Bayesian stable isotope mixing models
In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...
Using Bayesian Stable Isotope Mixing Models to Enhance Marine Ecosystem Models
The use of stable isotopes in food web studies has proven to be a valuable tool for ecologists. We investigated the use of Bayesian stable isotope mixing models as constraints for an ecosystem model of a temperate seagrass system on the Atlantic coast of France. δ13C and δ15N i...
We investigated the use of output from Bayesian stable isotope mixing models as constraints for a linear inverse food web model of a temperate intertidal seagrass system in the Marennes-Oléron Bay, France. Linear inverse modeling (LIM) is a technique that estimates a complete net...
ERIC Educational Resources Information Center
Wang, Lijuan; McArdle, John J.
2008-01-01
The main purpose of this research is to evaluate the performance of a Bayesian approach for estimating unknown change points using Monte Carlo simulations. The univariate and bivariate unknown change point mixed models were presented and the basic idea of the Bayesian approach for estimating the models was discussed. The performance of Bayesian…
MixSIAR: A Bayesian stable isotope mixing model for characterizing intrapopulation niche variation
Background/Question/Methods The science of stable isotope mixing models has tended towards the development of modeling products (e.g. IsoSource, MixSIR, SIAR), where methodological advances or syntheses of the current state of the art are published in parity with software packa...
Lloyd-Jones, Luke R; Robinson, Matthew R; Moser, Gerhard; Zeng, Jian; Beleza, Sandra; Barsh, Gregory S; Tang, Hua; Visscher, Peter M
2017-06-01
Genetic association studies in admixed populations are underrepresented in the genomics literature, with a key concern for researchers being the adequate control of spurious associations due to population structure. Linear mixed models (LMMs) are well suited for genome-wide association studies (GWAS) because they account for both population stratification and cryptic relatedness and achieve increased statistical power by jointly modeling all genotyped markers. Additionally, Bayesian LMMs allow for more flexible assumptions about the underlying distribution of genetic effects, and can concurrently estimate the proportion of phenotypic variance explained by genetic markers. Using three recently published Bayesian LMMs, Bayes R, BSLMM, and BOLT-LMM, we investigate an existing data set on eye ( n = 625) and skin ( n = 684) color from Cape Verde, an island nation off West Africa that is home to individuals with a broad range of phenotypic values for eye and skin color due to the mix of West African and European ancestry. We use simulations to demonstrate the utility of Bayesian LMMs for mapping loci and studying the genetic architecture of quantitative traits in admixed populations. The Bayesian LMMs provide evidence for two new pigmentation loci: one for eye color ( AHRR ) and one for skin color ( DDB1 ). Copyright © 2017 by the Genetics Society of America.
A Bayesian Approach for Analyzing Longitudinal Structural Equation Models
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lu, Zhao-Hua; Hser, Yih-Ing; Lee, Sik-Yum
2011-01-01
This article considers a Bayesian approach for analyzing a longitudinal 2-level nonlinear structural equation model with covariates, and mixed continuous and ordered categorical variables. The first-level model is formulated for measures taken at each time point nested within individuals for investigating their characteristics that are dynamically…
Trending in Probability of Collision Measurements via a Bayesian Zero-Inflated Beta Mixed Model
NASA Technical Reports Server (NTRS)
Vallejo, Jonathon; Hejduk, Matt; Stamey, James
2015-01-01
We investigate the performance of a generalized linear mixed model in predicting the Probabilities of Collision (Pc) for conjunction events. Specifically, we apply this model to the log(sub 10) transformation of these probabilities and argue that this transformation yields values that can be considered bounded in practice. Additionally, this bounded random variable, after scaling, is zero-inflated. Consequently, we model these values using the zero-inflated Beta distribution, and utilize the Bayesian paradigm and the mixed model framework to borrow information from past and current events. This provides a natural way to model the data and provides a basis for answering questions of interest, such as what is the likelihood of observing a probability of collision equal to the effective value of zero on a subsequent observation.
Weiss, Scott T.
2014-01-01
Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs) formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com. PMID:24922310
McGeachie, Michael J; Chang, Hsun-Hsien; Weiss, Scott T
2014-06-01
Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs) formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com.
Xing, Dongyuan; Huang, Yangxin; Chen, Henian; Zhu, Yiliang; Dagne, Getachew A; Baldwin, Julie
2017-08-01
Semicontinuous data featured with an excessive proportion of zeros and right-skewed continuous positive values arise frequently in practice. One example would be the substance abuse/dependence symptoms data for which a substantial proportion of subjects investigated may report zero. Two-part mixed-effects models have been developed to analyze repeated measures of semicontinuous data from longitudinal studies. In this paper, we propose a flexible two-part mixed-effects model with skew distributions for correlated semicontinuous alcohol data under the framework of a Bayesian approach. The proposed model specification consists of two mixed-effects models linked by the correlated random effects: (i) a model on the occurrence of positive values using a generalized logistic mixed-effects model (Part I); and (ii) a model on the intensity of positive values using a linear mixed-effects model where the model errors follow skew distributions including skew- t and skew-normal distributions (Part II). The proposed method is illustrated with an alcohol abuse/dependence symptoms data from a longitudinal observational study, and the analytic results are reported by comparing potential models under different random-effects structures. Simulation studies are conducted to assess the performance of the proposed models and method.
Bayesian Models for Astrophysical Data Using R, JAGS, Python, and Stan
NASA Astrophysics Data System (ADS)
Hilbe, Joseph M.; de Souza, Rafael S.; Ishida, Emille E. O.
2017-05-01
This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.
Learning oncogenetic networks by reducing to mixed integer linear programming.
Shahrabi Farahani, Hossein; Lagergren, Jens
2013-01-01
Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.
Logistic Mixed Models to Investigate Implicit and Explicit Belief Tracking.
Lages, Martin; Scheel, Anne
2016-01-01
We investigated the proposition of a two-systems Theory of Mind in adults' belief tracking. A sample of N = 45 participants predicted the choice of one of two opponent players after observing several rounds in an animated card game. Three matches of this card game were played and initial gaze direction on target and subsequent choice predictions were recorded for each belief task and participant. We conducted logistic regressions with mixed effects on the binary data and developed Bayesian logistic mixed models to infer implicit and explicit mentalizing in true belief and false belief tasks. Although logistic regressions with mixed effects predicted the data well a Bayesian logistic mixed model with latent task- and subject-specific parameters gave a better account of the data. As expected explicit choice predictions suggested a clear understanding of true and false beliefs (TB/FB). Surprisingly, however, model parameters for initial gaze direction also indicated belief tracking. We discuss why task-specific parameters for initial gaze directions are different from choice predictions yet reflect second-order perspective taking.
A Bayesian Semiparametric Latent Variable Model for Mixed Responses
ERIC Educational Resources Information Center
Fahrmeir, Ludwig; Raach, Alexander
2007-01-01
In this paper we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric Gaussian regression model. We extend existing LVMs with the usual linear covariate effects by including nonparametric components for nonlinear…
Bayesian generalized linear mixed modeling of Tuberculosis using informative priors.
Ojo, Oluwatobi Blessing; Lougue, Siaka; Woldegerima, Woldegebriel Assefa
2017-01-01
TB is rated as one of the world's deadliest diseases and South Africa ranks 9th out of the 22 countries with hardest hit of TB. Although many pieces of research have been carried out on this subject, this paper steps further by inculcating past knowledge into the model, using Bayesian approach with informative prior. Bayesian statistics approach is getting popular in data analyses. But, most applications of Bayesian inference technique are limited to situations of non-informative prior, where there is no solid external information about the distribution of the parameter of interest. The main aim of this study is to profile people living with TB in South Africa. In this paper, identical regression models are fitted for classical and Bayesian approach both with non-informative and informative prior, using South Africa General Household Survey (GHS) data for the year 2014. For the Bayesian model with informative prior, South Africa General Household Survey dataset for the year 2011 to 2013 are used to set up priors for the model 2014.
Logistic Mixed Models to Investigate Implicit and Explicit Belief Tracking
Lages, Martin; Scheel, Anne
2016-01-01
We investigated the proposition of a two-systems Theory of Mind in adults’ belief tracking. A sample of N = 45 participants predicted the choice of one of two opponent players after observing several rounds in an animated card game. Three matches of this card game were played and initial gaze direction on target and subsequent choice predictions were recorded for each belief task and participant. We conducted logistic regressions with mixed effects on the binary data and developed Bayesian logistic mixed models to infer implicit and explicit mentalizing in true belief and false belief tasks. Although logistic regressions with mixed effects predicted the data well a Bayesian logistic mixed model with latent task- and subject-specific parameters gave a better account of the data. As expected explicit choice predictions suggested a clear understanding of true and false beliefs (TB/FB). Surprisingly, however, model parameters for initial gaze direction also indicated belief tracking. We discuss why task-specific parameters for initial gaze directions are different from choice predictions yet reflect second-order perspective taking. PMID:27853440
Comparing Bayesian stable isotope mixing models: Which tools are best for sediments?
NASA Astrophysics Data System (ADS)
Morris, David; Macko, Stephen
2016-04-01
Bayesian stable isotope mixing models have received much attention as a means of coping with multiple sources and uncertainty in isotope ecology (e.g. Phillips et al., 2014), enabling the probabilistic determination of the contributions made by each food source to the total diet of the organism in question. We have applied these techniques to marine sediments for the first time. The sediments of the Chukchi Sea and Beaufort Sea offer an opportunity to utilize these models for organic geochemistry, as there are three likely sources of organic carbon; pelagic phytoplankton, sea ice algae and terrestrial material from rivers and coastal erosion, as well as considerable variation in the marine δ13C values. Bayesian mixing models using bulk δ13C and δ15N data from Shelf Basin Interaction samples allow for the probabilistic determination of the contributions made by each of the sources to the organic carbon budget, and can be compared with existing source contribution estimates based upon biomarker models (e.g. Belicka & Harvey, 2009, Faux, Belicka, & Rodger Harvey, 2011). The δ13C of this preserved material varied from -22.1 to -16.7‰ (mean -19.4±1.3‰), while δ15N varied from 4.1 to 7.6‰ (mean 5.7±1.1‰). Using the SIAR model, we found that water column productivity was the source of between 50 and 70% of the organic carbon buried in this portion of the western Arctic with the remainder mainly supplied by sea ice algal productivity (25-35%) and terrestrial inputs (15%). With many mixing models now available, this study will compare SIAR with MixSIAR and the new FRUITS model. Monte Carlo modeling of the mixing polygon will be used to validate the models, and hierarchical models will be utilised to glean more information from the data set.
Exploiting Cross-sensitivity by Bayesian Decoding of Mixed Potential Sensor Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreller, Cortney
LANL mixed-potential electrochemical sensor (MPES) device arrays were coupled with advanced Bayesian inference treatment of the physical model of relevant sensor-analyte interactions. We demonstrated that our approach could be used to uniquely discriminate the composition of ternary gas sensors with three discreet MPES sensors with an average error of less than 2%. We also observed that the MPES exhibited excellent stability over a year of operation at elevated temperatures in the presence of test gases.
BAYESIAN PARAMETER ESTIMATION IN A MIXED-ORDER MODEL OF BOD DECAY. (U915590)
We describe a generalized version of the BOD decay model in which the reaction is allowed to assume an order other than one. This is accomplished by making the exponent on BOD concentration a free parameter to be determined by the data. This "mixed-order" model may be ...
Bayesian generalized linear mixed modeling of Tuberculosis using informative priors
Woldegerima, Woldegebriel Assefa
2017-01-01
TB is rated as one of the world’s deadliest diseases and South Africa ranks 9th out of the 22 countries with hardest hit of TB. Although many pieces of research have been carried out on this subject, this paper steps further by inculcating past knowledge into the model, using Bayesian approach with informative prior. Bayesian statistics approach is getting popular in data analyses. But, most applications of Bayesian inference technique are limited to situations of non-informative prior, where there is no solid external information about the distribution of the parameter of interest. The main aim of this study is to profile people living with TB in South Africa. In this paper, identical regression models are fitted for classical and Bayesian approach both with non-informative and informative prior, using South Africa General Household Survey (GHS) data for the year 2014. For the Bayesian model with informative prior, South Africa General Household Survey dataset for the year 2011 to 2013 are used to set up priors for the model 2014. PMID:28257437
ERIC Educational Resources Information Center
Sen, Sedat
2018-01-01
Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood…
Phylogeny of sipunculan worms: A combined analysis of four gene regions and morphology.
Schulze, Anja; Cutler, Edward B; Giribet, Gonzalo
2007-01-01
The intra-phyletic relationships of sipunculan worms were analyzed based on DNA sequence data from four gene regions and 58 morphological characters. Initially we analyzed the data under direct optimization using parsimony as optimality criterion. An implied alignment resulting from the direct optimization analysis was subsequently utilized to perform a Bayesian analysis with mixed models for the different data partitions. For this we applied a doublet model for the stem regions of the 18S rRNA. Both analyses support monophyly of Sipuncula and most of the same clades within the phylum. The analyses differ with respect to the relationships among the major groups but whereas the deep nodes in the direct optimization analysis generally show low jackknife support, they are supported by 100% posterior probability in the Bayesian analysis. Direct optimization has been useful for handling sequences of unequal length and generating conservative phylogenetic hypotheses whereas the Bayesian analysis under mixed models provided high resolution in the basal nodes of the tree.
USDA-ARS?s Scientific Manuscript database
As a first step towards the genetic mapping of quantitative trait loci (QTL) affecting stress response variation in rainbow trout, we performed complex segregation analyses (CSA) fitting mixed inheritance models of plasma cortisol using Bayesian methods in large full-sib families of rainbow trout. ...
Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery.
Altmann, Yoann; Halimi, Abderrahim; Dobigeon, Nicolas; Tourneret, Jean-Yves
2012-06-01
This paper presents a nonlinear mixing model for hyperspectral image unmixing. The proposed model assumes that the pixel reflectances are nonlinear functions of pure spectral components contaminated by an additive white Gaussian noise. These nonlinear functions are approximated using polynomial functions leading to a polynomial postnonlinear mixing model. A Bayesian algorithm and optimization methods are proposed to estimate the parameters involved in the model. The performance of the unmixing strategies is evaluated by simulations conducted on synthetic and real data.
Efficient Bayesian mixed model analysis increases association power in large cohorts
Loh, Po-Ru; Tucker, George; Bulik-Sullivan, Brendan K; Vilhjálmsson, Bjarni J; Finucane, Hilary K; Salem, Rany M; Chasman, Daniel I; Ridker, Paul M; Neale, Benjamin M; Berger, Bonnie; Patterson, Nick; Price, Alkes L
2014-01-01
Linear mixed models are a powerful statistical tool for identifying genetic associations and avoiding confounding. However, existing methods are computationally intractable in large cohorts, and may not optimize power. All existing methods require time cost O(MN2) (where N = #samples and M = #SNPs) and implicitly assume an infinitesimal genetic architecture in which effect sizes are normally distributed, which can limit power. Here, we present a far more efficient mixed model association method, BOLT-LMM, which requires only a small number of O(MN)-time iterations and increases power by modeling more realistic, non-infinitesimal genetic architectures via a Bayesian mixture prior on marker effect sizes. We applied BOLT-LMM to nine quantitative traits in 23,294 samples from the Women’s Genome Health Study (WGHS) and observed significant increases in power, consistent with simulations. Theory and simulations show that the boost in power increases with cohort size, making BOLT-LMM appealing for GWAS in large cohorts. PMID:25642633
Abanto-Valle, C. A.; Bandyopadhyay, D.; Lachos, V. H.; Enriquez, I.
2009-01-01
A Bayesian analysis of stochastic volatility (SV) models using the class of symmetric scale mixtures of normal (SMN) distributions is considered. In the face of non-normality, this provides an appealing robust alternative to the routine use of the normal distribution. Specific distributions examined include the normal, student-t, slash and the variance gamma distributions. Using a Bayesian paradigm, an efficient Markov chain Monte Carlo (MCMC) algorithm is introduced for parameter estimation. Moreover, the mixing parameters obtained as a by-product of the scale mixture representation can be used to identify outliers. The methods developed are applied to analyze daily stock returns data on S&P500 index. Bayesian model selection criteria as well as out-of- sample forecasting results reveal that the SV models based on heavy-tailed SMN distributions provide significant improvement in model fit as well as prediction to the S&P500 index data over the usual normal model. PMID:20730043
Bayesian Nonparametric Inference – Why and How
Müller, Peter; Mitra, Riten
2013-01-01
We review inference under models with nonparametric Bayesian (BNP) priors. The discussion follows a set of examples for some common inference problems. The examples are chosen to highlight problems that are challenging for standard parametric inference. We discuss inference for density estimation, clustering, regression and for mixed effects models with random effects distributions. While we focus on arguing for the need for the flexibility of BNP models, we also review some of the more commonly used BNP models, thus hopefully answering a bit of both questions, why and how to use BNP. PMID:24368932
Wang, Xulong; Philip, Vivek M.; Ananda, Guruprasad; White, Charles C.; Malhotra, Ankit; Michalski, Paul J.; Karuturi, Krishna R. Murthy; Chintalapudi, Sumana R.; Acklin, Casey; Sasner, Michael; Bennett, David A.; De Jager, Philip L.; Howell, Gareth R.; Carter, Gregory W.
2018-01-01
Recent technical and methodological advances have greatly enhanced genome-wide association studies (GWAS). The advent of low-cost, whole-genome sequencing facilitates high-resolution variant identification, and the development of linear mixed models (LMM) allows improved identification of putatively causal variants. While essential for correcting false positive associations due to sample relatedness and population stratification, LMMs have commonly been restricted to quantitative variables. However, phenotypic traits in association studies are often categorical, coded as binary case-control or ordered variables describing disease stages. To address these issues, we have devised a method for genomic association studies that implements a generalized LMM (GLMM) in a Bayesian framework, called Bayes-GLMM. Bayes-GLMM has four major features: (1) support of categorical, binary, and quantitative variables; (2) cohesive integration of previous GWAS results for related traits; (3) correction for sample relatedness by mixed modeling; and (4) model estimation by both Markov chain Monte Carlo sampling and maximal likelihood estimation. We applied Bayes-GLMM to the whole-genome sequencing cohort of the Alzheimer’s Disease Sequencing Project. This study contains 570 individuals from 111 families, each with Alzheimer’s disease diagnosed at one of four confidence levels. Using Bayes-GLMM we identified four variants in three loci significantly associated with Alzheimer’s disease. Two variants, rs140233081 and rs149372995, lie between PRKAR1B and PDGFA. The coded proteins are localized to the glial-vascular unit, and PDGFA transcript levels are associated with Alzheimer’s disease-related neuropathology. In summary, this work provides implementation of a flexible, generalized mixed-model approach in a Bayesian framework for association studies. PMID:29507048
Zhang, Hanze; Huang, Yangxin; Wang, Wei; Chen, Henian; Langland-Orban, Barbara
2017-01-01
In longitudinal AIDS studies, it is of interest to investigate the relationship between HIV viral load and CD4 cell counts, as well as the complicated time effect. Most of common models to analyze such complex longitudinal data are based on mean-regression, which fails to provide efficient estimates due to outliers and/or heavy tails. Quantile regression-based partially linear mixed-effects models, a special case of semiparametric models enjoying benefits of both parametric and nonparametric models, have the flexibility to monitor the viral dynamics nonparametrically and detect the varying CD4 effects parametrically at different quantiles of viral load. Meanwhile, it is critical to consider various data features of repeated measurements, including left-censoring due to a limit of detection, covariate measurement error, and asymmetric distribution. In this research, we first establish a Bayesian joint models that accounts for all these data features simultaneously in the framework of quantile regression-based partially linear mixed-effects models. The proposed models are applied to analyze the Multicenter AIDS Cohort Study (MACS) data. Simulation studies are also conducted to assess the performance of the proposed methods under different scenarios.
NASA Astrophysics Data System (ADS)
Arendt, Carli A.; Aciego, Sarah M.; Hetland, Eric A.
2015-05-01
The implementation of isotopic tracers as constraints on source contributions has become increasingly relevant to understanding Earth surface processes. Interpretation of these isotopic tracers has become more accessible with the development of Bayesian Monte Carlo (BMC) mixing models, which allow uncertainty in mixing end-members and provide methodology for systems with multicomponent mixing. This study presents an open source multiple isotope BMC mixing model that is applicable to Earth surface environments with sources exhibiting distinct end-member isotopic signatures. Our model is first applied to new δ18O and δD measurements from the Athabasca Glacier, which showed expected seasonal melt evolution trends and vigorously assessed the statistical relevance of the resulting fraction estimations. To highlight the broad applicability of our model to a variety of Earth surface environments and relevant isotopic systems, we expand our model to two additional case studies: deriving melt sources from δ18O, δD, and 222Rn measurements of Greenland Ice Sheet bulk water samples and assessing nutrient sources from ɛNd and 87Sr/86Sr measurements of Hawaiian soil cores. The model produces results for the Greenland Ice Sheet and Hawaiian soil data sets that are consistent with the originally published fractional contribution estimates. The advantage of this method is that it quantifies the error induced by variability in the end-member compositions, unrealized by the models previously applied to the above case studies. Results from all three case studies demonstrate the broad applicability of this statistical BMC isotopic mixing model for estimating source contribution fractions in a variety of Earth surface systems.
Gajic-Veljanoski, Olga; Cheung, Angela M; Bayoumi, Ahmed M; Tomlinson, George
2016-05-30
Bivariate random-effects meta-analysis (BVMA) is a method of data synthesis that accounts for treatment effects measured on two outcomes. BVMA gives more precise estimates of the population mean and predicted values than two univariate random-effects meta-analyses (UVMAs). BVMA also addresses bias from incomplete reporting of outcomes. A few tutorials have covered technical details of BVMA of categorical or continuous outcomes. Limited guidance is available on how to analyze datasets that include trials with mixed continuous-binary outcomes where treatment effects on one outcome or the other are not reported. Given the advantages of Bayesian BVMA for handling missing outcomes, we present a tutorial for Bayesian BVMA of incompletely reported treatment effects on mixed bivariate outcomes. This step-by-step approach can serve as a model for our intended audience, the methodologist familiar with Bayesian meta-analysis, looking for practical advice on fitting bivariate models. To facilitate application of the proposed methods, we include our WinBUGS code. As an example, we use aggregate-level data from published trials to demonstrate the estimation of the effects of vitamin K and bisphosphonates on two correlated bone outcomes, fracture, and bone mineral density. We present datasets where reporting of the pairs of treatment effects on both outcomes was 'partially' complete (i.e., pairs completely reported in some trials), and we outline steps for modeling the incompletely reported data. To assess what is gained from the additional work required by BVMA, we compare the resulting estimates to those from separate UVMAs. We discuss methodological findings and make four recommendations. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Time-varying nonstationary multivariate risk analysis using a dynamic Bayesian copula
NASA Astrophysics Data System (ADS)
Sarhadi, Ali; Burn, Donald H.; Concepción Ausín, María.; Wiper, Michael P.
2016-03-01
A time-varying risk analysis is proposed for an adaptive design framework in nonstationary conditions arising from climate change. A Bayesian, dynamic conditional copula is developed for modeling the time-varying dependence structure between mixed continuous and discrete multiattributes of multidimensional hydrometeorological phenomena. Joint Bayesian inference is carried out to fit the marginals and copula in an illustrative example using an adaptive, Gibbs Markov Chain Monte Carlo (MCMC) sampler. Posterior mean estimates and credible intervals are provided for the model parameters and the Deviance Information Criterion (DIC) is used to select the model that best captures different forms of nonstationarity over time. This study also introduces a fully Bayesian, time-varying joint return period for multivariate time-dependent risk analysis in nonstationary environments. The results demonstrate that the nature and the risk of extreme-climate multidimensional processes are changed over time under the impact of climate change, and accordingly the long-term decision making strategies should be updated based on the anomalies of the nonstationary environment.
Bleka, Øyvind; Storvik, Geir; Gill, Peter
2016-03-01
We have released a software named EuroForMix to analyze STR DNA profiles in a user-friendly graphical user interface. The software implements a model to explain the allelic peak height on a continuous scale in order to carry out weight-of-evidence calculations for profiles which could be from a mixture of contributors. Through a properly parameterized model we are able to do inference on mixture proportions, the peak height properties, stutter proportion and degradation. In addition, EuroForMix includes models for allele drop-out, allele drop-in and sub-population structure. EuroForMix supports two inference approaches for likelihood ratio calculations. The first approach uses maximum likelihood estimation of the unknown parameters. The second approach is Bayesian based which requires prior distributions to be specified for the parameters involved. The user may specify any number of known and unknown contributors in the model, however we find that there is a practical computing time limit which restricts the model to a maximum of four unknown contributors. EuroForMix is the first freely open source, continuous model (accommodating peak height, stutter, drop-in, drop-out, population substructure and degradation), to be reported in the literature. It therefore serves an important purpose to act as an unrestricted platform to compare different solutions that are available. The implementation of the continuous model used in the software showed close to identical results to the R-package DNAmixtures, which requires a HUGIN Expert license to be used. An additional feature in EuroForMix is the ability for the user to adapt the Bayesian inference framework by incorporating their own prior information. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fukuda, Jun'ichi; Johnson, Kaj M.
2010-06-01
We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.
Bayesian Covariate Selection in Mixed-Effects Models For Longitudinal Shape Analysis
Muralidharan, Prasanna; Fishbaugh, James; Kim, Eun Young; Johnson, Hans J.; Paulsen, Jane S.; Gerig, Guido; Fletcher, P. Thomas
2016-01-01
The goal of longitudinal shape analysis is to understand how anatomical shape changes over time, in response to biological processes, including growth, aging, or disease. In many imaging studies, it is also critical to understand how these shape changes are affected by other factors, such as sex, disease diagnosis, IQ, etc. Current approaches to longitudinal shape analysis have focused on modeling age-related shape changes, but have not included the ability to handle covariates. In this paper, we present a novel Bayesian mixed-effects shape model that incorporates simultaneous relationships between longitudinal shape data and multiple predictors or covariates to the model. Moreover, we place an Automatic Relevance Determination (ARD) prior on the parameters, that lets us automatically select which covariates are most relevant to the model based on observed data. We evaluate our proposed model and inference procedure on a longitudinal study of Huntington's disease from PREDICT-HD. We first show the utility of the ARD prior for model selection in a univariate modeling of striatal volume, and next we apply the full high-dimensional longitudinal shape model to putamen shapes. PMID:28090246
Walker, Martin; Basáñez, María-Gloria; Ouédraogo, André Lin; Hermsen, Cornelus; Bousema, Teun; Churcher, Thomas S
2015-01-16
Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens.
Unifying error structures in commonly used biotracer mixing models.
Stock, Brian C; Semmens, Brice X
2016-10-01
Mixing models are statistical tools that use biotracers to probabilistically estimate the contribution of multiple sources to a mixture. These biotracers may include contaminants, fatty acids, or stable isotopes, the latter of which are widely used in trophic ecology to estimate the mixed diet of consumers. Bayesian implementations of mixing models using stable isotopes (e.g., MixSIR, SIAR) are regularly used by ecologists for this purpose, but basic questions remain about when each is most appropriate. In this study, we describe the structural differences between common mixing model error formulations in terms of their assumptions about the predation process. We then introduce a new parameterization that unifies these mixing model error structures, as well as implicitly estimates the rate at which consumers sample from source populations (i.e., consumption rate). Using simulations and previously published mixing model datasets, we demonstrate that the new error parameterization outperforms existing models and provides an estimate of consumption. Our results suggest that the error structure introduced here will improve future mixing model estimates of animal diet. © 2016 by the Ecological Society of America.
A Bayesian Approach for Summarizing and Modeling Time-Series Exposure Data with Left Censoring.
Houseman, E Andres; Virji, M Abbas
2017-08-01
Direct reading instruments are valuable tools for measuring exposure as they provide real-time measurements for rapid decision making. However, their use is limited to general survey applications in part due to issues related to their performance. Moreover, statistical analysis of real-time data is complicated by autocorrelation among successive measurements, non-stationary time series, and the presence of left-censoring due to limit-of-detection (LOD). A Bayesian framework is proposed that accounts for non-stationary autocorrelation and LOD issues in exposure time-series data in order to model workplace factors that affect exposure and estimate summary statistics for tasks or other covariates of interest. A spline-based approach is used to model non-stationary autocorrelation with relatively few assumptions about autocorrelation structure. Left-censoring is addressed by integrating over the left tail of the distribution. The model is fit using Markov-Chain Monte Carlo within a Bayesian paradigm. The method can flexibly account for hierarchical relationships, random effects and fixed effects of covariates. The method is implemented using the rjags package in R, and is illustrated by applying it to real-time exposure data. Estimates for task means and covariates from the Bayesian model are compared to those from conventional frequentist models including linear regression, mixed-effects, and time-series models with different autocorrelation structures. Simulations studies are also conducted to evaluate method performance. Simulation studies with percent of measurements below the LOD ranging from 0 to 50% showed lowest root mean squared errors for task means and the least biased standard deviations from the Bayesian model compared to the frequentist models across all levels of LOD. In the application, task means from the Bayesian model were similar to means from the frequentist models, while the standard deviations were different. Parameter estimates for covariates were significant in some frequentist models, but in the Bayesian model their credible intervals contained zero; such discrepancies were observed in multiple datasets. Variance components from the Bayesian model reflected substantial autocorrelation, consistent with the frequentist models, except for the auto-regressive moving average model. Plots of means from the Bayesian model showed good fit to the observed data. The proposed Bayesian model provides an approach for modeling non-stationary autocorrelation in a hierarchical modeling framework to estimate task means, standard deviations, quantiles, and parameter estimates for covariates that are less biased and have better performance characteristics than some of the contemporary methods. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2017.
Assessing Argumentative Representation with Bayesian Network Models in Debatable Social Issues
ERIC Educational Resources Information Center
Zhang, Zhidong; Lu, Jingyan
2014-01-01
This study seeks to obtain argumentation models, which represent argumentative processes and an assessment structure in secondary school debatable issues in the social sciences. The argumentation model was developed based on mixed methods, a combination of both theory-driven and data-driven methods. The coding system provided a combing point by…
Skew-t partially linear mixed-effects models for AIDS clinical studies.
Lu, Tao
2016-01-01
We propose partially linear mixed-effects models with asymmetry and missingness to investigate the relationship between two biomarkers in clinical studies. The proposed models take into account irregular time effects commonly observed in clinical studies under a semiparametric model framework. In addition, commonly assumed symmetric distributions for model errors are substituted by asymmetric distribution to account for skewness. Further, informative missing data mechanism is accounted for. A Bayesian approach is developed to perform parameter estimation simultaneously. The proposed model and method are applied to an AIDS dataset and comparisons with alternative models are performed.
Liang, Li-Jung; Huang, David; Brecht, Mary-Lynn; Hser, Yih-ing
2010-01-01
Studies examining differences in mortality among long-term drug users have been limited. In this paper, we introduce a Bayesian framework that jointly models survival data using a Weibull proportional hazard model with frailty, and substance and alcohol data using mixed-effects models, to examine differences in mortality among heroin, cocaine, and methamphetamine users from five long-term follow-up studies. The traditional approach to analyzing combined survival data from numerous studies assumes that the studies are homogeneous, thus the estimates may be biased due to unobserved heterogeneity among studies. Our approach allows us to structurally combine the data from different studies while accounting for correlation among subjects within each study. Markov chain Monte Carlo facilitates the implementation of Bayesian analyses. Despite the complexity of the model, our approach is relatively straightforward to implement using WinBUGS. We demonstrate our joint modeling approach to the combined data and discuss the results from both approaches. PMID:21052518
Intuitive Logic Revisited: New Data and a Bayesian Mixed Model Meta-Analysis
Singmann, Henrik; Klauer, Karl Christoph; Kellen, David
2014-01-01
Recent research on syllogistic reasoning suggests that the logical status (valid vs. invalid) of even difficult syllogisms can be intuitively detected via differences in conceptual fluency between logically valid and invalid syllogisms when participants are asked to rate how much they like a conclusion following from a syllogism (Morsanyi & Handley, 2012). These claims of an intuitive logic are at odds with most theories on syllogistic reasoning which posit that detecting the logical status of difficult syllogisms requires effortful and deliberate cognitive processes. We present new data replicating the effects reported by Morsanyi and Handley, but show that this effect is eliminated when controlling for a possible confound in terms of conclusion content. Additionally, we reanalyze three studies () without this confound with a Bayesian mixed model meta-analysis (i.e., controlling for participant and item effects) which provides evidence for the null-hypothesis and against Morsanyi and Handley's claim. PMID:24755777
Bayesian Analysis of the Association between Family-Level Factors and Siblings' Dental Caries.
Wen, A; Weyant, R J; McNeil, D W; Crout, R J; Neiswanger, K; Marazita, M L; Foxman, B
2017-07-01
We conducted a Bayesian analysis of the association between family-level socioeconomic status and smoking and the prevalence of dental caries among siblings (children from infant to 14 y) among children living in rural and urban Northern Appalachia using data from the Center for Oral Health Research in Appalachia (COHRA). The observed proportion of siblings sharing caries was significantly different from predicted assuming siblings' caries status was independent. Using a Bayesian hierarchical model, we found the inclusion of a household factor significantly improved the goodness of fit. Other findings showed an inverse association between parental education and siblings' caries and a positive association between households with smokers and siblings' caries. Our study strengthens existing evidence suggesting that increased parental education and decreased parental cigarette smoking are associated with reduced childhood caries in the household. Our results also demonstrate the value of a Bayesian approach, which allows us to include household as a random effect, thereby providing more accurate estimates than obtained using generalized linear mixed models.
2012-01-01
Background A statistical analysis plan (SAP) is a critical link between how a clinical trial is conducted and the clinical study report. To secure objective study results, regulatory bodies expect that the SAP will meet requirements in pre-specifying inferential analyses and other important statistical techniques. To write a good SAP for model-based sensitivity and ancillary analyses involves non-trivial decisions on and justification of many aspects of the chosen setting. In particular, trials with longitudinal count data as primary endpoints pose challenges for model choice and model validation. In the random effects setting, frequentist strategies for model assessment and model diagnosis are complex and not easily implemented and have several limitations. Therefore, it is of interest to explore Bayesian alternatives which provide the needed decision support to finalize a SAP. Methods We focus on generalized linear mixed models (GLMMs) for the analysis of longitudinal count data. A series of distributions with over- and under-dispersion is considered. Additionally, the structure of the variance components is modified. We perform a simulation study to investigate the discriminatory power of Bayesian tools for model criticism in different scenarios derived from the model setting. We apply the findings to the data from an open clinical trial on vertigo attacks. These data are seen as pilot data for an ongoing phase III trial. To fit GLMMs we use a novel Bayesian computational approach based on integrated nested Laplace approximations (INLAs). The INLA methodology enables the direct computation of leave-one-out predictive distributions. These distributions are crucial for Bayesian model assessment. We evaluate competing GLMMs for longitudinal count data according to the deviance information criterion (DIC) or probability integral transform (PIT), and by using proper scoring rules (e.g. the logarithmic score). Results The instruments under study provide excellent tools for preparing decisions within the SAP in a transparent way when structuring the primary analysis, sensitivity or ancillary analyses, and specific analyses for secondary endpoints. The mean logarithmic score and DIC discriminate well between different model scenarios. It becomes obvious that the naive choice of a conventional random effects Poisson model is often inappropriate for real-life count data. The findings are used to specify an appropriate mixed model employed in the sensitivity analyses of an ongoing phase III trial. Conclusions The proposed Bayesian methods are not only appealing for inference but notably provide a sophisticated insight into different aspects of model performance, such as forecast verification or calibration checks, and can be applied within the model selection process. The mean of the logarithmic score is a robust tool for model ranking and is not sensitive to sample size. Therefore, these Bayesian model selection techniques offer helpful decision support for shaping sensitivity and ancillary analyses in a statistical analysis plan of a clinical trial with longitudinal count data as the primary endpoint. PMID:22962944
Adrion, Christine; Mansmann, Ulrich
2012-09-10
A statistical analysis plan (SAP) is a critical link between how a clinical trial is conducted and the clinical study report. To secure objective study results, regulatory bodies expect that the SAP will meet requirements in pre-specifying inferential analyses and other important statistical techniques. To write a good SAP for model-based sensitivity and ancillary analyses involves non-trivial decisions on and justification of many aspects of the chosen setting. In particular, trials with longitudinal count data as primary endpoints pose challenges for model choice and model validation. In the random effects setting, frequentist strategies for model assessment and model diagnosis are complex and not easily implemented and have several limitations. Therefore, it is of interest to explore Bayesian alternatives which provide the needed decision support to finalize a SAP. We focus on generalized linear mixed models (GLMMs) for the analysis of longitudinal count data. A series of distributions with over- and under-dispersion is considered. Additionally, the structure of the variance components is modified. We perform a simulation study to investigate the discriminatory power of Bayesian tools for model criticism in different scenarios derived from the model setting. We apply the findings to the data from an open clinical trial on vertigo attacks. These data are seen as pilot data for an ongoing phase III trial. To fit GLMMs we use a novel Bayesian computational approach based on integrated nested Laplace approximations (INLAs). The INLA methodology enables the direct computation of leave-one-out predictive distributions. These distributions are crucial for Bayesian model assessment. We evaluate competing GLMMs for longitudinal count data according to the deviance information criterion (DIC) or probability integral transform (PIT), and by using proper scoring rules (e.g. the logarithmic score). The instruments under study provide excellent tools for preparing decisions within the SAP in a transparent way when structuring the primary analysis, sensitivity or ancillary analyses, and specific analyses for secondary endpoints. The mean logarithmic score and DIC discriminate well between different model scenarios. It becomes obvious that the naive choice of a conventional random effects Poisson model is often inappropriate for real-life count data. The findings are used to specify an appropriate mixed model employed in the sensitivity analyses of an ongoing phase III trial. The proposed Bayesian methods are not only appealing for inference but notably provide a sophisticated insight into different aspects of model performance, such as forecast verification or calibration checks, and can be applied within the model selection process. The mean of the logarithmic score is a robust tool for model ranking and is not sensitive to sample size. Therefore, these Bayesian model selection techniques offer helpful decision support for shaping sensitivity and ancillary analyses in a statistical analysis plan of a clinical trial with longitudinal count data as the primary endpoint.
Páez-Rosas, Diego; Rodríguez-Pérez, Mónica; Riofrío-Lazo, Marjorie
2014-12-15
The feeding success of predators is associated with the competition level for resources, and, thus, sympatric species are exposed to a potential trophic overlap. Isotopic Bayesian mixing models should provide a better understanding of the contribution of preys to the diet of predators and the feeding behavior of a species over time. The carbon and nitrogen isotopic signatures from pup hair samples of 93 Galapagos sea lions and 48 Galapagos fur seals collected between 2003 and 2009 in different regions (east and west) of the archipelago were analyzed. A PDZ Europa ANCA-GSL elemental analyzer interfaced with a PDZ Europa 20-20 continuous flow gas source mass spectrometer was employed. Bayesian models, SIAR and SIBER, were used to estimate the contribution of prey to the diet of predators, the niche breadth, and the trophic overlap level between the populations. Statistical differences in the isotopic values of both predators were observed over the time. The mixing model determined that Galapagos fur seals had a primarily teutophagous diet, whereas the Galapagos sea lions fed exclusively on fish in both regions of the archipelago. The SIBER analysis showed differences in the trophic niche between the two sea lion populations, with the western rookery of the Galapagos sea lion being the population with the largest trophic niche area. A trophic niche partitioning between Galapagos fur seals and Galapagos sea lions in the west of the archipelago is suggested by our results. At intraspecific level, the western population of the Galapagos sea lion (ZwW) showed higher trophic breadth than the eastern population, a strategy adopted by the ZwW to decrease the interspecific competition levels in the western region. Copyright © 2014 John Wiley & Sons, Ltd.
Karabatsos, George
2017-02-01
Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected functionals and values of covariates. The software is illustrated through the BNP regression analysis of real data.
Bayesian analysis of volcanic eruptions
NASA Astrophysics Data System (ADS)
Ho, Chih-Hsiang
1990-10-01
The simple Poisson model generally gives a good fit to many volcanoes for volcanic eruption forecasting. Nonetheless, empirical evidence suggests that volcanic activity in successive equal time-periods tends to be more variable than a simple Poisson with constant eruptive rate. An alternative model is therefore examined in which eruptive rate(λ) for a given volcano or cluster(s) of volcanoes is described by a gamma distribution (prior) rather than treated as a constant value as in the assumptions of a simple Poisson model. Bayesian analysis is performed to link two distributions together to give the aggregate behavior of the volcanic activity. When the Poisson process is expanded to accomodate a gamma mixing distribution on λ, a consequence of this mixed (or compound) Poisson model is that the frequency distribution of eruptions in any given time-period of equal length follows the negative binomial distribution (NBD). Applications of the proposed model and comparisons between the generalized model and simple Poisson model are discussed based on the historical eruptive count data of volcanoes Mauna Loa (Hawaii) and Etna (Italy). Several relevant facts lead to the conclusion that the generalized model is preferable for practical use both in space and time.
A Bayesian Missing Data Framework for Generalized Multiple Outcome Mixed Treatment Comparisons
ERIC Educational Resources Information Center
Hong, Hwanhee; Chu, Haitao; Zhang, Jing; Carlin, Bradley P.
2016-01-01
Bayesian statistical approaches to mixed treatment comparisons (MTCs) are becoming more popular because of their flexibility and interpretability. Many randomized clinical trials report multiple outcomes with possible inherent correlations. Moreover, MTC data are typically sparse (although richer than standard meta-analysis, comparing only two…
NASA Astrophysics Data System (ADS)
Ram Upadhayay, Hari; Bodé, Samuel; Griepentrog, Marco; Bajracharya, Roshan Man; Blake, Will; Cornelis, Wim; Boeckx, Pascal
2017-04-01
The implementation of compound-specific stable isotope (CSSI) analyses of biotracers (e.g. fatty acids, FAs) as constraints on sediment-source contributions has become increasingly relevant to understand the origin of sediments in catchments. The CSSI fingerprinting of sediment utilizes CSSI signature of biotracer as input in an isotopic mixing model (IMM) to apportion source soil contributions. So far source studies relied on the linear mixing assumptions of CSSI signature of sources to the sediment without accounting for potential effects of source biotracer concentration. Here we evaluated the effect of FAs concentration in sources on the accuracy of source contribution estimations in artificial soil mixture of three well-separated land use sources. Soil samples from land use sources were mixed to create three groups of artificial mixture with known source contributions. Sources and artificial mixture were analysed for δ13C of FAs using gas chromatography-combustion-isotope ratio mass spectrometry. The source contributions to the mixture were estimated using with and without concentration-dependent MixSIAR, a Bayesian isotopic mixing model. The concentration-dependent MixSIAR provided the closest estimates to the known artificial mixture source contributions (mean absolute error, MAE = 10.9%, and standard error, SE = 1.4%). In contrast, the concentration-independent MixSIAR with post mixing correction of tracer proportions based on aggregated concentration of FAs of sources biased the source contributions (MAE = 22.0%, SE = 3.4%). This study highlights the importance of accounting the potential effect of a source FA concentration for isotopic mixing in sediments that adds realisms to mixing model and allows more accurate estimates of contributions of sources to the mixture. The potential influence of FA concentration on CSSI signature of sediments is an important underlying factor that determines whether the isotopic signature of a given source is observable even after equilibrium. Therefore inclusion of FA concentrations of the sources in the IMM formulation is standard procedure for accurate estimation of source contributions. The post model correction approach that dominates the CSSI fingerprinting causes bias, especially if the FAs concentration of sources differs substantially.
Uncertainty quantification of measured quantities for a HCCI engine: composition or temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petitpas, Guillaume; Whitesides, Russell
UQHCCI_1 computes the measurement uncertainties of a HCCI engine test bench using the pressure trace and the estimated uncertainties of the measured quantities as inputs, then propagating them through Bayesian inference and a mixing model.
A bayesian hierarchical model for classification with selection of functional predictors.
Zhu, Hongxiao; Vannucci, Marina; Cox, Dennis D
2010-06-01
In functional data classification, functional observations are often contaminated by various systematic effects, such as random batch effects caused by device artifacts, or fixed effects caused by sample-related factors. These effects may lead to classification bias and thus should not be neglected. Another issue of concern is the selection of functions when predictors consist of multiple functions, some of which may be redundant. The above issues arise in a real data application where we use fluorescence spectroscopy to detect cervical precancer. In this article, we propose a Bayesian hierarchical model that takes into account random batch effects and selects effective functions among multiple functional predictors. Fixed effects or predictors in nonfunctional form are also included in the model. The dimension of the functional data is reduced through orthonormal basis expansion or functional principal components. For posterior sampling, we use a hybrid Metropolis-Hastings/Gibbs sampler, which suffers slow mixing. An evolutionary Monte Carlo algorithm is applied to improve the mixing. Simulation and real data application show that the proposed model provides accurate selection of functional predictors as well as good classification.
Kadarmideen, Haja N; Janss, Luc L G
2005-11-01
Bayesian segregation analyses were used to investigate the mode of inheritance of osteochondral lesions (osteochondrosis, OC) in pigs. Data consisted of 1163 animals with OC and their pedigrees included 2891 animals. Mixed-inheritance threshold models (MITM) and several variants of MITM, in conjunction with Markov chain Monte Carlo methods, were developed for the analysis of these (categorical) data. Results showed major genes with significant and substantially higher variances (range 1.384-37.81), compared to the polygenic variance (sigmau2). Consequently, heritabilities for a mixed inheritance (range 0.65-0.90) were much higher than the heritabilities from the polygenes. Disease allele frequencies range was 0.38-0.88. Additional analyses estimating the transmission probabilities of the major gene showed clear evidence for Mendelian segregation of a major gene affecting osteochondrosis. The variants, MITM with informative prior on sigmau2, showed significant improvement in marginal distributions and accuracy of parameters. MITM with a "reduced polygenic model" for parameterization of polygenic effects avoided convergence problems and poor mixing encountered in an "individual polygenic model." In all cases, "shrinkage estimators" for fixed effects avoided unidentifiability for these parameters. The mixed-inheritance linear model (MILM) was also applied to all OC lesions and compared with the MITM. This is the first study to report evidence of major genes for osteochondral lesions in pigs; these results may also form a basis for underpinning the genetic inheritance of this disease in other animals as well as in humans.
ERIC Educational Resources Information Center
Ogletree, August E.
2009-01-01
Two needs of Georgia State University Professional Development School Partnerships are to show increases in both student academic achievement and teacher efficacy. The Teacher-Intern-Professor (TIP) Model was designed to address these needs. The TIP model focuses on using the university and school partnership to support Georgia State University…
Drake, Brandon Lee; Wills, Wirt H.; Hamilton, Marian I.; Dorshow, Wetherbee
2014-01-01
Strontium isotope sourcing has become a common and useful method for assigning sources to archaeological artifacts. In Chaco Canyon, an Ancestral Pueblo regional center in New Mexico, previous studies using these methods have suggested that significant portion of maize and wood originate in the Chuska Mountains region, 75 km to the East. In the present manuscript, these results were tested using both frequentist methods (to determine if geochemical sources can truly be differentiated) and Bayesian methods (to address uncertainty in geochemical source attribution). It was found that Chaco Canyon and the Chuska Mountain region are not easily distinguishable based on radiogenic strontium isotope values. The strontium profiles of many geochemical sources in the region overlap, making it difficult to definitively identify any one particular geochemical source for the canyon's pre-historic maize. Bayesian mixing models support the argument that some spruce and fir wood originated in the San Mateo Mountains, but that this cannot explain all 87Sr/86Sr values in Chaco timber. Overall radiogenic strontium isotope data do not clearly identify a single major geochemical source for maize, ponderosa, and most spruce/fir timber. As such, the degree to which Chaco Canyon relied upon outside support for both food and construction material is still ambiguous. PMID:24854352
Inference of epidemiological parameters from household stratified data
Walker, James N.; Ross, Joshua V.
2017-01-01
We consider a continuous-time Markov chain model of SIR disease dynamics with two levels of mixing. For this so-called stochastic households model, we provide two methods for inferring the model parameters—governing within-household transmission, recovery, and between-household transmission—from data of the day upon which each individual became infectious and the household in which each infection occurred, as might be available from First Few Hundred studies. Each method is a form of Bayesian Markov Chain Monte Carlo that allows us to calculate a joint posterior distribution for all parameters and hence the household reproduction number and the early growth rate of the epidemic. The first method performs exact Bayesian inference using a standard data-augmentation approach; the second performs approximate Bayesian inference based on a likelihood approximation derived from branching processes. These methods are compared for computational efficiency and posteriors from each are compared. The branching process is shown to be a good approximation and remains computationally efficient as the amount of data is increased. PMID:29045456
Quantitative assessment of Pb sources in isotopic mixtures using a Bayesian mixing model.
Longman, Jack; Veres, Daniel; Ersek, Vasile; Phillips, Donald L; Chauvel, Catherine; Tamas, Calin G
2018-04-18
Lead (Pb) isotopes provide valuable insights into the origin of Pb within a sample, typically allowing for reliable fingerprinting of their source. This is useful for a variety of applications, from tracing sources of pollution-related Pb, to the origins of Pb in archaeological artefacts. However, current approaches investigate source proportions via graphical means, or simple mixing models. As such, an approach, which quantitatively assesses source proportions and fingerprints the signature of analysed Pb, especially for larger numbers of sources, would be valuable. Here we use an advanced Bayesian isotope mixing model for three such applications: tracing dust sources in pre-anthropogenic environmental samples, tracking changing ore exploitation during the Roman period, and identifying the source of Pb in a Roman-age mining artefact. These examples indicate this approach can understand changing Pb sources deposited during both pre-anthropogenic times, when natural cycling of Pb dominated, and the Roman period, one marked by significant anthropogenic pollution. Our archaeometric investigation indicates clear input of Pb from Romanian ores previously speculated, but not proven, to have been the Pb source. Our approach can be applied to a range of disciplines, providing a new method for robustly tracing sources of Pb observed within a variety of environments.
Martinez, Josue G; Bohn, Kirsten M; Carroll, Raymond J; Morris, Jeffrey S
2013-06-01
We describe a new approach to analyze chirp syllables of free-tailed bats from two regions of Texas in which they are predominant: Austin and College Station. Our goal is to characterize any systematic regional differences in the mating chirps and assess whether individual bats have signature chirps. The data are analyzed by modeling spectrograms of the chirps as responses in a Bayesian functional mixed model. Given the variable chirp lengths, we compute the spectrograms on a relative time scale interpretable as the relative chirp position, using a variable window overlap based on chirp length. We use 2D wavelet transforms to capture correlation within the spectrogram in our modeling and obtain adaptive regularization of the estimates and inference for the regions-specific spectrograms. Our model includes random effect spectrograms at the bat level to account for correlation among chirps from the same bat, and to assess relative variability in chirp spectrograms within and between bats. The modeling of spectrograms using functional mixed models is a general approach for the analysis of replicated nonstationary time series, such as our acoustical signals, to relate aspects of the signals to various predictors, while accounting for between-signal structure. This can be done on raw spectrograms when all signals are of the same length, and can be done using spectrograms defined on a relative time scale for signals of variable length in settings where the idea of defining correspondence across signals based on relative position is sensible.
Wang, Wei; Xia, Minxuan; Chen, Jie; Deng, Fenni; Yuan, Rui; Zhang, Xiaopei; Shen, Fafu
2016-12-01
The data presented in this paper is supporting the research article "Genome-Wide Analysis of Superoxide Dismutase Gene Family in Gossypium raimondii and G. arboreum" [1]. In this data article, we present phylogenetic tree showing dichotomy with two different clusters of SODs inferred by the Bayesian method of MrBayes (version 3.2.4), "Bayesian phylogenetic inference under mixed models" [2], Ramachandran plots of G. raimondii and G. arboreum SODs, the protein sequence used to generate 3D sructure of proteins and the template accession via SWISS-MODEL server, "SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information." [3] and motif sequences of SODs identified by InterProScan (version 4.8) with the Pfam database, "Pfam: the protein families database" [4].
Heudtlass, Peter; Guha-Sapir, Debarati; Speybroeck, Niko
2018-05-31
The crude death rate (CDR) is one of the defining indicators of humanitarian emergencies. When data from vital registration systems are not available, it is common practice to estimate the CDR from household surveys with cluster-sampling design. However, sample sizes are often too small to compare mortality estimates to emergency thresholds, at least in a frequentist framework. Several authors have proposed Bayesian methods for health surveys in humanitarian crises. Here, we develop an approach specifically for mortality data and cluster-sampling surveys. We describe a Bayesian hierarchical Poisson-Gamma mixture model with generic (weakly informative) priors that could be used as default in absence of any specific prior knowledge, and compare Bayesian and frequentist CDR estimates using five different mortality datasets. We provide an interpretation of the Bayesian estimates in the context of an emergency threshold and demonstrate how to interpret parameters at the cluster level and ways in which informative priors can be introduced. With the same set of weakly informative priors, Bayesian CDR estimates are equivalent to frequentist estimates, for all practical purposes. The probability that the CDR surpasses the emergency threshold can be derived directly from the posterior of the mean of the mixing distribution. All observation in the datasets contribute to the estimation of cluster-level estimates, through the hierarchical structure of the model. In a context of sparse data, Bayesian mortality assessments have advantages over frequentist ones already when using only weakly informative priors. More informative priors offer a formal and transparent way of combining new data with existing data and expert knowledge and can help to improve decision-making in humanitarian crises by complementing frequentist estimates.
Comparing nonparametric Bayesian tree priors for clonal reconstruction of tumors.
Deshwar, Amit G; Vembu, Shankar; Morris, Quaid
2015-01-01
Statistical machine learning methods, especially nonparametric Bayesian methods, have become increasingly popular to infer clonal population structure of tumors. Here we describe the treeCRP, an extension of the Chinese restaurant process (CRP), a popular construction used in nonparametric mixture models, to infer the phylogeny and genotype of major subclonal lineages represented in the population of cancer cells. We also propose new split-merge updates tailored to the subclonal reconstruction problem that improve the mixing time of Markov chains. In comparisons with the tree-structured stick breaking prior used in PhyloSub, we demonstrate superior mixing and running time using the treeCRP with our new split-merge procedures. We also show that given the same number of samples, TSSB and treeCRP have similar ability to recover the subclonal structure of a tumor…
NASA Astrophysics Data System (ADS)
Sahai, Swupnil
This thesis includes three parts. The overarching theme is how to analyze structured hierarchical data, with applications to astronomy and sociology. The first part discusses how expectation propagation can be used to parallelize the computation when fitting big hierarchical bayesian models. This methodology is then used to fit a novel, nonlinear mixture model to ultraviolet radiation from various regions of the observable universe. The second part discusses how the Stan probabilistic programming language can be used to numerically integrate terms in a hierarchical bayesian model. This technique is demonstrated on supernovae data to significantly speed up convergence to the posterior distribution compared to a previous study that used a Gibbs-type sampler. The third part builds a formal latent kernel representation for aggregate relational data as a way to more robustly estimate the mixing characteristics of agents in a network. In particular, the framework is applied to sociology surveys to estimate, as a function of ego age, the age and sex composition of the personal networks of individuals in the United States.
Vaughan, Adam S; Kramer, Michael R; Waller, Lance A; Schieb, Linda J; Greer, Sophia; Casper, Michele
2015-05-01
To demonstrate the implications of choosing analytical methods for quantifying spatiotemporal trends, we compare the assumptions, implementation, and outcomes of popular methods using county-level heart disease mortality in the United States between 1973 and 2010. We applied four regression-based approaches (joinpoint regression, both aspatial and spatial generalized linear mixed models, and Bayesian space-time model) and compared resulting inferences for geographic patterns of local estimates of annual percent change and associated uncertainty. The average local percent change in heart disease mortality from each method was -4.5%, with the Bayesian model having the smallest range of values. The associated uncertainty in percent change differed markedly across the methods, with the Bayesian space-time model producing the narrowest range of variance (0.0-0.8). The geographic pattern of percent change was consistent across methods with smaller declines in the South Central United States and larger declines in the Northeast and Midwest. However, the geographic patterns of uncertainty differed markedly between methods. The similarity of results, including geographic patterns, for magnitude of percent change across these methods validates the underlying spatial pattern of declines in heart disease mortality. However, marked differences in degree of uncertainty indicate that Bayesian modeling offers substantially more precise estimates. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lockhart, K.; Harter, T.; Grote, M.; Young, M. B.; Eppich, G.; Deinhart, A.; Wimpenny, J.; Yin, Q. Z.
2014-12-01
Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide, an example of which is the San Joaquin Valley, California. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. Dairy manure and synthetic fertilizers are the major sources of nitrate in groundwater in the San Joaquin Valley, however, septic waste can be a major source in some areas. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤150 m deep), of which many have been affected by nitrate. Consumption of water containing nitrate above the drinking water limit has been linked to major health effects including low blood oxygen in infants and certain cancers. Knowledge of the proportion of each of the three main nitrate sources (manure, synthetic fertilizer, and septic waste) contributing to individual well nitrate can aid future regulatory decisions. Nitrogen, oxygen, and boron isotopes can be used as tracers to differentiate between the three main nitrate sources. Mixing models quantify the proportional contributions of sources to a mixture by using the concentration of conservative tracers within each source as a source signature. Deterministic mixing models are common, but do not allow for variability in the tracer source concentration or overlap of tracer concentrations between sources. Bayesian statistics used in conjunction with mixing models can incorporate variability in the source signature. We developed a Bayesian mixing model on a pilot network of 32 private domestic wells in the San Joaquin Valley for which nitrate as well as nitrogen, oxygen, and boron isotopes were measured. Probability distributions for nitrogen, oxygen, and boron isotope source signatures for manure, fertilizer, and septic waste were compiled from the literature and from a previous groundwater monitoring project on several dairies in the San Joaquin Valley. Median percent contribution of nitrate to wells from fertilizer, manure, and septic waste generally match the expected source based on land use patterns, with some exceptions.
Pisharady, Pramod Kumar; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe
2017-09-01
We propose a sparse Bayesian learning algorithm for improved estimation of white matter fiber parameters from compressed (under-sampled q-space) multi-shell diffusion MRI data. The multi-shell data is represented in a dictionary form using a non-monoexponential decay model of diffusion, based on continuous gamma distribution of diffusivities. The fiber volume fractions with predefined orientations, which are the unknown parameters, form the dictionary weights. These unknown parameters are estimated with a linear un-mixing framework, using a sparse Bayesian learning algorithm. A localized learning of hyperparameters at each voxel and for each possible fiber orientations improves the parameter estimation. Our experiments using synthetic data from the ISBI 2012 HARDI reconstruction challenge and in-vivo data from the Human Connectome Project demonstrate the improvements.
On the Bayesian Treed Multivariate Gaussian Process with Linear Model of Coregionalization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konomi, Bledar A.; Karagiannis, Georgios; Lin, Guang
2015-02-01
The Bayesian treed Gaussian process (BTGP) has gained popularity in recent years because it provides a straightforward mechanism for modeling non-stationary data and can alleviate computational demands by fitting models to less data. The extension of BTGP to the multivariate setting requires us to model the cross-covariance and to propose efficient algorithms that can deal with trans-dimensional MCMC moves. In this paper we extend the cross-covariance of the Bayesian treed multivariate Gaussian process (BTMGP) to that of linear model of Coregionalization (LMC) cross-covariances. Different strategies have been developed to improve the MCMC mixing and invert smaller matrices in the Bayesianmore » inference. Moreover, we compare the proposed BTMGP with existing multiple BTGP and BTMGP in test cases and multiphase flow computer experiment in a full scale regenerator of a carbon capture unit. The use of the BTMGP with LMC cross-covariance helped to predict the computer experiments relatively better than existing competitors. The proposed model has a wide variety of applications, such as computer experiments and environmental data. In the case of computer experiments we also develop an adaptive sampling strategy for the BTMGP with LMC cross-covariance function.« less
Robust, Adaptive Functional Regression in Functional Mixed Model Framework.
Zhu, Hongxiao; Brown, Philip J; Morris, Jeffrey S
2011-09-01
Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets.
Robust, Adaptive Functional Regression in Functional Mixed Model Framework
Zhu, Hongxiao; Brown, Philip J.; Morris, Jeffrey S.
2012-01-01
Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets. PMID:22308015
Bayesian estimation of multicomponent relaxation parameters in magnetic resonance fingerprinting.
McGivney, Debra; Deshmane, Anagha; Jiang, Yun; Ma, Dan; Badve, Chaitra; Sloan, Andrew; Gulani, Vikas; Griswold, Mark
2018-07-01
To estimate multiple components within a single voxel in magnetic resonance fingerprinting when the number and types of tissues comprising the voxel are not known a priori. Multiple tissue components within a single voxel are potentially separable with magnetic resonance fingerprinting as a result of differences in signal evolutions of each component. The Bayesian framework for inverse problems provides a natural and flexible setting for solving this problem when the tissue composition per voxel is unknown. Assuming that only a few entries from the dictionary contribute to a mixed signal, sparsity-promoting priors can be placed upon the solution. An iterative algorithm is applied to compute the maximum a posteriori estimator of the posterior probability density to determine the magnetic resonance fingerprinting dictionary entries that contribute most significantly to mixed or pure voxels. Simulation results show that the algorithm is robust in finding the component tissues of mixed voxels. Preliminary in vivo data confirm this result, and show good agreement in voxels containing pure tissue. The Bayesian framework and algorithm shown provide accurate solutions for the partial-volume problem in magnetic resonance fingerprinting. The flexibility of the method will allow further study into different priors and hyperpriors that can be applied in the model. Magn Reson Med 80:159-170, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
An Application of Bayesian Approach in Modeling Risk of Death in an Intensive Care Unit
Wong, Rowena Syn Yin; Ismail, Noor Azina
2016-01-01
Background and Objectives There are not many studies that attempt to model intensive care unit (ICU) risk of death in developing countries, especially in South East Asia. The aim of this study was to propose and describe application of a Bayesian approach in modeling in-ICU deaths in a Malaysian ICU. Methods This was a prospective study in a mixed medical-surgery ICU in a multidisciplinary tertiary referral hospital in Malaysia. Data collection included variables that were defined in Acute Physiology and Chronic Health Evaluation IV (APACHE IV) model. Bayesian Markov Chain Monte Carlo (MCMC) simulation approach was applied in the development of four multivariate logistic regression predictive models for the ICU, where the main outcome measure was in-ICU mortality risk. The performance of the models were assessed through overall model fit, discrimination and calibration measures. Results from the Bayesian models were also compared against results obtained using frequentist maximum likelihood method. Results The study involved 1,286 consecutive ICU admissions between January 1, 2009 and June 30, 2010, of which 1,111 met the inclusion criteria. Patients who were admitted to the ICU were generally younger, predominantly male, with low co-morbidity load and mostly under mechanical ventilation. The overall in-ICU mortality rate was 18.5% and the overall mean Acute Physiology Score (APS) was 68.5. All four models exhibited good discrimination, with area under receiver operating characteristic curve (AUC) values approximately 0.8. Calibration was acceptable (Hosmer-Lemeshow p-values > 0.05) for all models, except for model M3. Model M1 was identified as the model with the best overall performance in this study. Conclusion Four prediction models were proposed, where the best model was chosen based on its overall performance in this study. This study has also demonstrated the promising potential of the Bayesian MCMC approach as an alternative in the analysis and modeling of in-ICU mortality outcomes. PMID:27007413
An Application of Bayesian Approach in Modeling Risk of Death in an Intensive Care Unit.
Wong, Rowena Syn Yin; Ismail, Noor Azina
2016-01-01
There are not many studies that attempt to model intensive care unit (ICU) risk of death in developing countries, especially in South East Asia. The aim of this study was to propose and describe application of a Bayesian approach in modeling in-ICU deaths in a Malaysian ICU. This was a prospective study in a mixed medical-surgery ICU in a multidisciplinary tertiary referral hospital in Malaysia. Data collection included variables that were defined in Acute Physiology and Chronic Health Evaluation IV (APACHE IV) model. Bayesian Markov Chain Monte Carlo (MCMC) simulation approach was applied in the development of four multivariate logistic regression predictive models for the ICU, where the main outcome measure was in-ICU mortality risk. The performance of the models were assessed through overall model fit, discrimination and calibration measures. Results from the Bayesian models were also compared against results obtained using frequentist maximum likelihood method. The study involved 1,286 consecutive ICU admissions between January 1, 2009 and June 30, 2010, of which 1,111 met the inclusion criteria. Patients who were admitted to the ICU were generally younger, predominantly male, with low co-morbidity load and mostly under mechanical ventilation. The overall in-ICU mortality rate was 18.5% and the overall mean Acute Physiology Score (APS) was 68.5. All four models exhibited good discrimination, with area under receiver operating characteristic curve (AUC) values approximately 0.8. Calibration was acceptable (Hosmer-Lemeshow p-values > 0.05) for all models, except for model M3. Model M1 was identified as the model with the best overall performance in this study. Four prediction models were proposed, where the best model was chosen based on its overall performance in this study. This study has also demonstrated the promising potential of the Bayesian MCMC approach as an alternative in the analysis and modeling of in-ICU mortality outcomes.
Newsome, Seth D.; Yeakel, Justin D.; Wheatley, Patrick V.; Tinker, M. Tim
2012-01-01
Ecologists are increasingly using stable isotope analysis to inform questions about variation in resource and habitat use from the individual to community level. In this study we investigate data sets from 2 California sea otter (Enhydra lutris nereis) populations to illustrate the advantages and potential pitfalls of applying various statistical and quantitative approaches to isotopic data. We have subdivided these tools, or metrics, into 3 categories: IsoSpace metrics, stable isotope mixing models, and DietSpace metrics. IsoSpace metrics are used to quantify the spatial attributes of isotopic data that are typically presented in bivariate (e.g., δ13C versus δ15N) 2-dimensional space. We review IsoSpace metrics currently in use and present a technique by which uncertainty can be included to calculate the convex hull area of consumers or prey, or both. We then apply a Bayesian-based mixing model to quantify the proportion of potential dietary sources to the diet of each sea otter population and compare this to observational foraging data. Finally, we assess individual dietary specialization by comparing a previously published technique, variance components analysis, to 2 novel DietSpace metrics that are based on mixing model output. As the use of stable isotope analysis in ecology continues to grow, the field will need a set of quantitative tools for assessing isotopic variance at the individual to community level. Along with recent advances in Bayesian-based mixing models, we hope that the IsoSpace and DietSpace metrics described here will provide another set of interpretive tools for ecologists.
Killiches, Matthias; Czado, Claudia
2018-03-22
We propose a model for unbalanced longitudinal data, where the univariate margins can be selected arbitrarily and the dependence structure is described with the help of a D-vine copula. We show that our approach is an extremely flexible extension of the widely used linear mixed model if the correlation is homogeneous over the considered individuals. As an alternative to joint maximum-likelihood a sequential estimation approach for the D-vine copula is provided and validated in a simulation study. The model can handle missing values without being forced to discard data. Since conditional distributions are known analytically, we easily make predictions for future events. For model selection, we adjust the Bayesian information criterion to our situation. In an application to heart surgery data our model performs clearly better than competing linear mixed models. © 2018, The International Biometric Society.
Buddhavarapu, Prasad; Smit, Andre F; Prozzi, Jorge A
2015-07-01
Permeable friction course (PFC), a porous hot-mix asphalt, is typically applied to improve wet weather safety on high-speed roadways in Texas. In order to warrant expensive PFC construction, a statistical evaluation of its safety benefits is essential. Generally, the literature on the effectiveness of porous mixes in reducing wet-weather crashes is limited and often inconclusive. In this study, the safety effectiveness of PFC was evaluated using a fully Bayesian before-after safety analysis. First, two groups of road segments overlaid with PFC and non-PFC material were identified across Texas; the non-PFC or reference road segments selected were similar to their PFC counterparts in terms of site specific features. Second, a negative binomial data generating process was assumed to model the underlying distribution of crash counts of PFC and reference road segments to perform Bayesian inference on the safety effectiveness. A data-augmentation based computationally efficient algorithm was employed for a fully Bayesian estimation. The statistical analysis shows that PFC is not effective in reducing wet weather crashes. It should be noted that the findings of this study are in agreement with the existing literature, although these studies were not based on a fully Bayesian statistical analysis. Our study suggests that the safety effectiveness of PFC road surfaces, or any other safety infrastructure, largely relies on its interrelationship with the road user. The results suggest that the safety infrastructure must be properly used to reap the benefits of the substantial investments. Copyright © 2015 Elsevier Ltd. All rights reserved.
A statistical model for combustion resonance from a DI diesel engine with applications
NASA Astrophysics Data System (ADS)
Bodisco, Timothy; Low Choy, Samantha; Masri, Assaad; Brown, Richard J.
2015-08-01
Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging-allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.
Bucci, Melanie E.; Callahan, Peggy; Koprowski, John L.; Polfus, Jean L.; Krausman, Paul R.
2015-01-01
Stable isotope analysis of diet has become a common tool in conservation research. However, the multiple sources of uncertainty inherent in this analysis framework involve consequences that have not been thoroughly addressed. Uncertainty arises from the choice of trophic discrimination factors, and for Bayesian stable isotope mixing models (SIMMs), the specification of prior information; the combined effect of these aspects has not been explicitly tested. We used a captive feeding study of gray wolves (Canis lupus) to determine the first experimentally-derived trophic discrimination factors of C and N for this large carnivore of broad conservation interest. Using the estimated diet in our controlled system and data from a published study on wild wolves and their prey in Montana, USA, we then investigated the simultaneous effect of discrimination factors and prior information on diet reconstruction with Bayesian SIMMs. Discrimination factors for gray wolves and their prey were 1.97‰ for δ13C and 3.04‰ for δ15N. Specifying wolf discrimination factors, as opposed to the commonly used red fox (Vulpes vulpes) factors, made little practical difference to estimates of wolf diet, but prior information had a strong effect on bias, precision, and accuracy of posterior estimates. Without specifying prior information in our Bayesian SIMM, it was not possible to produce SIMM posteriors statistically similar to the estimated diet in our controlled study or the diet of wild wolves. Our study demonstrates the critical effect of prior information on estimates of animal diets using Bayesian SIMMs, and suggests species-specific trophic discrimination factors are of secondary importance. When using stable isotope analysis to inform conservation decisions researchers should understand the limits of their data. It may be difficult to obtain useful information from SIMMs if informative priors are omitted and species-specific discrimination factors are unavailable. PMID:25803664
Derbridge, Jonathan J; Merkle, Jerod A; Bucci, Melanie E; Callahan, Peggy; Koprowski, John L; Polfus, Jean L; Krausman, Paul R
2015-01-01
Stable isotope analysis of diet has become a common tool in conservation research. However, the multiple sources of uncertainty inherent in this analysis framework involve consequences that have not been thoroughly addressed. Uncertainty arises from the choice of trophic discrimination factors, and for Bayesian stable isotope mixing models (SIMMs), the specification of prior information; the combined effect of these aspects has not been explicitly tested. We used a captive feeding study of gray wolves (Canis lupus) to determine the first experimentally-derived trophic discrimination factors of C and N for this large carnivore of broad conservation interest. Using the estimated diet in our controlled system and data from a published study on wild wolves and their prey in Montana, USA, we then investigated the simultaneous effect of discrimination factors and prior information on diet reconstruction with Bayesian SIMMs. Discrimination factors for gray wolves and their prey were 1.97‰ for δ13C and 3.04‰ for δ15N. Specifying wolf discrimination factors, as opposed to the commonly used red fox (Vulpes vulpes) factors, made little practical difference to estimates of wolf diet, but prior information had a strong effect on bias, precision, and accuracy of posterior estimates. Without specifying prior information in our Bayesian SIMM, it was not possible to produce SIMM posteriors statistically similar to the estimated diet in our controlled study or the diet of wild wolves. Our study demonstrates the critical effect of prior information on estimates of animal diets using Bayesian SIMMs, and suggests species-specific trophic discrimination factors are of secondary importance. When using stable isotope analysis to inform conservation decisions researchers should understand the limits of their data. It may be difficult to obtain useful information from SIMMs if informative priors are omitted and species-specific discrimination factors are unavailable.
A phylogenetic study of Laeliinae (Orchidaceae) based on combined nuclear and plastid DNA sequences
van den Berg, Cássio; Higgins, Wesley E.; Dressler, Robert L.; Whitten, W. Mark; Soto-Arenas, Miguel A.; Chase, Mark W.
2009-01-01
Background and Aims Laeliinae are a neotropical orchid subtribe with approx. 1500 species in 50 genera. In this study, an attempt is made to assess generic alliances based on molecular phylogenetic analysis of DNA sequence data. Methods Six DNA datasets were gathered: plastid trnL intron, trnL-F spacer, matK gene and trnK introns upstream and dowstream from matK and nuclear ITS rDNA. Data were analysed with maximum parsimony (MP) and Bayesian analysis with mixed models (BA). Key Results Although relationships between Laeliinae and outgroups are well supported, within the subtribe sequence variation is low considering the broad taxonomic range covered. Localized incongruence between the ITS and plastid trees was found. A combined tree followed the ITS trees more closely, but the levels of support obtained with MP were low. The Bayesian analysis recovered more well-supported nodes. The trees from combined MP and BA allowed eight generic alliances to be recognized within Laeliinae, all of which show trends in morphological characters but lack unambiguous synapomorphies. Conclusions By using combined plastid and nuclear DNA data in conjunction with mixed-models Bayesian inference, it is possible to delimit smaller groups within Laeliinae and discuss general patterns of pollination and hybridization compatibility. Furthermore, these small groups can now be used for further detailed studies to explain morphological evolution and diversification patterns within the subtribe. PMID:19423551
NASA Astrophysics Data System (ADS)
Nguyen, Tien M.; Guillen, Andy T.
2017-05-01
This paper describes static Bayesian game models with "Pure" and "Mixed" games for the development of an optimum Program and Technical Baseline (PTB) solution for affordable acquisition of future space systems. The paper discusses System Engineering (SE) frameworks and analytical and simulation modeling approaches for developing the optimum PTB solutions from both the government and contractor perspectives.
Bayesian mixture analysis for metagenomic community profiling.
Morfopoulou, Sofia; Plagnol, Vincent
2015-09-15
Deep sequencing of clinical samples is now an established tool for the detection of infectious pathogens, with direct medical applications. The large amount of data generated produces an opportunity to detect species even at very low levels, provided that computational tools can effectively profile the relevant metagenomic communities. Data interpretation is complicated by the fact that short sequencing reads can match multiple organisms and by the lack of completeness of existing databases, in particular for viral pathogens. Here we present metaMix, a Bayesian mixture model framework for resolving complex metagenomic mixtures. We show that the use of parallel Monte Carlo Markov chains for the exploration of the species space enables the identification of the set of species most likely to contribute to the mixture. We demonstrate the greater accuracy of metaMix compared with relevant methods, particularly for profiling complex communities consisting of several related species. We designed metaMix specifically for the analysis of deep transcriptome sequencing datasets, with a focus on viral pathogen detection; however, the principles are generally applicable to all types of metagenomic mixtures. metaMix is implemented as a user friendly R package, freely available on CRAN: http://cran.r-project.org/web/packages/metaMix sofia.morfopoulou.10@ucl.ac.uk Supplementary data are available at Bionformatics online. © The Author 2015. Published by Oxford University Press.
MARTINEZ, Josue G.; BOHN, Kirsten M.; CARROLL, Raymond J.
2013-01-01
We describe a new approach to analyze chirp syllables of free-tailed bats from two regions of Texas in which they are predominant: Austin and College Station. Our goal is to characterize any systematic regional differences in the mating chirps and assess whether individual bats have signature chirps. The data are analyzed by modeling spectrograms of the chirps as responses in a Bayesian functional mixed model. Given the variable chirp lengths, we compute the spectrograms on a relative time scale interpretable as the relative chirp position, using a variable window overlap based on chirp length. We use 2D wavelet transforms to capture correlation within the spectrogram in our modeling and obtain adaptive regularization of the estimates and inference for the regions-specific spectrograms. Our model includes random effect spectrograms at the bat level to account for correlation among chirps from the same bat, and to assess relative variability in chirp spectrograms within and between bats. The modeling of spectrograms using functional mixed models is a general approach for the analysis of replicated nonstationary time series, such as our acoustical signals, to relate aspects of the signals to various predictors, while accounting for between-signal structure. This can be done on raw spectrograms when all signals are of the same length, and can be done using spectrograms defined on a relative time scale for signals of variable length in settings where the idea of defining correspondence across signals based on relative position is sensible. PMID:23997376
Adam-Poupart, Ariane; Brand, Allan; Fournier, Michel; Jerrett, Michael
2014-01-01
Background: Ambient air ozone (O3) is a pulmonary irritant that has been associated with respiratory health effects including increased lung inflammation and permeability, airway hyperreactivity, respiratory symptoms, and decreased lung function. Estimation of O3 exposure is a complex task because the pollutant exhibits complex spatiotemporal patterns. To refine the quality of exposure estimation, various spatiotemporal methods have been developed worldwide. Objectives: We sought to compare the accuracy of three spatiotemporal models to predict summer ground-level O3 in Quebec, Canada. Methods: We developed a land-use mixed-effects regression (LUR) model based on readily available data (air quality and meteorological monitoring data, road networks information, latitude), a Bayesian maximum entropy (BME) model incorporating both O3 monitoring station data and the land-use mixed model outputs (BME-LUR), and a kriging method model based only on available O3 monitoring station data (BME kriging). We performed leave-one-station-out cross-validation and visually assessed the predictive capability of each model by examining the mean temporal and spatial distributions of the average estimated errors. Results: The BME-LUR was the best predictive model (R2 = 0.653) with the lowest root mean-square error (RMSE ;7.06 ppb), followed by the LUR model (R2 = 0.466, RMSE = 8.747) and the BME kriging model (R2 = 0.414, RMSE = 9.164). Conclusions: Our findings suggest that errors of estimation in the interpolation of O3 concentrations with BME can be greatly reduced by incorporating outputs from a LUR model developed with readily available data. Citation: Adam-Poupart A, Brand A, Fournier M, Jerrett M, Smargiassi A. 2014. Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy–LUR approaches. Environ Health Perspect 122:970–976; http://dx.doi.org/10.1289/ehp.1306566 PMID:24879650
NASA Astrophysics Data System (ADS)
Galliano, Frédéric
2018-05-01
This article presents a new dust spectral energy distribution (SED) model, named HerBIE, aimed at eliminating the noise-induced correlations and large scatter obtained when performing least-squares fits. The originality of this code is to apply the hierarchical Bayesian approach to full dust models, including realistic optical properties, stochastic heating, and the mixing of physical conditions in the observed regions. We test the performances of our model by applying it to synthetic observations. We explore the impact on the recovered parameters of several effects: signal-to-noise ratio, SED shape, sample size, the presence of intrinsic correlations, the wavelength coverage, and the use of different SED model components. We show that this method is very efficient: the recovered parameters are consistently distributed around their true values. We do not find any clear bias, even for the most degenerate parameters, or with extreme signal-to-noise ratios.
NASA Astrophysics Data System (ADS)
Lew, E. J.; Butenhoff, C. L.; Karmakar, S.; Rice, A. L.; Khalil, A. K.
2017-12-01
Methane is the second most important greenhouse gas after carbon dioxide. In efforts to control emissions, a careful examination of the methane budget and source strengths is required. To determine methane surface fluxes, Bayesian methods are often used to provide top-down constraints. Inverse modeling derives unknown fluxes using observed methane concentrations, a chemical transport model (CTM) and prior information. The Bayesian inversion reduces prior flux uncertainties by exploiting information content in the data. While the Bayesian formalism produces internal error estimates of source fluxes, systematic or external errors that arise from user choices in the inversion scheme are often much larger. Here we examine model sensitivity and uncertainty of our inversion under different observation data sets and CTM grid resolution. We compare posterior surface fluxes using the data product GLOBALVIEW-CH4 against the event-level molar mixing ratio data available from NOAA. GLOBALVIEW-CH4 is a collection of CH4 concentration estimates from 221 sites, collected by 12 laboratories, that have been interpolated and extracted to provide weekly records from 1984-2008. Differently, the event-level NOAA data records methane mixing ratios field measurements from 102 sites, containing sampling frequency irregularities and gaps in time. Furthermore, the sampling platform types used by the data sets may influence the posterior flux estimates, namely fixed surface, tower, ship and aircraft sites. To explore the sensitivity of the posterior surface fluxes to the observation network geometry, inversions composed of all sites, only aircraft, only ship, only tower and only fixed surface sites, are performed and compared. Also, we investigate the sensitivity of the error reduction associated with the resolution of the GEOS-Chem simulation (4°×5° vs 2°×2.5°) used to calculate the response matrix. Using a higher resolution grid decreased the model-data error at most sites, thereby increasing the information at that site. These different inversions—event-level and interpolated data, higher and lower resolutions—are compared using an ensemble of descriptive and comparative statistics. Analyzing the sensitivity of the inverse model leads to more accurate estimates of the methane source category uncertainty.
Bayesian function-on-function regression for multilevel functional data.
Meyer, Mark J; Coull, Brent A; Versace, Francesco; Cinciripini, Paul; Morris, Jeffrey S
2015-09-01
Medical and public health research increasingly involves the collection of complex and high dimensional data. In particular, functional data-where the unit of observation is a curve or set of curves that are finely sampled over a grid-is frequently obtained. Moreover, researchers often sample multiple curves per person resulting in repeated functional measures. A common question is how to analyze the relationship between two functional variables. We propose a general function-on-function regression model for repeatedly sampled functional data on a fine grid, presenting a simple model as well as a more extensive mixed model framework, and introducing various functional Bayesian inferential procedures that account for multiple testing. We examine these models via simulation and a data analysis with data from a study that used event-related potentials to examine how the brain processes various types of images. © 2015, The International Biometric Society.
Bayesian estimation of self-similarity exponent
NASA Astrophysics Data System (ADS)
Makarava, Natallia; Benmehdi, Sabah; Holschneider, Matthias
2011-08-01
In this study we propose a Bayesian approach to the estimation of the Hurst exponent in terms of linear mixed models. Even for unevenly sampled signals and signals with gaps, our method is applicable. We test our method by using artificial fractional Brownian motion of different length and compare it with the detrended fluctuation analysis technique. The estimation of the Hurst exponent of a Rosenblatt process is shown as an example of an H-self-similar process with non-Gaussian dimensional distribution. Additionally, we perform an analysis with real data, the Dow-Jones Industrial Average closing values, and analyze its temporal variation of the Hurst exponent.
Ascribing soil erosion of hillslope components to river sediment yield.
Nosrati, Kazem
2017-06-01
In recent decades, soil erosion has increased in catchments of Iran. It is, therefore, necessary to understand soil erosion processes and sources in order to mitigate this problem. Geomorphic landforms play an important role in influencing water erosion. Therefore, ascribing hillslope components soil erosion to river sediment yield could be useful for soil and sediment management in order to decrease the off-site effects related to downstream sedimentation areas. The main objectives of this study were to apply radionuclide tracers and soil organic carbon to determine relative contributions of hillslope component sediment sources in two land use types (forest and crop field) by using a Bayesian-mixing model, as well as to estimate the uncertainty in sediment fingerprinting in a mountainous catchment of western Iran. In this analysis, 137 Cs, 40 K, 238 U, 226 Ra, 232 Th and soil organic carbon tracers were measured in 32 different sampling sites from four hillslope component sediment sources (summit, shoulder, backslope, and toeslope) in forested and crop fields along with six bed sediment samples at the downstream reach of the catchment. To quantify the sediment source proportions, the Bayesian mixing model was based on (1) primary sediment sources and (2) combined primary and secondary sediment sources. The results of both approaches indicated that erosion from crop field shoulder dominated the sources of river sediments. The estimated contribution of crop field shoulder for all river samples was 63.7% (32.4-79.8%) for primary sediment sources approach, and 67% (15.3%-81.7%) for the combined primary and secondary sources approach. The Bayesian mixing model, based on an optimum set of tracers, estimated that the highest contribution of soil erosion in crop field land use and shoulder-component landforms constituted the most important land-use factor. This technique could, therefore, be a useful tool for soil and sediment control management strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evaluation of Oceanic Transport Statistics By Use of Transient Tracers and Bayesian Methods
NASA Astrophysics Data System (ADS)
Trossman, D. S.; Thompson, L.; Mecking, S.; Bryan, F.; Peacock, S.
2013-12-01
Key variables that quantify the time scales over which atmospheric signals penetrate into the oceanic interior and their uncertainties are computed using Bayesian methods and transient tracers from both models and observations. First, the mean residence times, subduction rates, and formation rates of Subtropical Mode Water (STMW) and Subpolar Mode Water (SPMW) in the North Atlantic and Subantarctic Mode Water (SAMW) in the Southern Ocean are estimated by combining a model and observations of chlorofluorocarbon-11 (CFC-11) via Bayesian Model Averaging (BMA), statistical technique that weights model estimates according to how close they agree with observations. Second, a Bayesian method is presented to find two oceanic transport parameters associated with the age distribution of ocean waters, the transit-time distribution (TTD), by combining an eddying global ocean model's estimate of the TTD with hydrographic observations of CFC-11, temperature, and salinity. Uncertainties associated with objectively mapping irregularly spaced bottle data are quantified by making use of a thin-plate spline and then propagated via the two Bayesian techniques. It is found that the subduction of STMW, SPMW, and SAMW is mostly an advective process, but up to about one-third of STMW subduction likely owes to non-advective processes. Also, while the formation of STMW is mostly due to subduction, the formation of SPMW is mostly due to other processes. About half of the formation of SAMW is due to subduction and half is due to other processes. A combination of air-sea flux, acting on relatively short time scales, and turbulent mixing, acting on a wide range of time scales, is likely the dominant SPMW erosion mechanism. Air-sea flux is likely responsible for most STMW erosion, and turbulent mixing is likely responsible for most SAMW erosion. Two oceanic transport parameters, the mean age of a water parcel and the half-variance associated with the TTD, estimated using the model's tracers as data (BayesPOP) and those estimated using tracer observations as data (BayesObs) provide information about the sources of model biases, and give a more nuanced picture than can be found by comparing the simulated CFC-11 concentrations with observed CFC-11 concentrations. Using the differences between the two oceanic transport parameters from BayesObs and those from BayesPOP with and without a constant Peclet number assumption along each of the hydrographic cross-sections considered here, it is found that the model's diffusivity tensor biases lead to larger model errors than the model's mean advection time biases. However, it is also found that mean advection time biases in the model are statistically significant at the 95% level where mode water is found.
Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun
2017-08-01
Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2 = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.
Lu, Tao; Lu, Minggen; Wang, Min; Zhang, Jun; Dong, Guang-Hui; Xu, Yong
2017-12-18
Longitudinal competing risks data frequently arise in clinical studies. Skewness and missingness are commonly observed for these data in practice. However, most joint models do not account for these data features. In this article, we propose partially linear mixed-effects joint models to analyze skew longitudinal competing risks data with missingness. In particular, to account for skewness, we replace the commonly assumed symmetric distributions by asymmetric distribution for model errors. To deal with missingness, we employ an informative missing data model. The joint models that couple the partially linear mixed-effects model for the longitudinal process, the cause-specific proportional hazard model for competing risks process and missing data process are developed. To estimate the parameters in the joint models, we propose a fully Bayesian approach based on the joint likelihood. To illustrate the proposed model and method, we implement them to an AIDS clinical study. Some interesting findings are reported. We also conduct simulation studies to validate the proposed method.
Dynamic Latent Trait Models with Mixed Hidden Markov Structure for Mixed Longitudinal Outcomes.
Zhang, Yue; Berhane, Kiros
2016-01-01
We propose a general Bayesian joint modeling approach to model mixed longitudinal outcomes from the exponential family for taking into account any differential misclassification that may exist among categorical outcomes. Under this framework, outcomes observed without measurement error are related to latent trait variables through generalized linear mixed effect models. The misclassified outcomes are related to the latent class variables, which represent unobserved real states, using mixed hidden Markov models (MHMM). In addition to enabling the estimation of parameters in prevalence, transition and misclassification probabilities, MHMMs capture cluster level heterogeneity. A transition modeling structure allows the latent trait and latent class variables to depend on observed predictors at the same time period and also on latent trait and latent class variables at previous time periods for each individual. Simulation studies are conducted to make comparisons with traditional models in order to illustrate the gains from the proposed approach. The new approach is applied to data from the Southern California Children Health Study (CHS) to jointly model questionnaire based asthma state and multiple lung function measurements in order to gain better insight about the underlying biological mechanism that governs the inter-relationship between asthma state and lung function development.
Application of hierarchical Bayesian unmixing models in river sediment source apportionment
NASA Astrophysics Data System (ADS)
Blake, Will; Smith, Hugh; Navas, Ana; Bodé, Samuel; Goddard, Rupert; Zou Kuzyk, Zou; Lennard, Amy; Lobb, David; Owens, Phil; Palazon, Leticia; Petticrew, Ellen; Gaspar, Leticia; Stock, Brian; Boeckx, Pacsal; Semmens, Brice
2016-04-01
Fingerprinting and unmixing concepts are used widely across environmental disciplines for forensic evaluation of pollutant sources. In aquatic and marine systems, this includes tracking the source of organic and inorganic pollutants in water and linking problem sediment to soil erosion and land use sources. It is, however, the particular complexity of ecological systems that has driven creation of the most sophisticated mixing models, primarily to (i) evaluate diet composition in complex ecological food webs, (ii) inform population structure and (iii) explore animal movement. In the context of the new hierarchical Bayesian unmixing model, MIXSIAR, developed to characterise intra-population niche variation in ecological systems, we evaluate the linkage between ecological 'prey' and 'consumer' concepts and river basin sediment 'source' and sediment 'mixtures' to exemplify the value of ecological modelling tools to river basin science. Recent studies have outlined advantages presented by Bayesian unmixing approaches in handling complex source and mixture datasets while dealing appropriately with uncertainty in parameter probability distributions. MixSIAR is unique in that it allows individual fixed and random effects associated with mixture hierarchy, i.e. factors that might exert an influence on model outcome for mixture groups, to be explored within the source-receptor framework. This offers new and powerful ways of interpreting river basin apportionment data. In this contribution, key components of the model are evaluated in the context of common experimental designs for sediment fingerprinting studies namely simple, nested and distributed catchment sampling programmes. Illustrative examples using geochemical and compound specific stable isotope datasets are presented and used to discuss best practice with specific attention to (1) the tracer selection process, (2) incorporation of fixed effects relating to sample timeframe and sediment type in the modelling process, (3) deriving and using informative priors in sediment fingerprinting context and (4) transparency of the process and replication of model results by other users.
Multi-Objective data analysis using Bayesian Inference for MagLIF experiments
NASA Astrophysics Data System (ADS)
Knapp, Patrick; Glinksy, Michael; Evans, Matthew; Gom, Matth; Han, Stephanie; Harding, Eric; Slutz, Steve; Hahn, Kelly; Harvey-Thompson, Adam; Geissel, Matthias; Ampleford, David; Jennings, Christopher; Schmit, Paul; Smith, Ian; Schwarz, Jens; Peterson, Kyle; Jones, Brent; Rochau, Gregory; Sinars, Daniel
2017-10-01
The MagLIF concept has recently demonstrated Gbar pressures and confinement of charged fusion products at stagnation. We present a new analysis methodology that allows for integration of multiple diagnostics including nuclear, x-ray imaging, and x-ray power to determine the temperature, pressure, liner areal density, and mix fraction. A simplified hot-spot model is used with a Bayesian inference network to determine the most probable model parameters that describe the observations while simultaneously revealing the principal uncertainties in the analysis. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.
Bayesian reconstruction of projection reconstruction NMR (PR-NMR).
Yoon, Ji Won
2014-11-01
Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. Copyright © 2014 Elsevier Ltd. All rights reserved.
Variational Bayesian Learning for Wavelet Independent Component Analysis
NASA Astrophysics Data System (ADS)
Roussos, E.; Roberts, S.; Daubechies, I.
2005-11-01
In an exploratory approach to data analysis, it is often useful to consider the observations as generated from a set of latent generators or "sources" via a generally unknown mapping. For the noisy overcomplete case, where we have more sources than observations, the problem becomes extremely ill-posed. Solutions to such inverse problems can, in many cases, be achieved by incorporating prior knowledge about the problem, captured in the form of constraints. This setting is a natural candidate for the application of the Bayesian methodology, allowing us to incorporate "soft" constraints in a natural manner. The work described in this paper is mainly driven by problems in functional magnetic resonance imaging of the brain, for the neuro-scientific goal of extracting relevant "maps" from the data. This can be stated as a `blind' source separation problem. Recent experiments in the field of neuroscience show that these maps are sparse, in some appropriate sense. The separation problem can be solved by independent component analysis (ICA), viewed as a technique for seeking sparse components, assuming appropriate distributions for the sources. We derive a hybrid wavelet-ICA model, transforming the signals into a domain where the modeling assumption of sparsity of the coefficients with respect to a dictionary is natural. We follow a graphical modeling formalism, viewing ICA as a probabilistic generative model. We use hierarchical source and mixing models and apply Bayesian inference to the problem. This allows us to perform model selection in order to infer the complexity of the representation, as well as automatic denoising. Since exact inference and learning in such a model is intractable, we follow a variational Bayesian mean-field approach in the conjugate-exponential family of distributions, for efficient unsupervised learning in multi-dimensional settings. The performance of the proposed algorithm is demonstrated on some representative experiments.
Hobbs, Brian P.; Sargent, Daniel J.; Carlin, Bradley P.
2014-01-01
Assessing between-study variability in the context of conventional random-effects meta-analysis is notoriously difficult when incorporating data from only a small number of historical studies. In order to borrow strength, historical and current data are often assumed to be fully homogeneous, but this can have drastic consequences for power and Type I error if the historical information is biased. In this paper, we propose empirical and fully Bayesian modifications of the commensurate prior model (Hobbs et al., 2011) extending Pocock (1976), and evaluate their frequentist and Bayesian properties for incorporating patient-level historical data using general and generalized linear mixed regression models. Our proposed commensurate prior models lead to preposterior admissible estimators that facilitate alternative bias-variance trade-offs than those offered by pre-existing methodologies for incorporating historical data from a small number of historical studies. We also provide a sample analysis of a colon cancer trial comparing time-to-disease progression using a Weibull regression model. PMID:24795786
Collective opinion formation model under Bayesian updating and confirmation bias
NASA Astrophysics Data System (ADS)
Nishi, Ryosuke; Masuda, Naoki
2013-06-01
We propose a collective opinion formation model with a so-called confirmation bias. The confirmation bias is a psychological effect with which, in the context of opinion formation, an individual in favor of an opinion is prone to misperceive new incoming information as supporting the current belief of the individual. Our model modifies a Bayesian decision-making model for single individuals [M. Rabin and J. L. Schrag, Q. J. Econ.0033-553310.1162/003355399555945 114, 37 (1999)] for the case of a well-mixed population of interacting individuals in the absence of the external input. We numerically simulate the model to show that all the agents eventually agree on one of the two opinions only when the confirmation bias is weak. Otherwise, the stochastic population dynamics ends up creating a disagreement configuration (also called polarization), particularly for large system sizes. A strong confirmation bias allows various final disagreement configurations with different fractions of the individuals in favor of the opposite opinions.
Dumont, Cyrielle; Lestini, Giulia; Le Nagard, Hervé; Mentré, France; Comets, Emmanuelle; Nguyen, Thu Thuy; Group, For The Pfim
2018-03-01
Nonlinear mixed-effect models (NLMEMs) are increasingly used for the analysis of longitudinal studies during drug development. When designing these studies, the expected Fisher information matrix (FIM) can be used instead of performing time-consuming clinical trial simulations. The function PFIM is the first tool for design evaluation and optimization that has been developed in R. In this article, we present an extended version, PFIM 4.0, which includes several new features. Compared with version 3.0, PFIM 4.0 includes a more complete pharmacokinetic/pharmacodynamic library of models and accommodates models including additional random effects for inter-occasion variability as well as discrete covariates. A new input method has been added to specify user-defined models through an R function. Optimization can be performed assuming some fixed parameters or some fixed sampling times. New outputs have been added regarding the FIM such as eigenvalues, conditional numbers, and the option of saving the matrix obtained after evaluation or optimization. Previously obtained results, which are summarized in a FIM, can be taken into account in evaluation or optimization of one-group protocols. This feature enables the use of PFIM for adaptive designs. The Bayesian individual FIM has been implemented, taking into account a priori distribution of random effects. Designs for maximum a posteriori Bayesian estimation of individual parameters can now be evaluated or optimized and the predicted shrinkage is also reported. It is also possible to visualize the graphs of the model and the sensitivity functions without performing evaluation or optimization. The usefulness of these approaches and the simplicity of use of PFIM 4.0 are illustrated by two examples: (i) an example of designing a population pharmacokinetic study accounting for previous results, which highlights the advantage of adaptive designs; (ii) an example of Bayesian individual design optimization for a pharmacodynamic study, showing that the Bayesian individual FIM can be a useful tool in therapeutic drug monitoring, allowing efficient prediction of estimation precision and shrinkage for individual parameters. PFIM 4.0 is a useful tool for design evaluation and optimization of longitudinal studies in pharmacometrics and is freely available at http://www.pfim.biostat.fr. Copyright © 2018 Elsevier B.V. All rights reserved.
Solomon, C.T.; Carpenter, S.R.; Clayton, M.K.; Cole, J.J.; Coloso, J.J.; Pace, M.L.; Vander Zanden, M. J.; Weidel, B.C.
2011-01-01
Fluxes of organic matter across habitat boundaries are common in food webs. These fluxes may strongly influence community dynamics, depending on the extent to which they are used by consumers. Yet understanding of basal resource use by consumers is limited, because describing trophic pathways in complex food webs is difficult. We quantified resource use for zooplankton, zoobenthos, and fishes in four low-productivity lakes, using a Bayesian mixing model and measurements of hydrogen, carbon, and nitrogen stable isotope ratios. Multiple sources of uncertainty were explicitly incorporated into the model. As a result, posterior estimates of resource use were often broad distributions; nevertheless, clear patterns were evident. Zooplankton relied on terrestrial and pelagic primary production, while zoobenthos and fishes relied on terrestrial and benthic primary production. Across all consumer groups terrestrial reliance tended to be higher, and benthic reliance lower, in lakes where light penetration was low due to inputs of terrestrial dissolved organic carbon. These results support and refine an emerging consensus that terrestrial and benthic support of lake food webs can be substantial, and they imply that changes in the relative availability of basal resources drive the strength of cross-habitat trophic connections. ?? 2011 by the Ecological Society of America.
USDA-ARS?s Scientific Manuscript database
PURPOSE: Bacterial cold water disease (BCWD) causes significant economic loss in salmonid aquaculture, and in 2005, a rainbow trout breeding program was initiated at the NCCCWA to select for increased disease survival. The main objectives of this study were to determine the mode of inheritance of di...
Carlisle, Aaron B.; Goldman, Kenneth J.; Litvin, Steven Y.; Madigan, Daniel J.; Bigman, Jennifer S.; Swithenbank, Alan M.; Kline, Thomas C.; Block, Barbara A.
2015-01-01
Ontogenetic changes in habitat are driven by shifting life-history requirements and play an important role in population dynamics. However, large portions of the life history of many pelagic species are still poorly understood or unknown. We used a novel combination of stable isotope analysis of vertebral annuli, Bayesian mixing models, isoscapes and electronic tag data to reconstruct ontogenetic patterns of habitat and resource use in a pelagic apex predator, the salmon shark (Lamna ditropis). Results identified the North Pacific Transition Zone as the major nursery area for salmon sharks and revealed an ontogenetic shift around the age of maturity from oceanic to increased use of neritic habitats. The nursery habitat may reflect trade-offs between prey availability, predation pressure and thermal constraints on juvenile endothermic sharks. The ontogenetic shift in habitat coincided with a reduction of isotopic niche, possibly reflecting specialization upon particular prey or habitats. Using tagging data to inform Bayesian isotopic mixing models revealed that adult sharks primarily use neritic habitats of Alaska yet receive a trophic subsidy from oceanic habitats. Integrating the multiple methods used here provides a powerful approach to retrospectively study the ecology and life history of migratory species throughout their ontogeny. PMID:25621332
The Bayesian group lasso for confounded spatial data
Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin E.; Walsh, Daniel P.
2017-01-01
Generalized linear mixed models for spatial processes are widely used in applied statistics. In many applications of the spatial generalized linear mixed model (SGLMM), the goal is to obtain inference about regression coefficients while achieving optimal predictive ability. When implementing the SGLMM, multicollinearity among covariates and the spatial random effects can make computation challenging and influence inference. We present a Bayesian group lasso prior with a single tuning parameter that can be chosen to optimize predictive ability of the SGLMM and jointly regularize the regression coefficients and spatial random effect. We implement the group lasso SGLMM using efficient Markov chain Monte Carlo (MCMC) algorithms and demonstrate how multicollinearity among covariates and the spatial random effect can be monitored as a derived quantity. To test our method, we compared several parameterizations of the SGLMM using simulated data and two examples from plant ecology and disease ecology. In all examples, problematic levels multicollinearity occurred and influenced sampling efficiency and inference. We found that the group lasso prior resulted in roughly twice the effective sample size for MCMC samples of regression coefficients and can have higher and less variable predictive accuracy based on out-of-sample data when compared to the standard SGLMM.
Zhao, Wei; Cella, Massimo; Della Pasqua, Oscar; Burger, David; Jacqz-Aigrain, Evelyne
2012-01-01
AIMS To develop a population pharmacokinetic model for abacavir in HIV-infected infants and toddlers, which will be used to describe both once and twice daily pharmacokinetic profiles, identify covariates that explain variability and propose optimal time points to optimize the area under the concentration–time curve (AUC) targeted dosage and individualize therapy. METHODS The pharmacokinetics of abacavir was described with plasma concentrations from 23 patients using nonlinear mixed-effects modelling (NONMEM) software. A two-compartment model with first-order absorption and elimination was developed. The final model was validated using bootstrap, visual predictive check and normalized prediction distribution errors. The Bayesian estimator was validated using the cross-validation and simulation–estimation method. RESULTS The typical population pharmacokinetic parameters and relative standard errors (RSE) were apparent systemic clearance (CL) 13.4 l h−1 (RSE 6.3%), apparent central volume of distribution 4.94 l (RSE 28.7%), apparent peripheral volume of distribution 8.12 l (RSE14.2%), apparent intercompartment clearance 1.25 l h−1 (RSE 16.9%) and absorption rate constant 0.758 h−1 (RSE 5.8%). The covariate analysis identified weight as the individual factor influencing the apparent oral clearance: CL = 13.4 × (weight/12)1.14. The maximum a posteriori probability Bayesian estimator, based on three concentrations measured at 0, 1 or 2, and 3 h after drug intake allowed predicting individual AUC0–t. CONCLUSIONS The population pharmacokinetic model developed for abacavir in HIV-infected infants and toddlers accurately described both once and twice daily pharmacokinetic profiles. The maximum a posteriori probability Bayesian estimator of AUC0–t was developed from the final model and can be used routinely to optimize individual dosing. PMID:21988586
Adam-Poupart, Ariane; Brand, Allan; Fournier, Michel; Jerrett, Michael; Smargiassi, Audrey
2014-09-01
Ambient air ozone (O3) is a pulmonary irritant that has been associated with respiratory health effects including increased lung inflammation and permeability, airway hyperreactivity, respiratory symptoms, and decreased lung function. Estimation of O3 exposure is a complex task because the pollutant exhibits complex spatiotemporal patterns. To refine the quality of exposure estimation, various spatiotemporal methods have been developed worldwide. We sought to compare the accuracy of three spatiotemporal models to predict summer ground-level O3 in Quebec, Canada. We developed a land-use mixed-effects regression (LUR) model based on readily available data (air quality and meteorological monitoring data, road networks information, latitude), a Bayesian maximum entropy (BME) model incorporating both O3 monitoring station data and the land-use mixed model outputs (BME-LUR), and a kriging method model based only on available O3 monitoring station data (BME kriging). We performed leave-one-station-out cross-validation and visually assessed the predictive capability of each model by examining the mean temporal and spatial distributions of the average estimated errors. The BME-LUR was the best predictive model (R2 = 0.653) with the lowest root mean-square error (RMSE ;7.06 ppb), followed by the LUR model (R2 = 0.466, RMSE = 8.747) and the BME kriging model (R2 = 0.414, RMSE = 9.164). Our findings suggest that errors of estimation in the interpolation of O3 concentrations with BME can be greatly reduced by incorporating outputs from a LUR model developed with readily available data.
Mixed effect Poisson log-linear models for clinical and epidemiological sleep hypnogram data
Swihart, Bruce J.; Caffo, Brian S.; Crainiceanu, Ciprian; Punjabi, Naresh M.
2013-01-01
Bayesian Poisson log-linear multilevel models scalable to epidemiological studies are proposed to investigate population variability in sleep state transition rates. Hierarchical random effects are used to account for pairings of subjects and repeated measures within those subjects, as comparing diseased to non-diseased subjects while minimizing bias is of importance. Essentially, non-parametric piecewise constant hazards are estimated and smoothed, allowing for time-varying covariates and segment of the night comparisons. The Bayesian Poisson regression is justified through a re-derivation of a classical algebraic likelihood equivalence of Poisson regression with a log(time) offset and survival regression assuming exponentially distributed survival times. Such re-derivation allows synthesis of two methods currently used to analyze sleep transition phenomena: stratified multi-state proportional hazards models and log-linear models with GEE for transition counts. An example data set from the Sleep Heart Health Study is analyzed. Supplementary material includes the analyzed data set as well as the code for a reproducible analysis. PMID:22241689
A Fatty Acid Based Bayesian Approach for Inferring Diet in Aquatic Consumers
Holtgrieve, Gordon W.; Ward, Eric J.; Ballantyne, Ashley P.; Burns, Carolyn W.; Kainz, Martin J.; Müller-Navarra, Doerthe C.; Persson, Jonas; Ravet, Joseph L.; Strandberg, Ursula; Taipale, Sami J.; Alhgren, Gunnel
2015-01-01
We modified the stable isotope mixing model MixSIR to infer primary producer contributions to consumer diets based on their fatty acid composition. To parameterize the algorithm, we generated a ‘consumer-resource library’ of FA signatures of Daphnia fed different algal diets, using 34 feeding trials representing diverse phytoplankton lineages. This library corresponds to the resource or producer file in classic Bayesian mixing models such as MixSIR or SIAR. Because this library is based on the FA profiles of zooplankton consuming known diets, and not the FA profiles of algae directly, trophic modification of consumer lipids is directly accounted for. To test the model, we simulated hypothetical Daphnia comprised of 80% diatoms, 10% green algae, and 10% cryptophytes and compared the FA signatures of these known pseudo-mixtures to outputs generated by the mixing model. The algorithm inferred these simulated consumers were comprised of 82% (63-92%) [median (2.5th to 97.5th percentile credible interval)] diatoms, 11% (4-22%) green algae, and 6% (0-25%) cryptophytes. We used the same model with published phytoplankton stable isotope (SI) data for δ13C and δ15N to examine how a SI based approach resolved a similar scenario. With SI, the algorithm inferred that the simulated consumer assimilated 52% (4-91%) diatoms, 23% (1-78%) green algae, and 18% (1-73%) cyanobacteria. The accuracy and precision of SI based estimates was extremely sensitive to both resource and consumer uncertainty, as well as the trophic fractionation assumption. These results indicate that when using only two tracers with substantial uncertainty for the putative resources, as is often the case in this class of analyses, the underdetermined constraint in consumer-resource SI analyses may be intractable. The FA based approach alleviated the underdetermined constraint because many more FA biomarkers were utilized (n < 20), different primary producers (e.g., diatoms, green algae, and cryptophytes) have very characteristic FA compositions, and the FA profiles of many aquatic primary consumers are strongly influenced by their diets. PMID:26114945
Bayesian inference in an item response theory model with a generalized student t link function
NASA Astrophysics Data System (ADS)
Azevedo, Caio L. N.; Migon, Helio S.
2012-10-01
In this paper we introduce a new item response theory (IRT) model with a generalized Student t-link function with unknown degrees of freedom (df), named generalized t-link (GtL) IRT model. In this model we consider only the difficulty parameter in the item response function. GtL is an alternative to the two parameter logit and probit models, since the degrees of freedom (df) play a similar role to the discrimination parameter. However, the behavior of the curves of the GtL is different from those of the two parameter models and the usual Student t link, since in GtL the curve obtained from different df's can cross the probit curves in more than one latent trait level. The GtL model has similar proprieties to the generalized linear mixed models, such as the existence of sufficient statistics and easy parameter interpretation. Also, many techniques of parameter estimation, model fit assessment and residual analysis developed for that models can be used for the GtL model. We develop fully Bayesian estimation and model fit assessment tools through a Metropolis-Hastings step within Gibbs sampling algorithm. We consider a prior sensitivity choice concerning the degrees of freedom. The simulation study indicates that the algorithm recovers all parameters properly. In addition, some Bayesian model fit assessment tools are considered. Finally, a real data set is analyzed using our approach and other usual models. The results indicate that our model fits the data better than the two parameter models.
Lu, Tao
2017-01-01
The joint modeling of mean and variance for longitudinal data is an active research area. This type of model has the advantage of accounting for heteroscedasticity commonly observed in between and within subject variations. Most of researches focus on improving the estimating efficiency but ignore many data features frequently encountered in practice. In this article, we develop a mixed-effects location scale joint model that concurrently accounts for longitudinal data with multiple features. Specifically, our joint model handles heterogeneity, skewness, limit of detection, measurement errors in covariates which are typically observed in the collection of longitudinal data from many studies. We employ a Bayesian approach for making inference on the joint model. The proposed model and method are applied to an AIDS study. Simulation studies are performed to assess the performance of the proposed method. Alternative models under different conditions are compared.
Evaristo, Jaivime; McDonnell, Jeffrey J.; Scholl, Martha A.; Bruijnzeel, L. Adrian; Chun, Kwok P.
2016-01-01
Water transpired by trees has long been assumed to be sourced from the same subsurface water stocks that contribute to groundwater recharge and streamflow. However, recent investigations using dual water stable isotopes have shown an apparent ecohydrological separation between tree-transpired water and stream water. Here we present evidence for such ecohydrological separation in two tropical environments in Puerto Rico where precipitation seasonality is relatively low and where precipitation is positively correlated with primary productivity. We determined the stable isotope signature of xylem water of 30 mahogany (Swietenia spp.) trees sampled during two periods with contrasting moisture status. Our results suggest that the separation between transpiration water and groundwater recharge/streamflow water might be related less to the temporal phasing of hydrologic inputs and primary productivity, and more to the fundamental processes that drive evaporative isotopic enrichment of residual soil water within the soil matrix. The lack of an evaporative signature of both groundwater and streams in the study area suggests that these water balance components have a water source that is transported quickly to deeper subsurface storage compared to waters that trees use. A Bayesian mixing model used to partition source water proportions of xylem water showed that groundwater contribution was greater for valley-bottom, riparian trees than for ridge-top trees. Groundwater contribution was also greater at the xeric site than at the mesic–hydric site. These model results (1) underline the utility of a simple linear mixing model, implemented in a Bayesian inference framework, in quantifying source water contributions at sites with contrasting physiographic characteristics, and (2) highlight the informed judgement that should be made in interpreting mixing model results, of import particularly in surveying groundwater use patterns by vegetation from regional to global scales.
Bayesian Mixed-Membership Models of Complex and Evolving Networks
2006-12-01
R. Hughes, J. Parkinson , M. Gerstein, S . J. Wodak, A. Emili, and J. F. Greenblatt. Global landscape of protein complexes in the yeast Saccharomyces...provision of law , no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid...Membership Models of Complex and Evolving Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e
NASA Astrophysics Data System (ADS)
Fukuda, J.; Johnson, K. M.
2009-12-01
Studies utilizing inversions of geodetic data for the spatial distribution of coseismic slip on faults typically present the result as a single fault plane and slip distribution. Commonly the geometry of the fault plane is assumed to be known a priori and the data are inverted for slip. However, sometimes there is not strong a priori information on the geometry of the fault that produced the earthquake and the data is not always strong enough to completely resolve the fault geometry. We develop a method to solve for the full posterior probability distribution of fault slip and fault geometry parameters in a Bayesian framework using Monte Carlo methods. The slip inversion problem is particularly challenging because it often involves multiple data sets with unknown relative weights (e.g. InSAR, GPS), model parameters that are related linearly (slip) and nonlinearly (fault geometry) through the theoretical model to surface observations, prior information on model parameters, and a regularization prior to stabilize the inversion. We present the theoretical framework and solution method for a Bayesian inversion that can handle all of these aspects of the problem. The method handles the mixed linear/nonlinear nature of the problem through combination of both analytical least-squares solutions and Monte Carlo methods. We first illustrate and validate the inversion scheme using synthetic data sets. We then apply the method to inversion of geodetic data from the 2003 M6.6 San Simeon, California earthquake. We show that the uncertainty in strike and dip of the fault plane is over 20 degrees. We characterize the uncertainty in the slip estimate with a volume around the mean fault solution in which the slip most likely occurred. Slip likely occurred somewhere in a volume that extends 5-10 km in either direction normal to the fault plane. We implement slip inversions with both traditional, kinematic smoothing constraints on slip and a simple physical condition of uniform stress drop.
Chan, Kelvin K W; Xie, Feng; Willan, Andrew R; Pullenayegum, Eleanor M
2017-04-01
Parameter uncertainty in value sets of multiattribute utility-based instruments (MAUIs) has received little attention previously. This false precision leads to underestimation of the uncertainty of the results of cost-effectiveness analyses. The aim of this study is to examine the use of multiple imputation as a method to account for this uncertainty of MAUI scoring algorithms. We fitted a Bayesian model with random effects for respondents and health states to the data from the original US EQ-5D-3L valuation study, thereby estimating the uncertainty in the EQ-5D-3L scoring algorithm. We applied these results to EQ-5D-3L data from the Commonwealth Fund (CWF) Survey for Sick Adults ( n = 3958), comparing the standard error of the estimated mean utility in the CWF population using the predictive distribution from the Bayesian mixed-effect model (i.e., incorporating parameter uncertainty in the value set) with the standard error of the estimated mean utilities based on multiple imputation and the standard error using the conventional approach of using MAUI (i.e., ignoring uncertainty in the value set). The mean utility in the CWF population based on the predictive distribution of the Bayesian model was 0.827 with a standard error (SE) of 0.011. When utilities were derived using the conventional approach, the estimated mean utility was 0.827 with an SE of 0.003, which is only 25% of the SE based on the full predictive distribution of the mixed-effect model. Using multiple imputation with 20 imputed sets, the mean utility was 0.828 with an SE of 0.011, which is similar to the SE based on the full predictive distribution. Ignoring uncertainty of the predicted health utilities derived from MAUIs could lead to substantial underestimation of the variance of mean utilities. Multiple imputation corrects for this underestimation so that the results of cost-effectiveness analyses using MAUIs can report the correct degree of uncertainty.
Bayesian inference in camera trapping studies for a class of spatial capture-recapture models
Royle, J. Andrew; Karanth, K. Ullas; Gopalaswamy, Arjun M.; Kumar, N. Samba
2009-01-01
We develop a class of models for inference about abundance or density using spatial capture-recapture data from studies based on camera trapping and related methods. The model is a hierarchical model composed of two components: a point process model describing the distribution of individuals in space (or their home range centers) and a model describing the observation of individuals in traps. We suppose that trap- and individual-specific capture probabilities are a function of distance between individual home range centers and trap locations. We show that the models can be regarded as generalized linear mixed models, where the individual home range centers are random effects. We adopt a Bayesian framework for inference under these models using a formulation based on data augmentation. We apply the models to camera trapping data on tigers from the Nagarahole Reserve, India, collected over 48 nights in 2006. For this study, 120 camera locations were used, but cameras were only operational at 30 locations during any given sample occasion. Movement of traps is common in many camera-trapping studies and represents an important feature of the observation model that we address explicitly in our application.
A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models.
Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S; Wu, Xiaowei; Müller, Rolf
2018-01-01
Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design.
A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models
Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S.; Wu, Xiaowei; Müller, Rolf
2017-01-01
Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design. PMID:29749977
Semiparametric regression during 2003–2007*
Ruppert, David; Wand, M.P.; Carroll, Raymond J.
2010-01-01
Semiparametric regression is a fusion between parametric regression and nonparametric regression that integrates low-rank penalized splines, mixed model and hierarchical Bayesian methodology – thus allowing more streamlined handling of longitudinal and spatial correlation. We review progress in the field over the five-year period between 2003 and 2007. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application. PMID:20305800
Hossein-Zadeh, Navid Ghavi
2016-08-01
The aim of this study was to compare seven non-linear mathematical models (Brody, Wood, Dhanoa, Sikka, Nelder, Rook and Dijkstra) to examine their efficiency in describing the lactation curves for milk fat to protein ratio (FPR) in Iranian buffaloes. Data were 43 818 test-day records for FPR from the first three lactations of Iranian buffaloes which were collected on 523 dairy herds in the period from 1996 to 2012 by the Animal Breeding Center of Iran. Each model was fitted to monthly FPR records of buffaloes using the non-linear mixed model procedure (PROC NLMIXED) in SAS and the parameters were estimated. The models were tested for goodness of fit using Akaike's information criterion (AIC), Bayesian information criterion (BIC) and log maximum likelihood (-2 Log L). The Nelder and Sikka mixed models provided the best fit of lactation curve for FPR in the first and second lactations of Iranian buffaloes, respectively. However, Wood, Dhanoa and Sikka mixed models provided the best fit of lactation curve for FPR in the third parity buffaloes. Evaluation of first, second and third lactation features showed that all models, except for Dijkstra model in the third lactation, under-predicted test time at which daily FPR was minimum. On the other hand, minimum FPR was over-predicted by all equations. Evaluation of the different models used in this study indicated that non-linear mixed models were sufficient for fitting test-day FPR records of Iranian buffaloes.
Moving beyond qualitative evaluations of Bayesian models of cognition.
Hemmer, Pernille; Tauber, Sean; Steyvers, Mark
2015-06-01
Bayesian models of cognition provide a powerful way to understand the behavior and goals of individuals from a computational point of view. Much of the focus in the Bayesian cognitive modeling approach has been on qualitative model evaluations, where predictions from the models are compared to data that is often averaged over individuals. In many cognitive tasks, however, there are pervasive individual differences. We introduce an approach to directly infer individual differences related to subjective mental representations within the framework of Bayesian models of cognition. In this approach, Bayesian data analysis methods are used to estimate cognitive parameters and motivate the inference process within a Bayesian cognitive model. We illustrate this integrative Bayesian approach on a model of memory. We apply the model to behavioral data from a memory experiment involving the recall of heights of people. A cross-validation analysis shows that the Bayesian memory model with inferred subjective priors predicts withheld data better than a Bayesian model where the priors are based on environmental statistics. In addition, the model with inferred priors at the individual subject level led to the best overall generalization performance, suggesting that individual differences are important to consider in Bayesian models of cognition.
Pedroza, Claudia; Truong, Van Thi Thanh
2017-11-02
Analyses of multicenter studies often need to account for center clustering to ensure valid inference. For binary outcomes, it is particularly challenging to properly adjust for center when the number of centers or total sample size is small, or when there are few events per center. Our objective was to evaluate the performance of generalized estimating equation (GEE) log-binomial and Poisson models, generalized linear mixed models (GLMMs) assuming binomial and Poisson distributions, and a Bayesian binomial GLMM to account for center effect in these scenarios. We conducted a simulation study with few centers (≤30) and 50 or fewer subjects per center, using both a randomized controlled trial and an observational study design to estimate relative risk. We compared the GEE and GLMM models with a log-binomial model without adjustment for clustering in terms of bias, root mean square error (RMSE), and coverage. For the Bayesian GLMM, we used informative neutral priors that are skeptical of large treatment effects that are almost never observed in studies of medical interventions. All frequentist methods exhibited little bias, and the RMSE was very similar across the models. The binomial GLMM had poor convergence rates, ranging from 27% to 85%, but performed well otherwise. The results show that both GEE models need to use small sample corrections for robust SEs to achieve proper coverage of 95% CIs. The Bayesian GLMM had similar convergence rates but resulted in slightly more biased estimates for the smallest sample sizes. However, it had the smallest RMSE and good coverage across all scenarios. These results were very similar for both study designs. For the analyses of multicenter studies with a binary outcome and few centers, we recommend adjustment for center with either a GEE log-binomial or Poisson model with appropriate small sample corrections or a Bayesian binomial GLMM with informative priors.
Capturing changes in flood risk with Bayesian approaches for flood damage assessment
NASA Astrophysics Data System (ADS)
Vogel, Kristin; Schröter, Kai; Kreibich, Heidi; Thieken, Annegret; Müller, Meike; Sieg, Tobias; Laudan, Jonas; Kienzler, Sarah; Weise, Laura; Merz, Bruno; Scherbaum, Frank
2016-04-01
Flood risk is a function of hazard as well as of exposure and vulnerability. All three components are under change over space and time and have to be considered for reliable damage estimations and risk analyses, since this is the basis for an efficient, adaptable risk management. Hitherto, models for estimating flood damage are comparatively simple and cannot sufficiently account for changing conditions. The Bayesian network approach allows for a multivariate modeling of complex systems without relying on expert knowledge about physical constraints. In a Bayesian network each model component is considered to be a random variable. The way of interactions between those variables can be learned from observations or be defined by expert knowledge. Even a combination of both is possible. Moreover, the probabilistic framework captures uncertainties related to the prediction and provides a probability distribution for the damage instead of a point estimate. The graphical representation of Bayesian networks helps to study the change of probabilities for changing circumstances and may thus simplify the communication between scientists and public authorities. In the framework of the DFG-Research Training Group "NatRiskChange" we aim to develop Bayesian networks for flood damage and vulnerability assessments of residential buildings and companies under changing conditions. A Bayesian network learned from data, collected over the last 15 years in flooded regions in the Elbe and Danube catchments (Germany), reveals the impact of many variables like building characteristics, precaution and warning situation on flood damage to residential buildings. While the handling of incomplete and hybrid (discrete mixed with continuous) data are the most challenging issues in the study on residential buildings, a similar study, that focuses on the vulnerability of small to medium sized companies, bears new challenges. Relying on a much smaller data set for the determination of the model parameters, overly complex models should be avoided. A so called Markov Blanket approach aims at the identification of the most relevant factors and constructs a Bayesian network based on those findings. With our approach we want to exploit a major advantage of Bayesian networks which is their ability to consider dependencies not only pairwise, but to capture the joint effects and interactions of driving forces. Hence, the flood damage network does not only show the impact of precaution on the building damage separately, but also reveals the mutual effects of precaution and the quality of warning for a variety of flood settings. Thus, it allows for a consideration of changing conditions and different courses of action and forms a novel and valuable tool for decision support. This study is funded by the Deutsche Forschungsgemeinschaft (DFG) within the research training program GRK 2043/1 "NatRiskChange - Natural hazards and risks in a changing world" at the University of Potsdam.
Wang, Ming; Li, Zheng; Lee, Eun Young; Lewis, Mechelle M; Zhang, Lijun; Sterling, Nicholas W; Wagner, Daymond; Eslinger, Paul; Du, Guangwei; Huang, Xuemei
2017-09-25
It is challenging for current statistical models to predict clinical progression of Parkinson's disease (PD) because of the involvement of multi-domains and longitudinal data. Past univariate longitudinal or multivariate analyses from cross-sectional trials have limited power to predict individual outcomes or a single moment. The multivariate generalized linear mixed-effect model (GLMM) under the Bayesian framework was proposed to study multi-domain longitudinal outcomes obtained at baseline, 18-, and 36-month. The outcomes included motor, non-motor, and postural instability scores from the MDS-UPDRS, and demographic and standardized clinical data were utilized as covariates. The dynamic prediction was performed for both internal and external subjects using the samples from the posterior distributions of the parameter estimates and random effects, and also the predictive accuracy was evaluated based on the root of mean square error (RMSE), absolute bias (AB) and the area under the receiver operating characteristic (ROC) curve. First, our prediction model identified clinical data that were differentially associated with motor, non-motor, and postural stability scores. Second, the predictive accuracy of our model for the training data was assessed, and improved prediction was gained in particularly for non-motor (RMSE and AB: 2.89 and 2.20) compared to univariate analysis (RMSE and AB: 3.04 and 2.35). Third, the individual-level predictions of longitudinal trajectories for the testing data were performed, with ~80% observed values falling within the 95% credible intervals. Multivariate general mixed models hold promise to predict clinical progression of individual outcomes in PD. The data was obtained from Dr. Xuemei Huang's NIH grant R01 NS060722 , part of NINDS PD Biomarker Program (PDBP). All data was entered within 24 h of collection to the Data Management Repository (DMR), which is publically available ( https://pdbp.ninds.nih.gov/data-management ).
NASA Astrophysics Data System (ADS)
Smith, J. P.; Owens, P. N.; Gaspar, L.; Lobb, D. A.; Petticrew, E. L.
2015-12-01
An understanding of sediment redistribution processes and the main sediment sources within a watershed is needed to support watershed management strategies. The fingerprinting technique is increasingly being recognized as a method for establishing the source of the sediment transported within watersheds. However, the different behaviour of the various fingerprinting properties has been recognized as a major limitation of the technique, and the uncertainty associated with tracer selection needs to be addressed. There are also questions associated with which modelling approach (frequentist or Bayesian) is the best to unmix complex environmental mixtures, such as river sediment. This study aims to compare and evaluate the differences between fingerprinting predictions provided by a Bayesian unmixing model (MixSIAR) using different groups of tracer properties for use in sediment source identification. We used fallout radionuclides (e.g. 137Cs) and geochemical elements (e.g. As) as conventional fingerprinting properties, and colour parameters as emerging properties; both alone and in combination. These fingerprinting properties are being used (i.e. Koiter et al., 2013; Barthod et al., 2015) to determine the proportional contributions of fine sediment in the South Tobacco Creek Watershed, an agricultural watershed located in Manitoba, Canada. We show that the unmixing model using a combination of fallout radionuclides and geochemical tracers gave similar results to the model based on colour parameters. Furthermore, we show that a model that combines all tracers (i.e. radionuclide/geochemical and colour) gave similar results, showing that sediment sources change from predominantly topsoil in the upper reaches of the watershed to channel bank and bedrock outcrop material in the lower reaches. Barthod LRM et al. (2015). Selecting color-based tracers and classifying sediment sources in the assessment of sediment dynamics using sediment source fingerprinting. J Environ Qual. Doi:10.2134/jeq2015.01.0043 Koiter AJ et al. (2013). Investigating the role of connectivity and scale in assessing the sources of sediment in an agricultural watershed in the Canadian prairies using sediment source fingerprinting. J Soils Sediments, 13, 1676-1691.
How much of stream and groundwater comes from snow? A stable isotope perspective in the Swiss Alps
NASA Astrophysics Data System (ADS)
Beria, H.; Schaefli, B.; Ceperley, N. C.; Michelon, A.; Larsen, J.
2017-12-01
Precipitation which once fell as snow is predicted to fall more often as liquid rain now that climate is, and continues, warming. Within snow dominated areas, preferential winter groundwater recharge has been observed, however a shorter winter season and smaller snow fraction results in earlier snowmelt and thinner snowpacks. This has the potential to change the supply of snow water sources to both streams and groundwater, which has important implications for flow regimes and water resources. Stable isotopes of water (2H and 18O) allow us to discriminate rain vs snow signatures within water flowing in the stream or the subsurface. Using one year of isotope data collected in a Swiss Alpine catchment (Vallon de Nant, Vaud), we developed novel forward Bayesian mixing models, based on statistical and empirical likelihoods, to quantify source contributions and uncertainty estimates. To account for the spatial heterogeneity in precipitation isotopes, we parameterized the model accounting for elevation effects on isotopes, calculated using the network of GNIP stations in Switzerland. Instead of sampling meltwater, we sampled snowpack throughout the season and across a steep elevation gradient (1241m to 2455m) to infer the snowmelt transformation factor. Due to continuous mixing within the snowpack, the snowmelt water shows much lower variability in its isotopic range which is reflected in the snow transformation factor. Snowmelt yield to groundwater recharge per unit amount of precipitation was found to be greater than rainfall in Vallon de Nant, suggesting strongly preferential winter recharge. Seasonal dynamics of stream responses to rain-on-snow events, fog deposition, snowmelt and summer rain were also explored. Innovative monitoring and sampling with tools such as stable isotopes and forward Bayesian mixing models are key to improved comprehension of global recharge mechanisms.
Kadarmideen, Haja N.; Janss, Luc L. G.
2005-01-01
Bayesian segregation analyses were used to investigate the mode of inheritance of osteochondral lesions (osteochondrosis, OC) in pigs. Data consisted of 1163 animals with OC and their pedigrees included 2891 animals. Mixed-inheritance threshold models (MITM) and several variants of MITM, in conjunction with Markov chain Monte Carlo methods, were developed for the analysis of these (categorical) data. Results showed major genes with significant and substantially higher variances (range 1.384–37.81), compared to the polygenic variance (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\pagestyle{empty} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{{\\sigma}}}_{{\\mathrm{u}}}^{2}\\end{equation*}\\end{document}). Consequently, heritabilities for a mixed inheritance (range 0.65–0.90) were much higher than the heritabilities from the polygenes. Disease allele frequencies range was 0.38–0.88. Additional analyses estimating the transmission probabilities of the major gene showed clear evidence for Mendelian segregation of a major gene affecting osteochondrosis. The variants, MITM with informative prior on \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\pagestyle{empty} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{{\\sigma}}}_{{\\mathrm{u}}}^{2}\\end{equation*}\\end{document}, showed significant improvement in marginal distributions and accuracy of parameters. MITM with a “reduced polygenic model” for parameterization of polygenic effects avoided convergence problems and poor mixing encountered in an “individual polygenic model.” In all cases, “shrinkage estimators” for fixed effects avoided unidentifiability for these parameters. The mixed-inheritance linear model (MILM) was also applied to all OC lesions and compared with the MITM. This is the first study to report evidence of major genes for osteochondral lesions in pigs; these results may also form a basis for underpinning the genetic inheritance of this disease in other animals as well as in humans. PMID:16020792
NASA Astrophysics Data System (ADS)
Li, L.; Xu, C.-Y.; Engeland, K.
2012-04-01
With respect to model calibration, parameter estimation and analysis of uncertainty sources, different approaches have been used in hydrological models. Bayesian method is one of the most widely used methods for uncertainty assessment of hydrological models, which incorporates different sources of information into a single analysis through Bayesian theorem. However, none of these applications can well treat the uncertainty in extreme flows of hydrological models' simulations. This study proposes a Bayesian modularization method approach in uncertainty assessment of conceptual hydrological models by considering the extreme flows. It includes a comprehensive comparison and evaluation of uncertainty assessments by a new Bayesian modularization method approach and traditional Bayesian models using the Metropolis Hasting (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions are used in combination with traditional Bayesian: the AR (1) plus Normal and time period independent model (Model 1), the AR (1) plus Normal and time period dependent model (Model 2) and the AR (1) plus multi-normal model (Model 3). The results reveal that (1) the simulations derived from Bayesian modularization method are more accurate with the highest Nash-Sutcliffe efficiency value, and (2) the Bayesian modularization method performs best in uncertainty estimates of entire flows and in terms of the application and computational efficiency. The study thus introduces a new approach for reducing the extreme flow's effect on the discharge uncertainty assessment of hydrological models via Bayesian. Keywords: extreme flow, uncertainty assessment, Bayesian modularization, hydrological model, WASMOD
Ritchie, Andrew M; Lo, Nathan; Ho, Simon Y W
2017-05-01
In Bayesian phylogenetic analyses of genetic data, prior probability distributions need to be specified for the model parameters, including the tree. When Bayesian methods are used for molecular dating, available tree priors include those designed for species-level data, such as the pure-birth and birth-death priors, and coalescent-based priors designed for population-level data. However, molecular dating methods are frequently applied to data sets that include multiple individuals across multiple species. Such data sets violate the assumptions of both the speciation and coalescent-based tree priors, making it unclear which should be chosen and whether this choice can affect the estimation of node times. To investigate this problem, we used a simulation approach to produce data sets with different proportions of within- and between-species sampling under the multispecies coalescent model. These data sets were then analyzed under pure-birth, birth-death, constant-size coalescent, and skyline coalescent tree priors. We also explored the ability of Bayesian model testing to select the best-performing priors. We confirmed the applicability of our results to empirical data sets from cetaceans, phocids, and coregonid whitefish. Estimates of node times were generally robust to the choice of tree prior, but some combinations of tree priors and sampling schemes led to large differences in the age estimates. In particular, the pure-birth tree prior frequently led to inaccurate estimates for data sets containing a mixture of inter- and intraspecific sampling, whereas the birth-death and skyline coalescent priors produced stable results across all scenarios. Model testing provided an adequate means of rejecting inappropriate tree priors. Our results suggest that tree priors do not strongly affect Bayesian molecular dating results in most cases, even when severely misspecified. However, the choice of tree prior can be significant for the accuracy of dating results in the case of data sets with mixed inter- and intraspecies sampling. [Bayesian phylogenetic methods; model testing; molecular dating; node time; tree prior.]. © The authors 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
NASA Astrophysics Data System (ADS)
Jameel, M. Y.; Brewer, S.; Fiorella, R.; Tipple, B. J.; Bowen, G. J.; Terry, S.
2017-12-01
Public water supply systems (PWSS) are complex distribution systems and critical infrastructure, making them vulnerable to physical disruption and contamination. Exploring the susceptibility of PWSS to such perturbations requires detailed knowledge of the supply system structure and operation. Although the physical structure of supply systems (i.e., pipeline connection) is usually well documented for developed cities, the actual flow patterns of water in these systems are typically unknown or estimated based on hydrodynamic models with limited observational validation. Here, we present a novel method for mapping the flow structure of water in a large, complex PWSS, building upon recent work highlighting the potential of stable isotopes of water (SIW) to document water management practices within complex PWSS. We sampled a major water distribution system of the Salt Lake Valley, Utah, measuring SIW of water sources, treatment facilities, and numerous sites within in the supply system. We then developed a hierarchical Bayesian (HB) isotope mixing model to quantify the proportion of water supplied by different sources at sites within the supply system. Known production volumes and spatial distance effects were used to define the prior probabilities for each source; however, we did not include other physical information about the supply system. Our results were in general agreement with those obtained by hydrodynamic models and provide quantitative estimates of contributions of different water sources to a given site along with robust estimates of uncertainty. Secondary properties of the supply system, such as regions of "static" and "dynamic" source (e.g., regions supplied dominantly by one source vs. those experiencing active mixing between multiple sources), can be inferred from the results. The isotope-based HB isotope mixing model offers a new investigative technique for analyzing PWSS and documenting aspects of supply system structure and operation that are otherwise challenging to observe. The method could allow water managers to document spatiotemporal variation in PWSS flow patterns, critical for interrogating the distribution system to inform operation decision making or disaster response, optimize water supply and, monitor and enforce water rights.
Item selection via Bayesian IRT models.
Arima, Serena
2015-02-10
With reference to a questionnaire that aimed to assess the quality of life for dysarthric speakers, we investigate the usefulness of a model-based procedure for reducing the number of items. We propose a mixed cumulative logit model, which is known in the psychometrics literature as the graded response model: responses to different items are modelled as a function of individual latent traits and as a function of item characteristics, such as their difficulty and their discrimination power. We jointly model the discrimination and the difficulty parameters by using a k-component mixture of normal distributions. Mixture components correspond to disjoint groups of items. Items that belong to the same groups can be considered equivalent in terms of both difficulty and discrimination power. According to decision criteria, we select a subset of items such that the reduced questionnaire is able to provide the same information that the complete questionnaire provides. The model is estimated by using a Bayesian approach, and the choice of the number of mixture components is justified according to information criteria. We illustrate the proposed approach on the basis of data that are collected for 104 dysarthric patients by local health authorities in Lecce and in Milan. Copyright © 2014 John Wiley & Sons, Ltd.
Semmens, Brice X; Ward, Eric J; Moore, Jonathan W; Darimont, Chris T
2009-07-09
Variability in resource use defines the width of a trophic niche occupied by a population. Intra-population variability in resource use may occur across hierarchical levels of population structure from individuals to subpopulations. Understanding how levels of population organization contribute to population niche width is critical to ecology and evolution. Here we describe a hierarchical stable isotope mixing model that can simultaneously estimate both the prey composition of a consumer diet and the diet variability among individuals and across levels of population organization. By explicitly estimating variance components for multiple scales, the model can deconstruct the niche width of a consumer population into relevant levels of population structure. We apply this new approach to stable isotope data from a population of gray wolves from coastal British Columbia, and show support for extensive intra-population niche variability among individuals, social groups, and geographically isolated subpopulations. The analytic method we describe improves mixing models by accounting for diet variability, and improves isotope niche width analysis by quantitatively assessing the contribution of levels of organization to the niche width of a population.
Fang, Xin; Li, Runkui; Kan, Haidong; Bottai, Matteo; Fang, Fang
2016-01-01
Objective To demonstrate an application of Bayesian model averaging (BMA) with generalised additive mixed models (GAMM) and provide a novel modelling technique to assess the association between inhalable coarse particles (PM10) and respiratory mortality in time-series studies. Design A time-series study using regional death registry between 2009 and 2010. Setting 8 districts in a large metropolitan area in Northern China. Participants 9559 permanent residents of the 8 districts who died of respiratory diseases between 2009 and 2010. Main outcome measures Per cent increase in daily respiratory mortality rate (MR) per interquartile range (IQR) increase of PM10 concentration and corresponding 95% confidence interval (CI) in single-pollutant and multipollutant (including NOx, CO) models. Results The Bayesian model averaged GAMM (GAMM+BMA) and the optimal GAMM of PM10, multipollutants and principal components (PCs) of multipollutants showed comparable results for the effect of PM10 on daily respiratory MR, that is, one IQR increase in PM10 concentration corresponded to 1.38% vs 1.39%, 1.81% vs 1.83% and 0.87% vs 0.88% increase, respectively, in daily respiratory MR. However, GAMM+BMA gave slightly but noticeable wider CIs for the single-pollutant model (−1.09 to 4.28 vs −1.08 to 3.93) and the PCs-based model (−2.23 to 4.07 vs −2.03 vs 3.88). The CIs of the multiple-pollutant model from two methods are similar, that is, −1.12 to 4.85 versus −1.11 versus 4.83. Conclusions The BMA method may represent a useful tool for modelling uncertainty in time-series studies when evaluating the effect of air pollution on fatal health outcomes. PMID:27531727
A Bayesian Nonparametric Approach to Test Equating
ERIC Educational Resources Information Center
Karabatsos, George; Walker, Stephen G.
2009-01-01
A Bayesian nonparametric model is introduced for score equating. It is applicable to all major equating designs, and has advantages over previous equating models. Unlike the previous models, the Bayesian model accounts for positive dependence between distributions of scores from two tests. The Bayesian model and the previous equating models are…
Model Diagnostics for Bayesian Networks
ERIC Educational Resources Information Center
Sinharay, Sandip
2006-01-01
Bayesian networks are frequently used in educational assessments primarily for learning about students' knowledge and skills. There is a lack of works on assessing fit of Bayesian networks. This article employs the posterior predictive model checking method, a popular Bayesian model checking tool, to assess fit of simple Bayesian networks. A…
A generalized nonlinear model-based mixed multinomial logit approach for crash data analysis.
Zeng, Ziqiang; Zhu, Wenbo; Ke, Ruimin; Ash, John; Wang, Yinhai; Xu, Jiuping; Xu, Xinxin
2017-02-01
The mixed multinomial logit (MNL) approach, which can account for unobserved heterogeneity, is a promising unordered model that has been employed in analyzing the effect of factors contributing to crash severity. However, its basic assumption of using a linear function to explore the relationship between the probability of crash severity and its contributing factors can be violated in reality. This paper develops a generalized nonlinear model-based mixed MNL approach which is capable of capturing non-monotonic relationships by developing nonlinear predictors for the contributing factors in the context of unobserved heterogeneity. The crash data on seven Interstate freeways in Washington between January 2011 and December 2014 are collected to develop the nonlinear predictors in the model. Thirteen contributing factors in terms of traffic characteristics, roadway geometric characteristics, and weather conditions are identified to have significant mixed (fixed or random) effects on the crash density in three crash severity levels: fatal, injury, and property damage only. The proposed model is compared with the standard mixed MNL model. The comparison results suggest a slight superiority of the new approach in terms of model fit measured by the Akaike Information Criterion (12.06 percent decrease) and Bayesian Information Criterion (9.11 percent decrease). The predicted crash densities for all three levels of crash severities of the new approach are also closer (on average) to the observations than the ones predicted by the standard mixed MNL model. Finally, the significance and impacts of the contributing factors are analyzed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng
2013-05-01
Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.
Zador, Zsolt; Huang, Wendy; Sperrin, Matthew; Lawton, Michael T
2018-06-01
Following the International Subarachnoid Aneurysm Trial (ISAT), evolving treatment modalities for acute aneurysmal subarachnoid hemorrhage (aSAH) has changed the case mix of patients undergoing urgent surgical clipping. To update our knowledge on outcome predictors by analyzing admission parameters in a pure surgical series using variable importance ranking and machine learning. We reviewed a single surgeon's case series of 226 patients suffering from aSAH treated with urgent surgical clipping. Predictions were made using logistic regression models, and predictive performance was assessed using areas under the receiver operating curve (AUC). We established variable importance ranking using partial Nagelkerke R2 scores. Probabilistic associations between variables were depicted using Bayesian networks, a method of machine learning. Importance ranking showed that World Federation of Neurosurgical Societies (WFNS) grade and age were the most influential outcome prognosticators. Inclusion of only these 2 predictors was sufficient to maintain model performance compared to when all variables were considered (AUC = 0.8222, 95% confidence interval (CI): 0.7646-0.88 vs 0.8218, 95% CI: 0.7616-0.8821, respectively, DeLong's P = .992). Bayesian networks showed that age and WFNS grade were associated with several variables such as laboratory results and cardiorespiratory parameters. Our study is the first to report early outcomes and formal predictor importance ranking following aSAH in a post-ISAT surgical case series. Models showed good predictive power with fewer relevant predictors than in similar size series. Bayesian networks proved to be a powerful tool in visualizing the widespread association of the 2 key predictors with admission variables, explaining their importance and demonstrating the potential for hypothesis generation.
Quantum Bayesian networks with application to games displaying Parrondo's paradox
NASA Astrophysics Data System (ADS)
Pejic, Michael
Bayesian networks and their accompanying graphical models are widely used for prediction and analysis across many disciplines. We will reformulate these in terms of linear maps. This reformulation will suggest a natural extension, which we will show is equivalent to standard textbook quantum mechanics. Therefore, this extension will be termed quantum. However, the term quantum should not be taken to imply this extension is necessarily only of utility in situations traditionally thought of as in the domain of quantum mechanics. In principle, it may be employed in any modelling situation, say forecasting the weather or the stock market---it is up to experiment to determine if this extension is useful in practice. Even restricting to the domain of quantum mechanics, with this new formulation the advantages of Bayesian networks can be maintained for models incorporating quantum and mixed classical-quantum behavior. The use of these will be illustrated by various basic examples. Parrondo's paradox refers to the situation where two, multi-round games with a fixed winning criteria, both with probability greater than one-half for one player to win, are combined. Using a possibly biased coin to determine the rule to employ for each round, paradoxically, the previously losing player now wins the combined game with probabilitygreater than one-half. Using the extended Bayesian networks, we will formulate and analyze classical observed, classical hidden, and quantum versions of a game that displays this paradox, finding bounds for the discrepancy from naive expectations for the occurrence of the paradox. A quantum paradox inspired by Parrondo's paradox will also be analyzed. We will prove a bound for the discrepancy from naive expectations for this paradox as well. Games involving quantum walks that achieve this bound will be presented.
Ridge, Lasso and Bayesian additive-dominance genomic models.
Azevedo, Camila Ferreira; de Resende, Marcos Deon Vilela; E Silva, Fabyano Fonseca; Viana, José Marcelo Soriano; Valente, Magno Sávio Ferreira; Resende, Márcio Fernando Ribeiro; Muñoz, Patricio
2015-08-25
A complete approach for genome-wide selection (GWS) involves reliable statistical genetics models and methods. Reports on this topic are common for additive genetic models but not for additive-dominance models. The objective of this paper was (i) to compare the performance of 10 additive-dominance predictive models (including current models and proposed modifications), fitted using Bayesian, Lasso and Ridge regression approaches; and (ii) to decompose genomic heritability and accuracy in terms of three quantitative genetic information sources, namely, linkage disequilibrium (LD), co-segregation (CS) and pedigree relationships or family structure (PR). The simulation study considered two broad sense heritability levels (0.30 and 0.50, associated with narrow sense heritabilities of 0.20 and 0.35, respectively) and two genetic architectures for traits (the first consisting of small gene effects and the second consisting of a mixed inheritance model with five major genes). G-REML/G-BLUP and a modified Bayesian/Lasso (called BayesA*B* or t-BLASSO) method performed best in the prediction of genomic breeding as well as the total genotypic values of individuals in all four scenarios (two heritabilities x two genetic architectures). The BayesA*B*-type method showed a better ability to recover the dominance variance/additive variance ratio. Decomposition of genomic heritability and accuracy revealed the following descending importance order of information: LD, CS and PR not captured by markers, the last two being very close. Amongst the 10 models/methods evaluated, the G-BLUP, BAYESA*B* (-2,8) and BAYESA*B* (4,6) methods presented the best results and were found to be adequate for accurately predicting genomic breeding and total genotypic values as well as for estimating additive and dominance in additive-dominance genomic models.
Bayesian Model Averaging for Propensity Score Analysis
ERIC Educational Resources Information Center
Kaplan, David; Chen, Jianshen
2013-01-01
The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…
Bayesian joint modelling of benefit and risk in drug development.
Costa, Maria J; Drury, Thomas
2018-05-01
To gain regulatory approval, a new medicine must demonstrate that its benefits outweigh any potential risks, ie, that the benefit-risk balance is favourable towards the new medicine. For transparency and clarity of the decision, a structured and consistent approach to benefit-risk assessment that quantifies uncertainties and accounts for underlying dependencies is desirable. This paper proposes two approaches to benefit-risk evaluation, both based on the idea of joint modelling of mixed outcomes that are potentially dependent at the subject level. Using Bayesian inference, the two approaches offer interpretability and efficiency to enhance qualitative frameworks. Simulation studies show that accounting for correlation leads to a more accurate assessment of the strength of evidence to support benefit-risk profiles of interest. Several graphical approaches are proposed that can be used to communicate the benefit-risk balance to project teams. Finally, the two approaches are illustrated in a case study using real clinical trial data. Copyright © 2018 John Wiley & Sons, Ltd.
Bayesian Inference for Functional Dynamics Exploring in fMRI Data.
Guo, Xuan; Liu, Bing; Chen, Le; Chen, Guantao; Pan, Yi; Zhang, Jing
2016-01-01
This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM), Bayesian Connectivity Change Point Model (BCCPM), and Dynamic Bayesian Variable Partition Model (DBVPM), and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.
Quantifying uncertainty in stable isotope mixing models
Davis, Paul; Syme, James; Heikoop, Jeffrey; ...
2015-05-19
Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, SIAR [ Parnell et al., 2010] a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (δ 15N and δ 18O) butmore » all methods tested are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the uncertainty in calculated mixing fractions.« less
NASA Astrophysics Data System (ADS)
Uilhoorn, F. E.
2016-10-01
In this article, the stochastic modelling approach proposed by Box and Jenkins is treated as a mixed-integer nonlinear programming (MINLP) problem solved with a mesh adaptive direct search and a real-coded genetic class of algorithms. The aim is to estimate the real-valued parameters and non-negative integer, correlated structure of stationary autoregressive moving average (ARMA) processes. The maximum likelihood function of the stationary ARMA process is embedded in Akaike's information criterion and the Bayesian information criterion, whereas the estimation procedure is based on Kalman filter recursions. The constraints imposed on the objective function enforce stability and invertibility. The best ARMA model is regarded as the global minimum of the non-convex MINLP problem. The robustness and computational performance of the MINLP solvers are compared with brute-force enumeration. Numerical experiments are done for existing time series and one new data set.
Prediction of hemoglobin in blood donors using a latent class mixed-effects transition model.
Nasserinejad, Kazem; van Rosmalen, Joost; de Kort, Wim; Rizopoulos, Dimitris; Lesaffre, Emmanuel
2016-02-20
Blood donors experience a temporary reduction in their hemoglobin (Hb) value after donation. At each visit, the Hb value is measured, and a too low Hb value leads to a deferral for donation. Because of the recovery process after each donation as well as state dependence and unobserved heterogeneity, longitudinal data of Hb values of blood donors provide unique statistical challenges. To estimate the shape and duration of the recovery process and to predict future Hb values, we employed three models for the Hb value: (i) a mixed-effects models; (ii) a latent-class mixed-effects model; and (iii) a latent-class mixed-effects transition model. In each model, a flexible function was used to model the recovery process after donation. The latent classes identify groups of donors with fast or slow recovery times and donors whose recovery time increases with the number of donations. The transition effect accounts for possible state dependence in the observed data. All models were estimated in a Bayesian way, using data of new entrant donors from the Donor InSight study. Informative priors were used for parameters of the recovery process that were not identified using the observed data, based on results from the clinical literature. The results show that the latent-class mixed-effects transition model fits the data best, which illustrates the importance of modeling state dependence, unobserved heterogeneity, and the recovery process after donation. The estimated recovery time is much longer than the current minimum interval between donations, suggesting that an increase of this interval may be warranted. Copyright © 2015 John Wiley & Sons, Ltd.
Bayesian structural equation modeling in sport and exercise psychology.
Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus
2015-08-01
Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.
Bayesian model reduction and empirical Bayes for group (DCM) studies
Friston, Karl J.; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E.; van Wijk, Bernadette C.M.; Ziegler, Gabriel; Zeidman, Peter
2016-01-01
This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level – e.g., dynamic causal models – and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These applications of Bayesian model reduction allow one to consider parametric random effects and make inferences about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical background to these procedures and illustrate their application using a worked example. This example uses a simulated mismatch negativity study of schizophrenia. We illustrate the robustness of Bayesian model reduction to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we consider the application of these empirical Bayesian procedures to classification and prediction. PMID:26569570
An introduction to using Bayesian linear regression with clinical data.
Baldwin, Scott A; Larson, Michael J
2017-11-01
Statistical training psychology focuses on frequentist methods. Bayesian methods are an alternative to standard frequentist methods. This article provides researchers with an introduction to fundamental ideas in Bayesian modeling. We use data from an electroencephalogram (EEG) and anxiety study to illustrate Bayesian models. Specifically, the models examine the relationship between error-related negativity (ERN), a particular event-related potential, and trait anxiety. Methodological topics covered include: how to set up a regression model in a Bayesian framework, specifying priors, examining convergence of the model, visualizing and interpreting posterior distributions, interval estimates, expected and predicted values, and model comparison tools. We also discuss situations where Bayesian methods can outperform frequentist methods as well has how to specify more complicated regression models. Finally, we conclude with recommendations about reporting guidelines for those using Bayesian methods in their own research. We provide data and R code for replicating our analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Real medical benefit assessed by indirect comparison.
Falissard, Bruno; Zylberman, Myriam; Cucherat, Michel; Izard, Valérie; Meyer, François
2009-01-01
Frequently, in data packages submitted for Marketing Approval to the CHMP, there is a lack of relevant head-to-head comparisons of medicinal products that could enable national authorities responsible for the approval of reimbursement to assess the Added Therapeutic Value (ASMR) of new clinical entities or line extensions of existing therapies.Indirect or mixed treatment comparisons (MTC) are methods stemming from the field of meta-analysis that have been designed to tackle this problem. Adjusted indirect comparisons, meta-regressions, mixed models, Bayesian network analyses pool results of randomised controlled trials (RCTs), enabling a quantitative synthesis.The REAL procedure, recently developed by the HAS (French National Authority for Health), is a mixture of an MTC and effect model based on expert opinions. It is intended to translate the efficacy observed in the trials into effectiveness expected in day-to-day clinical practice in France.
Radiative corrections to the solar lepton mixing sum rule
NASA Astrophysics Data System (ADS)
Zhang, Jue; Zhou, Shun
2016-08-01
The simple correlation among three lepton flavor mixing angles ( θ 12, θ 13, θ 23) and the leptonic Dirac CP-violating phase δ is conventionally called a sum rule of lepton flavor mixing, which may be derived from a class of neutrino mass models with flavor symmetries. In this paper, we consider the solar lepton mixing sum rule θ 12 ≈ θ 12 ν + θ 13 cos δ, where θ 12 ν stems from a constant mixing pattern in the neutrino sector and takes the value of θ 12 ν = 45 ° for the bi-maximal mixing (BM), {θ}_{12}^{ν } = { tan}^{-1}(1/√{2}) ≈ 35.3° for the tri-bimaximal mixing (TBM) or {θ}_{12}^{ν } = { tan}^{-1}(1/√{5+1}) ≈ 31.7° for the golden-ratio mixing (GR), and investigate the renormalization-group (RG) running effects on lepton flavor mixing parameters when this sum rule is assumed at a superhigh-energy scale. For illustration, we work within the framework of the minimal supersymmetric standard model (MSSM), and implement the Bayesian approach to explore the posterior distribution of δ at the low-energy scale, which becomes quite broad when the RG running effects are significant. Moreover, we also discuss the compatibility of the above three mixing scenarios with current neutrino oscillation data, and observe that radiative corrections can increase such a compatibility for the BM scenario, resulting in a weaker preference for the TBM and GR ones.
Knill, David C
2007-05-23
Most research on depth cue integration has focused on stimulus regimes in which stimuli contain the small cue conflicts that one might expect to normally arise from sensory noise. In these regimes, linear models for cue integration provide a good approximation to system performance. This article focuses on situations in which large cue conflicts can naturally occur in stimuli. We describe a Bayesian model for nonlinear cue integration that makes rational inferences about scenes across the entire range of possible cue conflicts. The model derives from the simple intuition that multiple properties of scenes or causal factors give rise to the image information associated with most cues. To make perceptual inferences about one property of a scene, an ideal observer must necessarily take into account the possible contribution of these other factors to the information provided by a cue. In the context of classical depth cues, large cue conflicts most commonly arise when one or another cue is generated by an object or scene that violates the strongest form of constraint that makes the cue informative. For example, when binocularly viewing a slanted trapezoid, the slant interpretation of the figure derived by assuming that the figure is rectangular may conflict greatly with the slant suggested by stereoscopic disparities. An optimal Bayesian estimator incorporates the possibility that different constraints might apply to objects in the world and robustly integrates cues with large conflicts by effectively switching between different internal models of the prior constraints underlying one or both cues. We performed two experiments to test the predictions of the model when applied to estimating surface slant from binocular disparities and the compression cue (the aspect ratio of figures in an image). The apparent weight that subjects gave to the compression cue decreased smoothly as a function of the conflict between the cues but did not shrink to zero; that is, subjects did not fully veto the compression cue at large cue conflicts. A Bayesian model that assumes a mixed prior distribution of figure shapes in the world, with a large proportion being very regular and a smaller proportion having random shapes, provides a good quantitative fit for subjects' performance. The best fitting model parameters are consistent with the sensory noise to be expected in measurements of figure shape, further supporting the Bayesian model as an account of robust cue integration.
Bayesian Treed Calibration: An Application to Carbon Capture With AX Sorbent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konomi, Bledar A.; Karagiannis, Georgios; Lai, Kevin
2017-01-02
In cases where field or experimental measurements are not available, computer models can model real physical or engineering systems to reproduce their outcomes. They are usually calibrated in light of experimental data to create a better representation of the real system. Statistical methods, based on Gaussian processes, for calibration and prediction have been especially important when the computer models are expensive and experimental data limited. In this paper, we develop the Bayesian treed calibration (BTC) as an extension of standard Gaussian process calibration methods to deal with non-stationarity computer models and/or their discrepancy from the field (or experimental) data. Ourmore » proposed method partitions both the calibration and observable input space, based on a binary tree partitioning, into sub-regions where existing model calibration methods can be applied to connect a computer model with the real system. The estimation of the parameters in the proposed model is carried out using Markov chain Monte Carlo (MCMC) computational techniques. Different strategies have been applied to improve mixing. We illustrate our method in two artificial examples and a real application that concerns the capture of carbon dioxide with AX amine based sorbents. The source code and the examples analyzed in this paper are available as part of the supplementary materials.« less
Unsupervised Bayesian linear unmixing of gene expression microarrays.
Bazot, Cécile; Dobigeon, Nicolas; Tourneret, Jean-Yves; Zaas, Aimee K; Ginsburg, Geoffrey S; Hero, Alfred O
2013-03-19
This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores collected during the study. Using a constrained model allows recovery of all the inflammatory genes in a single factor.
NASA Astrophysics Data System (ADS)
Li, Lu; Xu, Chong-Yu; Engeland, Kolbjørn
2013-04-01
SummaryWith respect to model calibration, parameter estimation and analysis of uncertainty sources, various regression and probabilistic approaches are used in hydrological modeling. A family of Bayesian methods, which incorporates different sources of information into a single analysis through Bayes' theorem, is widely used for uncertainty assessment. However, none of these approaches can well treat the impact of high flows in hydrological modeling. This study proposes a Bayesian modularization uncertainty assessment approach in which the highest streamflow observations are treated as suspect information that should not influence the inference of the main bulk of the model parameters. This study includes a comprehensive comparison and evaluation of uncertainty assessments by our new Bayesian modularization method and standard Bayesian methods using the Metropolis-Hastings (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions were used in combination with standard Bayesian method: the AR(1) plus Normal model independent of time (Model 1), the AR(1) plus Normal model dependent on time (Model 2) and the AR(1) plus Multi-normal model (Model 3). The results reveal that the Bayesian modularization method provides the most accurate streamflow estimates measured by the Nash-Sutcliffe efficiency and provide the best in uncertainty estimates for low, medium and entire flows compared to standard Bayesian methods. The study thus provides a new approach for reducing the impact of high flows on the discharge uncertainty assessment of hydrological models via Bayesian method.
Bayesian models: A statistical primer for ecologists
Hobbs, N. Thompson; Hooten, Mevin B.
2015-01-01
Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticiansCovers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and moreDeemphasizes computer coding in favor of basic principlesExplains how to write out properly factored statistical expressions representing Bayesian models
Lithium and age of pre-main sequence stars: the case of Parenago 1802
NASA Astrophysics Data System (ADS)
Giarrusso, M.; Tognelli, E.; Catanzaro, G.; Degl'Innocenti, S.; Dell'Omodarme, M.; Lamia, L.; Leone, F.; Pizzone, R. G.; Prada Moroni, P. G.; Romano, S.; Spitaleri, C.
2016-04-01
With the aim to test the present capability of the stellar surface lithium abundance in providing an estimation for the age of PMS stars, we analyze the case of the detached, double-lined, eclipsing binary system PAR 1802. For this system, the lithium age has been compared with the theoretical one, as estimated by applying a Bayesian analysis method on a large grid of stellar evolutionary models. The models have been computed for several values of chemical composition and mixing length, by means of the code FRANEC updated with the Trojan Horse reaction rates involving lithium burning.
Ransom, Katherine M; Grote, Mark N.; Deinhart, Amanda; Eppich, Gary; Kendall, Carol; Sanborn, Matthew E.; Sounders, A. Kate; Wimpenny, Joshua; Yin, Qing-zhu; Young, Megan B.; Harter, Thomas
2016-01-01
Groundwater quality is a concern in alluvial aquifers that underlie agricultural areas, such as in the San Joaquin Valley of California. Shallow domestic wells (less than 150 m deep) in agricultural areas are often contaminated by nitrate. Agricultural and rural nitrate sources include dairy manure, synthetic fertilizers, and septic waste. Knowledge of the relative proportion that each of these sources contributes to nitrate concentration in individual wells can aid future regulatory and land management decisions. We show that nitrogen and oxygen isotopes of nitrate, boron isotopes, and iodine concentrations are a useful, novel combination of groundwater tracers to differentiate between manure, fertilizers, septic waste, and natural sources of nitrate. Furthermore, in this work, we develop a new Bayesian mixing model in which these isotopic and elemental tracers were used to estimate the probability distribution of the fractional contributions of manure, fertilizers, septic waste, and natural sources to the nitrate concentration found in an individual well. The approach was applied to 56 nitrate-impacted private domestic wells located in the San Joaquin Valley. Model analysis found that some domestic wells were clearly dominated by the manure source and suggests evidence for majority contributions from either the septic or fertilizer source for other wells. But, predictions of fractional contributions for septic and fertilizer sources were often of similar magnitude, perhaps because modeled uncertainty about the fraction of each was large. For validation of the Bayesian model, fractional estimates were compared to surrounding land use and estimated source contributions were broadly consistent with nearby land use types.
Bayesian model reduction and empirical Bayes for group (DCM) studies.
Friston, Karl J; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E; van Wijk, Bernadette C M; Ziegler, Gabriel; Zeidman, Peter
2016-03-01
This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level - e.g., dynamic causal models - and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These applications of Bayesian model reduction allow one to consider parametric random effects and make inferences about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical background to these procedures and illustrate their application using a worked example. This example uses a simulated mismatch negativity study of schizophrenia. We illustrate the robustness of Bayesian model reduction to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we consider the application of these empirical Bayesian procedures to classification and prediction. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
A study of finite mixture model: Bayesian approach on financial time series data
NASA Astrophysics Data System (ADS)
Phoong, Seuk-Yen; Ismail, Mohd Tahir
2014-07-01
Recently, statistician have emphasized on the fitting finite mixture model by using Bayesian method. Finite mixture model is a mixture of distributions in modeling a statistical distribution meanwhile Bayesian method is a statistical method that use to fit the mixture model. Bayesian method is being used widely because it has asymptotic properties which provide remarkable result. In addition, Bayesian method also shows consistency characteristic which means the parameter estimates are close to the predictive distributions. In the present paper, the number of components for mixture model is studied by using Bayesian Information Criterion. Identify the number of component is important because it may lead to an invalid result. Later, the Bayesian method is utilized to fit the k-component mixture model in order to explore the relationship between rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia. Lastly, the results showed that there is a negative effect among rubber price and stock market price for all selected countries.
Automated high resolution mapping of coffee in Rwanda using an expert Bayesian network
NASA Astrophysics Data System (ADS)
Mukashema, A.; Veldkamp, A.; Vrieling, A.
2014-12-01
African highland agro-ecosystems are dominated by small-scale agricultural fields that often contain a mix of annual and perennial crops. This makes such systems difficult to map by remote sensing. We developed an expert Bayesian network model to extract the small-scale coffee fields of Rwanda from very high resolution data. The model was subsequently applied to aerial orthophotos covering more than 99% of Rwanda and on one QuickBird image for the remaining part. The method consists of a stepwise adjustment of pixel probabilities, which incorporates expert knowledge on size of coffee trees and fields, and on their location. The initial naive Bayesian network, which is a spectral-based classification, yielded a coffee map with an overall accuracy of around 50%. This confirms that standard spectral variables alone cannot accurately identify coffee fields from high resolution images. The combination of spectral and ancillary data (DEM and a forest map) allowed mapping of coffee fields and associated uncertainties with an overall accuracy of 87%. Aggregated to district units, the mapped coffee areas demonstrated a high correlation with the coffee areas reported in the detailed national coffee census of 2009 (R2 = 0.92). Unlike the census data our map provides high spatial resolution of coffee area patterns of Rwanda. The proposed method has potential for mapping other perennial small scale cropping systems in the East African Highlands and elsewhere.
Bayesian Data-Model Fit Assessment for Structural Equation Modeling
ERIC Educational Resources Information Center
Levy, Roy
2011-01-01
Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…
Revealing the Hidden Water Budget of an Alpine Volcanic Watershed Using a Bayesian Mixing Model
NASA Astrophysics Data System (ADS)
Markovich, K. H.; Arumi, J. L.; Dahlke, H. E.; Fogg, G. E.
2017-12-01
Climate change is altering alpine water budgets in observable ways, such as snow melting sooner or falling as rain, but also in hidden ways, such as shifting recharge timing and increased evapotranspiration demand leading to diminished summer low flows. The combination of complex hydrogeology and sparse availability of data make it difficult to predict the direction or magnitude of shifts in alpine water budgets, and thus difficult to inform decision-making. We present a data sparse watershed in the Andes Mountains of central Chile in which complex geology, interbasin flows, and surface water-groundwater interactions impede our ability to fully describe the water budget. We collected water samples for stable isotopes and major anions and cations, over the course of water year 2016-17 to characterize the spatial and temporal variability in endmember signatures (snow, rain, and groundwater). We use a Bayesian Hierarchical Model (BHM) to explicitly incorporate uncertainty and prior information into a mixing model, and predict the proportional contribution of snow, rain, and groundwater to streamflow throughout the year for the full catchment as well as its two sub-catchments. Preliminary results suggest that streamflow is likely more rainfall-dominated than previously thought, which not only alters our projections of climate change impacts, but make this watershed a potential example for other watersheds undergoing a snow to rain transition. Understanding how these proportions vary in space and time will help us elucidate key information on stores, fluxes, and timescales of water flow for improved current and future water resource management.
Bayesian multimodel inference for dose-response studies
Link, W.A.; Albers, P.H.
2007-01-01
Statistical inference in dose?response studies is model-based: The analyst posits a mathematical model of the relation between exposure and response, estimates parameters of the model, and reports conclusions conditional on the model. Such analyses rarely include any accounting for the uncertainties associated with model selection. The Bayesian inferential system provides a convenient framework for model selection and multimodel inference. In this paper we briefly describe the Bayesian paradigm and Bayesian multimodel inference. We then present a family of models for multinomial dose?response data and apply Bayesian multimodel inferential methods to the analysis of data on the reproductive success of American kestrels (Falco sparveriuss) exposed to various sublethal dietary concentrations of methylmercury.
A guide to Bayesian model selection for ecologists
Hooten, Mevin B.; Hobbs, N.T.
2015-01-01
The steady upward trend in the use of model selection and Bayesian methods in ecological research has made it clear that both approaches to inference are important for modern analysis of models and data. However, in teaching Bayesian methods and in working with our research colleagues, we have noticed a general dissatisfaction with the available literature on Bayesian model selection and multimodel inference. Students and researchers new to Bayesian methods quickly find that the published advice on model selection is often preferential in its treatment of options for analysis, frequently advocating one particular method above others. The recent appearance of many articles and textbooks on Bayesian modeling has provided welcome background on relevant approaches to model selection in the Bayesian framework, but most of these are either very narrowly focused in scope or inaccessible to ecologists. Moreover, the methodological details of Bayesian model selection approaches are spread thinly throughout the literature, appearing in journals from many different fields. Our aim with this guide is to condense the large body of literature on Bayesian approaches to model selection and multimodel inference and present it specifically for quantitative ecologists as neutrally as possible. We also bring to light a few important and fundamental concepts relating directly to model selection that seem to have gone unnoticed in the ecological literature. Throughout, we provide only a minimal discussion of philosophy, preferring instead to examine the breadth of approaches as well as their practical advantages and disadvantages. This guide serves as a reference for ecologists using Bayesian methods, so that they can better understand their options and can make an informed choice that is best aligned with their goals for inference.
Roksandic, Mirjana; Nikitović, Dejana; Rodríguez Suárez, Roberto; Smith, David; Kanik, Nadine; García Jordá, Dailys; Buhay, William M.
2017-01-01
The general lack of well-preserved juvenile skeletal remains from Caribbean archaeological sites has, in the past, prevented evaluations of juvenile dietary changes. Canímar Abajo (Cuba), with a large number of well-preserved juvenile and adult skeletal remains, provided a unique opportunity to fully assess juvenile paleodiets from an ancient Caribbean population. Ages for the start and the end of weaning and possible food sources used for weaning were inferred by combining the results of two Bayesian probability models that help to reduce some of the uncertainties inherent to bone collagen isotope based paleodiet reconstructions. Bone collagen (31 juveniles, 18 adult females) was used for carbon and nitrogen isotope analyses. The isotope results were assessed using two Bayesian probability models: Weaning Ages Reconstruction with Nitrogen isotopes and Stable Isotope Analyses in R. Breast milk seems to have been the most important protein source until two years of age with some supplementary food such as tropical fruits and root cultigens likely introduced earlier. After two, juvenile diets were likely continuously supplemented by starch rich foods such as root cultigens and legumes. By the age of three, the model results suggest that the weaning process was completed. Additional indications suggest that animal marine/riverine protein and maize, while part of the Canímar Abajo female diets, were likely not used to supplement juvenile diets. The combined use of both models here provided a more complete assessment of the weaning process for an ancient Caribbean population, indicating not only the start and end ages of weaning but also the relative importance of different food sources for different age juveniles. PMID:28459816
Chinique de Armas, Yadira; Roksandic, Mirjana; Nikitović, Dejana; Rodríguez Suárez, Roberto; Smith, David; Kanik, Nadine; García Jordá, Dailys; Buhay, William M
2017-01-01
The general lack of well-preserved juvenile skeletal remains from Caribbean archaeological sites has, in the past, prevented evaluations of juvenile dietary changes. Canímar Abajo (Cuba), with a large number of well-preserved juvenile and adult skeletal remains, provided a unique opportunity to fully assess juvenile paleodiets from an ancient Caribbean population. Ages for the start and the end of weaning and possible food sources used for weaning were inferred by combining the results of two Bayesian probability models that help to reduce some of the uncertainties inherent to bone collagen isotope based paleodiet reconstructions. Bone collagen (31 juveniles, 18 adult females) was used for carbon and nitrogen isotope analyses. The isotope results were assessed using two Bayesian probability models: Weaning Ages Reconstruction with Nitrogen isotopes and Stable Isotope Analyses in R. Breast milk seems to have been the most important protein source until two years of age with some supplementary food such as tropical fruits and root cultigens likely introduced earlier. After two, juvenile diets were likely continuously supplemented by starch rich foods such as root cultigens and legumes. By the age of three, the model results suggest that the weaning process was completed. Additional indications suggest that animal marine/riverine protein and maize, while part of the Canímar Abajo female diets, were likely not used to supplement juvenile diets. The combined use of both models here provided a more complete assessment of the weaning process for an ancient Caribbean population, indicating not only the start and end ages of weaning but also the relative importance of different food sources for different age juveniles.
On the Adequacy of Bayesian Evaluations of Categorization Models: Reply to Vanpaemel and Lee (2012)
ERIC Educational Resources Information Center
Wills, Andy J.; Pothos, Emmanuel M.
2012-01-01
Vanpaemel and Lee (2012) argued, and we agree, that the comparison of formal models can be facilitated by Bayesian methods. However, Bayesian methods neither precede nor supplant our proposals (Wills & Pothos, 2012), as Bayesian methods can be applied both to our proposals and to their polar opposites. Furthermore, the use of Bayesian methods to…
Zhao, Wei; Cella, Massimo; Della Pasqua, Oscar; Burger, David; Jacqz-Aigrain, Evelyne
2012-04-01
Abacavir is used to treat HIV infection in both adults and children. The recommended paediatric dose is 8 mg kg(-1) twice daily up to a maximum of 300 mg twice daily. Weight was identified as the central covariate influencing pharmacokinetics of abacavir in children. A population pharmacokinetic model was developed to describe both once and twice daily pharmacokinetic profiles of abacavir in infants and toddlers. Standard dosage regimen is associated with large interindividual variability in abacavir concentrations. A maximum a posteriori probability Bayesian estimator of AUC(0-) (t) based on three time points (0, 1 or 2, and 3 h) is proposed to support area under the concentration-time curve (AUC) targeted individualized therapy in infants and toddlers. To develop a population pharmacokinetic model for abacavir in HIV-infected infants and toddlers, which will be used to describe both once and twice daily pharmacokinetic profiles, identify covariates that explain variability and propose optimal time points to optimize the area under the concentration-time curve (AUC) targeted dosage and individualize therapy. The pharmacokinetics of abacavir was described with plasma concentrations from 23 patients using nonlinear mixed-effects modelling (NONMEM) software. A two-compartment model with first-order absorption and elimination was developed. The final model was validated using bootstrap, visual predictive check and normalized prediction distribution errors. The Bayesian estimator was validated using the cross-validation and simulation-estimation method. The typical population pharmacokinetic parameters and relative standard errors (RSE) were apparent systemic clearance (CL) 13.4 () h−1 (RSE 6.3%), apparent central volume of distribution 4.94 () (RSE 28.7%), apparent peripheral volume of distribution 8.12 () (RSE14.2%), apparent intercompartment clearance 1.25 () h−1 (RSE 16.9%) and absorption rate constant 0.758 h−1 (RSE 5.8%). The covariate analysis identified weight as the individual factor influencing the apparent oral clearance: CL = 13.4 × (weight/12)1.14. The maximum a posteriori probability Bayesian estimator, based on three concentrations measured at 0, 1 or 2, and 3 h after drug intake allowed predicting individual AUC0–t. The population pharmacokinetic model developed for abacavir in HIV-infected infants and toddlers accurately described both once and twice daily pharmacokinetic profiles. The maximum a posteriori probability Bayesian estimator of AUC(0-) (t) was developed from the final model and can be used routinely to optimize individual dosing. © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.
Tilley, Alexander; López-Angarita, Juliana; Turner, John R
2013-01-01
The trophic ecology of epibenthic mesopredators is not well understood in terms of prey partitioning with sympatric elasmobranchs or their effects on prey communities, yet the importance of omnivores in community trophic dynamics is being increasingly realised. This study used stable isotope analysis of (15)N and (13)C to model diet composition of wild southern stingrays Dasyatis americana and compare trophic niche space to nurse sharks Ginglymostoma cirratum and Caribbean reef sharks Carcharhinus perezi on Glovers Reef Atoll, Belize. Bayesian stable isotope mixing models were used to investigate prey choice as well as viable Diet-Tissue Discrimination Factors for use with stingrays. Stingray δ(15)N values showed the greatest variation and a positive relationship with size, with an isotopic niche width approximately twice that of sympatric species. Shark species exhibited comparatively restricted δ(15)N values and greater δ(13)C variation, with very little overlap of stingray niche space. Mixing models suggest bivalves and annelids are proportionally more important prey in the stingray diet than crustaceans and teleosts at Glovers Reef, in contrast to all but one published diet study using stomach contents from other locations. Incorporating gut contents information from the literature, we suggest diet-tissue discrimination factors values of Δ(15)N ≈ 2.7‰ and Δ(13)C ≈ 0.9‰ for stingrays in the absence of validation experiments. The wide trophic niche and lower trophic level exhibited by stingrays compared to sympatric sharks supports their putative role as important base stabilisers in benthic systems, with the potential to absorb trophic perturbations through numerous opportunistic prey interactions.
Fernandes, Ricardo; Grootes, Pieter; Nadeau, Marie-Josée; Nehlich, Olaf
2015-07-14
The island cemetery site of Ostorf (Germany) consists of individual human graves containing Funnel Beaker ceramics dating to the Early or Middle Neolithic. However, previous isotope and radiocarbon analysis demonstrated that the Ostorf individuals had a diet rich in freshwater fish. The present study was undertaken to quantitatively reconstruct the diet of the Ostorf population and establish if dietary habits are consistent with the traditional characterization of a Neolithic diet. Quantitative diet reconstruction was achieved through a novel approach consisting of the use of the Bayesian mixing model Food Reconstruction Using Isotopic Transferred Signals (FRUITS) to model isotope measurements from multiple dietary proxies (δ 13 C collagen , δ 15 N collagen , δ 13 C bioapatite , δ 34 S methione , 14 C collagen ). The accuracy of model estimates was verified by comparing the agreement between observed and estimated human dietary radiocarbon reservoir effects. Quantitative diet reconstruction estimates confirm that the Ostorf individuals had a high protein intake due to the consumption of fish and terrestrial animal products. However, FRUITS estimates also show that plant foods represented a significant source of calories. Observed and estimated human dietary radiocarbon reservoir effects are in good agreement provided that the aquatic reservoir effect at Lake Ostorf is taken as reference. The Ostorf population apparently adopted elements associated with a Neolithic culture but adapted to available local food resources and implemented a subsistence strategy that involved a large proportion of fish and terrestrial meat consumption. This case study exemplifies the diversity of subsistence strategies followed during the Neolithic. Am J Phys Anthropol, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Colborne, Scott F.; Rush, Scott A.; Paterson, Gordon; Johnson, Timothy B.; Lantry, Brian F.; Fisk, Aaron T.
2016-01-01
Recent development of multi-dimensional stable isotope models for estimating both foraging patterns and niches have presented the analytical tools to further assess the food webs of freshwater populations. One approach to refine predictions from these analyses is to include a third isotope to the more common two-isotope carbon and nitrogen mixing models to increase the power to resolve different prey sources. We compared predictions made with two-isotope carbon and nitrogen mixing models and three-isotope models that also included sulphur (δ34S) for the diets of Lake Ontario lake trout (Salvelinus namaycush). We determined the isotopic compositions of lake trout and potential prey fishes sampled from Lake Ontario and then used quantitative estimates of resource use generated by two- and three-isotope Bayesian mixing models (SIAR) to infer feeding patterns of lake trout. Both two- and three-isotope models indicated that alewife (Alosa pseudoharengus) and round goby (Neogobius melanostomus) were the primary prey items, but the three-isotope models were more consistent with recent measures of prey fish abundances and lake trout diets. The lake trout sampled directly from the hatcheries had isotopic compositions derived from the hatchery food which were distinctively different from those derived from the natural prey sources. Those hatchery signals were retained for months after release, raising the possibility to distinguish hatchery-reared yearlings and similarly sized naturally reproduced lake trout based on isotopic compositions. Addition of a third-isotope resulted in mixing model results that confirmed round goby have become an important component of lake trout diet and may be overtaking alewife as a prey resource.
Uncertainty aggregation and reduction in structure-material performance prediction
NASA Astrophysics Data System (ADS)
Hu, Zhen; Mahadevan, Sankaran; Ao, Dan
2018-02-01
An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.
Yang, Ziheng; Zhu, Tianqi
2018-02-20
The Bayesian method is noted to produce spuriously high posterior probabilities for phylogenetic trees in analysis of large datasets, but the precise reasons for this overconfidence are unknown. In general, the performance of Bayesian selection of misspecified models is poorly understood, even though this is of great scientific interest since models are never true in real data analysis. Here we characterize the asymptotic behavior of Bayesian model selection and show that when the competing models are equally wrong, Bayesian model selection exhibits surprising and polarized behaviors in large datasets, supporting one model with full force while rejecting the others. If one model is slightly less wrong than the other, the less wrong model will eventually win when the amount of data increases, but the method may become overconfident before it becomes reliable. We suggest that this extreme behavior may be a major factor for the spuriously high posterior probabilities for evolutionary trees. The philosophical implications of our results to the application of Bayesian model selection to evaluate opposing scientific hypotheses are yet to be explored, as are the behaviors of non-Bayesian methods in similar situations.
Jones, Matt; Love, Bradley C
2011-08-01
The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls that have plagued previous theoretical movements.
Luan, Hui; Minaker, Leia M; Law, Jane
2016-08-22
Findings of whether marginalized neighbourhoods have less healthy retail food environments (RFE) are mixed across countries, in part because inconsistent approaches have been used to characterize RFE 'healthfulness' and marginalization, and researchers have used non-spatial statistical methods to respond to this ultimately spatial issue. This study uses in-store features to categorize healthy and less healthy food outlets. Bayesian spatial hierarchical models are applied to explore the association between marginalization dimensions and RFE healthfulness (i.e., relative healthy food access that modelled via a probability distribution) at various geographical scales. Marginalization dimensions are derived from a spatial latent factor model. Zero-inflation occurring at the walkable-distance scale is accounted for with a spatial hurdle model. Neighbourhoods with higher residential instability, material deprivation, and population density are more likely to have access to healthy food outlets within a walkable distance from a binary 'have' or 'not have' access perspective. At the walkable distance scale however, materially deprived neighbourhoods are found to have less healthy RFE (lower relative healthy food access). Food intervention programs should be developed for striking the balance between healthy and less healthy food access in the study region as well as improving opportunities for residents to buy and consume foods consistent with dietary recommendations.
Bayesian Normalization Model for Label-Free Quantitative Analysis by LC-MS
Nezami Ranjbar, Mohammad R.; Tadesse, Mahlet G.; Wang, Yue; Ressom, Habtom W.
2016-01-01
We introduce a new method for normalization of data acquired by liquid chromatography coupled with mass spectrometry (LC-MS) in label-free differential expression analysis. Normalization of LC-MS data is desired prior to subsequent statistical analysis to adjust variabilities in ion intensities that are not caused by biological differences but experimental bias. There are different sources of bias including variabilities during sample collection and sample storage, poor experimental design, noise, etc. In addition, instrument variability in experiments involving a large number of LC-MS runs leads to a significant drift in intensity measurements. Although various methods have been proposed for normalization of LC-MS data, there is no universally applicable approach. In this paper, we propose a Bayesian normalization model (BNM) that utilizes scan-level information from LC-MS data. Specifically, the proposed method uses peak shapes to model the scan-level data acquired from extracted ion chromatograms (EIC) with parameters considered as a linear mixed effects model. We extended the model into BNM with drift (BNMD) to compensate for the variability in intensity measurements due to long LC-MS runs. We evaluated the performance of our method using synthetic and experimental data. In comparison with several existing methods, the proposed BNM and BNMD yielded significant improvement. PMID:26357332
Fang, Xin; Li, Runkui; Kan, Haidong; Bottai, Matteo; Fang, Fang; Cao, Yang
2016-08-16
To demonstrate an application of Bayesian model averaging (BMA) with generalised additive mixed models (GAMM) and provide a novel modelling technique to assess the association between inhalable coarse particles (PM10) and respiratory mortality in time-series studies. A time-series study using regional death registry between 2009 and 2010. 8 districts in a large metropolitan area in Northern China. 9559 permanent residents of the 8 districts who died of respiratory diseases between 2009 and 2010. Per cent increase in daily respiratory mortality rate (MR) per interquartile range (IQR) increase of PM10 concentration and corresponding 95% confidence interval (CI) in single-pollutant and multipollutant (including NOx, CO) models. The Bayesian model averaged GAMM (GAMM+BMA) and the optimal GAMM of PM10, multipollutants and principal components (PCs) of multipollutants showed comparable results for the effect of PM10 on daily respiratory MR, that is, one IQR increase in PM10 concentration corresponded to 1.38% vs 1.39%, 1.81% vs 1.83% and 0.87% vs 0.88% increase, respectively, in daily respiratory MR. However, GAMM+BMA gave slightly but noticeable wider CIs for the single-pollutant model (-1.09 to 4.28 vs -1.08 to 3.93) and the PCs-based model (-2.23 to 4.07 vs -2.03 vs 3.88). The CIs of the multiple-pollutant model from two methods are similar, that is, -1.12 to 4.85 versus -1.11 versus 4.83. The BMA method may represent a useful tool for modelling uncertainty in time-series studies when evaluating the effect of air pollution on fatal health outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
ERIC Educational Resources Information Center
Griffiths, Thomas L.; Chater, Nick; Norris, Dennis; Pouget, Alexandre
2012-01-01
Bowers and Davis (2012) criticize Bayesian modelers for telling "just so" stories about cognition and neuroscience. Their criticisms are weakened by not giving an accurate characterization of the motivation behind Bayesian modeling or the ways in which Bayesian models are used and by not evaluating this theoretical framework against specific…
Bayesian Regression with Network Prior: Optimal Bayesian Filtering Perspective
Qian, Xiaoning; Dougherty, Edward R.
2017-01-01
The recently introduced intrinsically Bayesian robust filter (IBRF) provides fully optimal filtering relative to a prior distribution over an uncertainty class ofjoint random process models, whereas formerly the theory was limited to model-constrained Bayesian robust filters, for which optimization was limited to the filters that are optimal for models in the uncertainty class. This paper extends the IBRF theory to the situation where there are both a prior on the uncertainty class and sample data. The result is optimal Bayesian filtering (OBF), where optimality is relative to the posterior distribution derived from the prior and the data. The IBRF theories for effective characteristics and canonical expansions extend to the OBF setting. A salient focus of the present work is to demonstrate the advantages of Bayesian regression within the OBF setting over the classical Bayesian approach in the context otlinear Gaussian models. PMID:28824268
Modeling Diagnostic Assessments with Bayesian Networks
ERIC Educational Resources Information Center
Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego
2007-01-01
This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…
NASA Astrophysics Data System (ADS)
Wheeler, David C.; Waller, Lance A.
2009-03-01
In this paper, we compare and contrast a Bayesian spatially varying coefficient process (SVCP) model with a geographically weighted regression (GWR) model for the estimation of the potentially spatially varying regression effects of alcohol outlets and illegal drug activity on violent crime in Houston, Texas. In addition, we focus on the inherent coefficient shrinkage properties of the Bayesian SVCP model as a way to address increased coefficient variance that follows from collinearity in GWR models. We outline the advantages of the Bayesian model in terms of reducing inflated coefficient variance, enhanced model flexibility, and more formal measuring of model uncertainty for prediction. We find spatially varying effects for alcohol outlets and drug violations, but the amount of variation depends on the type of model used. For the Bayesian model, this variation is controllable through the amount of prior influence placed on the variance of the coefficients. For example, the spatial pattern of coefficients is similar for the GWR and Bayesian models when a relatively large prior variance is used in the Bayesian model.
Philosophy and the practice of Bayesian statistics
Gelman, Andrew; Shalizi, Cosma Rohilla
2015-01-01
A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework. PMID:22364575
Philosophy and the practice of Bayesian statistics.
Gelman, Andrew; Shalizi, Cosma Rohilla
2013-02-01
A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework. © 2012 The British Psychological Society.
Bayesian inference based on dual generalized order statistics from the exponentiated Weibull model
NASA Astrophysics Data System (ADS)
Al Sobhi, Mashail M.
2015-02-01
Bayesian estimation for the two parameters and the reliability function of the exponentiated Weibull model are obtained based on dual generalized order statistics (DGOS). Also, Bayesian prediction bounds for future DGOS from exponentiated Weibull model are obtained. The symmetric and asymmetric loss functions are considered for Bayesian computations. The Markov chain Monte Carlo (MCMC) methods are used for computing the Bayes estimates and prediction bounds. The results have been specialized to the lower record values. Comparisons are made between Bayesian and maximum likelihood estimators via Monte Carlo simulation.
Fundamentals and Recent Developments in Approximate Bayesian Computation
Lintusaari, Jarno; Gutmann, Michael U.; Dutta, Ritabrata; Kaski, Samuel; Corander, Jukka
2017-01-01
Abstract Bayesian inference plays an important role in phylogenetics, evolutionary biology, and in many other branches of science. It provides a principled framework for dealing with uncertainty and quantifying how it changes in the light of new evidence. For many complex models and inference problems, however, only approximate quantitative answers are obtainable. Approximate Bayesian computation (ABC) refers to a family of algorithms for approximate inference that makes a minimal set of assumptions by only requiring that sampling from a model is possible. We explain here the fundamentals of ABC, review the classical algorithms, and highlight recent developments. [ABC; approximate Bayesian computation; Bayesian inference; likelihood-free inference; phylogenetics; simulator-based models; stochastic simulation models; tree-based models.] PMID:28175922
NASA Astrophysics Data System (ADS)
Wang, Meng; Lu, Baohong
2017-04-01
Nitrate is essential for the growth and survival of plants, animals and humans. However, excess nitrate in drinking water is regarded as a health hazard as it is linked to infant methemoglobinemia and esophageal cancer. Revealing nitrate characteristics and identifying its sources are fundamental for making effective water management strategies, but nitrate sources in multi-tributaries and mixed land covered watersheds remain unclear. It is difficult to determine the predominant NO3- sources using conventional water quality monitoring techniques. In our study, based on 20 surface water sampling sites for more than two years' monitoring from April 2012 to December 2014, water chemical and dual isotopic approaches (δ15N-NO3- and δ18O-NO3-) were integrated for the first time to evaluate nitrate characteristics and sources in the Huashan watershed, Jianghuai hilly region, East China. The results demonstrated that nitrate content in surface water was relatively low in the downstream (<10 mg/L), but spatial heterogeneities were remarkable among different sub-watersheds. Extremely high nitrate was observed at the source of the river in one of the sub-watersheds, which exhibited an exponential decline along the stream due to dilution, absorption by aquatic plants, and high forest cover. Although dramatically decline of nitrate occurred along the stream, denitrification was not found in surface water by analyzing δ15N-NO3- and δ18O-NO3- relationship. Proportional contributions of five potential nitrate sources (i.e., precipitation; manure and sewage; soil nitrogen; nitrate fertilizer; nitrate derived from ammonia fertilizer and rainfall) were estimated using a Bayesian isotope mixing model. Model results indicated nitrate sources varied significantly among different rainfall conditions, land use types, as well as anthropologic activities. In summary, coupling dual isotopes of nitrate (δ15N-NO3- and δ18O-NO3-, simultaneously) with a Bayesian isotope mixing model offers a useful and practical way to qualitatively analyze nitrate sources and transformations as well as quantitatively estimate the contributions of potential nitrate sources in surface water. With the assessment of nitrate sources and characteristics, effective management strategies can be implemented to reduce N export and improve water quality in this region.
NASA Astrophysics Data System (ADS)
Rajabi, Mohammad Mahdi; Ataie-Ashtiani, Behzad
2016-05-01
Bayesian inference has traditionally been conceived as the proper framework for the formal incorporation of expert knowledge in parameter estimation of groundwater models. However, conventional Bayesian inference is incapable of taking into account the imprecision essentially embedded in expert provided information. In order to solve this problem, a number of extensions to conventional Bayesian inference have been introduced in recent years. One of these extensions is 'fuzzy Bayesian inference' which is the result of integrating fuzzy techniques into Bayesian statistics. Fuzzy Bayesian inference has a number of desirable features which makes it an attractive approach for incorporating expert knowledge in the parameter estimation process of groundwater models: (1) it is well adapted to the nature of expert provided information, (2) it allows to distinguishably model both uncertainty and imprecision, and (3) it presents a framework for fusing expert provided information regarding the various inputs of the Bayesian inference algorithm. However an important obstacle in employing fuzzy Bayesian inference in groundwater numerical modeling applications is the computational burden, as the required number of numerical model simulations often becomes extremely exhaustive and often computationally infeasible. In this paper, a novel approach of accelerating the fuzzy Bayesian inference algorithm is proposed which is based on using approximate posterior distributions derived from surrogate modeling, as a screening tool in the computations. The proposed approach is first applied to a synthetic test case of seawater intrusion (SWI) in a coastal aquifer. It is shown that for this synthetic test case, the proposed approach decreases the number of required numerical simulations by an order of magnitude. Then the proposed approach is applied to a real-world test case involving three-dimensional numerical modeling of SWI in Kish Island, located in the Persian Gulf. An expert elicitation methodology is developed and applied to the real-world test case in order to provide a road map for the use of fuzzy Bayesian inference in groundwater modeling applications.
Link, William; Sauer, John R.
2016-01-01
The analysis of ecological data has changed in two important ways over the last 15 years. The development and easy availability of Bayesian computational methods has allowed and encouraged the fitting of complex hierarchical models. At the same time, there has been increasing emphasis on acknowledging and accounting for model uncertainty. Unfortunately, the ability to fit complex models has outstripped the development of tools for model selection and model evaluation: familiar model selection tools such as Akaike's information criterion and the deviance information criterion are widely known to be inadequate for hierarchical models. In addition, little attention has been paid to the evaluation of model adequacy in context of hierarchical modeling, i.e., to the evaluation of fit for a single model. In this paper, we describe Bayesian cross-validation, which provides tools for model selection and evaluation. We describe the Bayesian predictive information criterion and a Bayesian approximation to the BPIC known as the Watanabe-Akaike information criterion. We illustrate the use of these tools for model selection, and the use of Bayesian cross-validation as a tool for model evaluation, using three large data sets from the North American Breeding Bird Survey.
CLUSTERING SOUTH AFRICAN HOUSEHOLDS BASED ON THEIR ASSET STATUS USING LATENT VARIABLE MODELS
McParland, Damien; Gormley, Isobel Claire; McCormick, Tyler H.; Clark, Samuel J.; Kabudula, Chodziwadziwa Whiteson; Collinson, Mark A.
2014-01-01
The Agincourt Health and Demographic Surveillance System has since 2001 conducted a biannual household asset survey in order to quantify household socio-economic status (SES) in a rural population living in northeast South Africa. The survey contains binary, ordinal and nominal items. In the absence of income or expenditure data, the SES landscape in the study population is explored and described by clustering the households into homogeneous groups based on their asset status. A model-based approach to clustering the Agincourt households, based on latent variable models, is proposed. In the case of modeling binary or ordinal items, item response theory models are employed. For nominal survey items, a factor analysis model, similar in nature to a multinomial probit model, is used. Both model types have an underlying latent variable structure—this similarity is exploited and the models are combined to produce a hybrid model capable of handling mixed data types. Further, a mixture of the hybrid models is considered to provide clustering capabilities within the context of mixed binary, ordinal and nominal response data. The proposed model is termed a mixture of factor analyzers for mixed data (MFA-MD). The MFA-MD model is applied to the survey data to cluster the Agincourt households into homogeneous groups. The model is estimated within the Bayesian paradigm, using a Markov chain Monte Carlo algorithm. Intuitive groupings result, providing insight to the different socio-economic strata within the Agincourt region. PMID:25485026
Bayesian seismic tomography by parallel interacting Markov chains
NASA Astrophysics Data System (ADS)
Gesret, Alexandrine; Bottero, Alexis; Romary, Thomas; Noble, Mark; Desassis, Nicolas
2014-05-01
The velocity field estimated by first arrival traveltime tomography is commonly used as a starting point for further seismological, mineralogical, tectonic or similar analysis. In order to interpret quantitatively the results, the tomography uncertainty values as well as their spatial distribution are required. The estimated velocity model is obtained through inverse modeling by minimizing an objective function that compares observed and computed traveltimes. This step is often performed by gradient-based optimization algorithms. The major drawback of such local optimization schemes, beyond the possibility of being trapped in a local minimum, is that they do not account for the multiple possible solutions of the inverse problem. They are therefore unable to assess the uncertainties linked to the solution. Within a Bayesian (probabilistic) framework, solving the tomography inverse problem aims at estimating the posterior probability density function of velocity model using a global sampling algorithm. Markov chains Monte-Carlo (MCMC) methods are known to produce samples of virtually any distribution. In such a Bayesian inversion, the total number of simulations we can afford is highly related to the computational cost of the forward model. Although fast algorithms have been recently developed for computing first arrival traveltimes of seismic waves, the complete browsing of the posterior distribution of velocity model is hardly performed, especially when it is high dimensional and/or multimodal. In the latter case, the chain may even stay stuck in one of the modes. In order to improve the mixing properties of classical single MCMC, we propose to make interact several Markov chains at different temperatures. This method can make efficient use of large CPU clusters, without increasing the global computational cost with respect to classical MCMC and is therefore particularly suited for Bayesian inversion. The exchanges between the chains allow a precise sampling of the high probability zones of the model space while avoiding the chains to end stuck in a probability maximum. This approach supplies thus a robust way to analyze the tomography imaging uncertainties. The interacting MCMC approach is illustrated on two synthetic examples of tomography of calibration shots such as encountered in induced microseismic studies. On the second application, a wavelet based model parameterization is presented that allows to significantly reduce the dimension of the problem, making thus the algorithm efficient even for a complex velocity model.
Bayesian networks for maritime traffic accident prevention: benefits and challenges.
Hänninen, Maria
2014-12-01
Bayesian networks are quantitative modeling tools whose applications to the maritime traffic safety context are becoming more popular. This paper discusses the utilization of Bayesian networks in maritime safety modeling. Based on literature and the author's own experiences, the paper studies what Bayesian networks can offer to maritime accident prevention and safety modeling and discusses a few challenges in their application to this context. It is argued that the capability of representing rather complex, not necessarily causal but uncertain relationships makes Bayesian networks an attractive modeling tool for the maritime safety and accidents. Furthermore, as the maritime accident and safety data is still rather scarce and has some quality problems, the possibility to combine data with expert knowledge and the easy way of updating the model after acquiring more evidence further enhance their feasibility. However, eliciting the probabilities from the maritime experts might be challenging and the model validation can be tricky. It is concluded that with the utilization of several data sources, Bayesian updating, dynamic modeling, and hidden nodes for latent variables, Bayesian networks are rather well-suited tools for the maritime safety management and decision-making. Copyright © 2014 Elsevier Ltd. All rights reserved.
Adjusting case mix payment amounts for inaccurately reported comorbidity data.
Sutherland, Jason M; Hamm, Jeremy; Hatcher, Jeff
2010-03-01
Case mix methods such as diagnosis related groups have become a basis of payment for inpatient hospitalizations in many countries. Specifying cost weight values for case mix system payment has important consequences; recent evidence suggests case mix cost weight inaccuracies influence the supply of some hospital-based services. To begin to address the question of case mix cost weight accuracy, this paper is motivated by the objective of improving the accuracy of cost weight values due to inaccurate or incomplete comorbidity data. The methods are suitable to case mix methods that incorporate disease severity or comorbidity adjustments. The methods are based on the availability of detailed clinical and cost information linked at the patient level and leverage recent results from clinical data audits. A Bayesian framework is used to synthesize clinical data audit information regarding misclassification probabilities into cost weight value calculations. The models are implemented through Markov chain Monte Carlo methods. An example used to demonstrate the methods finds that inaccurate comorbidity data affects cost weight values by biasing cost weight values (and payments) downward. The implications for hospital payments are discussed and the generalizability of the approach is explored.
Bayesian Framework for Water Quality Model Uncertainty Estimation and Risk Management
A formal Bayesian methodology is presented for integrated model calibration and risk-based water quality management using Bayesian Monte Carlo simulation and maximum likelihood estimation (BMCML). The primary focus is on lucid integration of model calibration with risk-based wat...
ERIC Educational Resources Information Center
Wu, Haiyan
2013-01-01
General diagnostic models (GDMs) and Bayesian networks are mathematical frameworks that cover a wide variety of psychometric models. Both extend latent class models, and while GDMs also extend item response theory (IRT) models, Bayesian networks can be parameterized using discretized IRT. The purpose of this study is to examine similarities and…
Perceptual decision making: drift-diffusion model is equivalent to a Bayesian model
Bitzer, Sebastian; Park, Hame; Blankenburg, Felix; Kiebel, Stefan J.
2014-01-01
Behavioral data obtained with perceptual decision making experiments are typically analyzed with the drift-diffusion model. This parsimonious model accumulates noisy pieces of evidence toward a decision bound to explain the accuracy and reaction times of subjects. Recently, Bayesian models have been proposed to explain how the brain extracts information from noisy input as typically presented in perceptual decision making tasks. It has long been known that the drift-diffusion model is tightly linked with such functional Bayesian models but the precise relationship of the two mechanisms was never made explicit. Using a Bayesian model, we derived the equations which relate parameter values between these models. In practice we show that this equivalence is useful when fitting multi-subject data. We further show that the Bayesian model suggests different decision variables which all predict equal responses and discuss how these may be discriminated based on neural correlates of accumulated evidence. In addition, we discuss extensions to the Bayesian model which would be difficult to derive for the drift-diffusion model. We suggest that these and other extensions may be highly useful for deriving new experiments which test novel hypotheses. PMID:24616689
Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng
2014-01-01
A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping.
Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng
2014-01-01
A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping. PMID:25254227
Hierarchical Bayesian Modeling of Fluid-Induced Seismicity
NASA Astrophysics Data System (ADS)
Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.
2017-11-01
In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.
Varughese, Eunice A.; Brinkman, Nichole E; Anneken, Emily M; Cashdollar, Jennifer S; Fout, G. Shay; Furlong, Edward T.; Kolpin, Dana W.; Glassmeyer, Susan T.; Keely, Scott P
2017-01-01
incorporated into a Bayesian model to more accurately determine viral load in both source and treated water. Results of the Bayesian model indicated that viruses are present in source water and treated water. By using a Bayesian framework that incorporates inhibition, as well as many other parameters that affect viral detection, this study offers an approach for more accurately estimating the occurrence of viral pathogens in environmental waters.
A local approach for focussed Bayesian fusion
NASA Astrophysics Data System (ADS)
Sander, Jennifer; Heizmann, Michael; Goussev, Igor; Beyerer, Jürgen
2009-04-01
Local Bayesian fusion approaches aim to reduce high storage and computational costs of Bayesian fusion which is separated from fixed modeling assumptions. Using the small world formalism, we argue why this proceeding is conform with Bayesian theory. Then, we concentrate on the realization of local Bayesian fusion by focussing the fusion process solely on local regions that are task relevant with a high probability. The resulting local models correspond then to restricted versions of the original one. In a previous publication, we used bounds for the probability of misleading evidence to show the validity of the pre-evaluation of task specific knowledge and prior information which we perform to build local models. In this paper, we prove the validity of this proceeding using information theoretic arguments. For additional efficiency, local Bayesian fusion can be realized in a distributed manner. Here, several local Bayesian fusion tasks are evaluated and unified after the actual fusion process. For the practical realization of distributed local Bayesian fusion, software agents are predestinated. There is a natural analogy between the resulting agent based architecture and criminal investigations in real life. We show how this analogy can be used to improve the efficiency of distributed local Bayesian fusion additionally. Using a landscape model, we present an experimental study of distributed local Bayesian fusion in the field of reconnaissance, which highlights its high potential.
Słonecka, Iwona; Łukasik, Krzysztof; Fornalski, Krzysztof W
2018-06-04
The present paper proposes two methods of calculating components of the dose absorbed by the human body after exposure to a mixed neutron and gamma radiation field. The article presents a novel approach to replace the common iterative method in its analytical form, thus reducing the calculation time. It also shows a possibility of estimating the neutron and gamma doses when their ratio in a mixed beam is not precisely known.
A Variational Bayes Genomic-Enabled Prediction Model with Genotype × Environment Interaction
Montesinos-López, Osval A.; Montesinos-López, Abelardo; Crossa, José; Montesinos-López, José Cricelio; Luna-Vázquez, Francisco Javier; Salinas-Ruiz, Josafhat; Herrera-Morales, José R.; Buenrostro-Mariscal, Raymundo
2017-01-01
There are Bayesian and non-Bayesian genomic models that take into account G×E interactions. However, the computational cost of implementing Bayesian models is high, and becomes almost impossible when the number of genotypes, environments, and traits is very large, while, in non-Bayesian models, there are often important and unsolved convergence problems. The variational Bayes method is popular in machine learning, and, by approximating the probability distributions through optimization, it tends to be faster than Markov Chain Monte Carlo methods. For this reason, in this paper, we propose a new genomic variational Bayes version of the Bayesian genomic model with G×E using half-t priors on each standard deviation (SD) term to guarantee highly noninformative and posterior inferences that are not sensitive to the choice of hyper-parameters. We show the complete theoretical derivation of the full conditional and the variational posterior distributions, and their implementations. We used eight experimental genomic maize and wheat data sets to illustrate the new proposed variational Bayes approximation, and compared its predictions and implementation time with a standard Bayesian genomic model with G×E. Results indicated that prediction accuracies are slightly higher in the standard Bayesian model with G×E than in its variational counterpart, but, in terms of computation time, the variational Bayes genomic model with G×E is, in general, 10 times faster than the conventional Bayesian genomic model with G×E. For this reason, the proposed model may be a useful tool for researchers who need to predict and select genotypes in several environments. PMID:28391241
A Variational Bayes Genomic-Enabled Prediction Model with Genotype × Environment Interaction.
Montesinos-López, Osval A; Montesinos-López, Abelardo; Crossa, José; Montesinos-López, José Cricelio; Luna-Vázquez, Francisco Javier; Salinas-Ruiz, Josafhat; Herrera-Morales, José R; Buenrostro-Mariscal, Raymundo
2017-06-07
There are Bayesian and non-Bayesian genomic models that take into account G×E interactions. However, the computational cost of implementing Bayesian models is high, and becomes almost impossible when the number of genotypes, environments, and traits is very large, while, in non-Bayesian models, there are often important and unsolved convergence problems. The variational Bayes method is popular in machine learning, and, by approximating the probability distributions through optimization, it tends to be faster than Markov Chain Monte Carlo methods. For this reason, in this paper, we propose a new genomic variational Bayes version of the Bayesian genomic model with G×E using half-t priors on each standard deviation (SD) term to guarantee highly noninformative and posterior inferences that are not sensitive to the choice of hyper-parameters. We show the complete theoretical derivation of the full conditional and the variational posterior distributions, and their implementations. We used eight experimental genomic maize and wheat data sets to illustrate the new proposed variational Bayes approximation, and compared its predictions and implementation time with a standard Bayesian genomic model with G×E. Results indicated that prediction accuracies are slightly higher in the standard Bayesian model with G×E than in its variational counterpart, but, in terms of computation time, the variational Bayes genomic model with G×E is, in general, 10 times faster than the conventional Bayesian genomic model with G×E. For this reason, the proposed model may be a useful tool for researchers who need to predict and select genotypes in several environments. Copyright © 2017 Montesinos-López et al.
Upadhayay, Hari Ram; Smith, Hugh G; Griepentrog, Marco; Bodé, Samuel; Bajracharya, Roshan Man; Blake, William; Cornelis, Wim; Boeckx, Pascal
2018-05-08
Soil erosion by water is critical for soil, lake and reservoir degradation in the mid-hills of Nepal. Identification of the nature and relative contribution of sediment sources in rivers is important to mitigate water erosion within catchments and siltation problems in lakes and reservoirs. We estimated the relative contribution of land uses (i.e. sources) to suspended and streambed sediments in the Chitlang catchment using stable carbon isotope signature (δ 13 C) of long-chain fatty acids as a tracer input for MixSIAR, a Bayesian mixing model used to apportion sediment sources. Our findings reveal that the relative contribution of land uses varied between suspended and streambed sediment, but did not change over the monsoon period. Significant over- or under-prediction of source contributions could occur due to overlapping source tracer values, if source groups are classified on a catchment-wide basis. Therefore, we applied a novel deconvolutional framework of MixSIAR (D-MixSIAR) to improve source apportionment of suspended sediment collected at tributary confluences (i.e. sub-catchment level) and at the outlet of the entire catchment. The results indicated that the mixed forest was the dominant (41 ± 13%) contributor of sediment followed by broadleaf forest (15 ± 8%) at the catchment outlet during the pre-wet season, suggesting that forest disturbance as well as high rainfall and steep slopes interact for high sediment generation within the study catchment. Unpaved rural road tracks located on flat and steep slopes (11 ± 8 and 9 ± 7% respectively) almost equally contributed to the sediment. Importantly, agricultural terraces (upland and lowland) had minimal contribution (each <7%) confirming that proper terrace management and traditional irrigation systems played an important role in mitigating sediment generation and delivery. Source contributions had a small temporal, but large spatial, variation in the sediment cascade of Chitlang stream. D-MixSIAR provided significant improvement regarding spatially explicit sediment source apportionment within the entire catchment system. This information is essential to prioritize implementation measures to control erosion in community managed forests to reduce sediment loadings to Kulekhani hydropower reservoir. In conclusion, using compound-specific stable isotope (CSSI) tracers for sediment fingerprinting in combination with a deconvolutional Bayesian mixing model offers a versatile approach to deal with the large tracer variability within catchment land uses and thus to successfully apportion multiple sediment sources. Copyright © 2018. Published by Elsevier B.V.
A Markov model for blind image separation by a mean-field EM algorithm.
Tonazzini, Anna; Bedini, Luigi; Salerno, Emanuele
2006-02-01
This paper deals with blind separation of images from noisy linear mixtures with unknown coefficients, formulated as a Bayesian estimation problem. This is a flexible framework, where any kind of prior knowledge about the source images and the mixing matrix can be accounted for. In particular, we describe local correlation within the individual images through the use of Markov random field (MRF) image models. These are naturally suited to express the joint pdf of the sources in a factorized form, so that the statistical independence requirements of most independent component analysis approaches to blind source separation are retained. Our model also includes edge variables to preserve intensity discontinuities. MRF models have been proved to be very efficient in many visual reconstruction problems, such as blind image restoration, and allow separation and edge detection to be performed simultaneously. We propose an expectation-maximization algorithm with the mean field approximation to derive a procedure for estimating the mixing matrix, the sources, and their edge maps. We tested this procedure on both synthetic and real images, in the fully blind case (i.e., no prior information on mixing is exploited) and found that a source model accounting for local autocorrelation is able to increase robustness against noise, even space variant. Furthermore, when the model closely fits the source characteristics, independence is no longer a strict requirement, and cross-correlated sources can be separated, as well.
Building an ACT-R Reader for Eye-Tracking Corpus Data.
Dotlačil, Jakub
2018-01-01
Cognitive architectures have often been applied to data from individual experiments. In this paper, I develop an ACT-R reader that can model a much larger set of data, eye-tracking corpus data. It is shown that the resulting model has a good fit to the data for the considered low-level processes. Unlike previous related works (most prominently, Engelmann, Vasishth, Engbert & Kliegl, ), the model achieves the fit by estimating free parameters of ACT-R using Bayesian estimation and Markov-Chain Monte Carlo (MCMC) techniques, rather than by relying on the mix of manual selection + default values. The method used in the paper is generalizable beyond this particular model and data set and could be used on other ACT-R models. Copyright © 2017 Cognitive Science Society, Inc.
Bayesian evidence for non-zero θ 13 and CP-violation in neutrino oscillations
NASA Astrophysics Data System (ADS)
Bergström, Johannes
2012-08-01
We present the Bayesian method for evaluating the evidence for a non-zero value of the leptonic mixing angle θ 13 and CP-violation in neutrino oscillation experiments. This is an application of the well-established method of Bayesian model selection, of which we give a concise and pedagogical overview. When comparing the hypothesis θ 13 = 0 with hypotheses where θ 13 > 0 using global data but excluding the recent reactor measurements, we obtain only a weak preference for a non-zero θ 13, even though the significance is over 3 σ. We then add the reactor measurements one by one and show how the evidence for θ 13 > 0 quickly increases. When including the D ouble C hooz, D aya B ay, and RENO data, the evidence becomes overwhelming with a posterior probability of the hypothesis θ 13 = 0 below 10-11. Owing to the small amount of information on the CP-phase δ, very similar evidences are obtained for the CP-conserving and CP-violating hypotheses. Hence, there is, not unexpectedly, neither evidence for nor against leptonic CP-violation. However, when future experiments aiming to search for CP-violation have started taking data, this question will be of great importance and the method described here can be used as an important complement to standard analyses.
Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data
ERIC Educational Resources Information Center
Lee, Sik-Yum
2006-01-01
A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is used to produce the joint Bayesian estimates of…
Dynamic Bayesian Network Modeling of Game Based Diagnostic Assessments. CRESST Report 837
ERIC Educational Resources Information Center
Levy, Roy
2014-01-01
Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…
Steingroever, Helen; Pachur, Thorsten; Šmíra, Martin; Lee, Michael D
2018-06-01
The Iowa Gambling Task (IGT) is one of the most popular experimental paradigms for comparing complex decision-making across groups. Most commonly, IGT behavior is analyzed using frequentist tests to compare performance across groups, and to compare inferred parameters of cognitive models developed for the IGT. Here, we present a Bayesian alternative based on Bayesian repeated-measures ANOVA for comparing performance, and a suite of three complementary model-based methods for assessing the cognitive processes underlying IGT performance. The three model-based methods involve Bayesian hierarchical parameter estimation, Bayes factor model comparison, and Bayesian latent-mixture modeling. We illustrate these Bayesian methods by applying them to test the extent to which differences in intuitive versus deliberate decision style are associated with differences in IGT performance. The results show that intuitive and deliberate decision-makers behave similarly on the IGT, and the modeling analyses consistently suggest that both groups of decision-makers rely on similar cognitive processes. Our results challenge the notion that individual differences in intuitive and deliberate decision styles have a broad impact on decision-making. They also highlight the advantages of Bayesian methods, especially their ability to quantify evidence in favor of the null hypothesis, and that they allow model-based analyses to incorporate hierarchical and latent-mixture structures.
Molitor, John
2012-03-01
Bayesian methods have seen an increase in popularity in a wide variety of scientific fields, including epidemiology. One of the main reasons for their widespread application is the power of the Markov chain Monte Carlo (MCMC) techniques generally used to fit these models. As a result, researchers often implicitly associate Bayesian models with MCMC estimation procedures. However, Bayesian models do not always require Markov-chain-based methods for parameter estimation. This is important, as MCMC estimation methods, while generally quite powerful, are complex and computationally expensive and suffer from convergence problems related to the manner in which they generate correlated samples used to estimate probability distributions for parameters of interest. In this issue of the Journal, Cole et al. (Am J Epidemiol. 2012;175(5):368-375) present an interesting paper that discusses non-Markov-chain-based approaches to fitting Bayesian models. These methods, though limited, can overcome some of the problems associated with MCMC techniques and promise to provide simpler approaches to fitting Bayesian models. Applied researchers will find these estimation approaches intuitively appealing and will gain a deeper understanding of Bayesian models through their use. However, readers should be aware that other non-Markov-chain-based methods are currently in active development and have been widely published in other fields.
The Bayesian reader: explaining word recognition as an optimal Bayesian decision process.
Norris, Dennis
2006-04-01
This article presents a theory of visual word recognition that assumes that, in the tasks of word identification, lexical decision, and semantic categorization, human readers behave as optimal Bayesian decision makers. This leads to the development of a computational model of word recognition, the Bayesian reader. The Bayesian reader successfully simulates some of the most significant data on human reading. The model accounts for the nature of the function relating word frequency to reaction time and identification threshold, the effects of neighborhood density and its interaction with frequency, and the variation in the pattern of neighborhood density effects seen in different experimental tasks. Both the general behavior of the model and the way the model predicts different patterns of results in different tasks follow entirely from the assumption that human readers approximate optimal Bayesian decision makers. ((c) 2006 APA, all rights reserved).
Modeling the survival kinetics of Salmonella in tree nuts for use in risk assessment.
Santillana Farakos, Sofia M; Pouillot, Régis; Anderson, Nathan; Johnson, Rhoma; Son, Insook; Van Doren, Jane
2016-06-16
Salmonella has been shown to survive in tree nuts over long periods of time. This survival capacity and its variability are key elements for risk assessment of Salmonella in tree nuts. The aim of this study was to develop a mathematical model to predict survival of Salmonella in tree nuts at ambient storage temperatures that considers variability and uncertainty separately and can easily be incorporated into a risk assessment model. Data on Salmonella survival on raw almonds, pecans, pistachios and walnuts were collected from the peer reviewed literature. The Weibull model was chosen as the baseline model and various fixed effect and mixed effect models were fit to the data. The best model identified through statistical analysis testing was then used to develop a hierarchical Bayesian model. Salmonella in tree nuts showed slow declines at temperatures ranging from 21°C to 24°C. A high degree of variability in survival was observed across tree nut studies reported in the literature. Statistical analysis results indicated that the best applicable model was a mixed effect model that included a fixed and random variation of δ per tree nut (which is the time it takes for the first log10 reduction) and a fixed variation of ρ per tree nut (parameter which defines the shape of the curve). Higher estimated survival rates (δ) were obtained for Salmonella on pistachios, followed in decreasing order by pecans, almonds and walnuts. The posterior distributions obtained from Bayesian inference were used to estimate the variability in the log10 decrease levels in survival for each tree nut, and the uncertainty of these estimates. These modeled uncertainty and variability distributions of the estimates can be used to obtain a complete exposure assessment of Salmonella in tree nuts when including time-temperature parameters for storage and consumption data. The statistical approach presented in this study may be applied to any studies that aim to develop predictive models to be implemented in a probabilistic exposure assessment or a quantitative microbial risk assessment. Published by Elsevier B.V.
Bayesian flood forecasting methods: A review
NASA Astrophysics Data System (ADS)
Han, Shasha; Coulibaly, Paulin
2017-08-01
Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been developed and widely applied, but there is still room for improvements. Future research in the context of Bayesian flood forecasting should be on assimilation of various sources of newly available information and improvement of predictive performance assessment methods.
Bayesian modeling of flexible cognitive control
Jiang, Jiefeng; Heller, Katherine; Egner, Tobias
2014-01-01
“Cognitive control” describes endogenous guidance of behavior in situations where routine stimulus-response associations are suboptimal for achieving a desired goal. The computational and neural mechanisms underlying this capacity remain poorly understood. We examine recent advances stemming from the application of a Bayesian learner perspective that provides optimal prediction for control processes. In reviewing the application of Bayesian models to cognitive control, we note that an important limitation in current models is a lack of a plausible mechanism for the flexible adjustment of control over conflict levels changing at varying temporal scales. We then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-driven learning mechanism that modulates dynamically the relative dependence on recent and remote experiences in its prediction of future control demand. We conclude that the emergent Bayesian perspective on computational mechanisms of cognitive control holds considerable promise, especially if future studies can identify neural substrates of the variables encoded by these models, and determine the nature (Bayesian or otherwise) of their neural implementation. PMID:24929218
Bayesian statistics in medicine: a 25 year review.
Ashby, Deborah
2006-11-15
This review examines the state of Bayesian thinking as Statistics in Medicine was launched in 1982, reflecting particularly on its applicability and uses in medical research. It then looks at each subsequent five-year epoch, with a focus on papers appearing in Statistics in Medicine, putting these in the context of major developments in Bayesian thinking and computation with reference to important books, landmark meetings and seminal papers. It charts the growth of Bayesian statistics as it is applied to medicine and makes predictions for the future. From sparse beginnings, where Bayesian statistics was barely mentioned, Bayesian statistics has now permeated all the major areas of medical statistics, including clinical trials, epidemiology, meta-analyses and evidence synthesis, spatial modelling, longitudinal modelling, survival modelling, molecular genetics and decision-making in respect of new technologies.
Bayesian segregation analysis of production traits in two strains of laying chickens.
Szydłowski, M; Szwaczkowski, T
2001-02-01
A bayesian marker-free segregation analysis was applied to search for evidence of segregating genes affecting production traits in two strains of laying hens under long-term selection. The study used data from 6 generations of Leghorn (H77) and New Hampshire (N88) breeding nuclei. Estimation of marginal posterior means of variance components and parameters of a single autosomal locus was performed by use of the Gibbs sampler. The results showed evidence for a mixed major gene: -polygenic inheritance of BW and age at sexual maturity (ASM) in both strains. Single genes affecting BW and ASM explained one-third of the genetic variance. For ASM large overdominance effect at single locus was estimated. Initial egg production (IEP) and average egg weight (EW) showed a polygenic model of inheritance. The polygenic heritability estimates for BW, ASM, IEP, and EW were 0.32, 0.25, 0.23, and 0.08 in Strain H77 and 0.25, 0.24, 0.11, and 0.38 in Strain N88, respectively.
Bayesian Optimization Under Mixed Constraints with A Slack-Variable Augmented Lagrangian
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picheny, Victor; Gramacy, Robert B.; Wild, Stefan M.
An augmented Lagrangian (AL) can convert a constrained optimization problem into a sequence of simpler (e.g., unconstrained) problems, which are then usually solved with local solvers. Recently, surrogate-based Bayesian optimization (BO) sub-solvers have been successfully deployed in the AL framework for a more global search in the presence of inequality constraints; however, a drawback was that expected improvement (EI) evaluations relied on Monte Carlo. Here we introduce an alternative slack variable AL, and show that in this formulation the EI may be evaluated with library routines. The slack variables furthermore facilitate equality as well as inequality constraints, and mixtures thereof.more » We show our new slack “ALBO” compares favorably to the original. Its superiority over conventional alternatives is reinforced on several mixed constraint examples.« less
Bayesian Parameter Inference and Model Selection by Population Annealing in Systems Biology
Murakami, Yohei
2014-01-01
Parameter inference and model selection are very important for mathematical modeling in systems biology. Bayesian statistics can be used to conduct both parameter inference and model selection. Especially, the framework named approximate Bayesian computation is often used for parameter inference and model selection in systems biology. However, Monte Carlo methods needs to be used to compute Bayesian posterior distributions. In addition, the posterior distributions of parameters are sometimes almost uniform or very similar to their prior distributions. In such cases, it is difficult to choose one specific value of parameter with high credibility as the representative value of the distribution. To overcome the problems, we introduced one of the population Monte Carlo algorithms, population annealing. Although population annealing is usually used in statistical mechanics, we showed that population annealing can be used to compute Bayesian posterior distributions in the approximate Bayesian computation framework. To deal with un-identifiability of the representative values of parameters, we proposed to run the simulations with the parameter ensemble sampled from the posterior distribution, named “posterior parameter ensemble”. We showed that population annealing is an efficient and convenient algorithm to generate posterior parameter ensemble. We also showed that the simulations with the posterior parameter ensemble can, not only reproduce the data used for parameter inference, but also capture and predict the data which was not used for parameter inference. Lastly, we introduced the marginal likelihood in the approximate Bayesian computation framework for Bayesian model selection. We showed that population annealing enables us to compute the marginal likelihood in the approximate Bayesian computation framework and conduct model selection depending on the Bayes factor. PMID:25089832
BiomeNet: A Bayesian Model for Inference of Metabolic Divergence among Microbial Communities
Chipman, Hugh; Gu, Hong; Bielawski, Joseph P.
2014-01-01
Metagenomics yields enormous numbers of microbial sequences that can be assigned a metabolic function. Using such data to infer community-level metabolic divergence is hindered by the lack of a suitable statistical framework. Here, we describe a novel hierarchical Bayesian model, called BiomeNet (Bayesian inference of metabolic networks), for inferring differential prevalence of metabolic subnetworks among microbial communities. To infer the structure of community-level metabolic interactions, BiomeNet applies a mixed-membership modelling framework to enzyme abundance information. The basic idea is that the mixture components of the model (metabolic reactions, subnetworks, and networks) are shared across all groups (microbiome samples), but the mixture proportions vary from group to group. Through this framework, the model can capture nested structures within the data. BiomeNet is unique in modeling each metagenome sample as a mixture of complex metabolic systems (metabosystems). The metabosystems are composed of mixtures of tightly connected metabolic subnetworks. BiomeNet differs from other unsupervised methods by allowing researchers to discriminate groups of samples through the metabolic patterns it discovers in the data, and by providing a framework for interpreting them. We describe a collapsed Gibbs sampler for inference of the mixture weights under BiomeNet, and we use simulation to validate the inference algorithm. Application of BiomeNet to human gut metagenomes revealed a metabosystem with greater prevalence among inflammatory bowel disease (IBD) patients. Based on the discriminatory subnetworks for this metabosystem, we inferred that the community is likely to be closely associated with the human gut epithelium, resistant to dietary interventions, and interfere with human uptake of an antioxidant connected to IBD. Because this metabosystem has a greater capacity to exploit host-associated glycans, we speculate that IBD-associated communities might arise from opportunist growth of bacteria that can circumvent the host's nutrient-based mechanism for bacterial partner selection. PMID:25412107
NASA Astrophysics Data System (ADS)
McPhee, J.; William, Y. W.
2005-12-01
This work presents a methodology for pumping test design based on the reliability requirements of a groundwater model. Reliability requirements take into consideration the application of the model results in groundwater management, expressed in this case as a multiobjective management model. The pumping test design is formulated as a mixed-integer nonlinear programming (MINLP) problem and solved using a combination of genetic algorithm (GA) and gradient-based optimization. Bayesian decision theory provides a formal framework for assessing the influence of parameter uncertainty over the reliability of the proposed pumping test. The proposed methodology is useful for selecting a robust design that will outperform all other candidate designs under most potential 'true' states of the system
An introduction to Bayesian statistics in health psychology.
Depaoli, Sarah; Rus, Holly M; Clifton, James P; van de Schoot, Rens; Tiemensma, Jitske
2017-09-01
The aim of the current article is to provide a brief introduction to Bayesian statistics within the field of health psychology. Bayesian methods are increasing in prevalence in applied fields, and they have been shown in simulation research to improve the estimation accuracy of structural equation models, latent growth curve (and mixture) models, and hierarchical linear models. Likewise, Bayesian methods can be used with small sample sizes since they do not rely on large sample theory. In this article, we discuss several important components of Bayesian statistics as they relate to health-based inquiries. We discuss the incorporation and impact of prior knowledge into the estimation process and the different components of the analysis that should be reported in an article. We present an example implementing Bayesian estimation in the context of blood pressure changes after participants experienced an acute stressor. We conclude with final thoughts on the implementation of Bayesian statistics in health psychology, including suggestions for reviewing Bayesian manuscripts and grant proposals. We have also included an extensive amount of online supplementary material to complement the content presented here, including Bayesian examples using many different software programmes and an extensive sensitivity analysis examining the impact of priors.
2017-09-01
efficacy of statistical post-processing methods downstream of these dynamical model components with a hierarchical multivariate Bayesian approach to...Bayesian hierarchical modeling, Markov chain Monte Carlo methods , Metropolis algorithm, machine learning, atmospheric prediction 15. NUMBER OF PAGES...scale processes. However, this dissertation explores the efficacy of statistical post-processing methods downstream of these dynamical model components
Bayesian Learning and the Psychology of Rule Induction
ERIC Educational Resources Information Center
Endress, Ansgar D.
2013-01-01
In recent years, Bayesian learning models have been applied to an increasing variety of domains. While such models have been criticized on theoretical grounds, the underlying assumptions and predictions are rarely made concrete and tested experimentally. Here, I use Frank and Tenenbaum's (2011) Bayesian model of rule-learning as a case study to…
Properties of the Bayesian Knowledge Tracing Model
ERIC Educational Resources Information Center
van de Sande, Brett
2013-01-01
Bayesian Knowledge Tracing is used very widely to model student learning. It comes in two different forms: The first form is the Bayesian Knowledge Tracing "hidden Markov model" which predicts the probability of correct application of a skill as a function of the number of previous opportunities to apply that skill and the model…
Bayesian Analysis of Longitudinal Data Using Growth Curve Models
ERIC Educational Resources Information Center
Zhang, Zhiyong; Hamagami, Fumiaki; Wang, Lijuan Lijuan; Nesselroade, John R.; Grimm, Kevin J.
2007-01-01
Bayesian methods for analyzing longitudinal data in social and behavioral research are recommended for their ability to incorporate prior information in estimating simple and complex models. We first summarize the basics of Bayesian methods before presenting an empirical example in which we fit a latent basis growth curve model to achievement data…
Efficient hierarchical trans-dimensional Bayesian inversion of magnetotelluric data
NASA Astrophysics Data System (ADS)
Xiang, Enming; Guo, Rongwen; Dosso, Stan E.; Liu, Jianxin; Dong, Hao; Ren, Zhengyong
2018-06-01
This paper develops an efficient hierarchical trans-dimensional (trans-D) Bayesian algorithm to invert magnetotelluric (MT) data for subsurface geoelectrical structure, with unknown geophysical model parameterization (the number of conductivity-layer interfaces) and data-error models parameterized by an auto-regressive (AR) process to account for potential error correlations. The reversible-jump Markov-chain Monte Carlo algorithm, which adds/removes interfaces and AR parameters in birth/death steps, is applied to sample the trans-D posterior probability density for model parameterization, model parameters, error variance and AR parameters, accounting for the uncertainties of model dimension and data-error statistics in the uncertainty estimates of the conductivity profile. To provide efficient sampling over the multiple subspaces of different dimensions, advanced proposal schemes are applied. Parameter perturbations are carried out in principal-component space, defined by eigen-decomposition of the unit-lag model covariance matrix, to minimize the effect of inter-parameter correlations and provide effective perturbation directions and length scales. Parameters of new layers in birth steps are proposed from the prior, instead of focused distributions centred at existing values, to improve birth acceptance rates. Parallel tempering, based on a series of parallel interacting Markov chains with successively relaxed likelihoods, is applied to improve chain mixing over model dimensions. The trans-D inversion is applied in a simulation study to examine the resolution of model structure according to the data information content. The inversion is also applied to a measured MT data set from south-central Australia.
Testing students' e-learning via Facebook through Bayesian structural equation modeling.
Salarzadeh Jenatabadi, Hashem; Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad
2017-01-01
Learning is an intentional activity, with several factors affecting students' intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods' results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated.
Testing students’ e-learning via Facebook through Bayesian structural equation modeling
Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad
2017-01-01
Learning is an intentional activity, with several factors affecting students’ intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods’ results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated. PMID:28886019
When mechanism matters: Bayesian forecasting using models of ecological diffusion
Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.
2017-01-01
Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.
Estimating the Diets of Animals Using Stable Isotopes and a Comprehensive Bayesian Mixing Model
Hopkins, John B.; Ferguson, Jake M.
2012-01-01
Using stable isotope mixing models (SIMMs) as a tool to investigate the foraging ecology of animals is gaining popularity among researchers. As a result, statistical methods are rapidly evolving and numerous models have been produced to estimate the diets of animals—each with their benefits and their limitations. Deciding which SIMM to use is contingent on factors such as the consumer of interest, its food sources, sample size, the familiarity a user has with a particular framework for statistical analysis, or the level of inference the researcher desires to make (e.g., population- or individual-level). In this paper, we provide a review of commonly used SIMM models and describe a comprehensive SIMM that includes all features commonly used in SIMM analysis and two new features. We used data collected in Yosemite National Park to demonstrate IsotopeR's ability to estimate dietary parameters. We then examined the importance of each feature in the model and compared our results to inferences from commonly used SIMMs. IsotopeR's user interface (in R) will provide researchers a user-friendly tool for SIMM analysis. The model is also applicable for use in paleontology, archaeology, and forensic studies as well as estimating pollution inputs. PMID:22235246
Meta-analysis of the effect of natural frequencies on Bayesian reasoning.
McDowell, Michelle; Jacobs, Perke
2017-12-01
The natural frequency facilitation effect describes the finding that people are better able to solve descriptive Bayesian inference tasks when represented as joint frequencies obtained through natural sampling, known as natural frequencies, than as conditional probabilities. The present meta-analysis reviews 20 years of research seeking to address when, why, and for whom natural frequency formats are most effective. We review contributions from research associated with the 2 dominant theoretical perspectives, the ecological rationality framework and nested-sets theory, and test potential moderators of the effect. A systematic review of relevant literature yielded 35 articles representing 226 performance estimates. These estimates were statistically integrated using a bivariate mixed-effects model that yields summary estimates of average performances across the 2 formats and estimates of the effects of different study characteristics on performance. These study characteristics range from moderators representing individual characteristics (e.g., numeracy, expertise), to methodological differences (e.g., use of incentives, scoring criteria) and features of problem representation (e.g., short menu format, visual aid). Short menu formats (less computationally complex representations showing joint-events) and visual aids demonstrated some of the strongest moderation effects, improving performance for both conditional probability and natural frequency formats. A number of methodological factors (e.g., exposure to both problem formats) were also found to affect performance rates, emphasizing the importance of a systematic approach. We suggest how research on Bayesian reasoning can be strengthened by broadening the definition of successful Bayesian reasoning to incorporate choice and process and by applying different research methodologies. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
How Much Can We Learn from a Single Chromatographic Experiment? A Bayesian Perspective.
Wiczling, Paweł; Kaliszan, Roman
2016-01-05
In this work, we proposed and investigated a Bayesian inference procedure to find the desired chromatographic conditions based on known analyte properties (lipophilicity, pKa, and polar surface area) using one preliminary experiment. A previously developed nonlinear mixed effect model was used to specify the prior information about a new analyte with known physicochemical properties. Further, the prior (no preliminary data) and posterior predictive distribution (prior + one experiment) were determined sequentially to search towards the desired separation. The following isocratic high-performance reversed-phase liquid chromatographic conditions were sought: (1) retention time of a single analyte within the range of 4-6 min and (2) baseline separation of two analytes with retention times within the range of 4-10 min. The empirical posterior Bayesian distribution of parameters was estimated using the "slice sampling" Markov Chain Monte Carlo (MCMC) algorithm implemented in Matlab. The simulations with artificial analytes and experimental data of ketoprofen and papaverine were used to test the proposed methodology. The simulation experiment showed that for a single and two randomly selected analytes, there is 97% and 74% probability of obtaining a successful chromatogram using none or one preliminary experiment. The desired separation for ketoprofen and papaverine was established based on a single experiment. It was confirmed that the search for a desired separation rarely requires a large number of chromatographic analyses at least for a simple optimization problem. The proposed Bayesian-based optimization scheme is a powerful method of finding a desired chromatographic separation based on a small number of preliminary experiments.
Bayesian naturalness, simplicity, and testability applied to the B ‑ L MSSM GUT
NASA Astrophysics Data System (ADS)
Fundira, Panashe; Purves, Austin
2018-04-01
Recent years have seen increased use of Bayesian model comparison to quantify notions such as naturalness, simplicity, and testability, especially in the area of supersymmetric model building. After demonstrating that Bayesian model comparison can resolve a paradox that has been raised in the literature concerning the naturalness of the proton mass, we apply Bayesian model comparison to GUTs, an area to which it has not been applied before. We find that the GUTs are substantially favored over the nonunifying puzzle model. Of the GUTs we consider, the B ‑ L MSSM GUT is the most favored, but the MSSM GUT is almost equally favored.
Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne
2012-01-01
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882
Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne
2012-12-01
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.
Wasson, Anton P; Chiu, Grace S; Zwart, Alexander B; Binns, Timothy R
2017-01-01
Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly "above ground," little progress has been made "below ground"; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an "idealized" relative intensity function for the root distribution over depth. Our approach was used to determine heritability : how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our approach led to denoised profiles which exhibited rigorously discernible phenotypic traits. Profile-specific traits could be representative of a genotype, and thus, used as a quantitative tool to associate phenotypic traits with specific genotypes. This would allow breeders to select for whole root system distributions appropriate for sustainable intensification, and inform policy for mitigating crop yield risk and food insecurity.
Kärkkäinen, Hanni P; Sillanpää, Mikko J
2013-09-04
Because of the increased availability of genome-wide sets of molecular markers along with reduced cost of genotyping large samples of individuals, genomic estimated breeding values have become an essential resource in plant and animal breeding. Bayesian methods for breeding value estimation have proven to be accurate and efficient; however, the ever-increasing data sets are placing heavy demands on the parameter estimation algorithms. Although a commendable number of fast estimation algorithms are available for Bayesian models of continuous Gaussian traits, there is a shortage for corresponding models of discrete or censored phenotypes. In this work, we consider a threshold approach of binary, ordinal, and censored Gaussian observations for Bayesian multilocus association models and Bayesian genomic best linear unbiased prediction and present a high-speed generalized expectation maximization algorithm for parameter estimation under these models. We demonstrate our method with simulated and real data. Our example analyses suggest that the use of the extra information present in an ordered categorical or censored Gaussian data set, instead of dichotomizing the data into case-control observations, increases the accuracy of genomic breeding values predicted by Bayesian multilocus association models or by Bayesian genomic best linear unbiased prediction. Furthermore, the example analyses indicate that the correct threshold model is more accurate than the directly used Gaussian model with a censored Gaussian data, while with a binary or an ordinal data the superiority of the threshold model could not be confirmed.
Kärkkäinen, Hanni P.; Sillanpää, Mikko J.
2013-01-01
Because of the increased availability of genome-wide sets of molecular markers along with reduced cost of genotyping large samples of individuals, genomic estimated breeding values have become an essential resource in plant and animal breeding. Bayesian methods for breeding value estimation have proven to be accurate and efficient; however, the ever-increasing data sets are placing heavy demands on the parameter estimation algorithms. Although a commendable number of fast estimation algorithms are available for Bayesian models of continuous Gaussian traits, there is a shortage for corresponding models of discrete or censored phenotypes. In this work, we consider a threshold approach of binary, ordinal, and censored Gaussian observations for Bayesian multilocus association models and Bayesian genomic best linear unbiased prediction and present a high-speed generalized expectation maximization algorithm for parameter estimation under these models. We demonstrate our method with simulated and real data. Our example analyses suggest that the use of the extra information present in an ordered categorical or censored Gaussian data set, instead of dichotomizing the data into case-control observations, increases the accuracy of genomic breeding values predicted by Bayesian multilocus association models or by Bayesian genomic best linear unbiased prediction. Furthermore, the example analyses indicate that the correct threshold model is more accurate than the directly used Gaussian model with a censored Gaussian data, while with a binary or an ordinal data the superiority of the threshold model could not be confirmed. PMID:23821618
Uncertainties in ozone concentrations predicted with a Lagrangian photochemical air quality model have been estimated using Bayesian Monte Carlo (BMC) analysis. Bayesian Monte Carlo analysis provides a means of combining subjective "prior" uncertainty estimates developed ...
A SEMIPARAMETRIC BAYESIAN MODEL FOR CIRCULAR-LINEAR REGRESSION
We present a Bayesian approach to regress a circular variable on a linear predictor. The regression coefficients are assumed to have a nonparametric distribution with a Dirichlet process prior. The semiparametric Bayesian approach gives added flexibility to the model and is usefu...
The Stochastic Early Reaction, Inhibition, and late Action (SERIA) model for antisaccades
2017-01-01
The antisaccade task is a classic paradigm used to study the voluntary control of eye movements. It requires participants to suppress a reactive eye movement to a visual target and to concurrently initiate a saccade in the opposite direction. Although several models have been proposed to explain error rates and reaction times in this task, no formal model comparison has yet been performed. Here, we describe a Bayesian modeling approach to the antisaccade task that allows us to formally compare different models on the basis of their evidence. First, we provide a formal likelihood function of actions (pro- and antisaccades) and reaction times based on previously published models. Second, we introduce the Stochastic Early Reaction, Inhibition, and late Action model (SERIA), a novel model postulating two different mechanisms that interact in the antisaccade task: an early GO/NO-GO race decision process and a late GO/GO decision process. Third, we apply these models to a data set from an experiment with three mixed blocks of pro- and antisaccade trials. Bayesian model comparison demonstrates that the SERIA model explains the data better than competing models that do not incorporate a late decision process. Moreover, we show that the early decision process postulated by the SERIA model is, to a large extent, insensitive to the cue presented in a single trial. Finally, we use parameter estimates to demonstrate that changes in reaction time and error rate due to the probability of a trial type (pro- or antisaccade) are best explained by faster or slower inhibition and the probability of generating late voluntary prosaccades. PMID:28767650
A Bayesian alternative for multi-objective ecohydrological model specification
NASA Astrophysics Data System (ADS)
Tang, Yating; Marshall, Lucy; Sharma, Ashish; Ajami, Hoori
2018-01-01
Recent studies have identified the importance of vegetation processes in terrestrial hydrologic systems. Process-based ecohydrological models combine hydrological, physical, biochemical and ecological processes of the catchments, and as such are generally more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov chain Monte Carlo (MCMC) techniques. The Bayesian approach offers an appealing alternative to traditional multi-objective hydrologic model calibrations by defining proper prior distributions that can be considered analogous to the ad-hoc weighting often prescribed in multi-objective calibration. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological modeling framework based on a traditional Pareto-based model calibration technique. In our study, a Pareto-based multi-objective optimization and a formal Bayesian framework are implemented in a conceptual ecohydrological model that combines a hydrological model (HYMOD) and a modified Bucket Grassland Model (BGM). Simulations focused on one objective (streamflow/LAI) and multiple objectives (streamflow and LAI) with different emphasis defined via the prior distribution of the model error parameters. Results show more reliable outputs for both predicted streamflow and LAI using Bayesian multi-objective calibration with specified prior distributions for error parameters based on results from the Pareto front in the ecohydrological modeling. The methodology implemented here provides insight into the usefulness of multiobjective Bayesian calibration for ecohydrologic systems and the importance of appropriate prior distributions in such approaches.
Ortega, Alonso; Labrenz, Stephan; Markowitsch, Hans J; Piefke, Martina
2013-01-01
In the last decade, different statistical techniques have been introduced to improve assessment of malingering-related poor effort. In this context, we have recently shown preliminary evidence that a Bayesian latent group model may help to optimize classification accuracy using a simulation research design. In the present study, we conducted two analyses. Firstly, we evaluated how accurately this Bayesian approach can distinguish between participants answering in an honest way (honest response group) and participants feigning cognitive impairment (experimental malingering group). Secondly, we tested the accuracy of our model in the differentiation between patients who had real cognitive deficits (cognitively impaired group) and participants who belonged to the experimental malingering group. All Bayesian analyses were conducted using the raw scores of a visual recognition forced-choice task (2AFC), the Test of Memory Malingering (TOMM, Trial 2), and the Word Memory Test (WMT, primary effort subtests). The first analysis showed 100% accuracy for the Bayesian model in distinguishing participants of both groups with all effort measures. The second analysis showed outstanding overall accuracy of the Bayesian model when estimates were obtained from the 2AFC and the TOMM raw scores. Diagnostic accuracy of the Bayesian model diminished when using the WMT total raw scores. Despite, overall diagnostic accuracy can still be considered excellent. The most plausible explanation for this decrement is the low performance in verbal recognition and fluency tasks of some patients of the cognitively impaired group. Additionally, the Bayesian model provides individual estimates, p(zi |D), of examinees' effort levels. In conclusion, both high classification accuracy levels and Bayesian individual estimates of effort may be very useful for clinicians when assessing for effort in medico-legal settings.
Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno
2016-01-01
Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision. PMID:27303323
Estimating Tree Height-Diameter Models with the Bayesian Method
Duan, Aiguo; Zhang, Jianguo; Xiang, Congwei
2014-01-01
Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the “best” model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2. PMID:24711733
Estimating tree height-diameter models with the Bayesian method.
Zhang, Xiongqing; Duan, Aiguo; Zhang, Jianguo; Xiang, Congwei
2014-01-01
Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the "best" model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2.
Lin, Xiaolei; Mermelstein, Robin J; Hedeker, Donald
2018-06-15
Ecological momentary assessment studies usually produce intensively measured longitudinal data with large numbers of observations per unit, and research interest is often centered around understanding the changes in variation of people's thoughts, emotions and behaviors. Hedeker et al developed a 2-level mixed effects location scale model that allows observed covariates as well as unobserved variables to influence both the mean and the within-subjects variance, for a 2-level data structure where observations are nested within subjects. In some ecological momentary assessment studies, subjects are measured at multiple waves, and within each wave, subjects are measured over time. Li and Hedeker extended the original 2-level model to a 3-level data structure where observations are nested within days and days are then nested within subjects, by including a random location and scale intercept at the intermediate wave level. However, the 3-level random intercept model assumes constant response change rate for both the mean and variance. To account for changes in variance across waves, as well as clustering attributable to waves, we propose a more comprehensive location scale model that allows subject heterogeneity at baseline as well as across different waves, for a 3-level data structure where observations are nested within waves and waves are then further nested within subjects. The model parameters are estimated using Markov chain Monte Carlo methods. We provide details on the Bayesian estimation approach and demonstrate how the Stan statistical software can be used to sample from the desired distributions and achieve consistent estimates. The proposed model is validated via a series of simulation studies. Data from an adolescent smoking study are analyzed to demonstrate this approach. The analyses clearly favor the proposed model and show significant subject heterogeneity at baseline as well as change over time, for both mood mean and variance. The proposed 3-level location scale model can be widely applied to areas of research where the interest lies in the consistency in addition to the mean level of the responses. Copyright © 2018 John Wiley & Sons, Ltd.
Relative importance of climatic, geographic and socio-economic determinants of malaria in Malawi
2013-01-01
Background Malaria transmission is influenced by variations in meteorological conditions, which impact the biology of the parasite and its vector, but also socio-economic conditions, such as levels of urbanization, poverty and education, which impact human vulnerability and vector habitat. The many potential drivers of malaria, both extrinsic, such as climate, and intrinsic, such as population immunity are often difficult to disentangle. This presents a challenge for the modelling of malaria risk in space and time. Methods A statistical mixed model framework is proposed to model malaria risk at the district level in Malawi, using an age-stratified spatio-temporal dataset of malaria cases from July 2004 to June 2011. Several climatic, geographic and socio-economic factors thought to influence malaria incidence were tested in an exploratory model. In order to account for the unobserved confounding factors that influence malaria, which are not accounted for using measured covariates, a generalized linear mixed model was adopted, which included structured and unstructured spatial and temporal random effects. A hierarchical Bayesian framework using Markov chain Monte Carlo simulation was used for model fitting and prediction. Results Using a stepwise model selection procedure, several explanatory variables were identified to have significant associations with malaria including climatic, cartographic and socio-economic data. Once intervention variations, unobserved confounding factors and spatial correlation were considered in a Bayesian framework, a final model emerged with statistically significant predictor variables limited to average precipitation (quadratic relation) and average temperature during the three months previous to the month of interest. Conclusions When modelling malaria risk in Malawi it is important to account for spatial and temporal heterogeneity and correlation between districts. Once observed and unobserved confounding factors are allowed for, precipitation and temperature in the months prior to the malaria season of interest are found to significantly determine spatial and temporal variations of malaria incidence. Climate information was found to improve the estimation of malaria relative risk in 41% of the districts in Malawi, particularly at higher altitudes where transmission is irregular. This highlights the potential value of climate-driven seasonal malaria forecasts. PMID:24228784
Accurate Biomass Estimation via Bayesian Adaptive Sampling
NASA Technical Reports Server (NTRS)
Wheeler, Kevin R.; Knuth, Kevin H.; Castle, Joseph P.; Lvov, Nikolay
2005-01-01
The following concepts were introduced: a) Bayesian adaptive sampling for solving biomass estimation; b) Characterization of MISR Rahman model parameters conditioned upon MODIS landcover. c) Rigorous non-parametric Bayesian approach to analytic mixture model determination. d) Unique U.S. asset for science product validation and verification.
Analysis of trend changes in Northern African palaeo-climate by using Bayesian inference
NASA Astrophysics Data System (ADS)
Schütz, Nadine; Trauth, Martin H.; Holschneider, Matthias
2010-05-01
Climate variability of Northern Africa is of high interest due to climate-evolutionary linkages under study. The reconstruction of the palaeo-climate over long time scales, including the expected linkages (> 3 Ma), is mainly accessible by proxy data from deep sea drilling cores. By concentrating on published data sets, we try to decipher rhythms and trends to detect correlations between different proxy time series by advanced mathematical methods. Our preliminary data is dust concentration, as an indicator for climatic changes such as humidity, from the ODP sites 659, 721 and 967 situated around Northern Africa. Our interest is in challenging the available time series with advanced statistical methods to detect significant trend changes and to compare different model assumptions. For that purpose, we want to avoid the rescaling of the time axis to obtain equidistant time steps for filtering methods. Additionally we demand an plausible description of the errors for the estimated parameters, in terms of confidence intervals. Finally, depending on what model we restrict on, we also want an insight in the parameter structure of the assumed models. To gain this information, we focus on Bayesian inference by formulating the problem as a linear mixed model, so that the expectation and deviation are of linear structure. By using the Bayesian method we can formulate the posteriori density as a function of the model parameters and calculate this probability density in the parameter space. Depending which parameters are of interest, we analytically and numerically marginalize the posteriori with respect to the remaining parameters of less interest. We apply a simple linear mixed model to calculate the posteriori densities of the ODP sites 659 and 721 concerning the last 5 Ma at maximum. From preliminary calculations on these data sets, we can confirm results gained by the method of breakfit regression combined with block bootstrapping ([1]). We obtain a significant change point around (1.63 - 1.82) Ma, which correlates with a global climate transition due to the establishment of the Walker circulation ([2]). Furthermore we detect another significant change point around (2.7 - 3.2) Ma, which correlates with the end of the Pliocene warm period (permanent El Niño-like conditions) and the onset of a colder global climate ([3], [4]). The discussion on the algorithm, the results of calculated confidence intervals, the available information about the applied model in the parameter space and the comparison of multiple change point models will be presented. [1] Trauth, M.H., et al., Quaternary Science Reviews, 28, 2009 [2] Wara, M.W., et al., Science, Vol. 309, 2005 [3] Chiang, J.C.H., Annual Review of Earth and Planetary Sciences, Vol. 37, 2009 [4] deMenocal, P., Earth and Planetary Science Letters, 220, 2004
Sparse Event Modeling with Hierarchical Bayesian Kernel Methods
2016-01-05
SECURITY CLASSIFICATION OF: The research objective of this proposal was to develop a predictive Bayesian kernel approach to model count data based on...several predictive variables. Such an approach, which we refer to as the Poisson Bayesian kernel model , is able to model the rate of occurrence of...which adds specificity to the model and can make nonlinear data more manageable. Early results show that the 1. REPORT DATE (DD-MM-YYYY) 4. TITLE
Bayesian Calibration of Thermodynamic Databases and the Role of Kinetics
NASA Astrophysics Data System (ADS)
Wolf, A. S.; Ghiorso, M. S.
2017-12-01
Self-consistent thermodynamic databases of geologically relevant materials (like Berman, 1988; Holland and Powell, 1998, Stixrude & Lithgow-Bertelloni 2011) are crucial for simulating geological processes as well as interpreting rock samples from the field. These databases form the backbone of our understanding of how fluids and rocks interact at extreme planetary conditions. Considerable work is involved in their construction from experimental phase reaction data, as they must self-consistently describe the free energy surfaces (including relative offsets) of potentially hundreds of interacting phases. Standard database calibration methods typically utilize either linear programming or least squares regression. While both produce a viable model, they suffer from strong limitations on the training data (which must be filtered by hand), along with general ignorance of many of the sources of experimental uncertainty. We develop a new method for calibrating high P-T thermodynamic databases for use in geologic applications. The model is designed to handle pure solid endmember and free fluid phases and can be extended to include mixed solid solutions and melt phases. This new calibration effort utilizes Bayesian techniques to obtain optimal parameter values together with a full family of statistically acceptable models, summarized by the posterior. Unlike previous efforts, the Bayesian Logistic Uncertain Reaction (BLUR) model directly accounts for both measurement uncertainties and disequilibrium effects, by employing a kinetic reaction model whose parameters are empirically determined from the experiments themselves. Thus, along with the equilibrium free energy surfaces, we also provide rough estimates of the activation energies, entropies, and volumes for each reaction. As a first application, we demonstrate this new method on the three-phase aluminosilicate system, illustrating how it can produce superior estimates of the phase boundaries by incorporating constraints from all available data, while automatically handling variable data quality due to a combination of measurement errors and kinetic effects.
NASA Astrophysics Data System (ADS)
Xu, T.; Valocchi, A. J.; Ye, M.; Liang, F.
2016-12-01
Due to simplification and/or misrepresentation of the real aquifer system, numerical groundwater flow and solute transport models are usually subject to model structural error. During model calibration, the hydrogeological parameters may be overly adjusted to compensate for unknown structural error. This may result in biased predictions when models are used to forecast aquifer response to new forcing. In this study, we extend a fully Bayesian method [Xu and Valocchi, 2015] to calibrate a real-world, regional groundwater flow model. The method uses a data-driven error model to describe model structural error and jointly infers model parameters and structural error. In this study, Bayesian inference is facilitated using high performance computing and fast surrogate models. The surrogate models are constructed using machine learning techniques to emulate the response simulated by the computationally expensive groundwater model. We demonstrate in the real-world case study that explicitly accounting for model structural error yields parameter posterior distributions that are substantially different from those derived by the classical Bayesian calibration that does not account for model structural error. In addition, the Bayesian with error model method gives significantly more accurate prediction along with reasonable credible intervals.
The Bayesian Revolution Approaches Psychological Development
ERIC Educational Resources Information Center
Shultz, Thomas R.
2007-01-01
This commentary reviews five articles that apply Bayesian ideas to psychological development, some with psychology experiments, some with computational modeling, and some with both experiments and modeling. The reviewed work extends the current Bayesian revolution into tasks often studied in children, such as causal learning and word learning, and…
NASA Astrophysics Data System (ADS)
Zaveri, Mazad Shaheriar
The semiconductor/computer industry has been following Moore's law for several decades and has reaped the benefits in speed and density of the resultant scaling. Transistor density has reached almost one billion per chip, and transistor delays are in picoseconds. However, scaling has slowed down, and the semiconductor industry is now facing several challenges. Hybrid CMOS/nano technologies, such as CMOL, are considered as an interim solution to some of the challenges. Another potential architectural solution includes specialized architectures for applications/models in the intelligent computing domain, one aspect of which includes abstract computational models inspired from the neuro/cognitive sciences. Consequently in this dissertation, we focus on the hardware implementations of Bayesian Memory (BM), which is a (Bayesian) Biologically Inspired Computational Model (BICM). This model is a simplified version of George and Hawkins' model of the visual cortex, which includes an inference framework based on Judea Pearl's belief propagation. We then present a "hardware design space exploration" methodology for implementing and analyzing the (digital and mixed-signal) hardware for the BM. This particular methodology involves: analyzing the computational/operational cost and the related micro-architecture, exploring candidate hardware components, proposing various custom hardware architectures using both traditional CMOS and hybrid nanotechnology - CMOL, and investigating the baseline performance/price of these architectures. The results suggest that CMOL is a promising candidate for implementing a BM. Such implementations can utilize the very high density storage/computation benefits of these new nano-scale technologies much more efficiently; for example, the throughput per 858 mm2 (TPM) obtained for CMOL based architectures is 32 to 40 times better than the TPM for a CMOS based multiprocessor/multi-FPGA system, and almost 2000 times better than the TPM for a PC implementation. We later use this methodology to investigate the hardware implementations of cortex-scale spiking neural system, which is an approximate neural equivalent of BICM based cortex-scale system. The results of this investigation also suggest that CMOL is a promising candidate to implement such large-scale neuromorphic systems. In general, the assessment of such hypothetical baseline hardware architectures provides the prospects for building large-scale (mammalian cortex-scale) implementations of neuromorphic/Bayesian/intelligent systems using state-of-the-art and beyond state-of-the-art silicon structures.
A spatiotemporal model of ecological and sociological ...
Background/Question/Methods Suffolk County, New York is a locus for West Nile virus (WNV) infection in the American northeast that includes the majority of Long Island to the east of New York City. The county has a robust system of light and gravid traps used for mosquito collection and disease monitoring. Since 2010, there have been 55 confirmed human cases of WNV in Suffolk County, resulting in 3 deaths. In order to identify predictors of WNV incidence in mosquitoes and predict future occurrence of WNV we developed a spatiotemporal Bayesian model, beginning with over 40 ecological, meteorological, and built-environment covariates. A mixed effects model including spatially and temporally correlated errors was fit to WNV surveillance data from 2008-2014 using the R package 'R-INLA' which allows for Bayesian modeling using the stochastic partial differential equation (SPDE) approach. The INLA SPDE allows for simultaneous fitting of temporal parameters and a spatial covariance matrix, while incorporating multiple likelihood functions and running in standard R statistical software on a typical home computer. Results/Conclusions We found that land cover classified as open water or woody wetlands had a negative association with WNV incidence in mosquitoes, and the count of septic systems was associated with an increase in WNV. Mean temperature at two weeks lag was associated with a strong positive impact, while mean precipitation at no lag and
Spatiotemporal modeling of ecological and sociological ...
Suffolk County, New York, is a locus for West Nile virus (WNV) infection in the American northeast that includes the majority of Long Island to the east of New York City. The county has a system of light and gravid traps used for mosquito collection and disease monitoring. In order to identify predictors of WNV incidence in mosquitoes and predict future occurrence of WNV, we have developed a spatiotemporal Bayesian model, beginning with over 40 ecological, meteorological, and built-environment covariates. A mixed-effects model including spatially and temporally correlated errors was fit to WNV surveillance data from 2008 to 2014 using the R package “R-INLA,” which allows for Bayesian modeling using the stochastic partial differential equation (SPDE) approach. The integrated nested Laplace approximation (INLA) SPDE allows for simultaneous fitting of a temporal parameter and a spatial covariance, while incorporating a variety of likelihood functions and running in R statistical software on a home computer. We found that land cover classified as open water and woody wetlands had a negative association with WNV incidence in mosquitoes, and the count of septic systems was associated with an increase in WNV. Mean temperature at two-week lag was associated with a strong positive impact, while mean precipitation at no lag and one-week lag was associated with positive and negative impacts on WNV, respectively. Incorporation of spatiotemporal factors resulted in a mar
Incorporating approximation error in surrogate based Bayesian inversion
NASA Astrophysics Data System (ADS)
Zhang, J.; Zeng, L.; Li, W.; Wu, L.
2015-12-01
There are increasing interests in applying surrogates for inverse Bayesian modeling to reduce repetitive evaluations of original model. In this way, the computational cost is expected to be saved. However, the approximation error of surrogate model is usually overlooked. This is partly because that it is difficult to evaluate the approximation error for many surrogates. Previous studies have shown that, the direct combination of surrogates and Bayesian methods (e.g., Markov Chain Monte Carlo, MCMC) may lead to biased estimations when the surrogate cannot emulate the highly nonlinear original system. This problem can be alleviated by implementing MCMC in a two-stage manner. However, the computational cost is still high since a relatively large number of original model simulations are required. In this study, we illustrate the importance of incorporating approximation error in inverse Bayesian modeling. Gaussian process (GP) is chosen to construct the surrogate for its convenience in approximation error evaluation. Numerical cases of Bayesian experimental design and parameter estimation for contaminant source identification are used to illustrate this idea. It is shown that, once the surrogate approximation error is well incorporated into Bayesian framework, promising results can be obtained even when the surrogate is directly used, and no further original model simulations are required.
Rodgers, Joseph Lee
2016-01-01
The Bayesian-frequentist debate typically portrays these statistical perspectives as opposing views. However, both Bayesian and frequentist statisticians have expanded their epistemological basis away from a singular focus on the null hypothesis, to a broader perspective involving the development and comparison of competing statistical/mathematical models. For frequentists, statistical developments such as structural equation modeling and multilevel modeling have facilitated this transition. For Bayesians, the Bayes factor has facilitated this transition. The Bayes factor is treated in articles within this issue of Multivariate Behavioral Research. The current presentation provides brief commentary on those articles and more extended discussion of the transition toward a modern modeling epistemology. In certain respects, Bayesians and frequentists share common goals.
A Bayesian Model of the Memory Colour Effect.
Witzel, Christoph; Olkkonen, Maria; Gegenfurtner, Karl R
2018-01-01
According to the memory colour effect, the colour of a colour-diagnostic object is not perceived independently of the object itself. Instead, it has been shown through an achromatic adjustment method that colour-diagnostic objects still appear slightly in their typical colour, even when they are colourimetrically grey. Bayesian models provide a promising approach to capture the effect of prior knowledge on colour perception and to link these effects to more general effects of cue integration. Here, we model memory colour effects using prior knowledge about typical colours as priors for the grey adjustments in a Bayesian model. This simple model does not involve any fitting of free parameters. The Bayesian model roughly captured the magnitude of the measured memory colour effect for photographs of objects. To some extent, the model predicted observed differences in memory colour effects across objects. The model could not account for the differences in memory colour effects across different levels of realism in the object images. The Bayesian model provides a particularly simple account of memory colour effects, capturing some of the multiple sources of variation of these effects.
A Bayesian Model of the Memory Colour Effect
Olkkonen, Maria; Gegenfurtner, Karl R.
2018-01-01
According to the memory colour effect, the colour of a colour-diagnostic object is not perceived independently of the object itself. Instead, it has been shown through an achromatic adjustment method that colour-diagnostic objects still appear slightly in their typical colour, even when they are colourimetrically grey. Bayesian models provide a promising approach to capture the effect of prior knowledge on colour perception and to link these effects to more general effects of cue integration. Here, we model memory colour effects using prior knowledge about typical colours as priors for the grey adjustments in a Bayesian model. This simple model does not involve any fitting of free parameters. The Bayesian model roughly captured the magnitude of the measured memory colour effect for photographs of objects. To some extent, the model predicted observed differences in memory colour effects across objects. The model could not account for the differences in memory colour effects across different levels of realism in the object images. The Bayesian model provides a particularly simple account of memory colour effects, capturing some of the multiple sources of variation of these effects. PMID:29760874
Using Bayesian Networks to Improve Knowledge Assessment
ERIC Educational Resources Information Center
Millan, Eva; Descalco, Luis; Castillo, Gladys; Oliveira, Paula; Diogo, Sandra
2013-01-01
In this paper, we describe the integration and evaluation of an existing generic Bayesian student model (GBSM) into an existing computerized testing system within the Mathematics Education Project (PmatE--Projecto Matematica Ensino) of the University of Aveiro. This generic Bayesian student model had been previously evaluated with simulated…
Bayesian Posterior Odds Ratios: Statistical Tools for Collaborative Evaluations
ERIC Educational Resources Information Center
Hicks, Tyler; Rodríguez-Campos, Liliana; Choi, Jeong Hoon
2018-01-01
To begin statistical analysis, Bayesians quantify their confidence in modeling hypotheses with priors. A prior describes the probability of a certain modeling hypothesis apart from the data. Bayesians should be able to defend their choice of prior to a skeptical audience. Collaboration between evaluators and stakeholders could make their choices…
Zhang, Jinming; Cavallari, Jennifer M; Fang, Shona C; Weisskopf, Marc G; Lin, Xihong; Mittleman, Murray A; Christiani, David C
2017-01-01
Background Environmental and occupational exposure to metals is ubiquitous worldwide, and understanding the hazardous metal components in this complex mixture is essential for environmental and occupational regulations. Objective To identify hazardous components from metal mixtures that are associated with alterations in cardiac autonomic responses. Methods Urinary concentrations of 16 types of metals were examined and ‘acceleration capacity’ (AC) and ‘deceleration capacity’ (DC), indicators of cardiac autonomic effects, were quantified from ECG recordings among 54 welders. We fitted linear mixed-effects models with least absolute shrinkage and selection operator (LASSO) to identify metal components that are associated with AC and DC. The Bayesian Information Criterion was used as the criterion for model selection procedures. Results Mercury and chromium were selected for DC analysis, whereas mercury, chromium and manganese were selected for AC analysis through the LASSO approach. When we fitted the linear mixed-effects models with ‘selected’ metal components only, the effect of mercury remained significant. Every 1 µg/L increase in urinary mercury was associated with −0.58 ms (−1.03, –0.13) changes in DC and 0.67 ms (0.25, 1.10) changes in AC. Conclusion Our study suggests that exposure to several metals is associated with impaired cardiac autonomic functions. Our findings should be replicated in future studies with larger sample sizes. PMID:28663305
BCM: toolkit for Bayesian analysis of Computational Models using samplers.
Thijssen, Bram; Dijkstra, Tjeerd M H; Heskes, Tom; Wessels, Lodewyk F A
2016-10-21
Computational models in biology are characterized by a large degree of uncertainty. This uncertainty can be analyzed with Bayesian statistics, however, the sampling algorithms that are frequently used for calculating Bayesian statistical estimates are computationally demanding, and each algorithm has unique advantages and disadvantages. It is typically unclear, before starting an analysis, which algorithm will perform well on a given computational model. We present BCM, a toolkit for the Bayesian analysis of Computational Models using samplers. It provides efficient, multithreaded implementations of eleven algorithms for sampling from posterior probability distributions and for calculating marginal likelihoods. BCM includes tools to simplify the process of model specification and scripts for visualizing the results. The flexible architecture allows it to be used on diverse types of biological computational models. In an example inference task using a model of the cell cycle based on ordinary differential equations, BCM is significantly more efficient than existing software packages, allowing more challenging inference problems to be solved. BCM represents an efficient one-stop-shop for computational modelers wishing to use sampler-based Bayesian statistics.
Two Approaches to Calibration in Metrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campanelli, Mark
2014-04-01
Inferring mathematical relationships with quantified uncertainty from measurement data is common to computational science and metrology. Sufficient knowledge of measurement process noise enables Bayesian inference. Otherwise, an alternative approach is required, here termed compartmentalized inference, because collection of uncertain data and model inference occur independently. Bayesian parameterized model inference is compared to a Bayesian-compatible compartmentalized approach for ISO-GUM compliant calibration problems in renewable energy metrology. In either approach, model evidence can help reduce model discrepancy.
Bayesian data analysis in population ecology: motivations, methods, and benefits
Dorazio, Robert
2016-01-01
During the 20th century ecologists largely relied on the frequentist system of inference for the analysis of their data. However, in the past few decades ecologists have become increasingly interested in the use of Bayesian methods of data analysis. In this article I provide guidance to ecologists who would like to decide whether Bayesian methods can be used to improve their conclusions and predictions. I begin by providing a concise summary of Bayesian methods of analysis, including a comparison of differences between Bayesian and frequentist approaches to inference when using hierarchical models. Next I provide a list of problems where Bayesian methods of analysis may arguably be preferred over frequentist methods. These problems are usually encountered in analyses based on hierarchical models of data. I describe the essentials required for applying modern methods of Bayesian computation, and I use real-world examples to illustrate these methods. I conclude by summarizing what I perceive to be the main strengths and weaknesses of using Bayesian methods to solve ecological inference problems.
[Evaluation of estimation of prevalence ratio using bayesian log-binomial regression model].
Gao, W L; Lin, H; Liu, X N; Ren, X W; Li, J S; Shen, X P; Zhu, S L
2017-03-10
To evaluate the estimation of prevalence ratio ( PR ) by using bayesian log-binomial regression model and its application, we estimated the PR of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea in their infants by using bayesian log-binomial regression model in Openbugs software. The results showed that caregivers' recognition of infant' s risk signs of diarrhea was associated significantly with a 13% increase of medical care-seeking. Meanwhile, we compared the differences in PR 's point estimation and its interval estimation of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea and convergence of three models (model 1: not adjusting for the covariates; model 2: adjusting for duration of caregivers' education, model 3: adjusting for distance between village and township and child month-age based on model 2) between bayesian log-binomial regression model and conventional log-binomial regression model. The results showed that all three bayesian log-binomial regression models were convergence and the estimated PRs were 1.130(95 %CI : 1.005-1.265), 1.128(95 %CI : 1.001-1.264) and 1.132(95 %CI : 1.004-1.267), respectively. Conventional log-binomial regression model 1 and model 2 were convergence and their PRs were 1.130(95 % CI : 1.055-1.206) and 1.126(95 % CI : 1.051-1.203), respectively, but the model 3 was misconvergence, so COPY method was used to estimate PR , which was 1.125 (95 %CI : 1.051-1.200). In addition, the point estimation and interval estimation of PRs from three bayesian log-binomial regression models differed slightly from those of PRs from conventional log-binomial regression model, but they had a good consistency in estimating PR . Therefore, bayesian log-binomial regression model can effectively estimate PR with less misconvergence and have more advantages in application compared with conventional log-binomial regression model.
ERIC Educational Resources Information Center
Hsieh, Chueh-An; Maier, Kimberly S.
2009-01-01
The capacity of Bayesian methods in estimating complex statistical models is undeniable. Bayesian data analysis is seen as having a range of advantages, such as an intuitive probabilistic interpretation of the parameters of interest, the efficient incorporation of prior information to empirical data analysis, model averaging and model selection.…
Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer.
Covarrubias-Pazaran, Giovanny
2016-01-01
Most traits of agronomic importance are quantitative in nature, and genetic markers have been used for decades to dissect such traits. Recently, genomic selection has earned attention as next generation sequencing technologies became feasible for major and minor crops. Mixed models have become a key tool for fitting genomic selection models, but most current genomic selection software can only include a single variance component other than the error, making hybrid prediction using additive, dominance and epistatic effects unfeasible for species displaying heterotic effects. Moreover, Likelihood-based software for fitting mixed models with multiple random effects that allows the user to specify the variance-covariance structure of random effects has not been fully exploited. A new open-source R package called sommer is presented to facilitate the use of mixed models for genomic selection and hybrid prediction purposes using more than one variance component and allowing specification of covariance structures. The use of sommer for genomic prediction is demonstrated through several examples using maize and wheat genotypic and phenotypic data. At its core, the program contains three algorithms for estimating variance components: Average information (AI), Expectation-Maximization (EM) and Efficient Mixed Model Association (EMMA). Kernels for calculating the additive, dominance and epistatic relationship matrices are included, along with other useful functions for genomic analysis. Results from sommer were comparable to other software, but the analysis was faster than Bayesian counterparts in the magnitude of hours to days. In addition, ability to deal with missing data, combined with greater flexibility and speed than other REML-based software was achieved by putting together some of the most efficient algorithms to fit models in a gentle environment such as R.
Bayesian model selection: Evidence estimation based on DREAM simulation and bridge sampling
NASA Astrophysics Data System (ADS)
Volpi, Elena; Schoups, Gerrit; Firmani, Giovanni; Vrugt, Jasper A.
2017-04-01
Bayesian inference has found widespread application in Earth and Environmental Systems Modeling, providing an effective tool for prediction, data assimilation, parameter estimation, uncertainty analysis and hypothesis testing. Under multiple competing hypotheses, the Bayesian approach also provides an attractive alternative to traditional information criteria (e.g. AIC, BIC) for model selection. The key variable for Bayesian model selection is the evidence (or marginal likelihood) that is the normalizing constant in the denominator of Bayes theorem; while it is fundamental for model selection, the evidence is not required for Bayesian inference. It is computed for each hypothesis (model) by averaging the likelihood function over the prior parameter distribution, rather than maximizing it as by information criteria; the larger a model evidence the more support it receives among a collection of hypothesis as the simulated values assign relatively high probability density to the observed data. Hence, the evidence naturally acts as an Occam's razor, preferring simpler and more constrained models against the selection of over-fitted ones by information criteria that incorporate only the likelihood maximum. Since it is not particularly easy to estimate the evidence in practice, Bayesian model selection via the marginal likelihood has not yet found mainstream use. We illustrate here the properties of a new estimator of the Bayesian model evidence, which provides robust and unbiased estimates of the marginal likelihood; the method is coined Gaussian Mixture Importance Sampling (GMIS). GMIS uses multidimensional numerical integration of the posterior parameter distribution via bridge sampling (a generalization of importance sampling) of a mixture distribution fitted to samples of the posterior distribution derived from the DREAM algorithm (Vrugt et al., 2008; 2009). Some illustrative examples are presented to show the robustness and superiority of the GMIS estimator with respect to other commonly used approaches in the literature.
Dynamic Bayesian network modeling for longitudinal brain morphometry
Chen, Rong; Resnick, Susan M; Davatzikos, Christos; Herskovits, Edward H
2011-01-01
Identifying interactions among brain regions from structural magnetic-resonance images presents one of the major challenges in computational neuroanatomy. We propose a Bayesian data-mining approach to the detection of longitudinal morphological changes in the human brain. Our method uses a dynamic Bayesian network to represent evolving inter-regional dependencies. The major advantage of dynamic Bayesian network modeling is that it can represent complicated interactions among temporal processes. We validated our approach by analyzing a simulated atrophy study, and found that this approach requires only a small number of samples to detect the ground-truth temporal model. We further applied dynamic Bayesian network modeling to a longitudinal study of normal aging and mild cognitive impairment — the Baltimore Longitudinal Study of Aging. We found that interactions among regional volume-change rates for the mild cognitive impairment group are different from those for the normal-aging group. PMID:21963916
Variational learning and bits-back coding: an information-theoretic view to Bayesian learning.
Honkela, Antti; Valpola, Harri
2004-07-01
The bits-back coding first introduced by Wallace in 1990 and later by Hinton and van Camp in 1993 provides an interesting link between Bayesian learning and information-theoretic minimum-description-length (MDL) learning approaches. The bits-back coding allows interpreting the cost function used in the variational Bayesian method called ensemble learning as a code length in addition to the Bayesian view of misfit of the posterior approximation and a lower bound of model evidence. Combining these two viewpoints provides interesting insights to the learning process and the functions of different parts of the model. In this paper, the problem of variational Bayesian learning of hierarchical latent variable models is used to demonstrate the benefits of the two views. The code-length interpretation provides new views to many parts of the problem such as model comparison and pruning and helps explain many phenomena occurring in learning.
The choice of sample size: a mixed Bayesian / frequentist approach.
Pezeshk, Hamid; Nematollahi, Nader; Maroufy, Vahed; Gittins, John
2009-04-01
Sample size computations are largely based on frequentist or classical methods. In the Bayesian approach the prior information on the unknown parameters is taken into account. In this work we consider a fully Bayesian approach to the sample size determination problem which was introduced by Grundy et al. and developed by Lindley. This approach treats the problem as a decision problem and employs a utility function to find the optimal sample size of a trial. Furthermore, we assume that a regulatory authority, which is deciding on whether or not to grant a licence to a new treatment, uses a frequentist approach. We then find the optimal sample size for the trial by maximising the expected net benefit, which is the expected benefit of subsequent use of the new treatment minus the cost of the trial.
Multivariate longitudinal data analysis with mixed effects hidden Markov models.
Raffa, Jesse D; Dubin, Joel A
2015-09-01
Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random effects between multiple longitudinal responses. This approach was motivated by a smoking cessation clinical trial, where a bivariate longitudinal response involving both a continuous and a binomial response was collected for each participant to monitor smoking behavior. A Bayesian method using Markov chain Monte Carlo is used. Comparison of separate univariate response models to the bivariate response models was undertaken. Our methods are demonstrated on the smoking cessation clinical trial dataset, and properties of our approach are examined through extensive simulation studies. © 2015, The International Biometric Society.
Classifying emotion in Twitter using Bayesian network
NASA Astrophysics Data System (ADS)
Surya Asriadie, Muhammad; Syahrul Mubarok, Mohamad; Adiwijaya
2018-03-01
Language is used to express not only facts, but also emotions. Emotions are noticeable from behavior up to the social media statuses written by a person. Analysis of emotions in a text is done in a variety of media such as Twitter. This paper studies classification of emotions on twitter using Bayesian network because of its ability to model uncertainty and relationships between features. The result is two models based on Bayesian network which are Full Bayesian Network (FBN) and Bayesian Network with Mood Indicator (BNM). FBN is a massive Bayesian network where each word is treated as a node. The study shows the method used to train FBN is not very effective to create the best model and performs worse compared to Naive Bayes. F1-score for FBN is 53.71%, while for Naive Bayes is 54.07%. BNM is proposed as an alternative method which is based on the improvement of Multinomial Naive Bayes and has much lower computational complexity compared to FBN. Even though it’s not better compared to FBN, the resulting model successfully improves the performance of Multinomial Naive Bayes. F1-Score for Multinomial Naive Bayes model is 51.49%, while for BNM is 52.14%.
Lexer, C; Wüest, R O; Mangili, S; Heuertz, M; Stölting, K N; Pearman, P B; Forest, F; Salamin, N; Zimmermann, N E; Bossolini, E
2014-09-01
Understanding the drivers of population divergence, speciation and species persistence is of great interest to molecular ecology, especially for species-rich radiations inhabiting the world's biodiversity hotspots. The toolbox of population genomics holds great promise for addressing these key issues, especially if genomic data are analysed within a spatially and ecologically explicit context. We have studied the earliest stages of the divergence continuum in the Restionaceae, a species-rich and ecologically important plant family of the Cape Floristic Region (CFR) of South Africa, using the widespread CFR endemic Restio capensis (L.) H.P. Linder & C.R. Hardy as an example. We studied diverging populations of this morphotaxon for plastid DNA sequences and >14 400 nuclear DNA polymorphisms from Restriction site Associated DNA (RAD) sequencing and analysed the results jointly with spatial, climatic and phytogeographic data, using a Bayesian generalized linear mixed modelling (GLMM) approach. The results indicate that population divergence across the extreme environmental mosaic of the CFR is mostly driven by isolation by environment (IBE) rather than isolation by distance (IBD) for both neutral and non-neutral markers, consistent with genome hitchhiking or coupling effects during early stages of divergence. Mixed modelling of plastid DNA and single divergent outlier loci from a Bayesian genome scan confirmed the predominant role of climate and pointed to additional drivers of divergence, such as drift and ecological agents of selection captured by phytogeographic zones. Our study demonstrates the usefulness of population genomics for disentangling the effects of IBD and IBE along the divergence continuum often found in species radiations across heterogeneous ecological landscapes. © 2014 John Wiley & Sons Ltd.
Quantifying learning in biotracer studies.
Brown, Christopher J; Brett, Michael T; Adame, Maria Fernanda; Stewart-Koster, Ben; Bunn, Stuart E
2018-04-12
Mixing models have become requisite tools for analyzing biotracer data, most commonly stable isotope ratios, to infer dietary contributions of multiple sources to a consumer. However, Bayesian mixing models will always return a result that defaults to their priors if the data poorly resolve the source contributions, and thus, their interpretation requires caution. We describe an application of information theory to quantify how much has been learned about a consumer's diet from new biotracer data. We apply the approach to two example data sets. We find that variation in the isotope ratios of sources limits the precision of estimates for the consumer's diet, even with a large number of consumer samples. Thus, the approach which we describe is a type of power analysis that uses a priori simulations to find an optimal sample size. Biotracer data are fundamentally limited in their ability to discriminate consumer diets. We suggest that other types of data, such as gut content analysis, must be used as prior information in model fitting, to improve model learning about the consumer's diet. Information theory may also be used to identify optimal sampling protocols in situations where sampling of consumers is limited due to expense or ethical concerns.
Additive Genetic Variability and the Bayesian Alphabet
Gianola, Daniel; de los Campos, Gustavo; Hill, William G.; Manfredi, Eduardo; Fernando, Rohan
2009-01-01
The use of all available molecular markers in statistical models for prediction of quantitative traits has led to what could be termed a genomic-assisted selection paradigm in animal and plant breeding. This article provides a critical review of some theoretical and statistical concepts in the context of genomic-assisted genetic evaluation of animals and crops. First, relationships between the (Bayesian) variance of marker effects in some regression models and additive genetic variance are examined under standard assumptions. Second, the connection between marker genotypes and resemblance between relatives is explored, and linkages between a marker-based model and the infinitesimal model are reviewed. Third, issues associated with the use of Bayesian models for marker-assisted selection, with a focus on the role of the priors, are examined from a theoretical angle. The sensitivity of a Bayesian specification that has been proposed (called “Bayes A”) with respect to priors is illustrated with a simulation. Methods that can solve potential shortcomings of some of these Bayesian regression procedures are discussed briefly. PMID:19620397
NASA Astrophysics Data System (ADS)
Plant, N. G.; Thieler, E. R.; Gutierrez, B.; Lentz, E. E.; Zeigler, S. L.; Van Dongeren, A.; Fienen, M. N.
2016-12-01
We evaluate the strengths and weaknesses of Bayesian networks that have been used to address scientific and decision-support questions related to coastal geomorphology. We will provide an overview of coastal geomorphology research that has used Bayesian networks and describe what this approach can do and when it works (or fails to work). Over the past decade, Bayesian networks have been formulated to analyze the multi-variate structure and evolution of coastal morphology and associated human and ecological impacts. The approach relates observable system variables to each other by estimating discrete correlations. The resulting Bayesian-networks make predictions that propagate errors, conduct inference via Bayes rule, or both. In scientific applications, the model results are useful for hypothesis testing, using confidence estimates to gage the strength of tests while applications to coastal resource management are aimed at decision-support, where the probabilities of desired ecosystems outcomes are evaluated. The range of Bayesian-network applications to coastal morphology includes emulation of high-resolution wave transformation models to make oceanographic predictions, morphologic response to storms and/or sea-level rise, groundwater response to sea-level rise and morphologic variability, habitat suitability for endangered species, and assessment of monetary or human-life risk associated with storms. All of these examples are based on vast observational data sets, numerical model output, or both. We will discuss the progression of our experiments, which has included testing whether the Bayesian-network approach can be implemented and is appropriate for addressing basic and applied scientific problems and evaluating the hindcast and forecast skill of these implementations. We will present and discuss calibration/validation tests that are used to assess the robustness of Bayesian-network models and we will compare these results to tests of other models. This will demonstrate how Bayesian networks are used to extract new insights about coastal morphologic behavior, assess impacts to societal and ecological systems, and communicate probabilistic predictions to decision makers.
Bayesian Analysis of Evolutionary Divergence with Genomic Data under Diverse Demographic Models.
Chung, Yujin; Hey, Jody
2017-06-01
We present a new Bayesian method for estimating demographic and phylogenetic history using population genomic data. Several key innovations are introduced that allow the study of diverse models within an Isolation-with-Migration framework. The new method implements a 2-step analysis, with an initial Markov chain Monte Carlo (MCMC) phase that samples simple coalescent trees, followed by the calculation of the joint posterior density for the parameters of a demographic model. In step 1, the MCMC sampling phase, the method uses a reduced state space, consisting of coalescent trees without migration paths, and a simple importance sampling distribution without the demography of interest. Once obtained, a single sample of trees can be used in step 2 to calculate the joint posterior density for model parameters under multiple diverse demographic models, without having to repeat MCMC runs. Because migration paths are not included in the state space of the MCMC phase, but rather are handled by analytic integration in step 2 of the analysis, the method is scalable to a large number of loci with excellent MCMC mixing properties. With an implementation of the new method in the computer program MIST, we demonstrate the method's accuracy, scalability, and other advantages using simulated data and DNA sequences of two common chimpanzee subspecies: Pan troglodytes (P. t.) troglodytes and P. t. verus. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Galloway, A. W. E.; Eisenlord, M. E.; Brett, M. T.
2016-02-01
Stable isotope (SI) based mixing models are the most common approach used to infer resource pathways in consumers. However, SI based analyses are often underdetermined, and consumer SI fractionation is usually unknown. The use of fatty acid (FA) tracers in mixing models offers an alternative approach that can resolve the underdetermined constraint. A limitation to both methods is the considerable uncertainty about consumer `trophic modification' (TM) of dietary FA or SI, which occurs as consumers transform dietary resources into tissues. We tested the utility of SI and FA approaches for inferring the diets of the marine benthic isopod (Idotea wosnesenskii) fed various marine macroalgae in controlled feeding trials. Our analyses quantified how the accuracy and precision of Bayesian mixing models was influenced by choice of algorithm (SIAR vs MixSIR), fractionation (assumed or known), and whether the model was under or overdetermined (seven sources and two vs 26 tracers) for cases where isopods were fed an exclusive diet of one of the seven different macroalgae. Using the conventional approach (i.e., 2 SI with assumed TM) resulted in average model outputs, i.e., the contribution from the exclusive resource = 0.20 ± 0.23 (0.00-0.79), mean ± SD (95% credible interval), that only differed slightly from the prior assumption. Using the FA based approach with known TM greatly improved model performance, i.e., the contribution from the exclusive resource = 0.91 ± 0.10 (0.58-0.99). The choice of algorithm only made a difference when fractionation was known and the model was overdetermined (FA approach). In this case SIAR and MixSIR had outputs of 0.86 ± 0.11 (0.48-0.96) and 0.96 ± 0.05 (0.79-1.00), respectively. This analysis shows the choice of dietary tracers and the assumption of consumer trophic modification greatly influence the performance of mixing model dietary reconstructions, and ultimately our understanding of what resources actually support aquatic consumers.
A comment on priors for Bayesian occupancy models.
Northrup, Joseph M; Gerber, Brian D
2018-01-01
Understanding patterns of species occurrence and the processes underlying these patterns is fundamental to the study of ecology. One of the more commonly used approaches to investigate species occurrence patterns is occupancy modeling, which can account for imperfect detection of a species during surveys. In recent years, there has been a proliferation of Bayesian modeling in ecology, which includes fitting Bayesian occupancy models. The Bayesian framework is appealing to ecologists for many reasons, including the ability to incorporate prior information through the specification of prior distributions on parameters. While ecologists almost exclusively intend to choose priors so that they are "uninformative" or "vague", such priors can easily be unintentionally highly informative. Here we report on how the specification of a "vague" normally distributed (i.e., Gaussian) prior on coefficients in Bayesian occupancy models can unintentionally influence parameter estimation. Using both simulated data and empirical examples, we illustrate how this issue likely compromises inference about species-habitat relationships. While the extent to which these informative priors influence inference depends on the data set, researchers fitting Bayesian occupancy models should conduct sensitivity analyses to ensure intended inference, or employ less commonly used priors that are less informative (e.g., logistic or t prior distributions). We provide suggestions for addressing this issue in occupancy studies, and an online tool for exploring this issue under different contexts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzouk, Youssef
Predictive simulation of complex physical systems increasingly rests on the interplay of experimental observations with computational models. Key inputs, parameters, or structural aspects of models may be incomplete or unknown, and must be developed from indirect and limited observations. At the same time, quantified uncertainties are needed to qualify computational predictions in the support of design and decision-making. In this context, Bayesian statistics provides a foundation for inference from noisy and limited data, but at prohibitive computional expense. This project intends to make rigorous predictive modeling *feasible* in complex physical systems, via accelerated and scalable tools for uncertainty quantification, Bayesianmore » inference, and experimental design. Specific objectives are as follows: 1. Develop adaptive posterior approximations and dimensionality reduction approaches for Bayesian inference in high-dimensional nonlinear systems. 2. Extend accelerated Bayesian methodologies to large-scale {\\em sequential} data assimilation, fully treating nonlinear models and non-Gaussian state and parameter distributions. 3. Devise efficient surrogate-based methods for Bayesian model selection and the learning of model structure. 4. Develop scalable simulation/optimization approaches to nonlinear Bayesian experimental design, for both parameter inference and model selection. 5. Demonstrate these inferential tools on chemical kinetic models in reacting flow, constructing and refining thermochemical and electrochemical models from limited data. Demonstrate Bayesian filtering on canonical stochastic PDEs and in the dynamic estimation of inhomogeneous subsurface properties and flow fields.« less
Bayesian estimation inherent in a Mexican-hat-type neural network
NASA Astrophysics Data System (ADS)
Takiyama, Ken
2016-05-01
Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.
2016-10-01
and implementation of embedded, adaptive feedback and performance assessment. The investigators also initiated work designing a Bayesian Belief ...training; Teamwork; Adaptive performance; Leadership; Simulation; Modeling; Bayesian belief networks (BBN) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...Trauma teams Team training Teamwork Adaptability Adaptive performance Leadership Simulation Modeling Bayesian belief networks (BBN) 6
ERIC Educational Resources Information Center
West, Patti; Rutstein, Daisy Wise; Mislevy, Robert J.; Liu, Junhui; Choi, Younyoung; Levy, Roy; Crawford, Aaron; DiCerbo, Kristen E.; Chappel, Kristina; Behrens, John T.
2010-01-01
A major issue in the study of learning progressions (LPs) is linking student performance on assessment tasks to the progressions. This report describes the challenges faced in making this linkage using Bayesian networks to model LPs in the field of computer networking. The ideas are illustrated with exemplar Bayesian networks built on Cisco…
Nonparametric Bayesian Modeling for Automated Database Schema Matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferragut, Erik M; Laska, Jason A
2015-01-01
The problem of merging databases arises in many government and commercial applications. Schema matching, a common first step, identifies equivalent fields between databases. We introduce a schema matching framework that builds nonparametric Bayesian models for each field and compares them by computing the probability that a single model could have generated both fields. Our experiments show that our method is more accurate and faster than the existing instance-based matching algorithms in part because of the use of nonparametric Bayesian models.
Development of dynamic Bayesian models for web application test management
NASA Astrophysics Data System (ADS)
Azarnova, T. V.; Polukhin, P. V.; Bondarenko, Yu V.; Kashirina, I. L.
2018-03-01
The mathematical apparatus of dynamic Bayesian networks is an effective and technically proven tool that can be used to model complex stochastic dynamic processes. According to the results of the research, mathematical models and methods of dynamic Bayesian networks provide a high coverage of stochastic tasks associated with error testing in multiuser software products operated in a dynamically changing environment. Formalized representation of the discrete test process as a dynamic Bayesian model allows us to organize the logical connection between individual test assets for multiple time slices. This approach gives an opportunity to present testing as a discrete process with set structural components responsible for the generation of test assets. Dynamic Bayesian network-based models allow us to combine in one management area individual units and testing components with different functionalities and a direct influence on each other in the process of comprehensive testing of various groups of computer bugs. The application of the proposed models provides an opportunity to use a consistent approach to formalize test principles and procedures, methods used to treat situational error signs, and methods used to produce analytical conclusions based on test results.
NASA Astrophysics Data System (ADS)
Kim, Seongryong; Tkalčić, Hrvoje; Mustać, Marija; Rhie, Junkee; Ford, Sean
2016-04-01
A framework is presented within which we provide rigorous estimations for seismic sources and structures in the Northeast Asia. We use Bayesian inversion methods, which enable statistical estimations of models and their uncertainties based on data information. Ambiguities in error statistics and model parameterizations are addressed by hierarchical and trans-dimensional (trans-D) techniques, which can be inherently implemented in the Bayesian inversions. Hence reliable estimation of model parameters and their uncertainties is possible, thus avoiding arbitrary regularizations and parameterizations. Hierarchical and trans-D inversions are performed to develop a three-dimensional velocity model using ambient noise data. To further improve the model, we perform joint inversions with receiver function data using a newly developed Bayesian method. For the source estimation, a novel moment tensor inversion method is presented and applied to regional waveform data of the North Korean nuclear explosion tests. By the combination of new Bayesian techniques and the structural model, coupled with meaningful uncertainties related to each of the processes, more quantitative monitoring and discrimination of seismic events is possible.
Bayesian Models Leveraging Bioactivity and Cytotoxicity Information for Drug Discovery
Ekins, Sean; Reynolds, Robert C.; Kim, Hiyun; Koo, Mi-Sun; Ekonomidis, Marilyn; Talaue, Meliza; Paget, Steve D.; Woolhiser, Lisa K.; Lenaerts, Anne J.; Bunin, Barry A.; Connell, Nancy; Freundlich, Joel S.
2013-01-01
SUMMARY Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (HTS) data, to experimentally validate virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screen a commercial library and experimentally confirm actives with hit rates exceeding typical HTS results by 1-2 orders of magnitude. The first dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery. PMID:23521795
Bayesian data analysis for newcomers.
Kruschke, John K; Liddell, Torrin M
2018-02-01
This article explains the foundational concepts of Bayesian data analysis using virtually no mathematical notation. Bayesian ideas already match your intuitions from everyday reasoning and from traditional data analysis. Simple examples of Bayesian data analysis are presented that illustrate how the information delivered by a Bayesian analysis can be directly interpreted. Bayesian approaches to null-value assessment are discussed. The article clarifies misconceptions about Bayesian methods that newcomers might have acquired elsewhere. We discuss prior distributions and explain how they are not a liability but an important asset. We discuss the relation of Bayesian data analysis to Bayesian models of mind, and we briefly discuss what methodological problems Bayesian data analysis is not meant to solve. After you have read this article, you should have a clear sense of how Bayesian data analysis works and the sort of information it delivers, and why that information is so intuitive and useful for drawing conclusions from data.
A Bayesian inferential approach to quantify the transmission intensity of disease outbreak.
Kadi, Adiveppa S; Avaradi, Shivakumari R
2015-01-01
Emergence of infectious diseases like influenza pandemic (H1N1) 2009 has become great concern, which posed new challenges to the health authorities worldwide. To control these diseases various studies have been developed in the field of mathematical modelling, which is useful tool for understanding the epidemiological dynamics and their dependence on social mixing patterns. We have used Bayesian approach to quantify the disease outbreak through key epidemiological parameter basic reproduction number (R0), using effective contacts, defined as sum of the product of incidence cases and probability of generation time distribution. We have estimated R0 from daily case incidence data for pandemic influenza A/H1N1 2009 in India, for the initial phase. The estimated R0 with 95% credible interval is consistent with several other studies on the same strain. Through sensitivity analysis our study indicates that infectiousness affects the estimate of R0. Basic reproduction number R0 provides the useful information to the public health system to do some effort in controlling the disease by using mitigation strategies like vaccination, quarantine, and so forth.
Evaluation of calibration efficacy under different levels of uncertainty
Heo, Yeonsook; Graziano, Diane J.; Guzowski, Leah; ...
2014-06-10
This study examines how calibration performs under different levels of uncertainty in model input data. It specifically assesses the efficacy of Bayesian calibration to enhance the reliability of EnergyPlus model predictions. A Bayesian approach can be used to update uncertain values of parameters, given measured energy-use data, and to quantify the associated uncertainty.We assess the efficacy of Bayesian calibration under a controlled virtual-reality setup, which enables rigorous validation of the accuracy of calibration results in terms of both calibrated parameter values and model predictions. Case studies demonstrate the performance of Bayesian calibration of base models developed from audit data withmore » differing levels of detail in building design, usage, and operation.« less
Geostatistical models are appropriate for spatially distributed data measured at irregularly spaced locations. We propose an efficient Markov chain Monte Carlo (MCMC) algorithm for fitting Bayesian geostatistical models with substantial numbers of unknown parameters to sizable...
A big data approach to the development of mixed-effects models for seizure count data.
Tharayil, Joseph J; Chiang, Sharon; Moss, Robert; Stern, John M; Theodore, William H; Goldenholz, Daniel M
2017-05-01
Our objective was to develop a generalized linear mixed model for predicting seizure count that is useful in the design and analysis of clinical trials. This model also may benefit the design and interpretation of seizure-recording paradigms. Most existing seizure count models do not include children, and there is currently no consensus regarding the most suitable model that can be applied to children and adults. Therefore, an additional objective was to develop a model that accounts for both adult and pediatric epilepsy. Using data from SeizureTracker.com, a patient-reported seizure diary tool with >1.2 million recorded seizures across 8 years, we evaluated the appropriateness of Poisson, negative binomial, zero-inflated negative binomial, and modified negative binomial models for seizure count data based on minimization of the Bayesian information criterion. Generalized linear mixed-effects models were used to account for demographic and etiologic covariates and for autocorrelation structure. Holdout cross-validation was used to evaluate predictive accuracy in simulating seizure frequencies. For both adults and children, we found that a negative binomial model with autocorrelation over 1 day was optimal. Using holdout cross-validation, the proposed model was found to provide accurate simulation of seizure counts for patients with up to four seizures per day. The optimal model can be used to generate more realistic simulated patient data with very few input parameters. The availability of a parsimonious, realistic virtual patient model can be of great utility in simulations of phase II/III clinical trials, epilepsy monitoring units, outpatient biosensors, and mobile Health (mHealth) applications. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Universal Darwinism As a Process of Bayesian Inference.
Campbell, John O
2016-01-01
Many of the mathematical frameworks describing natural selection are equivalent to Bayes' Theorem, also known as Bayesian updating. By definition, a process of Bayesian Inference is one which involves a Bayesian update, so we may conclude that these frameworks describe natural selection as a process of Bayesian inference. Thus, natural selection serves as a counter example to a widely-held interpretation that restricts Bayesian Inference to human mental processes (including the endeavors of statisticians). As Bayesian inference can always be cast in terms of (variational) free energy minimization, natural selection can be viewed as comprising two components: a generative model of an "experiment" in the external world environment, and the results of that "experiment" or the "surprise" entailed by predicted and actual outcomes of the "experiment." Minimization of free energy implies that the implicit measure of "surprise" experienced serves to update the generative model in a Bayesian manner. This description closely accords with the mechanisms of generalized Darwinian process proposed both by Dawkins, in terms of replicators and vehicles, and Campbell, in terms of inferential systems. Bayesian inference is an algorithm for the accumulation of evidence-based knowledge. This algorithm is now seen to operate over a wide range of evolutionary processes, including natural selection, the evolution of mental models and cultural evolutionary processes, notably including science itself. The variational principle of free energy minimization may thus serve as a unifying mathematical framework for universal Darwinism, the study of evolutionary processes operating throughout nature.
Universal Darwinism As a Process of Bayesian Inference
Campbell, John O.
2016-01-01
Many of the mathematical frameworks describing natural selection are equivalent to Bayes' Theorem, also known as Bayesian updating. By definition, a process of Bayesian Inference is one which involves a Bayesian update, so we may conclude that these frameworks describe natural selection as a process of Bayesian inference. Thus, natural selection serves as a counter example to a widely-held interpretation that restricts Bayesian Inference to human mental processes (including the endeavors of statisticians). As Bayesian inference can always be cast in terms of (variational) free energy minimization, natural selection can be viewed as comprising two components: a generative model of an “experiment” in the external world environment, and the results of that “experiment” or the “surprise” entailed by predicted and actual outcomes of the “experiment.” Minimization of free energy implies that the implicit measure of “surprise” experienced serves to update the generative model in a Bayesian manner. This description closely accords with the mechanisms of generalized Darwinian process proposed both by Dawkins, in terms of replicators and vehicles, and Campbell, in terms of inferential systems. Bayesian inference is an algorithm for the accumulation of evidence-based knowledge. This algorithm is now seen to operate over a wide range of evolutionary processes, including natural selection, the evolution of mental models and cultural evolutionary processes, notably including science itself. The variational principle of free energy minimization may thus serve as a unifying mathematical framework for universal Darwinism, the study of evolutionary processes operating throughout nature. PMID:27375438
A Bayesian hierarchical diffusion model decomposition of performance in Approach–Avoidance Tasks
Krypotos, Angelos-Miltiadis; Beckers, Tom; Kindt, Merel; Wagenmakers, Eric-Jan
2015-01-01
Common methods for analysing response time (RT) tasks, frequently used across different disciplines of psychology, suffer from a number of limitations such as the failure to directly measure the underlying latent processes of interest and the inability to take into account the uncertainty associated with each individual's point estimate of performance. Here, we discuss a Bayesian hierarchical diffusion model and apply it to RT data. This model allows researchers to decompose performance into meaningful psychological processes and to account optimally for individual differences and commonalities, even with relatively sparse data. We highlight the advantages of the Bayesian hierarchical diffusion model decomposition by applying it to performance on Approach–Avoidance Tasks, widely used in the emotion and psychopathology literature. Model fits for two experimental data-sets demonstrate that the model performs well. The Bayesian hierarchical diffusion model overcomes important limitations of current analysis procedures and provides deeper insight in latent psychological processes of interest. PMID:25491372
Shen, Yanna; Cooper, Gregory F
2012-09-01
This paper investigates Bayesian modeling of known and unknown causes of events in the context of disease-outbreak detection. We introduce a multivariate Bayesian approach that models multiple evidential features of every person in the population. This approach models and detects (1) known diseases (e.g., influenza and anthrax) by using informative prior probabilities and (2) unknown diseases (e.g., a new, highly contagious respiratory virus that has never been seen before) by using relatively non-informative prior probabilities. We report the results of simulation experiments which support that this modeling method can improve the detection of new disease outbreaks in a population. A contribution of this paper is that it introduces a multivariate Bayesian approach for jointly modeling both known and unknown causes of events. Such modeling has general applicability in domains where the space of known causes is incomplete. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Weinstein, Lawrence; Radano, Todd A; Jack, Timothy; Kalina, Philip; Eberhardt, John S
2009-09-16
This paper explores the use of machine learning and Bayesian classification models to develop broadly applicable risk stratification models to guide disease management of health plan enrollees with substance use disorder (SUD). While the high costs and morbidities associated with SUD are understood by payers, who manage it through utilization review, acute interventions, coverage and cost limitations, and disease management, the literature shows mixed results for these modalities in improving patient outcomes and controlling cost. Our objective is to evaluate the potential of data mining methods to identify novel risk factors for chronic disease and stratification of enrollee utilization, which can be used to develop new methods for targeting disease management services to maximize benefits to both enrollees and payers. For our evaluation, we used DecisionQ machine learning algorithms to build Bayesian network models of a representative sample of data licensed from Thomson-Reuters' MarketScan consisting of 185,322 enrollees with three full-year claim records. Data sets were prepared, and a stepwise learning process was used to train a series of Bayesian belief networks (BBNs). The BBNs were validated using a 10 percent holdout set. The networks were highly predictive, with the risk-stratification BBNs producing area under the curve (AUC) for SUD positive of 0.948 (95 percent confidence interval [CI], 0.944-0.951) and 0.736 (95 percent CI, 0.721-0.752), respectively, and SUD negative of 0.951 (95 percent CI, 0.947-0.954) and 0.738 (95 percent CI, 0.727-0.750), respectively. The cost estimation models produced area under the curve ranging from 0.72 (95 percent CI, 0.708-0.731) to 0.961 (95 percent CI, 0.95-0.971). We were able to successfully model a large, heterogeneous population of commercial enrollees, applying state-of-the-art machine learning technology to develop complex and accurate multivariate models that support near-real-time scoring of novel payer populations based on historic claims and diagnostic data. Initial validation results indicate that we can stratify enrollees with SUD diagnoses into different cost categories with a high degree of sensitivity and specificity, and the most challenging issue becomes one of policy. Due to the social stigma associated with the disease and ethical issues pertaining to access to care and individual versus societal benefit, a thoughtful dialogue needs to occur about the appropriate way to implement these technologies.
Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models
ERIC Educational Resources Information Center
Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum
2011-01-01
Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…
Scale Mixture Models with Applications to Bayesian Inference
NASA Astrophysics Data System (ADS)
Qin, Zhaohui S.; Damien, Paul; Walker, Stephen
2003-11-01
Scale mixtures of uniform distributions are used to model non-normal data in time series and econometrics in a Bayesian framework. Heteroscedastic and skewed data models are also tackled using scale mixture of uniform distributions.
NASA Astrophysics Data System (ADS)
Mustac, M.; Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.; Ford, S. R.; Sebastian, N.
2015-12-01
Conventional approaches to inverse problems suffer from non-linearity and non-uniqueness in estimations of seismic structures and source properties. Estimated results and associated uncertainties are often biased by applied regularizations and additional constraints, which are commonly introduced to solve such problems. Bayesian methods, however, provide statistically meaningful estimations of models and their uncertainties constrained by data information. In addition, hierarchical and trans-dimensional (trans-D) techniques are inherently implemented in the Bayesian framework to account for involved error statistics and model parameterizations, and, in turn, allow more rigorous estimations of the same. Here, we apply Bayesian methods throughout the entire inference process to estimate seismic structures and source properties in Northeast Asia including east China, the Korean peninsula, and the Japanese islands. Ambient noise analysis is first performed to obtain a base three-dimensional (3-D) heterogeneity model using continuous broadband waveforms from more than 300 stations. As for the tomography of surface wave group and phase velocities in the 5-70 s band, we adopt a hierarchical and trans-D Bayesian inversion method using Voronoi partition. The 3-D heterogeneity model is further improved by joint inversions of teleseismic receiver functions and dispersion data using a newly developed high-efficiency Bayesian technique. The obtained model is subsequently used to prepare 3-D structural Green's functions for the source characterization. A hierarchical Bayesian method for point source inversion using regional complete waveform data is applied to selected events from the region. The seismic structure and source characteristics with rigorously estimated uncertainties from the novel Bayesian methods provide enhanced monitoring and discrimination of seismic events in northeast Asia.
Semiparametric Thurstonian Models for Recurrent Choices: A Bayesian Analysis
ERIC Educational Resources Information Center
Ansari, Asim; Iyengar, Raghuram
2006-01-01
We develop semiparametric Bayesian Thurstonian models for analyzing repeated choice decisions involving multinomial, multivariate binary or multivariate ordinal data. Our modeling framework has multiple components that together yield considerable flexibility in modeling preference utilities, cross-sectional heterogeneity and parameter-driven…
ERIC Educational Resources Information Center
Rindskopf, David
2012-01-01
Muthen and Asparouhov (2012) made a strong case for the advantages of Bayesian methodology in factor analysis and structural equation models. I show additional extensions and adaptations of their methods and show how non-Bayesians can take advantage of many (though not all) of these advantages by using interval restrictions on parameters. By…
ERIC Educational Resources Information Center
Marcoulides, Katerina M.
2018-01-01
This study examined the use of Bayesian analysis methods for the estimation of item parameters in a two-parameter logistic item response theory model. Using simulated data under various design conditions with both informative and non-informative priors, the parameter recovery of Bayesian analysis methods were examined. Overall results showed that…
A Bayesian Approach to Person Fit Analysis in Item Response Theory Models. Research Report.
ERIC Educational Resources Information Center
Glas, Cees A. W.; Meijer, Rob R.
A Bayesian approach to the evaluation of person fit in item response theory (IRT) models is presented. In a posterior predictive check, the observed value on a discrepancy variable is positioned in its posterior distribution. In a Bayesian framework, a Markov Chain Monte Carlo procedure can be used to generate samples of the posterior distribution…
A Tutorial Introduction to Bayesian Models of Cognitive Development
ERIC Educational Resources Information Center
Perfors, Amy; Tenenbaum, Joshua B.; Griffiths, Thomas L.; Xu, Fei
2011-01-01
We present an introduction to Bayesian inference as it is used in probabilistic models of cognitive development. Our goal is to provide an intuitive and accessible guide to the "what", the "how", and the "why" of the Bayesian approach: what sorts of problems and data the framework is most relevant for, and how and why it may be useful for…
ERIC Educational Resources Information Center
Sebro, Negusse Yohannes; Goshu, Ayele Taye
2017-01-01
This study aims to explore Bayesian multilevel modeling to investigate variations of average academic achievement of grade eight school students. A sample of 636 students is randomly selected from 26 private and government schools by a two-stage stratified sampling design. Bayesian method is used to estimate the fixed and random effects. Input and…
Zonta, Zivko J; Flotats, Xavier; Magrí, Albert
2014-08-01
The procedure commonly used for the assessment of the parameters included in activated sludge models (ASMs) relies on the estimation of their optimal value within a confidence region (i.e. frequentist inference). Once optimal values are estimated, parameter uncertainty is computed through the covariance matrix. However, alternative approaches based on the consideration of the model parameters as probability distributions (i.e. Bayesian inference), may be of interest. The aim of this work is to apply (and compare) both Bayesian and frequentist inference methods when assessing uncertainty for an ASM-type model, which considers intracellular storage and biomass growth, simultaneously. Practical identifiability was addressed exclusively considering respirometric profiles based on the oxygen uptake rate and with the aid of probabilistic global sensitivity analysis. Parameter uncertainty was thus estimated according to both the Bayesian and frequentist inferential procedures. Results were compared in order to evidence the strengths and weaknesses of both approaches. Since it was demonstrated that Bayesian inference could be reduced to a frequentist approach under particular hypotheses, the former can be considered as a more generalist methodology. Hence, the use of Bayesian inference is encouraged for tackling inferential issues in ASM environments.
High endemism at cave entrances: a case study of spiders of the genus Uthina
Yao, Zhiyuan; Dong, Tingting; Zheng, Guo; Fu, Jinzhong; Li, Shuqiang
2016-01-01
Endemism, which is typically high on islands and in caves, has rarely been studied in the cave entrance ecotone. We investigated the endemism of the spider genus Uthina at cave entrances. Totally 212 spiders were sampled from 46 localities, from Seychelles across Southeast Asia to Fiji. They mostly occur at cave entrances but occasionally appear at various epigean environments. Phylogenetic analysis of DNA sequence data from COI and 28S genes suggested that Uthina was grouped into 13 well-supported clades. We used three methods, the Bayesian Poisson Tree Processes (bPTP) model, the Bayesian Phylogenetics and Phylogeography (BPP) method, and the general mixed Yule coalescent (GMYC) model, to investigate species boundaries. Both bPTP and BPP identified the 13 clades as 13 separate species, while GMYC identified 19 species. Furthermore, our results revealed high endemism at cave entrances. Of the 13 provisional species, twelve (one known and eleven new) are endemic to one or a cluster of caves, and all of them occurred only at cave entrances except for one population of one species. The only widely distributed species, U. luzonica, mostly occurred in epigean environments while three populations were found at cave entrances. Additionally, eleven new species of the genus are described. PMID:27775081
Bayesian analysis of experimental epidemics of foot-and-mouth disease.
Streftaris, George; Gibson, Gavin J.
2004-01-01
We investigate the transmission dynamics of a certain type of foot-and-mouth disease (FMD) virus under experimental conditions. Previous analyses of experimental data from FMD outbreaks in non-homogeneously mixing populations of sheep have suggested a decline in viraemic level through serial passage of the virus, but these do not take into account possible variation in the length of the chain of viral transmission for each animal, which is implicit in the non-observed transmission process. We consider a susceptible-exposed-infectious-removed non-Markovian compartmental model for partially observed epidemic processes, and we employ powerful methodology (Markov chain Monte Carlo) for statistical inference, to address epidemiological issues under a Bayesian framework that accounts for all available information and associated uncertainty in a coherent approach. The analysis allows us to investigate the posterior distribution of the hidden transmission history of the epidemic, and thus to determine the effect of the length of the infection chain on the recorded viraemic levels, based on the posterior distribution of a p-value. Parameter estimates of the epidemiological characteristics of the disease are also obtained. The results reveal a possible decline in viraemia in one of the two experimental outbreaks. Our model also suggests that individual infectivity is related to the level of viraemia. PMID:15306359
Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines.
Divilov, Konstantin; Barba, Paola; Cadle-Davidson, Lance; Reisch, Bruce I
2018-05-01
Downy mildew resistance across days post-inoculation, experiments, and years in two interspecific grapevine F 1 families was investigated using linear mixed models and Bayesian networks, and five new QTL were identified. Breeding grapevines for downy mildew disease resistance has traditionally relied on qualitative gene resistance, which can be overcome by pathogen evolution. Analyzing two interspecific F 1 families, both having ancestry derived from Vitis vinifera and wild North American Vitis species, across 2 years and multiple experiments, we found multiple loci associated with downy mildew sporulation and hypersensitive response in both families using a single phenotype model. The loci explained between 7 and 17% of the variance for either phenotype, suggesting a complex genetic architecture for these traits in the two families studied. For two loci, we used RNA-Seq to detect differentially transcribed genes and found that the candidate genes at these loci were likely not NBS-LRR genes. Additionally, using a multiple phenotype Bayesian network analysis, we found effects between the leaf trichome density, hypersensitive response, and sporulation phenotypes. Moderate-high heritabilities were found for all three phenotypes, suggesting that selection for downy mildew resistance is an achievable goal by breeding for either physical- or non-physical-based resistance mechanisms, with the combination of the two possibly providing durable resistance.
Model-based Bayesian signal extraction algorithm for peripheral nerves
NASA Astrophysics Data System (ADS)
Eggers, Thomas E.; Dweiri, Yazan M.; McCallum, Grant A.; Durand, Dominique M.
2017-10-01
Objective. Multi-channel cuff electrodes have recently been investigated for extracting fascicular-level motor commands from mixed neural recordings. Such signals could provide volitional, intuitive control over a robotic prosthesis for amputee patients. Recent work has demonstrated success in extracting these signals in acute and chronic preparations using spatial filtering techniques. These extracted signals, however, had low signal-to-noise ratios and thus limited their utility to binary classification. In this work a new algorithm is proposed which combines previous source localization approaches to create a model based method which operates in real time. Approach. To validate this algorithm, a saline benchtop setup was created to allow the precise placement of artificial sources within a cuff and interference sources outside the cuff. The artificial source was taken from five seconds of chronic neural activity to replicate realistic recordings. The proposed algorithm, hybrid Bayesian signal extraction (HBSE), is then compared to previous algorithms, beamforming and a Bayesian spatial filtering method, on this test data. An example chronic neural recording is also analyzed with all three algorithms. Main results. The proposed algorithm improved the signal to noise and signal to interference ratio of extracted test signals two to three fold, as well as increased the correlation coefficient between the original and recovered signals by 10-20%. These improvements translated to the chronic recording example and increased the calculated bit rate between the recovered signals and the recorded motor activity. Significance. HBSE significantly outperforms previous algorithms in extracting realistic neural signals, even in the presence of external noise sources. These results demonstrate the feasibility of extracting dynamic motor signals from a multi-fascicled intact nerve trunk, which in turn could extract motor command signals from an amputee for the end goal of controlling a prosthetic limb.
Huang, Yangxin; Lu, Xiaosun; Chen, Jiaqing; Liang, Juan; Zangmeister, Miriam
2017-10-27
Longitudinal and time-to-event data are often observed together. Finite mixture models are currently used to analyze nonlinear heterogeneous longitudinal data, which, by releasing the homogeneity restriction of nonlinear mixed-effects (NLME) models, can cluster individuals into one of the pre-specified classes with class membership probabilities. This clustering may have clinical significance, and be associated with clinically important time-to-event data. This article develops a joint modeling approach to a finite mixture of NLME models for longitudinal data and proportional hazard Cox model for time-to-event data, linked by individual latent class indicators, under a Bayesian framework. The proposed joint models and method are applied to a real AIDS clinical trial data set, followed by simulation studies to assess the performance of the proposed joint model and a naive two-step model, in which finite mixture model and Cox model are fitted separately.
Bayesian estimation of differential transcript usage from RNA-seq data.
Papastamoulis, Panagiotis; Rattray, Magnus
2017-11-27
Next generation sequencing allows the identification of genes consisting of differentially expressed transcripts, a term which usually refers to changes in the overall expression level. A specific type of differential expression is differential transcript usage (DTU) and targets changes in the relative within gene expression of a transcript. The contribution of this paper is to: (a) extend the use of cjBitSeq to the DTU context, a previously introduced Bayesian model which is originally designed for identifying changes in overall expression levels and (b) propose a Bayesian version of DRIMSeq, a frequentist model for inferring DTU. cjBitSeq is a read based model and performs fully Bayesian inference by MCMC sampling on the space of latent state of each transcript per gene. BayesDRIMSeq is a count based model and estimates the Bayes Factor of a DTU model against a null model using Laplace's approximation. The proposed models are benchmarked against the existing ones using a recent independent simulation study as well as a real RNA-seq dataset. Our results suggest that the Bayesian methods exhibit similar performance with DRIMSeq in terms of precision/recall but offer better calibration of False Discovery Rate.
Development of uncertainty-based work injury model using Bayesian structural equation modelling.
Chatterjee, Snehamoy
2014-01-01
This paper proposed a Bayesian method-based structural equation model (SEM) of miners' work injury for an underground coal mine in India. The environmental and behavioural variables for work injury were identified and causal relationships were developed. For Bayesian modelling, prior distributions of SEM parameters are necessary to develop the model. In this paper, two approaches were adopted to obtain prior distribution for factor loading parameters and structural parameters of SEM. In the first approach, the prior distributions were considered as a fixed distribution function with specific parameter values, whereas, in the second approach, prior distributions of the parameters were generated from experts' opinions. The posterior distributions of these parameters were obtained by applying Bayesian rule. The Markov Chain Monte Carlo sampling in the form Gibbs sampling was applied for sampling from the posterior distribution. The results revealed that all coefficients of structural and measurement model parameters are statistically significant in experts' opinion-based priors, whereas, two coefficients are not statistically significant when fixed prior-based distributions are applied. The error statistics reveals that Bayesian structural model provides reasonably good fit of work injury with high coefficient of determination (0.91) and less mean squared error as compared to traditional SEM.
BUMPER: the Bayesian User-friendly Model for Palaeo-Environmental Reconstruction
NASA Astrophysics Data System (ADS)
Holden, Phil; Birks, John; Brooks, Steve; Bush, Mark; Hwang, Grace; Matthews-Bird, Frazer; Valencia, Bryan; van Woesik, Robert
2017-04-01
We describe the Bayesian User-friendly Model for Palaeo-Environmental Reconstruction (BUMPER), a Bayesian transfer function for inferring past climate and other environmental variables from microfossil assemblages. The principal motivation for a Bayesian approach is that the palaeoenvironment is treated probabilistically, and can be updated as additional data become available. Bayesian approaches therefore provide a reconstruction-specific quantification of the uncertainty in the data and in the model parameters. BUMPER is fully self-calibrating, straightforward to apply, and computationally fast, requiring 2 seconds to build a 100-taxon model from a 100-site training-set on a standard personal computer. We apply the model's probabilistic framework to generate thousands of artificial training-sets under ideal assumptions. We then use these to demonstrate both the general applicability of the model and the sensitivity of reconstructions to the characteristics of the training-set, considering assemblage richness, taxon tolerances, and the number of training sites. We demonstrate general applicability to real data, considering three different organism types (chironomids, diatoms, pollen) and different reconstructed variables. In all of these applications an identically configured model is used, the only change being the input files that provide the training-set environment and taxon-count data.
Application of bayesian networks to real-time flood risk estimation
NASA Astrophysics Data System (ADS)
Garrote, L.; Molina, M.; Blasco, G.
2003-04-01
This paper presents the application of a computational paradigm taken from the field of artificial intelligence - the bayesian network - to model the behaviour of hydrologic basins during floods. The final goal of this research is to develop representation techniques for hydrologic simulation models in order to define, develop and validate a mechanism, supported by a software environment, oriented to build decision models for the prediction and management of river floods in real time. The emphasis is placed on providing decision makers with tools to incorporate their knowledge of basin behaviour, usually formulated in terms of rainfall-runoff models, in the process of real-time decision making during floods. A rainfall-runoff model is only a step in the process of decision making. If a reliable rainfall forecast is available and the rainfall-runoff model is well calibrated, decisions can be based mainly on model results. However, in most practical situations, uncertainties in rainfall forecasts or model performance have to be incorporated in the decision process. The computation paradigm adopted for the simulation of hydrologic processes is the bayesian network. A bayesian network is a directed acyclic graph that represents causal influences between linked variables. Under this representation, uncertain qualitative variables are related through causal relations quantified with conditional probabilities. The solution algorithm allows the computation of the expected probability distribution of unknown variables conditioned to the observations. An approach to represent hydrologic processes by bayesian networks with temporal and spatial extensions is presented in this paper, together with a methodology for the development of bayesian models using results produced by deterministic hydrologic simulation models
Model-based Bayesian inference for ROC data analysis
NASA Astrophysics Data System (ADS)
Lei, Tianhu; Bae, K. Ty
2013-03-01
This paper presents a study of model-based Bayesian inference to Receiver Operating Characteristics (ROC) data. The model is a simple version of general non-linear regression model. Different from Dorfman model, it uses a probit link function with a covariate variable having zero-one two values to express binormal distributions in a single formula. Model also includes a scale parameter. Bayesian inference is implemented by Markov Chain Monte Carlo (MCMC) method carried out by Bayesian analysis Using Gibbs Sampling (BUGS). Contrast to the classical statistical theory, Bayesian approach considers model parameters as random variables characterized by prior distributions. With substantial amount of simulated samples generated by sampling algorithm, posterior distributions of parameters as well as parameters themselves can be accurately estimated. MCMC-based BUGS adopts Adaptive Rejection Sampling (ARS) protocol which requires the probability density function (pdf) which samples are drawing from be log concave with respect to the targeted parameters. Our study corrects a common misconception and proves that pdf of this regression model is log concave with respect to its scale parameter. Therefore, ARS's requirement is satisfied and a Gaussian prior which is conjugate and possesses many analytic and computational advantages is assigned to the scale parameter. A cohort of 20 simulated data sets and 20 simulations from each data set are used in our study. Output analysis and convergence diagnostics for MCMC method are assessed by CODA package. Models and methods by using continuous Gaussian prior and discrete categorical prior are compared. Intensive simulations and performance measures are given to illustrate our practice in the framework of model-based Bayesian inference using MCMC method.
Bayesian Modeling of a Human MMORPG Player
NASA Astrophysics Data System (ADS)
Synnaeve, Gabriel; Bessière, Pierre
2011-03-01
This paper describes an application of Bayesian programming to the control of an autonomous avatar in a multiplayer role-playing game (the example is based on World of Warcraft). We model a particular task, which consists of choosing what to do and to select which target in a situation where allies and foes are present. We explain the model in Bayesian programming and show how we could learn the conditional probabilities from data gathered during human-played sessions.
A comment on priors for Bayesian occupancy models
Gerber, Brian D.
2018-01-01
Understanding patterns of species occurrence and the processes underlying these patterns is fundamental to the study of ecology. One of the more commonly used approaches to investigate species occurrence patterns is occupancy modeling, which can account for imperfect detection of a species during surveys. In recent years, there has been a proliferation of Bayesian modeling in ecology, which includes fitting Bayesian occupancy models. The Bayesian framework is appealing to ecologists for many reasons, including the ability to incorporate prior information through the specification of prior distributions on parameters. While ecologists almost exclusively intend to choose priors so that they are “uninformative” or “vague”, such priors can easily be unintentionally highly informative. Here we report on how the specification of a “vague” normally distributed (i.e., Gaussian) prior on coefficients in Bayesian occupancy models can unintentionally influence parameter estimation. Using both simulated data and empirical examples, we illustrate how this issue likely compromises inference about species-habitat relationships. While the extent to which these informative priors influence inference depends on the data set, researchers fitting Bayesian occupancy models should conduct sensitivity analyses to ensure intended inference, or employ less commonly used priors that are less informative (e.g., logistic or t prior distributions). We provide suggestions for addressing this issue in occupancy studies, and an online tool for exploring this issue under different contexts. PMID:29481554
The Bayesian boom: good thing or bad?
Hahn, Ulrike
2014-01-01
A series of high-profile critiques of Bayesian models of cognition have recently sparked controversy. These critiques question the contribution of rational, normative considerations in the study of cognition. The present article takes central claims from these critiques and evaluates them in light of specific models. Closer consideration of actual examples of Bayesian treatments of different cognitive phenomena allows one to defuse these critiques showing that they cannot be sustained across the diversity of applications of the Bayesian framework for cognitive modeling. More generally, there is nothing in the Bayesian framework that would inherently give rise to the deficits that these critiques perceive, suggesting they have been framed at the wrong level of generality. At the same time, the examples are used to demonstrate the different ways in which consideration of rationality uniquely benefits both theory and practice in the study of cognition. PMID:25152738
Calibrating Bayesian Network Representations of Social-Behavioral Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitney, Paul D.; Walsh, Stephen J.
2010-04-08
While human behavior has long been studied, recent and ongoing advances in computational modeling present opportunities for recasting research outcomes in human behavior. In this paper we describe how Bayesian networks can represent outcomes of human behavior research. We demonstrate a Bayesian network that represents political radicalization research – and show a corresponding visual representation of aspects of this research outcome. Since Bayesian networks can be quantitatively compared with external observations, the representation can also be used for empirical assessments of the research which the network summarizes. For a political radicalization model based on published research, we show this empiricalmore » comparison with data taken from the Minorities at Risk Organizational Behaviors database.« less
A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network
NASA Astrophysics Data System (ADS)
Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.
2018-02-01
Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.
Hippert, Henrique S; Taylor, James W
2010-04-01
Artificial neural networks have frequently been proposed for electricity load forecasting because of their capabilities for the nonlinear modelling of large multivariate data sets. Modelling with neural networks is not an easy task though; two of the main challenges are defining the appropriate level of model complexity, and choosing the input variables. This paper evaluates techniques for automatic neural network modelling within a Bayesian framework, as applied to six samples containing daily load and weather data for four different countries. We analyse input selection as carried out by the Bayesian 'automatic relevance determination', and the usefulness of the Bayesian 'evidence' for the selection of the best structure (in terms of number of neurones), as compared to methods based on cross-validation. Copyright 2009 Elsevier Ltd. All rights reserved.
Toribo, S.G.; Gray, B.R.; Liang, S.
2011-01-01
The N-mixture model proposed by Royle in 2004 may be used to approximate the abundance and detection probability of animal species in a given region. In 2006, Royle and Dorazio discussed the advantages of using a Bayesian approach in modelling animal abundance and occurrence using a hierarchical N-mixture model. N-mixture models assume replication on sampling sites, an assumption that may be violated when the site is not closed to changes in abundance during the survey period or when nominal replicates are defined spatially. In this paper, we studied the robustness of a Bayesian approach to fitting the N-mixture model for pseudo-replicated count data. Our simulation results showed that the Bayesian estimates for abundance and detection probability are slightly biased when the actual detection probability is small and are sensitive to the presence of extra variability within local sites.
Bayesian analysis of CCDM models
NASA Astrophysics Data System (ADS)
Jesus, J. F.; Valentim, R.; Andrade-Oliveira, F.
2017-09-01
Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, produces a negative pressure term which can be used to explain the accelerated expansion of the Universe. In this work we tested six different spatially flat models for matter creation using statistical criteria, in light of SNe Ia data: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Bayesian Evidence (BE). These criteria allow to compare models considering goodness of fit and number of free parameters, penalizing excess of complexity. We find that JO model is slightly favoured over LJO/ΛCDM model, however, neither of these, nor Γ = 3αH0 model can be discarded from the current analysis. Three other scenarios are discarded either because poor fitting or because of the excess of free parameters. A method of increasing Bayesian evidence through reparameterization in order to reducing parameter degeneracy is also developed.
Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model.
Sampid, Marius Galabe; Hasim, Haslifah M; Dai, Hongsheng
2018-01-01
In this paper, we propose a model for forecasting Value-at-Risk (VaR) using a Bayesian Markov-switching GJR-GARCH(1,1) model with skewed Student's-t innovation, copula functions and extreme value theory. A Bayesian Markov-switching GJR-GARCH(1,1) model that identifies non-constant volatility over time and allows the GARCH parameters to vary over time following a Markov process, is combined with copula functions and EVT to formulate the Bayesian Markov-switching GJR-GARCH(1,1) copula-EVT VaR model, which is then used to forecast the level of risk on financial asset returns. We further propose a new method for threshold selection in EVT analysis, which we term the hybrid method. Empirical and back-testing results show that the proposed VaR models capture VaR reasonably well in periods of calm and in periods of crisis.
Comparing interval estimates for small sample ordinal CFA models
Natesan, Prathiba
2015-01-01
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research. PMID:26579002
Comparing interval estimates for small sample ordinal CFA models.
Natesan, Prathiba
2015-01-01
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research.
Bayesian demography 250 years after Bayes
Bijak, Jakub; Bryant, John
2016-01-01
Bayesian statistics offers an alternative to classical (frequentist) statistics. It is distinguished by its use of probability distributions to describe uncertain quantities, which leads to elegant solutions to many difficult statistical problems. Although Bayesian demography, like Bayesian statistics more generally, is around 250 years old, only recently has it begun to flourish. The aim of this paper is to review the achievements of Bayesian demography, address some misconceptions, and make the case for wider use of Bayesian methods in population studies. We focus on three applications: demographic forecasts, limited data, and highly structured or complex models. The key advantages of Bayesian methods are the ability to integrate information from multiple sources and to describe uncertainty coherently. Bayesian methods also allow for including additional (prior) information next to the data sample. As such, Bayesian approaches are complementary to many traditional methods, which can be productively re-expressed in Bayesian terms. PMID:26902889
A Bayesian approach to meta-analysis of plant pathology studies.
Mila, A L; Ngugi, H K
2011-01-01
Bayesian statistical methods are used for meta-analysis in many disciplines, including medicine, molecular biology, and engineering, but have not yet been applied for quantitative synthesis of plant pathology studies. In this paper, we illustrate the key concepts of Bayesian statistics and outline the differences between Bayesian and classical (frequentist) methods in the way parameters describing population attributes are considered. We then describe a Bayesian approach to meta-analysis and present a plant pathological example based on studies evaluating the efficacy of plant protection products that induce systemic acquired resistance for the management of fire blight of apple. In a simple random-effects model assuming a normal distribution of effect sizes and no prior information (i.e., a noninformative prior), the results of the Bayesian meta-analysis are similar to those obtained with classical methods. Implementing the same model with a Student's t distribution and a noninformative prior for the effect sizes, instead of a normal distribution, yields similar results for all but acibenzolar-S-methyl (Actigard) which was evaluated only in seven studies in this example. Whereas both the classical (P = 0.28) and the Bayesian analysis with a noninformative prior (95% credibility interval [CRI] for the log response ratio: -0.63 to 0.08) indicate a nonsignificant effect for Actigard, specifying a t distribution resulted in a significant, albeit variable, effect for this product (CRI: -0.73 to -0.10). These results confirm the sensitivity of the analytical outcome (i.e., the posterior distribution) to the choice of prior in Bayesian meta-analyses involving a limited number of studies. We review some pertinent literature on more advanced topics, including modeling of among-study heterogeneity, publication bias, analyses involving a limited number of studies, and methods for dealing with missing data, and show how these issues can be approached in a Bayesian framework. Bayesian meta-analysis can readily include information not easily incorporated in classical methods, and allow for a full evaluation of competing models. Given the power and flexibility of Bayesian methods, we expect them to become widely adopted for meta-analysis of plant pathology studies.
Harrison, Jay M; Breeze, Matthew L; Harrigan, George G
2011-08-01
Statistical comparisons of compositional data generated on genetically modified (GM) crops and their near-isogenic conventional (non-GM) counterparts typically rely on classical significance testing. This manuscript presents an introduction to Bayesian methods for compositional analysis along with recommendations for model validation. The approach is illustrated using protein and fat data from two herbicide tolerant GM soybeans (MON87708 and MON87708×MON89788) and a conventional comparator grown in the US in 2008 and 2009. Guidelines recommended by the US Food and Drug Administration (FDA) in conducting Bayesian analyses of clinical studies on medical devices were followed. This study is the first Bayesian approach to GM and non-GM compositional comparisons. The evaluation presented here supports a conclusion that a Bayesian approach to analyzing compositional data can provide meaningful and interpretable results. We further describe the importance of method validation and approaches to model checking if Bayesian approaches to compositional data analysis are to be considered viable by scientists involved in GM research and regulation. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.; Amerjeed, Mansoor
2018-02-01
Bayesian inference using Markov Chain Monte Carlo (MCMC) provides an explicit framework for stochastic calibration of hydrogeologic models accounting for uncertainties; however, the MCMC sampling entails a large number of model calls, and could easily become computationally unwieldy if the high-fidelity hydrogeologic model simulation is time consuming. This study proposes a surrogate-based Bayesian framework to address this notorious issue, and illustrates the methodology by inverse modeling a regional MODFLOW model. The high-fidelity groundwater model is approximated by a fast statistical model using Bagging Multivariate Adaptive Regression Spline (BMARS) algorithm, and hence the MCMC sampling can be efficiently performed. In this study, the MODFLOW model is developed to simulate the groundwater flow in an arid region of Oman consisting of mountain-coast aquifers, and used to run representative simulations to generate training dataset for BMARS model construction. A BMARS-based Sobol' method is also employed to efficiently calculate input parameter sensitivities, which are used to evaluate and rank their importance for the groundwater flow model system. According to sensitivity analysis, insensitive parameters are screened out of Bayesian inversion of the MODFLOW model, further saving computing efforts. The posterior probability distribution of input parameters is efficiently inferred from the prescribed prior distribution using observed head data, demonstrating that the presented BMARS-based Bayesian framework is an efficient tool to reduce parameter uncertainties of a groundwater system.
Bayesian data fusion for spatial prediction of categorical variables in environmental sciences
NASA Astrophysics Data System (ADS)
Gengler, Sarah; Bogaert, Patrick
2014-12-01
First developed to predict continuous variables, Bayesian Maximum Entropy (BME) has become a complete framework in the context of space-time prediction since it has been extended to predict categorical variables and mixed random fields. This method proposes solutions to combine several sources of data whatever the nature of the information. However, the various attempts that were made for adapting the BME methodology to categorical variables and mixed random fields faced some limitations, as a high computational burden. The main objective of this paper is to overcome this limitation by generalizing the Bayesian Data Fusion (BDF) theoretical framework to categorical variables, which is somehow a simplification of the BME method through the convenient conditional independence hypothesis. The BDF methodology for categorical variables is first described and then applied to a practical case study: the estimation of soil drainage classes using a soil map and point observations in the sandy area of Flanders around the city of Mechelen (Belgium). The BDF approach is compared to BME along with more classical approaches, as Indicator CoKringing (ICK) and logistic regression. Estimators are compared using various indicators, namely the Percentage of Correctly Classified locations (PCC) and the Average Highest Probability (AHP). Although BDF methodology for categorical variables is somehow a simplification of BME approach, both methods lead to similar results and have strong advantages compared to ICK and logistic regression.
ERIC Educational Resources Information Center
Griffiths, Thomas L.; Tenenbaum, Joshua B.
2011-01-01
Predicting the future is a basic problem that people have to solve every day and a component of planning, decision making, memory, and causal reasoning. In this article, we present 5 experiments testing a Bayesian model of predicting the duration or extent of phenomena from their current state. This Bayesian model indicates how people should…
Variations on Bayesian Prediction and Inference
2016-05-09
inference 2.2.1 Background There are a number of statistical inference problems that are not generally formulated via a full probability model...problem of inference about an unknown parameter, the Bayesian approach requires a full probability 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...the problem of inference about an unknown parameter, the Bayesian approach requires a full probability model/likelihood which can be an obstacle
NASA Astrophysics Data System (ADS)
Wellen, Christopher; Arhonditsis, George B.; Labencki, Tanya; Boyd, Duncan
2012-10-01
Regression-type, hybrid empirical/process-based models (e.g., SPARROW, PolFlow) have assumed a prominent role in efforts to estimate the sources and transport of nutrient pollution at river basin scales. However, almost no attempts have been made to explicitly accommodate interannual nutrient loading variability in their structure, despite empirical and theoretical evidence indicating that the associated source/sink processes are quite variable at annual timescales. In this study, we present two methodological approaches to accommodate interannual variability with the Spatially Referenced Regressions on Watershed attributes (SPARROW) nonlinear regression model. The first strategy uses the SPARROW model to estimate a static baseline load and climatic variables (e.g., precipitation) to drive the interannual variability. The second approach allows the source/sink processes within the SPARROW model to vary at annual timescales using dynamic parameter estimation techniques akin to those used in dynamic linear models. Model parameterization is founded upon Bayesian inference techniques that explicitly consider calibration data and model uncertainty. Our case study is the Hamilton Harbor watershed, a mixed agricultural and urban residential area located at the western end of Lake Ontario, Canada. Our analysis suggests that dynamic parameter estimation is the more parsimonious of the two strategies tested and can offer insights into the temporal structural changes associated with watershed functioning. Consistent with empirical and theoretical work, model estimated annual in-stream attenuation rates varied inversely with annual discharge. Estimated phosphorus source areas were concentrated near the receiving water body during years of high in-stream attenuation and dispersed along the main stems of the streams during years of low attenuation, suggesting that nutrient source areas are subject to interannual variability.
Posterior Predictive Model Checking in Bayesian Networks
ERIC Educational Resources Information Center
Crawford, Aaron
2014-01-01
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…
Metrics for evaluating performance and uncertainty of Bayesian network models
Bruce G. Marcot
2012-01-01
This paper presents a selected set of existing and new metrics for gauging Bayesian network model performance and uncertainty. Selected existing and new metrics are discussed for conducting model sensitivity analysis (variance reduction, entropy reduction, case file simulation); evaluating scenarios (influence analysis); depicting model complexity (numbers of model...
Technical note: Bayesian calibration of dynamic ruminant nutrition models.
Reed, K F; Arhonditsis, G B; France, J; Kebreab, E
2016-08-01
Mechanistic models of ruminant digestion and metabolism have advanced our understanding of the processes underlying ruminant animal physiology. Deterministic modeling practices ignore the inherent variation within and among individual animals and thus have no way to assess how sources of error influence model outputs. We introduce Bayesian calibration of mathematical models to address the need for robust mechanistic modeling tools that can accommodate error analysis by remaining within the bounds of data-based parameter estimation. For the purpose of prediction, the Bayesian approach generates a posterior predictive distribution that represents the current estimate of the value of the response variable, taking into account both the uncertainty about the parameters and model residual variability. Predictions are expressed as probability distributions, thereby conveying significantly more information than point estimates in regard to uncertainty. Our study illustrates some of the technical advantages of Bayesian calibration and discusses the future perspectives in the context of animal nutrition modeling. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Bayesian logistic regression approaches to predict incorrect DRG assignment.
Suleiman, Mani; Demirhan, Haydar; Boyd, Leanne; Girosi, Federico; Aksakalli, Vural
2018-05-07
Episodes of care involving similar diagnoses and treatments and requiring similar levels of resource utilisation are grouped to the same Diagnosis-Related Group (DRG). In jurisdictions which implement DRG based payment systems, DRGs are a major determinant of funding for inpatient care. Hence, service providers often dedicate auditing staff to the task of checking that episodes have been coded to the correct DRG. The use of statistical models to estimate an episode's probability of DRG error can significantly improve the efficiency of clinical coding audits. This study implements Bayesian logistic regression models with weakly informative prior distributions to estimate the likelihood that episodes require a DRG revision, comparing these models with each other and to classical maximum likelihood estimates. All Bayesian approaches had more stable model parameters than maximum likelihood. The best performing Bayesian model improved overall classification per- formance by 6% compared to maximum likelihood, with a 34% gain compared to random classification, respectively. We found that the original DRG, coder and the day of coding all have a significant effect on the likelihood of DRG error. Use of Bayesian approaches has improved model parameter stability and classification accuracy. This method has already lead to improved audit efficiency in an operational capacity.
Assessment of parametric uncertainty for groundwater reactive transport modeling,
Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun
2014-01-01
The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood functions, improve model calibration, and reduce predictive uncertainty in other groundwater reactive transport and environmental modeling.
Wasson, Anton P.; Chiu, Grace S.; Zwart, Alexander B.; Binns, Timothy R.
2017-01-01
Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly “above ground,” little progress has been made “below ground”; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an “idealized” relative intensity function for the root distribution over depth. Our approach was used to determine heritability: how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our approach led to denoised profiles which exhibited rigorously discernible phenotypic traits. Profile-specific traits could be representative of a genotype, and thus, used as a quantitative tool to associate phenotypic traits with specific genotypes. This would allow breeders to select for whole root system distributions appropriate for sustainable intensification, and inform policy for mitigating crop yield risk and food insecurity. PMID:28303148
Prospective evaluation of a Bayesian model to predict organizational change.
Molfenter, Todd; Gustafson, Dave; Kilo, Chuck; Bhattacharya, Abhik; Olsson, Jesper
2005-01-01
This research examines a subjective Bayesian model's ability to predict organizational change outcomes and sustainability of those outcomes for project teams participating in a multi-organizational improvement collaborative.
Smooth random change point models.
van den Hout, Ardo; Muniz-Terrera, Graciela; Matthews, Fiona E
2011-03-15
Change point models are used to describe processes over time that show a change in direction. An example of such a process is cognitive ability, where a decline a few years before death is sometimes observed. A broken-stick model consists of two linear parts and a breakpoint where the two lines intersect. Alternatively, models can be formulated that imply a smooth change between the two linear parts. Change point models can be extended by adding random effects to account for variability between subjects. A new smooth change point model is introduced and examples are presented that show how change point models can be estimated using functions in R for mixed-effects models. The Bayesian inference using WinBUGS is also discussed. The methods are illustrated using data from a population-based longitudinal study of ageing, the Cambridge City over 75 Cohort Study. The aim is to identify how many years before death individuals experience a change in the rate of decline of their cognitive ability. Copyright © 2010 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Melendez, Jordan; Wesolowski, Sarah; Furnstahl, Dick
2017-09-01
Chiral effective field theory (EFT) predictions are necessarily truncated at some order in the EFT expansion, which induces an error that must be quantified for robust statistical comparisons to experiment. A Bayesian model yields posterior probability distribution functions for these errors based on expectations of naturalness encoded in Bayesian priors and the observed order-by-order convergence pattern of the EFT. As a general example of a statistical approach to truncation errors, the model was applied to chiral EFT for neutron-proton scattering using various semi-local potentials of Epelbaum, Krebs, and Meißner (EKM). Here we discuss how our model can learn correlation information from the data and how to perform Bayesian model checking to validate that the EFT is working as advertised. Supported in part by NSF PHY-1614460 and DOE NUCLEI SciDAC DE-SC0008533.
A FAST BAYESIAN METHOD FOR UPDATING AND FORECASTING HOURLY OZONE LEVELS
A Bayesian hierarchical space-time model is proposed by combining information from real-time ambient AIRNow air monitoring data, and output from a computer simulation model known as the Community Multi-scale Air Quality (Eta-CMAQ) forecast model. A model validation analysis shows...
Bayesian methods for characterizing unknown parameters of material models
Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.
2016-02-04
A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less
Bayesian methods for characterizing unknown parameters of material models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.
A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less
Bayesian methods in reliability
NASA Astrophysics Data System (ADS)
Sander, P.; Badoux, R.
1991-11-01
The present proceedings from a course on Bayesian methods in reliability encompasses Bayesian statistical methods and their computational implementation, models for analyzing censored data from nonrepairable systems, the traits of repairable systems and growth models, the use of expert judgment, and a review of the problem of forecasting software reliability. Specific issues addressed include the use of Bayesian methods to estimate the leak rate of a gas pipeline, approximate analyses under great prior uncertainty, reliability estimation techniques, and a nonhomogeneous Poisson process. Also addressed are the calibration sets and seed variables of expert judgment systems for risk assessment, experimental illustrations of the use of expert judgment for reliability testing, and analyses of the predictive quality of software-reliability growth models such as the Weibull order statistics.
No control genes required: Bayesian analysis of qRT-PCR data.
Matz, Mikhail V; Wright, Rachel M; Scott, James G
2013-01-01
Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR) is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process. In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts). Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the "classic" analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization) but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests. Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been implemented as the MCMC.qpcr package in R.
Schmidt, Andres; Law, Beverly E.; Göckede, Mathias; ...
2016-09-15
Here, the vast forests and natural areas of the Pacific Northwest comprise one of the most productive ecosystems in the northern hemisphere. The heterogeneous landscape of Oregon poses a particular challenge to ecosystem models. We present a framework using a scaling factor Bayesian inversion to improve the modeled atmosphere-biosphere exchange of carbon dioxide. Observations from 5 CO/CO 2 towers, eddy covariance towers, and airborne campaigns were used to constrain the Community Land Model CLM4.5 simulated terrestrial CO 2 exchange at a high spatial and temporal resolution (1/24°, 3-hourly). To balance aggregation errors and the degrees of freedom in the inversemore » modeling system, we applied an unsupervised clustering approach for the spatial structuring of our model domain. Data from flight campaigns were used to quantify the uncertainty introduced by the Lagrangian particle dispersion model that was applied for the inversions. The average annual statewide net ecosystem productivity (NEP) was increased by 32% to 29.7 TgC per year by assimilating the tropospheric mixing ratio data. The associated uncertainty was decreased by 28.4% to 29%, on average over the entire Oregon model domain with the lowest uncertainties of 11% in western Oregon. The largest differences between posterior and prior CO 2 fluxes were found for the Coast Range ecoregion of Oregon that also exhibits the highest availability of atmospheric observations and associated footprints. In this area, covered by highly productive Douglas-fir forest, the differences between the prior and posterior estimate of NEP averaged 3.84 TgC per year during the study period from 2012 through 2014.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Andres; Law, Beverly E.; Göckede, Mathias
Here, the vast forests and natural areas of the Pacific Northwest comprise one of the most productive ecosystems in the northern hemisphere. The heterogeneous landscape of Oregon poses a particular challenge to ecosystem models. We present a framework using a scaling factor Bayesian inversion to improve the modeled atmosphere-biosphere exchange of carbon dioxide. Observations from 5 CO/CO 2 towers, eddy covariance towers, and airborne campaigns were used to constrain the Community Land Model CLM4.5 simulated terrestrial CO 2 exchange at a high spatial and temporal resolution (1/24°, 3-hourly). To balance aggregation errors and the degrees of freedom in the inversemore » modeling system, we applied an unsupervised clustering approach for the spatial structuring of our model domain. Data from flight campaigns were used to quantify the uncertainty introduced by the Lagrangian particle dispersion model that was applied for the inversions. The average annual statewide net ecosystem productivity (NEP) was increased by 32% to 29.7 TgC per year by assimilating the tropospheric mixing ratio data. The associated uncertainty was decreased by 28.4% to 29%, on average over the entire Oregon model domain with the lowest uncertainties of 11% in western Oregon. The largest differences between posterior and prior CO 2 fluxes were found for the Coast Range ecoregion of Oregon that also exhibits the highest availability of atmospheric observations and associated footprints. In this area, covered by highly productive Douglas-fir forest, the differences between the prior and posterior estimate of NEP averaged 3.84 TgC per year during the study period from 2012 through 2014.« less
Bayesian accounts of covert selective attention: A tutorial review.
Vincent, Benjamin T
2015-05-01
Decision making and optimal observer models offer an important theoretical approach to the study of covert selective attention. While their probabilistic formulation allows quantitative comparison to human performance, the models can be complex and their insights are not always immediately apparent. Part 1 establishes the theoretical appeal of the Bayesian approach, and introduces the way in which probabilistic approaches can be applied to covert search paradigms. Part 2 presents novel formulations of Bayesian models of 4 important covert attention paradigms, illustrating optimal observer predictions over a range of experimental manipulations. Graphical model notation is used to present models in an accessible way and Supplementary Code is provided to help bridge the gap between model theory and practical implementation. Part 3 reviews a large body of empirical and modelling evidence showing that many experimental phenomena in the domain of covert selective attention are a set of by-products. These effects emerge as the result of observers conducting Bayesian inference with noisy sensory observations, prior expectations, and knowledge of the generative structure of the stimulus environment.
Gilet, Estelle; Diard, Julien; Bessière, Pierre
2011-01-01
In this paper, we study the collaboration of perception and action representations involved in cursive letter recognition and production. We propose a mathematical formulation for the whole perception–action loop, based on probabilistic modeling and Bayesian inference, which we call the Bayesian Action–Perception (BAP) model. Being a model of both perception and action processes, the purpose of this model is to study the interaction of these processes. More precisely, the model includes a feedback loop from motor production, which implements an internal simulation of movement. Motor knowledge can therefore be involved during perception tasks. In this paper, we formally define the BAP model and show how it solves the following six varied cognitive tasks using Bayesian inference: i) letter recognition (purely sensory), ii) writer recognition, iii) letter production (with different effectors), iv) copying of trajectories, v) copying of letters, and vi) letter recognition (with internal simulation of movements). We present computer simulations of each of these cognitive tasks, and discuss experimental predictions and theoretical developments. PMID:21674043
Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach.
Duarte, Belmiro P M; Wong, Weng Kee
2015-08-01
This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted.
Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach
Duarte, Belmiro P. M.; Wong, Weng Kee
2014-01-01
Summary This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted. PMID:26512159
Gonçalves, M A D; Bello, N M; Dritz, S S; Tokach, M D; DeRouchey, J M; Woodworth, J C; Goodband, R D
2016-05-01
Advanced methods for dose-response assessments are used to estimate the minimum concentrations of a nutrient that maximizes a given outcome of interest, thereby determining nutritional requirements for optimal performance. Contrary to standard modeling assumptions, experimental data often present a design structure that includes correlations between observations (i.e., blocking, nesting, etc.) as well as heterogeneity of error variances; either can mislead inference if disregarded. Our objective is to demonstrate practical implementation of linear and nonlinear mixed models for dose-response relationships accounting for correlated data structure and heterogeneous error variances. To illustrate, we modeled data from a randomized complete block design study to evaluate the standardized ileal digestible (SID) Trp:Lys ratio dose-response on G:F of nursery pigs. A base linear mixed model was fitted to explore the functional form of G:F relative to Trp:Lys ratios and assess model assumptions. Next, we fitted 3 competing dose-response mixed models to G:F, namely a quadratic polynomial (QP) model, a broken-line linear (BLL) ascending model, and a broken-line quadratic (BLQ) ascending model, all of which included heteroskedastic specifications, as dictated by the base model. The GLIMMIX procedure of SAS (version 9.4) was used to fit the base and QP models and the NLMIXED procedure was used to fit the BLL and BLQ models. We further illustrated the use of a grid search of initial parameter values to facilitate convergence and parameter estimation in nonlinear mixed models. Fit between competing dose-response models was compared using a maximum likelihood-based Bayesian information criterion (BIC). The QP, BLL, and BLQ models fitted on G:F of nursery pigs yielded BIC values of 353.7, 343.4, and 345.2, respectively, thus indicating a better fit of the BLL model. The BLL breakpoint estimate of the SID Trp:Lys ratio was 16.5% (95% confidence interval [16.1, 17.0]). Problems with the estimation process rendered results from the BLQ model questionable. Importantly, accounting for heterogeneous variance enhanced inferential precision as the breadth of the confidence interval for the mean breakpoint decreased by approximately 44%. In summary, the article illustrates the use of linear and nonlinear mixed models for dose-response relationships accounting for heterogeneous residual variances, discusses important diagnostics and their implications for inference, and provides practical recommendations for computational troubleshooting.
A systematic review of Bayesian articles in psychology: The last 25 years.
van de Schoot, Rens; Winter, Sonja D; Ryan, Oisín; Zondervan-Zwijnenburg, Mariëlle; Depaoli, Sarah
2017-06-01
Although the statistical tools most often used by researchers in the field of psychology over the last 25 years are based on frequentist statistics, it is often claimed that the alternative Bayesian approach to statistics is gaining in popularity. In the current article, we investigated this claim by performing the very first systematic review of Bayesian psychological articles published between 1990 and 2015 (n = 1,579). We aim to provide a thorough presentation of the role Bayesian statistics plays in psychology. This historical assessment allows us to identify trends and see how Bayesian methods have been integrated into psychological research in the context of different statistical frameworks (e.g., hypothesis testing, cognitive models, IRT, SEM, etc.). We also describe take-home messages and provide "big-picture" recommendations to the field as Bayesian statistics becomes more popular. Our review indicated that Bayesian statistics is used in a variety of contexts across subfields of psychology and related disciplines. There are many different reasons why one might choose to use Bayes (e.g., the use of priors, estimating otherwise intractable models, modeling uncertainty, etc.). We found in this review that the use of Bayes has increased and broadened in the sense that this methodology can be used in a flexible manner to tackle many different forms of questions. We hope this presentation opens the door for a larger discussion regarding the current state of Bayesian statistics, as well as future trends. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
A Gibbs sampler for Bayesian analysis of site-occupancy data
Dorazio, Robert M.; Rodriguez, Daniel Taylor
2012-01-01
1. A Bayesian analysis of site-occupancy data containing covariates of species occurrence and species detection probabilities is usually completed using Markov chain Monte Carlo methods in conjunction with software programs that can implement those methods for any statistical model, not just site-occupancy models. Although these software programs are quite flexible, considerable experience is often required to specify a model and to initialize the Markov chain so that summaries of the posterior distribution can be estimated efficiently and accurately. 2. As an alternative to these programs, we develop a Gibbs sampler for Bayesian analysis of site-occupancy data that include covariates of species occurrence and species detection probabilities. This Gibbs sampler is based on a class of site-occupancy models in which probabilities of species occurrence and detection are specified as probit-regression functions of site- and survey-specific covariate measurements. 3. To illustrate the Gibbs sampler, we analyse site-occupancy data of the blue hawker, Aeshna cyanea (Odonata, Aeshnidae), a common dragonfly species in Switzerland. Our analysis includes a comparison of results based on Bayesian and classical (non-Bayesian) methods of inference. We also provide code (based on the R software program) for conducting Bayesian and classical analyses of site-occupancy data.
Baker, Robert L; Leong, Wen Fung; An, Nan; Brock, Marcus T; Rubin, Matthew J; Welch, Stephen; Weinig, Cynthia
2018-02-01
We develop Bayesian function-valued trait models that mathematically isolate genetic mechanisms underlying leaf growth trajectories by factoring out genotype-specific differences in photosynthesis. Remote sensing data can be used instead of leaf-level physiological measurements. Characterizing the genetic basis of traits that vary during ontogeny and affect plant performance is a major goal in evolutionary biology and agronomy. Describing genetic programs that specifically regulate morphological traits can be complicated by genotypic differences in physiological traits. We describe the growth trajectories of leaves using novel Bayesian function-valued trait (FVT) modeling approaches in Brassica rapa recombinant inbred lines raised in heterogeneous field settings. While frequentist approaches estimate parameter values by treating each experimental replicate discretely, Bayesian models can utilize information in the global dataset, potentially leading to more robust trait estimation. We illustrate this principle by estimating growth asymptotes in the face of missing data and comparing heritabilities of growth trajectory parameters estimated by Bayesian and frequentist approaches. Using pseudo-Bayes factors, we compare the performance of an initial Bayesian logistic growth model and a model that incorporates carbon assimilation (A max ) as a cofactor, thus statistically accounting for genotypic differences in carbon resources. We further evaluate two remotely sensed spectroradiometric indices, photochemical reflectance (pri2) and MERIS Terrestrial Chlorophyll Index (mtci) as covariates in lieu of A max , because these two indices were genetically correlated with A max across years and treatments yet allow much higher throughput compared to direct leaf-level gas-exchange measurements. For leaf lengths in uncrowded settings, including A max improves model fit over the initial model. The mtci and pri2 indices also outperform direct A max measurements. Of particular importance for evolutionary biologists and plant breeders, hierarchical Bayesian models estimating FVT parameters improve heritabilities compared to frequentist approaches.
Lu, Tao; Wang, Min; Liu, Guangying; Dong, Guang-Hui; Qian, Feng
2016-01-01
It is well known that there is strong relationship between HIV viral load and CD4 cell counts in AIDS studies. However, the relationship between them changes during the course of treatment and may vary among individuals. During treatments, some individuals may experience terminal events such as death. Because the terminal event may be related to the individual's viral load measurements, the terminal mechanism is non-ignorable. Furthermore, there exists competing risks from multiple types of events, such as AIDS-related death and other death. Most joint models for the analysis of longitudinal-survival data developed in literatures have focused on constant coefficients and assume symmetric distribution for the endpoints, which does not meet the needs for investigating the nature of varying relationship between HIV viral load and CD4 cell counts in practice. We develop a mixed-effects varying-coefficient model with skewed distribution coupled with cause-specific varying-coefficient hazard model with random-effects to deal with varying relationship between the two endpoints for longitudinal-competing risks survival data. A fully Bayesian inference procedure is established to estimate parameters in the joint model. The proposed method is applied to a multicenter AIDS cohort study. Various scenarios-based potential models that account for partial data features are compared. Some interesting findings are presented.
Bayesian Estimation of the Logistic Positive Exponent IRT Model
ERIC Educational Resources Information Center
Bolfarine, Heleno; Bazan, Jorge Luis
2010-01-01
A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric…
The Misidentified Identifiability Problem of Bayesian Knowledge Tracing
ERIC Educational Resources Information Center
Doroudi, Shayan; Brunskill, Emma
2017-01-01
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Common quandaries and their practical solutions in Bayesian network modeling
Bruce G. Marcot
2017-01-01
Use and popularity of Bayesian network (BN) modeling has greatly expanded in recent years, but many common problems remain. Here, I summarize key problems in BN model construction and interpretation,along with suggested practical solutions. Problems in BN model construction include parameterizing probability values, variable definition, complex network structures,...
On the Bayesian Nonparametric Generalization of IRT-Type Models
ERIC Educational Resources Information Center
San Martin, Ernesto; Jara, Alejandro; Rolin, Jean-Marie; Mouchart, Michel
2011-01-01
We study the identification and consistency of Bayesian semiparametric IRT-type models, where the uncertainty on the abilities' distribution is modeled using a prior distribution on the space of probability measures. We show that for the semiparametric Rasch Poisson counts model, simple restrictions ensure the identification of a general…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myer, Mark H.; Campbell, Scott R.; Johnston, John M.
Suffolk County, New York, is a locus for West Nile virus (WNV) infection in the American northeast that includes the majority of Long Island to the east of New York City. The county has a system of light and gravid traps used for mosquito collection and disease monitoring. In order to identify predictors of WNV incidence in mosquitoes and predict future occurrence of WNV, we have developed a spatiotemporal Bayesian model, beginning with over 40 ecological, meteorological, and built-environment covariates. A mixed-effects model including spatially and temporally correlated errors was fit to WNV surveillance data from 2008 to 2014 usingmore » the R package “R-INLA,” which allows for Bayesian modeling using the stochastic partial differential equation (SPDE) approach. The integrated nested Laplace approximation (INLA) SPDE allows for simultaneous fitting of a temporal parameter and a spatial covariance, while incorporating a variety of likelihood functions and running in R statistical software on a home computer. We found that land cover classified as open water and woody wetlands had a negative association with WNV incidence in mosquitoes, and the count of septic systems was associated with an increase in WNV. Mean temperature at two-week lag was associated with a strong positive impact, while mean precipitation at no lag and one-week lag was associated with positive and negative impacts on WNV, respectively. Incorporation of spatiotemporal factors resulted in a marked increase in model goodness-of-fit. The predictive power of the model was evaluated on 2015 surveillance results, where the best model achieved a sensitivity of 80.9% and a specificity of 77.0%. The spatial covariate was mapped across the county, identifying a gradient of WNV prevalence increasing from east to west. The Bayesian spatiotemporal model improves upon previous approaches, and we recommend the INLA SPDE methodology as an efficient way to develop robust models from surveillance data to develop and enhance monitoring and control programs. Our study confirms previously found associations between weather conditions and WNV and suggests that wetland cover has a mitigating effect on WNV infection in mosquitoes, while high septic system density is associated with an increase in WNV infection.« less
Myer, Mark H.; Campbell, Scott R.; Johnston, John M.
2017-06-15
Suffolk County, New York, is a locus for West Nile virus (WNV) infection in the American northeast that includes the majority of Long Island to the east of New York City. The county has a system of light and gravid traps used for mosquito collection and disease monitoring. In order to identify predictors of WNV incidence in mosquitoes and predict future occurrence of WNV, we have developed a spatiotemporal Bayesian model, beginning with over 40 ecological, meteorological, and built-environment covariates. A mixed-effects model including spatially and temporally correlated errors was fit to WNV surveillance data from 2008 to 2014 usingmore » the R package “R-INLA,” which allows for Bayesian modeling using the stochastic partial differential equation (SPDE) approach. The integrated nested Laplace approximation (INLA) SPDE allows for simultaneous fitting of a temporal parameter and a spatial covariance, while incorporating a variety of likelihood functions and running in R statistical software on a home computer. We found that land cover classified as open water and woody wetlands had a negative association with WNV incidence in mosquitoes, and the count of septic systems was associated with an increase in WNV. Mean temperature at two-week lag was associated with a strong positive impact, while mean precipitation at no lag and one-week lag was associated with positive and negative impacts on WNV, respectively. Incorporation of spatiotemporal factors resulted in a marked increase in model goodness-of-fit. The predictive power of the model was evaluated on 2015 surveillance results, where the best model achieved a sensitivity of 80.9% and a specificity of 77.0%. The spatial covariate was mapped across the county, identifying a gradient of WNV prevalence increasing from east to west. The Bayesian spatiotemporal model improves upon previous approaches, and we recommend the INLA SPDE methodology as an efficient way to develop robust models from surveillance data to develop and enhance monitoring and control programs. Our study confirms previously found associations between weather conditions and WNV and suggests that wetland cover has a mitigating effect on WNV infection in mosquitoes, while high septic system density is associated with an increase in WNV infection.« less
Hao, Xu; Yujun, Sun; Xinjie, Wang; Jin, Wang; Yao, Fu
2015-01-01
A multiple linear model was developed for individual tree crown width of Cunninghamia lanceolata (Lamb.) Hook in Fujian province, southeast China. Data were obtained from 55 sample plots of pure China-fir plantation stands. An Ordinary Linear Least Squares (OLS) regression was used to establish the crown width model. To adjust for correlations between observations from the same sample plots, we developed one level linear mixed-effects (LME) models based on the multiple linear model, which take into account the random effects of plots. The best random effects combinations for the LME models were determined by the Akaike's information criterion, the Bayesian information criterion and the -2logarithm likelihood. Heteroscedasticity was reduced by three residual variance functions: the power function, the exponential function and the constant plus power function. The spatial correlation was modeled by three correlation structures: the first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)], and the compound symmetry structure (CS). Then, the LME model was compared to the multiple linear model using the absolute mean residual (AMR), the root mean square error (RMSE), and the adjusted coefficient of determination (adj-R2). For individual tree crown width models, the one level LME model showed the best performance. An independent dataset was used to test the performance of the models and to demonstrate the advantage of calibrating LME models.
Nowakowska, Marzena
2017-04-01
The development of the Bayesian logistic regression model classifying the road accident severity is discussed. The already exploited informative priors (method of moments, maximum likelihood estimation, and two-stage Bayesian updating), along with the original idea of a Boot prior proposal, are investigated when no expert opinion has been available. In addition, two possible approaches to updating the priors, in the form of unbalanced and balanced training data sets, are presented. The obtained logistic Bayesian models are assessed on the basis of a deviance information criterion (DIC), highest probability density (HPD) intervals, and coefficients of variation estimated for the model parameters. The verification of the model accuracy has been based on sensitivity, specificity and the harmonic mean of sensitivity and specificity, all calculated from a test data set. The models obtained from the balanced training data set have a better classification quality than the ones obtained from the unbalanced training data set. The two-stage Bayesian updating prior model and the Boot prior model, both identified with the use of the balanced training data set, outperform the non-informative, method of moments, and maximum likelihood estimation prior models. It is important to note that one should be careful when interpreting the parameters since different priors can lead to different models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bayesian learning and the psychology of rule induction
Endress, Ansgar D.
2014-01-01
In recent years, Bayesian learning models have been applied to an increasing variety of domains. While such models have been criticized on theoretical grounds, the underlying assumptions and predictions are rarely made concrete and tested experimentally. Here, I use Frank and Tenenbaum's (2011) Bayesian model of rule-learning as a case study to spell out the underlying assumptions, and to confront them with the empirical results Frank and Tenenbaum (2011) propose to simulate, as well as with novel experiments. While rule-learning is arguably well suited to rational Bayesian approaches, I show that their models are neither psychologically plausible nor ideal observer models. Further, I show that their central assumption is unfounded: humans do not always preferentially learn more specific rules, but, at least in some situations, those rules that happen to be more salient. Even when granting the unsupported assumptions, I show that all of the experiments modeled by Frank and Tenenbaum (2011) either contradict their models, or have a large number of more plausible interpretations. I provide an alternative account of the experimental data based on simple psychological mechanisms, and show that this account both describes the data better, and is easier to falsify. I conclude that, despite the recent surge in Bayesian models of cognitive phenomena, psychological phenomena are best understood by developing and testing psychological theories rather than models that can be fit to virtually any data. PMID:23454791
Archambeau, Cédric; Verleysen, Michel
2007-01-01
A new variational Bayesian learning algorithm for Student-t mixture models is introduced. This algorithm leads to (i) robust density estimation, (ii) robust clustering and (iii) robust automatic model selection. Gaussian mixture models are learning machines which are based on a divide-and-conquer approach. They are commonly used for density estimation and clustering tasks, but are sensitive to outliers. The Student-t distribution has heavier tails than the Gaussian distribution and is therefore less sensitive to any departure of the empirical distribution from Gaussianity. As a consequence, the Student-t distribution is suitable for constructing robust mixture models. In this work, we formalize the Bayesian Student-t mixture model as a latent variable model in a different way from Svensén and Bishop [Svensén, M., & Bishop, C. M. (2005). Robust Bayesian mixture modelling. Neurocomputing, 64, 235-252]. The main difference resides in the fact that it is not necessary to assume a factorized approximation of the posterior distribution on the latent indicator variables and the latent scale variables in order to obtain a tractable solution. Not neglecting the correlations between these unobserved random variables leads to a Bayesian model having an increased robustness. Furthermore, it is expected that the lower bound on the log-evidence is tighter. Based on this bound, the model complexity, i.e. the number of components in the mixture, can be inferred with a higher confidence.
Advances in Bayesian Modeling in Educational Research
ERIC Educational Resources Information Center
Levy, Roy
2016-01-01
In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…
ERIC Educational Resources Information Center
Leventhal, Brian C.; Stone, Clement A.
2018-01-01
Interest in Bayesian analysis of item response theory (IRT) models has grown tremendously due to the appeal of the paradigm among psychometricians, advantages of these methods when analyzing complex models, and availability of general-purpose software. Possible models include models which reflect multidimensionality due to designed test structure,…
Riihimaki, Laura D.; Comstock, Jennifer M.; Anderson, Kevin K.; ...
2016-06-10
Knowledge of cloud phase (liquid, ice, mixed, etc.) is necessary to describe the radiative impact of clouds and their lifetimes, but is a property that is difficult to simulate correctly in climate models. One step towards improving those simulations is to make observations of cloud phase with sufficient accuracy to help constrain model representations of cloud processes. In this study, we outline a methodology using a basic Bayesian classifier to estimate the probabilities of cloud-phase class from Atmospheric Radiation Measurement (ARM) vertically pointing active remote sensors. The advantage of this method over previous ones is that it provides uncertainty informationmore » on the phase classification. We also test the value of including higher moments of the cloud radar Doppler spectrum than are traditionally used operationally. Using training data of known phase from the Mixed-Phase Arctic Cloud Experiment (M-PACE) field campaign, we demonstrate a proof of concept for how the method can be used to train an algorithm that identifies ice, liquid, mixed phase, and snow. Over 95 % of data are identified correctly for pure ice and liquid cases used in this study. Mixed-phase and snow cases are more problematic to identify correctly. When lidar data are not available, including additional information from the Doppler spectrum provides substantial improvement to the algorithm. As a result, this is a first step towards an operational algorithm and can be expanded to include additional categories such as drizzle with additional training data.« less
NASA Astrophysics Data System (ADS)
Riihimaki, Laura D.; Comstock, Jennifer M.; Anderson, Kevin K.; Holmes, Aimee; Luke, Edward
2016-06-01
Knowledge of cloud phase (liquid, ice, mixed, etc.) is necessary to describe the radiative impact of clouds and their lifetimes, but is a property that is difficult to simulate correctly in climate models. One step towards improving those simulations is to make observations of cloud phase with sufficient accuracy to help constrain model representations of cloud processes. In this study, we outline a methodology using a basic Bayesian classifier to estimate the probabilities of cloud-phase class from Atmospheric Radiation Measurement (ARM) vertically pointing active remote sensors. The advantage of this method over previous ones is that it provides uncertainty information on the phase classification. We also test the value of including higher moments of the cloud radar Doppler spectrum than are traditionally used operationally. Using training data of known phase from the Mixed-Phase Arctic Cloud Experiment (M-PACE) field campaign, we demonstrate a proof of concept for how the method can be used to train an algorithm that identifies ice, liquid, mixed phase, and snow. Over 95 % of data are identified correctly for pure ice and liquid cases used in this study. Mixed-phase and snow cases are more problematic to identify correctly. When lidar data are not available, including additional information from the Doppler spectrum provides substantial improvement to the algorithm. This is a first step towards an operational algorithm and can be expanded to include additional categories such as drizzle with additional training data.
Testing adaptive toolbox models: a Bayesian hierarchical approach.
Scheibehenne, Benjamin; Rieskamp, Jörg; Wagenmakers, Eric-Jan
2013-01-01
Many theories of human cognition postulate that people are equipped with a repertoire of strategies to solve the tasks they face. This theoretical framework of a cognitive toolbox provides a plausible account of intra- and interindividual differences in human behavior. Unfortunately, it is often unclear how to rigorously test the toolbox framework. How can a toolbox model be quantitatively specified? How can the number of toolbox strategies be limited to prevent uncontrolled strategy sprawl? How can a toolbox model be formally tested against alternative theories? The authors show how these challenges can be met by using Bayesian inference techniques. By means of parameter recovery simulations and the analysis of empirical data across a variety of domains (i.e., judgment and decision making, children's cognitive development, function learning, and perceptual categorization), the authors illustrate how Bayesian inference techniques allow toolbox models to be quantitatively specified, strategy sprawl to be contained, and toolbox models to be rigorously tested against competing theories. The authors demonstrate that their approach applies at the individual level but can also be generalized to the group level with hierarchical Bayesian procedures. The suggested Bayesian inference techniques represent a theoretical and methodological advancement for toolbox theories of cognition and behavior.
Tree Biomass Estimation of Chinese fir (Cunninghamia lanceolata) Based on Bayesian Method
Zhang, Jianguo
2013-01-01
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is the most important conifer species for timber production with huge distribution area in southern China. Accurate estimation of biomass is required for accounting and monitoring Chinese forest carbon stocking. In the study, allometric equation was used to analyze tree biomass of Chinese fir. The common methods for estimating allometric model have taken the classical approach based on the frequency interpretation of probability. However, many different biotic and abiotic factors introduce variability in Chinese fir biomass model, suggesting that parameters of biomass model are better represented by probability distributions rather than fixed values as classical method. To deal with the problem, Bayesian method was used for estimating Chinese fir biomass model. In the Bayesian framework, two priors were introduced: non-informative priors and informative priors. For informative priors, 32 biomass equations of Chinese fir were collected from published literature in the paper. The parameter distributions from published literature were regarded as prior distributions in Bayesian model for estimating Chinese fir biomass. Therefore, the Bayesian method with informative priors was better than non-informative priors and classical method, which provides a reasonable method for estimating Chinese fir biomass. PMID:24278198
Tree biomass estimation of Chinese fir (Cunninghamia lanceolata) based on Bayesian method.
Zhang, Xiongqing; Duan, Aiguo; Zhang, Jianguo
2013-01-01
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is the most important conifer species for timber production with huge distribution area in southern China. Accurate estimation of biomass is required for accounting and monitoring Chinese forest carbon stocking. In the study, allometric equation W = a(D2H)b was used to analyze tree biomass of Chinese fir. The common methods for estimating allometric model have taken the classical approach based on the frequency interpretation of probability. However, many different biotic and abiotic factors introduce variability in Chinese fir biomass model, suggesting that parameters of biomass model are better represented by probability distributions rather than fixed values as classical method. To deal with the problem, Bayesian method was used for estimating Chinese fir biomass model. In the Bayesian framework, two priors were introduced: non-informative priors and informative priors. For informative priors, 32 biomass equations of Chinese fir were collected from published literature in the paper. The parameter distributions from published literature were regarded as prior distributions in Bayesian model for estimating Chinese fir biomass. Therefore, the Bayesian method with informative priors was better than non-informative priors and classical method, which provides a reasonable method for estimating Chinese fir biomass.
Posterior Predictive Bayesian Phylogenetic Model Selection
Lewis, Paul O.; Xie, Wangang; Chen, Ming-Hui; Fan, Yu; Kuo, Lynn
2014-01-01
We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The Gelfand–Ghosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-fit (GGg), which distinguishes this method from the posterior predictive P-value approach. The conditional predictive ordinate (CPO) method provides a site-specific measure of model fit useful for exploratory analyses and can be combined over sites yielding the log pseudomarginal likelihood (LPML) which is useful as an overall measure of model fit. CPO provides a useful cross-validation approach that is computationally efficient, requiring only a sample from the posterior distribution (no additional simulation is required). Both GG and CPO add new perspectives to Bayesian phylogenetic model selection based on the predictive abilities of models and complement the perspective provided by the marginal likelihood (including Bayes Factor comparisons) based solely on the fit of competing models to observed data. [Bayesian; conditional predictive ordinate; CPO; L-measure; LPML; model selection; phylogenetics; posterior predictive.] PMID:24193892
Use of limited data to construct Bayesian networks for probabilistic risk assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groth, Katrina M.; Swiler, Laura Painton
2013-03-01
Probabilistic Risk Assessment (PRA) is a fundamental part of safety/quality assurance for nuclear power and nuclear weapons. Traditional PRA very effectively models complex hardware system risks using binary probabilistic models. However, traditional PRA models are not flexible enough to accommodate non-binary soft-causal factors, such as digital instrumentation&control, passive components, aging, common cause failure, and human errors. Bayesian Networks offer the opportunity to incorporate these risks into the PRA framework. This report describes the results of an early career LDRD project titled %E2%80%9CUse of Limited Data to Construct Bayesian Networks for Probabilistic Risk Assessment%E2%80%9D. The goal of the work was tomore » establish the capability to develop Bayesian Networks from sparse data, and to demonstrate this capability by producing a data-informed Bayesian Network for use in Human Reliability Analysis (HRA) as part of nuclear power plant Probabilistic Risk Assessment (PRA). This report summarizes the research goal and major products of the research.« less
Application of a predictive Bayesian model to environmental accounting.
Anex, R P; Englehardt, J D
2001-03-30
Environmental accounting techniques are intended to capture important environmental costs and benefits that are often overlooked in standard accounting practices. Environmental accounting methods themselves often ignore or inadequately represent large but highly uncertain environmental costs and costs conditioned by specific prior events. Use of a predictive Bayesian model is demonstrated for the assessment of such highly uncertain environmental and contingent costs. The predictive Bayesian approach presented generates probability distributions for the quantity of interest (rather than parameters thereof). A spreadsheet implementation of a previously proposed predictive Bayesian model, extended to represent contingent costs, is described and used to evaluate whether a firm should undertake an accelerated phase-out of its PCB containing transformers. Variability and uncertainty (due to lack of information) in transformer accident frequency and severity are assessed simultaneously using a combination of historical accident data, engineering model-based cost estimates, and subjective judgement. Model results are compared using several different risk measures. Use of the model for incorporation of environmental risk management into a company's overall risk management strategy is discussed.
A Bayesian modification to the Jelinski-Moranda software reliability growth model
NASA Technical Reports Server (NTRS)
Littlewood, B.; Sofer, A.
1983-01-01
The Jelinski-Moranda (JM) model for software reliability was examined. It is suggested that a major reason for the poor results given by this model is the poor performance of the maximum likelihood method (ML) of parameter estimation. A reparameterization and Bayesian analysis, involving a slight modelling change, are proposed. It is shown that this new Bayesian-Jelinski-Moranda model (BJM) is mathematically quite tractable, and several metrics of interest to practitioners are obtained. The BJM and JM models are compared by using several sets of real software failure data collected and in all cases the BJM model gives superior reliability predictions. A change in the assumption which underlay both models to present the debugging process more accurately is discussed.
NASA Astrophysics Data System (ADS)
Marzooqi, Mohamed Al; Basha, Ghouse; Ouarda, Taha B. M. J.; Armstrong, Peter; Molini, Annalisa
2014-05-01
Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature in the boundary layer over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main features however, desert ABLs present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as the transport of dust and pollutants, and turbulent fluxes of momentum, heat and water vapor in hyper-arid regions. In this study, we analyze a continuous record of observations of the atmospheric boundary layer (ABL) height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4oN, 54.6o E, Abu Dhabi, United Arab Emirates), starting March 2013. We compare different methods for the estimation of the ABL height from Ceilometer data such as, classic variance-, gradient-, log gradient- and second derivation-methods as well as recently developed techniques such as the Bayesian Method and Wavelet covariance transform. Our goal is to select the most suited technique for describing the climatology of the ABL in desert environments. Comparison of our results with radiosonde observations collected at the nearby airport of Abu Dhabi indicate that the WCT and the Bayesian method are the most suitable tools to accurately identify the ABL height in all weather conditions. These two methods are used for the definition of diurnal and seasonal climatologies of the boundary layer conditional to different atmospheric stability classes.
Ferragina, A.; de los Campos, G.; Vazquez, A. I.; Cecchinato, A.; Bittante, G.
2017-01-01
The aim of this study was to assess the performance of Bayesian models commonly used for genomic selection to predict “difficult-to-predict” dairy traits, such as milk fatty acid (FA) expressed as percentage of total fatty acids, and technological properties, such as fresh cheese yield and protein recovery, using Fourier-transform infrared (FTIR) spectral data. Our main hypothesis was that Bayesian models that can estimate shrinkage and perform variable selection may improve our ability to predict FA traits and technological traits above and beyond what can be achieved using the current calibration models (e.g., partial least squares, PLS). To this end, we assessed a series of Bayesian methods and compared their prediction performance with that of PLS. The comparison between models was done using the same sets of data (i.e., same samples, same variability, same spectral treatment) for each trait. Data consisted of 1,264 individual milk samples collected from Brown Swiss cows for which gas chromatographic FA composition, milk coagulation properties, and cheese-yield traits were available. For each sample, 2 spectra in the infrared region from 5,011 to 925 cm−1 were available and averaged before data analysis. Three Bayesian models: Bayesian ridge regression (Bayes RR), Bayes A, and Bayes B, and 2 reference models: PLS and modified PLS (MPLS) procedures, were used to calibrate equations for each of the traits. The Bayesian models used were implemented in the R package BGLR (http://cran.r-project.org/web/packages/BGLR/index.html), whereas the PLS and MPLS were those implemented in the WinISI II software (Infrasoft International LLC, State College, PA). Prediction accuracy was estimated for each trait and model using 25 replicates of a training-testing validation procedure. Compared with PLS, which is currently the most widely used calibration method, MPLS and the 3 Bayesian methods showed significantly greater prediction accuracy. Accuracy increased in moving from calibration to external validation methods, and in moving from PLS and MPLS to Bayesian methods, particularly Bayes A and Bayes B. The maximum R2 value of validation was obtained with Bayes B and Bayes A. For the FA, C10:0 (% of each FA on total FA basis) had the highest R2 (0.75, achieved with Bayes A and Bayes B), and among the technological traits, fresh cheese yield R2 of 0.82 (achieved with Bayes B). These 2 methods have proven to be useful instruments in shrinking and selecting very informative wavelengths and inferring the structure and functions of the analyzed traits. We conclude that Bayesian models are powerful tools for deriving calibration equations, and, importantly, these equations can be easily developed using existing open-source software. As part of our study, we provide scripts based on the open source R software BGLR, which can be used to train customized prediction equations for other traits or populations. PMID:26387015
Ghosh, Sujit K
2010-01-01
Bayesian methods are rapidly becoming popular tools for making statistical inference in various fields of science including biology, engineering, finance, and genetics. One of the key aspects of Bayesian inferential method is its logical foundation that provides a coherent framework to utilize not only empirical but also scientific information available to a researcher. Prior knowledge arising from scientific background, expert judgment, or previously collected data is used to build a prior distribution which is then combined with current data via the likelihood function to characterize the current state of knowledge using the so-called posterior distribution. Bayesian methods allow the use of models of complex physical phenomena that were previously too difficult to estimate (e.g., using asymptotic approximations). Bayesian methods offer a means of more fully understanding issues that are central to many practical problems by allowing researchers to build integrated models based on hierarchical conditional distributions that can be estimated even with limited amounts of data. Furthermore, advances in numerical integration methods, particularly those based on Monte Carlo methods, have made it possible to compute the optimal Bayes estimators. However, there is a reasonably wide gap between the background of the empirically trained scientists and the full weight of Bayesian statistical inference. Hence, one of the goals of this chapter is to bridge the gap by offering elementary to advanced concepts that emphasize linkages between standard approaches and full probability modeling via Bayesian methods.
Climatic Models Ensemble-based Mid-21st Century Runoff Projections: A Bayesian Framework
NASA Astrophysics Data System (ADS)
Achieng, K. O.; Zhu, J.
2017-12-01
There are a number of North American Regional Climate Change Assessment Program (NARCCAP) climatic models that have been used to project surface runoff in the mid-21st century. Statistical model selection techniques are often used to select the model that best fits data. However, model selection techniques often lead to different conclusions. In this study, ten models are averaged in Bayesian paradigm to project runoff. Bayesian Model Averaging (BMA) is used to project and identify effect of model uncertainty on future runoff projections. Baseflow separation - a two-digital filter which is also called Eckhardt filter - is used to separate USGS streamflow (total runoff) into two components: baseflow and surface runoff. We use this surface runoff as the a priori runoff when conducting BMA of runoff simulated from the ten RCM models. The primary objective of this study is to evaluate how well RCM multi-model ensembles simulate surface runoff, in a Bayesian framework. Specifically, we investigate and discuss the following questions: How well do ten RCM models ensemble jointly simulate surface runoff by averaging over all the models using BMA, given a priori surface runoff? What are the effects of model uncertainty on surface runoff simulation?
Sequential Inverse Problems Bayesian Principles and the Logistic Map Example
NASA Astrophysics Data System (ADS)
Duan, Lian; Farmer, Chris L.; Moroz, Irene M.
2010-09-01
Bayesian statistics provides a general framework for solving inverse problems, but is not without interpretation and implementation problems. This paper discusses difficulties arising from the fact that forward models are always in error to some extent. Using a simple example based on the one-dimensional logistic map, we argue that, when implementation problems are minimal, the Bayesian framework is quite adequate. In this paper the Bayesian Filter is shown to be able to recover excellent state estimates in the perfect model scenario (PMS) and to distinguish the PMS from the imperfect model scenario (IMS). Through a quantitative comparison of the way in which the observations are assimilated in both the PMS and the IMS scenarios, we suggest that one can, sometimes, measure the degree of imperfection.
Bayesian state space models for dynamic genetic network construction across multiple tissues.
Liang, Yulan; Kelemen, Arpad
2016-08-01
Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.
A comparison of machine learning and Bayesian modelling for molecular serotyping.
Newton, Richard; Wernisch, Lorenz
2017-08-11
Streptococcus pneumoniae is a human pathogen that is a major cause of infant mortality. Identifying the pneumococcal serotype is an important step in monitoring the impact of vaccines used to protect against disease. Genomic microarrays provide an effective method for molecular serotyping. Previously we developed an empirical Bayesian model for the classification of serotypes from a molecular serotyping array. With only few samples available, a model driven approach was the only option. In the meanwhile, several thousand samples have been made available to us, providing an opportunity to investigate serotype classification by machine learning methods, which could complement the Bayesian model. We compare the performance of the original Bayesian model with two machine learning algorithms: Gradient Boosting Machines and Random Forests. We present our results as an example of a generic strategy whereby a preliminary probabilistic model is complemented or replaced by a machine learning classifier once enough data are available. Despite the availability of thousands of serotyping arrays, a problem encountered when applying machine learning methods is the lack of training data containing mixtures of serotypes; due to the large number of possible combinations. Most of the available training data comprises samples with only a single serotype. To overcome the lack of training data we implemented an iterative analysis, creating artificial training data of serotype mixtures by combining raw data from single serotype arrays. With the enhanced training set the machine learning algorithms out perform the original Bayesian model. However, for serotypes currently lacking sufficient training data the best performing implementation was a combination of the results of the Bayesian Model and the Gradient Boosting Machine. As well as being an effective method for classifying biological data, machine learning can also be used as an efficient method for revealing subtle biological insights, which we illustrate with an example.
Khazraee, S Hadi; Johnson, Valen; Lord, Dominique
2018-08-01
The Poisson-gamma (PG) and Poisson-lognormal (PLN) regression models are among the most popular means for motor vehicle crash data analysis. Both models belong to the Poisson-hierarchical family of models. While numerous studies have compared the overall performance of alternative Bayesian Poisson-hierarchical models, little research has addressed the impact of model choice on the expected crash frequency prediction at individual sites. This paper sought to examine whether there are any trends among candidate models predictions e.g., that an alternative model's prediction for sites with certain conditions tends to be higher (or lower) than that from another model. In addition to the PG and PLN models, this research formulated a new member of the Poisson-hierarchical family of models: the Poisson-inverse gamma (PIGam). Three field datasets (from Texas, Michigan and Indiana) covering a wide range of over-dispersion characteristics were selected for analysis. This study demonstrated that the model choice can be critical when the calibrated models are used for prediction at new sites, especially when the data are highly over-dispersed. For all three datasets, the PIGam model would predict higher expected crash frequencies than would the PLN and PG models, in order, indicating a clear link between the models predictions and the shape of their mixing distributions (i.e., gamma, lognormal, and inverse gamma, respectively). The thicker tail of the PIGam and PLN models (in order) may provide an advantage when the data are highly over-dispersed. The analysis results also illustrated a major deficiency of the Deviance Information Criterion (DIC) in comparing the goodness-of-fit of hierarchical models; models with drastically different set of coefficients (and thus predictions for new sites) may yield similar DIC values, because the DIC only accounts for the parameters in the lowest (observation) level of the hierarchy and ignores the higher levels (regression coefficients). Copyright © 2018. Published by Elsevier Ltd.
Number-Knower Levels in Young Children: Insights from Bayesian Modeling
ERIC Educational Resources Information Center
Lee, Michael D.; Sarnecka, Barbara W.
2011-01-01
Lee and Sarnecka (2010) developed a Bayesian model of young children's behavior on the Give-N test of number knowledge. This paper presents two new extensions of the model, and applies the model to new data. In the first extension, the model is used to evaluate competing theories about the conceptual knowledge underlying children's behavior. One,…
Theory-based Bayesian Models of Inductive Inference
2010-07-19
Subjective randomness and natural scene statistics. Psychonomic Bulletin & Review . http://cocosci.berkeley.edu/tom/papers/randscenes.pdf Page 1...in press). Exemplar models as a mechanism for performing Bayesian inference. Psychonomic Bulletin & Review . http://cocosci.berkeley.edu/tom
Modeling Error Distributions of Growth Curve Models through Bayesian Methods
ERIC Educational Resources Information Center
Zhang, Zhiyong
2016-01-01
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is…
Bayesian Semiparametric Structural Equation Models with Latent Variables
ERIC Educational Resources Information Center
Yang, Mingan; Dunson, David B.
2010-01-01
Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…
Dynamic Bayesian Networks for Student Modeling
ERIC Educational Resources Information Center
Kaser, Tanja; Klingler, Severin; Schwing, Alexander G.; Gross, Markus
2017-01-01
Intelligent tutoring systems adapt the curriculum to the needs of the individual student. Therefore, an accurate representation and prediction of student knowledge is essential. Bayesian Knowledge Tracing (BKT) is a popular approach for student modeling. The structure of BKT models, however, makes it impossible to represent the hierarchy and…
Bhattacharya, Abhishek; Dunson, David B.
2012-01-01
This article considers a broad class of kernel mixture density models on compact metric spaces and manifolds. Following a Bayesian approach with a nonparametric prior on the location mixing distribution, sufficient conditions are obtained on the kernel, prior and the underlying space for strong posterior consistency at any continuous density. The prior is also allowed to depend on the sample size n and sufficient conditions are obtained for weak and strong consistency. These conditions are verified on compact Euclidean spaces using multivariate Gaussian kernels, on the hypersphere using a von Mises-Fisher kernel and on the planar shape space using complex Watson kernels. PMID:22984295
Eastwood, John G; Jalaludin, Bin B; Kemp, Lynn A
2014-01-01
A recent criticism of social epidemiological studies, and multi-level studies in particular has been a paucity of theory. We will present here the protocol for a study that aims to build a theory of the social epidemiology of maternal depression. We use a critical realist approach which is trans-disciplinary, encompassing both quantitative and qualitative traditions, and that assumes both ontological and hierarchical stratification of reality. We describe a critical realist Explanatory Theory Building Method comprising of an: 1) emergent phase, 2) construction phase, and 3) confirmatory phase. A concurrent triangulated mixed method multilevel cross-sectional study design is described. The Emergent Phase uses: interviews, focus groups, exploratory data analysis, exploratory factor analysis, regression, and multilevel Bayesian spatial data analysis to detect and describe phenomena. Abductive and retroductive reasoning will be applied to: categorical principal component analysis, exploratory factor analysis, regression, coding of concepts and categories, constant comparative analysis, drawing of conceptual networks, and situational analysis to generate theoretical concepts. The Theory Construction Phase will include: 1) defining stratified levels; 2) analytic resolution; 3) abductive reasoning; 4) comparative analysis (triangulation); 5) retroduction; 6) postulate and proposition development; 7) comparison and assessment of theories; and 8) conceptual frameworks and model development. The strength of the critical realist methodology described is the extent to which this paradigm is able to support the epistemological, ontological, axiological, methodological and rhetorical positions of both quantitative and qualitative research in the field of social epidemiology. The extensive multilevel Bayesian studies, intensive qualitative studies, latent variable theory, abductive triangulation, and Inference to Best Explanation provide a strong foundation for Theory Construction. The study will contribute to defining the role that realism and mixed methods can play in explaining the social determinants and developmental origins of health and disease.
A Grobner Basis Solution for Lightning Ground Flash Fraction Retrieval
NASA Technical Reports Server (NTRS)
Solakiewicz, Richard; Attele, Rohan; Koshak, William
2011-01-01
A Bayesian inversion method was previously introduced for retrieving the fraction of ground flashes in a set of flashes observed from a (low earth orbiting or geostationary) satellite lightning imager. The method employed a constrained mixed exponential distribution model to describe the lightning optical measurements. To obtain the optimum model parameters, a scalar function was minimized by a numerical method. In order to improve this optimization, we introduce a Grobner basis solution to obtain analytic representations of the model parameters that serve as a refined initialization scheme to the numerical optimization. Using the Grobner basis, we show that there are exactly 2 solutions involving the first 3 moments of the (exponentially distributed) data. When the mean of the ground flash optical characteristic (e.g., such as the Maximum Group Area, MGA) is larger than that for cloud flashes, then a unique solution can be obtained.
A Comparison of the β-Substitution Method and a Bayesian Method for Analyzing Left-Censored Data
Huynh, Tran; Quick, Harrison; Ramachandran, Gurumurthy; Banerjee, Sudipto; Stenzel, Mark; Sandler, Dale P.; Engel, Lawrence S.; Kwok, Richard K.; Blair, Aaron; Stewart, Patricia A.
2016-01-01
Classical statistical methods for analyzing exposure data with values below the detection limits are well described in the occupational hygiene literature, but an evaluation of a Bayesian approach for handling such data is currently lacking. Here, we first describe a Bayesian framework for analyzing censored data. We then present the results of a simulation study conducted to compare the β-substitution method with a Bayesian method for exposure datasets drawn from lognormal distributions and mixed lognormal distributions with varying sample sizes, geometric standard deviations (GSDs), and censoring for single and multiple limits of detection. For each set of factors, estimates for the arithmetic mean (AM), geometric mean, GSD, and the 95th percentile (X0.95) of the exposure distribution were obtained. We evaluated the performance of each method using relative bias, the root mean squared error (rMSE), and coverage (the proportion of the computed 95% uncertainty intervals containing the true value). The Bayesian method using non-informative priors and the β-substitution method were generally comparable in bias and rMSE when estimating the AM and GM. For the GSD and the 95th percentile, the Bayesian method with non-informative priors was more biased and had a higher rMSE than the β-substitution method, but use of more informative priors generally improved the Bayesian method’s performance, making both the bias and the rMSE more comparable to the β-substitution method. An advantage of the Bayesian method is that it provided estimates of uncertainty for these parameters of interest and good coverage, whereas the β-substitution method only provided estimates of uncertainty for the AM, and coverage was not as consistent. Selection of one or the other method depends on the needs of the practitioner, the availability of prior information, and the distribution characteristics of the measurement data. We suggest the use of Bayesian methods if the practitioner has the computational resources and prior information, as the method would generally provide accurate estimates and also provides the distributions of all of the parameters, which could be useful for making decisions in some applications. PMID:26209598
Structural equation modeling of the inflammatory response to traffic air pollution
Baja, Emmanuel S.; Schwartz, Joel D.; Coull, Brent A.; Wellenius, Gregory A.; Vokonas, Pantel S.; Suh, Helen H.
2015-01-01
Several epidemiological studies have reported conflicting results on the effect of traffic-related pollutants on markers of inflammation. In a Bayesian framework, we examined the effect of traffic pollution on inflammation using structural equation models (SEMs). We studied measurements of C-reactive protein (CRP), soluble vascular cell adhesion molecule-1 (sVCAM-1), and soluble intracellular adhesion molecule-1 (sICAM-1) for 749 elderly men from the Normative Aging Study. Using repeated measures SEMs, we fit a latent variable for traffic pollution that is reflected by levels of black carbon, carbon monoxide, nitrogen monoxide and nitrogen dioxide to estimate its effect on a latent variable for inflammation that included sICAM-1, sVCAM-1 and CRP. Exposure periods were assessed using 1-, 2-, 3-, 7-, 14- and 30-day moving averages previsit. We compared our findings using SEMs with those obtained using linear mixed models. Traffic pollution was related to increased inflammation for 3-, 7-, 14- and 30-day exposure periods. An inter-quartile range increase in traffic pollution was associated with a 2.3% (95% posterior interval (PI): 0.0–4.7%) increase in inflammation for the 3-day moving average, with the most significant association observed for the 30-day moving average (23.9%; 95% PI: 13.9–36.7%). Traffic pollution adversely impacts inflammation in the elderly. SEMs in a Bayesian framework can comprehensively incorporate multiple pollutants and health outcomes simultaneously in air pollution–cardiovascular epidemiological studies. PMID:23232970
Moran, Paul; Bromaghin, Jeffrey F.; Masuda, Michele
2014-01-01
Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and subsequently associating those individuals with the populations from which they arose. Analytical methods that assign individuals to their putative population of origin have utility in both basic and applied research, providing information about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to a population of origin and study properties of the trait among individuals within population strata as if they constituted independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the individual assignment method provided a less complex analytical technique whose performance may be adequate for some common trait inference problems. Our results provide specific guidance for method selection under various genetic relationships among populations with different trait distributions.
Moran, Paul; Bromaghin, Jeffrey F.; Masuda, Michele
2014-01-01
Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and subsequently associating those individuals with the populations from which they arose. Analytical methods that assign individuals to their putative population of origin have utility in both basic and applied research, providing information about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to a population of origin and study properties of the trait among individuals within population strata as if they constituted independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the individual assignment method provided a less complex analytical technique whose performance may be adequate for some common trait inference problems. Our results provide specific guidance for method selection under various genetic relationships among populations with different trait distributions. PMID:24905464
Using Bayesian analysis in repeated preclinical in vivo studies for a more effective use of animals.
Walley, Rosalind; Sherington, John; Rastrick, Joe; Detrait, Eric; Hanon, Etienne; Watt, Gillian
2016-05-01
Whilst innovative Bayesian approaches are increasingly used in clinical studies, in the preclinical area Bayesian methods appear to be rarely used in the reporting of pharmacology data. This is particularly surprising in the context of regularly repeated in vivo studies where there is a considerable amount of data from historical control groups, which has potential value. This paper describes our experience with introducing Bayesian analysis for such studies using a Bayesian meta-analytic predictive approach. This leads naturally either to an informative prior for a control group as part of a full Bayesian analysis of the next study or using a predictive distribution to replace a control group entirely. We use quality control charts to illustrate study-to-study variation to the scientists and describe informative priors in terms of their approximate effective numbers of animals. We describe two case studies of animal models: the lipopolysaccharide-induced cytokine release model used in inflammation and the novel object recognition model used to screen cognitive enhancers, both of which show the advantage of a Bayesian approach over the standard frequentist analysis. We conclude that using Bayesian methods in stable repeated in vivo studies can result in a more effective use of animals, either by reducing the total number of animals used or by increasing the precision of key treatment differences. This will lead to clearer results and supports the "3Rs initiative" to Refine, Reduce and Replace animals in research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Computational statistics using the Bayesian Inference Engine
NASA Astrophysics Data System (ADS)
Weinberg, Martin D.
2013-09-01
This paper introduces the Bayesian Inference Engine (BIE), a general parallel, optimized software package for parameter inference and model selection. This package is motivated by the analysis needs of modern astronomical surveys and the need to organize and reuse expensive derived data. The BIE is the first platform for computational statistics designed explicitly to enable Bayesian update and model comparison for astronomical problems. Bayesian update is based on the representation of high-dimensional posterior distributions using metric-ball-tree based kernel density estimation. Among its algorithmic offerings, the BIE emphasizes hybrid tempered Markov chain Monte Carlo schemes that robustly sample multimodal posterior distributions in high-dimensional parameter spaces. Moreover, the BIE implements a full persistence or serialization system that stores the full byte-level image of the running inference and previously characterized posterior distributions for later use. Two new algorithms to compute the marginal likelihood from the posterior distribution, developed for and implemented in the BIE, enable model comparison for complex models and data sets. Finally, the BIE was designed to be a collaborative platform for applying Bayesian methodology to astronomy. It includes an extensible object-oriented and easily extended framework that implements every aspect of the Bayesian inference. By providing a variety of statistical algorithms for all phases of the inference problem, a scientist may explore a variety of approaches with a single model and data implementation. Additional technical details and download details are available from http://www.astro.umass.edu/bie. The BIE is distributed under the GNU General Public License.
Wu, Xiao-Lin; Sun, Chuanyu; Beissinger, Timothy M; Rosa, Guilherme Jm; Weigel, Kent A; Gatti, Natalia de Leon; Gianola, Daniel
2012-09-25
Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs.
2012-01-01
Background Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Results Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Conclusions Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs. PMID:23009363
Bayesian survival analysis in clinical trials: What methods are used in practice?
Brard, Caroline; Le Teuff, Gwénaël; Le Deley, Marie-Cécile; Hampson, Lisa V
2017-02-01
Background Bayesian statistics are an appealing alternative to the traditional frequentist approach to designing, analysing, and reporting of clinical trials, especially in rare diseases. Time-to-event endpoints are widely used in many medical fields. There are additional complexities to designing Bayesian survival trials which arise from the need to specify a model for the survival distribution. The objective of this article was to critically review the use and reporting of Bayesian methods in survival trials. Methods A systematic review of clinical trials using Bayesian survival analyses was performed through PubMed and Web of Science databases. This was complemented by a full text search of the online repositories of pre-selected journals. Cost-effectiveness, dose-finding studies, meta-analyses, and methodological papers using clinical trials were excluded. Results In total, 28 articles met the inclusion criteria, 25 were original reports of clinical trials and 3 were re-analyses of a clinical trial. Most trials were in oncology (n = 25), were randomised controlled (n = 21) phase III trials (n = 13), and half considered a rare disease (n = 13). Bayesian approaches were used for monitoring in 14 trials and for the final analysis only in 14 trials. In the latter case, Bayesian survival analyses were used for the primary analysis in four cases, for the secondary analysis in seven cases, and for the trial re-analysis in three cases. Overall, 12 articles reported fitting Bayesian regression models (semi-parametric, n = 3; parametric, n = 9). Prior distributions were often incompletely reported: 20 articles did not define the prior distribution used for the parameter of interest. Over half of the trials used only non-informative priors for monitoring and the final analysis (n = 12) when it was specified. Indeed, no articles fitting Bayesian regression models placed informative priors on the parameter of interest. The prior for the treatment effect was based on historical data in only four trials. Decision rules were pre-defined in eight cases when trials used Bayesian monitoring, and in only one case when trials adopted a Bayesian approach to the final analysis. Conclusion Few trials implemented a Bayesian survival analysis and few incorporated external data into priors. There is scope to improve the quality of reporting of Bayesian methods in survival trials. Extension of the Consolidated Standards of Reporting Trials statement for reporting Bayesian clinical trials is recommended.
A Bayesian estimation of a stochastic predator-prey model of economic fluctuations
NASA Astrophysics Data System (ADS)
Dibeh, Ghassan; Luchinsky, Dmitry G.; Luchinskaya, Daria D.; Smelyanskiy, Vadim N.
2007-06-01
In this paper, we develop a Bayesian framework for the empirical estimation of the parameters of one of the best known nonlinear models of the business cycle: The Marx-inspired model of a growth cycle introduced by R. M. Goodwin. The model predicts a series of closed cycles representing the dynamics of labor's share and the employment rate in the capitalist economy. The Bayesian framework is used to empirically estimate a modified Goodwin model. The original model is extended in two ways. First, we allow for exogenous periodic variations of the otherwise steady growth rates of the labor force and productivity per worker. Second, we allow for stochastic variations of those parameters. The resultant modified Goodwin model is a stochastic predator-prey model with periodic forcing. The model is then estimated using a newly developed Bayesian estimation method on data sets representing growth cycles in France and Italy during the years 1960-2005. Results show that inference of the parameters of the stochastic Goodwin model can be achieved. The comparison of the dynamics of the Goodwin model with the inferred values of parameters demonstrates quantitative agreement with the growth cycle empirical data.
IsoWeb: A Bayesian Isotope Mixing Model for Diet Analysis of the Whole Food Web
Kadoya, Taku; Osada, Yutaka; Takimoto, Gaku
2012-01-01
Quantitative description of food webs provides fundamental information for the understanding of population, community, and ecosystem dynamics. Recently, stable isotope mixing models have been widely used to quantify dietary proportions of different food resources to a focal consumer. Here we propose a novel mixing model (IsoWeb) that estimates diet proportions of all consumers in a food web based on stable isotope information. IsoWeb requires a topological description of a food web, and stable isotope signatures of all consumers and resources in the web. A merit of IsoWeb is that it takes into account variation in trophic enrichment factors among different consumer-resource links. Sensitivity analysis using realistic hypothetical food webs suggests that IsoWeb is applicable to a wide variety of food webs differing in the number of species, connectance, sample size, and data variability. Sensitivity analysis based on real topological webs showed that IsoWeb can allow for a certain level of topological uncertainty in target food webs, including erroneously assuming false links, omission of existent links and species, and trophic aggregation into trophospecies. Moreover, using an illustrative application to a real food web, we demonstrated that IsoWeb can compare the plausibility of different candidate topologies for a focal web. These results suggest that IsoWeb provides a powerful tool to analyze food-web structure from stable isotope data. We provide R and BUGS codes to aid efficient applications of IsoWeb. PMID:22848427
Model Diagnostics for Bayesian Networks. Research Report. ETS RR-04-17
ERIC Educational Resources Information Center
Sinharay, Sandip
2004-01-01
Assessing fit of psychometric models has always been an issue of enormous interest, but there exists no unanimously agreed upon item fit diagnostic for the models. Bayesian networks, frequently used in educational assessments (see, for example, Mislevy, Almond, Yan, & Steinberg, 2001) primarily for learning about students' knowledge and…
Bayesian Unimodal Density Regression for Causal Inference
ERIC Educational Resources Information Center
Karabatsos, George; Walker, Stephen G.
2011-01-01
Karabatsos and Walker (2011) introduced a new Bayesian nonparametric (BNP) regression model. Through analyses of real and simulated data, they showed that the BNP regression model outperforms other parametric and nonparametric regression models of common use, in terms of predictive accuracy of the outcome (dependent) variable. The other,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, B
This survey gives an overview of popular generative models used in the modeling of stochastic temporal systems. In particular, this survey is organized into two parts. The first part discusses the discrete-time representations of dynamic Bayesian networks and dynamic relational probabilistic models, while the second part discusses the continuous-time representation of continuous-time Bayesian networks.
Bayesian Estimation of the DINA Model with Gibbs Sampling
ERIC Educational Resources Information Center
Culpepper, Steven Andrew
2015-01-01
A Bayesian model formulation of the deterministic inputs, noisy "and" gate (DINA) model is presented. Gibbs sampling is employed to simulate from the joint posterior distribution of item guessing and slipping parameters, subject attribute parameters, and latent class probabilities. The procedure extends concepts in Béguin and Glas,…
Mertens, Ulf Kai; Voss, Andreas; Radev, Stefan
2018-01-01
We give an overview of the basic principles of approximate Bayesian computation (ABC), a class of stochastic methods that enable flexible and likelihood-free model comparison and parameter estimation. Our new open-source software called ABrox is used to illustrate ABC for model comparison on two prominent statistical tests, the two-sample t-test and the Levene-Test. We further highlight the flexibility of ABC compared to classical Bayesian hypothesis testing by computing an approximate Bayes factor for two multinomial processing tree models. Last but not least, throughout the paper, we introduce ABrox using the accompanied graphical user interface.
Semisupervised learning using Bayesian interpretation: application to LS-SVM.
Adankon, Mathias M; Cheriet, Mohamed; Biem, Alain
2011-04-01
Bayesian reasoning provides an ideal basis for representing and manipulating uncertain knowledge, with the result that many interesting algorithms in machine learning are based on Bayesian inference. In this paper, we use the Bayesian approach with one and two levels of inference to model the semisupervised learning problem and give its application to the successful kernel classifier support vector machine (SVM) and its variant least-squares SVM (LS-SVM). Taking advantage of Bayesian interpretation of LS-SVM, we develop a semisupervised learning algorithm for Bayesian LS-SVM using our approach based on two levels of inference. Experimental results on both artificial and real pattern recognition problems show the utility of our method.
Fancher, Chris M.; Han, Zhen; Levin, Igor; Page, Katharine; Reich, Brian J.; Smith, Ralph C.; Wilson, Alyson G.; Jones, Jacob L.
2016-01-01
A Bayesian inference method for refining crystallographic structures is presented. The distribution of model parameters is stochastically sampled using Markov chain Monte Carlo. Posterior probability distributions are constructed for all model parameters to properly quantify uncertainty by appropriately modeling the heteroskedasticity and correlation of the error structure. The proposed method is demonstrated by analyzing a National Institute of Standards and Technology silicon standard reference material. The results obtained by Bayesian inference are compared with those determined by Rietveld refinement. Posterior probability distributions of model parameters provide both estimates and uncertainties. The new method better estimates the true uncertainties in the model as compared to the Rietveld method. PMID:27550221
Using Bayesian belief networks in adaptive management.
J.B. Nyberg; B.G. Marcot; R. Sulyma
2006-01-01
Bayesian belief and decision networks are relatively new modeling methods that are especially well suited to adaptive-management applications, but they appear not to have been widely used in adaptive management to date. Bayesian belief networks (BBNs) can serve many purposes for practioners of adaptive management, from illustrating system relations conceptually to...
Gu, Weidong; Medalla, Felicita; Hoekstra, Robert M
2018-02-01
The National Antimicrobial Resistance Monitoring System (NARMS) at the Centers for Disease Control and Prevention tracks resistance among Salmonella infections. The annual number of Salmonella isolates of a particular serotype from states may be small, making direct estimation of resistance proportions unreliable. We developed a Bayesian hierarchical model to improve estimation by borrowing strength from relevant sampling units. We illustrate the models with different specifications of spatio-temporal interaction using 2004-2013 NARMS data for ceftriaxone-resistant Salmonella serotype Heidelberg. Our results show that Bayesian estimates of resistance proportions were smoother than observed values, and the difference between predicted and observed proportions was inversely related to the number of submitted isolates. The model with interaction allowed for tracking of annual changes in resistance proportions at the state level. We demonstrated that Bayesian hierarchical models provide a useful tool to examine spatio-temporal patterns of small sample size such as those found in NARMS. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Reis, D. S.; Stedinger, J. R.; Martins, E. S.
2005-10-01
This paper develops a Bayesian approach to analysis of a generalized least squares (GLS) regression model for regional analyses of hydrologic data. The new approach allows computation of the posterior distributions of the parameters and the model error variance using a quasi-analytic approach. Two regional skew estimation studies illustrate the value of the Bayesian GLS approach for regional statistical analysis of a shape parameter and demonstrate that regional skew models can be relatively precise with effective record lengths in excess of 60 years. With Bayesian GLS the marginal posterior distribution of the model error variance and the corresponding mean and variance of the parameters can be computed directly, thereby providing a simple but important extension of the regional GLS regression procedures popularized by Tasker and Stedinger (1989), which is sensitive to the likely values of the model error variance when it is small relative to the sampling error in the at-site estimator.
Robust Spectral Unmixing of Sparse Multispectral Lidar Waveforms using Gamma Markov Random Fields
Altmann, Yoann; Maccarone, Aurora; McCarthy, Aongus; ...
2017-05-10
Here, this paper presents a new Bayesian spectral un-mixing algorithm to analyse remote scenes sensed via sparse multispectral Lidar measurements. To a first approximation, in the presence of a target, each Lidar waveform consists of a main peak, whose position depends on the target distance and whose amplitude depends on the wavelength of the laser source considered (i.e, on the target reflectivity). Besides, these temporal responses are usually assumed to be corrupted by Poisson noise in the low photon count regime. When considering multiple wavelengths, it becomes possible to use spectral information in order to identify and quantify the mainmore » materials in the scene, in addition to estimation of the Lidar-based range profiles. Due to its anomaly detection capability, the proposed hierarchical Bayesian model, coupled with an efficient Markov chain Monte Carlo algorithm, allows robust estimation of depth images together with abundance and outlier maps associated with the observed 3D scene. The proposed methodology is illustrated via experiments conducted with real multispectral Lidar data acquired in a controlled environment. The results demonstrate the possibility to unmix spectral responses constructed from extremely sparse photon counts (less than 10 photons per pixel and band).« less
Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures.
Bobb, Jennifer F; Valeri, Linda; Claus Henn, Birgit; Christiani, David C; Wright, Robert O; Mazumdar, Maitreyi; Godleski, John J; Coull, Brent A
2015-07-01
Because humans are invariably exposed to complex chemical mixtures, estimating the health effects of multi-pollutant exposures is of critical concern in environmental epidemiology, and to regulatory agencies such as the U.S. Environmental Protection Agency. However, most health effects studies focus on single agents or consider simple two-way interaction models, in part because we lack the statistical methodology to more realistically capture the complexity of mixed exposures. We introduce Bayesian kernel machine regression (BKMR) as a new approach to study mixtures, in which the health outcome is regressed on a flexible function of the mixture (e.g. air pollution or toxic waste) components that is specified using a kernel function. In high-dimensional settings, a novel hierarchical variable selection approach is incorporated to identify important mixture components and account for the correlated structure of the mixture. Simulation studies demonstrate the success of BKMR in estimating the exposure-response function and in identifying the individual components of the mixture responsible for health effects. We demonstrate the features of the method through epidemiology and toxicology applications. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Yoon, Tae-Ho; Noh, Maengseok; Han, Junhee; Jung-Choi, Kyunghee; Khang, Young-Ho
2015-12-01
A neighborhood-level analysis of mortality from suicide would be informative in developing targeted approaches to reducing suicide. This study aims to examine the association of community characteristics with suicide in the 424 neighborhoods of Seoul, South Korea. Neighborhood-level mortality and population data (2005-2011) were obtained to calculate age-standardized suicide rates. Eight community characteristics and their associated deprivation index were employed as determinants of suicide rates. The Bayesian hierarchical model with mixed effects for neighborhoods was used to fit age-standardized suicide rates and other covariates with consideration of spatial correlations. Suicide rates for 424 neighborhoods were between 7.32 and 71.09 per 100,000. Ninety-nine percent of 424 neighborhoods recorded greater suicide rates than the Organization for Economic Cooperation and Development member countries' average. A stepwise relationship between area deprivation and suicide was found. Neighborhood-level indicators for lack of social support (residents living alone and the divorced or separated) and socioeconomic disadvantages (low educational attainment) were positively associated with suicide mortality after controlling for other covariates. Finding from this study could be used to identify priority areas and to develop community-based programs for preventing suicide in Seoul, South Korea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altmann, Yoann; Maccarone, Aurora; McCarthy, Aongus
Here, this paper presents a new Bayesian spectral un-mixing algorithm to analyse remote scenes sensed via sparse multispectral Lidar measurements. To a first approximation, in the presence of a target, each Lidar waveform consists of a main peak, whose position depends on the target distance and whose amplitude depends on the wavelength of the laser source considered (i.e, on the target reflectivity). Besides, these temporal responses are usually assumed to be corrupted by Poisson noise in the low photon count regime. When considering multiple wavelengths, it becomes possible to use spectral information in order to identify and quantify the mainmore » materials in the scene, in addition to estimation of the Lidar-based range profiles. Due to its anomaly detection capability, the proposed hierarchical Bayesian model, coupled with an efficient Markov chain Monte Carlo algorithm, allows robust estimation of depth images together with abundance and outlier maps associated with the observed 3D scene. The proposed methodology is illustrated via experiments conducted with real multispectral Lidar data acquired in a controlled environment. The results demonstrate the possibility to unmix spectral responses constructed from extremely sparse photon counts (less than 10 photons per pixel and band).« less
A Bayesian Inferential Approach to Quantify the Transmission Intensity of Disease Outbreak
Kadi, Adiveppa S.; Avaradi, Shivakumari R.
2015-01-01
Background. Emergence of infectious diseases like influenza pandemic (H1N1) 2009 has become great concern, which posed new challenges to the health authorities worldwide. To control these diseases various studies have been developed in the field of mathematical modelling, which is useful tool for understanding the epidemiological dynamics and their dependence on social mixing patterns. Method. We have used Bayesian approach to quantify the disease outbreak through key epidemiological parameter basic reproduction number (R 0), using effective contacts, defined as sum of the product of incidence cases and probability of generation time distribution. We have estimated R 0 from daily case incidence data for pandemic influenza A/H1N1 2009 in India, for the initial phase. Result. The estimated R 0 with 95% credible interval is consistent with several other studies on the same strain. Through sensitivity analysis our study indicates that infectiousness affects the estimate of R 0. Conclusion. Basic reproduction number R 0 provides the useful information to the public health system to do some effort in controlling the disease by using mitigation strategies like vaccination, quarantine, and so forth. PMID:25784956
Trophic interactions between native and introduced fish species in a littoral fish community.
Monroy, M; Maceda-Veiga, A; Caiola, N; De Sostoa, A
2014-11-01
The trophic interactions between 15 native and two introduced fish species, silverside Odontesthes bonariensis and rainbow trout Oncorhynchus mykiss, collected in a major fishery area at Lake Titicaca were explored by integrating traditional ecological knowledge and stable-isotope analyses (SIA). SIA suggested the existence of six trophic groups in this fish community based on δ(13)C and δ(15)N signatures. This was supported by ecological evidence illustrating marked spatial segregation between groups, but a similar trophic level for most of the native groups. Based on Bayesian ellipse analyses, niche overlap appeared to occur between small O. bonariensis (<90 mm) and benthopelagic native species (31.6%), and between the native pelagic killifish Orestias ispi and large O. bonariensis (39%) or O. mykiss (19.7%). In addition, Bayesian mixing models suggested that O. ispi and epipelagic species are likely to be the main prey items for the two introduced fish species. This study reveals a trophic link between native and introduced fish species, and demonstrates the utility of combining both SIA and traditional ecological knowledge to understand trophic relationships between fish species with similar feeding habits. © 2014 The Fisheries Society of the British Isles.
Malloy, Elizabeth J; Morris, Jeffrey S; Adar, Sara D; Suh, Helen; Gold, Diane R; Coull, Brent A
2010-07-01
Frequently, exposure data are measured over time on a grid of discrete values that collectively define a functional observation. In many applications, researchers are interested in using these measurements as covariates to predict a scalar response in a regression setting, with interest focusing on the most biologically relevant time window of exposure. One example is in panel studies of the health effects of particulate matter (PM), where particle levels are measured over time. In such studies, there are many more values of the functional data than observations in the data set so that regularization of the corresponding functional regression coefficient is necessary for estimation. Additional issues in this setting are the possibility of exposure measurement error and the need to incorporate additional potential confounders, such as meteorological or co-pollutant measures, that themselves may have effects that vary over time. To accommodate all these features, we develop wavelet-based linear mixed distributed lag models that incorporate repeated measures of functional data as covariates into a linear mixed model. A Bayesian approach to model fitting uses wavelet shrinkage to regularize functional coefficients. We show that, as long as the exposure error induces fine-scale variability in the functional exposure profile and the distributed lag function representing the exposure effect varies smoothly in time, the model corrects for the exposure measurement error without further adjustment. Both these conditions are likely to hold in the environmental applications we consider. We examine properties of the method using simulations and apply the method to data from a study examining the association between PM, measured as hourly averages for 1-7 days, and markers of acute systemic inflammation. We use the method to fully control for the effects of confounding by other time-varying predictors, such as temperature and co-pollutants.
Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring
Carlos Carroll; Devin S. Johnson; Jeffrey R. Dunk; William J. Zielinski
2010-01-01
Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their dataâs spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and...
Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models.
Daunizeau, J; Friston, K J; Kiebel, S J
2009-11-01
In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power.
Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.
Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J
2010-12-01
Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies conservation planning. Journal compilation © 2010 Society for Conservation Biology. No claim to original US government works.
ERIC Educational Resources Information Center
Aslan, Burak Galip; Öztürk, Özlem; Inceoglu, Mustafa Murat
2014-01-01
Considering the increasing importance of adaptive approaches in CALL systems, this study implemented a machine learning based student modeling middleware with Bayesian networks. The profiling approach of the student modeling system is based on Felder and Silverman's Learning Styles Model and Felder and Soloman's Index of Learning Styles…
NASA Astrophysics Data System (ADS)
Iskandar, Ismed; Satria Gondokaryono, Yudi
2016-02-01
In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range between the true value and the maximum likelihood estimated value lines.
Bayesian Factor Analysis as a Variable Selection Problem: Alternative Priors and Consequences
Lu, Zhao-Hua; Chow, Sy-Miin; Loken, Eric
2016-01-01
Factor analysis is a popular statistical technique for multivariate data analysis. Developments in the structural equation modeling framework have enabled the use of hybrid confirmatory/exploratory approaches in which factor loading structures can be explored relatively flexibly within a confirmatory factor analysis (CFA) framework. Recently, a Bayesian structural equation modeling (BSEM) approach (Muthén & Asparouhov, 2012) has been proposed as a way to explore the presence of cross-loadings in CFA models. We show that the issue of determining factor loading patterns may be formulated as a Bayesian variable selection problem in which Muthén and Asparouhov’s approach can be regarded as a BSEM approach with ridge regression prior (BSEM-RP). We propose another Bayesian approach, denoted herein as the Bayesian structural equation modeling with spike and slab prior (BSEM-SSP), which serves as a one-stage alternative to the BSEM-RP. We review the theoretical advantages and disadvantages of both approaches and compare their empirical performance relative to two modification indices-based approaches and exploratory factor analysis with target rotation. A teacher stress scale data set (Byrne, 2012; Pettegrew & Wolf, 1982) is used to demonstrate our approach. PMID:27314566
Bayesian Inference and Online Learning in Poisson Neuronal Networks.
Huang, Yanping; Rao, Rajesh P N
2016-08-01
Motivated by the growing evidence for Bayesian computation in the brain, we show how a two-layer recurrent network of Poisson neurons can perform both approximate Bayesian inference and learning for any hidden Markov model. The lower-layer sensory neurons receive noisy measurements of hidden world states. The higher-layer neurons infer a posterior distribution over world states via Bayesian inference from inputs generated by sensory neurons. We demonstrate how such a neuronal network with synaptic plasticity can implement a form of Bayesian inference similar to Monte Carlo methods such as particle filtering. Each spike in a higher-layer neuron represents a sample of a particular hidden world state. The spiking activity across the neural population approximates the posterior distribution over hidden states. In this model, variability in spiking is regarded not as a nuisance but as an integral feature that provides the variability necessary for sampling during inference. We demonstrate how the network can learn the likelihood model, as well as the transition probabilities underlying the dynamics, using a Hebbian learning rule. We present results illustrating the ability of the network to perform inference and learning for arbitrary hidden Markov models.
Impact assessment of extreme storm events using a Bayesian network
den Heijer, C.(Kees); Knipping, Dirk T.J.A.; Plant, Nathaniel G.; van Thiel de Vries, Jaap S. M.; Baart, Fedor; van Gelder, Pieter H. A. J. M.
2012-01-01
This paper describes an investigation on the usefulness of Bayesian Networks in the safety assessment of dune coasts. A network has been created that predicts the erosion volume based on hydraulic boundary conditions and a number of cross-shore profile indicators. Field measurement data along a large part of the Dutch coast has been used to train the network. Corresponding storm impact on the dunes was calculated with an empirical dune erosion model named duros+. Comparison between the Bayesian Network predictions and the original duros+ results, here considered as observations, results in a skill up to 0.88, provided that the training data covers the range of predictions. Hence, the predictions from a deterministic model (duros+) can be captured in a probabilistic model (Bayesian Network) such that both the process knowledge and uncertainties can be included in impact and vulnerability assessments.
BAYESIAN METHODS FOR REGIONAL-SCALE EUTROPHICATION MODELS. (R830887)
We demonstrate a Bayesian classification and regression tree (CART) approach to link multiple environmental stressors to biological responses and quantify uncertainty in model predictions. Such an approach can: (1) report prediction uncertainty, (2) be consistent with the amou...
Bayesian conditional-independence modeling of the AIDS epidemic in England and Wales
NASA Astrophysics Data System (ADS)
Gilks, Walter R.; De Angelis, Daniela; Day, Nicholas E.
We describe the use of conditional-independence modeling, Bayesian inference and Markov chain Monte Carlo, to model and project the HIV-AIDS epidemic in homosexual/bisexual males in England and Wales. Complexity in this analysis arises through selectively missing data, indirectly observed underlying processes, and measurement error. Our emphasis is on presentation and discussion of the concepts, not on the technicalities of this analysis, which can be found elsewhere [D. De Angelis, W.R. Gilks, N.E. Day, Bayesian projection of the the acquired immune deficiency syndrome epidemic (with discussion), Applied Statistics, in press].
Bayesian estimation of seasonal course of canopy leaf area index from hyperspectral satellite data
NASA Astrophysics Data System (ADS)
Varvia, Petri; Rautiainen, Miina; Seppänen, Aku
2018-03-01
In this paper, Bayesian inversion of a physically-based forest reflectance model is investigated to estimate of boreal forest canopy leaf area index (LAI) from EO-1 Hyperion hyperspectral data. The data consist of multiple forest stands with different species compositions and structures, imaged in three phases of the growing season. The Bayesian estimates of canopy LAI are compared to reference estimates based on a spectral vegetation index. The forest reflectance model contains also other unknown variables in addition to LAI, for example leaf single scattering albedo and understory reflectance. In the Bayesian approach, these variables are estimated simultaneously with LAI. The feasibility and seasonal variation of these estimates is also examined. Credible intervals for the estimates are also calculated and evaluated. The results show that the Bayesian inversion approach is significantly better than using a comparable spectral vegetation index regression.
Liew, Bernard X W; Drovandi, Christopher C; Clifford, Samuel; Keogh, Justin W L; Morris, Susan; Netto, Kevin
2018-01-01
There is convincing evidence for the benefits of resistance training on vertical jump improvements, but little evidence to guide optimal training prescription. The inability to detect small between modality effects may partially reflect the use of ANOVA statistics. This study represents the results of a sub-study from a larger project investigating the effects of two resistance training methods on load carriage running energetics. Bayesian statistics were used to compare the effectiveness of isoinertial resistance against speed-power training to change countermovement jump (CMJ) and squat jump (SJ) height, and joint energetics. Active adults were randomly allocated to either a six-week isoinertial ( n = 16; calf raises, leg press, and lunge), or a speed-power training program ( n = 14; countermovement jumps, hopping, with hip flexor training to target pre-swing running energetics). Primary outcome variables included jump height and joint power. Bayesian mixed modelling and Functional Data Analysis were used, where significance was determined by a non-zero crossing of the 95% Bayesian Credible Interval (CrI). The gain in CMJ height after isoinertial training was 1.95 cm (95% CrI [0.85-3.04] cm) greater than the gain after speed-power training, but the gain in SJ height was similar between groups. In the CMJ, isoinertial training produced a larger increase in power absorption at the hip by a mean 0.018% (equivalent to 35 W) (95% CrI [0.007-0.03]), knee by 0.014% (equivalent to 27 W) (95% CrI [0.006-0.02]) and foot by 0.011% (equivalent to 21 W) (95% CrI [0.005-0.02]) compared to speed-power training. Short-term isoinertial training improved CMJ height more than speed-power training. The principle adaptive difference between training modalities was at the level of hip, knee and foot power absorption.
Analysis of a Multi-Fidelity Surrogate for Handling Real Gas Equations of State
NASA Astrophysics Data System (ADS)
Ouellet, Frederick; Park, Chanyoung; Rollin, Bertrand; Balachandar, S.
2017-06-01
The explosive dispersal of particles is a complex multiphase and multi-species fluid flow problem. In these flows, the detonation products of the explosive must be treated as real gas while the ideal gas equation of state is used for the surrounding air. As the products expand outward from the detonation point, they mix with ambient air and create a mixing region where both state equations must be satisfied. One of the most accurate, yet computationally expensive, methods to handle this problem is an algorithm that iterates between both equations of state until pressure and thermal equilibrium are achieved inside of each computational cell. This work aims to use a multi-fidelity surrogate model to replace this process. A Kriging model is used to produce a curve fit which interpolates selected data from the iterative algorithm using Bayesian statistics. We study the model performance with respect to the iterative method in simulations using a finite volume code. The model's (i) computational speed, (ii) memory requirements and (iii) computational accuracy are analyzed to show the benefits of this novel approach. Also, optimizing the combination of model accuracy and computational speed through the choice of sampling points is explained. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program as a Cooperative Agreement under the Predictive Science Academic Alliance Program under Contract No. DE-NA0002378.
Lim, Cherry; Wannapinij, Prapass; White, Lisa; Day, Nicholas P J; Cooper, Ben S; Peacock, Sharon J; Limmathurotsakul, Direk
2013-01-01
Estimates of the sensitivity and specificity for new diagnostic tests based on evaluation against a known gold standard are imprecise when the accuracy of the gold standard is imperfect. Bayesian latent class models (LCMs) can be helpful under these circumstances, but the necessary analysis requires expertise in computational programming. Here, we describe open-access web-based applications that allow non-experts to apply Bayesian LCMs to their own data sets via a user-friendly interface. Applications for Bayesian LCMs were constructed on a web server using R and WinBUGS programs. The models provided (http://mice.tropmedres.ac) include two Bayesian LCMs: the two-tests in two-population model (Hui and Walter model) and the three-tests in one-population model (Walter and Irwig model). Both models are available with simplified and advanced interfaces. In the former, all settings for Bayesian statistics are fixed as defaults. Users input their data set into a table provided on the webpage. Disease prevalence and accuracy of diagnostic tests are then estimated using the Bayesian LCM, and provided on the web page within a few minutes. With the advanced interfaces, experienced researchers can modify all settings in the models as needed. These settings include correlation among diagnostic test results and prior distributions for all unknown parameters. The web pages provide worked examples with both models using the original data sets presented by Hui and Walter in 1980, and by Walter and Irwig in 1988. We also illustrate the utility of the advanced interface using the Walter and Irwig model on a data set from a recent melioidosis study. The results obtained from the web-based applications were comparable to those published previously. The newly developed web-based applications are open-access and provide an important new resource for researchers worldwide to evaluate new diagnostic tests.
Precise Network Modeling of Systems Genetics Data Using the Bayesian Network Webserver.
Ziebarth, Jesse D; Cui, Yan
2017-01-01
The Bayesian Network Webserver (BNW, http://compbio.uthsc.edu/BNW ) is an integrated platform for Bayesian network modeling of biological datasets. It provides a web-based network modeling environment that seamlessly integrates advanced algorithms for probabilistic causal modeling and reasoning with Bayesian networks. BNW is designed for precise modeling of relatively small networks that contain less than 20 nodes. The structure learning algorithms used by BNW guarantee the discovery of the best (most probable) network structure given the data. To facilitate network modeling across multiple biological levels, BNW provides a very flexible interface that allows users to assign network nodes into different tiers and define the relationships between and within the tiers. This function is particularly useful for modeling systems genetics datasets that often consist of multiscalar heterogeneous genotype-to-phenotype data. BNW enables users to, within seconds or minutes, go from having a simply formatted input file containing a dataset to using a network model to make predictions about the interactions between variables and the potential effects of experimental interventions. In this chapter, we will introduce the functions of BNW and show how to model systems genetics datasets with BNW.
Fragment virtual screening based on Bayesian categorization for discovering novel VEGFR-2 scaffolds.
Zhang, Yanmin; Jiao, Yu; Xiong, Xiao; Liu, Haichun; Ran, Ting; Xu, Jinxing; Lu, Shuai; Xu, Anyang; Pan, Jing; Qiao, Xin; Shi, Zhihao; Lu, Tao; Chen, Yadong
2015-11-01
The discovery of novel scaffolds against a specific target has long been one of the most significant but challengeable goals in discovering lead compounds. A scaffold that binds in important regions of the active pocket is more favorable as a starting point because scaffolds generally possess greater optimization possibilities. However, due to the lack of sufficient chemical space diversity of the databases and the ineffectiveness of the screening methods, it still remains a great challenge to discover novel active scaffolds. Since the strengths and weaknesses of both fragment-based drug design and traditional virtual screening (VS), we proposed a fragment VS concept based on Bayesian categorization for the discovery of novel scaffolds. This work investigated the proposal through an application on VEGFR-2 target. Firstly, scaffold and structural diversity of chemical space for 10 compound databases were explicitly evaluated. Simultaneously, a robust Bayesian classification model was constructed for screening not only compound databases but also their corresponding fragment databases. Although analysis of the scaffold diversity demonstrated a very unevenly distribution of scaffolds over molecules, results showed that our Bayesian model behaved better in screening fragments than molecules. Through a literature retrospective research, several generated fragments with relatively high Bayesian scores indeed exhibit VEGFR-2 biological activity, which strongly proved the effectiveness of fragment VS based on Bayesian categorization models. This investigation of Bayesian-based fragment VS can further emphasize the necessity for enrichment of compound databases employed in lead discovery by amplifying the diversity of databases with novel structures.
Yang, Jingjing; Cox, Dennis D; Lee, Jong Soo; Ren, Peng; Choi, Taeryon
2017-12-01
Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum, which are usually collected on discretized grids with measurement errors. In order to accurately smooth noisy functional observations and deal with the issue of high-dimensional observation grids, we propose a novel Bayesian method based on the Bayesian hierarchical model with a Gaussian-Wishart process prior and basis function representations. We first derive an induced model for the basis-function coefficients of the functional data, and then use this model to conduct posterior inference through Markov chain Monte Carlo methods. Compared to the standard Bayesian inference that suffers serious computational burden and instability in analyzing high-dimensional functional data, our method greatly improves the computational scalability and stability, while inheriting the advantage of simultaneously smoothing raw observations and estimating the mean-covariance functions in a nonparametric way. In addition, our method can naturally handle functional data observed on random or uncommon grids. Simulation and real studies demonstrate that our method produces similar results to those obtainable by the standard Bayesian inference with low-dimensional common grids, while efficiently smoothing and estimating functional data with random and high-dimensional observation grids when the standard Bayesian inference fails. In conclusion, our method can efficiently smooth and estimate high-dimensional functional data, providing one way to resolve the curse of dimensionality for Bayesian functional data analysis with Gaussian-Wishart processes. © 2017, The International Biometric Society.
Yu, Rongjie; Abdel-Aty, Mohamed
2013-07-01
The Bayesian inference method has been frequently adopted to develop safety performance functions. One advantage of the Bayesian inference is that prior information for the independent variables can be included in the inference procedures. However, there are few studies that discussed how to formulate informative priors for the independent variables and evaluated the effects of incorporating informative priors in developing safety performance functions. This paper addresses this deficiency by introducing four approaches of developing informative priors for the independent variables based on historical data and expert experience. Merits of these informative priors have been tested along with two types of Bayesian hierarchical models (Poisson-gamma and Poisson-lognormal models). Deviance information criterion (DIC), R-square values, and coefficients of variance for the estimations were utilized as evaluation measures to select the best model(s). Comparison across the models indicated that the Poisson-gamma model is superior with a better model fit and it is much more robust with the informative priors. Moreover, the two-stage Bayesian updating informative priors provided the best goodness-of-fit and coefficient estimation accuracies. Furthermore, informative priors for the inverse dispersion parameter have also been introduced and tested. Different types of informative priors' effects on the model estimations and goodness-of-fit have been compared and concluded. Finally, based on the results, recommendations for future research topics and study applications have been made. Copyright © 2013 Elsevier Ltd. All rights reserved.
Onisko, Agnieszka; Druzdzel, Marek J; Austin, R Marshall
2016-01-01
Classical statistics is a well-established approach in the analysis of medical data. While the medical community seems to be familiar with the concept of a statistical analysis and its interpretation, the Bayesian approach, argued by many of its proponents to be superior to the classical frequentist approach, is still not well-recognized in the analysis of medical data. The goal of this study is to encourage data analysts to use the Bayesian approach, such as modeling with graphical probabilistic networks, as an insightful alternative to classical statistical analysis of medical data. This paper offers a comparison of two approaches to analysis of medical time series data: (1) classical statistical approach, such as the Kaplan-Meier estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian network modeling. Our comparison is based on time series cervical cancer screening data collected at Magee-Womens Hospital, University of Pittsburgh Medical Center over 10 years. The main outcomes of our comparison are cervical cancer risk assessments produced by the three approaches. However, our analysis discusses also several aspects of the comparison, such as modeling assumptions, model building, dealing with incomplete data, individualized risk assessment, results interpretation, and model validation. Our study shows that the Bayesian approach is (1) much more flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, which is more cumbersome for classical statistical approaches.
Merlé, Y; Mentré, F
1995-02-01
In this paper 3 criteria to design experiments for Bayesian estimation of the parameters of nonlinear models with respect to their parameters, when a prior distribution is available, are presented: the determinant of the Bayesian information matrix, the determinant of the pre-posterior covariance matrix, and the expected information provided by an experiment. A procedure to simplify the computation of these criteria is proposed in the case of continuous prior distributions and is compared with the criterion obtained from a linearization of the model about the mean of the prior distribution for the parameters. This procedure is applied to two models commonly encountered in the area of pharmacokinetics and pharmacodynamics: the one-compartment open model with bolus intravenous single-dose injection and the Emax model. They both involve two parameters. Additive as well as multiplicative gaussian measurement errors are considered with normal prior distributions. Various combinations of the variances of the prior distribution and of the measurement error are studied. Our attention is restricted to designs with limited numbers of measurements (1 or 2 measurements). This situation often occurs in practice when Bayesian estimation is performed. The optimal Bayesian designs that result vary with the variances of the parameter distribution and with the measurement error. The two-point optimal designs sometimes differ from the D-optimal designs for the mean of the prior distribution and may consist of replicating measurements. For the studied cases, the determinant of the Bayesian information matrix and its linearized form lead to the same optimal designs. In some cases, the pre-posterior covariance matrix can be far from its lower bound, namely, the inverse of the Bayesian information matrix, especially for the Emax model and a multiplicative measurement error. The expected information provided by the experiment and the determinant of the pre-posterior covariance matrix generally lead to the same designs except for the Emax model and the multiplicative measurement error. Results show that these criteria can be easily computed and that they could be incorporated in modules for designing experiments.
Narimani, Zahra; Beigy, Hamid; Ahmad, Ashar; Masoudi-Nejad, Ali; Fröhlich, Holger
2017-01-01
Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference techniques, such as Dynamic Bayesian Networks and ordinary differential equations, are limited by their computational complexity and thus make large scale inference infeasible. This is specifically true if a Bayesian framework is applied in order to deal with the unavoidable uncertainty about the correct model. We devise a novel Bayesian network reverse engineering approach using ordinary differential equations with the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and time dependent perturbations with unknown targets, one of our main contributions is the use of Expectation Propagation, an algorithm for approximate Bayesian inference over large scale network structures in short computation time. We further explore the possibility of integrating prior knowledge into network inference. We evaluate the proposed model on DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing network inference methods.
Hierarchical Bayesian sparse image reconstruction with application to MRFM.
Dobigeon, Nicolas; Hero, Alfred O; Tourneret, Jean-Yves
2009-09-01
This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g., by maximizing the estimated posterior distribution. In our fully Bayesian approach, the posteriors of all the parameters are available. Thus, our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of the proposed hierarchical Bayesian sparse reconstruction method is illustrated on synthetic data and real data collected from a tobacco virus sample using a prototype MRFM instrument.
Reconstructing Constructivism: Causal Models, Bayesian Learning Mechanisms, and the Theory Theory
ERIC Educational Resources Information Center
Gopnik, Alison; Wellman, Henry M.
2012-01-01
We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework…
Bayesian Finite Mixtures for Nonlinear Modeling of Educational Data.
ERIC Educational Resources Information Center
Tirri, Henry; And Others
A Bayesian approach for finding latent classes in data is discussed. The approach uses finite mixture models to describe the underlying structure in the data and demonstrate that the possibility of using full joint probability models raises interesting new prospects for exploratory data analysis. The concepts and methods discussed are illustrated…
A Bayesian Multi-Level Factor Analytic Model of Consumer Price Sensitivities across Categories
ERIC Educational Resources Information Center
Duvvuri, Sri Devi; Gruca, Thomas S.
2010-01-01
Identifying price sensitive consumers is an important problem in marketing. We develop a Bayesian multi-level factor analytic model of the covariation among household-level price sensitivities across product categories that are substitutes. Based on a multivariate probit model of category incidence, this framework also allows the researcher to…
Small Sample Properties of Bayesian Multivariate Autoregressive Time Series Models
ERIC Educational Resources Information Center
Price, Larry R.
2012-01-01
The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…
NASA Astrophysics Data System (ADS)
Cheung, Shao-Yong; Lee, Chieh-Han; Yu, Hwa-Lung
2017-04-01
Due to the limited hydrogeological observation data and high levels of uncertainty within, parameter estimation of the groundwater model has been an important issue. There are many methods of parameter estimation, for example, Kalman filter provides a real-time calibration of parameters through measurement of groundwater monitoring wells, related methods such as Extended Kalman Filter and Ensemble Kalman Filter are widely applied in groundwater research. However, Kalman Filter method is limited to linearity. This study propose a novel method, Bayesian Maximum Entropy Filtering, which provides a method that can considers the uncertainty of data in parameter estimation. With this two methods, we can estimate parameter by given hard data (certain) and soft data (uncertain) in the same time. In this study, we use Python and QGIS in groundwater model (MODFLOW) and development of Extended Kalman Filter and Bayesian Maximum Entropy Filtering in Python in parameter estimation. This method may provide a conventional filtering method and also consider the uncertainty of data. This study was conducted through numerical model experiment to explore, combine Bayesian maximum entropy filter and a hypothesis for the architecture of MODFLOW groundwater model numerical estimation. Through the virtual observation wells to simulate and observe the groundwater model periodically. The result showed that considering the uncertainty of data, the Bayesian maximum entropy filter will provide an ideal result of real-time parameters estimation.
Bayesian-MCMC-based parameter estimation of stealth aircraft RCS models
NASA Astrophysics Data System (ADS)
Xia, Wei; Dai, Xiao-Xia; Feng, Yuan
2015-12-01
When modeling a stealth aircraft with low RCS (Radar Cross Section), conventional parameter estimation methods may cause a deviation from the actual distribution, owing to the fact that the characteristic parameters are estimated via directly calculating the statistics of RCS. The Bayesian-Markov Chain Monte Carlo (Bayesian-MCMC) method is introduced herein to estimate the parameters so as to improve the fitting accuracies of fluctuation models. The parameter estimations of the lognormal and the Legendre polynomial models are reformulated in the Bayesian framework. The MCMC algorithm is then adopted to calculate the parameter estimates. Numerical results show that the distribution curves obtained by the proposed method exhibit improved consistence with the actual ones, compared with those fitted by the conventional method. The fitting accuracy could be improved by no less than 25% for both fluctuation models, which implies that the Bayesian-MCMC method might be a good candidate among the optimal parameter estimation methods for stealth aircraft RCS models. Project supported by the National Natural Science Foundation of China (Grant No. 61101173), the National Basic Research Program of China (Grant No. 613206), the National High Technology Research and Development Program of China (Grant No. 2012AA01A308), the State Scholarship Fund by the China Scholarship Council (CSC), and the Oversea Academic Training Funds, and University of Electronic Science and Technology of China (UESTC).
Ferragina, A; de los Campos, G; Vazquez, A I; Cecchinato, A; Bittante, G
2015-11-01
The aim of this study was to assess the performance of Bayesian models commonly used for genomic selection to predict "difficult-to-predict" dairy traits, such as milk fatty acid (FA) expressed as percentage of total fatty acids, and technological properties, such as fresh cheese yield and protein recovery, using Fourier-transform infrared (FTIR) spectral data. Our main hypothesis was that Bayesian models that can estimate shrinkage and perform variable selection may improve our ability to predict FA traits and technological traits above and beyond what can be achieved using the current calibration models (e.g., partial least squares, PLS). To this end, we assessed a series of Bayesian methods and compared their prediction performance with that of PLS. The comparison between models was done using the same sets of data (i.e., same samples, same variability, same spectral treatment) for each trait. Data consisted of 1,264 individual milk samples collected from Brown Swiss cows for which gas chromatographic FA composition, milk coagulation properties, and cheese-yield traits were available. For each sample, 2 spectra in the infrared region from 5,011 to 925 cm(-1) were available and averaged before data analysis. Three Bayesian models: Bayesian ridge regression (Bayes RR), Bayes A, and Bayes B, and 2 reference models: PLS and modified PLS (MPLS) procedures, were used to calibrate equations for each of the traits. The Bayesian models used were implemented in the R package BGLR (http://cran.r-project.org/web/packages/BGLR/index.html), whereas the PLS and MPLS were those implemented in the WinISI II software (Infrasoft International LLC, State College, PA). Prediction accuracy was estimated for each trait and model using 25 replicates of a training-testing validation procedure. Compared with PLS, which is currently the most widely used calibration method, MPLS and the 3 Bayesian methods showed significantly greater prediction accuracy. Accuracy increased in moving from calibration to external validation methods, and in moving from PLS and MPLS to Bayesian methods, particularly Bayes A and Bayes B. The maximum R(2) value of validation was obtained with Bayes B and Bayes A. For the FA, C10:0 (% of each FA on total FA basis) had the highest R(2) (0.75, achieved with Bayes A and Bayes B), and among the technological traits, fresh cheese yield R(2) of 0.82 (achieved with Bayes B). These 2 methods have proven to be useful instruments in shrinking and selecting very informative wavelengths and inferring the structure and functions of the analyzed traits. We conclude that Bayesian models are powerful tools for deriving calibration equations, and, importantly, these equations can be easily developed using existing open-source software. As part of our study, we provide scripts based on the open source R software BGLR, which can be used to train customized prediction equations for other traits or populations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Bayesian stock assessment of Pacific herring in Prince William Sound, Alaska.
Muradian, Melissa L; Branch, Trevor A; Moffitt, Steven D; Hulson, Peter-John F
2017-01-01
The Pacific herring (Clupea pallasii) population in Prince William Sound, Alaska crashed in 1993 and has yet to recover, affecting food web dynamics in the Sound and impacting Alaskan communities. To help researchers design and implement the most effective monitoring, management, and recovery programs, a Bayesian assessment of Prince William Sound herring was developed by reformulating the current model used by the Alaska Department of Fish and Game. The Bayesian model estimated pre-fishery spawning biomass of herring age-3 and older in 2013 to be a median of 19,410 mt (95% credibility interval 12,150-31,740 mt), with a 54% probability that biomass in 2013 was below the management limit used to regulate fisheries in Prince William Sound. The main advantages of the Bayesian model are that it can more objectively weight different datasets and provide estimates of uncertainty for model parameters and outputs, unlike the weighted sum-of-squares used in the original model. In addition, the revised model could be used to manage herring stocks with a decision rule that considers both stock status and the uncertainty in stock status.
Bayesian stock assessment of Pacific herring in Prince William Sound, Alaska
Moffitt, Steven D.; Hulson, Peter-John F.
2017-01-01
The Pacific herring (Clupea pallasii) population in Prince William Sound, Alaska crashed in 1993 and has yet to recover, affecting food web dynamics in the Sound and impacting Alaskan communities. To help researchers design and implement the most effective monitoring, management, and recovery programs, a Bayesian assessment of Prince William Sound herring was developed by reformulating the current model used by the Alaska Department of Fish and Game. The Bayesian model estimated pre-fishery spawning biomass of herring age-3 and older in 2013 to be a median of 19,410 mt (95% credibility interval 12,150–31,740 mt), with a 54% probability that biomass in 2013 was below the management limit used to regulate fisheries in Prince William Sound. The main advantages of the Bayesian model are that it can more objectively weight different datasets and provide estimates of uncertainty for model parameters and outputs, unlike the weighted sum-of-squares used in the original model. In addition, the revised model could be used to manage herring stocks with a decision rule that considers both stock status and the uncertainty in stock status. PMID:28222151
Bias in diet determination: incorporating traditional methods in Bayesian mixing models.
Franco-Trecu, Valentina; Drago, Massimiliano; Riet-Sapriza, Federico G; Parnell, Andrew; Frau, Rosina; Inchausti, Pablo
2013-01-01
There are not "universal methods" to determine diet composition of predators. Most traditional methods are biased because of their reliance on differential digestibility and the recovery of hard items. By relying on assimilated food, stable isotope and Bayesian mixing models (SIMMs) resolve many biases of traditional methods. SIMMs can incorporate prior information (i.e. proportional diet composition) that may improve the precision in the estimated dietary composition. However few studies have assessed the performance of traditional methods and SIMMs with and without informative priors to study the predators' diets. Here we compare the diet compositions of the South American fur seal and sea lions obtained by scats analysis and by SIMMs-UP (uninformative priors) and assess whether informative priors (SIMMs-IP) from the scat analysis improved the estimated diet composition compared to SIMMs-UP. According to the SIMM-UP, while pelagic species dominated the fur seal's diet the sea lion's did not have a clear dominance of any prey. In contrast, SIMM-IP's diets compositions were dominated by the same preys as in scat analyses. When prior information influenced SIMMs' estimates, incorporating informative priors improved the precision in the estimated diet composition at the risk of inducing biases in the estimates. If preys isotopic data allow discriminating preys' contributions to diets, informative priors should lead to more precise but unbiased estimated diet composition. Just as estimates of diet composition obtained from traditional methods are critically interpreted because of their biases, care must be exercised when interpreting diet composition obtained by SIMMs-IP. The best approach to obtain a near-complete view of predators' diet composition should involve the simultaneous consideration of different sources of partial evidence (traditional methods, SIMM-UP and SIMM-IP) in the light of natural history of the predator species so as to reliably ascertain and weight the information yielded by each method.
Bias in Diet Determination: Incorporating Traditional Methods in Bayesian Mixing Models
Franco-Trecu, Valentina; Drago, Massimiliano; Riet-Sapriza, Federico G.; Parnell, Andrew; Frau, Rosina; Inchausti, Pablo
2013-01-01
There are not “universal methods” to determine diet composition of predators. Most traditional methods are biased because of their reliance on differential digestibility and the recovery of hard items. By relying on assimilated food, stable isotope and Bayesian mixing models (SIMMs) resolve many biases of traditional methods. SIMMs can incorporate prior information (i.e. proportional diet composition) that may improve the precision in the estimated dietary composition. However few studies have assessed the performance of traditional methods and SIMMs with and without informative priors to study the predators’ diets. Here we compare the diet compositions of the South American fur seal and sea lions obtained by scats analysis and by SIMMs-UP (uninformative priors) and assess whether informative priors (SIMMs-IP) from the scat analysis improved the estimated diet composition compared to SIMMs-UP. According to the SIMM-UP, while pelagic species dominated the fur seal’s diet the sea lion’s did not have a clear dominance of any prey. In contrast, SIMM-IP’s diets compositions were dominated by the same preys as in scat analyses. When prior information influenced SIMMs’ estimates, incorporating informative priors improved the precision in the estimated diet composition at the risk of inducing biases in the estimates. If preys isotopic data allow discriminating preys’ contributions to diets, informative priors should lead to more precise but unbiased estimated diet composition. Just as estimates of diet composition obtained from traditional methods are critically interpreted because of their biases, care must be exercised when interpreting diet composition obtained by SIMMs-IP. The best approach to obtain a near-complete view of predators’ diet composition should involve the simultaneous consideration of different sources of partial evidence (traditional methods, SIMM-UP and SIMM-IP) in the light of natural history of the predator species so as to reliably ascertain and weight the information yielded by each method. PMID:24224031
Oppel, Steffen; Powell, Abby N.; O'Brien, Diane M.
2010-01-01
The use of stored nutrients for reproduction represents an important component of life-history variation. Recent studies from several species have used stable isotopes to estimate the reliance on stored body reserves in reproduction. Such approaches rely on population-level dietary endpoints to characterize stored reserves (“capital”) and current diet (“income”). Individual variation in diet choice has so far not been incorporated in such approaches, but is crucial for assessing variation in nutrient allocation strategies. We investigated nutrient allocation to egg production in a large-bodied sea duck in northern Alaska, the king eider (Somateria spectabilis). We first used Bayesian isotopic mixing models to quantify at the population level the amount of endogenous carbon and nitrogen invested into egg proteins based on carbon and nitrogen isotope ratios. We then defined the isotopic signature of the current diet of every nesting female based on isotope ratios of eggshell membranes, because diets varied isotopically among individual king eiders on breeding grounds. We used these individual-based dietary isotope signals to characterize nutrient allocation for each female in the study population. At the population level, the Bayesian and the individual-based approaches yielded identical results, and showed that king eiders used an income strategy for the synthesis of egg proteins. The majority of the carbon and nitrogen in albumen (C: 86 ± 18%, N: 99 ± 1%) and the nitrogen in lipid-free yolk (90 ± 15%) were derived from food consumed on breeding grounds. Carbon in lipid-free yolk derived evenly from endogenous sources and current diet (exogenous C: 54 ± 24%), but source contribution was highly variable among individual females. These results suggest that even large-bodied birds traditionally viewed as capital breeders use exogenous nutrients for reproduction. We recommend that investigations of nutrient allocation should incorporate individual variation into mixing models to reveal intraspecific variation in reproductive strategies.
Functional Multi-Locus QTL Mapping of Temporal Trends in Scots Pine Wood Traits
Li, Zitong; Hallingbäck, Henrik R.; Abrahamsson, Sara; Fries, Anders; Gull, Bengt Andersson; Sillanpää, Mikko J.; García-Gil, M. Rosario
2014-01-01
Quantitative trait loci (QTL) mapping of wood properties in conifer species has focused on single time point measurements or on trait means based on heterogeneous wood samples (e.g., increment cores), thus ignoring systematic within-tree trends. In this study, functional QTL mapping was performed for a set of important wood properties in increment cores from a 17-yr-old Scots pine (Pinus sylvestris L.) full-sib family with the aim of detecting wood trait QTL for general intercepts (means) and for linear slopes by increasing cambial age. Two multi-locus functional QTL analysis approaches were proposed and their performances were compared on trait datasets comprising 2 to 9 time points, 91 to 455 individual tree measurements and genotype datasets of amplified length polymorphisms (AFLP), and single nucleotide polymorphism (SNP) markers. The first method was a multilevel LASSO analysis whereby trend parameter estimation and QTL mapping were conducted consecutively; the second method was our Bayesian linear mixed model whereby trends and underlying genetic effects were estimated simultaneously. We also compared several different hypothesis testing methods under either the LASSO or the Bayesian framework to perform QTL inference. In total, five and four significant QTL were observed for the intercepts and slopes, respectively, across wood traits such as earlywood percentage, wood density, radial fiberwidth, and spiral grain angle. Four of these QTL were represented by candidate gene SNPs, thus providing promising targets for future research in QTL mapping and molecular function. Bayesian and LASSO methods both detected similar sets of QTL given datasets that comprised large numbers of individuals. PMID:25305041
Functional multi-locus QTL mapping of temporal trends in Scots pine wood traits.
Li, Zitong; Hallingbäck, Henrik R; Abrahamsson, Sara; Fries, Anders; Gull, Bengt Andersson; Sillanpää, Mikko J; García-Gil, M Rosario
2014-10-09
Quantitative trait loci (QTL) mapping of wood properties in conifer species has focused on single time point measurements or on trait means based on heterogeneous wood samples (e.g., increment cores), thus ignoring systematic within-tree trends. In this study, functional QTL mapping was performed for a set of important wood properties in increment cores from a 17-yr-old Scots pine (Pinus sylvestris L.) full-sib family with the aim of detecting wood trait QTL for general intercepts (means) and for linear slopes by increasing cambial age. Two multi-locus functional QTL analysis approaches were proposed and their performances were compared on trait datasets comprising 2 to 9 time points, 91 to 455 individual tree measurements and genotype datasets of amplified length polymorphisms (AFLP), and single nucleotide polymorphism (SNP) markers. The first method was a multilevel LASSO analysis whereby trend parameter estimation and QTL mapping were conducted consecutively; the second method was our Bayesian linear mixed model whereby trends and underlying genetic effects were estimated simultaneously. We also compared several different hypothesis testing methods under either the LASSO or the Bayesian framework to perform QTL inference. In total, five and four significant QTL were observed for the intercepts and slopes, respectively, across wood traits such as earlywood percentage, wood density, radial fiberwidth, and spiral grain angle. Four of these QTL were represented by candidate gene SNPs, thus providing promising targets for future research in QTL mapping and molecular function. Bayesian and LASSO methods both detected similar sets of QTL given datasets that comprised large numbers of individuals. Copyright © 2014 Li et al.
Multilevel modeling of single-case data: A comparison of maximum likelihood and Bayesian estimation.
Moeyaert, Mariola; Rindskopf, David; Onghena, Patrick; Van den Noortgate, Wim
2017-12-01
The focus of this article is to describe Bayesian estimation, including construction of prior distributions, and to compare parameter recovery under the Bayesian framework (using weakly informative priors) and the maximum likelihood (ML) framework in the context of multilevel modeling of single-case experimental data. Bayesian estimation results were found similar to ML estimation results in terms of the treatment effect estimates, regardless of the functional form and degree of information included in the prior specification in the Bayesian framework. In terms of the variance component estimates, both the ML and Bayesian estimation procedures result in biased and less precise variance estimates when the number of participants is small (i.e., 3). By increasing the number of participants to 5 or 7, the relative bias is close to 5% and more precise estimates are obtained for all approaches, except for the inverse-Wishart prior using the identity matrix. When a more informative prior was added, more precise estimates for the fixed effects and random effects were obtained, even when only 3 participants were included. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
An approach to quantifying the efficiency of a Bayesian filter
USDA-ARS?s Scientific Manuscript database
Data assimilation is defined as the Bayesian conditioning of uncertain model simulations on observations for the purpose of reducing uncertainty about model states. Practical data assimilation applications require that simplifying assumptions be made about the prior and posterior state distributions...
Efficient Probabilistic Diagnostics for Electrical Power Systems
NASA Technical Reports Server (NTRS)
Mengshoel, Ole J.; Chavira, Mark; Cascio, Keith; Poll, Scott; Darwiche, Adnan; Uckun, Serdar
2008-01-01
We consider in this work the probabilistic approach to model-based diagnosis when applied to electrical power systems (EPSs). Our probabilistic approach is formally well-founded, as it based on Bayesian networks and arithmetic circuits. We investigate the diagnostic task known as fault isolation, and pay special attention to meeting two of the main challenges . model development and real-time reasoning . often associated with real-world application of model-based diagnosis technologies. To address the challenge of model development, we develop a systematic approach to representing electrical power systems as Bayesian networks, supported by an easy-to-use speci.cation language. To address the real-time reasoning challenge, we compile Bayesian networks into arithmetic circuits. Arithmetic circuit evaluation supports real-time diagnosis by being predictable and fast. In essence, we introduce a high-level EPS speci.cation language from which Bayesian networks that can diagnose multiple simultaneous failures are auto-generated, and we illustrate the feasibility of using arithmetic circuits, compiled from Bayesian networks, for real-time diagnosis on real-world EPSs of interest to NASA. The experimental system is a real-world EPS, namely the Advanced Diagnostic and Prognostic Testbed (ADAPT) located at the NASA Ames Research Center. In experiments with the ADAPT Bayesian network, which currently contains 503 discrete nodes and 579 edges, we .nd high diagnostic accuracy in scenarios where one to three faults, both in components and sensors, were inserted. The time taken to compute the most probable explanation using arithmetic circuits has a small mean of 0.2625 milliseconds and standard deviation of 0.2028 milliseconds. In experiments with data from ADAPT we also show that arithmetic circuit evaluation substantially outperforms joint tree propagation and variable elimination, two alternative algorithms for diagnosis using Bayesian network inference.
Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.
Sa-Ngamuang, Chaitawat; Haddawy, Peter; Luvira, Viravarn; Piyaphanee, Watcharapong; Iamsirithaworn, Sopon; Lawpoolsri, Saranath
2018-06-18
Differentiating dengue patients from other acute febrile illness patients is a great challenge among physicians. Several dengue diagnosis methods are recommended by WHO. The application of specific laboratory tests is still limited due to high cost, lack of equipment, and uncertain validity. Therefore, clinical diagnosis remains a common practice especially in resource limited settings. Bayesian networks have been shown to be a useful tool for diagnostic decision support. This study aimed to construct Bayesian network models using basic demographic, clinical, and laboratory profiles of acute febrile illness patients to diagnose dengue. Data of 397 acute undifferentiated febrile illness patients who visited the fever clinic of the Bangkok Hospital for Tropical Diseases, Thailand, were used for model construction and validation. The two best final models were selected: one with and one without NS1 rapid test result. The diagnostic accuracy of the models was compared with that of physicians on the same set of patients. The Bayesian network models provided good diagnostic accuracy of dengue infection, with ROC AUC of 0.80 and 0.75 for models with and without NS1 rapid test result, respectively. The models had approximately 80% specificity and 70% sensitivity, similar to the diagnostic accuracy of the hospital's fellows in infectious disease. Including information on NS1 rapid test improved the specificity, but reduced the sensitivity, both in model and physician diagnoses. The Bayesian network model developed in this study could be useful to assist physicians in diagnosing dengue, particularly in regions where experienced physicians and laboratory confirmation tests are limited.
Wei Wu; James Clark; James Vose
2010-01-01
Hierarchical Bayesian (HB) modeling allows for multiple sources of uncertainty by factoring complex relationships into conditional distributions that can be used to draw inference and make predictions. We applied an HB model to estimate the parameters and state variables of a parsimonious hydrological model â GR4J â by coherently assimilating the uncertainties from the...
Eser, Alexander; Primas, Christian; Reinisch, Sieglinde; Vogelsang, Harald; Novacek, Gottfried; Mould, Diane R; Reinisch, Walter
2018-01-30
Despite a robust exposure-response relationship of infliximab in inflammatory bowel disease (IBD), attempts to adjust dosing to individually predicted serum concentrations of infliximab (SICs) are lacking. Compared with labor-intensive conventional software for pharmacokinetic (PK) modeling (eg, NONMEM) dashboards are easy-to-use programs incorporating complex Bayesian statistics to determine individual pharmacokinetics. We evaluated various infliximab detection assays and the number of samples needed to precisely forecast individual SICs using a Bayesian dashboard. We assessed long-term infliximab retention in patients being dosed concordantly versus discordantly with Bayesian dashboard recommendations. Three hundred eighty-two serum samples from 117 adult IBD patients on infliximab maintenance therapy were analyzed by 3 commercially available assays. Data from each assay was modeled using NONMEM and a Bayesian dashboard. PK parameter precision and residual variability were assessed. Forecast concentrations from both systems were compared with observed concentrations. Infliximab retention was assessed by prediction for dose intensification via Bayesian dashboard versus real-life practice. Forecast precision of SICs varied between detection assays. At least 3 SICs from a reliable assay are needed for an accurate forecast. The Bayesian dashboard performed similarly to NONMEM to predict SICs. Patients dosed concordantly with Bayesian dashboard recommendations had a significantly longer median drug survival than those dosed discordantly (51.5 versus 4.6 months, P < .0001). The Bayesian dashboard helps to assess the diagnostic performance of infliximab detection assays. Three, not single, SICs provide sufficient information for individualized dose adjustment when incorporated into the Bayesian dashboard. Treatment adjusted to forecasted SICs is associated with longer drug retention of infliximab. © 2018, The American College of Clinical Pharmacology.
Spatial distribution of psychotic disorders in an urban area of France: an ecological study.
Pignon, Baptiste; Schürhoff, Franck; Baudin, Grégoire; Ferchiou, Aziz; Richard, Jean-Romain; Saba, Ghassen; Leboyer, Marion; Kirkbride, James B; Szöke, Andrei
2016-05-18
Previous analyses of neighbourhood variations of non-affective psychotic disorders (NAPD) have focused mainly on incidence. However, prevalence studies provide important insights on factors associated with disease evolution as well as for healthcare resource allocation. This study aimed to investigate the distribution of prevalent NAPD cases in an urban area in France. The number of cases in each neighbourhood was modelled as a function of potential confounders and ecological variables, namely: migrant density, economic deprivation and social fragmentation. This was modelled using statistical models of increasing complexity: frequentist models (using Poisson and negative binomial regressions), and several Bayesian models. For each model, assumptions validity were checked and compared as to how this fitted to the data, in order to test for possible spatial variation in prevalence. Data showed significant overdispersion (invalidating the Poisson regression model) and residual autocorrelation (suggesting the need to use Bayesian models). The best Bayesian model was Leroux's model (i.e. a model with both strong correlation between neighbouring areas and weaker correlation between areas further apart), with economic deprivation as an explanatory variable (OR = 1.13, 95% CI [1.02-1.25]). In comparison with frequentist methods, the Bayesian model showed a better fit. The number of cases showed non-random spatial distribution and was linked to economic deprivation.
Model averaging, optimal inference, and habit formation
FitzGerald, Thomas H. B.; Dolan, Raymond J.; Friston, Karl J.
2014-01-01
Postulating that the brain performs approximate Bayesian inference generates principled and empirically testable models of neuronal function—the subject of much current interest in neuroscience and related disciplines. Current formulations address inference and learning under some assumed and particular model. In reality, organisms are often faced with an additional challenge—that of determining which model or models of their environment are the best for guiding behavior. Bayesian model averaging—which says that an agent should weight the predictions of different models according to their evidence—provides a principled way to solve this problem. Importantly, because model evidence is determined by both the accuracy and complexity of the model, optimal inference requires that these be traded off against one another. This means an agent's behavior should show an equivalent balance. We hypothesize that Bayesian model averaging plays an important role in cognition, given that it is both optimal and realizable within a plausible neuronal architecture. We outline model averaging and how it might be implemented, and then explore a number of implications for brain and behavior. In particular, we propose that model averaging can explain a number of apparently suboptimal phenomena within the framework of approximate (bounded) Bayesian inference, focusing particularly upon the relationship between goal-directed and habitual behavior. PMID:25018724
Using SAS PROC MCMC for Item Response Theory Models
Samonte, Kelli
2014-01-01
Interest in using Bayesian methods for estimating item response theory models has grown at a remarkable rate in recent years. This attentiveness to Bayesian estimation has also inspired a growth in available software such as WinBUGS, R packages, BMIRT, MPLUS, and SAS PROC MCMC. This article intends to provide an accessible overview of Bayesian methods in the context of item response theory to serve as a useful guide for practitioners in estimating and interpreting item response theory (IRT) models. Included is a description of the estimation procedure used by SAS PROC MCMC. Syntax is provided for estimation of both dichotomous and polytomous IRT models, as well as a discussion on how to extend the syntax to accommodate more complex IRT models. PMID:29795834
On science versus engineering in hydrological modelling
NASA Astrophysics Data System (ADS)
Melsen, Lieke
2017-04-01
It is always stressed that hydrological modelling is very important, to prevent floods, to mitigate droughts, to ensure food production or nature conservation. All very true, but I believe that focussing so much on the application of our knowledge (which I call `the engineering approach'), does not stimulate thorough system understanding (which I call `the scientific approach'). In many studies, science and engineering approaches are mixed, which results in large uncertainty e.g. due to a lack of system understanding. To what extent engineering and science approached are mixed depends on the Philosophy of Science of the researcher; verificationism seems to be closer related to engineering, than falsificationism or Bayesianism. In order to grow our scientific knowledge, which means increasing our understanding of the system, we need to be more critical towards the models that we use, but also recognize all the processes that influence the hydrological cycle. In an era called 'The Anthropocene' the influence of humans on the water system can no longer be neglected, and if we choose a scientific approach we have to account for human-induced processes. Summarizing, I believe that we have to account for human impact on the hydrological system, but we have to resist the temptation to directly quantify the hydrological impact on the human system.
Application of Bayesian model averaging to measurements of the primordial power spectrum
NASA Astrophysics Data System (ADS)
Parkinson, David; Liddle, Andrew R.
2010-11-01
Cosmological parameter uncertainties are often stated assuming a particular model, neglecting the model uncertainty, even when Bayesian model selection is unable to identify a conclusive best model. Bayesian model averaging is a method for assessing parameter uncertainties in situations where there is also uncertainty in the underlying model. We apply model averaging to the estimation of the parameters associated with the primordial power spectra of curvature and tensor perturbations. We use CosmoNest and MultiNest to compute the model evidences and posteriors, using cosmic microwave data from WMAP, ACBAR, BOOMERanG, and CBI, plus large-scale structure data from the SDSS DR7. We find that the model-averaged 95% credible interval for the spectral index using all of the data is 0.940
Librero, Julián; Ibañez, Berta; Martínez-Lizaga, Natalia; Peiró, Salvador; Bernal-Delgado, Enrique
2017-01-01
To illustrate the ability of hierarchical Bayesian spatio-temporal models in capturing different geo-temporal structures in order to explain hospital risk variations using three different conditions: Percutaneous Coronary Intervention (PCI), Colectomy in Colorectal Cancer (CCC) and Chronic Obstructive Pulmonary Disease (COPD). This is an observational population-based spatio-temporal study, from 2002 to 2013, with a two-level geographical structure, Autonomous Communities (AC) and Health Care Areas (HA). The Spanish National Health System, a quasi-federal structure with 17 regional governments (AC) with full responsibility in planning and financing, and 203 HA providing hospital and primary care to a defined population. A poisson-log normal mixed model in the Bayesian framework was fitted using the INLA efficient estimation procedure. The spatio-temporal hospitalization relative risks, the evolution of their variation, and the relative contribution (fraction of variation) of each of the model components (AC, HA, year and interaction AC-year). Following PCI-CCC-CODP order, the three conditions show differences in the initial hospitalization rates (from 4 to 21 per 10,000 person-years) and in their trends (upward, inverted V shape, downward). Most of the risk variation is captured by phenomena occurring at the HA level (fraction variance: 51.6, 54.7 and 56.9%). At AC level, the risk of PCI hospitalization follow a heterogeneous ascending dynamic (interaction AC-year: 17.7%), whereas in COPD the AC role is more homogenous and important (37%). In a system where the decisions loci are differentiated, the spatio-temporal modeling allows to assess the dynamic relative role of different levels of decision and their influence on health outcomes.
Buscot, Marie-Jeanne; Wotherspoon, Simon S; Magnussen, Costan G; Juonala, Markus; Sabin, Matthew A; Burgner, David P; Lehtimäki, Terho; Viikari, Jorma S A; Hutri-Kähönen, Nina; Raitakari, Olli T; Thomson, Russell J
2017-06-06
Bayesian hierarchical piecewise regression (BHPR) modeling has not been previously formulated to detect and characterise the mechanism of trajectory divergence between groups of participants that have longitudinal responses with distinct developmental phases. These models are useful when participants in a prospective cohort study are grouped according to a distal dichotomous health outcome. Indeed, a refined understanding of how deleterious risk factor profiles develop across the life-course may help inform early-life interventions. Previous techniques to determine between-group differences in risk factors at each age may result in biased estimate of the age at divergence. We demonstrate the use of Bayesian hierarchical piecewise regression (BHPR) to generate a point estimate and credible interval for the age at which trajectories diverge between groups for continuous outcome measures that exhibit non-linear within-person response profiles over time. We illustrate our approach by modeling the divergence in childhood-to-adulthood body mass index (BMI) trajectories between two groups of adults with/without type 2 diabetes mellitus (T2DM) in the Cardiovascular Risk in Young Finns Study (YFS). Using the proposed BHPR approach, we estimated the BMI profiles of participants with T2DM diverged from healthy participants at age 16 years for males (95% credible interval (CI):13.5-18 years) and 21 years for females (95% CI: 19.5-23 years). These data suggest that a critical window for weight management intervention in preventing T2DM might exist before the age when BMI growth rate is naturally expected to decrease. Simulation showed that when using pairwise comparison of least-square means from categorical mixed models, smaller sample sizes tended to conclude a later age of divergence. In contrast, the point estimate of the divergence time is not biased by sample size when using the proposed BHPR method. BHPR is a powerful analytic tool to model long-term non-linear longitudinal outcomes, enabling the identification of the age at which risk factor trajectories diverge between groups of participants. The method is suitable for the analysis of unbalanced longitudinal data, with only a limited number of repeated measures per participants and where the time-related outcome is typically marked by transitional changes or by distinct phases of change over time.
Regression analysis using dependent Polya trees.
Schörgendorfer, Angela; Branscum, Adam J
2013-11-30
Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.
da Cruz, Marcos de O R; Weksler, Marcelo
2018-02-01
The use of genetic data and tree-based algorithms to delimit evolutionary lineages is becoming an important practice in taxonomic identification, especially in morphologically cryptic groups. The effects of different phylogenetic and/or coalescent models in the analyses of species delimitation, however, are not clear. In this paper, we assess the impact of different evolutionary priors in phylogenetic estimation, species delimitation, and molecular dating of the genus Oligoryzomys (Mammalia: Rodentia), a group with complex taxonomy and morphological cryptic species. Phylogenetic and coalescent analyses included 20 of the 24 recognized species of the genus, comprising of 416 Cytochrome b sequences, 26 Cytochrome c oxidase I sequences, and 27 Beta-Fibrinogen Intron 7 sequences. For species delimitation, we employed the General Mixed Yule Coalescent (GMYC) and Bayesian Poisson tree processes (bPTP) analyses, and contrasted 4 genealogical and phylogenetic models: Pure-birth (Yule), Constant Population Size Coalescent, Multiple Species Coalescent, and a mixed Yule-Coalescent model. GMYC analyses of trees from different genealogical models resulted in similar species delimitation and phylogenetic relationships, with incongruence restricted to areas of poor nodal support. bPTP results, however, significantly differed from GMYC for 5 taxa. Oligoryzomys early diversification was estimated to have occurred in the Early Pleistocene, between 0.7 and 2.6 MYA. The mixed Yule-Coalescent model, however, recovered younger dating estimates for Oligoryzomys diversification, and for the threshold for the speciation-coalescent horizon in GMYC. Eight of the 20 included Oligoryzomys species were identified as having two or more independent evolutionary units, indicating that current taxonomy of Oligoryzomys is still unsettled. Copyright © 2017 Elsevier Inc. All rights reserved.
Sparse Bayesian Learning for Identifying Imaging Biomarkers in AD Prediction
Shen, Li; Qi, Yuan; Kim, Sungeun; Nho, Kwangsik; Wan, Jing; Risacher, Shannon L.; Saykin, Andrew J.
2010-01-01
We apply sparse Bayesian learning methods, automatic relevance determination (ARD) and predictive ARD (PARD), to Alzheimer’s disease (AD) classification to make accurate prediction and identify critical imaging markers relevant to AD at the same time. ARD is one of the most successful Bayesian feature selection methods. PARD is a powerful Bayesian feature selection method, and provides sparse models that is easy to interpret. PARD selects the model with the best estimate of the predictive performance instead of choosing the one with the largest marginal model likelihood. Comparative study with support vector machine (SVM) shows that ARD/PARD in general outperform SVM in terms of prediction accuracy. Additional comparison with surface-based general linear model (GLM) analysis shows that regions with strongest signals are identified by both GLM and ARD/PARD. While GLM P-map returns significant regions all over the cortex, ARD/PARD provide a small number of relevant and meaningful imaging markers with predictive power, including both cortical and subcortical measures. PMID:20879451
Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.; Hansen, Eric C.; Scherer, Rick D.; Patterson, Laura C.
2015-08-14
Bayesian networks further provide a clear visual display of the model that facilitates understanding among various stakeholders (Marcot and others, 2001; Uusitalo , 2007). Empirical data and expert judgment can be combined, as continuous or categorical variables, to update knowledge about the system (Marcot and others, 2001; Uusitalo , 2007). Importantly, Bayesian network models allow inference from causes to consequences, but also from consequences to causes, so that data can inform the states of nodes (values of different random variables) in either direction (Marcot and others, 2001; Uusitalo , 2007). Because they can incorporate both decision nodes that represent management actions and utility nodes that quantify the costs and benefits of outcomes, Bayesian networks are ideally suited to risk analysis and adaptive management (Nyberg and others, 2006; Howes and others, 2010). Thus, Bayesian network models are useful in situations where empirical data are not available, such as questions concerning the responses of giant gartersnakes to management.
A Sparse Bayesian Approach for Forward-Looking Superresolution Radar Imaging
Zhang, Yin; Zhang, Yongchao; Huang, Yulin; Yang, Jianyu
2017-01-01
This paper presents a sparse superresolution approach for high cross-range resolution imaging of forward-looking scanning radar based on the Bayesian criterion. First, a novel forward-looking signal model is established as the product of the measurement matrix and the cross-range target distribution, which is more accurate than the conventional convolution model. Then, based on the Bayesian criterion, the widely-used sparse regularization is considered as the penalty term to recover the target distribution. The derivation of the cost function is described, and finally, an iterative expression for minimizing this function is presented. Alternatively, this paper discusses how to estimate the single parameter of Gaussian noise. With the advantage of a more accurate model, the proposed sparse Bayesian approach enjoys a lower model error. Meanwhile, when compared with the conventional superresolution methods, the proposed approach shows high cross-range resolution and small location error. The superresolution results for the simulated point target, scene data, and real measured data are presented to demonstrate the superior performance of the proposed approach. PMID:28604583
Bayesian analysis of caustic-crossing microlensing events
NASA Astrophysics Data System (ADS)
Cassan, A.; Horne, K.; Kains, N.; Tsapras, Y.; Browne, P.
2010-06-01
Aims: Caustic-crossing binary-lens microlensing events are important anomalous events because they are capable of detecting an extrasolar planet companion orbiting the lens star. Fast and robust modelling methods are thus of prime interest in helping to decide whether a planet is detected by an event. Cassan introduced a new set of parameters to model binary-lens events, which are closely related to properties of the light curve. In this work, we explain how Bayesian priors can be added to this framework, and investigate on interesting options. Methods: We develop a mathematical formulation that allows us to compute analytically the priors on the new parameters, given some previous knowledge about other physical quantities. We explicitly compute the priors for a number of interesting cases, and show how this can be implemented in a fully Bayesian, Markov chain Monte Carlo algorithm. Results: Using Bayesian priors can accelerate microlens fitting codes by reducing the time spent considering physically implausible models, and helps us to discriminate between alternative models based on the physical plausibility of their parameters.
Fast model updating coupling Bayesian inference and PGD model reduction
NASA Astrophysics Data System (ADS)
Rubio, Paul-Baptiste; Louf, François; Chamoin, Ludovic
2018-04-01
The paper focuses on a coupled Bayesian-Proper Generalized Decomposition (PGD) approach for the real-time identification and updating of numerical models. The purpose is to use the most general case of Bayesian inference theory in order to address inverse problems and to deal with different sources of uncertainties (measurement and model errors, stochastic parameters). In order to do so with a reasonable CPU cost, the idea is to replace the direct model called for Monte-Carlo sampling by a PGD reduced model, and in some cases directly compute the probability density functions from the obtained analytical formulation. This procedure is first applied to a welding control example with the updating of a deterministic parameter. In the second application, the identification of a stochastic parameter is studied through a glued assembly example.
NASA Astrophysics Data System (ADS)
Abiriand Bhekisipho Twala, Olufunminiyi
2017-08-01
In this paper, a multilayer feedforward neural network with Bayesian regularization constitutive model is developed for alloy 316L during high strain rate and high temperature plastic deformation. The input variables are strain rate, temperature and strain while the output value is the flow stress of the material. The results show that the use of Bayesian regularized technique reduces the potential of overfitting and overtraining. The prediction quality of the model is thereby improved. The model predictions are in good agreement with experimental measurements. The measurement data used for the network training and model comparison were taken from relevant literature. The developed model is robust as it can be generalized to deformation conditions slightly below or above the training dataset.
Spatiotemporal Bayesian analysis of Lyme disease in New York state, 1990-2000.
Chen, Haiyan; Stratton, Howard H; Caraco, Thomas B; White, Dennis J
2006-07-01
Mapping ordinarily increases our understanding of nontrivial spatial and temporal heterogeneities in disease rates. However, the large number of parameters required by the corresponding statistical models often complicates detailed analysis. This study investigates the feasibility of a fully Bayesian hierarchical regression approach to the problem and identifies how it outperforms two more popular methods: crude rate estimates (CRE) and empirical Bayes standardization (EBS). In particular, we apply a fully Bayesian approach to the spatiotemporal analysis of Lyme disease incidence in New York state for the period 1990-2000. These results are compared with those obtained by CRE and EBS in Chen et al. (2005). We show that the fully Bayesian regression model not only gives more reliable estimates of disease rates than the other two approaches but also allows for tractable models that can accommodate more numerous sources of variation and unknown parameters.
A Bayesian approach to tracking patients having changing pharmacokinetic parameters
NASA Technical Reports Server (NTRS)
Bayard, David S.; Jelliffe, Roger W.
2004-01-01
This paper considers the updating of Bayesian posterior densities for pharmacokinetic models associated with patients having changing parameter values. For estimation purposes it is proposed to use the Interacting Multiple Model (IMM) estimation algorithm, which is currently a popular algorithm in the aerospace community for tracking maneuvering targets. The IMM algorithm is described, and compared to the multiple model (MM) and Maximum A-Posteriori (MAP) Bayesian estimation methods, which are presently used for posterior updating when pharmacokinetic parameters do not change. Both the MM and MAP Bayesian estimation methods are used in their sequential forms, to facilitate tracking of changing parameters. Results indicate that the IMM algorithm is well suited for tracking time-varying pharmacokinetic parameters in acutely ill and unstable patients, incurring only about half of the integrated error compared to the sequential MM and MAP methods on the same example.
K-ε Turbulence Model Parameter Estimates Using an Approximate Self-similar Jet-in-Crossflow Solution
DeChant, Lawrence; Ray, Jaideep; Lefantzi, Sophia; ...
2017-06-09
The k-ε turbulence model has been described as perhaps “the most widely used complete turbulence model.” This family of heuristic Reynolds Averaged Navier-Stokes (RANS) turbulence closures is supported by a suite of model parameters that have been estimated by demanding the satisfaction of well-established canonical flows such as homogeneous shear flow, log-law behavior, etc. While this procedure does yield a set of so-called nominal parameters, it is abundantly clear that they do not provide a universally satisfactory turbulence model that is capable of simulating complex flows. Recent work on the Bayesian calibration of the k-ε model using jet-in-crossflow wind tunnelmore » data has yielded parameter estimates that are far more predictive than nominal parameter values. In this paper, we develop a self-similar asymptotic solution for axisymmetric jet-in-crossflow interactions and derive analytical estimates of the parameters that were inferred using Bayesian calibration. The self-similar method utilizes a near field approach to estimate the turbulence model parameters while retaining the classical far-field scaling to model flow field quantities. Our parameter values are seen to be far more predictive than the nominal values, as checked using RANS simulations and experimental measurements. They are also closer to the Bayesian estimates than the nominal parameters. A traditional simplified jet trajectory model is explicitly related to the turbulence model parameters and is shown to yield good agreement with measurement when utilizing the analytical derived turbulence model coefficients. Finally, the close agreement between the turbulence model coefficients obtained via Bayesian calibration and the analytically estimated coefficients derived in this paper is consistent with the contention that the Bayesian calibration approach is firmly rooted in the underlying physical description.« less
Morris, Jeffrey S; Baladandayuthapani, Veerabhadran; Herrick, Richard C; Sanna, Pietro; Gutstein, Howard
2011-01-01
Image data are increasingly encountered and are of growing importance in many areas of science. Much of these data are quantitative image data, which are characterized by intensities that represent some measurement of interest in the scanned images. The data typically consist of multiple images on the same domain and the goal of the research is to combine the quantitative information across images to make inference about populations or interventions. In this paper, we present a unified analysis framework for the analysis of quantitative image data using a Bayesian functional mixed model approach. This framework is flexible enough to handle complex, irregular images with many local features, and can model the simultaneous effects of multiple factors on the image intensities and account for the correlation between images induced by the design. We introduce a general isomorphic modeling approach to fitting the functional mixed model, of which the wavelet-based functional mixed model is one special case. With suitable modeling choices, this approach leads to efficient calculations and can result in flexible modeling and adaptive smoothing of the salient features in the data. The proposed method has the following advantages: it can be run automatically, it produces inferential plots indicating which regions of the image are associated with each factor, it simultaneously considers the practical and statistical significance of findings, and it controls the false discovery rate. Although the method we present is general and can be applied to quantitative image data from any application, in this paper we focus on image-based proteomic data. We apply our method to an animal study investigating the effects of opiate addiction on the brain proteome. Our image-based functional mixed model approach finds results that are missed with conventional spot-based analysis approaches. In particular, we find that the significant regions of the image identified by the proposed method frequently correspond to subregions of visible spots that may represent post-translational modifications or co-migrating proteins that cannot be visually resolved from adjacent, more abundant proteins on the gel image. Thus, it is possible that this image-based approach may actually improve the realized resolution of the gel, revealing differentially expressed proteins that would not have even been detected as spots by modern spot-based analyses.
A Bayesian prediction model between a biomarker and the clinical endpoint for dichotomous variables.
Jiang, Zhiwei; Song, Yang; Shou, Qiong; Xia, Jielai; Wang, William
2014-12-20
Early biomarkers are helpful for predicting clinical endpoints and for evaluating efficacy in clinical trials even if the biomarker cannot replace clinical outcome as a surrogate. The building and evaluation of an association model between biomarkers and clinical outcomes are two equally important concerns regarding the prediction of clinical outcome. This paper is to address both issues in a Bayesian framework. A Bayesian meta-analytic approach is proposed to build a prediction model between the biomarker and clinical endpoint for dichotomous variables. Compared with other Bayesian methods, the proposed model only requires trial-level summary data of historical trials in model building. By using extensive simulations, we evaluate the link function and the application condition of the proposed Bayesian model under scenario (i) equal positive predictive value (PPV) and negative predictive value (NPV) and (ii) higher NPV and lower PPV. In the simulations, the patient-level data is generated to evaluate the meta-analytic model. PPV and NPV are employed to describe the patient-level relationship between the biomarker and the clinical outcome. The minimum number of historical trials to be included in building the model is also considered. It is seen from the simulations that the logit link function performs better than the odds and cloglog functions under both scenarios. PPV/NPV ≥0.5 for equal PPV and NPV, and PPV + NPV ≥1 for higher NPV and lower PPV are proposed in order to predict clinical outcome accurately and precisely when the proposed model is considered. Twenty historical trials are required to be included in model building when PPV and NPV are equal. For unequal PPV and NPV, the minimum number of historical trials for model building is proposed to be five. A hypothetical example shows an application of the proposed model in global drug development. The proposed Bayesian model is able to predict well the clinical endpoint from the observed biomarker data for dichotomous variables as long as the conditions are satisfied. It could be applied in drug development. But the practical problems in applications have to be studied in further research.
B.G. Marcot; J.D. Steventon; G.D. Sutherland; R.K. McCann
2006-01-01
We provide practical guidelines for developing, testing, and revising Bayesian belief networks (BBNs). Primary steps in this process include creating influence diagrams of the hypothesized "causal web" of key factors affecting a species or ecological outcome of interest; developing a first, alpha-level BBN model from the influence diagram; revising the model...
The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity, but development of predictive MoA classification models in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity MoA using a recently pu...
ERIC Educational Resources Information Center
Kim, Seohyun; Lu, Zhenqiu; Cohen, Allan S.
2018-01-01
Bayesian algorithms have been used successfully in the social and behavioral sciences to analyze dichotomous data particularly with complex structural equation models. In this study, we investigate the use of the Polya-Gamma data augmentation method with Gibbs sampling to improve estimation of structural equation models with dichotomous variables.…
Predicting Graduation Rates at 4-Year Broad Access Institutions Using a Bayesian Modeling Approach
ERIC Educational Resources Information Center
Crisp, Gloria; Doran, Erin; Salis Reyes, Nicole A.
2018-01-01
This study models graduation rates at 4-year broad access institutions (BAIs). We examine the student body, structural-demographic, and financial characteristics that best predict 6-year graduation rates across two time periods (2008-2009 and 2014-2015). A Bayesian model averaging approach is utilized to account for uncertainty in variable…
Shah, Abhik; Woolf, Peter
2009-01-01
Summary In this paper, we introduce pebl, a Python library and application for learning Bayesian network structure from data and prior knowledge that provides features unmatched by alternative software packages: the ability to use interventional data, flexible specification of structural priors, modeling with hidden variables and exploitation of parallel processing. PMID:20161541
Kimberley K. Ayre; Wayne G. Landis
2012-01-01
We present a Bayesian network model based on the ecological risk assessment framework to evaluate potential impacts to habitats and resources resulting from wildfire, grazing, forest management activities, and insect outbreaks in a forested landscape in northeastern Oregon. The Bayesian network structure consisted of three tiers of nodes: landscape disturbances,...
Hanks, Ephraim M.; Schliep, Erin M.; Hooten, Mevin B.; Hoeting, Jennifer A.
2015-01-01
In spatial generalized linear mixed models (SGLMMs), covariates that are spatially smooth are often collinear with spatially smooth random effects. This phenomenon is known as spatial confounding and has been studied primarily in the case where the spatial support of the process being studied is discrete (e.g., areal spatial data). In this case, the most common approach suggested is restricted spatial regression (RSR) in which the spatial random effects are constrained to be orthogonal to the fixed effects. We consider spatial confounding and RSR in the geostatistical (continuous spatial support) setting. We show that RSR provides computational benefits relative to the confounded SGLMM, but that Bayesian credible intervals under RSR can be inappropriately narrow under model misspecification. We propose a posterior predictive approach to alleviating this potential problem and discuss the appropriateness of RSR in a variety of situations. We illustrate RSR and SGLMM approaches through simulation studies and an analysis of malaria frequencies in The Gambia, Africa.