Basins (DRB). Preliminary results of streamflow reconstructions for eight dams in the upper DRB using standard Gaussian regression with regional tree ring chronologies give streamflow records that now span two to two and a half centuries, and modestly smoothed versions of these reconstructed flows indicate physically-justifiable trends in the time series.
Fernandes, Ricardo; Grootes, Pieter; Nadeau, Marie-Josée; Nehlich, Olaf
2015-07-14
The island cemetery site of Ostorf (Germany) consists of individual human graves containing Funnel Beaker ceramics dating to the Early or Middle Neolithic. However, previous isotope and radiocarbon analysis demonstrated that the Ostorf individuals had a diet rich in freshwater fish. The present study was undertaken to quantitatively reconstruct the diet of the Ostorf population and establish if dietary habits are consistent with the traditional characterization of a Neolithic diet. Quantitative diet reconstruction was achieved through a novel approach consisting of the use of the Bayesian mixing model Food Reconstruction Using Isotopic Transferred Signals (FRUITS) to model isotope measurements from multiple dietary proxies (δ 13 C collagen , δ 15 N collagen , δ 13 C bioapatite , δ 34 S methione , 14 C collagen ). The accuracy of model estimates was verified by comparing the agreement between observed and estimated human dietary radiocarbon reservoir effects. Quantitative diet reconstruction estimates confirm that the Ostorf individuals had a high protein intake due to the consumption of fish and terrestrial animal products. However, FRUITS estimates also show that plant foods represented a significant source of calories. Observed and estimated human dietary radiocarbon reservoir effects are in good agreement provided that the aquatic reservoir effect at Lake Ostorf is taken as reference. The Ostorf population apparently adopted elements associated with a Neolithic culture but adapted to available local food resources and implemented a subsistence strategy that involved a large proportion of fish and terrestrial meat consumption. This case study exemplifies the diversity of subsistence strategies followed during the Neolithic. Am J Phys Anthropol, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
EIT image reconstruction with four dimensional regularization.
Dai, Tao; Soleimani, Manuchehr; Adler, Andy
2008-09-01
Electrical impedance tomography (EIT) reconstructs internal impedance images of the body from electrical measurements on body surface. The temporal resolution of EIT data can be very high, although the spatial resolution of the images is relatively low. Most EIT reconstruction algorithms calculate images from data frames independently, although data are actually highly correlated especially in high speed EIT systems. This paper proposes a 4-D EIT image reconstruction for functional EIT. The new approach is developed to directly use prior models of the temporal correlations among images and 3-D spatial correlations among image elements. A fast algorithm is also developed to reconstruct the regularized images. Image reconstruction is posed in terms of an augmented image and measurement vector which are concatenated from a specific number of previous and future frames. The reconstruction is then based on an augmented regularization matrix which reflects the a priori constraints on temporal and 3-D spatial correlations of image elements. A temporal factor reflecting the relative strength of the image correlation is objectively calculated from measurement data. Results show that image reconstruction models which account for inter-element correlations, in both space and time, show improved resolution and noise performance, in comparison to simpler image models.
Multiscale hidden Markov models for photon-limited imaging
NASA Astrophysics Data System (ADS)
Nowak, Robert D.
1999-06-01
Photon-limited image analysis is often hindered by low signal-to-noise ratios. A novel Bayesian multiscale modeling and analysis method is developed in this paper to assist in these challenging situations. In addition to providing a very natural and useful framework for modeling an d processing images, Bayesian multiscale analysis is often much less computationally demanding compared to classical Markov random field models. This paper focuses on a probabilistic graph model called the multiscale hidden Markov model (MHMM), which captures the key inter-scale dependencies present in natural image intensities. The MHMM framework presented here is specifically designed for photon-limited imagin applications involving Poisson statistics, and applications to image intensity analysis are examined.
Hultenmo, Maria; Caisander, Håkan; Mack, Karsten; Thilander-Klang, Anne
2016-06-01
The diagnostic image quality of 75 paediatric abdominal computed tomography (CT) examinations reconstructed with two different iterative reconstruction (IR) algorithms-adaptive statistical IR (ASiR™) and model-based IR (Veo™)-was compared. Axial and coronal images were reconstructed with 70 % ASiR with the Soft™ convolution kernel and with the Veo algorithm. The thickness of the reconstructed images was 2.5 or 5 mm depending on the scanning protocol used. Four radiologists graded the delineation of six abdominal structures and the diagnostic usefulness of the image quality. The Veo reconstruction significantly improved the visibility of most of the structures compared with ASiR in all subgroups of images. For coronal images, the Veo reconstruction resulted in significantly improved ratings of the diagnostic use of the image quality compared with the ASiR reconstruction. This was not seen for the axial images. The greatest improvement using Veo reconstruction was observed for the 2.5 mm coronal slices. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Image reconstruction by domain-transform manifold learning
NASA Astrophysics Data System (ADS)
Zhu, Bo; Liu, Jeremiah Z.; Cauley, Stephen F.; Rosen, Bruce R.; Rosen, Matthew S.
2018-03-01
Image reconstruction is essential for imaging applications across the physical and life sciences, including optical and radar systems, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, ultrasound imaging and radio astronomy. During image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the exact inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain, the composition of which depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. Here we present a unified framework for image reconstruction—automated transform by manifold approximation (AUTOMAP)—which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for various magnetic resonance imaging acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate that manifold learning during training results in sparse representations of domain transforms along low-dimensional data manifolds, and observe superior immunity to noise and a reduction in reconstruction artefacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate that AUTOMAP and other learned reconstruction approaches will accelerate the development of new acquisition strategies across imaging modalities.
Level-set-based reconstruction algorithm for EIT lung images: first clinical results.
Rahmati, Peyman; Soleimani, Manuchehr; Pulletz, Sven; Frerichs, Inéz; Adler, Andy
2012-05-01
We show the first clinical results using the level-set-based reconstruction algorithm for electrical impedance tomography (EIT) data. The level-set-based reconstruction method (LSRM) allows the reconstruction of non-smooth interfaces between image regions, which are typically smoothed by traditional voxel-based reconstruction methods (VBRMs). We develop a time difference formulation of the LSRM for 2D images. The proposed reconstruction method is applied to reconstruct clinical EIT data of a slow flow inflation pressure-volume manoeuvre in lung-healthy and adult lung-injury patients. Images from the LSRM and the VBRM are compared. The results show comparable reconstructed images, but with an improved ability to reconstruct sharp conductivity changes in the distribution of lung ventilation using the LSRM.
Sparse Bayesian learning for DOA estimation with mutual coupling.
Dai, Jisheng; Hu, Nan; Xu, Weichao; Chang, Chunqi
2015-10-16
Sparse Bayesian learning (SBL) has given renewed interest to the problem of direction-of-arrival (DOA) estimation. It is generally assumed that the measurement matrix in SBL is precisely known. Unfortunately, this assumption may be invalid in practice due to the imperfect manifold caused by unknown or misspecified mutual coupling. This paper describes a modified SBL method for joint estimation of DOAs and mutual coupling coefficients with uniform linear arrays (ULAs). Unlike the existing method that only uses stationary priors, our new approach utilizes a hierarchical form of the Student t prior to enforce the sparsity of the unknown signal more heavily. We also provide a distinct Bayesian inference for the expectation-maximization (EM) algorithm, which can update the mutual coupling coefficients more efficiently. Another difference is that our method uses an additional singular value decomposition (SVD) to reduce the computational complexity of the signal reconstruction process and the sensitivity to the measurement noise.
Bayesian tomography and integrated data analysis in fusion diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dong, E-mail: lid@swip.ac.cn; Dong, Y. B.; Deng, Wei
2016-11-15
In this article, a Bayesian tomography method using non-stationary Gaussian process for a prior has been introduced. The Bayesian formalism allows quantities which bear uncertainty to be expressed in the probabilistic form so that the uncertainty of a final solution can be fully resolved from the confidence interval of a posterior probability. Moreover, a consistency check of that solution can be performed by checking whether the misfits between predicted and measured data are reasonably within an assumed data error. In particular, the accuracy of reconstructions is significantly improved by using the non-stationary Gaussian process that can adapt to the varyingmore » smoothness of emission distribution. The implementation of this method to a soft X-ray diagnostics on HL-2A has been used to explore relevant physics in equilibrium and MHD instability modes. This project is carried out within a large size inference framework, aiming at an integrated analysis of heterogeneous diagnostics.« less
Fortunato, Laura; Holden, Clare; Mace, Ruth
2006-12-01
Significant amounts of wealth have been exchanged as part of marriage settlements throughout history. Although various models have been proposed for interpreting these practices, their development over time has not been investigated systematically. In this paper we use a Bayesian MCMC phylogenetic comparative approach to reconstruct the evolution of two forms of wealth transfers at marriage, dowry and bridewealth, for 51 Indo-European cultural groups. Results indicate that dowry is more likely to have been the ancestral practice, and that a minimum of four changes to bridewealth is necessary to explain the observed distribution of the two states across the cultural groups.
Palmprint identification using FRIT
NASA Astrophysics Data System (ADS)
Kisku, D. R.; Rattani, A.; Gupta, P.; Hwang, C. J.; Sing, J. K.
2011-06-01
This paper proposes a palmprint identification system using Finite Ridgelet Transform (FRIT) and Bayesian classifier. FRIT is applied on the ROI (region of interest), which is extracted from palmprint image, to extract a set of distinctive features from palmprint image. These features are used to classify with the help of Bayesian classifier. The proposed system has been tested on CASIA and IIT Kanpur palmprint databases. The experimental results reveal better performance compared to all well known systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brewer, Brendon J.; Foreman-Mackey, Daniel; Hogg, David W., E-mail: bj.brewer@auckland.ac.nz
We present and implement a probabilistic (Bayesian) method for producing catalogs from images of stellar fields. The method is capable of inferring the number of sources N in the image and can also handle the challenges introduced by noise, overlapping sources, and an unknown point-spread function. The luminosity function of the stars can also be inferred, even when the precise luminosity of each star is uncertain, via the use of a hierarchical Bayesian model. The computational feasibility of the method is demonstrated on two simulated images with different numbers of stars. We find that our method successfully recovers the inputmore » parameter values along with principled uncertainties even when the field is crowded. We also compare our results with those obtained from the SExtractor software. While the two approaches largely agree about the fluxes of the bright stars, the Bayesian approach provides more accurate inferences about the faint stars and the number of stars, particularly in the crowded case.« less
Yang, Li; Wang, Guobao; Qi, Jinyi
2016-04-01
Detecting cancerous lesions is a major clinical application of emission tomography. In a previous work, we studied penalized maximum-likelihood (PML) image reconstruction for lesion detection in static PET. Here we extend our theoretical analysis of static PET reconstruction to dynamic PET. We study both the conventional indirect reconstruction and direct reconstruction for Patlak parametric image estimation. In indirect reconstruction, Patlak parametric images are generated by first reconstructing a sequence of dynamic PET images, and then performing Patlak analysis on the time activity curves (TACs) pixel-by-pixel. In direct reconstruction, Patlak parametric images are estimated directly from raw sinogram data by incorporating the Patlak model into the image reconstruction procedure. PML reconstruction is used in both the indirect and direct reconstruction methods. We use a channelized Hotelling observer (CHO) to assess lesion detectability in Patlak parametric images. Simplified expressions for evaluating the lesion detectability have been derived and applied to the selection of the regularization parameter value to maximize detection performance. The proposed method is validated using computer-based Monte Carlo simulations. Good agreements between the theoretical predictions and the Monte Carlo results are observed. Both theoretical predictions and Monte Carlo simulation results show the benefit of the indirect and direct methods under optimized regularization parameters in dynamic PET reconstruction for lesion detection, when compared with the conventional static PET reconstruction.
Adaptive multiple super fast simulated annealing for stochastic microstructure reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Seun; Lin, Guang; Sun, Xin
2013-01-01
Fast image reconstruction from statistical information is critical in image fusion from multimodality chemical imaging instrumentation to create high resolution image with large domain. Stochastic methods have been used widely in image reconstruction from two point correlation function. The main challenge is to increase the efficiency of reconstruction. A novel simulated annealing method is proposed for fast solution of image reconstruction. Combining the advantage of very fast cooling schedules, dynamic adaption and parallelization, the new simulation annealing algorithm increases the efficiencies by several orders of magnitude, making the large domain image fusion feasible.
Dynamic PET Image reconstruction for parametric imaging using the HYPR kernel method
NASA Astrophysics Data System (ADS)
Spencer, Benjamin; Qi, Jinyi; Badawi, Ramsey D.; Wang, Guobao
2017-03-01
Dynamic PET image reconstruction is a challenging problem because of the ill-conditioned nature of PET and the lowcounting statistics resulted from short time-frames in dynamic imaging. The kernel method for image reconstruction has been developed to improve image reconstruction of low-count PET data by incorporating prior information derived from high-count composite data. In contrast to most of the existing regularization-based methods, the kernel method embeds image prior information in the forward projection model and does not require an explicit regularization term in the reconstruction formula. Inspired by the existing highly constrained back-projection (HYPR) algorithm for dynamic PET image denoising, we propose in this work a new type of kernel that is simpler to implement and further improves the kernel-based dynamic PET image reconstruction. Our evaluation study using a physical phantom scan with synthetic FDG tracer kinetics has demonstrated that the new HYPR kernel-based reconstruction can achieve a better region-of-interest (ROI) bias versus standard deviation trade-off for dynamic PET parametric imaging than the post-reconstruction HYPR denoising method and the previously used nonlocal-means kernel.
Bayesian depth estimation from monocular natural images.
Su, Che-Chun; Cormack, Lawrence K; Bovik, Alan C
2017-05-01
Estimating an accurate and naturalistic dense depth map from a single monocular photographic image is a difficult problem. Nevertheless, human observers have little difficulty understanding the depth structure implied by photographs. Two-dimensional (2D) images of the real-world environment contain significant statistical information regarding the three-dimensional (3D) structure of the world that the vision system likely exploits to compute perceived depth, monocularly as well as binocularly. Toward understanding how this might be accomplished, we propose a Bayesian model of monocular depth computation that recovers detailed 3D scene structures by extracting reliable, robust, depth-sensitive statistical features from single natural images. These features are derived using well-accepted univariate natural scene statistics (NSS) models and recent bivariate/correlation NSS models that describe the relationships between 2D photographic images and their associated depth maps. This is accomplished by building a dictionary of canonical local depth patterns from which NSS features are extracted as prior information. The dictionary is used to create a multivariate Gaussian mixture (MGM) likelihood model that associates local image features with depth patterns. A simple Bayesian predictor is then used to form spatial depth estimates. The depth results produced by the model, despite its simplicity, correlate well with ground-truth depths measured by a current-generation terrestrial light detection and ranging (LIDAR) scanner. Such a strong form of statistical depth information could be used by the visual system when creating overall estimated depth maps incorporating stereopsis, accommodation, and other conditions. Indeed, even in isolation, the Bayesian predictor delivers depth estimates that are competitive with state-of-the-art "computer vision" methods that utilize highly engineered image features and sophisticated machine learning algorithms.
Tan, Bingyao; Wong, Alexander; Bizheva, Kostadinka
2018-01-01
A novel image processing algorithm based on a modified Bayesian residual transform (MBRT) was developed for the enhancement of morphological and vascular features in optical coherence tomography (OCT) and OCT angiography (OCTA) images. The MBRT algorithm decomposes the original OCT image into multiple residual images, where each image presents information at a unique scale. Scale selective residual adaptation is used subsequently to enhance morphological features of interest, such as blood vessels and tissue layers, and to suppress irrelevant image features such as noise and motion artefacts. The performance of the proposed MBRT algorithm was tested on a series of cross-sectional and enface OCT and OCTA images of retina and brain tissue that were acquired in-vivo. Results show that the MBRT reduces speckle noise and motion-related imaging artefacts locally, thus improving significantly the contrast and visibility of morphological features in the OCT and OCTA images. PMID:29760996
Penalized maximum likelihood reconstruction for x-ray differential phase-contrast tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brendel, Bernhard, E-mail: bernhard.brendel@philips.com; Teuffenbach, Maximilian von; Noël, Peter B.
2016-01-15
Purpose: The purpose of this work is to propose a cost function with regularization to iteratively reconstruct attenuation, phase, and scatter images simultaneously from differential phase contrast (DPC) acquisitions, without the need of phase retrieval, and examine its properties. Furthermore this reconstruction method is applied to an acquisition pattern that is suitable for a DPC tomographic system with continuously rotating gantry (sliding window acquisition), overcoming the severe smearing in noniterative reconstruction. Methods: We derive a penalized maximum likelihood reconstruction algorithm to directly reconstruct attenuation, phase, and scatter image from the measured detector values of a DPC acquisition. The proposed penaltymore » comprises, for each of the three images, an independent smoothing prior. Image quality of the proposed reconstruction is compared to images generated with FBP and iterative reconstruction after phase retrieval. Furthermore, the influence between the priors is analyzed. Finally, the proposed reconstruction algorithm is applied to experimental sliding window data acquired at a synchrotron and results are compared to reconstructions based on phase retrieval. Results: The results show that the proposed algorithm significantly increases image quality in comparison to reconstructions based on phase retrieval. No significant mutual influence between the proposed independent priors could be observed. Further it could be illustrated that the iterative reconstruction of a sliding window acquisition results in images with substantially reduced smearing artifacts. Conclusions: Although the proposed cost function is inherently nonconvex, it can be used to reconstruct images with less aliasing artifacts and less streak artifacts than reconstruction methods based on phase retrieval. Furthermore, the proposed method can be used to reconstruct images of sliding window acquisitions with negligible smearing artifacts.« less
Investigation of optimization-based reconstruction with an image-total-variation constraint in PET
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Ye, Jinghan; Chen, Buxin; Perkins, Amy E.; Rose, Sean; Sidky, Emil Y.; Kao, Chien-Min; Xia, Dan; Tung, Chi-Hua; Pan, Xiaochuan
2016-08-01
Interest remains in reconstruction-algorithm research and development for possible improvement of image quality in current PET imaging and for enabling innovative PET systems to enhance existing, and facilitate new, preclinical and clinical applications. Optimization-based image reconstruction has been demonstrated in recent years of potential utility for CT imaging applications. In this work, we investigate tailoring the optimization-based techniques to image reconstruction for PET systems with standard and non-standard scan configurations. Specifically, given an image-total-variation (TV) constraint, we investigated how the selection of different data divergences and associated parameters impacts the optimization-based reconstruction of PET images. The reconstruction robustness was explored also with respect to different data conditions and activity up-takes of practical relevance. A study was conducted particularly for image reconstruction from data collected by use of a PET configuration with sparsely populated detectors. Overall, the study demonstrates the robustness of the TV-constrained, optimization-based reconstruction for considerably different data conditions in PET imaging, as well as its potential to enable PET configurations with reduced numbers of detectors. Insights gained in the study may be exploited for developing algorithms for PET-image reconstruction and for enabling PET-configuration design of practical usefulness in preclinical and clinical applications.
Shi, Ximin; Li, Nan; Ding, Haiyan; Dang, Yonghong; Hu, Guilan; Liu, Shuai; Cui, Jie; Zhang, Yue; Li, Fang; Zhang, Hui; Huo, Li
2018-01-01
Kinetic modeling of dynamic 11 C-acetate PET imaging provides quantitative information for myocardium assessment. The quality and quantitation of PET images are known to be dependent on PET reconstruction methods. This study aims to investigate the impacts of reconstruction algorithms on the quantitative analysis of dynamic 11 C-acetate cardiac PET imaging. Suspected alcoholic cardiomyopathy patients ( N = 24) underwent 11 C-acetate dynamic PET imaging after low dose CT scan. PET images were reconstructed using four algorithms: filtered backprojection (FBP), ordered subsets expectation maximization (OSEM), OSEM with time-of-flight (TOF), and OSEM with both time-of-flight and point-spread-function (TPSF). Standardized uptake values (SUVs) at different time points were compared among images reconstructed using the four algorithms. Time-activity curves (TACs) in myocardium and blood pools of ventricles were generated from the dynamic image series. Kinetic parameters K 1 and k 2 were derived using a 1-tissue-compartment model for kinetic modeling of cardiac flow from 11 C-acetate PET images. Significant image quality improvement was found in the images reconstructed using iterative OSEM-type algorithms (OSME, TOF, and TPSF) compared with FBP. However, no statistical differences in SUVs were observed among the four reconstruction methods at the selected time points. Kinetic parameters K 1 and k 2 also exhibited no statistical difference among the four reconstruction algorithms in terms of mean value and standard deviation. However, for the correlation analysis, OSEM reconstruction presented relatively higher residual in correlation with FBP reconstruction compared with TOF and TPSF reconstruction, and TOF and TPSF reconstruction were highly correlated with each other. All the tested reconstruction algorithms performed similarly for quantitative analysis of 11 C-acetate cardiac PET imaging. TOF and TPSF yielded highly consistent kinetic parameter results with superior image quality compared with FBP. OSEM was relatively less reliable. Both TOF and TPSF were recommended for cardiac 11 C-acetate kinetic analysis.
A Distributed Compressive Sensing Scheme for Event Capture in Wireless Visual Sensor Networks
NASA Astrophysics Data System (ADS)
Hou, Meng; Xu, Sen; Wu, Weiling; Lin, Fei
2018-01-01
Image signals which acquired by wireless visual sensor network can be used for specific event capture. This event capture is realized by image processing at the sink node. A distributed compressive sensing scheme is used for the transmission of these image signals from the camera nodes to the sink node. A measurement and joint reconstruction algorithm for these image signals are proposed in this paper. Make advantage of spatial correlation between images within a sensing area, the cluster head node which as the image decoder can accurately co-reconstruct these image signals. The subjective visual quality and the reconstruction error rate are used for the evaluation of reconstructed image quality. Simulation results show that the joint reconstruction algorithm achieves higher image quality at the same image compressive rate than the independent reconstruction algorithm.
A neural network approach for image reconstruction in electron magnetic resonance tomography.
Durairaj, D Christopher; Krishna, Murali C; Murugesan, Ramachandran
2007-10-01
An object-oriented, artificial neural network (ANN) based, application system for reconstruction of two-dimensional spatial images in electron magnetic resonance (EMR) tomography is presented. The standard back propagation algorithm is utilized to train a three-layer sigmoidal feed-forward, supervised, ANN to perform the image reconstruction. The network learns the relationship between the 'ideal' images that are reconstructed using filtered back projection (FBP) technique and the corresponding projection data (sinograms). The input layer of the network is provided with a training set that contains projection data from various phantoms as well as in vivo objects, acquired from an EMR imager. Twenty five different network configurations are investigated to test the ability of the generalization of the network. The trained ANN then reconstructs two-dimensional temporal spatial images that present the distribution of free radicals in biological systems. Image reconstruction by the trained neural network shows better time complexity than the conventional iterative reconstruction algorithms such as multiplicative algebraic reconstruction technique (MART). The network is further explored for image reconstruction from 'noisy' EMR data and the results show better performance than the FBP method. The network is also tested for its ability to reconstruct from limited-angle EMR data set.
Accurate Phylogenetic Tree Reconstruction from Quartets: A Heuristic Approach
Reaz, Rezwana; Bayzid, Md. Shamsuzzoha; Rahman, M. Sohel
2014-01-01
Supertree methods construct trees on a set of taxa (species) combining many smaller trees on the overlapping subsets of the entire set of taxa. A ‘quartet’ is an unrooted tree over taxa, hence the quartet-based supertree methods combine many -taxon unrooted trees into a single and coherent tree over the complete set of taxa. Quartet-based phylogeny reconstruction methods have been receiving considerable attentions in the recent years. An accurate and efficient quartet-based method might be competitive with the current best phylogenetic tree reconstruction methods (such as maximum likelihood or Bayesian MCMC analyses), without being as computationally intensive. In this paper, we present a novel and highly accurate quartet-based phylogenetic tree reconstruction method. We performed an extensive experimental study to evaluate the accuracy and scalability of our approach on both simulated and biological datasets. PMID:25117474
An object-oriented simulator for 3D digital breast tomosynthesis imaging system.
Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa
2013-01-01
Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.
GPU-based prompt gamma ray imaging from boron neutron capture therapy.
Yoon, Do-Kun; Jung, Joo-Young; Jo Hong, Key; Sil Lee, Keum; Suk Suh, Tae
2015-01-01
The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.
An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System
Cengiz, Kubra
2013-01-01
Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values. PMID:24371468
Image reconstruction: an overview for clinicians.
Hansen, Michael S; Kellman, Peter
2015-03-01
Image reconstruction plays a critical role in the clinical use of magnetic resonance imaging (MRI). The MRI raw data is not acquired in image space and the role of the image reconstruction process is to transform the acquired raw data into images that can be interpreted clinically. This process involves multiple signal processing steps that each have an impact on the image quality. This review explains the basic terminology used for describing and quantifying image quality in terms of signal-to-noise ratio and point spread function. In this context, several commonly used image reconstruction components are discussed. The image reconstruction components covered include noise prewhitening for phased array data acquisition, interpolation needed to reconstruct square pixels, raw data filtering for reducing Gibbs ringing artifacts, Fourier transforms connecting the raw data with image space, and phased array coil combination. The treatment of phased array coils includes a general explanation of parallel imaging as a coil combination technique. The review is aimed at readers with no signal processing experience and should enable them to understand what role basic image reconstruction steps play in the formation of clinical images and how the resulting image quality is described. © 2014 Wiley Periodicals, Inc.
Iterative image reconstruction for PROPELLER-MRI using the nonuniform fast fourier transform.
Tamhane, Ashish A; Anastasio, Mark A; Gui, Minzhi; Arfanakis, Konstantinos
2010-07-01
To investigate an iterative image reconstruction algorithm using the nonuniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) MRI. Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it with that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased signal to noise ratio, reduced artifacts, for similar spatial resolution, compared with gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter, the new reconstruction technique may provide PROPELLER images with improved image quality compared with conventional gridding. (c) 2010 Wiley-Liss, Inc.
Iterative Image Reconstruction for PROPELLER-MRI using the NonUniform Fast Fourier Transform
Tamhane, Ashish A.; Anastasio, Mark A.; Gui, Minzhi; Arfanakis, Konstantinos
2013-01-01
Purpose To investigate an iterative image reconstruction algorithm using the non-uniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping parallEL Lines with Enhanced Reconstruction) MRI. Materials and Methods Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it to that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. Results It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased SNR, reduced artifacts, for similar spatial resolution, compared to gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. Conclusion An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter the new reconstruction technique may provide PROPELLER images with improved image quality compared to conventional gridding. PMID:20578028
Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography
Wang, Kun; Su, Richard; Oraevsky, Alexander A; Anastasio, Mark A
2012-01-01
Iterative image reconstruction algorithms for optoacoustic tomography (OAT), also known as photoacoustic tomography, have the ability to improve image quality over analytic algorithms due to their ability to incorporate accurate models of the imaging physics, instrument response, and measurement noise. However, to date, there have been few reported attempts to employ advanced iterative image reconstruction algorithms for improving image quality in three-dimensional (3D) OAT. In this work, we implement and investigate two iterative image reconstruction methods for use with a 3D OAT small animal imager: namely, a penalized least-squares (PLS) method employing a quadratic smoothness penalty and a PLS method employing a total variation norm penalty. The reconstruction algorithms employ accurate models of the ultrasonic transducer impulse responses. Experimental data sets are employed to compare the performances of the iterative reconstruction algorithms to that of a 3D filtered backprojection (FBP) algorithm. By use of quantitative measures of image quality, we demonstrate that the iterative reconstruction algorithms can mitigate image artifacts and preserve spatial resolution more effectively than FBP algorithms. These features suggest that the use of advanced image reconstruction algorithms can improve the effectiveness of 3D OAT while reducing the amount of data required for biomedical applications. PMID:22864062
NASA Astrophysics Data System (ADS)
Melli, S. Ali; Wahid, Khan A.; Babyn, Paul; Cooper, David M. L.; Gopi, Varun P.
2016-12-01
Synchrotron X-ray Micro Computed Tomography (Micro-CT) is an imaging technique which is increasingly used for non-invasive in vivo preclinical imaging. However, it often requires a large number of projections from many different angles to reconstruct high-quality images leading to significantly high radiation doses and long scan times. To utilize this imaging technique further for in vivo imaging, we need to design reconstruction algorithms that reduce the radiation dose and scan time without reduction of reconstructed image quality. This research is focused on using a combination of gradient-based Douglas-Rachford splitting and discrete wavelet packet shrinkage image denoising methods to design an algorithm for reconstruction of large-scale reduced-view synchrotron Micro-CT images with acceptable quality metrics. These quality metrics are computed by comparing the reconstructed images with a high-dose reference image reconstructed from 1800 equally spaced projections spanning 180°. Visual and quantitative-based performance assessment of a synthetic head phantom and a femoral cortical bone sample imaged in the biomedical imaging and therapy bending magnet beamline at the Canadian Light Source demonstrates that the proposed algorithm is superior to the existing reconstruction algorithms. Using the proposed reconstruction algorithm to reduce the number of projections in synchrotron Micro-CT is an effective way to reduce the overall radiation dose and scan time which improves in vivo imaging protocols.
Uwano, Ikuko; Sasaki, Makoto; Kudo, Kohsuke; Boutelier, Timothé; Kameda, Hiroyuki; Mori, Futoshi; Yamashita, Fumio
2017-01-10
The Bayesian estimation algorithm improves the precision of bolus tracking perfusion imaging. However, this algorithm cannot directly calculate Tmax, the time scale widely used to identify ischemic penumbra, because Tmax is a non-physiological, artificial index that reflects the tracer arrival delay (TD) and other parameters. We calculated Tmax from the TD and mean transit time (MTT) obtained by the Bayesian algorithm and determined its accuracy in comparison with Tmax obtained by singular value decomposition (SVD) algorithms. The TD and MTT maps were generated by the Bayesian algorithm applied to digital phantoms with time-concentration curves that reflected a range of values for various perfusion metrics using a global arterial input function. Tmax was calculated from the TD and MTT using constants obtained by a linear least-squares fit to Tmax obtained from the two SVD algorithms that showed the best benchmarks in a previous study. Correlations between the Tmax values obtained by the Bayesian and SVD methods were examined. The Bayesian algorithm yielded accurate TD and MTT values relative to the true values of the digital phantom. Tmax calculated from the TD and MTT values with the least-squares fit constants showed excellent correlation (Pearson's correlation coefficient = 0.99) and agreement (intraclass correlation coefficient = 0.99) with Tmax obtained from SVD algorithms. Quantitative analyses of Tmax values calculated from Bayesian-estimation algorithm-derived TD and MTT from a digital phantom correlated and agreed well with Tmax values determined using SVD algorithms.
Bayesian Inference for Functional Dynamics Exploring in fMRI Data.
Guo, Xuan; Liu, Bing; Chen, Le; Chen, Guantao; Pan, Yi; Zhang, Jing
2016-01-01
This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM), Bayesian Connectivity Change Point Model (BCCPM), and Dynamic Bayesian Variable Partition Model (DBVPM), and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.
Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images
Zhou, Mingyuan; Chen, Haojun; Paisley, John; Ren, Lu; Li, Lingbo; Xing, Zhengming; Dunson, David; Sapiro, Guillermo; Carin, Lawrence
2013-01-01
Nonparametric Bayesian methods are considered for recovery of imagery based upon compressive, incomplete, and/or noisy measurements. A truncated beta-Bernoulli process is employed to infer an appropriate dictionary for the data under test and also for image recovery. In the context of compressive sensing, significant improvements in image recovery are manifested using learned dictionaries, relative to using standard orthonormal image expansions. The compressive-measurement projections are also optimized for the learned dictionary. Additionally, we consider simpler (incomplete) measurements, defined by measuring a subset of image pixels, uniformly selected at random. Spatial interrelationships within imagery are exploited through use of the Dirichlet and probit stick-breaking processes. Several example results are presented, with comparisons to other methods in the literature. PMID:21693421
Zhou, Qijing; Jiang, Biao; Dong, Fei; Huang, Peiyu; Liu, Hongtao; Zhang, Minming
2014-01-01
To evaluate the improvement of iterative reconstruction in image space (IRIS) technique in computed tomographic (CT) coronary stent imaging with sharp kernel, and to make a trade-off analysis. Fifty-six patients with 105 stents were examined by 128-slice dual-source CT coronary angiography (CTCA). Images were reconstructed using standard filtered back projection (FBP) and IRIS with both medium kernel and sharp kernel applied. Image noise and the stent diameter were investigated. Image noise was measured both in background vessel and in-stent lumen as objective image evaluation. Image noise score and stent score were performed as subjective image evaluation. The CTCA images reconstructed with IRIS were associated with significant noise reduction compared to that of CTCA images reconstructed using FBP technique in both of background vessel and in-stent lumen (the background noise decreased by approximately 25.4% ± 8.2% in medium kernel (P
A fresh look at the Last Glacial Maximum using Paleoclimate Data Assimilation
NASA Astrophysics Data System (ADS)
Malevich, S. B.; Tierney, J. E.; Hakim, G. J.; Tardif, R.
2017-12-01
Quantifying climate conditions during the Last Glacial Maximum ( 21ka) can help us to understand climate responses to forcing and climate states that are poorly represented in the instrumental record. Paleoclimate proxies may be used to estimate these climate conditions, but proxies are sparsely distributed and possess uncertainties from environmental and biogeochemical processes. Alternatively, climate model simulations provide a full-field view, but may predict unrealistic climate states or states not faithful to proxy records. Here, we use data assimilation - combining climate proxy records with a theoretical understanding from climate models - to produce field reconstructions of the LGM that leverage the information from both data and models. To date, data assimilation has mainly been used to produce reconstructions of climate fields through the last millennium. We expand this approach in order to produce a climate fields for the Last Glacial Maximum using an ensemble Kalman filter assimilation. Ensemble samples were formed from output from multiple models including CCSM3, CESM2.1, and HadCM3. These model simulations are combined with marine sediment proxies for upper ocean temperature (TEX86, UK'37, Mg/Ca and δ18O of foraminifera), utilizing forward models based on a newly developed suite of Bayesian proxy system models. We also incorporate age model and radiocarbon reservoir uncertainty into our reconstructions using Bayesian age modeling software. The resulting fields show familiar patterns based on comparison with previous proxy-based reconstructions, but additionally reveal novel patterns of large-scale shifts in ocean-atmosphere dynamics, as the surface temperature data inform upon atmospheric circulation and precipitation patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemkiewicz, J; Palmiotti, A; Miner, M
2014-06-01
Purpose: Metal in patients creates streak artifacts in CT images. When used for radiation treatment planning, these artifacts make it difficult to identify internal structures and affects radiation dose calculations, which depend on HU numbers for inhomogeneity correction. This work quantitatively evaluates a new metal artifact reduction (MAR) CT image reconstruction algorithm (GE Healthcare CT-0521-04.13-EN-US DOC1381483) when metal is present. Methods: A Gammex Model 467 Tissue Characterization phantom was used. CT images were taken of this phantom on a GE Optima580RT CT scanner with and without steel and titanium plugs using both the standard and MAR reconstruction algorithms. HU valuesmore » were compared pixel by pixel to determine if the MAR algorithm altered the HUs of normal tissues when no metal is present, and to evaluate the effect of using the MAR algorithm when metal is present. Also, CT images of patients with internal metal objects using standard and MAR reconstruction algorithms were compared. Results: Comparing the standard and MAR reconstructed images of the phantom without metal, 95.0% of pixels were within ±35 HU and 98.0% of pixels were within ±85 HU. Also, the MAR reconstruction algorithm showed significant improvement in maintaining HUs of non-metallic regions in the images taken of the phantom with metal. HU Gamma analysis (2%, 2mm) of metal vs. non-metal phantom imaging using standard reconstruction resulted in an 84.8% pass rate compared to 96.6% for the MAR reconstructed images. CT images of patients with metal show significant artifact reduction when reconstructed with the MAR algorithm. Conclusion: CT imaging using the MAR reconstruction algorithm provides improved visualization of internal anatomy and more accurate HUs when metal is present compared to the standard reconstruction algorithm. MAR reconstructed CT images provide qualitative and quantitative improvements over current reconstruction algorithms, thus improving radiation treatment planning accuracy.« less
A novel data processing technique for image reconstruction of penumbral imaging
NASA Astrophysics Data System (ADS)
Xie, Hongwei; Li, Hongyun; Xu, Zeping; Song, Guzhou; Zhang, Faqiang; Zhou, Lin
2011-06-01
CT image reconstruction technique was applied to the data processing of the penumbral imaging. Compared with other traditional processing techniques for penumbral coded pinhole image such as Wiener, Lucy-Richardson and blind technique, this approach is brand new. In this method, the coded aperture processing method was used for the first time independent to the point spread function of the image diagnostic system. In this way, the technical obstacles was overcome in the traditional coded pinhole image processing caused by the uncertainty of point spread function of the image diagnostic system. Then based on the theoretical study, the simulation of penumbral imaging and image reconstruction was carried out to provide fairly good results. While in the visible light experiment, the point source of light was used to irradiate a 5mm×5mm object after diffuse scattering and volume scattering. The penumbral imaging was made with aperture size of ~20mm. Finally, the CT image reconstruction technique was used for image reconstruction to provide a fairly good reconstruction result.
Bayesian Multiscale Analysis of X-Ray Jet Features in High Redshift Quasars
NASA Astrophysics Data System (ADS)
McKeough, Kathryn; Siemiginowska, A.; Kashyap, V.; Stein, N.
2014-01-01
X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet’s relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. We implement a sophisticated Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) (Esch et al. 2004; Conners & van Dyk 2007), to analyze jet features in 11 Chandra images of high redshift quasars (z ~ 2 - 4.8). Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. We measured the ratios of the X-ray and radio luminosities of the detected features and found that they are consistent with the CMB radiation relationship. We derived a range of the bulk lorentz factor (Γ) for detected jet features under the CMB jet emission model. There is no discernible trend of Γ with redshift within the sample. The efficiency of the X-ray emission between the detected jet feature and the corresponding quasar also shows no correlation with redshift. This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. We thank Teddy Cheung for providing the VLA radio images. Connors, A., & van Dyk, D. A. 2007, Statistical Challenges in Modern Astronomy IV, 371, 101 Esch, D. N., Connors, A., Karovska, M., & van Dyk, D. A. 2004, ApJ, 610, 1213
Intra-operative Localization of Brachytherapy Implants Using Intensity-based Registration
KarimAghaloo, Z.; Abolmaesumi, P.; Ahmidi, N.; Chen, T.K.; Gobbi, D. G.; Fichtinger, G.
2010-01-01
In prostate brachytherapy, a transrectal ultrasound (TRUS) will show the prostate boundary but not all the implanted seeds, while fluoroscopy will show all the seeds clearly but not the boundary. We propose an intensity-based registration between TRUS images and the implant reconstructed from uoroscopy as a means of achieving accurate intra-operative dosimetry. The TRUS images are first filtered and compounded, and then registered to the uoroscopy model via mutual information. A training phantom was implanted with 48 seeds and imaged. Various ultrasound filtering techniques were analyzed, and the best results were achieved with the Bayesian combination of adaptive thresholding, phase congruency, and compensation for the non-uniform ultrasound beam profile in the elevation and lateral directions. The average registration error between corresponding seeds relative to the ground truth was 0.78 mm. The effect of false positives and false negatives in ultrasound were investigated by masking true seeds in the uoroscopy volume or adding false seeds. The registration error remained below 1.01 mm when the false positive rate was 31%, and 0.96 mm when the false negative rate was 31%. This fully automated method delivers excellent registration accuracy and robustness in phantom studies, and promises to demonstrate clinically adequate performance on human data as well. Keywords: Prostate brachytherapy, Ultrasound, Fluoroscopy, Registration. PMID:21152376
NASA Astrophysics Data System (ADS)
Nilsen, T.; Divine, D.; Rypdal, M.; Werner, J.; Rypdal, K.
2016-12-01
A modified two-dimensional stochastic-diffusive energy balance model (EBM) defined on a sphere was used for generating pseudoproxy/instrumental data and target data for surface temperature. The EBM is described in Rypdal et al. (2015). The target field has prescribed long-range memory (LRM) properties in time, and a frequency-dependent autocorrelation function in space. The Bayesian hierarchical model BARCAST, was used to generate surface temperature field reconstructions of an area corresponding to the European landmass for the past millennium. BARCAST has a built-in multivariate AR(1) model for the evolution of the temperature field, with an exponential, spatial covariance function, (Tingley & Huybers, 2010). The AR(1) process has a short-range memory, and we seek to find out how the competing spatiotemporal models influence the persistence of the reconstruction. A number of pseudoproxy experiments were performed with a fixed proxy network, using different signal-to-noise ratios (SNR) and colors of noise, (white/red). To study the persistence properties, the power-law relation of the power spectral density for LRM processes was used: S(f) f-β. The spectral exponent β was estimated both for local data and the spatial mean of the full region. The local β for the target varies between (0.1, 0.4), and for the spatial mean β 0.6. Results for the reconstructions show that the local and global memory is influenced by the noise color and level. Low noise levels or absence of noise results in reconstructions that exhibit similar properties as the target, while for higher noise levels the reconstructions have memory properties of a white/red character, (SNR=0.3 by standard deviation). Since an SNR of 0.5-0.25 is considered realistic for real proxy records, this implies that estimates of temporal persistence from proxy-based reconstructions reflect the proxy noise to a high degree, and not the signal as desired. Rypdal et al., 2015: Spatiotemporal Long-Range Persistence in Earth's Temperature Field: Analysis of Stochastic-Diffusive Energy Balance Models. J. Climate, 28, 8379-8395. Tingley & Huybers, 2010: A Bayesian algorithm for reconstructing climate anomalies in space and time. Part I: Development and applications to paleoclimate reconstruction problems. J. Climate, 23, 2759-2781.
Naidu, Sailen G; Kriegshauser, J Scott; Paden, Robert G; He, Miao; Wu, Qing; Hara, Amy K
2014-12-01
An ultra-low-dose radiation protocol reconstructed with model-based iterative reconstruction was compared with our standard-dose protocol. This prospective study evaluated 20 men undergoing surveillance-enhanced computed tomography after endovascular aneurysm repair. All patients underwent standard-dose and ultra-low-dose venous phase imaging; images were compared after reconstruction with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction. Objective measures of aortic contrast attenuation and image noise were averaged. Images were subjectively assessed (1 = worst, 5 = best) for diagnostic confidence, image noise, and vessel sharpness. Aneurysm sac diameter and endoleak detection were compared. Quantitative image noise was 26% less with ultra-low-dose model-based iterative reconstruction than with standard-dose adaptive statistical iterative reconstruction and 58% less than with ultra-low-dose adaptive statistical iterative reconstruction. Average subjective noise scores were not different between ultra-low-dose model-based iterative reconstruction and standard-dose adaptive statistical iterative reconstruction (3.8 vs. 4.0, P = .25). Subjective scores for diagnostic confidence were better with standard-dose adaptive statistical iterative reconstruction than with ultra-low-dose model-based iterative reconstruction (4.4 vs. 4.0, P = .002). Vessel sharpness was decreased with ultra-low-dose model-based iterative reconstruction compared with standard-dose adaptive statistical iterative reconstruction (3.3 vs. 4.1, P < .0001). Ultra-low-dose model-based iterative reconstruction and standard-dose adaptive statistical iterative reconstruction aneurysm sac diameters were not significantly different (4.9 vs. 4.9 cm); concordance for the presence of endoleak was 100% (P < .001). Compared with a standard-dose technique, an ultra-low-dose model-based iterative reconstruction protocol provides comparable image quality and diagnostic assessment at a 73% lower radiation dose.
Optimization-Based Image Reconstruction with Artifact Reduction in C-Arm CBCT
Xia, Dan; Langan, David A.; Solomon, Stephen B.; Zhang, Zheng; Chen, Buxin; Lai, Hao; Sidky, Emil Y.; Pan, Xiaochuan
2016-01-01
We investigate an optimization-based reconstruction, with an emphasis on image-artifact reduction, from data collected in C-arm cone-beam computed tomography (CBCT) employed in image-guided interventional procedures. In the study, an image to be reconstructed is formulated as a solution to a convex optimization program in which a weighted data divergence is minimized subject to a constraint on the image total variation (TV); a data-derivative fidelity is introduced in the program specifically for effectively suppressing dominant, low-frequency data artifact caused by, e.g., data truncation; and the Chambolle-Pock (CP) algorithm is tailored to reconstruct an image through solving the program. Like any other reconstructions, the optimization-based reconstruction considered depends upon numerous parameters. We elucidate the parameters, illustrate their determination, and demonstrate their impact on the reconstruction. The optimization-based reconstruction, when applied to data collected from swine and patient subjects, yields images with visibly reduced artifacts in contrast to the reference reconstruction, and it also appears to exhibit a high degree of robustness against distinctively different anatomies of imaged subjects and scanning conditions of clinical significance. Knowledge and insights gained in the study may be exploited for aiding in the design of practical reconstructions of truly clinical-application utility. PMID:27694700
Optimization-based image reconstruction with artifact reduction in C-arm CBCT
NASA Astrophysics Data System (ADS)
Xia, Dan; Langan, David A.; Solomon, Stephen B.; Zhang, Zheng; Chen, Buxin; Lai, Hao; Sidky, Emil Y.; Pan, Xiaochuan
2016-10-01
We investigate an optimization-based reconstruction, with an emphasis on image-artifact reduction, from data collected in C-arm cone-beam computed tomography (CBCT) employed in image-guided interventional procedures. In the study, an image to be reconstructed is formulated as a solution to a convex optimization program in which a weighted data divergence is minimized subject to a constraint on the image total variation (TV); a data-derivative fidelity is introduced in the program specifically for effectively suppressing dominant, low-frequency data artifact caused by, e.g. data truncation; and the Chambolle-Pock (CP) algorithm is tailored to reconstruct an image through solving the program. Like any other reconstructions, the optimization-based reconstruction considered depends upon numerous parameters. We elucidate the parameters, illustrate their determination, and demonstrate their impact on the reconstruction. The optimization-based reconstruction, when applied to data collected from swine and patient subjects, yields images with visibly reduced artifacts in contrast to the reference reconstruction, and it also appears to exhibit a high degree of robustness against distinctively different anatomies of imaged subjects and scanning conditions of clinical significance. Knowledge and insights gained in the study may be exploited for aiding in the design of practical reconstructions of truly clinical-application utility.
Zhang, Dongxia; Gan, Yangzhou; Xiong, Jing; Xia, Zeyang
2017-02-01
Complete three-dimensional(3D) tooth model provides essential information to assist orthodontists for diagnosis and treatment planning. Currently, 3D tooth model is mainly obtained by segmentation and reconstruction from dental computed tomography(CT) images. However, the accuracy of 3D tooth model reconstructed from dental CT images is low and not applicable for invisalign design. And another serious problem also occurs, i.e. frequentative dental CT scan during different intervals of orthodontic treatment often leads to radiation to the patients. Hence, this paper proposed a method to reconstruct tooth model based on fusion of dental CT images and laser-scanned images. A complete3 D tooth model was reconstructed with the registration and fusion between the root reconstructed from dental CT images and the crown reconstructed from laser-scanned images. The crown of the complete 3D tooth model reconstructed with the proposed method has higher accuracy. Moreover, in order to reconstruct complete 3D tooth model of each orthodontic treatment interval, only one pre-treatment CT scan is needed and in the orthodontic treatment process only the laser-scan is required. Therefore, radiation to the patients can be reduced significantly.
A feasibility study for compressed sensing combined phase contrast MR angiography reconstruction
NASA Astrophysics Data System (ADS)
Lee, Dong-Hoon; Hong, Cheol-Pyo; Lee, Man-Woo; Han, Bong-Soo
2012-02-01
Phase contrast magnetic resonance angiography (PC MRA) is a technique for flow velocity measurement and vessels visualization, simultaneously. The PC MRA takes long scan time because each flow encoding gradients which are composed bipolar gradient type need to reconstruct the angiography image. Moreover, it takes more image acquisition time when we use the PC MRA at the low-tesla MRI system. In this study, we studied and evaluation of feasibility for CS MRI reconstruction combined PC MRA which data acquired by low-tesla MRI system. We used non-linear reconstruction algorithm which named Bregman iteration for CS image reconstruction and validate the usefulness of CS combined PC MRA reconstruction technique. The results of CS reconstructed PC MRA images provide similar level of image quality between fully sampled reconstruction data and sparse sampled reconstruction using CS technique. Although our results used half of sampling ratio and do not used specification hardware device or performance which are improving the temporal resolution of MR image acquisition such as parallel imaging reconstruction using phased array coil or non-cartesian trajectory, we think that CS combined PC MRA technique will be helpful to increase the temporal resolution and at low-tesla MRI system.
A Sparse Bayesian Approach for Forward-Looking Superresolution Radar Imaging
Zhang, Yin; Zhang, Yongchao; Huang, Yulin; Yang, Jianyu
2017-01-01
This paper presents a sparse superresolution approach for high cross-range resolution imaging of forward-looking scanning radar based on the Bayesian criterion. First, a novel forward-looking signal model is established as the product of the measurement matrix and the cross-range target distribution, which is more accurate than the conventional convolution model. Then, based on the Bayesian criterion, the widely-used sparse regularization is considered as the penalty term to recover the target distribution. The derivation of the cost function is described, and finally, an iterative expression for minimizing this function is presented. Alternatively, this paper discusses how to estimate the single parameter of Gaussian noise. With the advantage of a more accurate model, the proposed sparse Bayesian approach enjoys a lower model error. Meanwhile, when compared with the conventional superresolution methods, the proposed approach shows high cross-range resolution and small location error. The superresolution results for the simulated point target, scene data, and real measured data are presented to demonstrate the superior performance of the proposed approach. PMID:28604583
Bickel, David R.; Montazeri, Zahra; Hsieh, Pei-Chun; Beatty, Mary; Lawit, Shai J.; Bate, Nicholas J.
2009-01-01
Motivation: Measurements of gene expression over time enable the reconstruction of transcriptional networks. However, Bayesian networks and many other current reconstruction methods rely on assumptions that conflict with the differential equations that describe transcriptional kinetics. Practical approximations of kinetic models would enable inferring causal relationships between genes from expression data of microarray, tag-based and conventional platforms, but conclusions are sensitive to the assumptions made. Results: The representation of a sufficiently large portion of genome enables computation of an upper bound on how much confidence one may place in influences between genes on the basis of expression data. Information about which genes encode transcription factors is not necessary but may be incorporated if available. The methodology is generalized to cover cases in which expression measurements are missing for many of the genes that might control the transcription of the genes of interest. The assumption that the gene expression level is roughly proportional to the rate of translation led to better empirical performance than did either the assumption that the gene expression level is roughly proportional to the protein level or the Bayesian model average of both assumptions. Availability: http://www.oisb.ca points to R code implementing the methods (R Development Core Team 2004). Contact: dbickel@uottawa.ca Supplementary information: http://www.davidbickel.com PMID:19218351
Robust Tracking of Small Displacements with a Bayesian Estimator
Dumont, Douglas M.; Byram, Brett C.
2016-01-01
Radiation-force-based elasticity imaging describes a group of techniques that use acoustic radiation force (ARF) to displace tissue in order to obtain qualitative or quantitative measurements of tissue properties. Because ARF-induced displacements are on the order of micrometers, tracking these displacements in vivo can be challenging. Previously, it has been shown that Bayesian-based estimation can overcome some of the limitations of a traditional displacement estimator like normalized cross-correlation (NCC). In this work, we describe a Bayesian framework that combines a generalized Gaussian-Markov random field (GGMRF) prior with an automated method for selecting the prior’s width. We then evaluate its performance in the context of tracking the micrometer-order displacements encountered in an ARF-based method like acoustic radiation force impulse (ARFI) imaging. The results show that bias, variance, and mean-square error performance vary with prior shape and width, and that an almost one order-of-magnitude reduction in mean-square error can be achieved by the estimator at the automatically-selected prior width. Lesion simulations show that the proposed estimator has a higher contrast-to-noise ratio but lower contrast than NCC, median-filtered NCC, and the previous Bayesian estimator, with a non-Gaussian prior shape having better lesion-edge resolution than a Gaussian prior. In vivo results from a cardiac, radiofrequency ablation ARFI imaging dataset show quantitative improvements in lesion contrast-to-noise ratio over NCC as well as the previous Bayesian estimator. PMID:26529761
NASA Astrophysics Data System (ADS)
Kurien, Binoy G.; Ashcom, Jonathan B.; Shah, Vinay N.; Rachlin, Yaron; Tarokh, Vahid
2017-01-01
Atmospheric turbulence presents a fundamental challenge to Fourier phase recovery in optical interferometry. Typical reconstruction algorithms employ Bayesian inference techniques which rely on prior knowledge of the scene under observation. In contrast, redundant spacing calibration (RSC) algorithms employ redundancy in the baselines of the interferometric array to directly expose the contribution of turbulence, thereby enabling phase recovery for targets of arbitrary and unknown complexity. Traditionally RSC algorithms have been applied directly to single-exposure measurements, which are reliable only at high photon flux in general. In scenarios of low photon flux, such as those arising in the observation of dim objects in space, one must instead rely on time-averaged, atmosphere-invariant quantities such as the bispectrum. In this paper, we develop a novel RSC-based algorithm for prior-less phase recovery in which we generalize the bispectrum to higher order atmosphere-invariants (n-spectra) for improved sensitivity. We provide a strategy for selection of a high-signal-to-noise ratio set of n-spectra using the graph-theoretic notion of the minimum cycle basis. We also discuss a key property of this set (wrap-invariance), which then enables reliable application of standard linear estimation techniques to recover the Fourier phases from the 2π-wrapped n-spectra phases. For validation, we analyse the expected shot-noise-limited performance of our algorithm for both pairwise and Fizeau interferometric architectures, and corroborate this analysis with simulation results showing performance near an atmosphere-oracle Cramer-Rao bound. Lastly, we apply techniques from the field of compressed sensing to perform image reconstruction from the estimated complex visibilities.
GPU-based prompt gamma ray imaging from boron neutron capture therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae, E-mail: suhsanta@catholic.ac.kr
Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU).more » Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.« less
Lin, Jyh-Miin; Patterson, Andrew J; Chang, Hing-Chiu; Gillard, Jonathan H; Graves, Martin J
2015-10-01
To propose a new reduced field-of-view (rFOV) strategy for iterative reconstructions in a clinical environment. Iterative reconstructions can incorporate regularization terms to improve the image quality of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI. However, the large amount of calculations required for full FOV iterative reconstructions has posed a huge computational challenge for clinical usage. By subdividing the entire problem into smaller rFOVs, the iterative reconstruction can be accelerated on a desktop with a single graphic processing unit (GPU). This rFOV strategy divides the iterative reconstruction into blocks, based on the block-diagonal dominant structure. A near real-time reconstruction system was developed for the clinical MR unit, and parallel computing was implemented using the object-oriented model. In addition, the Toeplitz method was implemented on the GPU to reduce the time required for full interpolation. Using the data acquired from the PROPELLER MRI, the reconstructed images were then saved in the digital imaging and communications in medicine format. The proposed rFOV reconstruction reduced the gridding time by 97%, as the total iteration time was 3 s even with multiple processes running. A phantom study showed that the structure similarity index for rFOV reconstruction was statistically superior to conventional density compensation (p < 0.001). In vivo study validated the increased signal-to-noise ratio, which is over four times higher than with density compensation. Image sharpness index was improved using the regularized reconstruction implemented. The rFOV strategy permits near real-time iterative reconstruction to improve the image quality of PROPELLER images. Substantial improvements in image quality metrics were validated in the experiments. The concept of rFOV reconstruction may potentially be applied to other kinds of iterative reconstructions for shortened reconstruction duration.
A Convex Formulation for Magnetic Particle Imaging X-Space Reconstruction.
Konkle, Justin J; Goodwill, Patrick W; Hensley, Daniel W; Orendorff, Ryan D; Lustig, Michael; Conolly, Steven M
2015-01-01
Magnetic Particle Imaging (mpi) is an emerging imaging modality with exceptional promise for clinical applications in rapid angiography, cell therapy tracking, cancer imaging, and inflammation imaging. Recent publications have demonstrated quantitative mpi across rat sized fields of view with x-space reconstruction methods. Critical to any medical imaging technology is the reliability and accuracy of image reconstruction. Because the average value of the mpi signal is lost during direct-feedthrough signal filtering, mpi reconstruction algorithms must recover this zero-frequency value. Prior x-space mpi recovery techniques were limited to 1d approaches which could introduce artifacts when reconstructing a 3d image. In this paper, we formulate x-space reconstruction as a 3d convex optimization problem and apply robust a priori knowledge of image smoothness and non-negativity to reduce non-physical banding and haze artifacts. We conclude with a discussion of the powerful extensibility of the presented formulation for future applications.
A hybrid algorithm for speckle noise reduction of ultrasound images.
Singh, Karamjeet; Ranade, Sukhjeet Kaur; Singh, Chandan
2017-09-01
Medical images are contaminated by multiplicative speckle noise which significantly reduce the contrast of ultrasound images and creates a negative effect on various image interpretation tasks. In this paper, we proposed a hybrid denoising approach which collaborate the both local and nonlocal information in an efficient manner. The proposed hybrid algorithm consist of three stages in which at first stage the use of local statistics in the form of guided filter is used to reduce the effect of speckle noise initially. Then, an improved speckle reducing bilateral filter (SRBF) is developed to further reduce the speckle noise from the medical images. Finally, to reconstruct the diffused edges we have used the efficient post-processing technique which jointly considered the advantages of both bilateral and nonlocal mean (NLM) filter for the attenuation of speckle noise efficiently. The performance of proposed hybrid algorithm is evaluated on synthetic, simulated and real ultrasound images. The experiments conducted on various test images demonstrate that our proposed hybrid approach outperforms the various traditional speckle reduction approaches included recently proposed NLM and optimized Bayesian-based NLM. The results of various quantitative, qualitative measures and by visual inspection of denoise synthetic and real ultrasound images demonstrate that the proposed hybrid algorithm have strong denoising capability and able to preserve the fine image details such as edge of a lesion better than previously developed methods for speckle noise reduction. The denoising and edge preserving capability of hybrid algorithm is far better than existing traditional and recently proposed speckle reduction (SR) filters. The success of proposed algorithm would help in building the lay foundation for inventing the hybrid algorithms for denoising of ultrasound images. Copyright © 2017 Elsevier B.V. All rights reserved.
Event-by-event PET image reconstruction using list-mode origin ensembles algorithm
NASA Astrophysics Data System (ADS)
Andreyev, Andriy
2016-03-01
There is a great demand for real time or event-by-event (EBE) image reconstruction in emission tomography. Ideally, as soon as event has been detected by the acquisition electronics, it needs to be used in the image reconstruction software. This would greatly speed up the image reconstruction since most of the data will be processed and reconstructed while the patient is still undergoing the scan. Unfortunately, the current industry standard is that the reconstruction of the image would not start until all the data for the current image frame would be acquired. Implementing an EBE reconstruction for MLEM family of algorithms is possible, but not straightforward as multiple (computationally expensive) updates to the image estimate are required. In this work an alternative Origin Ensembles (OE) image reconstruction algorithm for PET imaging is converted to EBE mode and is investigated whether it is viable alternative for real-time image reconstruction. In OE algorithm all acquired events are seen as points that are located somewhere along the corresponding line-of-responses (LORs), together forming a point cloud. Iteratively, with a multitude of quasi-random shifts following the likelihood function the point cloud converges to a reflection of an actual radiotracer distribution with the degree of accuracy that is similar to MLEM. New data can be naturally added into the point cloud. Preliminary results with simulated data show little difference between regular reconstruction and EBE mode, proving the feasibility of the proposed approach.
Improved image decompression for reduced transform coding artifacts
NASA Technical Reports Server (NTRS)
Orourke, Thomas P.; Stevenson, Robert L.
1994-01-01
The perceived quality of images reconstructed from low bit rate compression is severely degraded by the appearance of transform coding artifacts. This paper proposes a method for producing higher quality reconstructed images based on a stochastic model for the image data. Quantization (scalar or vector) partitions the transform coefficient space and maps all points in a partition cell to a representative reconstruction point, usually taken as the centroid of the cell. The proposed image estimation technique selects the reconstruction point within the quantization partition cell which results in a reconstructed image which best fits a non-Gaussian Markov random field (MRF) image model. This approach results in a convex constrained optimization problem which can be solved iteratively. At each iteration, the gradient projection method is used to update the estimate based on the image model. In the transform domain, the resulting coefficient reconstruction points are projected to the particular quantization partition cells defined by the compressed image. Experimental results will be shown for images compressed using scalar quantization of block DCT and using vector quantization of subband wavelet transform. The proposed image decompression provides a reconstructed image with reduced visibility of transform coding artifacts and superior perceived quality.
Ali, Syed Shujait; Yu, Yan; Pfosser, Martin; Wetschnig, Wolfgang
2012-01-01
Background and Aims Subfamily Hyacinthoideae (Hyacinthaceae) comprises more than 400 species. Members are distributed in sub-Saharan Africa, Madagascar, India, eastern Asia, the Mediterranean region and Eurasia. Hyacinthoideae, like many other plant lineages, show disjunct distribution patterns. The aim of this study was to reconstruct the biogeographical history of Hyacinthoideae based on phylogenetic analyses, to find the possible ancestral range of Hyacinthoideae and to identify factors responsible for the current disjunct distribution pattern. Methods Parsimony and Bayesian approaches were applied to obtain phylogenetic trees, based on sequences of the trnL-F region. Biogeographical inferences were obtained by applying statistical dispersal-vicariance analysis (S-DIVA) and Bayesian binary MCMC (BBM) analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies). Key Results S-DIVA and BBM analyses suggest that the Hyacinthoideae clade seem to have originated in sub-Saharan Africa. Dispersal and vicariance played vital roles in creating the disjunct distribution pattern. Results also suggest an early dispersal to the Mediterranean region, and thus the northward route (from sub-Saharan Africa to Mediterranean) of dispersal is plausible for members of subfamily Hyacinthoideae. Conclusions Biogeographical analyses reveal that subfamily Hyacinthoideae has originated in sub-Saharan Africa. S-DIVA indicates an early dispersal event to the Mediterranean region followed by a vicariance event, which resulted in Hyacintheae and Massonieae tribes. By contrast, BBM analysis favours dispersal to the Mediterranean region, eastern Asia and Europe. Biogeographical analysis suggests that sub-Saharan Africa and the Mediterranean region have played vital roles as centres of diversification and radiation within subfamily Hyacinthoideae. In this bimodal distribution pattern, sub-Saharan Africa is the primary centre of diversity and the Mediterranean region is the secondary centre of diversity. Sub-Saharan Africa was the source area for radiation toward Madagascar, the Mediterranean region and India. Radiations occurred from the Mediterranean region to eastern Asia, Europe, western Asia and India. PMID:22039008
High-resolution reconstruction for terahertz imaging.
Xu, Li-Min; Fan, Wen-Hui; Liu, Jia
2014-11-20
We present a high-resolution (HR) reconstruction model and algorithms for terahertz imaging, taking advantage of super-resolution methodology and algorithms. The algorithms used include projection onto a convex sets approach, iterative backprojection approach, Lucy-Richardson iteration, and 2D wavelet decomposition reconstruction. Using the first two HR reconstruction methods, we successfully obtain HR terahertz images with improved definition and lower noise from four low-resolution (LR) 22×24 terahertz images taken from our homemade THz-TDS system at the same experimental conditions with 1.0 mm pixel. Using the last two HR reconstruction methods, we transform one relatively LR terahertz image to a HR terahertz image with decreased noise. This indicates potential application of HR reconstruction methods in terahertz imaging with pulsed and continuous wave terahertz sources.
The historical biogeography of Mammalia
Springer, Mark S.; Meredith, Robert W.; Janecka, Jan E.; Murphy, William J.
2011-01-01
Palaeobiogeographic reconstructions are underpinned by phylogenies, divergence times and ancestral area reconstructions, which together yield ancestral area chronograms that provide a basis for proposing and testing hypotheses of dispersal and vicariance. Methods for area coding include multi-state coding with a single character, binary coding with multiple characters and string coding. Ancestral reconstruction methods are divided into parsimony versus Bayesian/likelihood approaches. We compared nine methods for reconstructing ancestral areas for placental mammals. Ambiguous reconstructions were a problem for all methods. Important differences resulted from coding areas based on the geographical ranges of extant species versus the geographical provenance of the oldest fossil for each lineage. Africa and South America were reconstructed as the ancestral areas for Afrotheria and Xenarthra, respectively. Most methods reconstructed Eurasia as the ancestral area for Boreoeutheria, Euarchontoglires and Laurasiatheria. The coincidence of molecular dates for the separation of Afrotheria and Xenarthra at approximately 100 Ma with the plate tectonic sundering of Africa and South America hints at the importance of vicariance in the early history of Placentalia. Dispersal has also been important including the origins of Madagascar's endemic mammal fauna. Further studies will benefit from increased taxon sampling and the application of new ancestral area reconstruction methods. PMID:21807730
Pant, Jeevan K; Krishnan, Sridhar
2014-04-01
A new algorithm for the reconstruction of electrocardiogram (ECG) signals and a dictionary learning algorithm for the enhancement of its reconstruction performance for a class of signals are proposed. The signal reconstruction algorithm is based on minimizing the lp pseudo-norm of the second-order difference, called as the lp(2d) pseudo-norm, of the signal. The optimization involved is carried out using a sequential conjugate-gradient algorithm. The dictionary learning algorithm uses an iterative procedure wherein a signal reconstruction and a dictionary update steps are repeated until a convergence criterion is satisfied. The signal reconstruction step is implemented by using the proposed signal reconstruction algorithm and the dictionary update step is implemented by using the linear least-squares method. Extensive simulation results demonstrate that the proposed algorithm yields improved reconstruction performance for temporally correlated ECG signals relative to the state-of-the-art lp(1d)-regularized least-squares and Bayesian learning based algorithms. Also for a known class of signals, the reconstruction performance of the proposed algorithm can be improved by applying it in conjunction with a dictionary obtained using the proposed dictionary learning algorithm.
Chen, Guang-Hong; Li, Yinsheng
2015-08-01
In x-ray computed tomography (CT), a violation of the Tuy data sufficiency condition leads to limited-view artifacts. In some applications, it is desirable to use data corresponding to a narrow temporal window to reconstruct images with reduced temporal-average artifacts. However, the need to reduce temporal-average artifacts in practice may result in a violation of the Tuy condition and thus undesirable limited-view artifacts. In this paper, the authors present a new iterative reconstruction method, synchronized multiartifact reduction with tomographic reconstruction (SMART-RECON), to eliminate limited-view artifacts using data acquired within an ultranarrow temporal window that severely violates the Tuy condition. In time-resolved contrast enhanced CT acquisitions, image contrast dynamically changes during data acquisition. Each image reconstructed from data acquired in a given temporal window represents one time frame and can be denoted as an image vector. Conventionally, each individual time frame is reconstructed independently. In this paper, all image frames are grouped into a spatial-temporal image matrix and are reconstructed together. Rather than the spatial and/or temporal smoothing regularizers commonly used in iterative image reconstruction, the nuclear norm of the spatial-temporal image matrix is used in SMART-RECON to regularize the reconstruction of all image time frames. This regularizer exploits the low-dimensional structure of the spatial-temporal image matrix to mitigate limited-view artifacts when an ultranarrow temporal window is desired in some applications to reduce temporal-average artifacts. Both numerical simulations in two dimensional image slices with known ground truth and in vivo human subject data acquired in a contrast enhanced cone beam CT exam have been used to validate the proposed SMART-RECON algorithm and to demonstrate the initial performance of the algorithm. Reconstruction errors and temporal fidelity of the reconstructed images were quantified using the relative root mean square error (rRMSE) and the universal quality index (UQI) in numerical simulations. The performance of the SMART-RECON algorithm was compared with that of the prior image constrained compressed sensing (PICCS) reconstruction quantitatively in simulations and qualitatively in human subject exam. In numerical simulations, the 240(∘) short scan angular span was divided into four consecutive 60(∘) angular subsectors. SMART-RECON enables four high temporal fidelity images without limited-view artifacts. The average rRMSE is 16% and UQIs are 0.96 and 0.95 for the two local regions of interest, respectively. In contrast, the corresponding average rRMSE and UQIs are 25%, 0.78, and 0.81, respectively, for the PICCS reconstruction. Note that only one filtered backprojection image can be reconstructed from the same data set with an average rRMSE and UQIs are 45%, 0.71, and 0.79, respectively, to benchmark reconstruction accuracies. For in vivo contrast enhanced cone beam CT data acquired from a short scan angular span of 200(∘), three 66(∘) angular subsectors were used in SMART-RECON. The results demonstrated clear contrast difference in three SMART-RECON reconstructed image volumes without limited-view artifacts. In contrast, for the same angular sectors, PICCS cannot reconstruct images without limited-view artifacts and with clear contrast difference in three reconstructed image volumes. In time-resolved CT, the proposed SMART-RECON method provides a new method to eliminate limited-view artifacts using data acquired in an ultranarrow temporal window, which corresponds to approximately 60(∘) angular subsectors.
Hernández-Martin, Estefania; Marcano, Francisco; Casanova, Oscar; Modroño, Cristian; Plata-Bello, Julio; González-Mora, Jose Luis
2017-01-01
Abstract. Diffuse optical tomography (DOT) measures concentration changes in both oxy- and deoxyhemoglobin providing three-dimensional images of local brain activations. A pilot study, which compares both DOT and functional magnetic resonance imaging (fMRI) volumes through t-maps given by canonical statistical parametric mapping (SPM) processing for both data modalities, is presented. The DOT series were processed using a method that is based on a Bayesian filter application on raw DOT data to remove physiological changes and minimum description length application index to select a number of singular values, which reduce the data dimensionality during image reconstruction and adaptation of DOT volume series to normalized standard space. Therefore, statistical analysis is performed with canonical SPM software in the same way as fMRI analysis is done, accepting DOT volumes as if they were fMRI volumes. The results show the reproducibility and ruggedness of the method to process DOT series on group analysis using cognitive paradigms on the prefrontal cortex. Difficulties such as the fact that scalp–brain distances vary between subjects or cerebral activations are difficult to reproduce due to strategies used by the subjects to solve arithmetic problems are considered. T-images given by fMRI and DOT volume series analyzed in SPM show that at the functional level, both DOT and fMRI measures detect the same areas, although DOT provides complementary information to fMRI signals about cerebral activity. PMID:28386575
Volume-of-interest reconstruction from severely truncated data in dental cone-beam CT
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Kusnoto, Budi; Han, Xiao; Sidky, E. Y.; Pan, Xiaochuan
2015-03-01
As cone-beam computed tomography (CBCT) has gained popularity rapidly in dental imaging applications in the past two decades, radiation dose in CBCT imaging remains a potential, health concern to the patients. It is a common practice in dental CBCT imaging that only a small volume of interest (VOI) containing the teeth of interest is illuminated, thus substantially lowering imaging radiation dose. However, this would yield data with severe truncations along both transverse and longitudinal directions. Although images within the VOI reconstructed from truncated data can be of some practical utility, they often are compromised significantly by truncation artifacts. In this work, we investigate optimization-based reconstruction algorithms for VOI image reconstruction from CBCT data of dental patients containing severe truncations. In an attempt to further reduce imaging dose, we also investigate optimization-based image reconstruction from severely truncated data collected at projection views substantially fewer than those used in clinical dental applications. Results of our study show that appropriately designed optimization-based reconstruction can yield VOI images with reduced truncation artifacts, and that, when reconstructing from only one half, or even one quarter, of clinical data, it can also produce VOI images comparable to that of clinical images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yongjun; Lim, Jonghyuck; Kim, Namkug
2013-05-15
Purpose: To investigate the effect of using different computed tomography (CT) scanners on the accuracy of high-resolution CT (HRCT) images in classifying regional disease patterns in patients with diffuse lung disease, support vector machine (SVM) and Bayesian classifiers were applied to multicenter data. Methods: Two experienced radiologists marked sets of 600 rectangular 20 Multiplication-Sign 20 pixel regions of interest (ROIs) on HRCT images obtained from two scanners (GE and Siemens), including 100 ROIs for each of local patterns of lungs-normal lung and five of regional pulmonary disease patterns (ground-glass opacity, reticular opacity, honeycombing, emphysema, and consolidation). Each ROI was assessedmore » using 22 quantitative features belonging to one of the following descriptors: histogram, gradient, run-length, gray level co-occurrence matrix, low-attenuation area cluster, and top-hat transform. For automatic classification, a Bayesian classifier and a SVM classifier were compared under three different conditions. First, classification accuracies were estimated using data from each scanner. Next, data from the GE and Siemens scanners were used for training and testing, respectively, and vice versa. Finally, all ROI data were integrated regardless of the scanner type and were then trained and tested together. All experiments were performed based on forward feature selection and fivefold cross-validation with 20 repetitions. Results: For each scanner, better classification accuracies were achieved with the SVM classifier than the Bayesian classifier (92% and 82%, respectively, for the GE scanner; and 92% and 86%, respectively, for the Siemens scanner). The classification accuracies were 82%/72% for training with GE data and testing with Siemens data, and 79%/72% for the reverse. The use of training and test data obtained from the HRCT images of different scanners lowered the classification accuracy compared to the use of HRCT images from the same scanner. For integrated ROI data obtained from both scanners, the classification accuracies with the SVM and Bayesian classifiers were 92% and 77%, respectively. The selected features resulting from the classification process differed by scanner, with more features included for the classification of the integrated HRCT data than for the classification of the HRCT data from each scanner. For the integrated data, consisting of HRCT images of both scanners, the classification accuracy based on the SVM was statistically similar to the accuracy of the data obtained from each scanner. However, the classification accuracy of the integrated data using the Bayesian classifier was significantly lower than the classification accuracy of the ROI data of each scanner. Conclusions: The use of an integrated dataset along with a SVM classifier rather than a Bayesian classifier has benefits in terms of the classification accuracy of HRCT images acquired with more than one scanner. This finding is of relevance in studies involving large number of images, as is the case in a multicenter trial with different scanners.« less
A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT
Cho, Seungryong; Xia, Dan; Pellizzari, Charles A.; Pan, Xiaochuan
2010-01-01
Purpose: Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. Methods: The proposed approach comprises of two reconstruction steps. In the first step, a chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack–Noo-formula-based filteredbackprojection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. Results: The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. Conclusions: They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories. PMID:20175463
A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT.
Cho, Seungryong; Xia, Dan; Pellizzari, Charles A; Pan, Xiaochuan
2010-01-01
Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. The proposed approach comprises of two reconstruction steps. In the first step, a chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack-Noo-formula-based filteredback-projection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories.
Pixel-based skin segmentation in psoriasis images.
George, Y; Aldeen, M; Garnavi, R
2016-08-01
In this paper, we present a detailed comparison study of skin segmentation methods for psoriasis images. Different techniques are modified and then applied to a set of psoriasis images acquired from the Royal Melbourne Hospital, Melbourne, Australia, with aim of finding the best technique suited for application to psoriasis images. We investigate the effect of different colour transformations on skin detection performance. In this respect, explicit skin thresholding is evaluated with three different decision boundaries (CbCr, HS and rgHSV). Histogram-based Bayesian classifier is applied to extract skin probability maps (SPMs) for different colour channels. This is then followed by using different approaches to find a binary skin map (SM) image from the SPMs. The approaches used include binary decision tree (DT) and Otsu's thresholding. Finally, a set of morphological operations are implemented to refine the resulted SM image. The paper provides detailed analysis and comparison of the performance of the Bayesian classifier in five different colour spaces (YCbCr, HSV, RGB, XYZ and CIELab). The results show that histogram-based Bayesian classifier is more effective than explicit thresholding, when applied to psoriasis images. It is also found that decision boundary CbCr outperforms HS and rgHSV. Another finding is that the SPMs of Cb, Cr, H and B-CIELab colour bands yield the best SMs for psoriasis images. In this study, we used a set of 100 psoriasis images for training and testing the presented methods. True Positive (TP) and True Negative (TN) are used as statistical evaluation measures.
Joint reconstruction of multiview compressed images.
Thirumalai, Vijayaraghavan; Frossard, Pascal
2013-05-01
Distributed representation of correlated multiview images is an important problem that arises in vision sensor networks. This paper concentrates on the joint reconstruction problem where the distributively compressed images are decoded together in order to take benefit from the image correlation. We consider a scenario where the images captured at different viewpoints are encoded independently using common coding solutions (e.g., JPEG) with a balanced rate distribution among different cameras. A central decoder first estimates the inter-view image correlation from the independently compressed data. The joint reconstruction is then cast as a constrained convex optimization problem that reconstructs total-variation (TV) smooth images, which comply with the estimated correlation model. At the same time, we add constraints that force the reconstructed images to be as close as possible to their compressed versions. We show through experiments that the proposed joint reconstruction scheme outperforms independent reconstruction in terms of image quality, for a given target bit rate. In addition, the decoding performance of our algorithm compares advantageously to state-of-the-art distributed coding schemes based on motion learning and on the DISCOVER algorithm.
NASA Astrophysics Data System (ADS)
Sak, Mark; Duric, Neb; Littrup, Peter; Sherman, Mark; Gierach, Gretchen
2017-03-01
Ultrasound tomography (UST) is an emerging modality that can offer quantitative measurements of breast density. Recent breakthroughs in UST image reconstruction involve the use of a waveform reconstruction as opposed to a raybased reconstruction. The sound speed (SS) images that are created using the waveform reconstruction have a much higher image quality. These waveform images offer improved resolution and contrasts between regions of dense and fatty tissues. As part of a study that was designed to assess breast density changes using UST sound speed imaging among women undergoing tamoxifen therapy, UST waveform sound speed images were then reconstructed for a subset of participants. These initial results show that changes to the parenchymal tissue can more clearly be visualized when using the waveform sound speed images. Additional quantitative testing of the waveform images was also started to test the hypothesis that waveform sound speed images are a more robust measure of breast density than ray-based reconstructions. Further analysis is still needed to better understand how tamoxifen affects breast tissue.
NASA Astrophysics Data System (ADS)
Wu, Wei; Zhao, Dewei; Zhang, Huan
2015-12-01
Super-resolution image reconstruction is an effective method to improve the image quality. It has important research significance in the field of image processing. However, the choice of the dictionary directly affects the efficiency of image reconstruction. A sparse representation theory is introduced into the problem of the nearest neighbor selection. Based on the sparse representation of super-resolution image reconstruction method, a super-resolution image reconstruction algorithm based on multi-class dictionary is analyzed. This method avoids the redundancy problem of only training a hyper complete dictionary, and makes the sub-dictionary more representatives, and then replaces the traditional Euclidean distance computing method to improve the quality of the whole image reconstruction. In addition, the ill-posed problem is introduced into non-local self-similarity regularization. Experimental results show that the algorithm is much better results than state-of-the-art algorithm in terms of both PSNR and visual perception.
Image reconstruction for PET/CT scanners: past achievements and future challenges
Tong, Shan; Alessio, Adam M; Kinahan, Paul E
2011-01-01
PET is a medical imaging modality with proven clinical value for disease diagnosis and treatment monitoring. The integration of PET and CT on modern scanners provides a synergy of the two imaging modalities. Through different mathematical algorithms, PET data can be reconstructed into the spatial distribution of the injected radiotracer. With dynamic imaging, kinetic parameters of specific biological processes can also be determined. Numerous efforts have been devoted to the development of PET image reconstruction methods over the last four decades, encompassing analytic and iterative reconstruction methods. This article provides an overview of the commonly used methods. Current challenges in PET image reconstruction include more accurate quantitation, TOF imaging, system modeling, motion correction and dynamic reconstruction. Advances in these aspects could enhance the use of PET/CT imaging in patient care and in clinical research studies of pathophysiology and therapeutic interventions. PMID:21339831
Image reconstructions from super-sampled data sets with resolution modeling in PET imaging.
Li, Yusheng; Matej, Samuel; Metzler, Scott D
2014-12-01
Spatial resolution in positron emission tomography (PET) is still a limiting factor in many imaging applications. To improve the spatial resolution for an existing scanner with fixed crystal sizes, mechanical movements such as scanner wobbling and object shifting have been considered for PET systems. Multiple acquisitions from different positions can provide complementary information and increased spatial sampling. The objective of this paper is to explore an efficient and useful reconstruction framework to reconstruct super-resolution images from super-sampled low-resolution data sets. The authors introduce a super-sampling data acquisition model based on the physical processes with tomographic, downsampling, and shifting matrices as its building blocks. Based on the model, we extend the MLEM and Landweber algorithms to reconstruct images from super-sampled data sets. The authors also derive a backprojection-filtration-like (BPF-like) method for the super-sampling reconstruction. Furthermore, they explore variant methods for super-sampling reconstructions: the separate super-sampling resolution-modeling reconstruction and the reconstruction without downsampling to further improve image quality at the cost of more computation. The authors use simulated reconstruction of a resolution phantom to evaluate the three types of algorithms with different super-samplings at different count levels. Contrast recovery coefficient (CRC) versus background variability, as an image-quality metric, is calculated at each iteration for all reconstructions. The authors observe that all three algorithms can significantly and consistently achieve increased CRCs at fixed background variability and reduce background artifacts with super-sampled data sets at the same count levels. For the same super-sampled data sets, the MLEM method achieves better image quality than the Landweber method, which in turn achieves better image quality than the BPF-like method. The authors also demonstrate that the reconstructions from super-sampled data sets using a fine system matrix yield improved image quality compared to the reconstructions using a coarse system matrix. Super-sampling reconstructions with different count levels showed that the more spatial-resolution improvement can be obtained with higher count at a larger iteration number. The authors developed a super-sampling reconstruction framework that can reconstruct super-resolution images using the super-sampling data sets simultaneously with known acquisition motion. The super-sampling PET acquisition using the proposed algorithms provides an effective and economic way to improve image quality for PET imaging, which has an important implication in preclinical and clinical region-of-interest PET imaging applications.
NASA Astrophysics Data System (ADS)
Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua
2016-07-01
On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.
Super resolution reconstruction of infrared images based on classified dictionary learning
NASA Astrophysics Data System (ADS)
Liu, Fei; Han, Pingli; Wang, Yi; Li, Xuan; Bai, Lu; Shao, Xiaopeng
2018-05-01
Infrared images always suffer from low-resolution problems resulting from limitations of imaging devices. An economical approach to combat this problem involves reconstructing high-resolution images by reasonable methods without updating devices. Inspired by compressed sensing theory, this study presents and demonstrates a Classified Dictionary Learning method to reconstruct high-resolution infrared images. It classifies features of the samples into several reasonable clusters and trained a dictionary pair for each cluster. The optimal pair of dictionaries is chosen for each image reconstruction and therefore, more satisfactory results is achieved without the increase in computational complexity and time cost. Experiments and results demonstrated that it is a viable method for infrared images reconstruction since it improves image resolution and recovers detailed information of targets.
Multi-class segmentation of neuronal electron microscopy images using deep learning
NASA Astrophysics Data System (ADS)
Khobragade, Nivedita; Agarwal, Chirag
2018-03-01
Study of connectivity of neural circuits is an essential step towards a better understanding of functioning of the nervous system. With the recent improvement in imaging techniques, high-resolution and high-volume images are being generated requiring automated segmentation techniques. We present a pixel-wise classification method based on Bayesian SegNet architecture. We carried out multi-class segmentation on serial section Transmission Electron Microscopy (ssTEM) images of Drosophila third instar larva ventral nerve cord, labeling the four classes of neuron membranes, neuron intracellular space, mitochondria and glia / extracellular space. Bayesian SegNet was trained using 256 ssTEM images of 256 x 256 pixels and tested on 64 different ssTEM images of the same size, from the same serial stack. Due to high class imbalance, we used a class-balanced version of Bayesian SegNet by re-weighting each class based on their relative frequency. We achieved an overall accuracy of 93% and a mean class accuracy of 88% for pixel-wise segmentation using this encoder-decoder approach. On evaluating the segmentation results using similarity metrics like SSIM and Dice Coefficient, we obtained scores of 0.994 and 0.886 respectively. Additionally, we used the network trained using the 256 ssTEM images of Drosophila third instar larva for multi-class labeling of ISBI 2012 challenge ssTEM dataset.
TU-FG-BRB-07: GPU-Based Prompt Gamma Ray Imaging From Boron Neutron Capture Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S; Suh, T; Yoon, D
Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU).more » Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusion: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray reconstruction using the GPU computation for BNCT simulations.« less
NASA Astrophysics Data System (ADS)
Yang, Fuqiang; Zhang, Dinghua; Huang, Kuidong; Gao, Zongzhao; Yang, YaFei
2018-02-01
Based on the discrete algebraic reconstruction technique (DART), this study aims to address and test a new improved algorithm applied to incomplete projection data to generate a high quality reconstruction image by reducing the artifacts and noise in computed tomography. For the incomplete projections, an augmented Lagrangian based on compressed sensing is first used in the initial reconstruction for segmentation of the DART to get higher contrast graphics for boundary and non-boundary pixels. Then, the block matching 3D filtering operator was used to suppress the noise and to improve the gray distribution of the reconstructed image. Finally, simulation studies on the polychromatic spectrum were performed to test the performance of the new algorithm. Study results show a significant improvement in the signal-to-noise ratios (SNRs) and average gradients (AGs) of the images reconstructed from incomplete data. The SNRs and AGs of the new images reconstructed by DART-ALBM were on average 30%-40% and 10% higher than the images reconstructed by DART algorithms. Since the improved DART-ALBM algorithm has a better robustness to limited-view reconstruction, which not only makes the edge of the image clear but also makes the gray distribution of non-boundary pixels better, it has the potential to improve image quality from incomplete projections or sparse projections.
NASA Astrophysics Data System (ADS)
Han, Xiao; Pearson, Erik; Pelizzari, Charles; Al-Hallaq, Hania; Sidky, Emil Y.; Bian, Junguo; Pan, Xiaochuan
2015-06-01
Kilo-voltage (KV) cone-beam computed tomography (CBCT) unit mounted onto a linear accelerator treatment system, often referred to as on-board imager (OBI), plays an increasingly important role in image-guided radiation therapy. While the FDK algorithm is currently used for reconstructing images from clinical OBI data, optimization-based reconstruction has also been investigated for OBI CBCT. An optimization-based reconstruction involves numerous parameters, which can significantly impact reconstruction properties (or utility). The success of an optimization-based reconstruction for a particular class of practical applications thus relies strongly on appropriate selection of parameter values. In the work, we focus on tailoring the constrained-TV-minimization-based reconstruction, an optimization-based reconstruction previously shown of some potential for CBCT imaging conditions of practical interest, to OBI imaging through appropriate selection of parameter values. In particular, for given real data of phantoms and patient collected with OBI CBCT, we first devise utility metrics specific to OBI-quality-assurance tasks and then apply them to guiding the selection of parameter values in constrained-TV-minimization-based reconstruction. The study results show that the reconstructions are with improvement, relative to clinical FDK reconstruction, in both visualization and quantitative assessments in terms of the devised utility metrics.
The influence of image reconstruction algorithms on linear thorax EIT image analysis of ventilation.
Zhao, Zhanqi; Frerichs, Inéz; Pulletz, Sven; Müller-Lisse, Ullrich; Möller, Knut
2014-06-01
Analysis methods of electrical impedance tomography (EIT) images based on different reconstruction algorithms were examined. EIT measurements were performed on eight mechanically ventilated patients with acute respiratory distress syndrome. A maneuver with step increase of airway pressure was performed. EIT raw data were reconstructed offline with (1) filtered back-projection (BP); (2) the Dräger algorithm based on linearized Newton-Raphson (DR); (3) the GREIT (Graz consensus reconstruction algorithm for EIT) reconstruction algorithm with a circular forward model (GR(C)) and (4) GREIT with individual thorax geometry (GR(T)). Individual thorax contours were automatically determined from the routine computed tomography images. Five indices were calculated on the resulting EIT images respectively: (a) the ratio between tidal and deep inflation impedance changes; (b) tidal impedance changes in the right and left lungs; (c) center of gravity; (d) the global inhomogeneity index and (e) ventilation delay at mid-dorsal regions. No significant differences were found in all examined indices among the four reconstruction algorithms (p > 0.2, Kruskal-Wallis test). The examined algorithms used for EIT image reconstruction do not influence the selected indices derived from the EIT image analysis. Indices that validated for images with one reconstruction algorithm are also valid for other reconstruction algorithms.
Barca, Patrizio; Giannelli, Marco; Fantacci, Maria Evelina; Caramella, Davide
2018-06-01
Computed tomography (CT) is a useful and widely employed imaging technique, which represents the largest source of population exposure to ionizing radiation in industrialized countries. Adaptive Statistical Iterative Reconstruction (ASIR) is an iterative reconstruction algorithm with the potential to allow reduction of radiation exposure while preserving diagnostic information. The aim of this phantom study was to assess the performance of ASIR, in terms of a number of image quality indices, when different reconstruction blending levels are employed. CT images of the Catphan-504 phantom were reconstructed using conventional filtered back-projection (FBP) and ASIR with reconstruction blending levels of 20, 40, 60, 80, and 100%. Noise, noise power spectrum (NPS), contrast-to-noise ratio (CNR) and modulation transfer function (MTF) were estimated for different scanning parameters and contrast objects. Noise decreased and CNR increased non-linearly up to 50 and 100%, respectively, with increasing blending level of reconstruction. Also, ASIR has proven to modify the NPS curve shape. The MTF of ASIR reconstructed images depended on tube load/contrast and decreased with increasing blending level of reconstruction. In particular, for low radiation exposure and low contrast acquisitions, ASIR showed lower performance than FBP, in terms of spatial resolution for all blending levels of reconstruction. CT image quality varies substantially with the blending level of reconstruction. ASIR has the potential to reduce noise whilst maintaining diagnostic information in low radiation exposure CT imaging. Given the opposite variation of CNR and spatial resolution with the blending level of reconstruction, it is recommended to use an optimal value of this parameter for each specific clinical application.
Textual and visual content-based anti-phishing: a Bayesian approach.
Zhang, Haijun; Liu, Gang; Chow, Tommy W S; Liu, Wenyin
2011-10-01
A novel framework using a Bayesian approach for content-based phishing web page detection is presented. Our model takes into account textual and visual contents to measure the similarity between the protected web page and suspicious web pages. A text classifier, an image classifier, and an algorithm fusing the results from classifiers are introduced. An outstanding feature of this paper is the exploration of a Bayesian model to estimate the matching threshold. This is required in the classifier for determining the class of the web page and identifying whether the web page is phishing or not. In the text classifier, the naive Bayes rule is used to calculate the probability that a web page is phishing. In the image classifier, the earth mover's distance is employed to measure the visual similarity, and our Bayesian model is designed to determine the threshold. In the data fusion algorithm, the Bayes theory is used to synthesize the classification results from textual and visual content. The effectiveness of our proposed approach was examined in a large-scale dataset collected from real phishing cases. Experimental results demonstrated that the text classifier and the image classifier we designed deliver promising results, the fusion algorithm outperforms either of the individual classifiers, and our model can be adapted to different phishing cases. © 2011 IEEE
Hu, Ying S; Zhu, Quan; Elkins, Keri; Tse, Kevin; Li, Yu; Fitzpatrick, James A J; Verma, Inder M; Cang, Hu
2013-01-01
Heterochromatin in the nucleus of human embryonic cells plays an important role in the epigenetic regulation of gene expression. The architecture of heterochromatin and its dynamic organization remain elusive because of the lack of fast and high-resolution deep-cell imaging tools. We enable this task by advancing instrumental and algorithmic implementation of the localization-based super-resolution technique. We present light-sheet Bayesian super-resolution microscopy (LSBM). We adapt light-sheet illumination for super-resolution imaging by using a novel prism-coupled condenser design to illuminate a thin slice of the nucleus with high signal-to-noise ratio. Coupled with a Bayesian algorithm that resolves overlapping fluorophores from high-density areas, we show, for the first time, nanoscopic features of the heterochromatin structure in both fixed and live human embryonic stem cells. The enhanced temporal resolution allows capturing the dynamic change of heterochromatin with a lateral resolution of 50-60 nm on a time scale of 2.3 s. Light-sheet Bayesian microscopy opens up broad new possibilities of probing nanometer-scale nuclear structures and real-time sub-cellular processes and other previously difficult-to-access intracellular regions of living cells at the single-molecule, and single cell level.
Hu, Ying S; Zhu, Quan; Elkins, Keri; Tse, Kevin; Li, Yu; Fitzpatrick, James A J; Verma, Inder M; Cang, Hu
2016-01-01
Background Heterochromatin in the nucleus of human embryonic cells plays an important role in the epigenetic regulation of gene expression. The architecture of heterochromatin and its dynamic organization remain elusive because of the lack of fast and high-resolution deep-cell imaging tools. We enable this task by advancing instrumental and algorithmic implementation of the localization-based super-resolution technique. Results We present light-sheet Bayesian super-resolution microscopy (LSBM). We adapt light-sheet illumination for super-resolution imaging by using a novel prism-coupled condenser design to illuminate a thin slice of the nucleus with high signal-to-noise ratio. Coupled with a Bayesian algorithm that resolves overlapping fluorophores from high-density areas, we show, for the first time, nanoscopic features of the heterochromatin structure in both fixed and live human embryonic stem cells. The enhanced temporal resolution allows capturing the dynamic change of heterochromatin with a lateral resolution of 50–60 nm on a time scale of 2.3 s. Conclusion Light-sheet Bayesian microscopy opens up broad new possibilities of probing nanometer-scale nuclear structures and real-time sub-cellular processes and other previously difficult-to-access intracellular regions of living cells at the single-molecule, and single cell level. PMID:27795878
Reconstruction of multiple-pinhole micro-SPECT data using origin ensembles.
Lyon, Morgan C; Sitek, Arkadiusz; Metzler, Scott D; Moore, Stephen C
2016-10-01
The authors are currently developing a dual-resolution multiple-pinhole microSPECT imaging system based on three large NaI(Tl) gamma cameras. Two multiple-pinhole tungsten collimator tubes will be used sequentially for whole-body "scout" imaging of a mouse, followed by high-resolution (hi-res) imaging of an organ of interest, such as the heart or brain. Ideally, the whole-body image will be reconstructed in real time such that data need only be acquired until the area of interest can be visualized well-enough to determine positioning for the hi-res scan. The authors investigated the utility of the origin ensemble (OE) algorithm for online and offline reconstructions of the scout data. This algorithm operates directly in image space, and can provide estimates of image uncertainty, along with reconstructed images. Techniques for accelerating the OE reconstruction were also introduced and evaluated. System matrices were calculated for our 39-pinhole scout collimator design. SPECT projections were simulated for a range of count levels using the MOBY digital mouse phantom. Simulated data were used for a comparison of OE and maximum-likelihood expectation maximization (MLEM) reconstructions. The OE algorithm convergence was evaluated by calculating the total-image entropy and by measuring the counts in a volume-of-interest (VOI) containing the heart. Total-image entropy was also calculated for simulated MOBY data reconstructed using OE with various levels of parallelization. For VOI measurements in the heart, liver, bladder, and soft-tissue, MLEM and OE reconstructed images agreed within 6%. Image entropy converged after ∼2000 iterations of OE, while the counts in the heart converged earlier at ∼200 iterations of OE. An accelerated version of OE completed 1000 iterations in <9 min for a 6.8M count data set, with some loss of image entropy performance, whereas the same dataset required ∼79 min to complete 1000 iterations of conventional OE. A combination of the two methods showed decreased reconstruction time and no loss of performance when compared to conventional OE alone. OE-reconstructed images were found to be quantitatively and qualitatively similar to MLEM, yet OE also provided estimates of image uncertainty. Some acceleration of the reconstruction can be gained through the use of parallel computing. The OE algorithm is useful for reconstructing multiple-pinhole SPECT data and can be easily modified for real-time reconstruction.
Evaluating Great Lakes bald eagle nesting habitat with Bayesian inference
Teryl G. Grubb; William W. Bowerman; Allen J. Bath; John P. Giesy; D. V. Chip Weseloh
2003-01-01
Bayesian inference facilitated structured interpretation of a nonreplicated, experience-based survey of potential nesting habitat for bald eagles (Haliaeetus leucocephalus) along the five Great Lakes shorelines. We developed a pattern recognition (PATREC) model of our aerial search image with six habitat attributes: (a) tree cover, (b) proximity and...
Okuda, Kyohei; Sakimoto, Shota; Fujii, Susumu; Ida, Tomonobu; Moriyama, Shigeru
The frame-of-reference using computed-tomography (CT) coordinate system on single-photon emission computed tomography (SPECT) reconstruction is one of the advanced characteristics of the xSPECT reconstruction system. The aim of this study was to reveal the influence of the high-resolution frame-of-reference on the xSPECT reconstruction. 99m Tc line-source phantom and National Electrical Manufacturers Association (NEMA) image quality phantom were scanned using the SPECT/CT system. xSPECT reconstructions were performed with the reference CT images in different sizes of the display field-of-view (DFOV) and pixel. The pixel sizes of the reconstructed xSPECT images were close to 2.4 mm, which is acquired as originally projection data, even if the reference CT resolution was varied. The full width at half maximum (FWHM) of the line-source, absolute recovery coefficient, and background variability of image quality phantom were independent on the sizes of DFOV in the reference CT images. The results of this study revealed that the image quality of the reconstructed xSPECT images is not influenced by the resolution of frame-of-reference on SPECT reconstruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Jonghwan; Pua, Rizza; Cho, Seungryong, E-mail: scho@kaist.ac.kr
Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in amore » circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the proposed scanning method and image reconstruction algorithm can effectively estimate the scatter in cone-beam projections and produce tomographic images of nearly scatter-free quality. The authors believe that the proposed method would provide a fast and efficient CBCT scanning option to various applications particularly including head-and-neck scan.« less
High resolution x-ray CMT: Reconstruction methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.K.
This paper qualitatively discusses the primary characteristics of methods for reconstructing tomographic images from a set of projections. These reconstruction methods can be categorized as either {open_quotes}analytic{close_quotes} or {open_quotes}iterative{close_quotes} techniques. Analytic algorithms are derived from the formal inversion of equations describing the imaging process, while iterative algorithms incorporate a model of the imaging process and provide a mechanism to iteratively improve image estimates. Analytic reconstruction algorithms are typically computationally more efficient than iterative methods; however, analytic algorithms are available for a relatively limited set of imaging geometries and situations. Thus, the framework of iterative reconstruction methods is better suited formore » high accuracy, tomographic reconstruction codes.« less
Nana, Roger; Hu, Xiaoping
2010-01-01
k-space-based reconstruction in parallel imaging depends on the reconstruction kernel setting, including its support. An optimal choice of the kernel depends on the calibration data, coil geometry and signal-to-noise ratio, as well as the criterion used. In this work, data consistency, imposed by the shift invariance requirement of the kernel, is introduced as a goodness measure of k-space-based reconstruction in parallel imaging and demonstrated. Data consistency error (DCE) is calculated as the sum of squared difference between the acquired signals and their estimates obtained based on the interpolation of the estimated missing data. A resemblance between DCE and the mean square error in the reconstructed image was found, demonstrating DCE's potential as a metric for comparing or choosing reconstructions. When used for selecting the kernel support for generalized autocalibrating partially parallel acquisition (GRAPPA) reconstruction and the set of frames for calibration as well as the kernel support in temporal GRAPPA reconstruction, DCE led to improved images over existing methods. Data consistency error is efficient to evaluate, robust for selecting reconstruction parameters and suitable for characterizing and optimizing k-space-based reconstruction in parallel imaging.
A review of GPU-based medical image reconstruction.
Després, Philippe; Jia, Xun
2017-10-01
Tomographic image reconstruction is a computationally demanding task, even more so when advanced models are used to describe a more complete and accurate picture of the image formation process. Such advanced modeling and reconstruction algorithms can lead to better images, often with less dose, but at the price of long calculation times that are hardly compatible with clinical workflows. Fortunately, reconstruction tasks can often be executed advantageously on Graphics Processing Units (GPUs), which are exploited as massively parallel computational engines. This review paper focuses on recent developments made in GPU-based medical image reconstruction, from a CT, PET, SPECT, MRI and US perspective. Strategies and approaches to get the most out of GPUs in image reconstruction are presented as well as innovative applications arising from an increased computing capacity. The future of GPU-based image reconstruction is also envisioned, based on current trends in high-performance computing. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Method for position emission mammography image reconstruction
Smith, Mark Frederick
2004-10-12
An image reconstruction method comprising accepting coincidence datat from either a data file or in real time from a pair of detector heads, culling event data that is outside a desired energy range, optionally saving the desired data for each detector position or for each pair of detector pixels on the two detector heads, and then reconstructing the image either by backprojection image reconstruction or by iterative image reconstruction. In the backprojection image reconstruction mode, rays are traced between centers of lines of response (LOR's), counts are then either allocated by nearest pixel interpolation or allocated by an overlap method and then corrected for geometric effects and attenuation and the data file updated. If the iterative image reconstruction option is selected, one implementation is to compute a grid Siddon retracing, and to perform maximum likelihood expectation maiximization (MLEM) computed by either: a) tracing parallel rays between subpixels on opposite detector heads; or b) tracing rays between randomized endpoint locations on opposite detector heads.
SPIRiT: Iterative Self-consistent Parallel Imaging Reconstruction from Arbitrary k-Space
Lustig, Michael; Pauly, John M.
2010-01-01
A new approach to autocalibrating, coil-by-coil parallel imaging reconstruction is presented. It is a generalized reconstruction framework based on self consistency. The reconstruction problem is formulated as an optimization that yields the most consistent solution with the calibration and acquisition data. The approach is general and can accurately reconstruct images from arbitrary k-space sampling patterns. The formulation can flexibly incorporate additional image priors such as off-resonance correction and regularization terms that appear in compressed sensing. Several iterative strategies to solve the posed reconstruction problem in both image and k-space domain are presented. These are based on a projection over convex sets (POCS) and a conjugate gradient (CG) algorithms. Phantom and in-vivo studies demonstrate efficient reconstructions from undersampled Cartesian and spiral trajectories. Reconstructions that include off-resonance correction and nonlinear ℓ1-wavelet regularization are also demonstrated. PMID:20665790
Image Reconstruction is a New Frontier of Machine Learning.
Wang, Ge; Ye, Jong Chu; Mueller, Klaus; Fessler, Jeffrey A
2018-06-01
Over past several years, machine learning, or more generally artificial intelligence, has generated overwhelming research interest and attracted unprecedented public attention. As tomographic imaging researchers, we share the excitement from our imaging perspective [item 1) in the Appendix], and organized this special issue dedicated to the theme of "Machine learning for image reconstruction." This special issue is a sister issue of the special issue published in May 2016 of this journal with the theme "Deep learning in medical imaging" [item 2) in the Appendix]. While the previous special issue targeted medical image processing/analysis, this special issue focuses on data-driven tomographic reconstruction. These two special issues are highly complementary, since image reconstruction and image analysis are two of the main pillars for medical imaging. Together we cover the whole workflow of medical imaging: from tomographic raw data/features to reconstructed images and then extracted diagnostic features/readings.
Data analysis in emission tomography using emission-count posteriors
NASA Astrophysics Data System (ADS)
Sitek, Arkadiusz
2012-11-01
A novel approach to the analysis of emission tomography data using the posterior probability of the number of emissions per voxel (emission count) conditioned on acquired tomographic data is explored. The posterior is derived from the prior and the Poisson likelihood of the emission-count data by marginalizing voxel activities. Based on emission-count posteriors, examples of Bayesian analysis including estimation and classification tasks in emission tomography are provided. The application of the method to computer simulations of 2D tomography is demonstrated. In particular, the minimum-mean-square-error point estimator of the emission count is demonstrated. The process of finding this estimator can be considered as a tomographic image reconstruction technique since the estimates of the number of emissions per voxel divided by voxel sensitivities and acquisition time are the estimates of the voxel activities. As an example of a classification task, a hypothesis stating that some region of interest (ROI) emitted at least or at most r-times the number of events in some other ROI is tested. The ROIs are specified by the user. The analysis described in this work provides new quantitative statistical measures that can be used in decision making in diagnostic imaging using emission tomography.
An L1-norm phase constraint for half-Fourier compressed sensing in 3D MR imaging.
Li, Guobin; Hennig, Jürgen; Raithel, Esther; Büchert, Martin; Paul, Dominik; Korvink, Jan G; Zaitsev, Maxim
2015-10-01
In most half-Fourier imaging methods, explicit phase replacement is used. In combination with parallel imaging, or compressed sensing, half-Fourier reconstruction is usually performed in a separate step. The purpose of this paper is to report that integration of half-Fourier reconstruction into iterative reconstruction minimizes reconstruction errors. The L1-norm phase constraint for half-Fourier imaging proposed in this work is compared with the L2-norm variant of the same algorithm, with several typical half-Fourier reconstruction methods. Half-Fourier imaging with the proposed phase constraint can be seamlessly combined with parallel imaging and compressed sensing to achieve high acceleration factors. In simulations and in in-vivo experiments half-Fourier imaging with the proposed L1-norm phase constraint enables superior performance both reconstruction of image details and with regard to robustness against phase estimation errors. The performance and feasibility of half-Fourier imaging with the proposed L1-norm phase constraint is reported. Its seamless combination with parallel imaging and compressed sensing enables use of greater acceleration in 3D MR imaging.
Investigation of iterative image reconstruction in low-dose breast CT
NASA Astrophysics Data System (ADS)
Bian, Junguo; Yang, Kai; Boone, John M.; Han, Xiao; Sidky, Emil Y.; Pan, Xiaochuan
2014-06-01
There is interest in developing computed tomography (CT) dedicated to breast-cancer imaging. Because breast tissues are radiation-sensitive, the total radiation exposure in a breast-CT scan is kept low, often comparable to a typical two-view mammography exam, thus resulting in a challenging low-dose-data-reconstruction problem. In recent years, evidence has been found that suggests that iterative reconstruction may yield images of improved quality from low-dose data. In this work, based upon the constrained image total-variation minimization program and its numerical solver, i.e., the adaptive steepest descent-projection onto the convex set (ASD-POCS), we investigate and evaluate iterative image reconstructions from low-dose breast-CT data of patients, with a focus on identifying and determining key reconstruction parameters, devising surrogate utility metrics for characterizing reconstruction quality, and tailoring the program and ASD-POCS to the specific reconstruction task under consideration. The ASD-POCS reconstructions appear to outperform the corresponding clinical FDK reconstructions, in terms of subjective visualization and surrogate utility metrics.
NASA Astrophysics Data System (ADS)
Rumetshofer, M.; Heim, P.; Thaler, B.; Ernst, W. E.; Koch, M.; von der Linden, W.
2018-06-01
Ultrafast dynamical processes in photoexcited molecules can be observed with pump-probe measurements, in which information about the dynamics is obtained from the transient signal associated with the excited state. Background signals provoked by pump and/or probe pulses alone often obscure these excited-state signals. Simple subtraction of pump-only and/or probe-only measurements from the pump-probe measurement, as commonly applied, results in a degradation of the signal-to-noise ratio and, in the case of coincidence detection, the danger of overrated background subtraction. Coincidence measurements additionally suffer from false coincidences, requiring long data-acquisition times to keep erroneous signals at an acceptable level. Here we present a probabilistic approach based on Bayesian probability theory that overcomes these problems. For a pump-probe experiment with photoelectron-photoion coincidence detection, we reconstruct the interesting excited-state spectrum from pump-probe and pump-only measurements. This approach allows us to treat background and false coincidences consistently and on the same footing. We demonstrate that the Bayesian formalism has the following advantages over simple signal subtraction: (i) the signal-to-noise ratio is significantly increased, (ii) the pump-only contribution is not overestimated, (iii) false coincidences are excluded, (iv) prior knowledge, such as positivity, is consistently incorporated, (v) confidence intervals are provided for the reconstructed spectrum, and (vi) it is applicable to any experimental situation and noise statistics. Most importantly, by accounting for false coincidences, the Bayesian approach allows us to run experiments at higher ionization rates, resulting in a significant reduction of data acquisition times. The probabilistic approach is thoroughly scrutinized by challenging mock data. The application to pump-probe coincidence measurements on acetone molecules enables quantitative interpretations about the molecular decay dynamics and fragmentation behavior. All results underline the superiority of a consistent probabilistic approach over ad hoc estimations.
Shading correction assisted iterative cone-beam CT reconstruction
NASA Astrophysics Data System (ADS)
Yang, Chunlin; Wu, Pengwei; Gong, Shutao; Wang, Jing; Lyu, Qihui; Tang, Xiangyang; Niu, Tianye
2017-11-01
Recent advances in total variation (TV) technology enable accurate CT image reconstruction from highly under-sampled and noisy projection data. The standard iterative reconstruction algorithms, which work well in conventional CT imaging, fail to perform as expected in cone beam CT (CBCT) applications, wherein the non-ideal physics issues, including scatter and beam hardening, are more severe. These physics issues result in large areas of shading artifacts and cause deterioration to the piecewise constant property assumed in reconstructed images. To overcome this obstacle, we incorporate a shading correction scheme into low-dose CBCT reconstruction and propose a clinically acceptable and stable three-dimensional iterative reconstruction method that is referred to as the shading correction assisted iterative reconstruction. In the proposed method, we modify the TV regularization term by adding a shading compensation image to the reconstructed image to compensate for the shading artifacts while leaving the data fidelity term intact. This compensation image is generated empirically, using image segmentation and low-pass filtering, and updated in the iterative process whenever necessary. When the compensation image is determined, the objective function is minimized using the fast iterative shrinkage-thresholding algorithm accelerated on a graphic processing unit. The proposed method is evaluated using CBCT projection data of the Catphan© 600 phantom and two pelvis patients. Compared with the iterative reconstruction without shading correction, the proposed method reduces the overall CT number error from around 200 HU to be around 25 HU and increases the spatial uniformity by a factor of 20 percent, given the same number of sparsely sampled projections. A clinically acceptable and stable iterative reconstruction algorithm for CBCT is proposed in this paper. Differing from the existing algorithms, this algorithm incorporates a shading correction scheme into the low-dose CBCT reconstruction and achieves more stable optimization path and more clinically acceptable reconstructed image. The method proposed by us does not rely on prior information and thus is practically attractive to the applications of low-dose CBCT imaging in the clinic.
Bayesian modeling of cue interaction: bistability in stereoscopic slant perception.
van Ee, Raymond; Adams, Wendy J; Mamassian, Pascal
2003-07-01
Our two eyes receive different views of a visual scene, and the resulting binocular disparities enable us to reconstruct its three-dimensional layout. However, the visual environment is also rich in monocular depth cues. We examined the resulting percept when observers view a scene in which there are large conflicts between the surface slant signaled by binocular disparities and the slant signaled by monocular perspective. For a range of disparity-perspective cue conflicts, many observers experience bistability: They are able to perceive two distinct slants and to flip between the two percepts in a controlled way. We present a Bayesian model that describes the quantitative aspects of perceived slant on the basis of the likelihoods of both perspective and disparity slant information combined with prior assumptions about the shape and orientation of objects in the scene. Our Bayesian approach can be regarded as an overarching framework that allows researchers to study all cue integration aspects-including perceptual decisions--in a unified manner.
Bayesian decoding using unsorted spikes in the rat hippocampus
Layton, Stuart P.; Chen, Zhe; Wilson, Matthew A.
2013-01-01
A fundamental task in neuroscience is to understand how neural ensembles represent information. Population decoding is a useful tool to extract information from neuronal populations based on the ensemble spiking activity. We propose a novel Bayesian decoding paradigm to decode unsorted spikes in the rat hippocampus. Our approach uses a direct mapping between spike waveform features and covariates of interest and avoids accumulation of spike sorting errors. Our decoding paradigm is nonparametric, encoding model-free for representing stimuli, and extracts information from all available spikes and their waveform features. We apply the proposed Bayesian decoding algorithm to a position reconstruction task for freely behaving rats based on tetrode recordings of rat hippocampal neuronal activity. Our detailed decoding analyses demonstrate that our approach is efficient and better utilizes the available information in the nonsortable hash than the standard sorting-based decoding algorithm. Our approach can be adapted to an online encoding/decoding framework for applications that require real-time decoding, such as brain-machine interfaces. PMID:24089403
Anisotropic conductivity imaging with MREIT using equipotential projection algorithm.
Değirmenci, Evren; Eyüboğlu, B Murat
2007-12-21
Magnetic resonance electrical impedance tomography (MREIT) combines magnetic flux or current density measurements obtained by magnetic resonance imaging (MRI) and surface potential measurements to reconstruct images of true conductivity with high spatial resolution. Most of the biological tissues have anisotropic conductivity; therefore, anisotropy should be taken into account in conductivity image reconstruction. Almost all of the MREIT reconstruction algorithms proposed to date assume isotropic conductivity distribution. In this study, a novel MREIT image reconstruction algorithm is proposed to image anisotropic conductivity. Relative anisotropic conductivity values are reconstructed iteratively, using only current density measurements without any potential measurement. In order to obtain true conductivity values, only either one potential or conductivity measurement is sufficient to determine a scaling factor. The proposed technique is evaluated on simulated data for isotropic and anisotropic conductivity distributions, with and without measurement noise. Simulation results show that the images of both anisotropic and isotropic conductivity distributions can be reconstructed successfully.
LensEnt2: Maximum-entropy weak lens reconstruction
NASA Astrophysics Data System (ADS)
Marshall, P. J.; Hobson, M. P.; Gull, S. F.; Bridle, S. L.
2013-08-01
LensEnt2 is a maximum entropy reconstructor of weak lensing mass maps. The method takes each galaxy shape as an independent estimator of the reduced shear field and incorporates an intrinsic smoothness, determined by Bayesian methods, into the reconstruction. The uncertainties from both the intrinsic distribution of galaxy shapes and galaxy shape estimation are carried through to the final mass reconstruction, and the mass within arbitrarily shaped apertures are calculated with corresponding uncertainties. The input is a galaxy ellipticity catalog with each measured galaxy shape treated as a noisy tracer of the reduced shear field, which is inferred on a fine pixel grid assuming positivity, and smoothness on scales of w arcsec where w is an input parameter. The ICF width w can be chosen by computing the evidence for it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, S; Zhang, Y; Ma, J
Purpose: To investigate iterative reconstruction via prior image constrained total generalized variation (PICTGV) for spectral computed tomography (CT) using fewer projections while achieving greater image quality. Methods: The proposed PICTGV method is formulated as an optimization problem, which balances the data fidelity and prior image constrained total generalized variation of reconstructed images in one framework. The PICTGV method is based on structure correlations among images in the energy domain and high-quality images to guide the reconstruction of energy-specific images. In PICTGV method, the high-quality image is reconstructed from all detector-collected X-ray signals and is referred as the broad-spectrum image. Distinctmore » from the existing reconstruction methods applied on the images with first order derivative, the higher order derivative of the images is incorporated into the PICTGV method. An alternating optimization algorithm is used to minimize the PICTGV objective function. We evaluate the performance of PICTGV on noise and artifacts suppressing using phantom studies and compare the method with the conventional filtered back-projection method as well as TGV based method without prior image. Results: On the digital phantom, the proposed method outperforms the existing TGV method in terms of the noise reduction, artifacts suppression, and edge detail preservation. Compared to that obtained by the TGV based method without prior image, the relative root mean square error in the images reconstructed by the proposed method is reduced by over 20%. Conclusion: The authors propose an iterative reconstruction via prior image constrained total generalize variation for spectral CT. Also, we have developed an alternating optimization algorithm and numerically demonstrated the merits of our approach. Results show that the proposed PICTGV method outperforms the TGV method for spectral CT.« less
Gariani, Joanna; Martin, Steve P; Botsikas, Diomidis; Becker, Christoph D; Montet, Xavier
2018-06-14
To compare radiation dose and image quality of thoracoabdominal scans obtained with a high-pitch protocol (pitch 3.2) and iterative reconstruction (Sinogram Affirmed Iterative Reconstruction) in comparison to standard pitch reconstructed with filtered back projection (FBP) using dual source CT. 114 CT scans (Somatom Definition Flash, Siemens Healthineers, Erlangen, Germany), 39 thoracic scans, 54 thoracoabdominal scans and 21 abdominal scans were performed. Analysis of three protocols was undertaken; pitch of 1 reconstructed with FBP, pitch of 3.2 reconstructed with SAFIRE, pitch of 3.2 with stellar detectors reconstructed with SAFIRE. Objective and subjective image analysis were performed. Dose differences of the protocols used were compared. Dose was reduced when comparing scans with a pitch of 1 reconstructed with FBP to high-pitch scans with a pitch of 3.2 reconstructed with SAFIRE with a reduction of volume CT dose index of 75% for thoracic scans, 64% for thoracoabdominal scans and 67% for abdominal scans. There was a further reduction after the implementation of stellar detectors reflected in a reduction of 36% of the dose-length product for thoracic scans. This was not at the detriment of image quality, contrast-to-noise ratio, signal-to-noise ratio and the qualitative image analysis revealed a superior image quality in the high-pitch protocols. The combination of a high pitch protocol with iterative reconstruction allows significant dose reduction in routine chest and abdominal scans whilst maintaining or improving diagnostic image quality, with a further reduction in thoracic scans with stellar detectors. Advances in knowledge: High pitch imaging with iterative reconstruction is a tool that can be used to reduce dose without sacrificing image quality.
NASA Astrophysics Data System (ADS)
Han, Hao; Zhang, Hao; Wei, Xinzhou; Moore, William; Liang, Zhengrong
2016-03-01
In this paper, we proposed a low-dose computed tomography (LdCT) image reconstruction method with the help of prior knowledge learning from previous high-quality or normal-dose CT (NdCT) scans. The well-established statistical penalized weighted least squares (PWLS) algorithm was adopted for image reconstruction, where the penalty term was formulated by a texture-based Gaussian Markov random field (gMRF) model. The NdCT scan was firstly segmented into different tissue types by a feature vector quantization (FVQ) approach. Then for each tissue type, a set of tissue-specific coefficients for the gMRF penalty was statistically learnt from the NdCT image via multiple-linear regression analysis. We also proposed a scheme to adaptively select the order of gMRF model for coefficients prediction. The tissue-specific gMRF patterns learnt from the NdCT image were finally used to form an adaptive MRF penalty for the PWLS reconstruction of LdCT image. The proposed texture-adaptive PWLS image reconstruction algorithm was shown to be more effective to preserve image textures than the conventional PWLS image reconstruction algorithm, and we further demonstrated the gain of high-order MRF modeling for texture-preserved LdCT PWLS image reconstruction.
NASA Technical Reports Server (NTRS)
Larimer, James; Gille, Jennifer; Luszcz, Jeff; Hindson, William S. (Technical Monitor)
1997-01-01
Carlson and Cohen suggest that 'the perfect image is one that looks like a piece of the world viewed through a picture frame.' They propose that the metric for the perfect image be the discriminability of the reconstructed image from the ideal image the reconstruction is meant to represent. If these two images, the ideal and the reconstruction are noticeably different, then the reconstruction is less than perfect. If they cannot be discriminated then the reconstructed image is perfect. This definition has the advantage that it can be used to define 'good enough' image quality. An image that fully satisfies a task's image quality requirements for example text legibility, is selected to be the standard. Rendered images are then compared to the standard. Rendered images that are indiscriminable from the standard are good enough. Test patterns and test image sets serve as standards for many tasks and are commonplace to the image communications and display industries, so this is not a new nor novel idea.
Influence of reconstruction algorithms on image quality in SPECT myocardial perfusion imaging.
Davidsson, Anette; Olsson, Eva; Engvall, Jan; Gustafsson, Agnetha
2017-11-01
We investigated if image- and diagnostic quality in SPECT MPI could be maintained despite a reduced acquisition time adding Depth Dependent Resolution Recovery (DDRR) for image reconstruction. Images were compared with filtered back projection (FBP) and iterative reconstruction using Ordered Subsets Expectation Maximization with (IRAC) and without (IRNC) attenuation correction (AC). Stress- and rest imaging for 15 min was performed on 21 subjects with a dual head gamma camera (Infinia Hawkeye; GE Healthcare), ECG-gating with 8 frames/cardiac cycle and a low-dose CT-scan. A 9 min acquisition was generated using five instead of eight gated frames and was reconstructed with DDRR, with (IRACRR) and without AC (IRNCRR) as well as with FBP. Three experienced nuclear medicine specialists visually assessed anonymized images according to eight criteria on a four point scale, three related to image quality and five to diagnostic confidence. Statistical analysis was performed using Visual Grading Regression (VGR). Observer confidence in statements on image quality was highest for the images that were reconstructed using DDRR (P<0·01 compared to FBP). Iterative reconstruction without DDRR was not superior to FBP. Interobserver variability was significant for statements on image quality (P<0·05) but lower in the diagnostic statements on ischemia and scar. The confidence in assessing ischemia and scar was not different between the reconstruction techniques (P = n.s.). SPECT MPI collected in 9 min, reconstructed with DDRR and AC, produced better image quality than the standard procedure. The observers expressed the highest diagnostic confidence in the DDRR reconstruction. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zhou, Weifeng; Cai, Jian-Feng; Gao, Hao
2013-12-01
A popular approach for medical image reconstruction has been through the sparsity regularization, assuming the targeted image can be well approximated by sparse coefficients under some properly designed system. The wavelet tight frame is such a widely used system due to its capability for sparsely approximating piecewise-smooth functions, such as medical images. However, using a fixed system may not always be optimal for reconstructing a variety of diversified images. Recently, the method based on the adaptive over-complete dictionary that is specific to structures of the targeted images has demonstrated its superiority for image processing. This work is to develop the adaptive wavelet tight frame method image reconstruction. The proposed scheme first constructs the adaptive wavelet tight frame that is task specific, and then reconstructs the image of interest by solving an l1-regularized minimization problem using the constructed adaptive tight frame system. The proof-of-concept study is performed for computed tomography (CT), and the simulation results suggest that the adaptive tight frame method improves the reconstructed CT image quality from the traditional tight frame method.
Robson, Philip M; Grant, Aaron K; Madhuranthakam, Ananth J; Lattanzi, Riccardo; Sodickson, Daniel K; McKenzie, Charles A
2008-10-01
Parallel imaging reconstructions result in spatially varying noise amplification characterized by the g-factor, precluding conventional measurements of noise from the final image. A simple Monte Carlo based method is proposed for all linear image reconstruction algorithms, which allows measurement of signal-to-noise ratio and g-factor and is demonstrated for SENSE and GRAPPA reconstructions for accelerated acquisitions that have not previously been amenable to such assessment. Only a simple "prescan" measurement of noise amplitude and correlation in the phased-array receiver, and a single accelerated image acquisition are required, allowing robust assessment of signal-to-noise ratio and g-factor. The "pseudo multiple replica" method has been rigorously validated in phantoms and in vivo, showing excellent agreement with true multiple replica and analytical methods. This method is universally applicable to the parallel imaging reconstruction techniques used in clinical applications and will allow pixel-by-pixel image noise measurements for all parallel imaging strategies, allowing quantitative comparison between arbitrary k-space trajectories, image reconstruction, or noise conditioning techniques. (c) 2008 Wiley-Liss, Inc.
Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.
Li, Liang; Wang, Bigong; Wang, Ge
2016-01-01
In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.
A Bayesian observer replicates convexity context effects in figure-ground perception.
Goldreich, Daniel; Peterson, Mary A
2012-01-01
Peterson and Salvagio (2008) demonstrated convexity context effects in figure-ground perception. Subjects shown displays consisting of unfamiliar alternating convex and concave regions identified the convex regions as foreground objects progressively more frequently as the number of regions increased; this occurred only when the concave regions were homogeneously colored. The origins of these effects have been unclear. Here, we present a two-free-parameter Bayesian observer that replicates convexity context effects. The Bayesian observer incorporates two plausible expectations regarding three-dimensional scenes: (1) objects tend to be convex rather than concave, and (2) backgrounds tend (more than foreground objects) to be homogeneously colored. The Bayesian observer estimates the probability that a depicted scene is three-dimensional, and that the convex regions are figures. It responds stochastically by sampling from its posterior distributions. Like human observers, the Bayesian observer shows convexity context effects only for images with homogeneously colored concave regions. With optimal parameter settings, it performs similarly to the average human subject on the four display types tested. We propose that object convexity and background color homogeneity are environmental regularities exploited by human visual perception; vision achieves figure-ground perception by interpreting ambiguous images in light of these and other expected regularities in natural scenes.
Choice of reconstructed tissue properties affects interpretation of lung EIT images.
Grychtol, Bartłomiej; Adler, Andy
2014-06-01
Electrical impedance tomography (EIT) estimates an image of change in electrical properties within a body from stimulations and measurements at surface electrodes. There is significant interest in EIT as a tool to monitor and guide ventilation therapy in mechanically ventilated patients. In lung EIT, the EIT inverse problem is commonly linearized and only changes in electrical properties are reconstructed. Early algorithms reconstructed changes in resistivity, while most recent work using the finite element method reconstructs conductivity. Recently, we demonstrated that EIT images of ventilation can be misleading if the electrical contrasts within the thorax are not taken into account during the image reconstruction process. In this paper, we explore the effect of the choice of the reconstructed electrical properties (resistivity or conductivity) on the resulting EIT images. We show in simulation and experimental data that EIT images reconstructed with the same algorithm but with different parametrizations lead to large and clinically significant differences in the resulting images, which persist even after attempts to eliminate the impact of the parameter choice by recovering volume changes from the EIT images. Since there is no consensus among the most popular reconstruction algorithms and devices regarding the parametrization, this finding has implications for potential clinical use of EIT. We propose a program of research to develop reconstruction techniques that account for both the relationship between air volume and electrical properties of the lung and artefacts introduced by the linearization.
Research on compressive sensing reconstruction algorithm based on total variation model
NASA Astrophysics Data System (ADS)
Gao, Yu-xuan; Sun, Huayan; Zhang, Tinghua; Du, Lin
2017-12-01
Compressed sensing for breakthrough Nyquist sampling theorem provides a strong theoretical , making compressive sampling for image signals be carried out simultaneously. In traditional imaging procedures using compressed sensing theory, not only can it reduces the storage space, but also can reduce the demand for detector resolution greatly. Using the sparsity of image signal, by solving the mathematical model of inverse reconfiguration, realize the super-resolution imaging. Reconstruction algorithm is the most critical part of compression perception, to a large extent determine the accuracy of the reconstruction of the image.The reconstruction algorithm based on the total variation (TV) model is more suitable for the compression reconstruction of the two-dimensional image, and the better edge information can be obtained. In order to verify the performance of the algorithm, Simulation Analysis the reconstruction result in different coding mode of the reconstruction algorithm based on the TV reconstruction algorithm. The reconstruction effect of the reconfigurable algorithm based on TV based on the different coding methods is analyzed to verify the stability of the algorithm. This paper compares and analyzes the typical reconstruction algorithm in the same coding mode. On the basis of the minimum total variation algorithm, the Augmented Lagrangian function term is added and the optimal value is solved by the alternating direction method.Experimental results show that the reconstruction algorithm is compared with the traditional classical algorithm based on TV has great advantages, under the low measurement rate can be quickly and accurately recovers target image.
Region-of-interest image reconstruction in circular cone-beam microCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Seungryong; Bian, Junguo; Pelizzari, Charles A.
2007-12-15
Cone-beam microcomputed tomography (microCT) is one of the most popular choices for small animal imaging which is becoming an important tool for studying animal models with transplanted diseases. Region-of-interest (ROI) imaging techniques in CT, which can reconstruct an ROI image from the projection data set of the ROI, can be used not only for reducing imaging-radiation exposure to the subject and scatters to the detector but also for potentially increasing spatial resolution of the reconstructed images. Increasing spatial resolution in microCT images can facilitate improved accuracy in many assessment tasks. A method proposed previously for increasing CT image spatial resolutionmore » entails the exploitation of the geometric magnification in cone-beam CT. Due to finite detector size, however, this method can lead to data truncation for a large geometric magnification. The Feldkamp-Davis-Kress (FDK) algorithm yields images with artifacts when truncated data are used, whereas the recently developed backprojection filtration (BPF) algorithm is capable of reconstructing ROI images without truncation artifacts from truncated cone-beam data. We apply the BPF algorithm to reconstructing ROI images from truncated data of three different objects acquired by our circular cone-beam microCT system. Reconstructed images by use of the FDK and BPF algorithms from both truncated and nontruncated cone-beam data are compared. The results of the experimental studies demonstrate that, from certain truncated data, the BPF algorithm can reconstruct ROI images with quality comparable to that reconstructed from nontruncated data. In contrast, the FDK algorithm yields ROI images with truncation artifacts. Therefore, an implication of the studies is that, when truncated data are acquired with a configuration of a large geometric magnification, the BPF algorithm can be used for effective enhancement of the spatial resolution of a ROI image.« less
SU-E-I-01: Iterative CBCT Reconstruction with a Feature-Preserving Penalty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyu, Q; Li, B; Southern Medical University, Guangzhou
2015-06-15
Purpose: Low-dose CBCT is desired in various clinical applications. Iterative image reconstruction algorithms have shown advantages in suppressing noise in low-dose CBCT. However, due to the smoothness constraint enforced during the reconstruction process, edges may be blurred and image features may lose in the reconstructed image. In this work, we proposed a new penalty design to preserve image features in the image reconstructed by iterative algorithms. Methods: Low-dose CBCT is reconstructed by minimizing the penalized weighted least-squares (PWLS) objective function. Binary Robust Independent Elementary Features (BRIEF) of the image were integrated into the penalty of PWLS. BRIEF is a generalmore » purpose point descriptor that can be used to identify important features of an image. In this work, BRIEF distance of two neighboring pixels was used to weigh the smoothing parameter in PWLS. For pixels of large BRIEF distance, weaker smooth constraint will be enforced. Image features will be better preserved through such a design. The performance of the PWLS algorithm with BRIEF penalty was evaluated by a CatPhan 600 phantom. Results: The image quality reconstructed by the proposed PWLS-BRIEF algorithm is superior to that by the conventional PWLS method and the standard FDK method. At matched noise level, edges in PWLS-BRIEF reconstructed image are better preserved. Conclusion: This study demonstrated that the proposed PWLS-BRIEF algorithm has great potential on preserving image features in low-dose CBCT.« less
3D reconstruction based on light field images
NASA Astrophysics Data System (ADS)
Zhu, Dong; Wu, Chunhong; Liu, Yunluo; Fu, Dongmei
2018-04-01
This paper proposed a method of reconstructing three-dimensional (3D) scene from two light field images capture by Lytro illium. The work was carried out by first extracting the sub-aperture images from light field images and using the scale-invariant feature transform (SIFT) for feature registration on the selected sub-aperture images. Structure from motion (SFM) algorithm is further used on the registration completed sub-aperture images to reconstruct the three-dimensional scene. 3D sparse point cloud was obtained in the end. The method shows that the 3D reconstruction can be implemented by only two light field camera captures, rather than at least a dozen times captures by traditional cameras. This can effectively solve the time-consuming, laborious issues for 3D reconstruction based on traditional digital cameras, to achieve a more rapid, convenient and accurate reconstruction.
Accounting for hardware imperfections in EIT image reconstruction algorithms.
Hartinger, Alzbeta E; Gagnon, Hervé; Guardo, Robert
2007-07-01
Electrical impedance tomography (EIT) is a non-invasive technique for imaging the conductivity distribution of a body section. Different types of EIT images can be reconstructed: absolute, time difference and frequency difference. Reconstruction algorithms are sensitive to many errors which translate into image artefacts. These errors generally result from incorrect modelling or inaccurate measurements. Every reconstruction algorithm incorporates a model of the physical set-up which must be as accurate as possible since any discrepancy with the actual set-up will cause image artefacts. Several methods have been proposed in the literature to improve the model realism, such as creating anatomical-shaped meshes, adding a complete electrode model and tracking changes in electrode contact impedances and positions. Absolute and frequency difference reconstruction algorithms are particularly sensitive to measurement errors and generally assume that measurements are made with an ideal EIT system. Real EIT systems have hardware imperfections that cause measurement errors. These errors translate into image artefacts since the reconstruction algorithm cannot properly discriminate genuine measurement variations produced by the medium under study from those caused by hardware imperfections. We therefore propose a method for eliminating these artefacts by integrating a model of the system hardware imperfections into the reconstruction algorithms. The effectiveness of the method has been evaluated by reconstructing absolute, time difference and frequency difference images with and without the hardware model from data acquired on a resistor mesh phantom. Results have shown that artefacts are smaller for images reconstructed with the model, especially for frequency difference imaging.
MR image reconstruction via guided filter.
Huang, Heyan; Yang, Hang; Wang, Kang
2018-04-01
Magnetic resonance imaging (MRI) reconstruction from the smallest possible set of Fourier samples has been a difficult problem in medical imaging field. In our paper, we present a new approach based on a guided filter for efficient MRI recovery algorithm. The guided filter is an edge-preserving smoothing operator and has better behaviors near edges than the bilateral filter. Our reconstruction method is consist of two steps. First, we propose two cost functions which could be computed efficiently and thus obtain two different images. Second, the guided filter is used with these two obtained images for efficient edge-preserving filtering, and one image is used as the guidance image, the other one is used as a filtered image in the guided filter. In our reconstruction algorithm, we can obtain more details by introducing guided filter. We compare our reconstruction algorithm with some competitive MRI reconstruction techniques in terms of PSNR and visual quality. Simulation results are given to show the performance of our new method.
Spectral CT Reconstruction with Image Sparsity and Spectral Mean
Zhang, Yi; Xi, Yan; Yang, Qingsong; Cong, Wenxiang; Zhou, Jiliu
2017-01-01
Photon-counting detectors can acquire x-ray intensity data in different energy bins. The signal to noise ratio of resultant raw data in each energy bin is generally low due to the narrow bin width and quantum noise. To address this problem, here we propose an image reconstruction approach for spectral CT to simultaneously reconstructs x-ray attenuation coefficients in all the energy bins. Because the measured spectral data are highly correlated among the x-ray energy bins, the intra-image sparsity and inter-image similarity are important prior acknowledge for image reconstruction. Inspired by this observation, the total variation (TV) and spectral mean (SM) measures are combined to improve the quality of reconstructed images. For this purpose, a linear mapping function is used to minimalize image differences between energy bins. The split Bregman technique is applied to perform image reconstruction. Our numerical and experimental results show that the proposed algorithms outperform competing iterative algorithms in this context. PMID:29034267
Blind compressed sensing image reconstruction based on alternating direction method
NASA Astrophysics Data System (ADS)
Liu, Qinan; Guo, Shuxu
2018-04-01
In order to solve the problem of how to reconstruct the original image under the condition of unknown sparse basis, this paper proposes an image reconstruction method based on blind compressed sensing model. In this model, the image signal is regarded as the product of a sparse coefficient matrix and a dictionary matrix. Based on the existing blind compressed sensing theory, the optimal solution is solved by the alternative minimization method. The proposed method solves the problem that the sparse basis in compressed sensing is difficult to represent, which restrains the noise and improves the quality of reconstructed image. This method ensures that the blind compressed sensing theory has a unique solution and can recover the reconstructed original image signal from a complex environment with a stronger self-adaptability. The experimental results show that the image reconstruction algorithm based on blind compressed sensing proposed in this paper can recover high quality image signals under the condition of under-sampling.
Comparative Analysis of Reconstructed Image Quality in a Simulated Chromotomographic Imager
2014-03-01
quality . This example uses five basic images a backlit bar chart with random intensity, 100 nm separation. A total of 54 initial target...compared for a variety of scenes. Reconstructed image quality is highly dependent on the initial target hypercube so a total of 54 initial target...COMPARATIVE ANALYSIS OF RECONSTRUCTED IMAGE QUALITY IN A SIMULATED CHROMOTOMOGRAPHIC IMAGER THESIS
Super-Resolution Image Reconstruction Applied to Medical Ultrasound
NASA Astrophysics Data System (ADS)
Ellis, Michael
Ultrasound is the preferred imaging modality for many diagnostic applications due to its real-time image reconstruction and low cost. Nonetheless, conventional ultrasound is not used in many applications because of limited spatial resolution and soft tissue contrast. Most commercial ultrasound systems reconstruct images using a simple delay-and-sum architecture on receive, which is fast and robust but does not utilize all information available in the raw data. Recently, more sophisticated image reconstruction methods have been developed that make use of far more information in the raw data to improve resolution and contrast. One such method is the Time-Domain Optimized Near-Field Estimator (TONE), which employs a maximum a priori estimation to solve a highly underdetermined problem, given a well-defined system model. TONE has been shown to significantly improve both the contrast and resolution of ultrasound images when compared to conventional methods. However, TONE's lack of robustness to variations from the system model and extremely high computational cost hinder it from being readily adopted in clinical scanners. This dissertation aims to reduce the impact of TONE's shortcomings, transforming it from an academic construct to a clinically viable image reconstruction algorithm. By altering the system model from a collection of individual hypothetical scatterers to a collection of weighted, diffuse regions, dTONE is able to achieve much greater robustness to modeling errors. A method for efficient parallelization of dTONE is presented that reduces reconstruction time by more than an order of magnitude with little loss in image fidelity. An alternative reconstruction algorithm, called qTONE, is also developed and is able to reduce reconstruction times by another two orders of magnitude while simultaneously improving image contrast. Each of these methods for improving TONE are presented, their limitations are explored, and all are used in concert to reconstruct in vivo images of a human testicle. In all instances, the methods presented here outperform conventional image reconstruction methods by a significant margin. As TONE and its variants are general image reconstruction techniques, the theories and research presented here have the potential to significantly improve not only ultrasound's clinical utility, but that of other imaging modalities as well.
A Method of Face Detection with Bayesian Probability
NASA Astrophysics Data System (ADS)
Sarker, Goutam
2010-10-01
The objective of face detection is to identify all images which contain a face, irrespective of its orientation, illumination conditions etc. This is a hard problem, because the faces are highly variable in size, shape lighting conditions etc. Many methods have been designed and developed to detect faces in a single image. The present paper is based on one `Appearance Based Method' which relies on learning the facial and non facial features from image examples. This in its turn is based on statistical analysis of examples and counter examples of facial images and employs Bayesian Conditional Classification Rule to detect the probability of belongingness of a face (or non-face) within an image frame. The detection rate of the present system is very high and thereby the number of false positive and false negative detection is substantially low.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guang-Hong, E-mail: gchen7@wisc.edu; Li, Yinsheng
Purpose: In x-ray computed tomography (CT), a violation of the Tuy data sufficiency condition leads to limited-view artifacts. In some applications, it is desirable to use data corresponding to a narrow temporal window to reconstruct images with reduced temporal-average artifacts. However, the need to reduce temporal-average artifacts in practice may result in a violation of the Tuy condition and thus undesirable limited-view artifacts. In this paper, the authors present a new iterative reconstruction method, synchronized multiartifact reduction with tomographic reconstruction (SMART-RECON), to eliminate limited-view artifacts using data acquired within an ultranarrow temporal window that severely violates the Tuy condition. Methods:more » In time-resolved contrast enhanced CT acquisitions, image contrast dynamically changes during data acquisition. Each image reconstructed from data acquired in a given temporal window represents one time frame and can be denoted as an image vector. Conventionally, each individual time frame is reconstructed independently. In this paper, all image frames are grouped into a spatial–temporal image matrix and are reconstructed together. Rather than the spatial and/or temporal smoothing regularizers commonly used in iterative image reconstruction, the nuclear norm of the spatial–temporal image matrix is used in SMART-RECON to regularize the reconstruction of all image time frames. This regularizer exploits the low-dimensional structure of the spatial–temporal image matrix to mitigate limited-view artifacts when an ultranarrow temporal window is desired in some applications to reduce temporal-average artifacts. Both numerical simulations in two dimensional image slices with known ground truth and in vivo human subject data acquired in a contrast enhanced cone beam CT exam have been used to validate the proposed SMART-RECON algorithm and to demonstrate the initial performance of the algorithm. Reconstruction errors and temporal fidelity of the reconstructed images were quantified using the relative root mean square error (rRMSE) and the universal quality index (UQI) in numerical simulations. The performance of the SMART-RECON algorithm was compared with that of the prior image constrained compressed sensing (PICCS) reconstruction quantitatively in simulations and qualitatively in human subject exam. Results: In numerical simulations, the 240{sup ∘} short scan angular span was divided into four consecutive 60{sup ∘} angular subsectors. SMART-RECON enables four high temporal fidelity images without limited-view artifacts. The average rRMSE is 16% and UQIs are 0.96 and 0.95 for the two local regions of interest, respectively. In contrast, the corresponding average rRMSE and UQIs are 25%, 0.78, and 0.81, respectively, for the PICCS reconstruction. Note that only one filtered backprojection image can be reconstructed from the same data set with an average rRMSE and UQIs are 45%, 0.71, and 0.79, respectively, to benchmark reconstruction accuracies. For in vivo contrast enhanced cone beam CT data acquired from a short scan angular span of 200{sup ∘}, three 66{sup ∘} angular subsectors were used in SMART-RECON. The results demonstrated clear contrast difference in three SMART-RECON reconstructed image volumes without limited-view artifacts. In contrast, for the same angular sectors, PICCS cannot reconstruct images without limited-view artifacts and with clear contrast difference in three reconstructed image volumes. Conclusions: In time-resolved CT, the proposed SMART-RECON method provides a new method to eliminate limited-view artifacts using data acquired in an ultranarrow temporal window, which corresponds to approximately 60{sup ∘} angular subsectors.« less
Accelerating Advanced MRI Reconstructions on GPUs
Stone, S.S.; Haldar, J.P.; Tsao, S.C.; Hwu, W.-m.W.; Sutton, B.P.; Liang, Z.-P.
2008-01-01
Computational acceleration on graphics processing units (GPUs) can make advanced magnetic resonance imaging (MRI) reconstruction algorithms attractive in clinical settings, thereby improving the quality of MR images across a broad spectrum of applications. This paper describes the acceleration of such an algorithm on NVIDIA’s Quadro FX 5600. The reconstruction of a 3D image with 1283 voxels achieves up to 180 GFLOPS and requires just over one minute on the Quadro, while reconstruction on a quad-core CPU is twenty-one times slower. Furthermore, relative to the true image, the error exhibited by the advanced reconstruction is only 12%, while conventional reconstruction techniques incur error of 42%. PMID:21796230
Accelerating Advanced MRI Reconstructions on GPUs.
Stone, S S; Haldar, J P; Tsao, S C; Hwu, W-M W; Sutton, B P; Liang, Z-P
2008-10-01
Computational acceleration on graphics processing units (GPUs) can make advanced magnetic resonance imaging (MRI) reconstruction algorithms attractive in clinical settings, thereby improving the quality of MR images across a broad spectrum of applications. This paper describes the acceleration of such an algorithm on NVIDIA's Quadro FX 5600. The reconstruction of a 3D image with 128(3) voxels achieves up to 180 GFLOPS and requires just over one minute on the Quadro, while reconstruction on a quad-core CPU is twenty-one times slower. Furthermore, relative to the true image, the error exhibited by the advanced reconstruction is only 12%, while conventional reconstruction techniques incur error of 42%.
Mu, Zhiping; Hong, Baoming; Li, Shimin; Liu, Yi-Hwa
2009-01-01
Coded aperture imaging for two-dimensional (2D) planar objects has been investigated extensively in the past, whereas little success has been achieved in imaging 3D objects using this technique. In this article, the authors present a novel method of 3D single photon emission computerized tomography (SPECT) reconstruction for near-field coded aperture imaging. Multiangular coded aperture projections are acquired and a stack of 2D images is reconstructed separately from each of the projections. Secondary projections are subsequently generated from the reconstructed image stacks based on the geometry of parallel-hole collimation and the variable magnification of near-field coded aperture imaging. Sinograms of cross-sectional slices of 3D objects are assembled from the secondary projections, and the ordered subset expectation and maximization algorithm is employed to reconstruct the cross-sectional image slices from the sinograms. Experiments were conducted using a customized capillary tube phantom and a micro hot rod phantom. Imaged at approximately 50 cm from the detector, hot rods in the phantom with diameters as small as 2.4 mm could be discerned in the reconstructed SPECT images. These results have demonstrated the feasibility of the authors’ 3D coded aperture image reconstruction algorithm for SPECT, representing an important step in their effort to develop a high sensitivity and high resolution SPECT imaging system. PMID:19544769
Optimization-based reconstruction for reduction of CBCT artifact in IGRT
NASA Astrophysics Data System (ADS)
Xia, Dan; Zhang, Zheng; Paysan, Pascal; Seghers, Dieter; Brehm, Marcus; Munro, Peter; Sidky, Emil Y.; Pelizzari, Charles; Pan, Xiaochuan
2016-04-01
Kilo-voltage cone-beam computed tomography (CBCT) plays an important role in image guided radiation therapy (IGRT) by providing 3D spatial information of tumor potentially useful for optimizing treatment planning. In current IGRT CBCT system, reconstructed images obtained with analytic algorithms, such as FDK algorithm and its variants, may contain artifacts. In an attempt to compensate for the artifacts, we investigate optimization-based reconstruction algorithms such as the ASD-POCS algorithm for potentially reducing arti- facts in IGRT CBCT images. In this study, using data acquired with a physical phantom and a patient subject, we demonstrate that the ASD-POCS reconstruction can significantly reduce artifacts observed in clinical re- constructions. Moreover, patient images reconstructed by use of the ASD-POCS algorithm indicate a contrast level of soft-tissue improved over that of the clinical reconstruction. We have also performed reconstructions from sparse-view data, and observe that, for current clinical imaging conditions, ASD-POCS reconstructions from data collected at one half of the current clinical projection views appear to show image quality, in terms of spatial and soft-tissue-contrast resolution, higher than that of the corresponding clinical reconstructions.
Huang, Jinhong; Guo, Li; Feng, Qianjin; Chen, Wufan; Feng, Yanqiu
2015-07-21
Image reconstruction from undersampled k-space data accelerates magnetic resonance imaging (MRI) by exploiting image sparseness in certain transform domains. Employing image patch representation over a learned dictionary has the advantage of being adaptive to local image structures and thus can better sparsify images than using fixed transforms (e.g. wavelets and total variations). Dictionary learning methods have recently been introduced to MRI reconstruction, and these methods demonstrate significantly reduced reconstruction errors compared to sparse MRI reconstruction using fixed transforms. However, the synthesis sparse coding problem in dictionary learning is NP-hard and computationally expensive. In this paper, we present a novel sparsity-promoting orthogonal dictionary updating method for efficient image reconstruction from highly undersampled MRI data. The orthogonality imposed on the learned dictionary enables the minimization problem in the reconstruction to be solved by an efficient optimization algorithm which alternately updates representation coefficients, orthogonal dictionary, and missing k-space data. Moreover, both sparsity level and sparse representation contribution using updated dictionaries gradually increase during iterations to recover more details, assuming the progressively improved quality of the dictionary. Simulation and real data experimental results both demonstrate that the proposed method is approximately 10 to 100 times faster than the K-SVD-based dictionary learning MRI method and simultaneously improves reconstruction accuracy.
Peressutti, Devis; Penney, Graeme P; Housden, R James; Kolbitsch, Christoph; Gomez, Alberto; Rijkhorst, Erik-Jan; Barratt, Dean C; Rhode, Kawal S; King, Andrew P
2013-05-01
In image-guided cardiac interventions, respiratory motion causes misalignments between the pre-procedure roadmap of the heart used for guidance and the intra-procedure position of the heart, reducing the accuracy of the guidance information and leading to potentially dangerous consequences. We propose a novel technique for motion-correcting the pre-procedural information that combines a probabilistic MRI-derived affine motion model with intra-procedure real-time 3D echocardiography (echo) images in a Bayesian framework. The probabilistic model incorporates a measure of confidence in its motion estimates which enables resolution of the potentially conflicting information supplied by the model and the echo data. Unlike models proposed so far, our method allows the final motion estimate to deviate from the model-produced estimate according to the information provided by the echo images, so adapting to the complex variability of respiratory motion. The proposed method is evaluated using gold-standard MRI-derived motion fields and simulated 3D echo data for nine volunteers and real 3D live echo images for four volunteers. The Bayesian method is compared to 5 other motion estimation techniques and results show mean/max improvements in estimation accuracy of 10.6%/18.9% for simulated echo images and 20.8%/41.5% for real 3D live echo data, over the best comparative estimation method. Copyright © 2013 Elsevier B.V. All rights reserved.
A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Seungryong; Xia, Dan; Pellizzari, Charles A.
2010-01-15
Purpose: Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. Methods: The proposed approach comprises of two reconstruction steps. In the first step, amore » chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack-Noo-formula-based filteredbackprojection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. Results: The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. Conclusions: They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories.« less
Xu, Q; Yang, D; Tan, J; Anastasio, M
2012-06-01
To improve image quality and reduce imaging dose in CBCT for radiation therapy applications and to realize near real-time image reconstruction based on use of a fast convergence iterative algorithm and acceleration by multi-GPUs. An iterative image reconstruction that sought to minimize a weighted least squares cost function that employed total variation (TV) regularization was employed to mitigate projection data incompleteness and noise. To achieve rapid 3D image reconstruction (< 1 min), a highly optimized multiple-GPU implementation of the algorithm was developed. The convergence rate and reconstruction accuracy were evaluated using a modified 3D Shepp-Logan digital phantom and a Catphan-600 physical phantom. The reconstructed images were compared with the clinical FDK reconstruction results. Digital phantom studies showed that only 15 iterations and 60 iterations are needed to achieve algorithm convergence for 360-view and 60-view cases, respectively. The RMSE was reduced to 10-4 and 10-2, respectively, by using 15 iterations for each case. Our algorithm required 5.4s to complete one iteration for the 60-view case using one Tesla C2075 GPU. The few-view study indicated that our iterative algorithm has great potential to reduce the imaging dose and preserve good image quality. For the physical Catphan studies, the images obtained from the iterative algorithm possessed better spatial resolution and higher SNRs than those obtained from by use of a clinical FDK reconstruction algorithm. We have developed a fast convergence iterative algorithm for CBCT image reconstruction. The developed algorithm yielded images with better spatial resolution and higher SNR than those produced by a commercial FDK tool. In addition, from the few-view study, the iterative algorithm has shown great potential for significantly reducing imaging dose. We expect that the developed reconstruction approach will facilitate applications including IGART and patient daily CBCT-based treatment localization. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Azhar, N.; Saad, W. H. M.; Manap, N. A.; Saad, N. M.; Syafeeza, A. R.
2017-06-01
This study presents the approach of 3D image reconstruction using an autonomous robotic arm for the image acquisition process. A low cost of the automated imaging platform is created using a pair of G15 servo motor connected in series to an Arduino UNO as a main microcontroller. Two sets of sequential images were obtained using different projection angle of the camera. The silhouette-based approach is used in this study for 3D reconstruction from the sequential images captured from several different angles of the object. Other than that, an analysis based on the effect of different number of sequential images on the accuracy of 3D model reconstruction was also carried out with a fixed projection angle of the camera. The effecting elements in the 3D reconstruction are discussed and the overall result of the analysis is concluded according to the prototype of imaging platform.
Joint MR-PET reconstruction using a multi-channel image regularizer
Koesters, Thomas; Otazo, Ricardo; Bredies, Kristian; Sodickson, Daniel K
2016-01-01
While current state of the art MR-PET scanners enable simultaneous MR and PET measurements, the acquired data sets are still usually reconstructed separately. We propose a new multi-modality reconstruction framework using second order Total Generalized Variation (TGV) as a dedicated multi-channel regularization functional that jointly reconstructs images from both modalities. In this way, information about the underlying anatomy is shared during the image reconstruction process while unique differences are preserved. Results from numerical simulations and in-vivo experiments using a range of accelerated MR acquisitions and different MR image contrasts demonstrate improved PET image quality, resolution, and quantitative accuracy. PMID:28055827
Johansson, Adam; Balter, James; Cao, Yue
2018-03-01
Respiratory motion can affect pharmacokinetic perfusion parameters quantified from liver dynamic contrast-enhanced MRI. Image registration can be used to align dynamic images after reconstruction. However, intra-image motion blur remains after alignment and can alter the shape of contrast-agent uptake curves. We introduce a method to correct for inter- and intra-image motion during image reconstruction. Sixteen liver dynamic contrast-enhanced MRI examinations of nine subjects were performed using a golden-angle stack-of-stars sequence. For each examination, an image time series with high temporal resolution but severe streak artifacts was reconstructed. Images were aligned using region-limited rigid image registration within a region of interest covering the liver. The transformations resulting from alignment were used to correct raw data for motion by modulating and rotating acquired lines in k-space. The corrected data were then reconstructed using view sharing. Portal-venous input functions extracted from motion-corrected images had significantly greater peak signal enhancements (mean increase: 16%, t-test, P < 0.001) than those from images aligned using image registration after reconstruction. In addition, portal-venous perfusion maps estimated from motion-corrected images showed fewer artifacts close to the edge of the liver. Motion-corrected image reconstruction restores uptake curves distorted by motion. Motion correction also reduces motion artifacts in estimated perfusion parameter maps. Magn Reson Med 79:1345-1353, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Ellis, Sam; Reader, Andrew J
2018-04-26
Many clinical contexts require the acquisition of multiple positron emission tomography (PET) scans of a single subject, for example, to observe and quantitate changes in functional behaviour in tumors after treatment in oncology. Typically, the datasets from each of these scans are reconstructed individually, without exploiting the similarities between them. We have recently shown that sharing information between longitudinal PET datasets by penalizing voxel-wise differences during image reconstruction can improve reconstructed images by reducing background noise and increasing the contrast-to-noise ratio of high-activity lesions. Here, we present two additional novel longitudinal difference-image priors and evaluate their performance using two-dimesional (2D) simulation studies and a three-dimensional (3D) real dataset case study. We have previously proposed a simultaneous difference-image-based penalized maximum likelihood (PML) longitudinal image reconstruction method that encourages sparse difference images (DS-PML), and in this work we propose two further novel prior terms. The priors are designed to encourage longitudinal images with corresponding differences which have (a) low entropy (DE-PML), and (b) high sparsity in their spatial gradients (DTV-PML). These two new priors and the originally proposed longitudinal prior were applied to 2D-simulated treatment response [ 18 F]fluorodeoxyglucose (FDG) brain tumor datasets and compared to standard maximum likelihood expectation-maximization (MLEM) reconstructions. These 2D simulation studies explored the effects of penalty strengths, tumor behaviour, and interscan coupling on reconstructed images. Finally, a real two-scan longitudinal data series acquired from a head and neck cancer patient was reconstructed with the proposed methods and the results compared to standard reconstruction methods. Using any of the three priors with an appropriate penalty strength produced images with noise levels equivalent to those seen when using standard reconstructions with increased counts levels. In tumor regions, each method produces subtly different results in terms of preservation of tumor quantitation and reconstruction root mean-squared error (RMSE). In particular, in the two-scan simulations, the DE-PML method produced tumor means in close agreement with MLEM reconstructions, while the DTV-PML method produced the lowest errors due to noise reduction within the tumor. Across a range of tumor responses and different numbers of scans, similar results were observed, with DTV-PML producing the lowest errors of the three priors and DE-PML producing the lowest bias. Similar improvements were observed in the reconstructions of the real longitudinal datasets, although imperfect alignment of the two PET images resulted in additional changes in the difference image that affected the performance of the proposed methods. Reconstruction of longitudinal datasets by penalizing difference images between pairs of scans from a data series allows for noise reduction in all reconstructed images. An appropriate choice of penalty term and penalty strength allows for this noise reduction to be achieved while maintaining reconstruction performance in regions of change, either in terms of quantitation of mean intensity via DE-PML, or in terms of tumor RMSE via DTV-PML. Overall, improving the image quality of longitudinal datasets via simultaneous reconstruction has the potential to improve upon currently used methods, allow dose reduction, or reduce scan time while maintaining image quality at current levels. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Yang, Wen Jie; Yan, Fu Hua; Liu, Bo; Pang, Li Fang; Hou, Liang; Zhang, Huan; Pan, Zi Lai; Chen, Ke Min
2013-01-01
To evaluate the performance of sinogram-affirmed iterative (SAFIRE) reconstruction on image quality of low-dose lung computed tomographic (CT) screening compared with filtered back projection (FBP). Three hundred four patients for annual low-dose lung CT screening were examined by a dual-source CT system at 120 kilovolt (peak) with reference tube current of 40 mA·s. Six image serials were reconstructed, including one data set of FBP and 5 data sets of SAFIRE with different reconstruction strengths from 1 to 5. Image noise was recorded; and subjective scores of image noise, images artifacts, and the overall image quality were also assessed by 2 radiologists. The mean ± SD weight for all patients was 66.3 ± 12.8 kg, and the body mass index was 23.4 ± 3.2. The mean ± SD dose-length product was 95.2 ± 30.6 mGy cm, and the mean ± SD effective dose was 1.6 ± 0.5 mSv. The observation agreements for image noise grade, artifact grade, and the overall image quality were 0.785, 0.595 and 0.512, respectively. Among the overall 6 data sets, both the measured mean objective image noise and the subjective image noise of FBP was the highest, and the image noise decreased with the increasing of SAFIRE reconstruction strength. The data sets of S3 obtained the best image quality scores. Sinogram-affirmed iterative reconstruction can significantly improve image quality of low-dose lung CT screening compared with FBP, and SAFIRE with reconstruction strength 3 was a pertinent choice for low-dose lung CT.
Zehender, Gianguglielmo; Lai, Alessia; Veo, Carla; Bergna, Annalisa; Ciccozzi, Massimo; Galli, Massimo
2018-06-01
Variola virus (VARV), the causative agent of smallpox, is an exclusively human virus belonging to the genus Orthopoxvirus, which includes many other viral species covering a wide range of mammal hosts, such as vaccinia, cowpox, camelpox, taterapox, ectromelia, and monkeypox virus. The tempo and mode of evolution of Orthopoxviruses were reconstructed using a Bayesian phylodynamic framework by analysing 80 hemagglutinin sequences retrieved from public databases. Bayesian phylogeography was used to estimate their putative ancestral hosts. In order to estimate the substitution rate, the tree including all of the available Orthopoxviruses was calibrated using historical references dating the South American variola minor clade (alastrim) to between the XVI and XIX century. The mean substitution rate determined by the analysis was 6.5 × 10 -6 substitutions/site/year. Based on this evolutionary estimate, the time of the most recent common ancestor of the genus Orthopoxvirus was placed at about 10 000 years before the present. Cowpox virus was the species closest to the root of the phylogenetic tree. The root of VARV circulating in the XX century was estimated to be about 700 years ago, corresponding to about 1300 AD. The divergence between West African and South American VARV went back about 500 years ago (falling approximately in the XVI century). A rodent species is the most probable ancestral host from which the ancestors of all the known Orthopoxviruses were transmitted to the other mammal host species, and each of these species represented a dead-end for each new poxvirus species, without any further inter-specific spread. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Song, Xizi; Xu, Yanbin; Dong, Feng
2017-04-01
Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results.
Aurumskjöld, Marie-Louise; Söderberg, Marcus; Stålhammar, Fredrik; von Steyern, Kristina Vult; Tingberg, Anders; Ydström, Kristina
2018-06-01
Background In pediatric patients, computed tomography (CT) is important in the medical chain of diagnosing and monitoring various diseases. Because children are more radiosensitive than adults, they require minimal radiation exposure. One way to achieve this goal is to implement new technical solutions, like iterative reconstruction. Purpose To evaluate the potential of a new, iterative, model-based method for reconstructing (IMR) pediatric abdominal CT at a low radiation dose and determine whether it maintains or improves image quality, compared to the current reconstruction method. Material and Methods Forty pediatric patients underwent abdominal CT. Twenty patients were examined with the standard dose settings and 20 patients were examined with a 32% lower radiation dose. Images from the standard examination were reconstructed with a hybrid iterative reconstruction method (iDose 4 ), and images from the low-dose examinations were reconstructed with both iDose 4 and IMR. Image quality was evaluated subjectively by three observers, according to modified EU image quality criteria, and evaluated objectively based on the noise observed in liver images. Results Visual grading characteristics analyses showed no difference in image quality between the standard dose examination reconstructed with iDose 4 and the low dose examination reconstructed with IMR. IMR showed lower image noise in the liver compared to iDose 4 images. Inter- and intra-observer variance was low: the intraclass coefficient was 0.66 (95% confidence interval = 0.60-0.71) for the three observers. Conclusion IMR provided image quality equivalent or superior to the standard iDose 4 method for evaluating pediatric abdominal CT, even with a 32% dose reduction.
Acceleration of the direct reconstruction of linear parametric images using nested algorithms.
Wang, Guobao; Qi, Jinyi
2010-03-07
Parametric imaging using dynamic positron emission tomography (PET) provides important information for biological research and clinical diagnosis. Indirect and direct methods have been developed for reconstructing linear parametric images from dynamic PET data. Indirect methods are relatively simple and easy to implement because the image reconstruction and kinetic modeling are performed in two separate steps. Direct methods estimate parametric images directly from raw PET data and are statistically more efficient. However, the convergence rate of direct algorithms can be slow due to the coupling between the reconstruction and kinetic modeling. Here we present two fast gradient-type algorithms for direct reconstruction of linear parametric images. The new algorithms decouple the reconstruction and linear parametric modeling at each iteration by employing the principle of optimization transfer. Convergence speed is accelerated by running more sub-iterations of linear parametric estimation because the computation cost of the linear parametric modeling is much less than that of the image reconstruction. Computer simulation studies demonstrated that the new algorithms converge much faster than the traditional expectation maximization (EM) and the preconditioned conjugate gradient algorithms for dynamic PET.
NASA Astrophysics Data System (ADS)
Dang, H.; Wang, A. S.; Sussman, Marc S.; Siewerdsen, J. H.; Stayman, J. W.
2014-09-01
Sequential imaging studies are conducted in many clinical scenarios. Prior images from previous studies contain a great deal of patient-specific anatomical information and can be used in conjunction with subsequent imaging acquisitions to maintain image quality while enabling radiation dose reduction (e.g., through sparse angular sampling, reduction in fluence, etc). However, patient motion between images in such sequences results in misregistration between the prior image and current anatomy. Existing prior-image-based approaches often include only a simple rigid registration step that can be insufficient for capturing complex anatomical motion, introducing detrimental effects in subsequent image reconstruction. In this work, we propose a joint framework that estimates the 3D deformation between an unregistered prior image and the current anatomy (based on a subsequent data acquisition) and reconstructs the current anatomical image using a model-based reconstruction approach that includes regularization based on the deformed prior image. This framework is referred to as deformable prior image registration, penalized-likelihood estimation (dPIRPLE). Central to this framework is the inclusion of a 3D B-spline-based free-form-deformation model into the joint registration-reconstruction objective function. The proposed framework is solved using a maximization strategy whereby alternating updates to the registration parameters and image estimates are applied allowing for improvements in both the registration and reconstruction throughout the optimization process. Cadaver experiments were conducted on a cone-beam CT testbench emulating a lung nodule surveillance scenario. Superior reconstruction accuracy and image quality were demonstrated using the dPIRPLE algorithm as compared to more traditional reconstruction methods including filtered backprojection, penalized-likelihood estimation (PLE), prior image penalized-likelihood estimation (PIPLE) without registration, and prior image penalized-likelihood estimation with rigid registration of a prior image (PIRPLE) over a wide range of sampling sparsity and exposure levels.
Three-dimensional NDE of VHTR core components via simulation-based testing. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzina, Bojan; Kunerth, Dennis
2014-09-30
A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and characterization of defects and damage in nuclear graphite and composite structures in Very High Temperature Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR components. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust, non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based approach to the measurement of experimental waveforms in VHTR core components. In particular, this research (1) deploys three-dimensionalmore » Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects - that permits robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational (finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact, high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR core components; and (5) applies the proposed methodology to VHTR core component samples (both two- and three-dimensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses all existing techniques for the 3D ultrasonic imaging of material damage from non-contact, limited-aperture waveform measurements. Outlook. The next stage in the development of this technology includes items such as (a) non-contact generation of mechanical vibrations in VHTR components via thermal expansion created by high-intensity laser; (b) development and incorporation of Synthetic Aperture Focusing Technique (SAFT) for elevating the accuracy of 3D imaging in highly noisy environments with minimal accessible surface; (c) further analytical and computational developments to facilitate the reconstruction of diffuse damage (e.g. microcracks) in nuclear graphite as they lead to the dispersion of elastic waves, (d) concept of model updating for accurate tracking of the evolution of material damage via periodic inspections; (d) adoption of the Bayesian framework to obtain information on the certainty of obtained images; and (e) optimization of the computational scheme toward real-time, model-based imaging of damage in VHTR core components.« less
SU-D-206-03: Segmentation Assisted Fast Iterative Reconstruction Method for Cone-Beam CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, P; Mao, T; Gong, S
2016-06-15
Purpose: Total Variation (TV) based iterative reconstruction (IR) methods enable accurate CT image reconstruction from low-dose measurements with sparse projection acquisition, due to the sparsifiable feature of most CT images using gradient operator. However, conventional solutions require large amount of iterations to generate a decent reconstructed image. One major reason is that the expected piecewise constant property is not taken into consideration at the optimization starting point. In this work, we propose an iterative reconstruction method for cone-beam CT (CBCT) using image segmentation to guide the optimization path more efficiently on the regularization term at the beginning of the optimizationmore » trajectory. Methods: Our method applies general knowledge that one tissue component in the CT image contains relatively uniform distribution of CT number. This general knowledge is incorporated into the proposed reconstruction using image segmentation technique to generate the piecewise constant template on the first-pass low-quality CT image reconstructed using analytical algorithm. The template image is applied as an initial value into the optimization process. Results: The proposed method is evaluated on the Shepp-Logan phantom of low and high noise levels, and a head patient. The number of iterations is reduced by overall 40%. Moreover, our proposed method tends to generate a smoother reconstructed image with the same TV value. Conclusion: We propose a computationally efficient iterative reconstruction method for CBCT imaging. Our method achieves a better optimization trajectory and a faster convergence behavior. It does not rely on prior information and can be readily incorporated into existing iterative reconstruction framework. Our method is thus practical and attractive as a general solution to CBCT iterative reconstruction. This work is supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR16F010001), National High-tech R&D Program for Young Scientists by the Ministry of Science and Technology of China (Grant No. 2015AA020917).« less
2014-01-01
Automatic reconstruction of metabolic pathways for an organism from genomics and transcriptomics data has been a challenging and important problem in bioinformatics. Traditionally, known reference pathways can be mapped into an organism-specific ones based on its genome annotation and protein homology. However, this simple knowledge-based mapping method might produce incomplete pathways and generally cannot predict unknown new relations and reactions. In contrast, ab initio metabolic network construction methods can predict novel reactions and interactions, but its accuracy tends to be low leading to a lot of false positives. Here we combine existing pathway knowledge and a new ab initio Bayesian probabilistic graphical model together in a novel fashion to improve automatic reconstruction of metabolic networks. Specifically, we built a knowledge database containing known, individual gene / protein interactions and metabolic reactions extracted from existing reference pathways. Known reactions and interactions were then used as constraints for Bayesian network learning methods to predict metabolic pathways. Using individual reactions and interactions extracted from different pathways of many organisms to guide pathway construction is new and improves both the coverage and accuracy of metabolic pathway construction. We applied this probabilistic knowledge-based approach to construct the metabolic networks from yeast gene expression data and compared its results with 62 known metabolic networks in the KEGG database. The experiment showed that the method improved the coverage of metabolic network construction over the traditional reference pathway mapping method and was more accurate than pure ab initio methods. PMID:25374614
BaTMAn: Bayesian Technique for Multi-image Analysis
NASA Astrophysics Data System (ADS)
Casado, J.; Ascasibar, Y.; García-Benito, R.; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, S. F.; Díaz, A. I.
2016-12-01
Bayesian Technique for Multi-image Analysis (BaTMAn) characterizes any astronomical dataset containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (i.e. identical signal within the errors). The output segmentations successfully adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. BaTMAn identifies (and keeps) all the statistically-significant information contained in the input multi-image (e.g. an IFS datacube). The main aim of the algorithm is to characterize spatially-resolved data prior to their analysis.
A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times
NASA Astrophysics Data System (ADS)
Edmund, Jens M.; Kjer, Hans M.; Van Leemput, Koen; Hansen, Rasmus H.; Andersen, Jon AL; Andreasen, Daniel
2014-12-01
Radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, so-called MRI-only RT, would remove the systematic registration error between MR and computed tomography (CT), and provide co-registered MRI for assessment of treatment response and adaptive RT. Electron densities, however, need to be assigned to the MRI images for dose calculation and patient setup based on digitally reconstructed radiographs (DRRs). Here, we investigate the geometric and dosimetric performance for a number of popular voxel-based methods to generate a so-called pseudo CT (pCT). Five patients receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for three popular types of voxel-based approaches; (1) threshold-based segmentation, (2) Bayesian segmentation and (3) statistical regression. Each approach contained two methods. Approach 1 used bulk density assignment of MRI voxels into air, soft tissue and bone based on logical masks and the transverse relaxation time T2 of the bone. Approach 2 used similar bulk density assignments with Bayesian statistics including or excluding additional spatial information. Approach 3 used a statistical regression correlating MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated for a target positioned between the nasal cavity and the brainstem for all patients. The CT agreement with the pCT of each method was quantified and compared with the other methods geometrically and dosimetrically using both a number of reported metrics and introducing some novel metrics. The best geometrical agreement with CT was obtained with the statistical regression methods which performed significantly better than the threshold and Bayesian segmentation methods (excluding spatial information). All methods agreed significantly better with CT than a reference water MRI comparison. The mean dosimetric deviation for photons and protons compared to the CT was about 2% and highest in the gradient dose region of the brainstem. Both the threshold based method and the statistical regression methods showed the highest dosimetrical agreement. Generation of pCTs using statistical regression seems to be the most promising candidate for MRI-only RT of the brain. Further, the total amount of different tissues needs to be taken into account for dosimetric considerations regardless of their correct geometrical position.
NASA Astrophysics Data System (ADS)
Huang, Xiaokun; Zhang, You; Wang, Jing
2018-02-01
Reconstructing four-dimensional cone-beam computed tomography (4D-CBCT) images directly from respiratory phase-sorted traditional 3D-CBCT projections can capture target motion trajectory, reduce motion artifacts, and reduce imaging dose and time. However, the limited numbers of projections in each phase after phase-sorting decreases CBCT image quality under traditional reconstruction techniques. To address this problem, we developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, an iterative method that can reconstruct higher quality 4D-CBCT images from limited projections using an inter-phase intensity-driven motion model. However, the accuracy of the intensity-driven motion model is limited in regions with fine details whose quality is degraded due to insufficient projection number, which consequently degrades the reconstructed image quality in corresponding regions. In this study, we developed a new 4D-CBCT reconstruction algorithm by introducing biomechanical modeling into SMEIR (SMEIR-Bio) to boost the accuracy of the motion model in regions with small fine structures. The biomechanical modeling uses tetrahedral meshes to model organs of interest and solves internal organ motion using tissue elasticity parameters and mesh boundary conditions. This physics-driven approach enhances the accuracy of solved motion in the organ’s fine structures regions. This study used 11 lung patient cases to evaluate the performance of SMEIR-Bio, making both qualitative and quantitative comparisons between SMEIR-Bio, SMEIR, and the algebraic reconstruction technique with total variation regularization (ART-TV). The reconstruction results suggest that SMEIR-Bio improves the motion model’s accuracy in regions containing small fine details, which consequently enhances the accuracy and quality of the reconstructed 4D-CBCT images.
Gatti, Marco; Marchisio, Filippo; Fronda, Marco; Rampado, Osvaldo; Faletti, Riccardo; Bergamasco, Laura; Ropolo, Roberto; Fonio, Paolo
The aim of this study was to evaluate the impact on dose reduction and image quality of the new iterative reconstruction technique: adaptive statistical iterative reconstruction (ASIR-V). Fifty consecutive oncologic patients acted as case controls undergoing during their follow-up a computed tomography scan both with ASIR and ASIR-V. Each study was analyzed in a double-blinded fashion by 2 radiologists. Both quantitative and qualitative analyses of image quality were conducted. Computed tomography scanner radiation output was 38% (29%-45%) lower (P < 0.0001) for the ASIR-V examinations than for the ASIR ones. The quantitative image noise was significantly lower (P < 0.0001) for ASIR-V. Adaptive statistical iterative reconstruction-V had a higher performance for the subjective image noise (P = 0.01 for 5 mm and P = 0.009 for 1.25 mm), the other parameters (image sharpness, diagnostic acceptability, and overall image quality) being similar (P > 0.05). Adaptive statistical iterative reconstruction-V is a new iterative reconstruction technique that has the potential to provide image quality equal to or greater than ASIR, with a dose reduction around 40%.
LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation
NASA Astrophysics Data System (ADS)
Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.
2015-01-01
Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanners. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present a LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the non-negative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which can have significant implications in preclinical and clinical ROI imaging applications.
Sparse Reconstruction Techniques in MRI: Methods, Applications, and Challenges to Clinical Adoption
Yang, Alice Chieh-Yu; Kretzler, Madison; Sudarski, Sonja; Gulani, Vikas; Seiberlich, Nicole
2016-01-01
The family of sparse reconstruction techniques, including the recently introduced compressed sensing framework, has been extensively explored to reduce scan times in Magnetic Resonance Imaging (MRI). While there are many different methods that fall under the general umbrella of sparse reconstructions, they all rely on the idea that a priori information about the sparsity of MR images can be employed to reconstruct full images from undersampled data. This review describes the basic ideas behind sparse reconstruction techniques, how they could be applied to improve MR imaging, and the open challenges to their general adoption in a clinical setting. The fundamental principles underlying different classes of sparse reconstructions techniques are examined, and the requirements that each make on the undersampled data outlined. Applications that could potentially benefit from the accelerations that sparse reconstructions could provide are described, and clinical studies using sparse reconstructions reviewed. Lastly, technical and clinical challenges to widespread implementation of sparse reconstruction techniques, including optimization, reconstruction times, artifact appearance, and comparison with current gold-standards, are discussed. PMID:27003227
Speckle reduction in digital holography with resampling ring masks
NASA Astrophysics Data System (ADS)
Zhang, Wenhui; Cao, Liangcai; Jin, Guofan
2018-01-01
One-shot digital holographic imaging has the advantages of high stability and low temporal cost. However, the reconstruction is affected by the speckle noise. Resampling ring-mask method in spectrum domain is proposed for speckle reduction. The useful spectrum of one hologram is divided into several sub-spectra by ring masks. In the reconstruction, angular spectrum transform is applied to guarantee the calculation accuracy which has no approximation. N reconstructed amplitude images are calculated from the corresponding sub-spectra. Thanks to speckle's random distribution, superimposing these N uncorrelated amplitude images would lead to a final reconstructed image with lower speckle noise. Normalized relative standard deviation values of the reconstructed image are used to evaluate the reduction of speckle. Effect of the method on the spatial resolution of the reconstructed image is also quantitatively evaluated. Experimental and simulation results prove the feasibility and effectiveness of the proposed method.
Kamesh Iyer, Srikant; Tasdizen, Tolga; Likhite, Devavrat; DiBella, Edward
2016-01-01
Purpose: Rapid reconstruction of undersampled multicoil MRI data with iterative constrained reconstruction method is a challenge. The authors sought to develop a new substitution based variable splitting algorithm for faster reconstruction of multicoil cardiac perfusion MRI data. Methods: The new method, split Bregman multicoil accelerated reconstruction technique (SMART), uses a combination of split Bregman based variable splitting and iterative reweighting techniques to achieve fast convergence. Total variation constraints are used along the spatial and temporal dimensions. The method is tested on nine ECG-gated dog perfusion datasets, acquired with a 30-ray golden ratio radial sampling pattern and ten ungated human perfusion datasets, acquired with a 24-ray golden ratio radial sampling pattern. Image quality and reconstruction speed are evaluated and compared to a gradient descent (GD) implementation and to multicoil k-t SLR, a reconstruction technique that uses a combination of sparsity and low rank constraints. Results: Comparisons based on blur metric and visual inspection showed that SMART images had lower blur and better texture as compared to the GD implementation. On average, the GD based images had an ∼18% higher blur metric as compared to SMART images. Reconstruction of dynamic contrast enhanced (DCE) cardiac perfusion images using the SMART method was ∼6 times faster than standard gradient descent methods. k-t SLR and SMART produced images with comparable image quality, though SMART was ∼6.8 times faster than k-t SLR. Conclusions: The SMART method is a promising approach to reconstruct good quality multicoil images from undersampled DCE cardiac perfusion data rapidly. PMID:27036592
Bayesian statistical ionospheric tomography improved by incorporating ionosonde measurements
NASA Astrophysics Data System (ADS)
Norberg, Johannes; Virtanen, Ilkka I.; Roininen, Lassi; Vierinen, Juha; Orispää, Mikko; Kauristie, Kirsti; Lehtinen, Markku S.
2016-04-01
We validate two-dimensional ionospheric tomography reconstructions against EISCAT incoherent scatter radar measurements. Our tomography method is based on Bayesian statistical inversion with prior distribution given by its mean and covariance. We employ ionosonde measurements for the choice of the prior mean and covariance parameters and use the Gaussian Markov random fields as a sparse matrix approximation for the numerical computations. This results in a computationally efficient tomographic inversion algorithm with clear probabilistic interpretation. We demonstrate how this method works with simultaneous beacon satellite and ionosonde measurements obtained in northern Scandinavia. The performance is compared with results obtained with a zero-mean prior and with the prior mean taken from the International Reference Ionosphere 2007 model. In validating the results, we use EISCAT ultra-high-frequency incoherent scatter radar measurements as the ground truth for the ionization profile shape. We find that in comparison to the alternative prior information sources, ionosonde measurements improve the reconstruction by adding accurate information about the absolute value and the altitude distribution of electron density. With an ionosonde at continuous disposal, the presented method enhances stand-alone near-real-time ionospheric tomography for the given conditions significantly.
Exploring Quantum Dynamics of Continuous Measurement with a Superconducting Qubit
NASA Astrophysics Data System (ADS)
Jadbabaie, Arian; Forouzani, Neda; Tan, Dian; Murch, Kater
Weak measurements obtain partial information about a quantum state with minimal backaction. This enables state tracking without immediate collapse to eigenstates, of interest to both experimental and theoretical physics. State tomography and continuous weak measurements may be used to reconstruct the evolution of a single system, known as a quantum trajectory. We examine experimental trajectories of a two-level system at varied measurement strengths with constant unitary drive. Our analysis is applied to a transmon qubit dispersively coupled to a 3D microwave cavity in the circuit QED architecture. The weakly coupled cavity acts as pointer system for QND measurements in the qubit's energy basis. Our results indicate a marked difference in state purity between two approaches for trajectory reconstruction: the Bayesian and Stochastic Master Equation (SME) formalisms. Further, we observe the transition from diffusive to jump-like trajectories, state purity evolution, and a novel, tilted form of the Quantum Zeno effect. This work provides new insight into quantum behavior and prompts further comparison of SME and Bayesian formalisms to understand the nature of quantum systems. Our results are applicable to a variety of fields, from stochastic thermodynamics to quantum control.
NASA Astrophysics Data System (ADS)
Huang, Chao; Nie, Liming; Schoonover, Robert W.; Guo, Zijian; Schirra, Carsten O.; Anastasio, Mark A.; Wang, Lihong V.
2012-06-01
A challenge in photoacoustic tomography (PAT) brain imaging is to compensate for aberrations in the measured photoacoustic data due to their propagation through the skull. By use of information regarding the skull morphology and composition obtained from adjunct x-ray computed tomography image data, we developed a subject-specific imaging model that accounts for such aberrations. A time-reversal-based reconstruction algorithm was employed with this model for image reconstruction. The image reconstruction methodology was evaluated in experimental studies involving phantoms and monkey heads. The results establish that our reconstruction methodology can effectively compensate for skull-induced acoustic aberrations and improve image fidelity in transcranial PAT.
A new approach for measuring power spectra and reconstructing time series in active galactic nuclei
NASA Astrophysics Data System (ADS)
Li, Yan-Rong; Wang, Jian-Min
2018-05-01
We provide a new approach to measure power spectra and reconstruct time series in active galactic nuclei (AGNs) based on the fact that the Fourier transform of AGN stochastic variations is a series of complex Gaussian random variables. The approach parametrizes a stochastic series in frequency domain and transforms it back to time domain to fit the observed data. The parameters and their uncertainties are derived in a Bayesian framework, which also allows us to compare the relative merits of different power spectral density models. The well-developed fast Fourier transform algorithm together with parallel computation enables an acceptable time complexity for the approach.
Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)
NASA Astrophysics Data System (ADS)
McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian
2006-03-01
To create a repository of clinical data, CT images and tissue samples and to more clearly understand the pathogenetic features of pulmonary fibrosis and emphysema, the National Heart, Lung, and Blood Institute (NHLBI) launched a cooperative effort known as the Lung Tissue Resource Consortium (LTRC). The CT images for the LTRC effort must contain accurate CT numbers in order to characterize tissues, and must have high-spatial resolution to show fine anatomic structures. This study was performed to optimize the CT image reconstruction algorithms to achieve these criteria. Quantitative analyses of phantom and clinical images were conducted. The ACR CT accreditation phantom containing five regions of distinct CT attenuations (CT numbers of approximately -1000 HU, -80 HU, 0 HU, 130 HU and 900 HU), and a high-contrast spatial resolution test pattern, was scanned using CT systems from two manufacturers (General Electric (GE) Healthcare and Siemens Medical Solutions). Phantom images were reconstructed using all relevant reconstruction algorithms. Mean CT numbers and image noise (standard deviation) were measured and compared for the five materials. Clinical high-resolution chest CT images acquired on a GE CT system for a patient with diffuse lung disease were reconstructed using BONE and STANDARD algorithms and evaluated by a thoracic radiologist in terms of image quality and disease extent. The clinical BONE images were processed with a 3 x 3 x 3 median filter to simulate a thicker slice reconstructed in smoother algorithms, which have traditionally been proven to provide an accurate estimation of emphysema extent in the lungs. Using a threshold technique, the volume of emphysema (defined as the percentage of lung voxels having a CT number lower than -950 HU) was computed for the STANDARD, BONE, and BONE filtered. The CT numbers measured in the ACR CT Phantom images were accurate for all reconstruction kernels for both manufacturers. As expected, visual evaluation of the spatial resolution bar patterns demonstrated that the BONE (GE) and B46f (Siemens) showed higher spatial resolution compared to the STANDARD (GE) or B30f (Siemens) reconstruction algorithms typically used for routine body CT imaging. Only the sharper images were deemed clinically acceptable for the evaluation of diffuse lung disease (e.g. emphysema). Quantitative analyses of the extent of emphysema in patient data showed the percent volumes above the -950 HU threshold as 9.4% for the BONE reconstruction, 5.9% for the STANDARD reconstruction, and 4.7% for the BONE filtered images. Contrary to the practice of using standard resolution CT images for the quantitation of diffuse lung disease, these data demonstrate that a single sharp reconstruction (BONE/B46f) should be used for both the qualitative and quantitative evaluation of diffuse lung disease. The sharper reconstruction images, which are required for diagnostic interpretation, provide accurate CT numbers over the range of -1000 to +900 HU and preserve the fidelity of small structures in the reconstructed images. A filtered version of the sharper images can be accurately substituted for images reconstructed with smoother kernels for comparison to previously published results.
NASA Astrophysics Data System (ADS)
Mickevicius, Nikolai J.; Paulson, Eric S.
2017-04-01
The purpose of this work is to investigate the effects of undersampling and reconstruction algorithm on the total processing time and image quality of respiratory phase-resolved 4D MRI data. Specifically, the goal is to obtain quality 4D-MRI data with a combined acquisition and reconstruction time of five minutes or less, which we reasoned would be satisfactory for pre-treatment 4D-MRI in online MRI-gRT. A 3D stack-of-stars, self-navigated, 4D-MRI acquisition was used to scan three healthy volunteers at three image resolutions and two scan durations. The NUFFT, CG-SENSE, SPIRiT, and XD-GRASP reconstruction algorithms were used to reconstruct each dataset on a high performance reconstruction computer. The overall image quality, reconstruction time, artifact prevalence, and motion estimates were compared. The CG-SENSE and XD-GRASP reconstructions provided superior image quality over the other algorithms. The combination of a 3D SoS sequence and parallelized reconstruction algorithms using computing hardware more advanced than those typically seen on product MRI scanners, can result in acquisition and reconstruction of high quality respiratory correlated 4D-MRI images in less than five minutes.
Simultaneous maximum a posteriori longitudinal PET image reconstruction
NASA Astrophysics Data System (ADS)
Ellis, Sam; Reader, Andrew J.
2017-09-01
Positron emission tomography (PET) is frequently used to monitor functional changes that occur over extended time scales, for example in longitudinal oncology PET protocols that include routine clinical follow-up scans to assess the efficacy of a course of treatment. In these contexts PET datasets are currently reconstructed into images using single-dataset reconstruction methods. Inspired by recently proposed joint PET-MR reconstruction methods, we propose to reconstruct longitudinal datasets simultaneously by using a joint penalty term in order to exploit the high degree of similarity between longitudinal images. We achieved this by penalising voxel-wise differences between pairs of longitudinal PET images in a one-step-late maximum a posteriori (MAP) fashion, resulting in the MAP simultaneous longitudinal reconstruction (SLR) method. The proposed method reduced reconstruction errors and visually improved images relative to standard maximum likelihood expectation-maximisation (ML-EM) in simulated 2D longitudinal brain tumour scans. In reconstructions of split real 3D data with inserted simulated tumours, noise across images reconstructed with MAP-SLR was reduced to levels equivalent to doubling the number of detected counts when using ML-EM. Furthermore, quantification of tumour activities was largely preserved over a variety of longitudinal tumour changes, including changes in size and activity, with larger changes inducing larger biases relative to standard ML-EM reconstructions. Similar improvements were observed for a range of counts levels, demonstrating the robustness of the method when used with a single penalty strength. The results suggest that longitudinal regularisation is a simple but effective method of improving reconstructed PET images without using resolution degrading priors.
Reducing the number of reconstructions needed for estimating channelized observer performance
NASA Astrophysics Data System (ADS)
Pineda, Angel R.; Miedema, Hope; Brenner, Melissa; Altaf, Sana
2018-03-01
A challenge for task-based optimization is the time required for each reconstructed image in applications where reconstructions are time consuming. Our goal is to reduce the number of reconstructions needed to estimate the area under the receiver operating characteristic curve (AUC) of the infinitely-trained optimal channelized linear observer. We explore the use of classifiers which either do not invert the channel covariance matrix or do feature selection. We also study the assumption that multiple low contrast signals in the same image of a non-linear reconstruction do not significantly change the estimate of the AUC. We compared the AUC of several classifiers (Hotelling, logistic regression, logistic regression using Firth bias reduction and the least absolute shrinkage and selection operator (LASSO)) with a small number of observations both for normal simulated data and images from a total variation reconstruction in magnetic resonance imaging (MRI). We used 10 Laguerre-Gauss channels and the Mann-Whitney estimator for AUC. For this data, our results show that at small sample sizes feature selection using the LASSO technique can decrease bias of the AUC estimation with increased variance and that for large sample sizes the difference between these classifiers is small. We also compared the use of multiple signals in a single reconstructed image to reduce the number of reconstructions in a total variation reconstruction for accelerated imaging in MRI. We found that AUC estimation using multiple low contrast signals in the same image resulted in similar AUC estimates as doing a single reconstruction per signal leading to a 13x reduction in the number of reconstructions needed.
SPECT reconstruction using DCT-induced tight framelet regularization
NASA Astrophysics Data System (ADS)
Zhang, Jiahan; Li, Si; Xu, Yuesheng; Schmidtlein, C. R.; Lipson, Edward D.; Feiglin, David H.; Krol, Andrzej
2015-03-01
Wavelet transforms have been successfully applied in many fields of image processing. Yet, to our knowledge, they have never been directly incorporated to the objective function in Emission Computed Tomography (ECT) image reconstruction. Our aim has been to investigate if the ℓ1-norm of non-decimated discrete cosine transform (DCT) coefficients of the estimated radiotracer distribution could be effectively used as the regularization term for the penalized-likelihood (PL) reconstruction, where a regularizer is used to enforce the image smoothness in the reconstruction. In this study, the ℓ1-norm of 2D DCT wavelet decomposition was used as a regularization term. The Preconditioned Alternating Projection Algorithm (PAPA), which we proposed in earlier work to solve penalized likelihood (PL) reconstruction with non-differentiable regularizers, was used to solve this optimization problem. The DCT wavelet decompositions were performed on the transaxial reconstructed images. We reconstructed Monte Carlo simulated SPECT data obtained for a numerical phantom with Gaussian blobs as hot lesions and with a warm random lumpy background. Reconstructed images using the proposed method exhibited better noise suppression and improved lesion conspicuity, compared with images reconstructed using expectation maximization (EM) algorithm with Gaussian post filter (GPF). Also, the mean square error (MSE) was smaller, compared with EM-GPF. A critical and challenging aspect of this method was selection of optimal parameters. In summary, our numerical experiments demonstrated that the ℓ1-norm of discrete cosine transform (DCT) wavelet frame transform DCT regularizer shows promise for SPECT image reconstruction using PAPA method.
Wen, Yintang; Zhang, Zhenda; Zhang, Yuyan; Sun, Dongtao
2017-01-01
A coplanar electrode array sensor is established for the imaging of composite-material adhesive-layer defect detection. The sensor is based on the capacitive edge effect, which leads to capacitance data being considerably weak and susceptible to environmental noise. The inverse problem of coplanar array electrical capacitance tomography (C-ECT) is ill-conditioning, in which a small error of capacitance data can seriously affect the quality of reconstructed images. In order to achieve a stable image reconstruction process, a redundancy analysis method for capacitance data is proposed. The proposed method is based on contribution rate and anti-interference capability. According to the redundancy analysis, the capacitance data are divided into valid and invalid data. When the image is reconstructed by valid data, the sensitivity matrix needs to be changed accordingly. In order to evaluate the effectiveness of the sensitivity map, singular value decomposition (SVD) is used. Finally, the two-dimensional (2D) and three-dimensional (3D) images are reconstructed by the Tikhonov regularization method. Through comparison of the reconstructed images of raw capacitance data, the stability of the image reconstruction process can be improved, and the quality of reconstructed images is not degraded. As a result, much invalid data are not collected, and the data acquisition time can also be reduced. PMID:29295537
Komarov, Denis A; Hirata, Hiroshi
2017-08-01
In this paper, we introduce a procedure for the reconstruction of spectral-spatial EPR images using projections acquired with the constant sweep of a magnetic field. The application of a constant field-sweep and a predetermined data sampling rate simplifies the requirements for EPR imaging instrumentation and facilitates the backprojection-based reconstruction of spectral-spatial images. The proposed approach was applied to the reconstruction of a four-dimensional numerical phantom and to actual spectral-spatial EPR measurements. Image reconstruction using projections with a constant field-sweep was three times faster than the conventional approach with the application of a pseudo-angle and a scan range that depends on the applied field gradient. Spectral-spatial EPR imaging with a constant field-sweep for data acquisition only slightly reduces the signal-to-noise ratio or functional resolution of the resultant images and can be applied together with any common backprojection-based reconstruction algorithm. Copyright © 2017 Elsevier Inc. All rights reserved.
Efficient volumetric estimation from plenoptic data
NASA Astrophysics Data System (ADS)
Anglin, Paul; Reeves, Stanley J.; Thurow, Brian S.
2013-03-01
The commercial release of the Lytro camera, and greater availability of plenoptic imaging systems in general, have given the image processing community cost-effective tools for light-field imaging. While this data is most commonly used to generate planar images at arbitrary focal depths, reconstruction of volumetric fields is also possible. Similarly, deconvolution is a technique that is conventionally used in planar image reconstruction, or deblurring, algorithms. However, when leveraged with the ability of a light-field camera to quickly reproduce multiple focal planes within an imaged volume, deconvolution offers a computationally efficient method of volumetric reconstruction. Related research has shown than light-field imaging systems in conjunction with tomographic reconstruction techniques are also capable of estimating the imaged volume and have been successfully applied to particle image velocimetry (PIV). However, while tomographic volumetric estimation through algorithms such as multiplicative algebraic reconstruction techniques (MART) have proven to be highly accurate, they are computationally intensive. In this paper, the reconstruction problem is shown to be solvable by deconvolution. Deconvolution offers significant improvement in computational efficiency through the use of fast Fourier transforms (FFTs) when compared to other tomographic methods. This work describes a deconvolution algorithm designed to reconstruct a 3-D particle field from simulated plenoptic data. A 3-D extension of existing 2-D FFT-based refocusing techniques is presented to further improve efficiency when computing object focal stacks and system point spread functions (PSF). Reconstruction artifacts are identified; their underlying source and methods of mitigation are explored where possible, and reconstructions of simulated particle fields are provided.
NASA Astrophysics Data System (ADS)
Guan, Huifeng; Anastasio, Mark A.
2017-03-01
It is well-known that properly designed image reconstruction methods can facilitate reductions in imaging doses and data-acquisition times in tomographic imaging. The ability to do so is particularly important for emerging modalities such as differential X-ray phase-contrast tomography (D-XPCT), which are currently limited by these factors. An important application of D-XPCT is high-resolution imaging of biomedical samples. However, reconstructing high-resolution images from few-view tomographic measurements remains a challenging task. In this work, a two-step sub-space reconstruction strategy is proposed and investigated for use in few-view D-XPCT image reconstruction. It is demonstrated that the resulting iterative algorithm can mitigate the high-frequency information loss caused by data incompleteness and produce images that have better preserved high spatial frequency content than those produced by use of a conventional penalized least squares (PLS) estimator.
The PoGO+ view on Crab off-pulse hard X-ray polarization
NASA Astrophysics Data System (ADS)
Chauvin, M.; Florén, H.-G.; Friis, M.; Jackson, M.; Kamae, T.; Kataoka, J.; Kawano, T.; Kiss, M.; Mikhalev, V.; Mizuno, T.; Tajima, H.; Takahashi, H.; Uchida, N.; Pearce, M.
2018-06-01
The linear polarization fraction (PF) and angle of the hard X-ray emission from the Crab provide unique insight into high-energy radiation mechanisms, complementing the usual imaging, timing, and spectroscopic approaches. Results have recently been presented by two missions operating in partially overlapping energy bands, PoGO+ (18-160 keV) and AstroSat CZTI (100-380 keV). We previously reported PoGO+ results on the polarization parameters integrated across the light curve and for the entire nebula-dominated off-pulse region. We now introduce finer phase binning, in light of the AstroSat CZTI claim that the PF varies across the off-pulse region. Since both missions are operating in a regime where errors on the reconstructed polarization parameters are non-Gaussian, we adopt a Bayesian approach to compare results from each mission. We find no statistically significant variation in off-pulse polarization parameters, neither when considering the mission data separately nor when they are combined. This supports expectations from standard high-energy emission models.
Bayesian cloud detection for MERIS, AATSR, and their combination
NASA Astrophysics Data System (ADS)
Hollstein, A.; Fischer, J.; Carbajal Henken, C.; Preusker, R.
2014-11-01
A broad range of different of Bayesian cloud detection schemes is applied to measurements from the Medium Resolution Imaging Spectrometer (MERIS), the Advanced Along-Track Scanning Radiometer (AATSR), and their combination. The cloud masks were designed to be numerically efficient and suited for the processing of large amounts of data. Results from the classical and naive approach to Bayesian cloud masking are discussed for MERIS and AATSR as well as for their combination. A sensitivity study on the resolution of multidimensional histograms, which were post-processed by Gaussian smoothing, shows how theoretically insufficient amounts of truth data can be used to set up accurate classical Bayesian cloud masks. Sets of exploited features from single and derived channels are numerically optimized and results for naive and classical Bayesian cloud masks are presented. The application of the Bayesian approach is discussed in terms of reproducing existing algorithms, enhancing existing algorithms, increasing the robustness of existing algorithms, and on setting up new classification schemes based on manually classified scenes.
Bayesian cloud detection for MERIS, AATSR, and their combination
NASA Astrophysics Data System (ADS)
Hollstein, A.; Fischer, J.; Carbajal Henken, C.; Preusker, R.
2015-04-01
A broad range of different of Bayesian cloud detection schemes is applied to measurements from the Medium Resolution Imaging Spectrometer (MERIS), the Advanced Along-Track Scanning Radiometer (AATSR), and their combination. The cloud detection schemes were designed to be numerically efficient and suited for the processing of large numbers of data. Results from the classical and naive approach to Bayesian cloud masking are discussed for MERIS and AATSR as well as for their combination. A sensitivity study on the resolution of multidimensional histograms, which were post-processed by Gaussian smoothing, shows how theoretically insufficient numbers of truth data can be used to set up accurate classical Bayesian cloud masks. Sets of exploited features from single and derived channels are numerically optimized and results for naive and classical Bayesian cloud masks are presented. The application of the Bayesian approach is discussed in terms of reproducing existing algorithms, enhancing existing algorithms, increasing the robustness of existing algorithms, and on setting up new classification schemes based on manually classified scenes.
NASA Astrophysics Data System (ADS)
Chatzidakis, Stylianos; Liu, Zhengzhi; Hayward, Jason P.; Scaglione, John M.
2018-03-01
This work presents a generalized muon trajectory estimation algorithm to estimate the path of a muon in either uniform or nonuniform media. The use of cosmic ray muons in nuclear nonproliferation and safeguard verification applications has recently gained attention due to the non-intrusive and passive nature of the inspection, penetrating capabilities, as well as recent advances in detectors that measure position and direction of the individual muons before and after traversing the imaged object. However, muon image reconstruction techniques are limited in resolution due to low muon flux and the effects of multiple Coulomb scattering (MCS). Current reconstruction algorithms, e.g., point of closest approach (PoCA) or straight-line path (SLP), rely on overly simple assumptions for muon path estimation through the imaged object. For robust muon tomography, efficient and flexible physics-based algorithms are needed to model the MCS process and accurately estimate the most probable trajectory of a muon as it traverses an object. In the present work, the use of a Bayesian framework and a Gaussian approximation of MCS is explored for estimation of the most likely path of a cosmic ray muon traversing uniform or nonuniform media and undergoing MCS. The algorithm's precision is compared to Monte Carlo simulated muon trajectories. It was found that the algorithm is expected to be able to predict muon tracks to less than 1.5 mm root mean square (RMS) for 0.5 GeV muons and 0.25 mm RMS for 3 GeV muons, a 50% improvement compared to SLP and 15% improvement when compared to PoCA. Further, a 30% increase in useful muon flux was observed relative to PoCA. Muon track prediction improved for higher muon energies or smaller penetration depth where energy loss is not significant. The effect of energy loss due to ionization is investigated, and a linear energy loss relation that is easy to use is proposed.
Bayesian network interface for assisting radiology interpretation and education
NASA Astrophysics Data System (ADS)
Duda, Jeffrey; Botzolakis, Emmanuel; Chen, Po-Hao; Mohan, Suyash; Nasrallah, Ilya; Rauschecker, Andreas; Rudie, Jeffrey; Bryan, R. Nick; Gee, James; Cook, Tessa
2018-03-01
In this work, we present the use of Bayesian networks for radiologist decision support during clinical interpretation. This computational approach has the advantage of avoiding incorrect diagnoses that result from known human cognitive biases such as anchoring bias, framing effect, availability bias, and premature closure. To integrate Bayesian networks into clinical practice, we developed an open-source web application that provides diagnostic support for a variety of radiology disease entities (e.g., basal ganglia diseases, bone lesions). The Clinical tool presents the user with a set of buttons representing clinical and imaging features of interest. These buttons are used to set the value for each observed feature. As features are identified, the conditional probabilities for each possible diagnosis are updated in real time. Additionally, using sensitivity analysis, the interface may be set to inform the user which remaining imaging features provide maximum discriminatory information to choose the most likely diagnosis. The Case Submission tools allow the user to submit a validated case and the associated imaging features to a database, which can then be used for future tuning/testing of the Bayesian networks. These submitted cases are then reviewed by an assigned expert using the provided QC tool. The Research tool presents users with cases with previously labeled features and a chosen diagnosis, for the purpose of performance evaluation. Similarly, the Education page presents cases with known features, but provides real time feedback on feature selection.
Markov chain Monte Carlo techniques and spatial-temporal modelling for medical EIT.
West, Robert M; Aykroyd, Robert G; Meng, Sha; Williams, Richard A
2004-02-01
Many imaging problems such as imaging with electrical impedance tomography (EIT) can be shown to be inverse problems: that is either there is no unique solution or the solution does not depend continuously on the data. As a consequence solution of inverse problems based on measured data alone is unstable, particularly if the mapping between the solution distribution and the measurements is also nonlinear as in EIT. To deliver a practical stable solution, it is necessary to make considerable use of prior information or regularization techniques. The role of a Bayesian approach is therefore of fundamental importance, especially when coupled with Markov chain Monte Carlo (MCMC) sampling to provide information about solution behaviour. Spatial smoothing is a commonly used approach to regularization. In the human thorax EIT example considered here nonlinearity increases the difficulty of imaging, using only boundary data, leading to reconstructions which are often rather too smooth. In particular, in medical imaging the resistivity distribution usually contains substantial jumps at the boundaries of different anatomical regions. With spatial smoothing these boundaries can be masked by blurring. This paper focuses on the medical application of EIT to monitor lung and cardiac function and uses explicit geometric information regarding anatomical structure and incorporates temporal correlation. Some simple properties are assumed known, or at least reliably estimated from separate studies, whereas others are estimated from the voltage measurements. This structural formulation will also allow direct estimation of clinically important quantities, such as ejection fraction and residual capacity, along with assessment of precision.
Lee, K; Kim, M; Kim, K
2018-05-11
Skin surface evaluation has been studied using various imaging techniques. However, all these studies had limited impact because they were performed using visual exam only. To improve on this scenario with haptic feedback, we propose 3D reconstruction of the skin surface using a single image. Unlike extant 3D skin surface reconstruction algorithms, we utilize the local texture and global curvature regions, combining the results for reconstruction. The first entails the reconstruction of global curvature, achieved by bilateral filtering that removes noise on the surface while maintaining the edge (ie, furrow) to obtain the overall curvature. The second entails the reconstruction of local texture, representing the fine wrinkles of the skin, using an advanced form of bilateral filtering. The final image is then composed by merging the two reconstructed images. We tested the curvature reconstruction part by comparing the resulting curvatures with measured values from real phantom objects while local texture reconstruction was verified by measuring skin surface roughness. Then, we showed the reconstructed result of our proposed algorithm via the reconstruction of various real skin surfaces. The experimental results demonstrate that our approach is a promising technology to reconstruct an accurate skin surface with a single skin image. We proposed 3D skin surface reconstruction using only a single camera. We highlighted the utility of global curvature, which has not been considered important in the past. Thus, we proposed a new method for 3D reconstruction that can be used for 3D haptic palpation, dividing the concepts of local and global regions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Pua, Rizza; Park, Miran; Wi, Sunhee; Cho, Seungryong
2016-12-01
We propose a hybrid metal artifact reduction (MAR) approach for computed tomography (CT) that is computationally more efficient than a fully iterative reconstruction method, but at the same time achieves superior image quality to the interpolation-based in-painting techniques. Our proposed MAR method, an image-based artifact subtraction approach, utilizes an intermediate prior image reconstructed via PDART to recover the background information underlying the high density objects. For comparison, prior images generated by total-variation minimization (TVM) algorithm, as a realization of fully iterative approach, were also utilized as intermediate images. From the simulation and real experimental results, it has been shown that PDART drastically accelerates the reconstruction to an acceptable quality of prior images. Incorporating PDART-reconstructed prior images in the proposed MAR scheme achieved higher quality images than those by a conventional in-painting method. Furthermore, the results were comparable to the fully iterative MAR that uses high-quality TVM prior images.
USDA-ARS?s Scientific Manuscript database
Reconstruction of 3D images from a series of 2D images has been restricted by the limited capacity to decrease the opacity of surrounding tissue. Commercial software that allows color-keying and manipulation of 2D images in true 3D space allowed us to produce 3D reconstructions from pixel based imag...
Terahertz imaging with compressed sensing and phase retrieval.
Chan, Wai Lam; Moravec, Matthew L; Baraniuk, Richard G; Mittleman, Daniel M
2008-05-01
We describe a novel, high-speed pulsed terahertz (THz) Fourier imaging system based on compressed sensing (CS), a new signal processing theory, which allows image reconstruction with fewer samples than traditionally required. Using CS, we successfully reconstruct a 64 x 64 image of an object with pixel size 1.4 mm using a randomly chosen subset of the 4096 pixels, which defines the image in the Fourier plane, and observe improved reconstruction quality when we apply phase correction. For our chosen image, only about 12% of the pixels are required for reassembling the image. In combination with phase retrieval, our system has the capability to reconstruct images with only a small subset of Fourier amplitude measurements and thus has potential application in THz imaging with cw sources.
Compressively sampled MR image reconstruction using generalized thresholding iterative algorithm
NASA Astrophysics Data System (ADS)
Elahi, Sana; kaleem, Muhammad; Omer, Hammad
2018-01-01
Compressed sensing (CS) is an emerging area of interest in Magnetic Resonance Imaging (MRI). CS is used for the reconstruction of the images from a very limited number of samples in k-space. This significantly reduces the MRI data acquisition time. One important requirement for signal recovery in CS is the use of an appropriate non-linear reconstruction algorithm. It is a challenging task to choose a reconstruction algorithm that would accurately reconstruct the MR images from the under-sampled k-space data. Various algorithms have been used to solve the system of non-linear equations for better image quality and reconstruction speed in CS. In the recent past, iterative soft thresholding algorithm (ISTA) has been introduced in CS-MRI. This algorithm directly cancels the incoherent artifacts produced because of the undersampling in k -space. This paper introduces an improved iterative algorithm based on p -thresholding technique for CS-MRI image reconstruction. The use of p -thresholding function promotes sparsity in the image which is a key factor for CS based image reconstruction. The p -thresholding based iterative algorithm is a modification of ISTA, and minimizes non-convex functions. It has been shown that the proposed p -thresholding iterative algorithm can be used effectively to recover fully sampled image from the under-sampled data in MRI. The performance of the proposed method is verified using simulated and actual MRI data taken at St. Mary's Hospital, London. The quality of the reconstructed images is measured in terms of peak signal-to-noise ratio (PSNR), artifact power (AP), and structural similarity index measure (SSIM). The proposed approach shows improved performance when compared to other iterative algorithms based on log thresholding, soft thresholding and hard thresholding techniques at different reduction factors.
Advancements to the planogram frequency–distance rebinning algorithm
Champley, Kyle M; Raylman, Raymond R; Kinahan, Paul E
2010-01-01
In this paper we consider the task of image reconstruction in positron emission tomography (PET) with the planogram frequency–distance rebinning (PFDR) algorithm. The PFDR algorithm is a rebinning algorithm for PET systems with panel detectors. The algorithm is derived in the planogram coordinate system which is a native data format for PET systems with panel detectors. A rebinning algorithm averages over the redundant four-dimensional set of PET data to produce a three-dimensional set of data. Images can be reconstructed from this rebinned three-dimensional set of data. This process enables one to reconstruct PET images more quickly than reconstructing directly from the four-dimensional PET data. The PFDR algorithm is an approximate rebinning algorithm. We show that implementing the PFDR algorithm followed by the (ramp) filtered backprojection (FBP) algorithm in linogram coordinates from multiple views reconstructs a filtered version of our image. We develop an explicit formula for this filter which can be used to achieve exact reconstruction by means of a modified FBP algorithm applied to the stack of rebinned linograms and can also be used to quantify the errors introduced by the PFDR algorithm. This filter is similar to the filter in the planogram filtered backprojection algorithm derived by Brasse et al. The planogram filtered backprojection and exact reconstruction with the PFDR algorithm require complete projections which can be completed with a reprojection algorithm. The PFDR algorithm is similar to the rebinning algorithm developed by Kao et al. By expressing the PFDR algorithm in detector coordinates, we provide a comparative analysis between the two algorithms. Numerical experiments using both simulated data and measured data from a positron emission mammography/tomography (PEM/PET) system are performed. Images are reconstructed by PFDR+FBP (PFDR followed by 2D FBP reconstruction), PFDRX (PFDR followed by the modified FBP algorithm for exact reconstruction) and planogram filtered backprojection image reconstruction algorithms. We show that the PFDRX algorithm produces images that are nearly as accurate as images reconstructed with the planogram filtered backprojection algorithm and more accurate than images reconstructed with the PFDR+FBP algorithm. Both the PFDR+FBP and PFDRX algorithms provide a dramatic improvement in computation time over the planogram filtered backprojection algorithm. PMID:20436790
Jun, Kyungtaek; Kim, Dongwook
2018-01-01
X-ray computed tomography has been studied in various fields. Considerable effort has been focused on reconstructing the projection image set from a rigid-type specimen. However, reconstruction of images projected from an object showing elastic motion has received minimal attention. In this paper, a mathematical solution to reconstructing the projection image set obtained from an object with specific elastic motions-periodically, regularly, and elliptically expanded or contracted specimens-is proposed. To reconstruct the projection image set from expanded or contracted specimens, methods are presented for detection of the sample's motion modes, mathematical rescaling of pixel values, and conversion of the projection angle for a common layer.
ERIC Educational Resources Information Center
Kim, Deok-Hwan; Chung, Chin-Wan
2003-01-01
Discusses the collection fusion problem of image databases, concerned with retrieving relevant images by content based retrieval from image databases distributed on the Web. Focuses on a metaserver which selects image databases supporting similarity measures and proposes a new algorithm which exploits a probabilistic technique using Bayesian…
Maximum Entropy Approach in Dynamic Contrast-Enhanced Magnetic Resonance Imaging.
Farsani, Zahra Amini; Schmid, Volker J
2017-01-01
In the estimation of physiological kinetic parameters from Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) data, the determination of the arterial input function (AIF) plays a key role. This paper proposes a Bayesian method to estimate the physiological parameters of DCE-MRI along with the AIF in situations, where no measurement of the AIF is available. In the proposed algorithm, the maximum entropy method (MEM) is combined with the maximum a posterior approach (MAP). To this end, MEM is used to specify a prior probability distribution of the unknown AIF. The ability of this method to estimate the AIF is validated using the Kullback-Leibler divergence. Subsequently, the kinetic parameters can be estimated with MAP. The proposed algorithm is evaluated with a data set from a breast cancer MRI study. The application shows that the AIF can reliably be determined from the DCE-MRI data using MEM. Kinetic parameters can be estimated subsequently. The maximum entropy method is a powerful tool to reconstructing images from many types of data. This method is useful for generating the probability distribution based on given information. The proposed method gives an alternative way to assess the input function from the existing data. The proposed method allows a good fit of the data and therefore a better estimation of the kinetic parameters. In the end, this allows for a more reliable use of DCE-MRI. Schattauer GmbH.
AutoLens: Automated Modeling of a Strong Lens's Light, Mass and Source
NASA Astrophysics Data System (ADS)
Nightingale, J. W.; Dye, S.; Massey, Richard J.
2018-05-01
This work presents AutoLens, the first entirely automated modeling suite for the analysis of galaxy-scale strong gravitational lenses. AutoLens simultaneously models the lens galaxy's light and mass whilst reconstructing the extended source galaxy on an adaptive pixel-grid. The method's approach to source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing AutoLens to cleanly deblend its light from the source. Single component mass models representing the lens's total mass density profile are demonstrated, which in conjunction with light modeling can detect central images using a centrally cored profile. Decomposed mass modeling is also shown, which can fully decouple a lens's light and dark matter and determine whether the two component are geometrically aligned. The complexity of the light and mass models are automatically chosen via Bayesian model comparison. These steps form AutoLens's automated analysis pipeline, such that all results in this work are generated without any user-intervention. This is rigorously tested on a large suite of simulated images, assessing its performance on a broad range of lens profiles, source morphologies and lensing geometries. The method's performance is excellent, with accurate light, mass and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.
The ZpiM algorithm: a method for interferometric image reconstruction in SAR/SAS.
Dias, José M B; Leitao, José M N
2002-01-01
This paper presents an effective algorithm for absolute phase (not simply modulo-2-pi) estimation from incomplete, noisy and modulo-2pi observations in interferometric aperture radar and sonar (InSAR/InSAS). The adopted framework is also representative of other applications such as optical interferometry, magnetic resonance imaging and diffraction tomography. The Bayesian viewpoint is adopted; the observation density is 2-pi-periodic and accounts for the interferometric pair decorrelation and system noise; the a priori probability of the absolute phase is modeled by a compound Gauss-Markov random field (CGMRF) tailored to piecewise smooth absolute phase images. We propose an iterative scheme for the computation of the maximum a posteriori probability (MAP) absolute phase estimate. Each iteration embodies a discrete optimization step (Z-step), implemented by network programming techniques and an iterative conditional modes (ICM) step (pi-step). Accordingly, the algorithm is termed ZpiM, where the letter M stands for maximization. An important contribution of the paper is the simultaneous implementation of phase unwrapping (inference of the 2pi-multiples) and smoothing (denoising of the observations). This improves considerably the accuracy of the absolute phase estimates compared to methods in which the data is low-pass filtered prior to unwrapping. A set of experimental results, comparing the proposed algorithm with alternative methods, illustrates the effectiveness of our approach.
Evaluation of Bias and Variance in Low-count OSEM List Mode Reconstruction
Jian, Y; Planeta, B; Carson, R E
2016-01-01
Statistical algorithms have been widely used in PET image reconstruction. The maximum likelihood expectation maximization (MLEM) reconstruction has been shown to produce bias in applications where images are reconstructed from a relatively small number of counts. In this study, image bias and variability in low-count OSEM reconstruction are investigated on images reconstructed with MOLAR (motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction) platform. A human brain ([11C]AFM) and a NEMA phantom are used in the simulation and real experiments respectively, for the HRRT and Biograph mCT. Image reconstructions were repeated with different combination of subsets and iterations. Regions of interest (ROIs) were defined on low-activity and high-activity regions to evaluate the bias and noise at matched effective iteration numbers (iterations x subsets). Minimal negative biases and no positive biases were found at moderate count levels and less than 5% negative bias was found using extremely low levels of counts (0.2 M NEC). At any given count level, other factors, such as subset numbers and frame-based scatter correction may introduce small biases (1–5%) in the reconstructed images. The observed bias was substantially lower than that reported in the literature, perhaps due to the use of point spread function and/or other implementation methods in MOLAR. PMID:25479254
Evaluation of bias and variance in low-count OSEM list mode reconstruction
NASA Astrophysics Data System (ADS)
Jian, Y.; Planeta, B.; Carson, R. E.
2015-01-01
Statistical algorithms have been widely used in PET image reconstruction. The maximum likelihood expectation maximization reconstruction has been shown to produce bias in applications where images are reconstructed from a relatively small number of counts. In this study, image bias and variability in low-count OSEM reconstruction are investigated on images reconstructed with MOLAR (motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction) platform. A human brain ([11C]AFM) and a NEMA phantom are used in the simulation and real experiments respectively, for the HRRT and Biograph mCT. Image reconstructions were repeated with different combinations of subsets and iterations. Regions of interest were defined on low-activity and high-activity regions to evaluate the bias and noise at matched effective iteration numbers (iterations × subsets). Minimal negative biases and no positive biases were found at moderate count levels and less than 5% negative bias was found using extremely low levels of counts (0.2 M NEC). At any given count level, other factors, such as subset numbers and frame-based scatter correction may introduce small biases (1-5%) in the reconstructed images. The observed bias was substantially lower than that reported in the literature, perhaps due to the use of point spread function and/or other implementation methods in MOLAR.
GPU-accelerated Kernel Regression Reconstruction for Freehand 3D Ultrasound Imaging.
Wen, Tiexiang; Li, Ling; Zhu, Qingsong; Qin, Wenjian; Gu, Jia; Yang, Feng; Xie, Yaoqin
2017-07-01
Volume reconstruction method plays an important role in improving reconstructed volumetric image quality for freehand three-dimensional (3D) ultrasound imaging. By utilizing the capability of programmable graphics processing unit (GPU), we can achieve a real-time incremental volume reconstruction at a speed of 25-50 frames per second (fps). After incremental reconstruction and visualization, hole-filling is performed on GPU to fill remaining empty voxels. However, traditional pixel nearest neighbor-based hole-filling fails to reconstruct volume with high image quality. On the contrary, the kernel regression provides an accurate volume reconstruction method for 3D ultrasound imaging but with the cost of heavy computational complexity. In this paper, a GPU-based fast kernel regression method is proposed for high-quality volume after the incremental reconstruction of freehand ultrasound. The experimental results show that improved image quality for speckle reduction and details preservation can be obtained with the parameter setting of kernel window size of [Formula: see text] and kernel bandwidth of 1.0. The computational performance of the proposed GPU-based method can be over 200 times faster than that on central processing unit (CPU), and the volume with size of 50 million voxels in our experiment can be reconstructed within 10 seconds.
Dong, Jian; Hayakawa, Yoshihiko; Kannenberg, Sven; Kober, Cornelia
2013-02-01
The objective of this study was to reduce metal-induced streak artifact on oral and maxillofacial x-ray computed tomography (CT) images by developing the fast statistical image reconstruction system using iterative reconstruction algorithms. Adjacent CT images often depict similar anatomical structures in thin slices. So, first, images were reconstructed using the same projection data of an artifact-free image. Second, images were processed by the successive iterative restoration method where projection data were generated from reconstructed image in sequence. Besides the maximum likelihood-expectation maximization algorithm, the ordered subset-expectation maximization algorithm (OS-EM) was examined. Also, small region of interest (ROI) setting and reverse processing were applied for improving performance. Both algorithms reduced artifacts instead of slightly decreasing gray levels. The OS-EM and small ROI reduced the processing duration without apparent detriments. Sequential and reverse processing did not show apparent effects. Two alternatives in iterative reconstruction methods were effective for artifact reduction. The OS-EM algorithm and small ROI setting improved the performance. Copyright © 2012 Elsevier Inc. All rights reserved.
Zheng, Jiabei; Fessler, Jeffrey A; Chan, Heang-Ping
2017-01-01
Purpose Digital forward and back projectors play a significant role in iterative image reconstruction. The accuracy of the projector affects the quality of the reconstructed images. Digital breast tomosynthesis (DBT) often uses the ray-tracing (RT) projector that ignores finite detector element size. This paper proposes a modified version of the separable footprint (SF) projector, called the segmented separable footprint (SG) projector, that calculates efficiently the Radon transform mean value over each detector element. The SG projector is specifically designed for DBT reconstruction because of the large height-to-width ratio of the voxels generally used in DBT. This study evaluates the effectiveness of the SG projector in reducing projection error and improving DBT reconstruction quality. Methods We quantitatively compared the projection error of the RT and the SG projector at different locations and their performance in regular and subpixel DBT reconstruction. Subpixel reconstructions used finer voxels in the imaged volume than the detector pixel size. Subpixel reconstruction with RT projector uses interpolated projection views as input to provide adequate coverage of the finer voxel grid with the traced rays. Subpixel reconstruction with the SG projector, however, uses the measured projection views without interpolation. We simulated DBT projections of a test phantom using CatSim (GE Global Research, Niskayuna, NY) under idealized imaging conditions without noise and blur, to analyze the effects of the projectors and subpixel reconstruction without other image degrading factors. The phantom contained an array of horizontal and vertical line pair patterns (1 to 9.5 line pairs/mm) and pairs of closely spaced spheres (diameters 0.053 to 0.5 mm) embedded at the mid-plane of a 5-cm-thick breast-tissue-equivalent uniform volume. The images were reconstructed with regular simultaneous algebraic reconstruction technique (SART) and subpixel SART using different projectors. The resolution and contrast of the test objects in the reconstructed images and the computation times were compared under different reconstruction conditions. Results The SG projector reduced the projector error by 1 to 2 orders of magnitude at most locations. In the worst case, the SG projector still reduced the projection error by about 50%. In the DBT reconstructed slices parallel to the detector plane, the SG projector not only increased the contrast of the line pairs and spheres, but also produced more smooth and continuous reconstructed images whereas the discrete and sparse nature of the RT projector caused artifacts appearing as patterned noise. For subpixel reconstruction, the SG projector significantly increased object contrast and computation speed, especially for high subpixel ratios, compared with the RT projector implemented with accelerated Siddon’s algorithm. The difference in the depth resolution among the projectors is negligible under the conditions studied. Our results also demonstrated that subpixel reconstruction can improve the spatial resolution of the reconstructed images, and can exceed the Nyquist limit of the detector under some conditions. Conclusions The SG projector was more accurate and faster than the RT projector. The SG projector also substantially reduced computation time and improved the image quality for the tomosynthesized images with and without subpixel reconstruction. PMID:28058719
XID+: Next generation XID development
NASA Astrophysics Data System (ADS)
Hurley, Peter
2017-04-01
XID+ is a prior-based source extraction tool which carries out photometry in the Herschel SPIRE (Spectral and Photometric Imaging Receiver) maps at the positions of known sources. It uses a probabilistic Bayesian framework that provides a natural framework in which to include prior information, and uses the Bayesian inference tool Stan to obtain the full posterior probability distribution on flux estimates.
Influence of speckle image reconstruction on photometric precision for large solar telescopes
NASA Astrophysics Data System (ADS)
Peck, C. L.; Wöger, F.; Marino, J.
2017-11-01
Context. High-resolution observations from large solar telescopes require adaptive optics (AO) systems to overcome image degradation caused by Earth's turbulent atmosphere. AO corrections are, however, only partial. Achieving near-diffraction limited resolution over a large field of view typically requires post-facto image reconstruction techniques to reconstruct the source image. Aims: This study aims to examine the expected photometric precision of amplitude reconstructed solar images calibrated using models for the on-axis speckle transfer functions and input parameters derived from AO control data. We perform a sensitivity analysis of the photometric precision under variations in the model input parameters for high-resolution solar images consistent with four-meter class solar telescopes. Methods: Using simulations of both atmospheric turbulence and partial compensation by an AO system, we computed the speckle transfer function under variations in the input parameters. We then convolved high-resolution numerical simulations of the solar photosphere with the simulated atmospheric transfer function, and subsequently deconvolved them with the model speckle transfer function to obtain a reconstructed image. To compute the resulting photometric precision, we compared the intensity of the original image with the reconstructed image. Results: The analysis demonstrates that high photometric precision can be obtained for speckle amplitude reconstruction using speckle transfer function models combined with AO-derived input parameters. Additionally, it shows that the reconstruction is most sensitive to the input parameter that characterizes the atmospheric distortion, and sub-2% photometric precision is readily obtained when it is well estimated.
GPU implementation of prior image constrained compressed sensing (PICCS)
NASA Astrophysics Data System (ADS)
Nett, Brian E.; Tang, Jie; Chen, Guang-Hong
2010-04-01
The Prior Image Constrained Compressed Sensing (PICCS) algorithm (Med. Phys. 35, pg. 660, 2008) has been applied to several computed tomography applications with both standard CT systems and flat-panel based systems designed for guiding interventional procedures and radiation therapy treatment delivery. The PICCS algorithm typically utilizes a prior image which is reconstructed via the standard Filtered Backprojection (FBP) reconstruction algorithm. The algorithm then iteratively solves for the image volume that matches the measured data, while simultaneously assuring the image is similar to the prior image. The PICCS algorithm has demonstrated utility in several applications including: improved temporal resolution reconstruction, 4D respiratory phase specific reconstructions for radiation therapy, and cardiac reconstruction from data acquired on an interventional C-arm. One disadvantage of the PICCS algorithm, just as other iterative algorithms, is the long computation times typically associated with reconstruction. In order for an algorithm to gain clinical acceptance reconstruction must be achievable in minutes rather than hours. In this work the PICCS algorithm has been implemented on the GPU in order to significantly reduce the reconstruction time of the PICCS algorithm. The Compute Unified Device Architecture (CUDA) was used in this implementation.
Unsupervised Unmixing of Hyperspectral Images Accounting for Endmember Variability.
Halimi, Abderrahim; Dobigeon, Nicolas; Tourneret, Jean-Yves
2015-12-01
This paper presents an unsupervised Bayesian algorithm for hyperspectral image unmixing, accounting for endmember variability. The pixels are modeled by a linear combination of endmembers weighted by their corresponding abundances. However, the endmembers are assumed random to consider their variability in the image. An additive noise is also considered in the proposed model, generalizing the normal compositional model. The proposed algorithm exploits the whole image to benefit from both spectral and spatial information. It estimates both the mean and the covariance matrix of each endmember in the image. This allows the behavior of each material to be analyzed and its variability to be quantified in the scene. A spatial segmentation is also obtained based on the estimated abundances. In order to estimate the parameters associated with the proposed Bayesian model, we propose to use a Hamiltonian Monte Carlo algorithm. The performance of the resulting unmixing strategy is evaluated through simulations conducted on both synthetic and real data.
Experience With Bayesian Image Based Surface Modeling
NASA Technical Reports Server (NTRS)
Stutz, John C.
2005-01-01
Bayesian surface modeling from images requires modeling both the surface and the image generation process, in order to optimize the models by comparing actual and generated images. Thus it differs greatly, both conceptually and in computational difficulty, from conventional stereo surface recovery techniques. But it offers the possibility of using any number of images, taken under quite different conditions, and by different instruments that provide independent and often complementary information, to generate a single surface model that fuses all available information. I describe an implemented system, with a brief introduction to the underlying mathematical models and the compromises made for computational efficiency. I describe successes and failures achieved on actual imagery, where we went wrong and what we did right, and how our approach could be improved. Lastly I discuss how the same approach can be extended to distinct types of instruments, to achieve true sensor fusion.
NASA Astrophysics Data System (ADS)
Jiang, Peng; Peng, Lihui; Xiao, Deyun
2007-06-01
This paper presents a regularization method by using different window functions as regularization for electrical capacitance tomography (ECT) image reconstruction. Image reconstruction for ECT is a typical ill-posed inverse problem. Because of the small singular values of the sensitivity matrix, the solution is sensitive to the measurement noise. The proposed method uses the spectral filtering properties of different window functions to make the solution stable by suppressing the noise in measurements. The window functions, such as the Hanning window, the cosine window and so on, are modified for ECT image reconstruction. Simulations with respect to five typical permittivity distributions are carried out. The reconstructions are better and some of the contours are clearer than the results from the Tikhonov regularization. Numerical results show that the feasibility of the image reconstruction algorithm using different window functions as regularization.
Zhang, Lingli; Zeng, Li; Guo, Yumeng
2018-01-01
Restricted by the scanning environment in some CT imaging modalities, the acquired projection data are usually incomplete, which may lead to a limited-angle reconstruction problem. Thus, image quality usually suffers from the slope artifacts. The objective of this study is to first investigate the distorted domains of the reconstructed images which encounter the slope artifacts and then present a new iterative reconstruction method to address the limited-angle X-ray CT reconstruction problem. The presented framework of new method exploits the structural similarity between the prior image and the reconstructed image aiming to compensate the distorted edges. Specifically, the new method utilizes l0 regularization and wavelet tight framelets to suppress the slope artifacts and pursue the sparsity. New method includes following 4 steps to (1) address the data fidelity using SART; (2) compensate for the slope artifacts due to the missed projection data using the prior image and modified nonlocal means (PNLM); (3) utilize l0 regularization to suppress the slope artifacts and pursue the sparsity of wavelet coefficients of the transformed image by using iterative hard thresholding (l0W); and (4) apply an inverse wavelet transform to reconstruct image. In summary, this method is referred to as "l0W-PNLM". Numerical implementations showed that the presented l0W-PNLM was superior to suppress the slope artifacts while preserving the edges of some features as compared to the commercial and other popular investigative algorithms. When the image to be reconstructed is inconsistent with the prior image, the new method can avoid or minimize the distorted edges in the reconstructed images. Quantitative assessments also showed that applying the new method obtained the highest image quality comparing to the existing algorithms. This study demonstrated that the presented l0W-PNLM yielded higher image quality due to a number of unique characteristics, which include that (1) it utilizes the structural similarity between the reconstructed image and prior image to modify the distorted edges by slope artifacts; (2) it adopts wavelet tight frames to obtain the first and high derivative in several directions and levels; and (3) it takes advantage of l0 regularization to promote the sparsity of wavelet coefficients, which is effective for the inhibition of the slope artifacts. Therefore, the new method can address the limited-angle CT reconstruction problem effectively and have practical significance.
Bayesian reconstruction of gravitational wave bursts using chirplets
NASA Astrophysics Data System (ADS)
Millhouse, Margaret; Cornish, Neil J.; Littenberg, Tyson
2018-05-01
The LIGO-Virgo Collaboration uses a variety of techniques to detect and characterize gravitational waves. One approach is to use templates—models for the signals derived from Einstein's equations. Another approach is to extract the signals directly from the coherent response of the detectors in the LIGO-Virgo network. Both approaches played an important role in the first gravitational wave detections. Here we extend the BayesWave analysis algorithm, which reconstructs gravitational wave signals using a collection of continuous wavelets, to use a generalized wavelet family, known as chirplets, that have time-evolving frequency content. Since generic gravitational wave signals have frequency content that evolves in time, a collection of chirplets provides a more compact representation of the signal, resulting in more accurate waveform reconstructions, especially for low signal-to-noise events, and events that occupy a large time-frequency volume.
Parallel Reconstruction Using Null Operations (PRUNO)
Zhang, Jian; Liu, Chunlei; Moseley, Michael E.
2011-01-01
A novel iterative k-space data-driven technique, namely Parallel Reconstruction Using Null Operations (PRUNO), is presented for parallel imaging reconstruction. In PRUNO, both data calibration and image reconstruction are formulated into linear algebra problems based on a generalized system model. An optimal data calibration strategy is demonstrated by using Singular Value Decomposition (SVD). And an iterative conjugate- gradient approach is proposed to efficiently solve missing k-space samples during reconstruction. With its generalized formulation and precise mathematical model, PRUNO reconstruction yields good accuracy, flexibility, stability. Both computer simulation and in vivo studies have shown that PRUNO produces much better reconstruction quality than autocalibrating partially parallel acquisition (GRAPPA), especially under high accelerating rates. With the aid of PRUO reconstruction, ultra high accelerating parallel imaging can be performed with decent image quality. For example, we have done successful PRUNO reconstruction at a reduction factor of 6 (effective factor of 4.44) with 8 coils and only a few autocalibration signal (ACS) lines. PMID:21604290
Experimental/clinical evaluation of EIT image reconstruction with l1 data and image norms
NASA Astrophysics Data System (ADS)
Mamatjan, Yasin; Borsic, Andrea; Gürsoy, Doga; Adler, Andy
2013-04-01
Electrical impedance tomography (EIT) image reconstruction is ill-posed, and the spatial resolution of reconstructed images is low due to the diffuse propagation of current and limited number of independent measurements. Generally, image reconstruction is formulated using a regularized scheme in which l2 norms are preferred for both the data misfit and image prior terms due to computational convenience which result in smooth solutions. However, recent work on a Primal Dual-Interior Point Method (PDIPM) framework showed its effectiveness in dealing with the minimization problem. l1 norms on data and regularization terms in EIT image reconstruction address both problems of reconstruction with sharp edges and dealing with measurement errors. We aim for a clinical and experimental evaluation of the PDIPM method by selecting scenarios (human lung and dog breathing) with known electrode errors, which require a rigorous regularization and cause the failure of reconstructions with l2 norm. Results demonstrate the applicability of PDIPM algorithms, especially l1 data and regularization norms for clinical applications of EIT showing that l1 solution is not only more robust to measurement errors in clinical setting, but also provides high contrast resolution on organ boundaries.
Gorguluarslan, Recep M; Choi, Seung-Kyum; Saldana, Christopher J
2017-07-01
A methodology is proposed for uncertainty quantification and validation to accurately predict the mechanical response of lattice structures used in the design of scaffolds. Effective structural properties of the scaffolds are characterized using a developed multi-level stochastic upscaling process that propagates the quantified uncertainties at strut level to the lattice structure level. To obtain realistic simulation models for the stochastic upscaling process and minimize the experimental cost, high-resolution finite element models of individual struts were reconstructed from the micro-CT scan images of lattice structures which are fabricated by selective laser melting. The upscaling method facilitates the process of determining homogenized strut properties to reduce the computational cost of the detailed simulation model for the scaffold. Bayesian Information Criterion is utilized to quantify the uncertainties with parametric distributions based on the statistical data obtained from the reconstructed strut models. A systematic validation approach that can minimize the experimental cost is also developed to assess the predictive capability of the stochastic upscaling method used at the strut level and lattice structure level. In comparison with physical compression test results, the proposed methodology of linking the uncertainty quantification with the multi-level stochastic upscaling method enabled an accurate prediction of the elastic behavior of the lattice structure with minimal experimental cost by accounting for the uncertainties induced by the additive manufacturing process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yi, Huangjian; Chen, Duofang; Li, Wei; Zhu, Shouping; Wang, Xiaorui; Liang, Jimin; Tian, Jie
2013-05-01
Fluorescence molecular tomography (FMT) is an important imaging technique of optical imaging. The major challenge of the reconstruction method for FMT is the ill-posed and underdetermined nature of the inverse problem. In past years, various regularization methods have been employed for fluorescence target reconstruction. A comparative study between the reconstruction algorithms based on l1-norm and l2-norm for two imaging models of FMT is presented. The first imaging model is adopted by most researchers, where the fluorescent target is of small size to mimic small tissue with fluorescent substance, as demonstrated by the early detection of a tumor. The second model is the reconstruction of distribution of the fluorescent substance in organs, which is essential to drug pharmacokinetics. Apart from numerical experiments, in vivo experiments were conducted on a dual-modality FMT/micro-computed tomography imaging system. The experimental results indicated that l1-norm regularization is more suitable for reconstructing the small fluorescent target, while l2-norm regularization performs better for the reconstruction of the distribution of fluorescent substance.
Bindu, G; Semenov, S
2013-01-01
This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell's equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness.
TH-EF-207A-05: Feasibility of Applying SMEIR Method On Small Animal 4D Cone Beam CT Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Y; Zhang, Y; Shao, Y
Purpose: Small animal cone beam CT imaging has been widely used in preclinical research. Due to the higher respiratory rate and heat beats of small animals, motion blurring is inevitable and needs to be corrected in the reconstruction. Simultaneous motion estimation and image reconstruction (SMEIR) method, which uses projection images of all phases, proved to be effective in motion model estimation and able to reconstruct motion-compensated images. We demonstrate the application of SMEIR for small animal 4D cone beam CT imaging by computer simulations on a digital rat model. Methods: The small animal CBCT imaging system was simulated with themore » source-to-detector distance of 300 mm and the source-to-object distance of 200 mm. A sequence of rat phantom were generated with 0.4 mm{sup 3} voxel size. The respiratory cycle was taken as 1.0 second and the motions were simulated with a diaphragm motion of 2.4mm and an anterior-posterior expansion of 1.6 mm. The projection images were calculated using a ray-tracing method, and 4D-CBCT were reconstructed using SMEIR and FDK methods. The SMEIR method iterates over two alternating steps: 1) motion-compensated iterative image reconstruction by using projections from all respiration phases and 2) motion model estimation from projections directly through a 2D-3D deformable registration of the image obtained in the first step to projection images of other phases. Results: The images reconstructed using SMEIR method reproduced the features in the original phantom. Projections from the same phase were also reconstructed using FDK method. Compared with the FDK results, the images from SMEIR method substantially improve the image quality with minimum artifacts. Conclusion: We demonstrate that it is viable to apply SMEIR method to reconstruct small animal 4D-CBCT images.« less
Dynamic Bayesian network modeling for longitudinal brain morphometry
Chen, Rong; Resnick, Susan M; Davatzikos, Christos; Herskovits, Edward H
2011-01-01
Identifying interactions among brain regions from structural magnetic-resonance images presents one of the major challenges in computational neuroanatomy. We propose a Bayesian data-mining approach to the detection of longitudinal morphological changes in the human brain. Our method uses a dynamic Bayesian network to represent evolving inter-regional dependencies. The major advantage of dynamic Bayesian network modeling is that it can represent complicated interactions among temporal processes. We validated our approach by analyzing a simulated atrophy study, and found that this approach requires only a small number of samples to detect the ground-truth temporal model. We further applied dynamic Bayesian network modeling to a longitudinal study of normal aging and mild cognitive impairment — the Baltimore Longitudinal Study of Aging. We found that interactions among regional volume-change rates for the mild cognitive impairment group are different from those for the normal-aging group. PMID:21963916
Bayesian estimation of seasonal course of canopy leaf area index from hyperspectral satellite data
NASA Astrophysics Data System (ADS)
Varvia, Petri; Rautiainen, Miina; Seppänen, Aku
2018-03-01
In this paper, Bayesian inversion of a physically-based forest reflectance model is investigated to estimate of boreal forest canopy leaf area index (LAI) from EO-1 Hyperion hyperspectral data. The data consist of multiple forest stands with different species compositions and structures, imaged in three phases of the growing season. The Bayesian estimates of canopy LAI are compared to reference estimates based on a spectral vegetation index. The forest reflectance model contains also other unknown variables in addition to LAI, for example leaf single scattering albedo and understory reflectance. In the Bayesian approach, these variables are estimated simultaneously with LAI. The feasibility and seasonal variation of these estimates is also examined. Credible intervals for the estimates are also calculated and evaluated. The results show that the Bayesian inversion approach is significantly better than using a comparable spectral vegetation index regression.
Multinomial Bayesian learning for modeling classical and nonclassical receptive field properties.
Hosoya, Haruo
2012-08-01
We study the interplay of Bayesian inference and natural image learning in a hierarchical vision system, in relation to the response properties of early visual cortex. We particularly focus on a Bayesian network with multinomial variables that can represent discrete feature spaces similar to hypercolumns combining minicolumns, enforce sparsity of activation to learn efficient representations, and explain divisive normalization. We demonstrate that maximal-likelihood learning using sampling-based Bayesian inference gives rise to classical receptive field properties similar to V1 simple cells and V2 cells, while inference performed on the trained network yields nonclassical context-dependent response properties such as cross-orientation suppression and filling in. Comparison with known physiological properties reveals some qualitative and quantitative similarities.
High-speed reconstruction of compressed images
NASA Astrophysics Data System (ADS)
Cox, Jerome R., Jr.; Moore, Stephen M.
1990-07-01
A compression scheme is described that allows high-definition radiological images with greater than 8-bit intensity resolution to be represented by 8-bit pixels. Reconstruction of the images with their original intensity resolution can be carried out by means of a pipeline architecture suitable for compact, high-speed implementation. A reconstruction system is described that can be fabricated according to this approach and placed between an 8-bit display buffer and the display's video system thereby allowing contrast control of images at video rates. Results for 50 CR chest images are described showing that error-free reconstruction of the original 10-bit CR images can be achieved.
3D morphology reconstruction using linear array CCD binocular stereo vision imaging system
NASA Astrophysics Data System (ADS)
Pan, Yu; Wang, Jinjiang
2018-01-01
Binocular vision imaging system, which has a small field of view, cannot reconstruct the 3-D shape of the dynamic object. We found a linear array CCD binocular vision imaging system, which uses different calibration and reconstruct methods. On the basis of the binocular vision imaging system, the linear array CCD binocular vision imaging systems which has a wider field of view can reconstruct the 3-D morphology of objects in continuous motion, and the results are accurate. This research mainly introduces the composition and principle of linear array CCD binocular vision imaging system, including the calibration, capture, matching and reconstruction of the imaging system. The system consists of two linear array cameras which were placed in special arrangements and a horizontal moving platform that can pick up objects. The internal and external parameters of the camera are obtained by calibrating in advance. And then using the camera to capture images of moving objects, the results are then matched and 3-D reconstructed. The linear array CCD binocular vision imaging systems can accurately measure the 3-D appearance of moving objects, this essay is of great significance to measure the 3-D morphology of moving objects.
Ning, Peigang; Zhu, Shaocheng; Shi, Dapeng; Guo, Ying; Sun, Minghua
2014-01-01
This work aims to explore the effects of adaptive statistical iterative reconstruction (ASiR) and model-based iterative reconstruction (MBIR) algorithms in reducing computed tomography (CT) radiation dosages in abdominal imaging. CT scans on a standard male phantom were performed at different tube currents. Images at the different tube currents were reconstructed with the filtered back-projection (FBP), 50% ASiR and MBIR algorithms and compared. The CT value, image noise and contrast-to-noise ratios (CNRs) of the reconstructed abdominal images were measured. Volumetric CT dose indexes (CTDIvol) were recorded. At different tube currents, 50% ASiR and MBIR significantly reduced image noise and increased the CNR when compared with FBP. The minimal tube current values required by FBP, 50% ASiR, and MBIR to achieve acceptable image quality using this phantom were 200, 140, and 80 mA, respectively. At the identical image quality, 50% ASiR and MBIR reduced the radiation dose by 35.9% and 59.9% respectively when compared with FBP. Advanced iterative reconstruction techniques are able to reduce image noise and increase image CNRs. Compared with FBP, 50% ASiR and MBIR reduced radiation doses by 35.9% and 59.9%, respectively.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... exposure control, image processing and reconstruction programs, patient and equipment supports, component..., acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and... may include was revised by adding automatic exposure control, image processing and reconstruction...
Image reconstruction through thin scattering media by simulated annealing algorithm
NASA Astrophysics Data System (ADS)
Fang, Longjie; Zuo, Haoyi; Pang, Lin; Yang, Zuogang; Zhang, Xicheng; Zhu, Jianhua
2018-07-01
An idea for reconstructing the image of an object behind thin scattering media is proposed by phase modulation. The optimized phase mask is achieved by modulating the scattered light using simulated annealing algorithm. The correlation coefficient is exploited as a fitness function to evaluate the quality of reconstructed image. The reconstructed images optimized from simulated annealing algorithm and genetic algorithm are compared in detail. The experimental results show that our proposed method has better definition and higher speed than genetic algorithm.
Photoacoustic image reconstruction via deep learning
NASA Astrophysics Data System (ADS)
Antholzer, Stephan; Haltmeier, Markus; Nuster, Robert; Schwab, Johannes
2018-02-01
Applying standard algorithms to sparse data problems in photoacoustic tomography (PAT) yields low-quality images containing severe under-sampling artifacts. To some extent, these artifacts can be reduced by iterative image reconstruction algorithms which allow to include prior knowledge such as smoothness, total variation (TV) or sparsity constraints. These algorithms tend to be time consuming as the forward and adjoint problems have to be solved repeatedly. Further, iterative algorithms have additional drawbacks. For example, the reconstruction quality strongly depends on a-priori model assumptions about the objects to be recovered, which are often not strictly satisfied in practical applications. To overcome these issues, in this paper, we develop direct and efficient reconstruction algorithms based on deep learning. As opposed to iterative algorithms, we apply a convolutional neural network, whose parameters are trained before the reconstruction process based on a set of training data. For actual image reconstruction, a single evaluation of the trained network yields the desired result. Our presented numerical results (using two different network architectures) demonstrate that the proposed deep learning approach reconstructs images with a quality comparable to state of the art iterative reconstruction methods.
Jamaludin, Juliza; Rahim, Ruzairi Abdul; Fazul Rahiman, Mohd Hafiz; Mohd Rohani, Jemmy
2018-04-01
Optical tomography (OPT) is a method to capture a cross-sectional image based on the data obtained by sensors, distributed around the periphery of the analyzed system. This system is based on the measurement of the final light attenuation or absorption of radiation after crossing the measured objects. The number of sensor views will affect the results of image reconstruction, where the high number of sensor views per projection will give a high image quality. This research presents an application of charge-coupled device linear sensor and laser diode in an OPT system. Experiments in detecting solid and transparent objects in crystal clear water were conducted. Two numbers of sensors views, 160 and 320 views are evaluated in this research in reconstructing the images. The image reconstruction algorithms used were filtered images of linear back projection algorithms. Analysis on comparing the simulation and experiments image results shows that, with 320 image views giving less area error than 160 views. This suggests that high image view resulted in the high resolution of image reconstruction.
Low dose reconstruction algorithm for differential phase contrast imaging.
Wang, Zhentian; Huang, Zhifeng; Zhang, Li; Chen, Zhiqiang; Kang, Kejun; Yin, Hongxia; Wang, Zhenchang; Marco, Stampanoni
2011-01-01
Differential phase contrast imaging computed tomography (DPCI-CT) is a novel x-ray inspection method to reconstruct the distribution of refraction index rather than the attenuation coefficient in weakly absorbing samples. In this paper, we propose an iterative reconstruction algorithm for DPCI-CT which benefits from the new compressed sensing theory. We first realize a differential algebraic reconstruction technique (DART) by discretizing the projection process of the differential phase contrast imaging into a linear partial derivative matrix. In this way the compressed sensing reconstruction problem of DPCI reconstruction can be transformed to a resolved problem in the transmission imaging CT. Our algorithm has the potential to reconstruct the refraction index distribution of the sample from highly undersampled projection data. Thus it can significantly reduce the dose and inspection time. The proposed algorithm has been validated by numerical simulations and actual experiments.
Multiple-image hiding using super resolution reconstruction in high-frequency domains
NASA Astrophysics Data System (ADS)
Li, Xiao-Wei; Zhao, Wu-Xiang; Wang, Jun; Wang, Qiong-Hua
2017-12-01
In this paper, a robust multiple-image hiding method using the computer-generated integral imaging and the modified super-resolution reconstruction algorithm is proposed. In our work, the host image is first transformed into frequency domains by cellular automata (CA), to assure the quality of the stego-image, the secret images are embedded into the CA high-frequency domains. The proposed method has the following advantages: (1) robustness to geometric attacks because of the memory-distributed property of elemental images, (2) increasing quality of the reconstructed secret images as the scheme utilizes the modified super-resolution reconstruction algorithm. The simulation results show that the proposed multiple-image hiding method outperforms other similar hiding methods and is robust to some geometric attacks, e.g., Gaussian noise and JPEG compression attacks.
Scholtz, Jan-Erik; Wichmann, Julian L; Kaup, Moritz; Fischer, Sebastian; Kerl, J Matthias; Lehnert, Thomas; Vogl, Thomas J; Bauer, Ralf W
2015-03-01
To evaluate software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine on CT in terms of accuracy, potential for time savings and workflow improvement. 77 patients (28 women, 49 men, mean age 65.3±14.4 years) with known or suspected spinal disorders (degenerative spine disease n=32; disc herniation n=36; traumatic vertebral fractures n=9) underwent 64-slice MDCT with thin-slab reconstruction. Time for automatic labeling of the thoracolumbar spine and reconstruction of double-angulated axial images of the pathological vertebrae was compared with manually performed reconstruction of anatomical aligned axial images. Reformatted images of both reconstruction methods were assessed by two observers regarding accuracy of symmetric depiction of anatomical structures. In 33 cases double-angulated axial images were created in 1 vertebra, in 28 cases in 2 vertebrae and in 16 cases in 3 vertebrae. Correct automatic labeling was achieved in 72 of 77 patients (93.5%). Errors could be manually corrected in 4 cases. Automatic labeling required 1min in average. In cases where anatomical aligned axial images of 1 vertebra were created, reconstructions made by hand were significantly faster (p<0.05). Automatic reconstruction was time-saving in cases of 2 and more vertebrae (p<0.05). Both reconstruction methods revealed good image quality with excellent inter-observer agreement. The evaluated software for automatic labeling and anatomically aligned, double-angulated axial image reconstruction of the thoracolumbar spine on CT is time-saving when reconstructions of 2 and more vertebrae are performed. Checking results of automatic labeling is necessary to prevent errors in labeling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Hay, Peter D; Smith, Julie; O'Connor, Richard A
2016-02-01
The aim of this study was to evaluate the benefits to SPECT bone scan image quality when applying resolution recovery (RR) during image reconstruction using software provided by a third-party supplier. Bone SPECT data from 90 clinical studies were reconstructed retrospectively using software supplied independent of the gamma camera manufacturer. The current clinical datasets contain 120×10 s projections and are reconstructed using an iterative method with a Butterworth postfilter. Five further reconstructions were created with the following characteristics: 10 s projections with a Butterworth postfilter (to assess intraobserver variation); 10 s projections with a Gaussian postfilter with and without RR; and 5 s projections with a Gaussian postfilter with and without RR. Two expert observers were asked to rate image quality on a five-point scale relative to our current clinical reconstruction. Datasets were anonymized and presented in random order. The benefits of RR on image scores were evaluated using ordinal logistic regression (visual grading regression). The application of RR during reconstruction increased the probability of both observers of scoring image quality as better than the current clinical reconstruction even where the dataset contained half the normal counts. Type of reconstruction and observer were both statistically significant variables in the ordinal logistic regression model. Visual grading regression was found to be a useful method for validating the local introduction of technological developments in nuclear medicine imaging. RR, as implemented by the independent software supplier, improved bone SPECT image quality when applied during image reconstruction. In the majority of clinical cases, acquisition times for bone SPECT intended for the purposes of localization can safely be halved (from 10 s projections to 5 s) when RR is applied.
Yamada, Yoshitake; Yamada, Minoru; Sugisawa, Koichi; Akita, Hirotaka; Shiomi, Eisuke; Abe, Takayuki; Okuda, Shigeo; Jinzaki, Masahiro
2015-01-01
Abstract The purpose of this study was to compare renal cyst pseudoenhancement between virtual monochromatic spectral (VMS) and conventional polychromatic 120-kVp images obtained during the same abdominal computed tomography (CT) examination and among images reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR), and model-based iterative reconstruction (MBIR). Our institutional review board approved this prospective study; each participant provided written informed consent. Thirty-one patients (19 men, 12 women; age range, 59–85 years; mean age, 73.2 ± 5.5 years) with renal cysts underwent unenhanced 120-kVp CT followed by sequential fast kVp-switching dual-energy (80/140 kVp) and 120-kVp abdominal enhanced CT in the nephrographic phase over a 10-cm scan length with a random acquisition order and 4.5-second intervals. Fifty-one renal cysts (maximal diameter, 18.0 ± 14.7 mm [range, 4–61 mm]) were identified. The CT attenuation values of the cysts as well as of the kidneys were measured on the unenhanced images, enhanced VMS images (at 70 keV) reconstructed using FBP and ASIR from dual-energy data, and enhanced 120-kVp images reconstructed using FBP, ASIR, and MBIR. The results were analyzed using the mixed-effects model and paired t test with Bonferroni correction. The attenuation increases (pseudoenhancement) of the renal cysts on the VMS images reconstructed using FBP/ASIR (least square mean, 5.0/6.0 Hounsfield units [HU]; 95% confidence interval, 2.6–7.4/3.6–8.4 HU) were significantly lower than those on the conventional 120-kVp images reconstructed using FBP/ASIR/MBIR (least square mean, 12.1/12.8/11.8 HU; 95% confidence interval, 9.8–14.5/10.4–15.1/9.4–14.2 HU) (all P < .001); on the other hand, the CT attenuation values of the kidneys on the VMS images were comparable to those on the 120-kVp images. Regardless of the reconstruction algorithm, 70-keV VMS images showed a lower degree of pseudoenhancement of renal cysts than 120-kVp images, while maintaining kidney contrast enhancement comparable to that on 120-kVp images. PMID:25881852
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, B.M.W.; Frey, E.C.; Lalush, D.S.
1996-12-31
We investigated methods to accurately reconstruct 180{degrees} truncated TCT and SPECT projection data obtained from a right-angle dual-camera SPECT system for myocardial SPECT with attenuation compensation. The 180{degrees} data reconstruction methods would permit substantial savings in transmission data acquisition time. Simulation data from the 3D MCAT phantom and clinical data from large patients were used in the evaluation study. Different transmission reconstruction methods including the FBP, transmission ML-EM, transmission ML-SA, and BIT algorithms with and without using the body contour as support, were used in the TCT image reconstructions. The accuracy of both the TCT and attenuation compensated SPECT imagesmore » were evaluated for different degrees of truncation and noise levels. We found that using the FBP reconstructed TCT images resulted in higher count density in the left ventricular (LV) wall of the attenuation compensated SPECT images. The LV wall count density obtained using the iteratively reconstructed TCT images with and without support were similar to each other and were more accurate than that using the FBP. However, the TCT images obtained with support show fewer image artifacts than without support. Among the iterative reconstruction algorithms, the ML-SA algorithm provides the most accurate reconstruction but is the slowest. The BIT algorithm is the fastest but shows the most image artifacts. We conclude that accurate attenuation compensated images can be obtained with truncated 180{degrees} data from large patients using a right-angle dual-camera SPECT system.« less
In vivo bioluminescence tomography based on multi-view projection and 3D surface reconstruction
NASA Astrophysics Data System (ADS)
Zhang, Shuang; Wang, Kun; Leng, Chengcai; Deng, Kexin; Hu, Yifang; Tian, Jie
2015-03-01
Bioluminescence tomography (BLT) is a powerful optical molecular imaging modality, which enables non-invasive realtime in vivo imaging as well as 3D quantitative analysis in preclinical studies. In order to solve the inverse problem and reconstruct inner light sources accurately, the prior structural information is commonly necessary and obtained from computed tomography or magnetic resonance imaging. This strategy requires expensive hybrid imaging system, complicated operation protocol and possible involvement of ionizing radiation. The overall robustness highly depends on the fusion accuracy between the optical and structural information. In this study we present a pure optical bioluminescence tomographic system (POBTS) and a novel BLT method based on multi-view projection acquisition and 3D surface reconstruction. The POBTS acquired a sparse set of white light surface images and bioluminescent images of a mouse. Then the white light images were applied to an approximate surface model to generate a high quality textured 3D surface reconstruction of the mouse. After that we integrated multi-view luminescent images based on the previous reconstruction, and applied an algorithm to calibrate and quantify the surface luminescent flux in 3D.Finally, the internal bioluminescence source reconstruction was achieved with this prior information. A BALB/C mouse with breast tumor of 4T1-fLuc cells mouse model were used to evaluate the performance of the new system and technique. Compared with the conventional hybrid optical-CT approach using the same inverse reconstruction method, the reconstruction accuracy of this technique was improved. The distance error between the actual and reconstructed internal source was decreased by 0.184 mm.
Xi, Yan; Zhao, Jun; Bennett, James R.; Stacy, Mitchel R.; Sinusas, Albert J.; Wang, Ge
2016-01-01
Objective A unified reconstruction framework is presented for simultaneous CT-MRI reconstruction. Significance Combined CT-MRI imaging has the potential for improved results in existing preclinical and clinical applications, as well as opening novel research directions for future applications. Methods In an ideal CT-MRI scanner, CT and MRI acquisitions would occur simultaneously, and hence would be inherently registered in space and time. Alternatively, separately acquired CT and MRI scans can be fused to simulate an instantaneous acquisition. In this study, structural coupling and compressive sensing techniques are combined to unify CT and MRI reconstructions. A bidirectional image estimation method was proposed to connect images from different modalities. Hence, CT and MRI data serve as prior knowledge to each other for better CT and MRI image reconstruction than what could be achieved with separate reconstruction. Results Our integrated reconstruction methodology is demonstrated with numerical phantom and real-dataset based experiments, and has yielded promising results. PMID:26672028
Performance of 3DOSEM and MAP algorithms for reconstructing low count SPECT acquisitions.
Grootjans, Willem; Meeuwis, Antoi P W; Slump, Cornelis H; de Geus-Oei, Lioe-Fee; Gotthardt, Martin; Visser, Eric P
2016-12-01
Low count single photon emission computed tomography (SPECT) is becoming more important in view of whole body SPECT and reduction of radiation dose. In this study, we investigated the performance of several 3D ordered subset expectation maximization (3DOSEM) and maximum a posteriori (MAP) algorithms for reconstructing low count SPECT images. Phantom experiments were conducted using the National Electrical Manufacturers Association (NEMA) NU2 image quality (IQ) phantom. The background compartment of the phantom was filled with varying concentrations of pertechnetate and indiumchloride, simulating various clinical imaging conditions. Images were acquired using a hybrid SPECT/CT scanner and reconstructed with 3DOSEM and MAP reconstruction algorithms implemented in Siemens Syngo MI.SPECT (Flash3D) and Hermes Hybrid Recon Oncology (Hyrid Recon 3DOSEM and MAP). Image analysis was performed by calculating the contrast recovery coefficient (CRC),percentage background variability (N%), and contrast-to-noise ratio (CNR), defined as the ratio between CRC and N%. Furthermore, image distortion is characterized by calculating the aspect ratio (AR) of ellipses fitted to the hot spheres. Additionally, the performance of these algorithms to reconstruct clinical images was investigated. Images reconstructed with 3DOSEM algorithms demonstrated superior image quality in terms of contrast and resolution recovery when compared to images reconstructed with filtered-back-projection (FBP), OSEM and 2DOSEM. However, occurrence of correlated noise patterns and image distortions significantly deteriorated the quality of 3DOSEM reconstructed images. The mean AR for the 37, 28, 22, and 17mm spheres was 1.3, 1.3, 1.6, and 1.7 respectively. The mean N% increase in high and low count Flash3D and Hybrid Recon 3DOSEM from 5.9% and 4.0% to 11.1% and 9.0%, respectively. Similarly, the mean CNR decreased in high and low count Flash3D and Hybrid Recon 3DOSEM from 8.7 and 8.8 to 3.6 and 4.2, respectively. Regularization with smoothing priors could suppress these noise patterns at the cost of reduced image contrast. The mean N% was 6.4% and 6.8% for low count QSP and MRP MAP reconstructed images. Alternatively, regularization with an anatomical Bowhser prior resulted in sharp images with high contrast, limited image distortion, and low N% of 8.3% in low count images, although some image artifacts did occur. Analysis of clinical images suggested that the same effects occur in clinical imaging. Image quality of low count SPECT acquisitions reconstructed with modern 3DOSEM algorithms is deteriorated by the occurrence of correlated noise patterns and image distortions. The artifacts observed in the phantom experiments can also occur in clinical imaging. Copyright © 2015. Published by Elsevier GmbH.
Bayesian denoising in digital radiography: a comparison in the dental field.
Frosio, I; Olivieri, C; Lucchese, M; Borghese, N A; Boccacci, P
2013-01-01
We compared two Bayesian denoising algorithms for digital radiographs, based on Total Variation regularization and wavelet decomposition. The comparison was performed on simulated radiographs with different photon counts and frequency content and on real dental radiographs. Four different quality indices were considered to quantify the quality of the filtered radiographs. The experimental results suggested that Total Variation is more suited to preserve fine anatomical details, whereas wavelets produce images of higher quality at global scale; they also highlighted the need for more reliable image quality indices. Copyright © 2012 Elsevier Ltd. All rights reserved.
D Reconstruction with a Collaborative Approach Based on Smartphones and a Cloud-Based Server
NASA Astrophysics Data System (ADS)
Nocerino, E.; Poiesi, F.; Locher, A.; Tefera, Y. T.; Remondino, F.; Chippendale, P.; Van Gool, L.
2017-11-01
The paper presents a collaborative image-based 3D reconstruction pipeline to perform image acquisition with a smartphone and geometric 3D reconstruction on a server during concurrent or disjoint acquisition sessions. Images are selected from the video feed of the smartphone's camera based on their quality and novelty. The smartphone's app provides on-the-fly reconstruction feedback to users co-involved in the acquisitions. The server is composed of an incremental SfM algorithm that processes the received images by seamlessly merging them into a single sparse point cloud using bundle adjustment. Dense image matching algorithm can be lunched to derive denser point clouds. The reconstruction details, experiments and performance evaluation are presented and discussed.
Komatsu, Aya; Awatsuji, Yasuhiro; Kubota, Toshihiro
2005-08-01
We analyze the dependence of the reconstructed image characteristic on the observation condition in the light-in-flight recording by holography both theoretically and experimentally. This holography makes it possible to record a propagating light pulse. We have found that the shape of the reconstructed image is changed when the observation position is vertically moved along the hologram plane. The reconstructed image is numerically simulated on the basis of the theory and is experimentally obtained by using a 373 fs pulsed laser. The numerical results agree with the experimental result, and the validity of the theory is verified. Also, experimental results are analyzed and the restoration of the reconstructed image is discussed.
Research on assessment and improvement method of remote sensing image reconstruction
NASA Astrophysics Data System (ADS)
Sun, Li; Hua, Nian; Yu, Yanbo; Zhao, Zhanping
2018-01-01
Remote sensing image quality assessment and improvement is an important part of image processing. Generally, the use of compressive sampling theory in remote sensing imaging system can compress images while sampling which can improve efficiency. A method of two-dimensional principal component analysis (2DPCA) is proposed to reconstruct the remote sensing image to improve the quality of the compressed image in this paper, which contain the useful information of image and can restrain the noise. Then, remote sensing image quality influence factors are analyzed, and the evaluation parameters for quantitative evaluation are introduced. On this basis, the quality of the reconstructed images is evaluated and the different factors influence on the reconstruction is analyzed, providing meaningful referential data for enhancing the quality of remote sensing images. The experiment results show that evaluation results fit human visual feature, and the method proposed have good application value in the field of remote sensing image processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, H; Xing, L; Liang, Z
Purpose: To investigate a novel low-dose CT (LdCT) image reconstruction strategy for lung CT imaging in radiation therapy. Methods: The proposed approach consists of four steps: (1) use the traditional filtered back-projection (FBP) method to reconstruct the LdCT image; (2) calculate structure similarity (SSIM) index between the FBP-reconstructed LdCT image and a set of normal-dose CT (NdCT) images, and select the NdCT image with the highest SSIM as the learning source; (3) segment the NdCT source image into lung and outside tissue regions via simple thresholding, and adopt multiple linear regression to learn high-order Markov random field (MRF) pattern formore » each tissue region in the NdCT source image; (4) segment the FBP-reconstructed LdCT image into lung and outside regions as well, and apply the learnt MRF prior in each tissue region for statistical iterative reconstruction of the LdCT image following the penalized weighted least squares (PWLS) framework. Quantitative evaluation of the reconstructed images was based on the signal-to-noise ratio (SNR), local binary pattern (LBP) and histogram of oriented gradients (HOG) metrics. Results: It was observed that lung and outside tissue regions have different MRF patterns predicted from the NdCT. Visual inspection showed that our method obviously outperformed the traditional FBP method. Comparing with the region-smoothing PWLS method, our method has, in average, 13% increase in SNR, 15% decrease in LBP difference, and 12% decrease in HOG difference from reference standard for all regions of interest, which indicated the superior performance of the proposed method in terms of image resolution and texture preservation. Conclusion: We proposed a novel LdCT image reconstruction method by learning similar image characteristics from a set of NdCT images, and the to-be-learnt NdCT image does not need to be scans from the same subject. This approach is particularly important for enhancing image quality in radiation therapy.« less
Theory and algorithms for image reconstruction on chords and within regions of interest
NASA Astrophysics Data System (ADS)
Zou, Yu; Pan, Xiaochuan; Sidky, Emilâ Y.
2005-11-01
We introduce a formula for image reconstruction on a chord of a general source trajectory. We subsequently develop three algorithms for exact image reconstruction on a chord from data acquired with the general trajectory. Interestingly, two of the developed algorithms can accommodate data containing transverse truncations. The widely used helical trajectory and other trajectories discussed in literature can be interpreted as special cases of the general trajectory, and the developed theory and algorithms are thus directly applicable to reconstructing images exactly from data acquired with these trajectories. For instance, chords on a helical trajectory are equivalent to the n-PI-line segments. In this situation, the proposed algorithms become the algorithms that we proposed previously for image reconstruction on PI-line segments. We have performed preliminary numerical studies, which include the study on image reconstruction on chords of two-circle trajectory, which is nonsmooth, and on n-PI lines of a helical trajectory, which is smooth. Quantitative results of these studies verify and demonstrate the proposed theory and algorithms.
Recognition of degraded handwritten digits using dynamic Bayesian networks
NASA Astrophysics Data System (ADS)
Likforman-Sulem, Laurence; Sigelle, Marc
2007-01-01
We investigate in this paper the application of dynamic Bayesian networks (DBNs) to the recognition of handwritten digits. The main idea is to couple two separate HMMs into various architectures. First, a vertical HMM and a horizontal HMM are built observing the evolving streams of image columns and image rows respectively. Then, two coupled architectures are proposed to model interactions between these two streams and to capture the 2D nature of character images. Experiments performed on the MNIST handwritten digit database show that coupled architectures yield better recognition performances than non-coupled ones. Additional experiments conducted on artificially degraded (broken) characters demonstrate that coupled architectures better cope with such degradation than non coupled ones and than discriminative methods such as SVMs.
Grosser, Oliver S.; Kupitz, Dennis; Ruf, Juri; Czuczwara, Damian; Steffen, Ingo G.; Furth, Christian; Thormann, Markus; Loewenthal, David; Ricke, Jens; Amthauer, Holger
2015-01-01
Background Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images. Methodology/Principal Findings Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001). Conclusion/Significance In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality. PMID:26390216
View-interpolation of sparsely sampled sinogram using convolutional neural network
NASA Astrophysics Data System (ADS)
Lee, Hoyeon; Lee, Jongha; Cho, Suengryong
2017-02-01
Spare-view sampling and its associated iterative image reconstruction in computed tomography have actively investigated. Sparse-view CT technique is a viable option to low-dose CT, particularly in cone-beam CT (CBCT) applications, with advanced iterative image reconstructions with varying degrees of image artifacts. One of the artifacts that may occur in sparse-view CT is the streak artifact in the reconstructed images. Another approach has been investigated for sparse-view CT imaging by use of the interpolation methods to fill in the missing view data and that reconstructs the image by an analytic reconstruction algorithm. In this study, we developed an interpolation method using convolutional neural network (CNN), which is one of the widely used deep-learning methods, to find missing projection data and compared its performances with the other interpolation techniques.
Schullcke, Benjamin; Gong, Bo; Krueger-Ziolek, Sabine; Soleimani, Manuchehr; Mueller-Lisse, Ullrich; Moeller, Knut
2016-05-16
Lung EIT is a functional imaging method that utilizes electrical currents to reconstruct images of conductivity changes inside the thorax. This technique is radiation free and applicable at the bedside, but lacks of spatial resolution compared to morphological imaging methods such as X-ray computed tomography (CT). In this article we describe an approach for EIT image reconstruction using morphologic information obtained from other structural imaging modalities. This leads to recon- structed images of lung ventilation that can easily be superimposed with structural CT or MRI images, which facilitates image interpretation. The approach is based on a Discrete Cosine Transformation (DCT) of an image of the considered transversal thorax slice. The use of DCT enables reduction of the dimensionality of the reconstruction and ensures that only conductivity changes of the lungs are reconstructed and displayed. The DCT based approach is well suited to fuse morphological image information with functional lung imaging at low computational costs. Results on simulated data indicate that this approach preserves the morphological structures of the lungs and avoids blurring of the solution. Images from patient measurements reveal the capabilities of the method and demonstrate benefits in possible applications.
Schullcke, Benjamin; Gong, Bo; Krueger-Ziolek, Sabine; Soleimani, Manuchehr; Mueller-Lisse, Ullrich; Moeller, Knut
2016-01-01
Lung EIT is a functional imaging method that utilizes electrical currents to reconstruct images of conductivity changes inside the thorax. This technique is radiation free and applicable at the bedside, but lacks of spatial resolution compared to morphological imaging methods such as X-ray computed tomography (CT). In this article we describe an approach for EIT image reconstruction using morphologic information obtained from other structural imaging modalities. This leads to recon- structed images of lung ventilation that can easily be superimposed with structural CT or MRI images, which facilitates image interpretation. The approach is based on a Discrete Cosine Transformation (DCT) of an image of the considered transversal thorax slice. The use of DCT enables reduction of the dimensionality of the reconstruction and ensures that only conductivity changes of the lungs are reconstructed and displayed. The DCT based approach is well suited to fuse morphological image information with functional lung imaging at low computational costs. Results on simulated data indicate that this approach preserves the morphological structures of the lungs and avoids blurring of the solution. Images from patient measurements reveal the capabilities of the method and demonstrate benefits in possible applications. PMID:27181695
3-D ultrasound volume reconstruction using the direct frame interpolation method.
Scheipers, Ulrich; Koptenko, Sergei; Remlinger, Rachel; Falco, Tony; Lachaine, Martin
2010-11-01
A new method for 3-D ultrasound volume reconstruction using tracked freehand 3-D ultrasound is proposed. The method is based on solving the forward volume reconstruction problem using direct interpolation of high-resolution ultrasound B-mode image frames. A series of ultrasound B-mode image frames (an image series) is acquired using the freehand scanning technique and position sensing via optical tracking equipment. The proposed algorithm creates additional intermediate image frames by directly interpolating between two or more adjacent image frames of the original image series. The target volume is filled using the original frames in combination with the additionally constructed frames. Compared with conventional volume reconstruction methods, no additional filling of empty voxels or holes within the volume is required, because the whole extent of the volume is defined by the arrangement of the original and the additionally constructed B-mode image frames. The proposed direct frame interpolation (DFI) method was tested on two different data sets acquired while scanning the head and neck region of different patients. The first data set consisted of eight B-mode 2-D frame sets acquired under optimal laboratory conditions. The second data set consisted of 73 image series acquired during a clinical study. Sample volumes were reconstructed for all 81 image series using the proposed DFI method with four different interpolation orders, as well as with the pixel nearest-neighbor method using three different interpolation neighborhoods. In addition, volumes based on a reduced number of image frames were reconstructed for comparison of the different methods' accuracy and robustness in reconstructing image data that lies between the original image frames. The DFI method is based on a forward approach making use of a priori information about the position and shape of the B-mode image frames (e.g., masking information) to optimize the reconstruction procedure and to reduce computation times and memory requirements. The method is straightforward, independent of additional input or parameters, and uses the high-resolution B-mode image frames instead of usually lower-resolution voxel information for interpolation. The DFI method can be considered as a valuable alternative to conventional 3-D ultrasound reconstruction methods based on pixel or voxel nearest-neighbor approaches, offering better quality and competitive reconstruction time.
2014-09-01
to develop an optimized system design and associated image reconstruction algorithms for a hybrid three-dimensional (3D) breast imaging system that...research is to develop an optimized system design and associated image reconstruction algorithms for a hybrid three-dimensional (3D) breast imaging ...i) developed time-of- flight extraction algorithms to perform USCT, (ii) developing image reconstruction algorithms for USCT, (iii) developed
Parallel magnetic resonance imaging using coils with localized sensitivities.
Goldfarb, James W; Holland, Agnes E
2004-09-01
The purpose of this study was to present clinical examples and illustrate the inefficiencies of a conventional reconstruction using a commercially available phased array coil with localized sensitivities. Five patients were imaged at 1.5 T using a cardiac-synchronized gadolinium-enhanced acquisition and a commercially available four-element phased array coil. Four unique sets of images were reconstructed from the acquired k-space data: (a) sum-of-squares image using four elements of the coil; localized sum-of-squares images from the (b) anterior coils and (c) posterior coils and a (c) local reconstruction. Images were analyzed for artifacts and usable field-of-view. Conventional image reconstruction produced images with fold-over artifacts in all cases spanning a portion of the image (mean 90 mm; range 36-126 mm). The local reconstruction removed fold-over artifacts and resulted in an effective increase in the field-of-view (mean 50%; range 20-70%). Commercially available phased array coils do not always have overlapping sensitivities. Fold-over artifacts can be removed using an alternate reconstruction method. When assessing the advantages of parallel imaging techniques, gains achieved using techniques such as SENSE and SMASH should be gauged against the acquisition time of the localized method rather than the conventional sum-of-squares method.
Luo, Jianhua; Mou, Zhiying; Qin, Binjie; Li, Wanqing; Ogunbona, Philip; Robini, Marc C; Zhu, Yuemin
2018-07-01
Reconstructing magnetic resonance images from undersampled k-space data is a challenging problem. This paper introduces a novel method of image reconstruction from undersampled k-space data based on the concept of singularizing operators and a novel singular k-space model. Exploring the sparsity of an image in the k-space, the singular k-space model (SKM) is proposed in terms of the k-space functions of a singularizing operator. The singularizing operator is constructed by combining basic difference operators. An algorithm is developed to reliably estimate the model parameters from undersampled k-space data. The estimated parameters are then used to recover the missing k-space data through the model, subsequently achieving high-quality reconstruction of the image using inverse Fourier transform. Experiments on physical phantom and real brain MR images have shown that the proposed SKM method constantly outperforms the popular total variation (TV) and the classical zero-filling (ZF) methods regardless of the undersampling rates, the noise levels, and the image structures. For the same objective quality of the reconstructed images, the proposed method requires much less k-space data than the TV method. The SKM method is an effective method for fast MRI reconstruction from the undersampled k-space data. Graphical abstract Two Real Images and their sparsified images by singularizing operator.
Bayesian Inference for Source Reconstruction: A Real-World Application
2014-09-25
deliberately or acci- dentally . Two examples of operational monitoring sensor networks are the deployment of biological sensor arrays by the Department of...remarkable paper, Cox [16] demonstrated that proba- bility theory, when interpreted as logic, is the only calculus that conforms to a consistent theory...of inference. This demonstration provides the firm logical basis for asserting that probability calculus is the unique quantitative theory of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, Christian; Sawall, Stefan; Knaup, Michael
2014-06-15
Purpose: Iterative image reconstruction gains more and more interest in clinical routine, as it promises to reduce image noise (and thereby patient dose), to reduce artifacts, or to improve spatial resolution. Among vendors and researchers, however, there is no consensus of how to best achieve these aims. The general approach is to incorporatea priori knowledge into iterative image reconstruction, for example, by adding additional constraints to the cost function, which penalize variations between neighboring voxels. However, this approach to regularization in general poses a resolution noise trade-off because the stronger the regularization, and thus the noise reduction, the stronger themore » loss of spatial resolution and thus loss of anatomical detail. The authors propose a method which tries to improve this trade-off. The proposed reconstruction algorithm is called alpha image reconstruction (AIR). One starts with generating basis images, which emphasize certain desired image properties, like high resolution or low noise. The AIR algorithm reconstructs voxel-specific weighting coefficients that are applied to combine the basis images. By combining the desired properties of each basis image, one can generate an image with lower noise and maintained high contrast resolution thus improving the resolution noise trade-off. Methods: All simulations and reconstructions are performed in native fan-beam geometry. A water phantom with resolution bar patterns and low contrast disks is simulated. A filtered backprojection (FBP) reconstruction with a Ram-Lak kernel is used as a reference reconstruction. The results of AIR are compared against the FBP results and against a penalized weighted least squares reconstruction which uses total variation as regularization. The simulations are based on the geometry of the Siemens Somatom Definition Flash scanner. To quantitatively assess image quality, the authors analyze line profiles through resolution patterns to define a contrast factor for contrast-resolution plots. Furthermore, the authors calculate the contrast-to-noise ratio with the low contrast disks and the authors compare the agreement of the reconstructions with the ground truth by calculating the normalized cross-correlation and the root-mean-square deviation. To evaluate the clinical performance of the proposed method, the authors reconstruct patient data acquired with a Somatom Definition Flash dual source CT scanner (Siemens Healthcare, Forchheim, Germany). Results: The results of the simulation study show that among the compared algorithms AIR achieves the highest resolution and the highest agreement with the ground truth. Compared to the reference FBP reconstruction AIR is able to reduce the relative pixel noise by up to 50% and at the same time achieve a higher resolution by maintaining the edge information from the basis images. These results can be confirmed with the patient data. Conclusions: To evaluate the AIR algorithm simulated and measured patient data of a state-of-the-art clinical CT system were processed. It is shown, that generating CT images through the reconstruction of weighting coefficients has the potential to improve the resolution noise trade-off and thus to improve the dose usage in clinical CT.« less
Müller, Marcel; Mönkemöller, Viola; Hennig, Simon; Hübner, Wolfgang; Huser, Thomas
2016-01-01
Super-resolved structured illumination microscopy (SR-SIM) is an important tool for fluorescence microscopy. SR-SIM microscopes perform multiple image acquisitions with varying illumination patterns, and reconstruct them to a super-resolved image. In its most frequent, linear implementation, SR-SIM doubles the spatial resolution. The reconstruction is performed numerically on the acquired wide-field image data, and thus relies on a software implementation of specific SR-SIM image reconstruction algorithms. We present fairSIM, an easy-to-use plugin that provides SR-SIM reconstructions for a wide range of SR-SIM platforms directly within ImageJ. For research groups developing their own implementations of super-resolution structured illumination microscopy, fairSIM takes away the hurdle of generating yet another implementation of the reconstruction algorithm. For users of commercial microscopes, it offers an additional, in-depth analysis option for their data independent of specific operating systems. As a modular, open-source solution, fairSIM can easily be adapted, automated and extended as the field of SR-SIM progresses. PMID:26996201
Cone beam computed tomography in veterinary dentistry.
Van Thielen, Bert; Siguenza, Francis; Hassan, Bassam
2012-01-01
The purpose of this study was to assess the feasibility of cone beam computed tomography (CBCT) in imaging dogs and cats for diagnostic dental veterinary applications. CBCT scans of heads of six dogs and two cats were made. Dental panoramic and multi-planar reformatted (MPR) para-sagittal reconstructions were created using specialized software. Image quality and visibility of anatomical landmarks were subjectively assessed by two observers. Good image quality was obtained for the MPR para-sagittal reconstructions through multiple teeth. The image quality of the panoramic reconstructions of dogs was moderate while the panoramic reconstructions of cats were poor since the images were associated with an increased noise level. Segmental panoramic reconstructions of the mouth seem to be useful for studying the dental anatomy especially in dogs. The results of this study using human dental CBCT technology demonstrate the potential of this scanning technology in veterinary medicine. Unfortunately, the moderate image quality obtained with the CBCT technique reported here seems to be inferior to the diagnostic image quality obtained from 2-dimensional dental radiographs. Further research is required to optimize scanning and reconstruction protocols for veterinary applications.
Li, Mingyan; Zuo, Zhentao; Jin, Jin; Xue, Rong; Trakic, Adnan; Weber, Ewald; Liu, Feng; Crozier, Stuart
2014-03-01
Parallel imaging (PI) is widely used for imaging acceleration by means of coil spatial sensitivities associated with phased array coils (PACs). By employing a time-division multiplexing technique, a single-channel rotating radiofrequency coil (RRFC) provides an alternative method to reduce scan time. Strategically combining these two concepts could provide enhanced acceleration and efficiency. In this work, the imaging acceleration ability and homogeneous image reconstruction strategy of 4-element rotating radiofrequency coil array (RRFCA) was numerically investigated and experimental validated at 7T with a homogeneous phantom. Each coil of RRFCA was capable of acquiring a large number of sensitivity profiles, leading to a better acceleration performance illustrated by the improved geometry-maps that have lower maximum values and more uniform distributions compared to 4- and 8-element stationary arrays. A reconstruction algorithm, rotating SENSitivity Encoding (rotating SENSE), was proposed to provide image reconstruction. Additionally, by optimally choosing the angular sampling positions and transmit profiles under the rotating scheme, phantom images could be faithfully reconstructed. The results indicate that, the proposed technique is able to provide homogeneous reconstructions with overall higher and more uniform signal-to-noise ratio (SNR) distributions at high reduction factors. It is hoped that, by employing the high imaging acceleration and homogeneous imaging reconstruction ability of RRFCA, the proposed method will facilitate human imaging for ultra high field MRI. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yinsheng; Garrett, John W.; Li, Ke; Wu, Yijing; Johnson, Kevin; Schafer, Sebastian; Strother, Charles; Chen, Guang-Hong
2018-04-01
Time-resolved C-arm cone-beam CT (CBCT) angiography (TR-CBCTA) images can be generated from a series of CBCT acquisitions that satisfy data sufficiency condition in analytical image reconstruction theory. In this work, a new technique was developed to generate TR-CBCTA images from a single short-scan CBCT data acquisition with contrast media injection. The reconstruction technique enabling this application is a previously developed image reconstruction technique, synchronized multi-artifact reduction with tomographic reconstruction (SMART-RECON). In this new application, the acquired short-scan CBCT projection data were sorted into a union of several sub-sectors of view angles and each sub-sector of view angles corresponds to an individual image volume to be reconstructed. The SMART-RECON method was then used to jointly reconstruct all of these individual image volumes under two constraints: (1) each individual image volume is maximally consistent with the measured cone-beam projection data within the corresponding view angle sector and (2) the nuclear norm of the image matrix is minimized. The difference between these reconstructed individual image volumes is used to generated the desired subtracted angiograms. To validate the technique, numerical simulation data generated from a fractal tree angiogram phantom were used to quantitatively study the accuracy of the proposed method and retrospective in vivo human subject studies were used to demonstrate the feasibility of generating TR-CBCTA in clinical practice.
Image reconstruction from few-view CT data by gradient-domain dictionary learning.
Hu, Zhanli; Liu, Qiegen; Zhang, Na; Zhang, Yunwan; Peng, Xi; Wu, Peter Z; Zheng, Hairong; Liang, Dong
2016-05-21
Decreasing the number of projections is an effective way to reduce the radiation dose exposed to patients in medical computed tomography (CT) imaging. However, incomplete projection data for CT reconstruction will result in artifacts and distortions. In this paper, a novel dictionary learning algorithm operating in the gradient-domain (Grad-DL) is proposed for few-view CT reconstruction. Specifically, the dictionaries are trained from the horizontal and vertical gradient images, respectively and the desired image is reconstructed subsequently from the sparse representations of both gradients by solving the least-square method. Since the gradient images are sparser than the image itself, the proposed approach could lead to sparser representations than conventional DL methods in the image-domain, and thus a better reconstruction quality is achieved. To evaluate the proposed Grad-DL algorithm, both qualitative and quantitative studies were employed through computer simulations as well as real data experiments on fan-beam and cone-beam geometry. The results show that the proposed algorithm can yield better images than the existing algorithms.
Image-guided filtering for improving photoacoustic tomographic image reconstruction.
Awasthi, Navchetan; Kalva, Sandeep Kumar; Pramanik, Manojit; Yalavarthy, Phaneendra K
2018-06-01
Several algorithms exist to solve the photoacoustic image reconstruction problem depending on the expected reconstructed image features. These reconstruction algorithms promote typically one feature, such as being smooth or sharp, in the output image. Combining these features using a guided filtering approach was attempted in this work, which requires an input and guiding image. This approach act as a postprocessing step to improve commonly used Tikhonov or total variational regularization method. The result obtained from linear backprojection was used as a guiding image to improve these results. Using both numerical and experimental phantom cases, it was shown that the proposed guided filtering approach was able to improve (as high as 11.23 dB) the signal-to-noise ratio of the reconstructed images with the added advantage being computationally efficient. This approach was compared with state-of-the-art basis pursuit deconvolution as well as standard denoising methods and shown to outperform them. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Bae, Kyung-hoon; Park, Changhan; Kim, Eun-soo
2008-03-01
In this paper, intermediate view reconstruction (IVR) using adaptive disparity search algorithm (ASDA) is for realtime 3-dimensional (3D) processing proposed. The proposed algorithm can reduce processing time of disparity estimation by selecting adaptive disparity search range. Also, the proposed algorithm can increase the quality of the 3D imaging. That is, by adaptively predicting the mutual correlation between stereo images pair using the proposed algorithm, the bandwidth of stereo input images pair can be compressed to the level of a conventional 2D image and a predicted image also can be effectively reconstructed using a reference image and disparity vectors. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm improves the PSNRs of a reconstructed image to about 4.8 dB by comparing with that of conventional algorithms, and reduces the Synthesizing time of a reconstructed image to about 7.02 sec by comparing with that of conventional algorithms.
NASA Astrophysics Data System (ADS)
Zeng, Rongping; Badano, Aldo; Myers, Kyle J.
2017-04-01
We showed in our earlier work that the choice of reconstruction methods does not affect the optimization of DBT acquisition parameters (angular span and number of views) using simulated breast phantom images in detecting lesions with a channelized Hotelling observer (CHO). In this work we investigate whether the model-observer based conclusion is valid when using humans to interpret images. We used previously generated DBT breast phantom images and recruited human readers to find the optimal geometry settings associated with two reconstruction algorithms, filtered back projection (FBP) and simultaneous algebraic reconstruction technique (SART). The human reader results show that image quality trends as a function of the acquisition parameters are consistent between FBP and SART reconstructions. The consistent trends confirm that the optimization of DBT system geometry is insensitive to the choice of reconstruction algorithm. The results also show that humans perform better in SART reconstructed images than in FBP reconstructed images. In addition, we applied CHOs with three commonly used channel models, Laguerre-Gauss (LG) channels, square (SQR) channels and sparse difference-of-Gaussian (sDOG) channels. We found that LG channels predict human performance trends better than SQR and sDOG channel models for the task of detecting lesions in tomosynthesis backgrounds. Overall, this work confirms that the choice of reconstruction algorithm is not critical for optimizing DBT system acquisition parameters.
Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method
Pereira, N F; Sitek, A
2011-01-01
Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated. PMID:20736496
Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method
NASA Astrophysics Data System (ADS)
Pereira, N. F.; Sitek, A.
2010-09-01
Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated.
Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.
Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan
2016-04-28
This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.
Benkert, Thomas; Tian, Ye; Huang, Chenchan; DiBella, Edward V R; Chandarana, Hersh; Feng, Li
2018-07-01
Golden-angle radial sparse parallel (GRASP) MRI reconstruction requires gridding and regridding to transform data between radial and Cartesian k-space. These operations are repeatedly performed in each iteration, which makes the reconstruction computationally demanding. This work aimed to accelerate GRASP reconstruction using self-calibrating GRAPPA operator gridding (GROG) and to validate its performance in clinical imaging. GROG is an alternative gridding approach based on parallel imaging, in which k-space data acquired on a non-Cartesian grid are shifted onto a Cartesian k-space grid using information from multicoil arrays. For iterative non-Cartesian image reconstruction, GROG is performed only once as a preprocessing step. Therefore, the subsequent iterative reconstruction can be performed directly in Cartesian space, which significantly reduces computational burden. Here, a framework combining GROG with GRASP (GROG-GRASP) is first optimized and then compared with standard GRASP reconstruction in 22 prostate patients. GROG-GRASP achieved approximately 4.2-fold reduction in reconstruction time compared with GRASP (∼333 min versus ∼78 min) while maintaining image quality (structural similarity index ≈ 0.97 and root mean square error ≈ 0.007). Visual image quality assessment by two experienced radiologists did not show significant differences between the two reconstruction schemes. With a graphics processing unit implementation, image reconstruction time can be further reduced to approximately 14 min. The GRASP reconstruction can be substantially accelerated using GROG. This framework is promising toward broader clinical application of GRASP and other iterative non-Cartesian reconstruction methods. Magn Reson Med 80:286-293, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Kang, Jinbum; Lee, Jae Young; Yoo, Yangmo
2016-06-01
Effective speckle reduction in ultrasound B-mode imaging is important for enhancing the image quality and improving the accuracy in image analysis and interpretation. In this paper, a new feature-enhanced speckle reduction (FESR) method based on multiscale analysis and feature enhancement filtering is proposed for ultrasound B-mode imaging. In FESR, clinical features (e.g., boundaries and borders of lesions) are selectively emphasized by edge, coherence, and contrast enhancement filtering from fine to coarse scales while simultaneously suppressing speckle development via robust diffusion filtering. In the simulation study, the proposed FESR method showed statistically significant improvements in edge preservation, mean structure similarity, speckle signal-to-noise ratio, and contrast-to-noise ratio (CNR) compared with other speckle reduction methods, e.g., oriented speckle reducing anisotropic diffusion (OSRAD), nonlinear multiscale wavelet diffusion (NMWD), the Laplacian pyramid-based nonlinear diffusion and shock filter (LPNDSF), and the Bayesian nonlocal means filter (OBNLM). Similarly, the FESR method outperformed the OSRAD, NMWD, LPNDSF, and OBNLM methods in terms of CNR, i.e., 10.70 ± 0.06 versus 9.00 ± 0.06, 9.78 ± 0.06, 8.67 ± 0.04, and 9.22 ± 0.06 in the phantom study, respectively. Reconstructed B-mode images that were developed using the five speckle reduction methods were reviewed by three radiologists for evaluation based on each radiologist's diagnostic preferences. All three radiologists showed a significant preference for the abdominal liver images obtained using the FESR methods in terms of conspicuity, margin sharpness, artificiality, and contrast, p<0.0001. For the kidney and thyroid images, the FESR method showed similar improvement over other methods. However, the FESR method did not show statistically significant improvement compared with the OBNLM method in margin sharpness for the kidney and thyroid images. These results demonstrate that the proposed FESR method can improve the image quality of ultrasound B-mode imaging by enhancing the visualization of lesion features while effectively suppressing speckle noise.
Bindu, G.; Semenov, S.
2013-01-01
This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell’s equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness. PMID:24058889
3D Dose reconstruction: Banding artefacts in cine mode EPID images during VMAT delivery
NASA Astrophysics Data System (ADS)
Woodruff, H. C.; Greer, P. B.
2013-06-01
Cine (continuous) mode images obtained during VMAT delivery are heavily degraded by banding artefacts. We have developed a method to reconstruct the pulse sequence (and hence dose deposited) from open field images. For clinical VMAT fields we have devised a frame averaging strategy that greatly improves image quality and dosimetric information for three-dimensional dose reconstruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K; Hristov, D
2014-06-01
Purpose: To evaluate the potential impact of listmode-driven amplitude based optimal gating (OG) respiratory motion management technique on quantitative PET imaging. Methods: During the PET acquisitions, an optical camera tracked and recorded the motion of a tool placed on top of patients' torso. PET event data were utilized to detect and derive a motion signal that is directly coupled with a specific internal organ. A radioactivity-trace was generated from listmode data by accumulating all prompt counts in temporal bins matching the sampling rate of the external tracking device. Decay correction for 18F was performed. The image reconstructions using OG respiratorymore » motion management technique that uses 35% of total radioactivity counts within limited motion amplitudes were performed with external motion and radioactivity traces separately with ordered subset expectation maximization (OSEM) with 2 iterations and 21 subsets. Standard uptake values (SUVs) in a tumor region were calculated to measure the effect of using radioactivity trace for motion compensation. Motion-blurred 3D static PET image was also reconstructed with all counts and the SUVs derived from OG images were compared with SUVs from 3D images. Results: A 5.7 % increase of the maximum SUV in the lesion was found for optimal gating image reconstruction with radioactivity trace when compared to a static 3D image. The mean and maximum SUVs on the image that was reconstructed with radioactivity trace were found comparable (0.4 % and 4.5 % increase, respectively) to the values derived from the image that was reconstructed with external trace. Conclusion: The image reconstructed using radioactivity trace showed that the blurring due to the motion was reduced with impact on derived SUVs. The resolution and contrast of the images reconstructed with radioactivity trace were comparable to the resolution and contrast of the images reconstructed with external respiratory traces. Research supported by Siemens.« less
Vachha, Behroze; Brodoefel, Harald; Wilcox, Carol; Hackney, David B; Moonis, Gul
2013-12-01
To compare objective and subjective image quality in neck CT images acquired at different tube current-time products (275 mAs and 340 mAs) and reconstructed with filtered-back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR). HIPAA-compliant study with IRB approval and waiver of informed consent. 66 consecutive patients were randomly assigned to undergo contrast-enhanced neck CT at a standard tube-current-time-product (340 mAs; n = 33) or reduced tube-current-time-product (275 mAs, n = 33). Data sets were reconstructed with FBP and 2 levels (30%, 40%) of ASIR-FBP blending at 340 mAs and 275 mAs. Two neuroradiologists assessed subjective image quality in a blinded and randomized manner. Volume CT dose index (CTDIvol), dose-length-product (DLP), effective dose, and objective image noise were recorded. Signal-to-noise ratio (SNR) was computed as mean attenuation in a region of interest in the sternocleidomastoid muscle divided by image noise. Compared with FBP, ASIR resulted in a reduction of image noise at both 340 mAs and 275 mAs. Reduction of tube current from 340 mAs to 275 mAs resulted in an increase in mean objective image noise (p=0.02) and a decrease in SNR (p = 0.03) when images were reconstructed with FBP. However, when the 275 mAs images were reconstructed using ASIR, the mean objective image noise and SNR were similar to those of the standard 340 mAs CT images reconstructed with FBP (p>0.05). Subjective image noise was ranked by both raters as either average or less-than-average irrespective of the tube current and iterative reconstruction technique. Adapting ASIR into neck CT protocols reduced effective dose by 17% without compromising image quality. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Restoration of singularities in reconstructed phase of crystal image in electron holography.
Li, Wei; Tanji, Takayoshi
2014-12-01
Off-axis electron holography can be used to measure the inner potential of a specimen from its reconstructed phase image and is thus a powerful technique for materials scientists. However, abrupt reversals of contrast from white to black may sometimes occur in a digitally reconstructed phase image, which results in inaccurate information. Such phase distortion is mainly due to the digital reconstruction process and weak electron wave amplitude in some areas of the specimen. Therefore, digital image processing can be applied to the reconstruction and restoration of phase images. In this paper, fringe reconnection processing is applied to phase image restoration of a crystal structure image. The disconnection and wrong connection of interference fringes in the hologram that directly cause a 2π phase jump imperfection are correctly reconnected. Experimental results show that the phase distortion is significantly reduced after the processing. The quality of the reconstructed phase image was improved by the removal of imperfections in the final phase. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, H
Purpose: This work is to develop a general framework, namely filtered iterative reconstruction (FIR) method, to incorporate analytical reconstruction (AR) method into iterative reconstruction (IR) method, for enhanced CT image quality. Methods: FIR is formulated as a combination of filtered data fidelity and sparsity regularization, and then solved by proximal forward-backward splitting (PFBS) algorithm. As a result, the image reconstruction decouples data fidelity and image regularization with a two-step iterative scheme, during which an AR-projection step updates the filtered data fidelity term, while a denoising solver updates the sparsity regularization term. During the AR-projection step, the image is projected tomore » the data domain to form the data residual, and then reconstructed by certain AR to a residual image which is in turn weighted together with previous image iterate to form next image iterate. Since the eigenvalues of AR-projection operator are close to the unity, PFBS based FIR has a fast convergence. Results: The proposed FIR method is validated in the setting of circular cone-beam CT with AR being FDK and total-variation sparsity regularization, and has improved image quality from both AR and IR. For example, AIR has improved visual assessment and quantitative measurement in terms of both contrast and resolution, and reduced axial and half-fan artifacts. Conclusion: FIR is proposed to incorporate AR into IR, with an efficient image reconstruction algorithm based on PFBS. The CBCT results suggest that FIR synergizes AR and IR with improved image quality and reduced axial and half-fan artifacts. The authors was partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000), and the Shanghai Pujiang Talent Program (#14PJ1404500).« less
NASA Astrophysics Data System (ADS)
Zhu, Dianwen; Zhang, Wei; Zhao, Yue; Li, Changqing
2016-03-01
Dynamic fluorescence molecular tomography (FMT) has the potential to quantify physiological or biochemical information, known as pharmacokinetic parameters, which are important for cancer detection, drug development and delivery etc. To image those parameters, there are indirect methods, which are easier to implement but tend to provide images with low signal-to-noise ratio, and direct methods, which model all the measurement noises together and are statistically more efficient. The direct reconstruction methods in dynamic FMT have attracted a lot of attention recently. However, the coupling of tomographic image reconstruction and nonlinearity of kinetic parameter estimation due to the compartment modeling has imposed a huge computational burden to the direct reconstruction of the kinetic parameters. In this paper, we propose to take advantage of both the direct and indirect reconstruction ideas through a variable splitting strategy under the augmented Lagrangian framework. Each iteration of the direct reconstruction is split into two steps: the dynamic FMT image reconstruction and the node-wise nonlinear least squares fitting of the pharmacokinetic parameter images. Through numerical simulation studies, we have found that the proposed algorithm can achieve good reconstruction results within a small amount of time. This will be the first step for a combined dynamic PET and FMT imaging in the future.
SPECT reconstruction with nonuniform attenuation from highly under-sampled projection data
NASA Astrophysics Data System (ADS)
Li, Cuifen; Wen, Junhai; Zhang, Kangping; Shi, Donghao; Dong, Haixiang; Li, Wenxiao; Liang, Zhengrong
2012-03-01
Single photon emission computed tomography (SPECT) is an important nuclear medicine imaging technique and has been using in clinical diagnoses. The SPECT image can reflect not only organizational structure but also functional activities of human body, therefore diseases can be found much earlier. In SPECT, the reconstruction is based on the measurement of gamma photons emitted by the radiotracer. The number of gamma photons detected is proportional to the dose of radiopharmaceutical, but the dose is limited because of patient safety. There is an upper limit in the number of gamma photons that can be detected per unit time, so it takes a long time to acquire SPECT projection data. Sometimes we just can obtain highly under-sampled projection data because of the limit of the scanning time or imaging hardware. How to reconstruct an image using highly under-sampled projection data is an interesting problem. One method is to minimize the total variation (TV) of the reconstructed image during the iterative reconstruction. In this work, we developed an OSEM-TV SPECT reconstruction algorithm, which could reconstruct the image from highly under-sampled projection data with non-uniform attenuation. Simulation results demonstrate that the OSEM-TV algorithm performs well in SPECT reconstruction with non-uniform attenuation.
Yeo, Inhwan Jason; Jung, Jae Won; Yi, Byong Yong; Kim, Jong Oh
2013-01-01
Purpose: When an intensity-modulated radiation beam is delivered to a moving target, the interplay effect between dynamic beam delivery and the target motion due to miss-synchronization can cause unpredictable dose delivery. The portal dose image in electronic portal imaging device (EPID) represents radiation attenuated and scattered through target media. Thus, it may possess information about delivered radiation to the target. Using a continuous scan (cine) mode of EPID, which provides temporal dose images related to target and beam movements, the authors’ goal is to perform four-dimensional (4D) dose reconstruction. Methods: To evaluate this hypothesis, first, the authors have derived and subsequently validated a fast method of dose reconstruction based on virtual beamlet calculations of dose responses using a test intensity-modulated beam. This method was necessary for processing a large number of EPID images pertinent for four-dimensional reconstruction. Second, cine mode acquisition after summation over all images was validated through comparison with integration mode acquisition on EPID (IAS3 and aS1000) for the test beam. This was to confirm the agreement of the cine mode with the integrated mode, specifically for the test beam, which is an accepted mode of image acquisition for dosimetry with EPID. Third, in-phantom film and exit EPID dosimetry was performed on a moving platform using the same beam. Heterogeneous as well as homogeneous phantoms were used. The cine images were temporally sorted at 10% interval. The authors have performed dose reconstruction to the in-phantom plane from the sorted cine images using the above validated method of dose reconstruction. The reconstructed dose from each cine image was summed to compose a total reconstructed dose from the test beam delivery, and was compared with film measurements. Results: The new method of dose reconstruction was validated showing greater than 95.3% pass rates of the gamma test with the criteria of dose difference of 3% and distance to agreement of 3 mm. The dose comparison of the reconstructed dose with the measured dose for the two phantoms showed pass rates higher than 96.4% given the same criteria. Conclusions: Feasibility of 4D dose reconstruction was successfully demonstrated in this study. The 4D dose reconstruction demonstrated in this study can be a promising dose validation method for radiation delivery on moving organs. PMID:23635250
Sun, Jihang; Yu, Tong; Liu, Jinrong; Duan, Xiaomin; Hu, Di; Liu, Yong; Peng, Yun
2017-03-16
Model-based iterative reconstruction (MBIR) is a promising reconstruction method which could improve CT image quality with low radiation dose. The purpose of this study was to demonstrate the advantage of using MBIR for noise reduction and image quality improvement in low dose chest CT for children with necrotizing pneumonia, over the adaptive statistical iterative reconstruction (ASIR) and conventional filtered back-projection (FBP) technique. Twenty-six children with necrotizing pneumonia (aged 2 months to 11 years) who underwent standard of care low dose CT scans were included. Thinner-slice (0.625 mm) images were retrospectively reconstructed using MBIR, ASIR and conventional FBP techniques. Image noise and signal-to-noise ratio (SNR) for these thin-slice images were measured and statistically analyzed using ANOVA. Two radiologists independently analyzed the image quality for detecting necrotic lesions, and results were compared using a Friedman's test. Radiation dose for the overall patient population was 0.59 mSv. There was a significant improvement in the high-density and low-contrast resolution of the MBIR reconstruction resulting in more detection and better identification of necrotic lesions (38 lesions in 0.625 mm MBIR images vs. 29 lesions in 0.625 mm FBP images). The subjective display scores (mean ± standard deviation) for the detection of necrotic lesions were 5.0 ± 0.0, 2.8 ± 0.4 and 2.5 ± 0.5 with MBIR, ASIR and FBP reconstruction, respectively, and the respective objective image noise was 13.9 ± 4.0HU, 24.9 ± 6.6HU and 33.8 ± 8.7HU. The image noise decreased by 58.9 and 26.3% in MBIR images as compared to FBP and ASIR images. Additionally, the SNR of MBIR images was significantly higher than FBP images and ASIR images. The quality of chest CT images obtained by MBIR in children with necrotizing pneumonia was significantly improved by the MBIR technique as compared to the ASIR and FBP reconstruction, to provide a more confident and accurate diagnosis for necrotizing pneumonia.
Kinematic reconstruction in cardiovascular imaging.
Bastarrika, G; Huebra Rodríguez, I J González de la; Calvo-Imirizaldu, M; Suárez Vega, V M; Alonso-Burgos, A
2018-05-17
Advances in clinical applications of computed tomography have been accompanied by improvements in advanced post-processing tools. In addition to multiplanar reconstructions, curved planar reconstructions, maximum intensity projections, and volumetric reconstructions, very recently kinematic reconstruction has been developed. This new technique, based on mathematical models that simulate the propagation of light beams through a volume of data, makes it possible to obtain very realistic three dimensional images. This article illustrates examples of kinematic reconstructions and compares them with classical volumetric reconstructions in patients with cardiovascular disease in a way that makes it easy to establish the differences between the two types of reconstruction. Kinematic reconstruction is a new method for representing three dimensional images that facilitates the explanation and comprehension of the findings. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Yu, Yao; Zhang, Wen-Bo; Liu, Xiao-Jing; Guo, Chuan-Bin; Yu, Guang-Yan; Peng, Xin
2017-06-01
The purpose of this study was to describe new technology assisted by 3-dimensional (3D) image fusion of 18 F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) and contrast-enhanced CT (CECT) for computer planning of a maxillectomy of recurrent maxillary squamous cell carcinoma and defect reconstruction. Treatment of recurrent maxillary squamous cell carcinoma usually includes tumor resection and free flap reconstruction. FDG-PET/CT provided images of regions of abnormal glucose uptake and thus showed metabolic tumor volume to guide tumor resection. CECT data were used to create 3D reconstructed images of vessels to show the vascular diameters and locations, so that the most suitable vein and artery could be selected during anastomosis of the free flap. The data from preoperative maxillofacial CECT scans and FDG-PET/CT imaging were imported into the navigation system (iPlan 3.0; Brainlab, Feldkirchen, Germany). Three-dimensional image fusion between FDG-PET/CT and CECT was accomplished using Brainlab software according to the position of the 2 skulls simulated in the CECT image and PET/CT image, respectively. After verification of the image fusion accuracy, the 3D reconstruction images of the metabolic tumor, vessels, and other critical structures could be visualized within the same coordinate system. These sagittal, coronal, axial, and 3D reconstruction images were used to determine the virtual osteotomy sites and reconstruction plan, which was provided to the surgeon and used for surgical navigation. The average shift of the 3D image fusion between FDG-PET/CT and CECT was less than 1 mm. This technique, by clearly showing the metabolic tumor volume and the most suitable vessels for anastomosis, facilitated resection and reconstruction of recurrent maxillary squamous cell carcinoma. We used 3D image fusion of FDG-PET/CT and CECT to successfully accomplish resection and reconstruction of recurrent maxillary squamous cell carcinoma. This method has the potential to improve the clinical outcomes of these challenging procedures. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Mariappan, Leo; Hu, Gang; He, Bin
2014-02-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼ 1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.
Lim, Kyungjae; Kwon, Heejin; Cho, Jinhan; Oh, Jongyoung; Yoon, Seongkuk; Kang, Myungjin; Ha, Dongho; Lee, Jinhwa; Kang, Eunju
2015-01-01
The purpose of this study was to assess the image quality of a novel advanced iterative reconstruction (IR) method called as "adaptive statistical IR V" (ASIR-V) by comparing the image noise, contrast-to-noise ratio (CNR), and spatial resolution from those of filtered back projection (FBP) and adaptive statistical IR (ASIR) on computed tomography (CT) phantom image. We performed CT scans at 5 different tube currents (50, 70, 100, 150, and 200 mA) using 3 types of CT phantoms. Scanned images were subsequently reconstructed in 7 different scan settings, such as FBP, and 3 levels of ASIR and ASIR-V (30%, 50%, and 70%). The image noise was measured in the first study using body phantom. The CNR was measured in the second study using contrast phantom and the spatial resolutions were measured in the third study using a high-resolution phantom. We compared the image noise, CNR, and spatial resolution among the 7 reconstructed image scan settings to determine whether noise reduction, high CNR, and high spatial resolution could be achieved at ASIR-V. At quantitative analysis of the first and second studies, it showed that the images reconstructed using ASIR-V had reduced image noise and improved CNR compared with those of FBP and ASIR (P < 0.001). At qualitative analysis of the third study, it also showed that the images reconstructed using ASIR-V had significantly improved spatial resolution than those of FBP and ASIR (P < 0.001). Our phantom studies showed that ASIR-V provides a significant reduction in image noise and a significant improvement in CNR as well as spatial resolution. Therefore, this technique has the potential to reduce the radiation dose further without compromising image quality.
Differential Binary Encoding Method for Calibrating Image Sensors Based on IOFBs
Fernández, Pedro R.; Lázaro-Galilea, José Luis; Gardel, Alfredo; Espinosa, Felipe; Bravo, Ignacio; Cano, Ángel
2012-01-01
Image transmission using incoherent optical fiber bundles (IOFBs) requires prior calibration to obtain the spatial in-out fiber correspondence necessary to reconstruct the image captured by the pseudo-sensor. This information is recorded in a Look-Up Table called the Reconstruction Table (RT), used later for reordering the fiber positions and reconstructing the original image. This paper presents a very fast method based on image-scanning using spaces encoded by a weighted binary code to obtain the in-out correspondence. The results demonstrate that this technique yields a remarkable reduction in processing time and the image reconstruction quality is very good compared to previous techniques based on spot or line scanning, for example. PMID:22666023
Wang, Kun; Ermilov, Sergey A.; Su, Richard; Brecht, Hans-Peter; Oraevsky, Alexander A.; Anastasio, Mark A.
2010-01-01
Optoacoustic Tomography (OAT) is a hybrid imaging modality that combines the advantages of optical and ultrasound imaging. Most existing reconstruction algorithms for OAT assume that the ultrasound transducers employed to record the measurement data are point-like. When transducers with large detecting areas and/or compact measurement geometries are utilized, this assumption can result in conspicuous image blurring and distortions in the reconstructed images. In this work, a new OAT imaging model that incorporates the spatial and temporal responses of an ultrasound transducer is introduced. A discrete form of the imaging model is implemented and its numerical properties are investigated. We demonstrate that use of the imaging model in an iterative reconstruction method can improve the spatial resolution of the optoacoustic images as compared to those reconstructed assuming point-like ultrasound transducers. PMID:20813634
Restoration and reconstruction from overlapping images
NASA Technical Reports Server (NTRS)
Reichenbach, Stephen E.; Kaiser, Daniel J.; Hanson, Andrew L.; Li, Jing
1997-01-01
This paper describes a technique for restoring and reconstructing a scene from overlapping images. In situations where there are multiple, overlapping images of the same scene, it may be desirable to create a single image that most closely approximates the scene, based on all of the data in the available images. For example, successive swaths acquired by NASA's planned Moderate Imaging Spectrometer (MODIS) will overlap, particularly at wide scan angles, creating a severe visual artifact in the output image. Resampling the overlapping swaths to produce a more accurate image on a uniform grid requires restoration and reconstruction. The one-pass restoration and reconstruction technique developed in this paper yields mean-square-optimal resampling, based on a comprehensive end-to-end system model that accounts for image overlap, and subject to user-defined and data-availability constraints on the spatial support of the filter.
Markov Random Fields, Stochastic Quantization and Image Analysis
1990-01-01
Markov random fields based on the lattice Z2 have been extensively used in image analysis in a Bayesian framework as a-priori models for the...of Image Analysis can be given some fundamental justification then there is a remarkable connection between Probabilistic Image Analysis , Statistical Mechanics and Lattice-based Euclidean Quantum Field Theory.
Forward model with space-variant of source size for reconstruction on X-ray radiographic image
NASA Astrophysics Data System (ADS)
Liu, Jin; Liu, Jun; Jing, Yue-feng; Xiao, Bo; Wei, Cai-hua; Guan, Yong-hong; Zhang, Xuan
2018-03-01
The Forward Imaging Technique is a method to solve the inverse problem of density reconstruction in radiographic imaging. In this paper, we introduce the forward projection equation (IFP model) for the radiographic system with areal source blur and detector blur. Our forward projection equation, based on X-ray tracing, is combined with the Constrained Conjugate Gradient method to form a new method for density reconstruction. We demonstrate the effectiveness of the new technique by reconstructing density distributions from simulated and experimental images. We show that for radiographic systems with source sizes larger than the pixel size, the effect of blur on the density reconstruction is reduced through our method and can be controlled within one or two pixels. The method is also suitable for reconstruction of non-homogeneousobjects.
Knoll, Florian; Hammernik, Kerstin; Kobler, Erich; Pock, Thomas; Recht, Michael P; Sodickson, Daniel K
2018-05-17
Although deep learning has shown great promise for MR image reconstruction, an open question regarding the success of this approach is the robustness in the case of deviations between training and test data. The goal of this study is to assess the influence of image contrast, SNR, and image content on the generalization of learned image reconstruction, and to demonstrate the potential for transfer learning. Reconstructions were trained from undersampled data using data sets with varying SNR, sampling pattern, image contrast, and synthetic data generated from a public image database. The performance of the trained reconstructions was evaluated on 10 in vivo patient knee MRI acquisitions from 2 different pulse sequences that were not used during training. Transfer learning was evaluated by fine-tuning baseline trainings from synthetic data with a small subset of in vivo MR training data. Deviations in SNR between training and testing led to substantial decreases in reconstruction image quality, whereas image contrast was less relevant. Trainings from heterogeneous training data generalized well toward the test data with a range of acquisition parameters. Trainings from synthetic, non-MR image data showed residual aliasing artifacts, which could be removed by transfer learning-inspired fine-tuning. This study presents insights into the generalization ability of learned image reconstruction with respect to deviations in the acquisition settings between training and testing. It also provides an outlook for the potential of transfer learning to fine-tune trainings to a particular target application using only a small number of training cases. © 2018 International Society for Magnetic Resonance in Medicine.
Acerbi, Enzo; Viganò, Elena; Poidinger, Michael; Mortellaro, Alessandra; Zelante, Teresa; Stella, Fabio
2016-01-01
T helper 17 (TH17) cells represent a pivotal adaptive cell subset involved in multiple immune disorders in mammalian species. Deciphering the molecular interactions regulating TH17 cell differentiation is particularly critical for novel drug target discovery designed to control maladaptive inflammatory conditions. Using continuous time Bayesian networks over a time-course gene expression dataset, we inferred the global regulatory network controlling TH17 differentiation. From the network, we identified the Prdm1 gene encoding the B lymphocyte-induced maturation protein 1 as a crucial negative regulator of human TH17 cell differentiation. The results have been validated by perturbing Prdm1 expression on freshly isolated CD4+ naïve T cells: reduction of Prdm1 expression leads to augmentation of IL-17 release. These data unravel a possible novel target to control TH17 polarization in inflammatory disorders. Furthermore, this study represents the first in vitro validation of continuous time Bayesian networks as gene network reconstruction method and as hypothesis generation tool for wet-lab biological experiments. PMID:26976045
Past and present cosmic structure in the SDSS DR7 main sample
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasche, J.; Leclercq, F.; Wandelt, B.D., E-mail: jasche@iap.fr, E-mail: florent.leclercq@polytechnique.org, E-mail: wandelt@iap.fr
2015-01-01
We present a chrono-cosmography project, aiming at the inference of the four dimensional formation history of the observed large scale structure from its origin to the present epoch. To do so, we perform a full-scale Bayesian analysis of the northern galactic cap of the Sloan Digital Sky Survey (SDSS) Data Release 7 main galaxy sample, relying on a fully probabilistic, physical model of the non-linearly evolved density field. Besides inferring initial conditions from observations, our methodology naturally and accurately reconstructs non-linear features at the present epoch, such as walls and filaments, corresponding to high-order correlation functions generated by late-time structuremore » formation. Our inference framework self-consistently accounts for typical observational systematic and statistical uncertainties such as noise, survey geometry and selection effects. We further account for luminosity dependent galaxy biases and automatic noise calibration within a fully Bayesian approach. As a result, this analysis provides highly-detailed and accurate reconstructions of the present density field on scales larger than ∼ 3 Mpc/h, constrained by SDSS observations. This approach also leads to the first quantitative inference of plausible formation histories of the dynamic large scale structure underlying the observed galaxy distribution. The results described in this work constitute the first full Bayesian non-linear analysis of the cosmic large scale structure with the demonstrated capability of uncertainty quantification. Some of these results will be made publicly available along with this work. The level of detail of inferred results and the high degree of control on observational uncertainties pave the path towards high precision chrono-cosmography, the subject of simultaneously studying the dynamics and the morphology of the inhomogeneous Universe.« less
Emerging Concepts of Data Integration in Pathogen Phylodynamics.
Baele, Guy; Suchard, Marc A; Rambaut, Andrew; Lemey, Philippe
2017-01-01
Phylodynamics has become an increasingly popular statistical framework to extract evolutionary and epidemiological information from pathogen genomes. By harnessing such information, epidemiologists aim to shed light on the spatio-temporal patterns of spread and to test hypotheses about the underlying interaction of evolutionary and ecological dynamics in pathogen populations. Although the field has witnessed a rich development of statistical inference tools with increasing levels of sophistication, these tools initially focused on sequences as their sole primary data source. Integrating various sources of information, however, promises to deliver more precise insights in infectious diseases and to increase opportunities for statistical hypothesis testing. Here, we review how the emerging concept of data integration is stimulating new advances in Bayesian evolutionary inference methodology which formalize a marriage of statistical thinking and evolutionary biology. These approaches include connecting sequence to trait evolution, such as for host, phenotypic and geographic sampling information, but also the incorporation of covariates of evolutionary and epidemic processes in the reconstruction procedures. We highlight how a full Bayesian approach to covariate modeling and testing can generate further insights into sequence evolution, trait evolution, and population dynamics in pathogen populations. Specific examples demonstrate how such approaches can be used to test the impact of host on rabies and HIV evolutionary rates, to identify the drivers of influenza dispersal as well as the determinants of rabies cross-species transmissions, and to quantify the evolutionary dynamics of influenza antigenicity. Finally, we briefly discuss how data integration is now also permeating through the inference of transmission dynamics, leading to novel insights into tree-generative processes and detailed reconstructions of transmission trees. [Bayesian inference; birth–death models; coalescent models; continuous trait evolution; covariates; data integration; discrete trait evolution; pathogen phylodynamics.
Emerging Concepts of Data Integration in Pathogen Phylodynamics
Baele, Guy; Suchard, Marc A.; Rambaut, Andrew; Lemey, Philippe
2017-01-01
Phylodynamics has become an increasingly popular statistical framework to extract evolutionary and epidemiological information from pathogen genomes. By harnessing such information, epidemiologists aim to shed light on the spatio-temporal patterns of spread and to test hypotheses about the underlying interaction of evolutionary and ecological dynamics in pathogen populations. Although the field has witnessed a rich development of statistical inference tools with increasing levels of sophistication, these tools initially focused on sequences as their sole primary data source. Integrating various sources of information, however, promises to deliver more precise insights in infectious diseases and to increase opportunities for statistical hypothesis testing. Here, we review how the emerging concept of data integration is stimulating new advances in Bayesian evolutionary inference methodology which formalize a marriage of statistical thinking and evolutionary biology. These approaches include connecting sequence to trait evolution, such as for host, phenotypic and geographic sampling information, but also the incorporation of covariates of evolutionary and epidemic processes in the reconstruction procedures. We highlight how a full Bayesian approach to covariate modeling and testing can generate further insights into sequence evolution, trait evolution, and population dynamics in pathogen populations. Specific examples demonstrate how such approaches can be used to test the impact of host on rabies and HIV evolutionary rates, to identify the drivers of influenza dispersal as well as the determinants of rabies cross-species transmissions, and to quantify the evolutionary dynamics of influenza antigenicity. Finally, we briefly discuss how data integration is now also permeating through the inference of transmission dynamics, leading to novel insights into tree-generative processes and detailed reconstructions of transmission trees. [Bayesian inference; birth–death models; coalescent models; continuous trait evolution; covariates; data integration; discrete trait evolution; pathogen phylodynamics. PMID:28173504
Sparsity-constrained PET image reconstruction with learned dictionaries
NASA Astrophysics Data System (ADS)
Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie
2016-09-01
PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging.
MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods.
Schmidt, Johannes F M; Santelli, Claudio; Kozerke, Sebastian
2016-01-01
An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods.
Feeling like me again: a grounded theory of the role of breast reconstruction surgery in self-image.
McKean, L N; Newman, E F; Adair, P
2013-07-01
The present study aimed to develop a theoretical understanding of the role of breast reconstruction in women's self-image. Semi-structured interviews were conducted with 10 women from breast cancer support groups who had undergone breast reconstruction surgery. A grounded theory methodology was used to explore their experiences. The study generated a model of 'breast cancer, breast reconstruction and self-image', with a core category entitled 'feeling like me again' and two principal categories of 'normal appearance' and 'normal life'. A further two main categories, 'moving on' and 'image of sick person' were generated. The results indicated a role of breast reconstruction in several aspects of self-image including the restoration of pre-surgery persona, which further promoted adjustment. © 2013 John Wiley & Sons Ltd.
Modifications in SIFT-based 3D reconstruction from image sequence
NASA Astrophysics Data System (ADS)
Wei, Zhenzhong; Ding, Boshen; Wang, Wei
2014-11-01
In this paper, we aim to reconstruct 3D points of the scene from related images. Scale Invariant Feature Transform( SIFT) as a feature extraction and matching algorithm has been proposed and improved for years and has been widely used in image alignment and stitching, image recognition and 3D reconstruction. Because of the robustness and reliability of the SIFT's feature extracting and matching algorithm, we use it to find correspondences between images. Hence, we describe a SIFT-based method to reconstruct 3D sparse points from ordered images. In the process of matching, we make a modification in the process of finding the correct correspondences, and obtain a satisfying matching result. By rejecting the "questioned" points before initial matching could make the final matching more reliable. Given SIFT's attribute of being invariant to the image scale, rotation, and variable changes in environment, we propose a way to delete the multiple reconstructed points occurred in sequential reconstruction procedure, which improves the accuracy of the reconstruction. By removing the duplicated points, we avoid the possible collapsed situation caused by the inexactly initialization or the error accumulation. The limitation of some cases that all reprojected points are visible at all times also does not exist in our situation. "The small precision" could make a big change when the number of images increases. The paper shows the contrast between the modified algorithm and not. Moreover, we present an approach to evaluate the reconstruction by comparing the reconstructed angle and length ratio with actual value by using a calibration target in the scene. The proposed evaluation method is easy to be carried out and with a great applicable value. Even without the Internet image datasets, we could evaluate our own results. In this paper, the whole algorithm has been tested on several image sequences both on the internet and in our shots.
Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling.
Zhao, Bo; Setsompop, Kawin; Adalsteinsson, Elfar; Gagoski, Borjan; Ye, Huihui; Ma, Dan; Jiang, Yun; Ellen Grant, P; Griswold, Mark A; Wald, Lawrence L
2018-02-01
This article introduces a constrained imaging method based on low-rank and subspace modeling to improve the accuracy and speed of MR fingerprinting (MRF). A new model-based imaging method is developed for MRF to reconstruct high-quality time-series images and accurate tissue parameter maps (e.g., T 1 , T 2 , and spin density maps). Specifically, the proposed method exploits low-rank approximations of MRF time-series images, and further enforces temporal subspace constraints to capture magnetization dynamics. This allows the time-series image reconstruction problem to be formulated as a simple linear least-squares problem, which enables efficient computation. After image reconstruction, tissue parameter maps are estimated via dictionary-based pattern matching, as in the conventional approach. The effectiveness of the proposed method was evaluated with in vivo experiments. Compared with the conventional MRF reconstruction, the proposed method reconstructs time-series images with significantly reduced aliasing artifacts and noise contamination. Although the conventional approach exhibits some robustness to these corruptions, the improved time-series image reconstruction in turn provides more accurate tissue parameter maps. The improvement is pronounced especially when the acquisition time becomes short. The proposed method significantly improves the accuracy of MRF, and also reduces data acquisition time. Magn Reson Med 79:933-942, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Yasaka, Koichiro; Katsura, Masaki; Akahane, Masaaki; Sato, Jiro; Matsuda, Izuru; Ohtomo, Kuni
2013-12-01
To evaluate dose reduction and image quality of abdominopelvic computed tomography (CT) reconstructed with model-based iterative reconstruction (MBIR) compared to adaptive statistical iterative reconstruction (ASIR). In this prospective study, 85 patients underwent referential-, low-, and ultralow-dose unenhanced abdominopelvic CT. Images were reconstructed with ASIR for low-dose (L-ASIR) and ultralow-dose CT (UL-ASIR), and with MBIR for ultralow-dose CT (UL-MBIR). Image noise was measured in the abdominal aorta and iliopsoas muscle. Subjective image analyses and a lesion detection study (adrenal nodules) were conducted by two blinded radiologists. A reference standard was established by a consensus panel of two different radiologists using referential-dose CT reconstructed with filtered back projection. Compared to low-dose CT, there was a 63% decrease in dose-length product with ultralow-dose CT. UL-MBIR had significantly lower image noise than L-ASIR and UL-ASIR (all p<0.01). UL-MBIR was significantly better for subjective image noise and streak artifacts than L-ASIR and UL-ASIR (all p<0.01). There were no significant differences between UL-MBIR and L-ASIR in diagnostic acceptability (p>0.65), or diagnostic performance for adrenal nodules (p>0.87). MBIR significantly improves image noise and streak artifacts compared to ASIR, and can achieve radiation dose reduction without severely compromising image quality.
NASA Astrophysics Data System (ADS)
Je, Uikyu; Cho, Hyosung; Lee, Minsik; Oh, Jieun; Park, Yeonok; Hong, Daeki; Park, Cheulkyu; Cho, Heemoon; Choi, Sungil; Koo, Yangseo
2014-06-01
Recently, reducing radiation doses has become an issue of critical importance in the broader radiological community. As a possible technical approach, especially, in dental cone-beam computed tomography (CBCT), reconstruction from limited-angle view data (< 360°) would enable fast scanning with reduced doses to the patient. In this study, we investigated and implemented an efficient reconstruction algorithm based on compressed-sensing (CS) theory for the scan geometry and performed systematic simulation works to investigate the image characteristics. We also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in incomplete data problems. We successfully reconstructed CBCT images with incomplete projections acquired at selected scan angles of 120, 150, 180, and 200° with a fixed angle step of 1.2° and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from limited-angle view data show that the algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality.
NASA Astrophysics Data System (ADS)
Van de Casteele, Elke; Parizel, Paul; Sijbers, Jan
2012-03-01
Adaptive statistical iterative reconstruction (ASiR) is a new reconstruction algorithm used in the field of medical X-ray imaging. This new reconstruction method combines the idealized system representation, as we know it from the standard Filtered Back Projection (FBP) algorithm, and the strength of iterative reconstruction by including a noise model in the reconstruction scheme. It studies how noise propagates through the reconstruction steps, feeds this model back into the loop and iteratively reduces noise in the reconstructed image without affecting spatial resolution. In this paper the effect of ASiR on the contrast to noise ratio is studied using the low contrast module of the Catphan phantom. The experiments were done on a GE LightSpeed VCT system at different voltages and currents. The results show reduced noise and increased contrast for the ASiR reconstructions compared to the standard FBP method. For the same contrast to noise ratio the images from ASiR can be obtained using 60% less current, leading to a reduction in dose of the same amount.
A survey of GPU-based acceleration techniques in MRI reconstructions
Wang, Haifeng; Peng, Hanchuan; Chang, Yuchou
2018-01-01
Image reconstruction in magnetic resonance imaging (MRI) clinical applications has become increasingly more complicated. However, diagnostic and treatment require very fast computational procedure. Modern competitive platforms of graphics processing unit (GPU) have been used to make high-performance parallel computations available, and attractive to common consumers for computing massively parallel reconstruction problems at commodity price. GPUs have also become more and more important for reconstruction computations, especially when deep learning starts to be applied into MRI reconstruction. The motivation of this survey is to review the image reconstruction schemes of GPU computing for MRI applications and provide a summary reference for researchers in MRI community. PMID:29675361
A survey of GPU-based acceleration techniques in MRI reconstructions.
Wang, Haifeng; Peng, Hanchuan; Chang, Yuchou; Liang, Dong
2018-03-01
Image reconstruction in magnetic resonance imaging (MRI) clinical applications has become increasingly more complicated. However, diagnostic and treatment require very fast computational procedure. Modern competitive platforms of graphics processing unit (GPU) have been used to make high-performance parallel computations available, and attractive to common consumers for computing massively parallel reconstruction problems at commodity price. GPUs have also become more and more important for reconstruction computations, especially when deep learning starts to be applied into MRI reconstruction. The motivation of this survey is to review the image reconstruction schemes of GPU computing for MRI applications and provide a summary reference for researchers in MRI community.
Olafsson, Valur T; Noll, Douglas C; Fessler, Jeffrey A
2018-02-01
Penalized least-squares iterative image reconstruction algorithms used for spatial resolution-limited imaging, such as functional magnetic resonance imaging (fMRI), commonly use a quadratic roughness penalty to regularize the reconstructed images. When used for complex-valued images, the conventional roughness penalty regularizes the real and imaginary parts equally. However, these imaging methods sometimes benefit from separate penalties for each part. The spatial smoothness from the roughness penalty on the reconstructed image is dictated by the regularization parameter(s). One method to set the parameter to a desired smoothness level is to evaluate the full width at half maximum of the reconstruction method's local impulse response. Previous work has shown that when using the conventional quadratic roughness penalty, one can approximate the local impulse response using an FFT-based calculation. However, that acceleration method cannot be applied directly for separate real and imaginary regularization. This paper proposes a fast and stable calculation for this case that also uses FFT-based calculations to approximate the local impulse responses of the real and imaginary parts. This approach is demonstrated with a quadratic image reconstruction of fMRI data that uses separate roughness penalties for the real and imaginary parts.
Deep learning methods to guide CT image reconstruction and reduce metal artifacts
NASA Astrophysics Data System (ADS)
Gjesteby, Lars; Yang, Qingsong; Xi, Yan; Zhou, Ye; Zhang, Junping; Wang, Ge
2017-03-01
The rapidly-rising field of machine learning, including deep learning, has inspired applications across many disciplines. In medical imaging, deep learning has been primarily used for image processing and analysis. In this paper, we integrate a convolutional neural network (CNN) into the computed tomography (CT) image reconstruction process. Our first task is to monitor the quality of CT images during iterative reconstruction and decide when to stop the process according to an intelligent numerical observer instead of using a traditional stopping rule, such as a fixed error threshold or a maximum number of iterations. After training on ground truth images, the CNN was successful in guiding an iterative reconstruction process to yield high-quality images. Our second task is to improve a sinogram to correct for artifacts caused by metal objects. A large number of interpolation and normalization-based schemes were introduced for metal artifact reduction (MAR) over the past four decades. The NMAR algorithm is considered a state-of-the-art method, although residual errors often remain in the reconstructed images, especially in cases of multiple metal objects. Here we merge NMAR with deep learning in the projection domain to achieve additional correction in critical image regions. Our results indicate that deep learning can be a viable tool to address CT reconstruction challenges.
Efficient content-based low-altitude images correlated network and strips reconstruction
NASA Astrophysics Data System (ADS)
He, Haiqing; You, Qi; Chen, Xiaoyong
2017-01-01
The manual intervention method is widely used to reconstruct strips for further aerial triangulation in low-altitude photogrammetry. Clearly the method for fully automatic photogrammetric data processing is not an expected way. In this paper, we explore a content-based approach without manual intervention or external information for strips reconstruction. Feature descriptors in the local spatial patterns are extracted by SIFT to construct vocabulary tree, in which these features are encoded in terms of TF-IDF numerical statistical algorithm to generate new representation for each low-altitude image. Then images correlated network is reconstructed by similarity measure, image matching and geometric graph theory. Finally, strips are reconstructed automatically by tracing straight lines and growing adjacent images gradually. Experimental results show that the proposed approach is highly effective in automatically rearranging strips of lowaltitude images and can provide rough relative orientation for further aerial triangulation.
NASA Astrophysics Data System (ADS)
Funamizu, Hideki; Onodera, Yusei; Aizu, Yoshihisa
2018-05-01
In this study, we report color quality improvement of reconstructed images in color digital holography using the speckle method and the spectral estimation. In this technique, an object is illuminated by a speckle field and then an object wave is produced, while a plane wave is used as a reference wave. For three wavelengths, the interference patterns of two coherent waves are recorded as digital holograms on an image sensor. Speckle fields are changed by moving a ground glass plate in an in-plane direction, and a number of holograms are acquired to average the reconstructed images. After the averaging process of images reconstructed from multiple holograms, we use the Wiener estimation method for obtaining spectral transmittance curves in reconstructed images. The color reproducibility in this method is demonstrated and evaluated using a Macbeth color chart film and staining cells of onion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, S; Lo, P; Hoffman, J
Purpose: To evaluate the robustness of CAD or Quantitative Imaging methods, they should be tested on a variety of cases and under a variety of image acquisition and reconstruction conditions that represent the heterogeneity encountered in clinical practice. The purpose of this work was to develop a fully-automated pipeline for generating CT images that represent a wide range of dose and reconstruction conditions. Methods: The pipeline consists of three main modules: reduced-dose simulation, image reconstruction, and quantitative analysis. The first two modules of the pipeline can be operated in a completely automated fashion, using configuration files and running the modulesmore » in a batch queue. The input to the pipeline is raw projection CT data; this data is used to simulate different levels of dose reduction using a previously-published algorithm. Filtered-backprojection reconstructions are then performed using FreeCT-wFBP, a freely-available reconstruction software for helical CT. We also added support for an in-house, model-based iterative reconstruction algorithm using iterative coordinate-descent optimization, which may be run in tandem with the more conventional recon methods. The reduced-dose simulations and image reconstructions are controlled automatically by a single script, and they can be run in parallel on our research cluster. The pipeline was tested on phantom and lung screening datasets from a clinical scanner (Definition AS, Siemens Healthcare). Results: The images generated from our test datasets appeared to represent a realistic range of acquisition and reconstruction conditions that we would expect to find clinically. The time to generate images was approximately 30 minutes per dose/reconstruction combination on a hybrid CPU/GPU architecture. Conclusion: The automated research pipeline promises to be a useful tool for either training or evaluating performance of quantitative imaging software such as classifiers and CAD algorithms across the range of acquisition and reconstruction parameters present in the clinical environment. Funding support: NIH U01 CA181156; Disclosures (McNitt-Gray): Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less
Practical implementation of tetrahedral mesh reconstruction in emission tomography
Boutchko, R.; Sitek, A.; Gullberg, G. T.
2014-01-01
This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio projection datasets. The results demonstrate that the reconstructed images represented as tetrahedral meshes based on point clouds offer image quality comparable to that achievable using a standard voxel grid while allowing substantial reduction in the number of unknown intensities to be reconstructed and reducing the noise. PMID:23588373
Practical implementation of tetrahedral mesh reconstruction in emission tomography
NASA Astrophysics Data System (ADS)
Boutchko, R.; Sitek, A.; Gullberg, G. T.
2013-05-01
This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio projection datasets. The results demonstrate that the reconstructed images represented as tetrahedral meshes based on point clouds offer image quality comparable to that achievable using a standard voxel grid while allowing substantial reduction in the number of unknown intensities to be reconstructed and reducing the noise.
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong; Huang, Zhen
2012-11-01
The image reconstruction is a key step in medical imaging (MI) and its algorithm's performance determinates the quality and resolution of reconstructed image. Although some algorithms have been used, filter back-projection (FBP) algorithm is still the classical and commonly-used algorithm in clinical MI. In FBP algorithm, filtering of original projection data is a key step in order to overcome artifact of the reconstructed image. Since simple using of classical filters, such as Shepp-Logan (SL), Ram-Lak (RL) filter have some drawbacks and limitations in practice, especially for the projection data polluted by non-stationary random noises. So, an improved wavelet denoising combined with parallel-beam FBP algorithm is used to enhance the quality of reconstructed image in this paper. In the experiments, the reconstructed effects were compared between the improved wavelet denoising and others (directly FBP, mean filter combined FBP and median filter combined FBP method). To determine the optimum reconstruction effect, different algorithms, and different wavelet bases combined with three filters were respectively test. Experimental results show the reconstruction effect of improved FBP algorithm is better than that of others. Comparing the results of different algorithms based on two evaluation standards i.e. mean-square error (MSE), peak-to-peak signal-noise ratio (PSNR), it was found that the reconstructed effects of the improved FBP based on db2 and Hanning filter at decomposition scale 2 was best, its MSE value was less and the PSNR value was higher than others. Therefore, this improved FBP algorithm has potential value in the medical imaging.
Joint image and motion reconstruction for PET using a B-spline motion model.
Blume, Moritz; Navab, Nassir; Rafecas, Magdalena
2012-12-21
We present a novel joint image and motion reconstruction method for PET. The method is based on gated data and reconstructs an image together with a motion function. The motion function can be used to transform the reconstructed image to any of the input gates. All available events (from all gates) are used in the reconstruction. The presented method uses a B-spline motion model, together with a novel motion regularization procedure that does not need a regularization parameter (which is usually extremely difficult to adjust). Several image and motion grid levels are used in order to reduce the reconstruction time. In a simulation study, the presented method is compared to a recently proposed joint reconstruction method. While the presented method provides comparable reconstruction quality, it is much easier to use since no regularization parameter has to be chosen. Furthermore, since the B-spline discretization of the motion function depends on fewer parameters than a displacement field, the presented method is considerably faster and consumes less memory than its counterpart. The method is also applied to clinical data, for which a novel purely data-driven gating approach is presented.
PSF reconstruction for Compton-based prompt gamma imaging
NASA Astrophysics Data System (ADS)
Jan, Meei-Ling; Lee, Ming-Wei; Huang, Hsuan-Ming
2018-02-01
Compton-based prompt gamma (PG) imaging has been proposed for in vivo range verification in proton therapy. However, several factors degrade the image quality of PG images, some of which are due to inherent properties of a Compton camera such as spatial resolution and energy resolution. Moreover, Compton-based PG imaging has a spatially variant resolution loss. In this study, we investigate the performance of the list-mode ordered subset expectation maximization algorithm with a shift-variant point spread function (LM-OSEM-SV-PSF) model. We also evaluate how well the PG images reconstructed using an SV-PSF model reproduce the distal falloff of the proton beam. The SV-PSF parameters were estimated from simulation data of point sources at various positions. Simulated PGs were produced in a water phantom irradiated with a proton beam. Compared to the LM-OSEM algorithm, the LM-OSEM-SV-PSF algorithm improved the quality of the reconstructed PG images and the estimation of PG falloff positions. In addition, the 4.44 and 5.25 MeV PG emissions can be accurately reconstructed using the LM-OSEM-SV-PSF algorithm. However, for the 2.31 and 6.13 MeV PG emissions, the LM-OSEM-SV-PSF reconstruction provides limited improvement. We also found that the LM-OSEM algorithm followed by a shift-variant Richardson-Lucy deconvolution could reconstruct images with quality visually similar to the LM-OSEM-SV-PSF-reconstructed images, while requiring shorter computation time.
Jini service to reconstruct tomographic data
NASA Astrophysics Data System (ADS)
Knoll, Peter; Mirzaei, S.; Koriska, K.; Koehn, H.
2002-06-01
A number of imaging systems rely on the reconstruction of a 3- dimensional model from its projections through the process of computed tomography (CT). In medical imaging, for example magnetic resonance imaging (MRI), positron emission tomography (PET), and Single Computer Tomography (SPECT) acquire two-dimensional projections of a three dimensional projections of a three dimensional object. In order to calculate the 3-dimensional representation of the object, i.e. its voxel distribution, several reconstruction algorithms have been developed. Currently, mainly two reconstruct use: the filtered back projection(FBP) and iterative methods. Although the quality of iterative reconstructed SPECT slices is better than that of FBP slices, such iterative algorithms are rarely used for clinical routine studies because of their low availability and increased reconstruction time. We used Jini and a self-developed iterative reconstructions algorithm to design and implement a Jini reconstruction service. With this service, the physician selects the patient study from a database and a Jini client automatically discovers the registered Jini reconstruction services in the department's Intranet. After downloading the proxy object the this Jini service, the SPECT acquisition data are reconstructed. The resulting transaxial slices are visualized using a Jini slice viewer, which can be used for various imaging modalities.
Michalski, Andrew S; Edwards, W Brent; Boyd, Steven K
2017-10-17
Quantitative computed tomography has been posed as an alternative imaging modality to investigate osteoporosis. We examined the influence of computed tomography convolution back-projection reconstruction kernels on the analysis of bone quantity and estimated mechanical properties in the proximal femur. Eighteen computed tomography scans of the proximal femur were reconstructed using both a standard smoothing reconstruction kernel and a bone-sharpening reconstruction kernel. Following phantom-based density calibration, we calculated typical bone quantity outcomes of integral volumetric bone mineral density, bone volume, and bone mineral content. Additionally, we performed finite element analysis in a standard sideways fall on the hip loading configuration. Significant differences for all outcome measures, except integral bone volume, were observed between the 2 reconstruction kernels. Volumetric bone mineral density measured using images reconstructed by the standard kernel was significantly lower (6.7%, p < 0.001) when compared with images reconstructed using the bone-sharpening kernel. Furthermore, the whole-bone stiffness and the failure load measured in images reconstructed by the standard kernel were significantly lower (16.5%, p < 0.001, and 18.2%, p < 0.001, respectively) when compared with the image reconstructed by the bone-sharpening kernel. These data suggest that for future quantitative computed tomography studies, a standardized reconstruction kernel will maximize reproducibility, independent of the use of a quantitative calibration phantom. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
A modified sparse reconstruction method for three-dimensional synthetic aperture radar image
NASA Astrophysics Data System (ADS)
Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin
2018-03-01
There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.
Validation of luminescent source reconstruction using spectrally resolved bioluminescence images
NASA Astrophysics Data System (ADS)
Virostko, John M.; Powers, Alvin C.; Jansen, E. D.
2008-02-01
This study examines the accuracy of the Living Image® Software 3D Analysis Package (Xenogen, Alameda, CA) in reconstruction of light source depth and intensity. Constant intensity light sources were placed in an optically homogeneous medium (chicken breast). Spectrally filtered images were taken at 560, 580, 600, 620, 640, and 660 nanometers. The Living Image® Software 3D Analysis Package was employed to reconstruct source depth and intensity using these spectrally filtered images. For sources shallower than the mean free path of light there was proportionally higher inaccuracy in reconstruction. For sources deeper than the mean free path, the average error in depth and intensity reconstruction was less than 4% and 12%, respectively. The ability to distinguish multiple sources decreased with increasing source depth and typically required a spatial separation of twice the depth. The constant intensity light sources were also implanted in mice to examine the effect of optical inhomogeneity. The reconstruction accuracy suffered in inhomogeneous tissue with accuracy influenced by the choice of optical properties used in reconstruction.
High-resolution structure of viruses from random diffraction snapshots
Hosseinizadeh, A.; Schwander, P.; Dashti, A.; Fung, R.; D'Souza, R. M.; Ourmazd, A.
2014-01-01
The advent of the X-ray free-electron laser (XFEL) has made it possible to record diffraction snapshots of biological entities injected into the X-ray beam before the onset of radiation damage. Algorithmic means must then be used to determine the snapshot orientations and thence the three-dimensional structure of the object. Existing Bayesian approaches are limited in reconstruction resolution typically to 1/10 of the object diameter, with the computational expense increasing as the eighth power of the ratio of diameter to resolution. We present an approach capable of exploiting object symmetries to recover three-dimensional structure to high resolution, and thus reconstruct the structure of the satellite tobacco necrosis virus to atomic level. Our approach offers the highest reconstruction resolution for XFEL snapshots to date and provides a potentially powerful alternative route for analysis of data from crystalline and nano-crystalline objects. PMID:24914154
High-resolution structure of viruses from random diffraction snapshots.
Hosseinizadeh, A; Schwander, P; Dashti, A; Fung, R; D'Souza, R M; Ourmazd, A
2014-07-17
The advent of the X-ray free-electron laser (XFEL) has made it possible to record diffraction snapshots of biological entities injected into the X-ray beam before the onset of radiation damage. Algorithmic means must then be used to determine the snapshot orientations and thence the three-dimensional structure of the object. Existing Bayesian approaches are limited in reconstruction resolution typically to 1/10 of the object diameter, with the computational expense increasing as the eighth power of the ratio of diameter to resolution. We present an approach capable of exploiting object symmetries to recover three-dimensional structure to high resolution, and thus reconstruct the structure of the satellite tobacco necrosis virus to atomic level. Our approach offers the highest reconstruction resolution for XFEL snapshots to date and provides a potentially powerful alternative route for analysis of data from crystalline and nano-crystalline objects.
Liu, Xiayi; Yao, Jiafeng; Zhao, Tong; Obara, Hiromichi; Cui, Yahui; Takei, Masahiro
2018-06-01
Contact impedance has an important effect on micro electrical impedance tomography (EIT) sensors compared to conventional macro sensors. In the present work, a complex contact impedance effect ratio ξ is defined to quantitatively evaluate the effect of the contact impedance on the accuracy of the reconstructed images by micro EIT. Quality of the reconstructed image under various ξ is estimated by the phantom simulation to find the optimum algorithm. The generalized vector sampled pattern matching (GVSPM) method reveals the best image quality and the best tolerance to ξ. Moreover, the images of yeast cells sedimentary distribution in a multilayered microchannel are reconstructed by the GVSPM method under various mean magnitudes of contact impedance effect ratio |ξ|. The result shows that the best image quality that has the smallest voltage error U E = 0.581 is achieved with measurement frequency f = 1 MHz and mean magnitude |ξ| = 26. In addition, the reconstructed images of cells distribution become improper while f < 10 kHz and mean value of |ξ| > 2400.
Mikhaylova, E; Kolstein, M; De Lorenzo, G; Chmeissani, M
2014-07-01
A novel positron emission tomography (PET) scanner design based on a room-temperature pixelated CdTe solid-state detector is being developed within the framework of the Voxel Imaging PET (VIP) Pathfinder project [1]. The simulation results show a great potential of the VIP to produce high-resolution images even in extremely challenging conditions such as the screening of a human head [2]. With unprecedented high channel density (450 channels/cm 3 ) image reconstruction is a challenge. Therefore optimization is needed to find the best algorithm in order to exploit correctly the promising detector potential. The following reconstruction algorithms are evaluated: 2-D Filtered Backprojection (FBP), Ordered Subset Expectation Maximization (OSEM), List-Mode OSEM (LM-OSEM), and the Origin Ensemble (OE) algorithm. The evaluation is based on the comparison of a true image phantom with a set of reconstructed images obtained by each algorithm. This is achieved by calculation of image quality merit parameters such as the bias, the variance and the mean square error (MSE). A systematic optimization of each algorithm is performed by varying the reconstruction parameters, such as the cutoff frequency of the noise filters and the number of iterations. The region of interest (ROI) analysis of the reconstructed phantom is also performed for each algorithm and the results are compared. Additionally, the performance of the image reconstruction methods is compared by calculating the modulation transfer function (MTF). The reconstruction time is also taken into account to choose the optimal algorithm. The analysis is based on GAMOS [3] simulation including the expected CdTe and electronic specifics.
Yang, Guang; Yu, Simiao; Dong, Hao; Slabaugh, Greg; Dragotti, Pier Luigi; Ye, Xujiong; Liu, Fangde; Arridge, Simon; Keegan, Jennifer; Guo, Yike; Firmin, David; Keegan, Jennifer; Slabaugh, Greg; Arridge, Simon; Ye, Xujiong; Guo, Yike; Yu, Simiao; Liu, Fangde; Firmin, David; Dragotti, Pier Luigi; Yang, Guang; Dong, Hao
2018-06-01
Compressed sensing magnetic resonance imaging (CS-MRI) enables fast acquisition, which is highly desirable for numerous clinical applications. This can not only reduce the scanning cost and ease patient burden, but also potentially reduce motion artefacts and the effect of contrast washout, thus yielding better image quality. Different from parallel imaging-based fast MRI, which utilizes multiple coils to simultaneously receive MR signals, CS-MRI breaks the Nyquist-Shannon sampling barrier to reconstruct MRI images with much less required raw data. This paper provides a deep learning-based strategy for reconstruction of CS-MRI, and bridges a substantial gap between conventional non-learning methods working only on data from a single image, and prior knowledge from large training data sets. In particular, a novel conditional Generative Adversarial Networks-based model (DAGAN)-based model is proposed to reconstruct CS-MRI. In our DAGAN architecture, we have designed a refinement learning method to stabilize our U-Net based generator, which provides an end-to-end network to reduce aliasing artefacts. To better preserve texture and edges in the reconstruction, we have coupled the adversarial loss with an innovative content loss. In addition, we incorporate frequency-domain information to enforce similarity in both the image and frequency domains. We have performed comprehensive comparison studies with both conventional CS-MRI reconstruction methods and newly investigated deep learning approaches. Compared with these methods, our DAGAN method provides superior reconstruction with preserved perceptual image details. Furthermore, each image is reconstructed in about 5 ms, which is suitable for real-time processing.
NASA Astrophysics Data System (ADS)
Kadrmas, Dan J.; Frey, Eric C.; Karimi, Seemeen S.; Tsui, Benjamin M. W.
1998-04-01
Accurate scatter compensation in SPECT can be performed by modelling the scatter response function during the reconstruction process. This method is called reconstruction-based scatter compensation (RBSC). It has been shown that RBSC has a number of advantages over other methods of compensating for scatter, but using RBSC for fully 3D compensation has resulted in prohibitively long reconstruction times. In this work we propose two new methods that can be used in conjunction with existing methods to achieve marked reductions in RBSC reconstruction times. The first method, coarse-grid scatter modelling, significantly accelerates the scatter model by exploiting the fact that scatter is dominated by low-frequency information. The second method, intermittent RBSC, further accelerates the reconstruction process by limiting the number of iterations during which scatter is modelled. The fast implementations were evaluated using a Monte Carlo simulated experiment of the 3D MCAT phantom with
tracer, and also using experimentally acquired data with
tracer. Results indicated that these fast methods can reconstruct, with fully 3D compensation, images very similar to those obtained using standard RBSC methods, and in reconstruction times that are an order of magnitude shorter. Using these methods, fully 3D iterative reconstruction with RBSC can be performed well within the realm of clinically realistic times (under 10 minutes for
image reconstruction).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingold, E; Dave, J
2014-06-01
Purpose: The purpose of this study was to compare a new model-based iterative reconstruction with existing reconstruction methods (filtered backprojection and basic iterative reconstruction) using quantitative analysis of standard image quality phantom images. Methods: An ACR accreditation phantom (Gammex 464) and a CATPHAN600 phantom were scanned using 3 routine clinical acquisition protocols (adult axial brain, adult abdomen, and pediatric abdomen) on a Philips iCT system. Each scan was acquired using default conditions and 75%, 50% and 25% dose levels. Images were reconstructed using standard filtered backprojection (FBP), conventional iterative reconstruction (iDose4) and a prototype model-based iterative reconstruction (IMR). Phantom measurementsmore » included CT number accuracy, contrast to noise ratio (CNR), modulation transfer function (MTF), low contrast detectability (LCD), and noise power spectrum (NPS). Results: The choice of reconstruction method had no effect on CT number accuracy, or MTF (p<0.01). The CNR of a 6 HU contrast target was improved by 1–67% with iDose4 relative to FBP, while IMR improved CNR by 145–367% across all protocols and dose levels. Within each scan protocol, the CNR improvement from IMR vs FBP showed a general trend of greater improvement at lower dose levels. NPS magnitude was greatest for FBP and lowest for IMR. The NPS of the IMR reconstruction showed a pronounced decrease with increasing spatial frequency, consistent with the unusual noise texture seen in IMR images. Conclusion: Iterative Model Reconstruction reduces noise and improves contrast-to-noise ratio without sacrificing spatial resolution in CT phantom images. This offers the possibility of radiation dose reduction and improved low contrast detectability compared with filtered backprojection or conventional iterative reconstruction.« less
Time-of-flight PET image reconstruction using origin ensembles.
Wülker, Christian; Sitek, Arkadiusz; Prevrhal, Sven
2015-03-07
The origin ensemble (OE) algorithm is a novel statistical method for minimum-mean-square-error (MMSE) reconstruction of emission tomography data. This method allows one to perform reconstruction entirely in the image domain, i.e. without the use of forward and backprojection operations. We have investigated the OE algorithm in the context of list-mode (LM) time-of-flight (TOF) PET reconstruction. In this paper, we provide a general introduction to MMSE reconstruction, and a statistically rigorous derivation of the OE algorithm. We show how to efficiently incorporate TOF information into the reconstruction process, and how to correct for random coincidences and scattered events. To examine the feasibility of LM-TOF MMSE reconstruction with the OE algorithm, we applied MMSE-OE and standard maximum-likelihood expectation-maximization (ML-EM) reconstruction to LM-TOF phantom data with a count number typically registered in clinical PET examinations. We analyzed the convergence behavior of the OE algorithm, and compared reconstruction time and image quality to that of the EM algorithm. In summary, during the reconstruction process, MMSE-OE contrast recovery (CRV) remained approximately the same, while background variability (BV) gradually decreased with an increasing number of OE iterations. The final MMSE-OE images exhibited lower BV and a slightly lower CRV than the corresponding ML-EM images. The reconstruction time of the OE algorithm was approximately 1.3 times longer. At the same time, the OE algorithm can inherently provide a comprehensive statistical characterization of the acquired data. This characterization can be utilized for further data processing, e.g. in kinetic analysis and image registration, making the OE algorithm a promising approach in a variety of applications.
Time-of-flight PET image reconstruction using origin ensembles
NASA Astrophysics Data System (ADS)
Wülker, Christian; Sitek, Arkadiusz; Prevrhal, Sven
2015-03-01
The origin ensemble (OE) algorithm is a novel statistical method for minimum-mean-square-error (MMSE) reconstruction of emission tomography data. This method allows one to perform reconstruction entirely in the image domain, i.e. without the use of forward and backprojection operations. We have investigated the OE algorithm in the context of list-mode (LM) time-of-flight (TOF) PET reconstruction. In this paper, we provide a general introduction to MMSE reconstruction, and a statistically rigorous derivation of the OE algorithm. We show how to efficiently incorporate TOF information into the reconstruction process, and how to correct for random coincidences and scattered events. To examine the feasibility of LM-TOF MMSE reconstruction with the OE algorithm, we applied MMSE-OE and standard maximum-likelihood expectation-maximization (ML-EM) reconstruction to LM-TOF phantom data with a count number typically registered in clinical PET examinations. We analyzed the convergence behavior of the OE algorithm, and compared reconstruction time and image quality to that of the EM algorithm. In summary, during the reconstruction process, MMSE-OE contrast recovery (CRV) remained approximately the same, while background variability (BV) gradually decreased with an increasing number of OE iterations. The final MMSE-OE images exhibited lower BV and a slightly lower CRV than the corresponding ML-EM images. The reconstruction time of the OE algorithm was approximately 1.3 times longer. At the same time, the OE algorithm can inherently provide a comprehensive statistical characterization of the acquired data. This characterization can be utilized for further data processing, e.g. in kinetic analysis and image registration, making the OE algorithm a promising approach in a variety of applications.
Aurumskjöld, Marie-Louise; Ydström, Kristina; Tingberg, Anders; Söderberg, Marcus
2017-01-01
The number of computed tomography (CT) examinations is increasing and leading to an increase in total patient exposure. It is therefore important to optimize CT scan imaging conditions in order to reduce the radiation dose. The introduction of iterative reconstruction methods has enabled an improvement in image quality and a reduction in radiation dose. To investigate how image quality depends on reconstruction method and to discuss patient dose reduction resulting from the use of hybrid and model-based iterative reconstruction. An image quality phantom (Catphan® 600) and an anthropomorphic torso phantom were examined on a Philips Brilliance iCT. The image quality was evaluated in terms of CT numbers, noise, noise power spectra (NPS), contrast-to-noise ratio (CNR), low-contrast resolution, and spatial resolution for different scan parameters and dose levels. The images were reconstructed using filtered back projection (FBP) and different settings of hybrid (iDose 4 ) and model-based (IMR) iterative reconstruction methods. iDose 4 decreased the noise by 15-45% compared with FBP depending on the level of iDose 4 . The IMR reduced the noise even further, by 60-75% compared to FBP. The results are independent of dose. The NPS showed changes in the noise distribution for different reconstruction methods. The low-contrast resolution and CNR were improved with iDose 4 , and the improvement was even greater with IMR. There is great potential to reduce noise and thereby improve image quality by using hybrid or, in particular, model-based iterative reconstruction methods, or to lower radiation dose and maintain image quality. © The Foundation Acta Radiologica 2016.
NASA Astrophysics Data System (ADS)
Zhang, Hao; Gang, Grace J.; Lee, Junghoon; Wong, John; Stayman, J. Webster
2017-03-01
Purpose: There are many clinical situations where diagnostic CT is used for an initial diagnosis or treatment planning, followed by one or more CBCT scans that are part of an image-guided intervention. Because the high-quality diagnostic CT scan is a rich source of patient-specific anatomical knowledge, this provides an opportunity to incorporate the prior CT image into subsequent CBCT reconstruction for improved image quality. We propose a penalized-likelihood method called reconstruction of difference (RoD), to directly reconstruct differences between the CBCT scan and the CT prior. In this work, we demonstrate the efficacy of RoD with clinical patient datasets. Methods: We introduce a data processing workflow using the RoD framework to reconstruct anatomical changes between the prior CT and current CBCT. This workflow includes processing steps to account for non-anatomical differences between the two scans including 1) scatter correction for CBCT datasets due to increased scatter fractions in CBCT data; 2) histogram matching for attenuation variations between CT and CBCT; and 3) registration for different patient positioning. CBCT projection data and CT planning volumes for two radiotherapy patients - one abdominal study and one head-and-neck study - were investigated. Results: In comparisons between the proposed RoD framework and more traditional FDK and penalized-likelihood reconstructions, we find a significant improvement in image quality when prior CT information is incorporated into the reconstruction. RoD is able to provide additional low-contrast details while correctly incorporating actual physical changes in patient anatomy. Conclusions: The proposed framework provides an opportunity to either improve image quality or relax data fidelity constraints for CBCT imaging when prior CT studies of the same patient are available. Possible clinical targets include CBCT image-guided radiotherapy and CBCT image-guided surgeries.
NASA Astrophysics Data System (ADS)
Hosani, E. Al; Zhang, M.; Abascal, J. F. P. J.; Soleimani, M.
2016-11-01
Electrical capacitance tomography (ECT) is an imaging technology used to reconstruct the permittivity distribution within the sensing region. So far, ECT has been primarily used to image non-conductive media only, since if the conductivity of the imaged object is high, the capacitance measuring circuit will be almost shortened by the conductivity path and a clear image cannot be produced using the standard image reconstruction approaches. This paper tackles the problem of imaging metallic samples using conventional ECT systems by investigating the two main aspects of image reconstruction algorithms, namely the forward problem and the inverse problem. For the forward problem, two different methods to model the region of high conductivity in ECT is presented. On the other hand, for the inverse problem, three different algorithms to reconstruct the high contrast images are examined. The first two methods are the linear single step Tikhonov method and the iterative total variation regularization method, and use two sets of ECT data to reconstruct the image in time difference mode. The third method, namely the level set method, uses absolute ECT measurements and was developed using a metallic forward model. The results indicate that the applications of conventional ECT systems can be extended to metal samples using the suggested algorithms and forward model, especially using a level set algorithm to find the boundary of the metal.
Three-dimensional image display system using stereogram and holographic optical memory techniques
NASA Astrophysics Data System (ADS)
Kim, Cheol S.; Kim, Jung G.; Shin, Chang-Mok; Kim, Soo-Joong
2001-09-01
In this paper, we implemented a three dimensional image display system using stereogram and holographic optical memory techniques which can store many images and reconstruct them automatically. In this system, to store and reconstruct stereo images, incident angle of reference beam must be controlled in real time, so we used BPH (binary phase hologram) and LCD (liquid crystal display) for controlling reference beam. And input images are represented on the LCD without polarizer/analyzer for maintaining uniform beam intensities regardless of the brightness of input images. The input images and BPHs are edited using application software with having the same recording scheduled time interval in storing. The reconstructed stereo images are acquired by capturing the output images with CCD camera at the behind of the analyzer which transforms phase information into brightness information of images. The reference beams are acquired by Fourier transform of BPH which designed with SA (simulated annealing) algorithm, and represented on the LCD with the 0.05 seconds time interval using application software for reconstructing the stereo images. In output plane, we used a LCD shutter that is synchronized to a monitor that displays alternate left and right eye images for depth perception. We demonstrated optical experiment which store and reconstruct four stereo images in BaTiO3 repeatedly using holographic optical memory techniques.
Does breast reconstruction impact the decision of patients to pursue cosmetic surgery?
Hsu, Vivian M; Tahiri, Youssef; Wes, Ari M; Yan, Chen; Selber, Jesse C; Nelson, Jonas A; Kovach, Stephen J; Serletti, Joseph M; Wu, Liza C
2014-12-01
Breast reconstruction is an integral component of breast cancer treatment, often aiding in restoring a patient's sense of femininity. However, many patients choose to have subsequent cosmetic surgery. The purpose of this study is to investigate the reasons that motivate patients to have cosmetic surgery after breast reconstruction. The authors performed a retrospective study examining patients who had breast reconstruction and subsequent cosmetic surgery at the University of Pennsylvania Health System between January 2005 and June 2012. This cohort received a questionnaire assessing the influences and impact of their reconstructive and cosmetic procedures. A total of 1,214 patients had breast reconstruction, with 113 patients (9.3%) undergoing cosmetic surgery after reconstruction. Of 42 survey respondents, 35 had autologous breast reconstruction (83.3%). Fifty-two cosmetic procedures were performed in survey respondents, including liposuction (26.9%) and facelift (15.4%). The most common reason for pursuing cosmetic surgery was the desire to improve self-image (n = 26, 61.9%), with 29 (69.0%) patients feeling more self-conscious of appearance after reconstruction. Body image satisfaction was significantly higher after cosmetic surgery (P = 0.0081). Interestingly, a multivariate analysis revealed that patients who experienced an improvement in body image after breast reconstruction were more likely to experience a further improvement after a cosmetic procedure (P = 0.031, OR = 17.83). Patients who were interested in cosmetic surgery prior to reconstruction were also more likely to experience an improvement in body image after cosmetic surgery (P = 0.012, OR = 22.63). Cosmetic surgery may improve body image satisfaction of breast reconstruction patients and help to further meet their expectations.
Ryu, Young Jin; Choi, Young Hun; Cheon, Jung-Eun; Ha, Seongmin; Kim, Woo Sun; Kim, In-One
2016-03-01
CT of pediatric phantoms can provide useful guidance to the optimization of knowledge-based iterative reconstruction CT. To compare radiation dose and image quality of CT images obtained at different radiation doses reconstructed with knowledge-based iterative reconstruction, hybrid iterative reconstruction and filtered back-projection. We scanned a 5-year anthropomorphic phantom at seven levels of radiation. We then reconstructed CT data with knowledge-based iterative reconstruction (iterative model reconstruction [IMR] levels 1, 2 and 3; Philips Healthcare, Andover, MA), hybrid iterative reconstruction (iDose(4), levels 3 and 7; Philips Healthcare, Andover, MA) and filtered back-projection. The noise, signal-to-noise ratio and contrast-to-noise ratio were calculated. We evaluated low-contrast resolutions and detectability by low-contrast targets and subjective and objective spatial resolutions by the line pairs and wire. With radiation at 100 peak kVp and 100 mAs (3.64 mSv), the relative doses ranged from 5% (0.19 mSv) to 150% (5.46 mSv). Lower noise and higher signal-to-noise, contrast-to-noise and objective spatial resolution were generally achieved in ascending order of filtered back-projection, iDose(4) levels 3 and 7, and IMR levels 1, 2 and 3, at all radiation dose levels. Compared with filtered back-projection at 100% dose, similar noise levels were obtained on IMR level 2 images at 24% dose and iDose(4) level 3 images at 50% dose, respectively. Regarding low-contrast resolution, low-contrast detectability and objective spatial resolution, IMR level 2 images at 24% dose showed comparable image quality with filtered back-projection at 100% dose. Subjective spatial resolution was not greatly affected by reconstruction algorithm. Reduced-dose IMR obtained at 0.92 mSv (24%) showed similar image quality to routine-dose filtered back-projection obtained at 3.64 mSv (100%), and half-dose iDose(4) obtained at 1.81 mSv.
Huang, Lei; Goldsmith, Jeff; Reiss, Philip T.; Reich, Daniel S.; Crainiceanu, Ciprian M.
2013-01-01
Diffusion tensor imaging (DTI) measures water diffusion within white matter, allowing for in vivo quantification of brain pathways. These pathways often subserve specific functions, and impairment of those functions is often associated with imaging abnormalities. As a method for predicting clinical disability from DTI images, we propose a hierarchical Bayesian “scalar-on-image” regression procedure. Our procedure introduces a latent binary map that estimates the locations of predictive voxels and penalizes the magnitude of effect sizes in these voxels, thereby resolving the ill-posed nature of the problem. By inducing a spatial prior structure, the procedure yields a sparse association map that also maintains spatial continuity of predictive regions. The method is demonstrated on a simulation study and on a study of association between fractional anisotropy and cognitive disability in a cross-sectional sample of 135 multiple sclerosis patients. PMID:23792220
A Bayesian Nonparametric Approach to Image Super-Resolution.
Polatkan, Gungor; Zhou, Mingyuan; Carin, Lawrence; Blei, David; Daubechies, Ingrid
2015-02-01
Super-resolution methods form high-resolution images from low-resolution images. In this paper, we develop a new Bayesian nonparametric model for super-resolution. Our method uses a beta-Bernoulli process to learn a set of recurring visual patterns, called dictionary elements, from the data. Because it is nonparametric, the number of elements found is also determined from the data. We test the results on both benchmark and natural images, comparing with several other models from the research literature. We perform large-scale human evaluation experiments to assess the visual quality of the results. In a first implementation, we use Gibbs sampling to approximate the posterior. However, this algorithm is not feasible for large-scale data. To circumvent this, we then develop an online variational Bayes (VB) algorithm. This algorithm finds high quality dictionaries in a fraction of the time needed by the Gibbs sampler.
NASA Astrophysics Data System (ADS)
Garrett, John; Li, Yinsheng; Li, Ke; Chen, Guang-Hong
2017-03-01
Digital breast tomosynthesis (DBT) is a three dimensional (3D) breast imaging modality in which projections are acquired over a limited angular span around the compressed breast and reconstructed into image slices parallel to the detector. DBT has been shown to help alleviate the breast tissue overlapping issues of two dimensional (2D) mammography. Since the overlapping tissues may simulate cancer masses or obscure true cancers, this improvement is critically important for improved breast cancer screening and diagnosis. In this work, a model-based image reconstruction method is presented to show that spatial resolution in DBT volumes can be maintained while dose is reduced using the presented method when compared to that of a state-of-the-art commercial reconstruction technique. Spatial resolution was measured in phantom images and subjectively in a clinical dataset. Noise characteristics were explored in a cadaver study. In both the quantitative and subjective results the image sharpness was maintained and overall image quality was maintained at reduced doses when the model-based iterative reconstruction was used to reconstruct the volumes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohkubo, Masaki, E-mail: mook@clg.niigata-u.ac.jp
Purpose: In lung cancer computed tomography (CT) screening, the performance of a computer-aided detection (CAD) system depends on the selection of the image reconstruction kernel. To reduce this dependence on reconstruction kernels, the authors propose a novel application of an image filtering method previously proposed by their group. Methods: The proposed filtering process uses the ratio of modulation transfer functions (MTFs) of two reconstruction kernels as a filtering function in the spatial-frequency domain. This method is referred to as MTF{sub ratio} filtering. Test image data were obtained from CT screening scans of 67 subjects who each had one nodule. Imagesmore » were reconstructed using two kernels: f{sub STD} (for standard lung imaging) and f{sub SHARP} (for sharp edge-enhancement lung imaging). The MTF{sub ratio} filtering was implemented using the MTFs measured for those kernels and was applied to the reconstructed f{sub SHARP} images to obtain images that were similar to the f{sub STD} images. A mean filter and a median filter were applied (separately) for comparison. All reconstructed and filtered images were processed using their prototype CAD system. Results: The MTF{sub ratio} filtered images showed excellent agreement with the f{sub STD} images. The standard deviation for the difference between these images was very small, ∼6.0 Hounsfield units (HU). However, the mean and median filtered images showed larger differences of ∼48.1 and ∼57.9 HU from the f{sub STD} images, respectively. The free-response receiver operating characteristic (FROC) curve for the f{sub SHARP} images indicated poorer performance compared with the FROC curve for the f{sub STD} images. The FROC curve for the MTF{sub ratio} filtered images was equivalent to the curve for the f{sub STD} images. However, this similarity was not achieved by using the mean filter or median filter. Conclusions: The accuracy of MTF{sub ratio} image filtering was verified and the method was demonstrated to be effective for reducing the kernel dependence of CAD performance.« less
Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Gu, Xuejun
2013-10-15
Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstructionmore » to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion-blurring artifacts are present, leading to a 24.4% relative reconstruction error in the NACT phantom. View aliasing artifacts are present in 4D-CBCT reconstructed by FDK from 20 projections, with a relative error of 32.1%. When total variation minimization is used to reconstruct 4D-CBCT, the relative error is 18.9%. Image quality of 4D-CBCT is substantially improved by using the SMEIR algorithm and relative error is reduced to 7.6%. The maximum error (MaxE) of tumor motion determined from the DVF obtained by demons registration on a FDK-reconstructed 4D-CBCT is 3.0, 2.3, and 7.1 mm along left–right (L-R), anterior–posterior (A-P), and superior–inferior (S-I) directions, respectively. From the DVF obtained by demons registration on 4D-CBCT reconstructed by total variation minimization, the MaxE of tumor motion is reduced to 1.5, 0.5, and 5.5 mm along L-R, A-P, and S-I directions. From the DVF estimated by SMEIR algorithm, the MaxE of tumor motion is further reduced to 0.8, 0.4, and 1.5 mm along L-R, A-P, and S-I directions, respectively.Conclusions: The proposed SMEIR algorithm is able to estimate a motion model and reconstruct motion-compensated 4D-CBCT. The SMEIR algorithm improves image reconstruction accuracy of 4D-CBCT and tumor motion trajectory estimation accuracy as compared to conventional sequential 4D-CBCT reconstruction and motion estimation.« less
Nonlinear PET parametric image reconstruction with MRI information using kernel method
NASA Astrophysics Data System (ADS)
Gong, Kuang; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi
2017-03-01
Positron Emission Tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neurology. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information. Previously we have used kernel learning to embed MR information in static PET reconstruction and direct Patlak reconstruction. Here we extend this method to direct reconstruction of nonlinear parameters in a compartment model by using the alternating direction of multiplier method (ADMM) algorithm. Simulation studies show that the proposed method can produce superior parametric images compared with existing methods.
NASA Technical Reports Server (NTRS)
Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome
2016-01-01
In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.
BPF-type region-of-interest reconstruction for parallel translational computed tomography.
Wu, Weiwen; Yu, Hengyong; Wang, Shaoyu; Liu, Fenglin
2017-01-01
The objective of this study is to present and test a new ultra-low-cost linear scan based tomography architecture. Similar to linear tomosynthesis, the source and detector are translated in opposite directions and the data acquisition system targets on a region-of-interest (ROI) to acquire data for image reconstruction. This kind of tomographic architecture was named parallel translational computed tomography (PTCT). In previous studies, filtered backprojection (FBP)-type algorithms were developed to reconstruct images from PTCT. However, the reconstructed ROI images from truncated projections have severe truncation artefact. In order to overcome this limitation, we in this study proposed two backprojection filtering (BPF)-type algorithms named MP-BPF and MZ-BPF to reconstruct ROI images from truncated PTCT data. A weight function is constructed to deal with data redundancy for multi-linear translations modes. Extensive numerical simulations are performed to evaluate the proposed MP-BPF and MZ-BPF algorithms for PTCT in fan-beam geometry. Qualitative and quantitative results demonstrate that the proposed BPF-type algorithms cannot only more accurately reconstruct ROI images from truncated projections but also generate high-quality images for the entire image support in some circumstances.
Influence of Iterative Reconstruction Algorithms on PET Image Resolution
NASA Astrophysics Data System (ADS)
Karpetas, G. E.; Michail, C. M.; Fountos, G. P.; Valais, I. G.; Nikolopoulos, D.; Kandarakis, I. S.; Panayiotakis, G. S.
2015-09-01
The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction. The simulated PET scanner was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the modulation transfer function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL, the ordered subsets separable paraboloidal surrogate (OSSPS), the median root prior (MRP) and OSMAPOSL with quadratic prior, algorithms. OSMAPOSL reconstruction was assessed by using fixed subsets and various iterations, as well as by using various beta (hyper) parameter values. MTF values were found to increase with increasing iterations. MTF also improves by using lower beta values. The simulated PET evaluation method, based on the TLC plane source, can be useful in the resolution assessment of PET scanners.
NASA Astrophysics Data System (ADS)
Chen, Buxin; Zhang, Zheng; Sidky, Emil Y.; Xia, Dan; Pan, Xiaochuan
2017-11-01
Optimization-based algorithms for image reconstruction in multispectral (or photon-counting) computed tomography (MCT) remains a topic of active research. The challenge of optimization-based image reconstruction in MCT stems from the inherently non-linear data model that can lead to a non-convex optimization program for which no mathematically exact solver seems to exist for achieving globally optimal solutions. In this work, based upon a non-linear data model, we design a non-convex optimization program, derive its first-order-optimality conditions, and propose an algorithm to solve the program for image reconstruction in MCT. In addition to consideration of image reconstruction for the standard scan configuration, the emphasis is on investigating the algorithm’s potential for enabling non-standard scan configurations with no or minimum hardware modification to existing CT systems, which has potential practical implications for lowered hardware cost, enhanced scanning flexibility, and reduced imaging dose/time in MCT. Numerical studies are carried out for verification of the algorithm and its implementation, and for a preliminary demonstration and characterization of the algorithm in reconstructing images and in enabling non-standard configurations with varying scanning angular range and/or x-ray illumination coverage in MCT.
Imaging reconstruction for infrared interferometry: first images of YSOs environment
NASA Astrophysics Data System (ADS)
Renard, S.; Malbet, F.; Thiébaut, E.; Berger, J.-P.
2008-07-01
The study of protoplanetary disks, where the planets are believed to form, will certainly allow the formation of our Solar System to be understood. To conduct observations of these objects at the milli-arcsecond scale, infrared interferometry provides the right performances for T Tauri, FU Ori or Herbig Ae/Be stars. However, the only information obtained so far are scarce visibility measurements which are directly tested with models. With the outcome of recent interferometers, one can foresee obtaining images reconstructed independently of the models. In fact, several interferometers including IOTA and AMBER on the VLTI already provide the possibility to recombine three telescopes at once and thus to obtain the data necessary to reconstruct images. In this paper, we describe the use of MIRA, an image reconstruction algorithm developed for optical interferometry data (squared visibilities and closure phases) by E. Thiébaut. We foresee also to use the spectral information given by AMBER data to constrain even better the reconstructed images. We describe the use of MIRA to reconstruct images of young stellar objects out of actual data, in particular the multiple system GW Orionis (IOTA, 2004), and discuss the encountered difficulties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, H; Cho, S; Cheong, K
Purpose: To reconstruct patient images at the time of radiation delivery using measured transit images of treatment beams through patient and calculated transit images through planning CT images. Methods: We hypothesize that the ratio of the measured transit images to the calculated images may provide changed amounts of the patient image between times of planning CT and treatment. To test, we have devised lung phantoms with a tumor object (3-cm diameter) placed at iso-center (simulating planning CT) and off-center by 1 cm (simulating treatment). CT images of the two phantoms were acquired; the image of the off-centered phantom, unavailable clinically,more » represents the reference on-treatment image in the image quality of planning CT. Cine-transit images through the two phantoms were also acquired in EPID from a non-modulated 6 MV beam when the gantry was rotated 360 degrees; the image through the centered phantom simulates calculated image. While the current study is a feasibility study, in reality our computational EPID model can be applicable in providing accurate transit image from MC simulation. Changed MV HU values were reconstructed from the ratio between two EPID projection data, converted to KV HU values, and added to the planning CT, thereby reconstructing the on-treatment image of the patient limited to the irradiated region of the phantom. Results: The reconstructed image was compared with the reference image. Except for local HU differences>200 as a maximum, excellent agreement was found. The average difference across the entire image was 16.2 HU. Conclusion: We have demonstrated the feasibility of a method of reconstructing on-treatment images of a patient using EPID image and planning CT images. Further studies will include resolving the local HU differences and investigation on the dosimetry impact of the reconstructed image.« less
A simultaneous beta and coincidence-gamma imaging system for plant leaves
NASA Astrophysics Data System (ADS)
Ranjbar, Homayoon; Wen, Jie; Mathews, Aswin J.; Komarov, Sergey; Wang, Qiang; Li, Ke; O'Sullivan, Joseph A.; Tai, Yuan-Chuan
2016-05-01
Positron emitting isotopes, such as 11C, 13N, and 18F, can be used to label molecules. The tracers, such as 11CO2, are delivered to plants to study their biological processes, particularly metabolism and photosynthesis, which may contribute to the development of plants that have a higher yield of crops and biomass. Measurements and resulting images from PET scanners are not quantitative in young plant structures or in plant leaves due to poor positron annihilation in thin objects. To address this problem we have designed, assembled, modeled, and tested a nuclear imaging system (simultaneous beta-gamma imager). The imager can simultaneously detect positrons ({β+} ) and coincidence-gamma rays (γ). The imaging system employs two planar detectors; one is a regular gamma detector which has a LYSO crystal array, and the other is a phoswich detector which has an additional BC-404 plastic scintillator for beta detection. A forward model for positrons is proposed along with a joint image reconstruction formulation to utilize the beta and coincidence-gamma measurements for estimating radioactivity distribution in plant leaves. The joint reconstruction algorithm first reconstructs beta and gamma images independently to estimate the thickness component of the beta forward model and afterward jointly estimates the radioactivity distribution in the object. We have validated the physics model and reconstruction framework through a phantom imaging study and imaging a tomato leaf that has absorbed 11CO2. The results demonstrate that the simultaneously acquired beta and coincidence-gamma data, combined with our proposed joint reconstruction algorithm, improved the quantitative accuracy of estimating radioactivity distribution in thin objects such as leaves. We used the structural similarity (SSIM) index for comparing the leaf images from the simultaneous beta-gamma imager with the ground truth image. The jointly reconstructed images yield SSIM indices of 0.69 and 0.63, whereas the separately reconstructed beta alone and gamma alone images had indices of 0.33 and 0.52, respectively.
Enhancing the image resolution in a single-pixel sub-THz imaging system based on compressed sensing
NASA Astrophysics Data System (ADS)
Alkus, Umit; Ermeydan, Esra Sengun; Sahin, Asaf Behzat; Cankaya, Ilyas; Altan, Hakan
2018-04-01
Compressed sensing (CS) techniques allow for faster imaging when combined with scan architectures, which typically suffer from speed. This technique when implemented with a subterahertz (sub-THz) single detector scan imaging system provides images whose resolution is only limited by the pixel size of the pattern used to scan the image plane. To overcome this limitation, the image of the target can be oversampled; however, this results in slower imaging rates especially if this is done in two-dimensional across the image plane. We show that by implementing a one-dimensional (1-D) scan of the image plane, a modified approach to CS theory applied with an appropriate reconstruction algorithm allows for successful reconstruction of the reflected oversampled image of a target placed in standoff configuration from the source. The experiments are done in reflection mode configuration where the operating frequency is 93 GHz and the corresponding wavelength is λ = 3.2 mm. To reconstruct the image with fewer samples, CS theory is applied using masks where the pixel size is 5 mm × 5 mm, and each mask covers an image area of 5 cm × 5 cm, meaning that the basic image is resolved as 10 × 10 pixels. To enhance the resolution, the information between two consecutive pixels is used, and oversampling along 1-D coupled with a modification of the masks in CS theory allowed for oversampled images to be reconstructed rapidly in 20 × 20 and 40 × 40 pixel formats. These are then compared using two different reconstruction algorithms, TVAL3 and ℓ1-MAGIC. The performance of these methods is compared for both simulated signals and real signals. It is found that the modified CS theory approach coupled with the TVAL3 reconstruction process, even when scanning along only 1-D, allows for rapid precise reconstruction of the oversampled target.
A simultaneous beta and coincidence-gamma imaging system for plant leaves.
Ranjbar, Homayoon; Wen, Jie; Mathews, Aswin J; Komarov, Sergey; Wang, Qiang; Li, Ke; O'Sullivan, Joseph A; Tai, Yuan-Chuan
2016-05-07
Positron emitting isotopes, such as (11)C, (13)N, and (18)F, can be used to label molecules. The tracers, such as (11)CO2, are delivered to plants to study their biological processes, particularly metabolism and photosynthesis, which may contribute to the development of plants that have a higher yield of crops and biomass. Measurements and resulting images from PET scanners are not quantitative in young plant structures or in plant leaves due to poor positron annihilation in thin objects. To address this problem we have designed, assembled, modeled, and tested a nuclear imaging system (simultaneous beta-gamma imager). The imager can simultaneously detect positrons ([Formula: see text]) and coincidence-gamma rays (γ). The imaging system employs two planar detectors; one is a regular gamma detector which has a LYSO crystal array, and the other is a phoswich detector which has an additional BC-404 plastic scintillator for beta detection. A forward model for positrons is proposed along with a joint image reconstruction formulation to utilize the beta and coincidence-gamma measurements for estimating radioactivity distribution in plant leaves. The joint reconstruction algorithm first reconstructs beta and gamma images independently to estimate the thickness component of the beta forward model and afterward jointly estimates the radioactivity distribution in the object. We have validated the physics model and reconstruction framework through a phantom imaging study and imaging a tomato leaf that has absorbed (11)CO2. The results demonstrate that the simultaneously acquired beta and coincidence-gamma data, combined with our proposed joint reconstruction algorithm, improved the quantitative accuracy of estimating radioactivity distribution in thin objects such as leaves. We used the structural similarity (SSIM) index for comparing the leaf images from the simultaneous beta-gamma imager with the ground truth image. The jointly reconstructed images yield SSIM indices of 0.69 and 0.63, whereas the separately reconstructed beta alone and gamma alone images had indices of 0.33 and 0.52, respectively.
Ukwatta, Eranga; Arevalo, Hermenegild; Rajchl, Martin; White, James; Pashakhanloo, Farhad; Prakosa, Adityo; Herzka, Daniel A.; McVeigh, Elliot; Lardo, Albert C.; Trayanova, Natalia A.; Vadakkumpadan, Fijoy
2015-01-01
Purpose: Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. Methods: The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitly represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. Results: The accuracy of the LogOdds method in reconstructing 3D infarct geometry, as measured by the Dice similarity coefficient, was 82.10% ± 6.58%, a significantly higher value than those of the alternative reconstruction methods. Among outcomes of electrophysiological simulations with infarct reconstructions generated by various methods, the simulation results corresponding to the LogOdds method showed the smallest deviation from those corresponding to the manual reconstructions, as measured by metrics based on both activation maps and pseudo-ECGs. Conclusions: The authors have developed a novel method for reconstructing 3D infarct geometry from segmented slices of Lo-res clinical 2D LGE-CMR images. This method outperformed alternative approaches in reproducing expert manual 3D reconstructions and in electrophysiological simulations. PMID:26233186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ukwatta, Eranga, E-mail: eukwatt1@jhu.edu; Arevalo, Hermenegild; Pashakhanloo, Farhad
Purpose: Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. Methods: The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitlymore » represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. Results: The accuracy of the LogOdds method in reconstructing 3D infarct geometry, as measured by the Dice similarity coefficient, was 82.10% ± 6.58%, a significantly higher value than those of the alternative reconstruction methods. Among outcomes of electrophysiological simulations with infarct reconstructions generated by various methods, the simulation results corresponding to the LogOdds method showed the smallest deviation from those corresponding to the manual reconstructions, as measured by metrics based on both activation maps and pseudo-ECGs. Conclusions: The authors have developed a novel method for reconstructing 3D infarct geometry from segmented slices of Lo-res clinical 2D LGE-CMR images. This method outperformed alternative approaches in reproducing expert manual 3D reconstructions and in electrophysiological simulations.« less
A 3D Freehand Ultrasound System for Multi-view Reconstructions from Sparse 2D Scanning Planes
2011-01-01
Background A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. Methods We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes. For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Results Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical measures than measures from single view reconstructions. Conclusions Multi-view 3D reconstruction from sparse 2D freehand B-mode images leads to more accurate volume quantification compared to single view systems. The flexibility and low-cost of the proposed system allow for fine control of the image acquisition planes for optimal 3D reconstructions from multiple views. PMID:21251284
A 3D freehand ultrasound system for multi-view reconstructions from sparse 2D scanning planes.
Yu, Honggang; Pattichis, Marios S; Agurto, Carla; Beth Goens, M
2011-01-20
A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes.For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical measures than measures from single view reconstructions. Multi-view 3D reconstruction from sparse 2D freehand B-mode images leads to more accurate volume quantification compared to single view systems. The flexibility and low-cost of the proposed system allow for fine control of the image acquisition planes for optimal 3D reconstructions from multiple views.
Initial evaluation of discrete orthogonal basis reconstruction of ECT images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, E.B.; Donohue, K.D.
1996-12-31
Discrete orthogonal basis restoration (DOBR) is a linear, non-iterative, and robust method for solving inverse problems for systems characterized by shift-variant transfer functions. This simulation study evaluates the feasibility of using DOBR for reconstructing emission computed tomographic (ECT) images. The imaging system model uses typical SPECT parameters and incorporates the effects of attenuation, spatially-variant PSF, and Poisson noise in the projection process. Sample reconstructions and statistical error analyses for a class of digital phantoms compare the DOBR performance for Hartley and Walsh basis functions. Test results confirm that DOBR with either basis set produces images with good statistical properties. Nomore » problems were encountered with reconstruction instability. The flexibility of the DOBR method and its consistent performance warrants further investigation of DOBR as a means of ECT image reconstruction.« less
A wavelet-based Bayesian framework for 3D object segmentation in microscopy
NASA Astrophysics Data System (ADS)
Pan, Kangyu; Corrigan, David; Hillebrand, Jens; Ramaswami, Mani; Kokaram, Anil
2012-03-01
In confocal microscopy, target objects are labeled with fluorescent markers in the living specimen, and usually appear with irregular brightness in the observed images. Also, due to the existence of out-of-focus objects in the image, the segmentation of 3-D objects in the stack of image slices captured at different depth levels of the specimen is still heavily relied on manual analysis. In this paper, a novel Bayesian model is proposed for segmenting 3-D synaptic objects from given image stack. In order to solve the irregular brightness and out-offocus problems, the segmentation model employs a likelihood using the luminance-invariant 'wavelet features' of image objects in the dual-tree complex wavelet domain as well as a likelihood based on the vertical intensity profile of the image stack in 3-D. Furthermore, a smoothness 'frame' prior based on the a priori knowledge of the connections of the synapses is introduced to the model for enhancing the connectivity of the synapses. As a result, our model can successfully segment the in-focus target synaptic object from a 3D image stack with irregular brightness.
MO-DE-207A-11: Sparse-View CT Reconstruction Via a Novel Non-Local Means Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Z; Qi, H; Wu, S
2016-06-15
Purpose: Sparse-view computed tomography (CT) reconstruction is an effective strategy to reduce the radiation dose delivered to patients. Due to its insufficiency of measurements, traditional non-local means (NLM) based reconstruction methods often lead to over-smoothness in image edges. To address this problem, an adaptive NLM reconstruction method based on rotational invariance (RIANLM) is proposed. Methods: The method consists of four steps: 1) Initializing parameters; 2) Algebraic reconstruction technique (ART) reconstruction using raw projection data; 3) Positivity constraint of the image reconstructed by ART; 4) Update reconstructed image by using RIANLM filtering. In RIANLM, a novel similarity metric that is rotationalmore » invariance is proposed and used to calculate the distance between two patches. In this way, any patch with similar structure but different orientation to the reference patch would win a relatively large weight to avoid over-smoothed image. Moreover, the parameter h in RIANLM which controls the decay of the weights is adaptive to avoid over-smoothness, while it in NLM is not adaptive during the whole reconstruction process. The proposed method is named as ART-RIANLM and validated on Shepp-Logan phantom and clinical projection data. Results: In our experiments, the searching neighborhood size is set to 15 by 15 and the similarity window is set to 3 by 3. For the simulated case with a resolution of 256 by 256 Shepp-Logan phantom, the ART-RIANLM produces higher SNR (35.38dB<24.00dB) and lower MAE (0.0006<0.0023) reconstructed image than ART-NLM. The visual inspection demonstrated that the proposed method could suppress artifacts or noises more effectively and preserve image edges better. Similar results were found for clinical data case. Conclusion: A novel ART-RIANLM method for sparse-view CT reconstruction is presented with superior image. Compared to the conventional ART-NLM method, the SNR and MAE from ART-RIANLM increases 47% and decreases 74%, respectively.« less
Brook, Olga R; Gourtsoyianni, Sofia; Brook, Alexander; Mahadevan, Anand; Wilcox, Carol; Raptopoulos, Vassilios
2012-06-01
To evaluate spectral computed tomography (CT) with metal artifacts reduction software (MARS) for reduction of metal artifacts associated with gold fiducial seeds. Thirteen consecutive patients with 37 fiducial seeds implanted for radiation therapy of abdominal lesions were included in this HIPAA-compliant, institutional review board-approved prospective study. Six patients were women (46%) and seven were men (54%). The mean age was 61.1 years (median, 58 years; range, 29-78 years). Spectral imaging was used for arterial phase CT. Images were reconstructed with and without MARS in axial, coronal, and sagittal planes. Two radiologists independently reviewed reconstructions and selected the best image, graded the visibility of the tumor, and assessed the amount of artifacts in all planes. A linear-weighted κ statistic and Wilcoxon signed-rank test were used to assess interobserver variability. Histogram analysis with the Kolmogorov-Smirnov test was used for objective evaluation of artifacts reduction. Fiducial seeds were placed in pancreas (n = 5), liver (n = 7), periportal lymph nodes (n = 1), and gallbladder bed (n = 1). MARS-reconstructed images received a better grade than those with standard reconstruction in 60% and 65% of patients by the first and second radiologist, respectively. Tumor visibility was graded higher with standard versus MARS reconstruction (grade, 3.7 ± 1.0 vs 2.8 ± 1.1; P = .001). Reduction of blooming was noted on MARS-reconstructed images (P = .01). Amount of artifacts, for both any and near field, was significantly smaller on sagittal and coronal MARS-reconstructed images than on standard reconstructions (P < .001 for all comparisons). Far-field artifacts were more prominent on axial MARS-reconstructed images than on standard reconstructions (P < .01). Linear-weighted κ statistic showed moderate to perfect agreement between radiologists. CT number distribution was narrower with MARS than with standard reconstruction in 35 of 37 patients (P < .001). Spectral CT with use of MARS improved tumor visibility in the vicinity of gold fiducial seeds.
Reconstruction of biofilm images: combining local and global structural parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resat, Haluk; Renslow, Ryan S.; Beyenal, Haluk
2014-10-20
Digitized images can be used for quantitative comparison of biofilms grown under different conditions. Using biofilm image reconstruction, it was previously found that biofilms with a completely different look can have nearly identical structural parameters and that the most commonly utilized global structural parameters were not sufficient to uniquely define these biofilms. Here, additional local and global parameters are introduced to show that these parameters considerably increase the reliability of the image reconstruction process. Assessment using human evaluators indicated that the correct identification rate of the reconstructed images increased from 50% to 72% with the introduction of the new parametersmore » into the reconstruction procedure. An expanded set of parameters especially improved the identification of biofilm structures with internal orientational features and of structures in which colony sizes and spatial locations varied. Hence, the newly introduced structural parameter sets helped to better classify the biofilms by incorporating finer local structural details into the reconstruction process.« less
Panoramic cone beam computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang Jenghwa; Zhou Lili; Wang Song
2012-05-15
Purpose: Cone-beam computed tomography (CBCT) is the main imaging tool for image-guided radiotherapy but its functionality is limited by a small imaging volume and restricted image position (imaged at the central instead of the treatment position for peripheral lesions to avoid collisions). In this paper, the authors present the concept of ''panoramic CBCT,'' which can image patients at the treatment position with an imaging volume as large as practically needed. Methods: In this novel panoramic CBCT technique, the target is scanned sequentially from multiple view angles. For each view angle, a half scan (180 deg. + {theta}{sub cone} where {theta}{submore » cone} is the cone angle) is performed with the imaging panel positioned in any location along the beam path. The panoramic projection images of all views for the same gantry angle are then stitched together with the direct image stitching method (i.e., according to the reported imaging position) and full-fan, half-scan CBCT reconstruction is performed using the stitched projection images. To validate this imaging technique, the authors simulated cone-beam projection images of the Mathematical Cardiac Torso (MCAT) thorax phantom for three panoramic views. Gaps, repeated/missing columns, and different exposure levels were introduced between adjacent views to simulate imperfect image stitching due to uncertainties in imaging position or output fluctuation. A modified simultaneous algebraic reconstruction technique (modified SART) was developed to reconstruct CBCT images directly from the stitched projection images. As a gold standard, full-fan, full-scan (360 deg. gantry rotation) CBCT reconstructions were also performed using projection images of one imaging panel large enough to encompass the target. Contrast-to-noise ratio (CNR) and geometric distortion were evaluated to quantify the quality of reconstructed images. Monte Carlo simulations were performed to evaluate the effect of scattering on the image quality and imaging dose for both standard and panoramic CBCT. Results: Truncated images with artifacts were observed for the CBCT reconstruction using projection images of the central view only. When the image stitching was perfect, complete reconstruction was obtained for the panoramic CBCT using the modified SART with the image quality similar to the gold standard (full-scan, full-fan CBCT using one large imaging panel). Imperfect image stitching, on the other hand, lead to (streak, line, or ring) reconstruction artifacts, reduced CNR, and/or distorted geometry. Results from Monte Carlo simulations showed that, for identical imaging quality, the imaging dose was lower for the panoramic CBCT than that acquired with one large imaging panel. For the same imaging dose, the CNR of the three-view panoramic CBCT was 50% higher than that of the regular CBCT using one big panel. Conclusions: The authors have developed a panoramic CBCT technique and demonstrated with simulation data that it can image tumors of any location for patients of any size at the treatment position with comparable or less imaging dose and time. However, the image quality of this CBCT technique is sensitive to the reconstruction artifacts caused by imperfect image stitching. Better algorithms are therefore needed to improve the accuracy of image stitching for panoramic CBCT.« less
MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions
NASA Astrophysics Data System (ADS)
Novosad, Philip; Reader, Andrew J.
2016-06-01
Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [11C]SCH23390 data, showing promising results.
MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions.
Novosad, Philip; Reader, Andrew J
2016-06-21
Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [(18)F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [(11)C]SCH23390 data, showing promising results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakano, M; Haga, A; Hanaoka, S
2016-06-15
Purpose: The purpose of this study is to propose a new concept of four-dimensional (4D) cone-beam CT (CBCT) reconstruction for non-periodic organ motion using the Time-ordered Chain Graph Model (TCGM), and to compare the reconstructed results with the previously proposed methods, the total variation-based compressed sensing (TVCS) and prior-image constrained compressed sensing (PICCS). Methods: CBCT reconstruction method introduced in this study consisted of maximum a posteriori (MAP) iterative reconstruction combined with a regularization term derived from a concept of TCGM, which includes a constraint coming from the images of neighbouring time-phases. The time-ordered image series were concurrently reconstructed in themore » MAP iterative reconstruction framework. Angular range of projections for each time-phase was 90 degrees for TCGM and PICCS, and 200 degrees for TVCS. Two kinds of projection data, an elliptic-cylindrical digital phantom data and two clinical patients’ data, were used for reconstruction. The digital phantom contained an air sphere moving 3 cm along longitudinal axis, and temporal resolution of each method was evaluated by measuring the penumbral width of reconstructed moving air sphere. The clinical feasibility of non-periodic time-ordered 4D CBCT reconstruction was also examined using projection data of prostate cancer patients. Results: The results of reconstructed digital phantom shows that the penumbral widths of TCGM yielded the narrowest result; PICCS and TCGM were 10.6% and 17.4% narrower than that of TVCS, respectively. This suggests that the TCGM has the better temporal resolution than the others. Patients’ CBCT projection data were also reconstructed and all three reconstructed results showed motion of rectal gas and stool. The result of TCGM provided visually clearer and less blurring images. Conclusion: The present study demonstrates that the new concept for 4D CBCT reconstruction, TCGM, combined with MAP iterative reconstruction framework enables time-ordered image reconstruction with narrower time-window.« less
Accelerated Optical Projection Tomography Applied to In Vivo Imaging of Zebrafish
Correia, Teresa; Yin, Jun; Ramel, Marie-Christine; Andrews, Natalie; Katan, Matilda; Bugeon, Laurence; Dallman, Margaret J.; McGinty, James; Frankel, Paul; French, Paul M. W.; Arridge, Simon
2015-01-01
Optical projection tomography (OPT) provides a non-invasive 3-D imaging modality that can be applied to longitudinal studies of live disease models, including in zebrafish. Current limitations include the requirement of a minimum number of angular projections for reconstruction of reasonable OPT images using filtered back projection (FBP), which is typically several hundred, leading to acquisition times of several minutes. It is highly desirable to decrease the number of required angular projections to decrease both the total acquisition time and the light dose to the sample. This is particularly important to enable longitudinal studies, which involve measurements of the same fish at different time points. In this work, we demonstrate that the use of an iterative algorithm to reconstruct sparsely sampled OPT data sets can provide useful 3-D images with 50 or fewer projections, thereby significantly decreasing the minimum acquisition time and light dose while maintaining image quality. A transgenic zebrafish embryo with fluorescent labelling of the vasculature was imaged to acquire densely sampled (800 projections) and under-sampled data sets of transmitted and fluorescence projection images. The under-sampled OPT data sets were reconstructed using an iterative total variation-based image reconstruction algorithm and compared against FBP reconstructions of the densely sampled data sets. To illustrate the potential for quantitative analysis following rapid OPT data acquisition, a Hessian-based method was applied to automatically segment the reconstructed images to select the vasculature network. Results showed that 3-D images of the zebrafish embryo and its vasculature of sufficient visual quality for quantitative analysis can be reconstructed using the iterative algorithm from only 32 projections—achieving up to 28 times improvement in imaging speed and leading to total acquisition times of a few seconds. PMID:26308086
Lauzier, Pascal Theriault; Tang, Jie; Speidel, Michael A; Chen, Guang-Hong
2012-07-01
To achieve high temporal resolution in CT myocardial perfusion imaging (MPI), images are often reconstructed using filtered backprojection (FBP) algorithms from data acquired within a short-scan angular range. However, the variation in the central angle from one time frame to the next in gated short scans has been shown to create detrimental partial scan artifacts when performing quantitative MPI measurements. This study has two main purposes. (1) To demonstrate the existence of a distinct detrimental effect in short-scan FBP, i.e., the introduction of a nonuniform spatial image noise distribution; this nonuniformity can lead to unexpectedly high image noise and streaking artifacts, which may affect CT MPI quantification. (2) To demonstrate that statistical image reconstruction (SIR) algorithms can be a potential solution to address the nonuniform spatial noise distribution problem and can also lead to radiation dose reduction in the context of CT MPI. Projection datasets from a numerically simulated perfusion phantom and an in vivo animal myocardial perfusion CT scan were used in this study. In the numerical phantom, multiple realizations of Poisson noise were added to projection data at each time frame to investigate the spatial distribution of noise. Images from all datasets were reconstructed using both FBP and SIR reconstruction algorithms. To quantify the spatial distribution of noise, the mean and standard deviation were measured in several regions of interest (ROIs) and analyzed across time frames. In the in vivo study, two low-dose scans at tube currents of 25 and 50 mA were reconstructed using FBP and SIR. Quantitative perfusion metrics, namely, the normalized upslope (NUS), myocardial blood volume (MBV), and first moment transit time (FMT), were measured for two ROIs and compared to reference values obtained from a high-dose scan performed at 500 mA. Images reconstructed using FBP showed a highly nonuniform spatial distribution of noise. This spatial nonuniformity led to large fluctuations in the temporal direction. In the numerical phantom study, the level of noise was shown to vary by as much as 87% within a given image, and as much as 110% between different time frames for a ROI far from isocenter. The spatially nonuniform noise pattern was shown to correlate with the source trajectory and the object structure. In contrast, images reconstructed using SIR showed a highly uniform spatial distribution of noise, leading to smaller unexpected noise fluctuations in the temporal direction when a short scan angular range was used. In the numerical phantom study, the noise varied by less than 37% within a given image, and by less than 20% between different time frames. Also, the noise standard deviation in SIR images was on average half of that of FBP images. In the in vivo studies, the deviation observed between quantitative perfusion metrics measured from low-dose scans and high-dose scans was mitigated when SIR was used instead of FBP to reconstruct images. (1) Images reconstructed using FBP suffered from nonuniform spatial noise levels. This nonuniformity is another manifestation of the detrimental effects caused by short-scan reconstruction in CT MPI. (2) Images reconstructed using SIR had a much lower and more uniform noise level and thus can be used as a potential solution to address the FBP nonuniformity. (3) Given the improvement in the accuracy of the perfusion metrics when using SIR, it may be desirable to use a statistical reconstruction framework to perform low-dose dynamic CT MPI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lauzier, Pascal Theriault; Tang Jie; Speidel, Michael A.
Purpose: To achieve high temporal resolution in CT myocardial perfusion imaging (MPI), images are often reconstructed using filtered backprojection (FBP) algorithms from data acquired within a short-scan angular range. However, the variation in the central angle from one time frame to the next in gated short scans has been shown to create detrimental partial scan artifacts when performing quantitative MPI measurements. This study has two main purposes. (1) To demonstrate the existence of a distinct detrimental effect in short-scan FBP, i.e., the introduction of a nonuniform spatial image noise distribution; this nonuniformity can lead to unexpectedly high image noise andmore » streaking artifacts, which may affect CT MPI quantification. (2) To demonstrate that statistical image reconstruction (SIR) algorithms can be a potential solution to address the nonuniform spatial noise distribution problem and can also lead to radiation dose reduction in the context of CT MPI. Methods: Projection datasets from a numerically simulated perfusion phantom and an in vivo animal myocardial perfusion CT scan were used in this study. In the numerical phantom, multiple realizations of Poisson noise were added to projection data at each time frame to investigate the spatial distribution of noise. Images from all datasets were reconstructed using both FBP and SIR reconstruction algorithms. To quantify the spatial distribution of noise, the mean and standard deviation were measured in several regions of interest (ROIs) and analyzed across time frames. In the in vivo study, two low-dose scans at tube currents of 25 and 50 mA were reconstructed using FBP and SIR. Quantitative perfusion metrics, namely, the normalized upslope (NUS), myocardial blood volume (MBV), and first moment transit time (FMT), were measured for two ROIs and compared to reference values obtained from a high-dose scan performed at 500 mA. Results: Images reconstructed using FBP showed a highly nonuniform spatial distribution of noise. This spatial nonuniformity led to large fluctuations in the temporal direction. In the numerical phantom study, the level of noise was shown to vary by as much as 87% within a given image, and as much as 110% between different time frames for a ROI far from isocenter. The spatially nonuniform noise pattern was shown to correlate with the source trajectory and the object structure. In contrast, images reconstructed using SIR showed a highly uniform spatial distribution of noise, leading to smaller unexpected noise fluctuations in the temporal direction when a short scan angular range was used. In the numerical phantom study, the noise varied by less than 37% within a given image, and by less than 20% between different time frames. Also, the noise standard deviation in SIR images was on average half of that of FBP images. In the in vivo studies, the deviation observed between quantitative perfusion metrics measured from low-dose scans and high-dose scans was mitigated when SIR was used instead of FBP to reconstruct images. Conclusions: (1) Images reconstructed using FBP suffered from nonuniform spatial noise levels. This nonuniformity is another manifestation of the detrimental effects caused by short-scan reconstruction in CT MPI. (2) Images reconstructed using SIR had a much lower and more uniform noise level and thus can be used as a potential solution to address the FBP nonuniformity. (3) Given the improvement in the accuracy of the perfusion metrics when using SIR, it may be desirable to use a statistical reconstruction framework to perform low-dose dynamic CT MPI.« less