Science.gov

Sample records for bayesian modeling approach

  1. Heterogeneous Factor Analysis Models: A Bayesian Approach.

    ERIC Educational Resources Information Center

    Ansari, Asim; Jedidi, Kamel; Dube, Laurette

    2002-01-01

    Developed Markov Chain Monte Carlo procedures to perform Bayesian inference, model checking, and model comparison in heterogeneous factor analysis. Tested the approach with synthetic data and data from a consumption emotion study involving 54 consumers. Results show that traditional psychometric methods cannot fully capture the heterogeneity in…

  2. A Bayesian Shrinkage Approach for AMMI Models.

    PubMed

    da Silva, Carlos Pereira; de Oliveira, Luciano Antonio; Nuvunga, Joel Jorge; Pamplona, Andrezza Kéllen Alves; Balestre, Marcio

    2015-01-01

    Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior

  3. A Bayesian Shrinkage Approach for AMMI Models

    PubMed Central

    de Oliveira, Luciano Antonio; Nuvunga, Joel Jorge; Pamplona, Andrezza Kéllen Alves

    2015-01-01

    Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior

  4. Merging Digital Surface Models Implementing Bayesian Approaches

    NASA Astrophysics Data System (ADS)

    Sadeq, H.; Drummond, J.; Li, Z.

    2016-06-01

    In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades). It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.

  5. Bayesian approach to decompression sickness model parameter estimation.

    PubMed

    Howle, L E; Weber, P W; Nichols, J M

    2017-03-01

    We examine both maximum likelihood and Bayesian approaches for estimating probabilistic decompression sickness model parameters. Maximum likelihood estimation treats parameters as fixed values and determines the best estimate through repeated trials, whereas the Bayesian approach treats parameters as random variables and determines the parameter probability distributions. We would ultimately like to know the probability that a parameter lies in a certain range rather than simply make statements about the repeatability of our estimator. Although both represent powerful methods of inference, for models with complex or multi-peaked likelihoods, maximum likelihood parameter estimates can prove more difficult to interpret than the estimates of the parameter distributions provided by the Bayesian approach. For models of decompression sickness, we show that while these two estimation methods are complementary, the credible intervals generated by the Bayesian approach are more naturally suited to quantifying uncertainty in the model parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Stochastic model updating utilizing Bayesian approach and Gaussian process model

    NASA Astrophysics Data System (ADS)

    Wan, Hua-Ping; Ren, Wei-Xin

    2016-03-01

    Stochastic model updating (SMU) has been increasingly applied in quantifying structural parameter uncertainty from responses variability. SMU for parameter uncertainty quantification refers to the problem of inverse uncertainty quantification (IUQ), which is a nontrivial task. Inverse problem solved with optimization usually brings about the issues of gradient computation, ill-conditionedness, and non-uniqueness. Moreover, the uncertainty present in response makes the inverse problem more complicated. In this study, Bayesian approach is adopted in SMU for parameter uncertainty quantification. The prominent strength of Bayesian approach for IUQ problem is that it solves IUQ problem in a straightforward manner, which enables it to avoid the previous issues. However, when applied to engineering structures that are modeled with a high-resolution finite element model (FEM), Bayesian approach is still computationally expensive since the commonly used Markov chain Monte Carlo (MCMC) method for Bayesian inference requires a large number of model runs to guarantee the convergence. Herein we reduce computational cost in two aspects. On the one hand, the fast-running Gaussian process model (GPM) is utilized to approximate the time-consuming high-resolution FEM. On the other hand, the advanced MCMC method using delayed rejection adaptive Metropolis (DRAM) algorithm that incorporates local adaptive strategy with global adaptive strategy is employed for Bayesian inference. In addition, we propose the use of the powerful variance-based global sensitivity analysis (GSA) in parameter selection to exclude non-influential parameters from calibration parameters, which yields a reduced-order model and thus further alleviates the computational burden. A simulated aluminum plate and a real-world complex cable-stayed pedestrian bridge are presented to illustrate the proposed framework and verify its feasibility.

  7. A Bayesian Approach for Analyzing Longitudinal Structural Equation Models

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lu, Zhao-Hua; Hser, Yih-Ing; Lee, Sik-Yum

    2011-01-01

    This article considers a Bayesian approach for analyzing a longitudinal 2-level nonlinear structural equation model with covariates, and mixed continuous and ordered categorical variables. The first-level model is formulated for measures taken at each time point nested within individuals for investigating their characteristics that are dynamically…

  8. A Bayesian Approach for Analyzing Longitudinal Structural Equation Models

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lu, Zhao-Hua; Hser, Yih-Ing; Lee, Sik-Yum

    2011-01-01

    This article considers a Bayesian approach for analyzing a longitudinal 2-level nonlinear structural equation model with covariates, and mixed continuous and ordered categorical variables. The first-level model is formulated for measures taken at each time point nested within individuals for investigating their characteristics that are dynamically…

  9. Bayesian non-parametrics and the probabilistic approach to modelling

    PubMed Central

    Ghahramani, Zoubin

    2013-01-01

    Modelling is fundamental to many fields of science and engineering. A model can be thought of as a representation of possible data one could predict from a system. The probabilistic approach to modelling uses probability theory to express all aspects of uncertainty in the model. The probabilistic approach is synonymous with Bayesian modelling, which simply uses the rules of probability theory in order to make predictions, compare alternative models, and learn model parameters and structure from data. This simple and elegant framework is most powerful when coupled with flexible probabilistic models. Flexibility is achieved through the use of Bayesian non-parametrics. This article provides an overview of probabilistic modelling and an accessible survey of some of the main tools in Bayesian non-parametrics. The survey covers the use of Bayesian non-parametrics for modelling unknown functions, density estimation, clustering, time-series modelling, and representing sparsity, hierarchies, and covariance structure. More specifically, it gives brief non-technical overviews of Gaussian processes, Dirichlet processes, infinite hidden Markov models, Indian buffet processes, Kingman’s coalescent, Dirichlet diffusion trees and Wishart processes. PMID:23277609

  10. A Bayesian modeling approach for generalized semiparametric structural equation models.

    PubMed

    Song, Xin-Yuan; Lu, Zhao-Hua; Cai, Jing-Heng; Ip, Edward Hak-Sing

    2013-10-01

    In behavioral, biomedical, and psychological studies, structural equation models (SEMs) have been widely used for assessing relationships between latent variables. Regression-type structural models based on parametric functions are often used for such purposes. In many applications, however, parametric SEMs are not adequate to capture subtle patterns in the functions over the entire range of the predictor variable. A different but equally important limitation of traditional parametric SEMs is that they are not designed to handle mixed data types-continuous, count, ordered, and unordered categorical. This paper develops a generalized semiparametric SEM that is able to handle mixed data types and to simultaneously model different functional relationships among latent variables. A structural equation of the proposed SEM is formulated using a series of unspecified smooth functions. The Bayesian P-splines approach and Markov chain Monte Carlo methods are developed to estimate the smooth functions and the unknown parameters. Moreover, we examine the relative benefits of semiparametric modeling over parametric modeling using a Bayesian model-comparison statistic, called the complete deviance information criterion (DIC). The performance of the developed methodology is evaluated using a simulation study. To illustrate the method, we used a data set derived from the National Longitudinal Survey of Youth.

  11. Accurate phenotyping: Reconciling approaches through Bayesian model averaging

    PubMed Central

    Chen, Carla Chia-Ming; Mengersen, Kerrie Lee

    2017-01-01

    Genetic research into complex diseases is frequently hindered by a lack of clear biomarkers for phenotype ascertainment. Phenotypes for such diseases are often identified on the basis of clinically defined criteria; however such criteria may not be suitable for understanding the genetic composition of the diseases. Various statistical approaches have been proposed for phenotype definition; however our previous studies have shown that differences in phenotypes estimated using different approaches have substantial impact on subsequent analyses. Instead of obtaining results based upon a single model, we propose a new method, using Bayesian model averaging to overcome problems associated with phenotype definition. Although Bayesian model averaging has been used in other fields of research, this is the first study that uses Bayesian model averaging to reconcile phenotypes obtained using multiple models. We illustrate the new method by applying it to simulated genetic and phenotypic data for Kofendred personality disorder—an imaginary disease with several sub-types. Two separate statistical methods were used to identify clusters of individuals with distinct phenotypes: latent class analysis and grade of membership. Bayesian model averaging was then used to combine the two clusterings for the purpose of subsequent linkage analyses. We found that causative genetic loci for the disease produced higher LOD scores using model averaging than under either individual model separately. We attribute this improvement to consolidation of the cores of phenotype clusters identified using each individual method. PMID:28423058

  12. Addressing model structural uncertainty in PUBs via Bayesian approach

    NASA Astrophysics Data System (ADS)

    Prieto, Cristina; Le-Vine, Nataliya; Vitolo, Claudia; Medina, Raúl

    2017-04-01

    A catchment is a complex system where a multitude of interrelated energy, water and vegetation processes occur at different temporal and spatial scales. A rainfall-runoff model is a simplified representation of the system, and serves as a hypothesis about catchment inner working. In predictions for ungauged basins, a common practice is to use a pre-selected model structure for a catchment, while there is usually no justification for its suitability (due to the lack of observed flows). This research aims moving beyond the 'one size fits all' problem. First, two metrics are proposed to assess suitability and adequacy of a selected model based on a) how well the model reproduces regionalised information, b) knowledge gain from considering the model over what is known from regionalisation alone. Second, dominant hydrological mechanisms (to be included into a model) are identified using the regionalised information via Bayesian approach. And third, available model structures are ranked and weighed based on their skill to support regionalised information, and then used in a multi-model ensemble to provide probabilistic predictions. The methodology is applied to basins in Northern Spain with varied hydroclimatological regimes. The results show that prediction quality is sensitive to model (or ensemble) error, quality of regionalised information, and available information content.

  13. Diagnosing Hybrid Systems: a Bayesian Model Selection Approach

    NASA Technical Reports Server (NTRS)

    McIlraith, Sheila A.

    2005-01-01

    In this paper we examine the problem of monitoring and diagnosing noisy complex dynamical systems that are modeled as hybrid systems-models of continuous behavior, interleaved by discrete transitions. In particular, we examine continuous systems with embedded supervisory controllers that experience abrupt, partial or full failure of component devices. Building on our previous work in this area (MBCG99;MBCG00), our specific focus in this paper ins on the mathematical formulation of the hybrid monitoring and diagnosis task as a Bayesian model tracking algorithm. The nonlinear dynamics of many hybrid systems present challenges to probabilistic tracking. Further, probabilistic tracking of a system for the purposes of diagnosis is problematic because the models of the system corresponding to failure modes are numerous and generally very unlikely. To focus tracking on these unlikely models and to reduce the number of potential models under consideration, we exploit logic-based techniques for qualitative model-based diagnosis to conjecture a limited initial set of consistent candidate models. In this paper we discuss alternative tracking techniques that are relevant to different classes of hybrid systems, focusing specifically on a method for tracking multiple models of nonlinear behavior simultaneously using factored sampling and conditional density propagation. To illustrate and motivate the approach described in this paper we examine the problem of monitoring and diganosing NASA's Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.

  14. Bayesian Approach for Flexible Modeling of Semicompeting Risks Data

    PubMed Central

    Han, Baoguang; Yu, Menggang; Dignam, James J.; Rathouz, Paul J.

    2016-01-01

    Summary Semicompeting risks data arise when two types of events, non-terminal and terminal, are observed. When the terminal event occurs first, it censors the non-terminal event, but not vice versa. To account for possible dependent censoring of the non-terminal event by the terminal event and to improve prediction of the terminal event using the non-terminal event information, it is crucial to model their association properly. Motivated by a breast cancer clinical trial data analysis, we extend the well-known illness-death models to allow flexible random effects to capture heterogeneous association structures in the data. Our extension also represents a generalization of the popular shared frailty models that usually assume that the non-terminal event does not affect the hazards of the terminal event beyond a frailty term. We propose a unified Bayesian modeling approach that can utilize existing software packages for both model fitting and individual specific event prediction. The approach is demonstrated via both simulation studies and a breast cancer data set analysis. PMID:25274445

  15. An Integrative Bayesian Modeling Approach to Imaging Genetics

    PubMed Central

    Stingo, Francesco C.; Guindani, Michele; Vannucci, Marina; Calhoun, Vince D.

    2013-01-01

    In this paper we present a Bayesian hierarchical modeling approach for imaging genetics, where the interest lies in linking brain connectivity across multiple individuals to their genetic information. We have available data from a functional magnetic resonance (fMRI) study on schizophrenia. Our goals are to identify brain regions of interest (ROIs) with discriminating activation patterns between schizophrenic patients and healthy controls, and to relate the ROIs’ activations with available genetic information from single nucleotide polymorphisms (SNPs) on the subjects. For this task we develop a hierarchical mixture model that includes several innovative characteristics: it incorporates the selection of ROIs that discriminate the subjects into separate groups; it allows the mixture components to depend on selected covariates; it includes prior models that capture structural dependencies among the ROIs. Applied to the schizophrenia data set, the model leads to the simultaneous selection of a set of discriminatory ROIs and the relevant SNPs, together with the reconstruction of the correlation structure of the selected regions. To the best of our knowledge, our work represents the first attempt at a rigorous modeling strategy for imaging genetics data that incorporates all such features. PMID:24298194

  16. Nonlinear regression modeling of nutrient loads in streams: A Bayesian approach

    USGS Publications Warehouse

    Qian, S.S.; Reckhow, K.H.; Zhai, J.; McMahon, G.

    2005-01-01

    A Bayesian nonlinear regression modeling method is introduced and compared with the least squares method for modeling nutrient loads in stream networks. The objective of the study is to better model spatial correlation in river basin hydrology and land use for improving the model as a forecasting tool. The Bayesian modeling approach is introduced in three steps, each with a more complicated model and data error structure. The approach is illustrated using a data set from three large river basins in eastern North Carolina. Results indicate that the Bayesian model better accounts for model and data uncertainties than does the conventional least squares approach. Applications of the Bayesian models for ambient water quality standards compliance and TMDL assessment are discussed. Copyright 2005 by the American Geophysical Union.

  17. Ice Shelf Modeling: A Cross-Polar Bayesian Statistical Approach

    NASA Astrophysics Data System (ADS)

    Kirchner, N.; Furrer, R.; Jakobsson, M.; Zwally, H. J.

    2010-12-01

    Ice streams interlink glacial terrestrial and marine environments: embedded in a grounded inland ice such as the Antarctic Ice Sheet or the paleo ice sheets covering extensive parts of the Eurasian and Amerasian Arctic respectively, ice streams are major drainage agents facilitating the discharge of substantial portions of continental ice into the ocean. At their seaward side, ice streams can either extend onto the ocean as floating ice tongues (such as the Drygalsky Ice Tongue/East Antarctica), or feed large ice shelves (as is the case for e.g. the Siple Coast and the Ross Ice Shelf/West Antarctica). The flow behavior of ice streams has been recognized to be intimately linked with configurational changes in their attached ice shelves; in particular, ice shelf disintegration is associated with rapid ice stream retreat and increased mass discharge from the continental ice mass, contributing eventually to sea level rise. Investigations of ice stream retreat mechanism are however incomplete if based on terrestrial records only: rather, the dynamics of ice shelves (and, eventually, the impact of the ocean on the latter) must be accounted for. However, since floating ice shelves leave hardly any traces behind when melting, uncertainty regarding the spatio-temporal distribution and evolution of ice shelves in times prior to instrumented and recorded observation is high, calling thus for a statistical modeling approach. Complementing ongoing large-scale numerical modeling efforts (Pollard & DeConto, 2009), we model the configuration of ice shelves by using a Bayesian Hiearchial Modeling (BHM) approach. We adopt a cross-polar perspective accounting for the fact that currently, ice shelves exist mainly along the coastline of Antarctica (and are virtually non-existing in the Arctic), while Arctic Ocean ice shelves repeatedly impacted the Arctic ocean basin during former glacial periods. Modeled Arctic ocean ice shelf configurations are compared with geological spatial

  18. A Bayesian Approach to Person Fit Analysis in Item Response Theory Models. Research Report.

    ERIC Educational Resources Information Center

    Glas, Cees A. W.; Meijer, Rob R.

    A Bayesian approach to the evaluation of person fit in item response theory (IRT) models is presented. In a posterior predictive check, the observed value on a discrepancy variable is positioned in its posterior distribution. In a Bayesian framework, a Markov Chain Monte Carlo procedure can be used to generate samples of the posterior distribution…

  19. Bayesian Belief Networks Approach for Modeling Irrigation Behavior

    NASA Astrophysics Data System (ADS)

    Andriyas, S.; McKee, M.

    2012-12-01

    Canal operators need information to manage water deliveries to irrigators. Short-term irrigation demand forecasts can potentially valuable information for a canal operator who must manage an on-demand system. Such forecasts could be generated by using information about the decision-making processes of irrigators. Bayesian models of irrigation behavior can provide insight into the likely criteria which farmers use to make irrigation decisions. This paper develops a Bayesian belief network (BBN) to learn irrigation decision-making behavior of farmers and utilizes the resulting model to make forecasts of future irrigation decisions based on factor interaction and posterior probabilities. Models for studying irrigation behavior have been rarely explored in the past. The model discussed here was built from a combination of data about biotic, climatic, and edaphic conditions under which observed irrigation decisions were made. The paper includes a case study using data collected from the Canal B region of the Sevier River, near Delta, Utah. Alfalfa, barley and corn are the main crops of the location. The model has been tested with a portion of the data to affirm the model predictive capabilities. Irrigation rules were deduced in the process of learning and verified in the testing phase. It was found that most of the farmers used consistent rules throughout all years and across different types of crops. Soil moisture stress, which indicates the level of water available to the plant in the soil profile, was found to be one of the most significant likely driving forces for irrigation. Irrigations appeared to be triggered by a farmer's perception of soil stress, or by a perception of combined factors such as information about a neighbor irrigating or an apparent preference to irrigate on a weekend. Soil stress resulted in irrigation probabilities of 94.4% for alfalfa. With additional factors like weekend and irrigating when a neighbor irrigates, alfalfa irrigation

  20. Simulating the Effect of Uncertain Model Drivers on Hydrologic Predictions via an Approximate Bayesian Approach

    NASA Astrophysics Data System (ADS)

    Marshall, L. A.; Nott, D. J.

    2014-12-01

    Understanding the extent and effect of observational uncertainty remains a key concern in hydrologic model specification. Advances have been made in developing robust Bayesian approaches for characterizing the impact of uncertain climatological drivers on hydrologic predictions and parameters. However, these approaches are typically very high dimensional, requiring specification of large numbers of variables that represent statistical uncertainty in the model inputs. Recent developments in approximate Bayesian methods offer an elegant alternative to the fully Bayesian approach. Approximate Bayesian Computation (ABC) is commonly used in situations where a model is easy to simulate from, but where the likelihood is difficult or impossible to calculate. The ABC approach provides an opportunity to develop novel hydrologic statistics for model inference and to develop efficient methods for parameter identification in high dimensional hydrologic models. In this study, we demonstrate the use of approximate Bayesian methods for characterizing uncertain model inputs across multiple hydrologic case studies. Model inference is conducted via statistics that capture hydroclimatic and hydrologic functioning. Our analysis investigates the utility of ABC for model assessment, parameter identification and uncertainty characterization when dealing with potentially large observational uncertainties in hydroclimatic applications.

  1. A Bayesian approach to model structural error and input variability in groundwater modeling

    NASA Astrophysics Data System (ADS)

    Xu, T.; Valocchi, A. J.; Lin, Y. F. F.; Liang, F.

    2015-12-01

    Effective water resource management typically relies on numerical models to analyze groundwater flow and solute transport processes. Model structural error (due to simplification and/or misrepresentation of the "true" environmental system) and input forcing variability (which commonly arises since some inputs are uncontrolled or estimated with high uncertainty) are ubiquitous in groundwater models. Calibration that overlooks errors in model structure and input data can lead to biased parameter estimates and compromised predictions. We present a fully Bayesian approach for a complete assessment of uncertainty for spatially distributed groundwater models. The approach explicitly recognizes stochastic input and uses data-driven error models based on nonparametric kernel methods to account for model structural error. We employ exploratory data analysis to assist in specifying informative prior for error models to improve identifiability. The inference is facilitated by an efficient sampling algorithm based on DREAM-ZS and a parameter subspace multiple-try strategy to reduce the required number of forward simulations of the groundwater model. We demonstrate the Bayesian approach through a synthetic case study of surface-ground water interaction under changing pumping conditions. It is found that explicit treatment of errors in model structure and input data (groundwater pumping rate) has substantial impact on the posterior distribution of groundwater model parameters. Using error models reduces predictive bias caused by parameter compensation. In addition, input variability increases parametric and predictive uncertainty. The Bayesian approach allows for a comparison among the contributions from various error sources, which could inform future model improvement and data collection efforts on how to best direct resources towards reducing predictive uncertainty.

  2. A Bayesian Approach for Summarizing and Modeling Time-Series Exposure Data with Left Censoring.

    PubMed

    Houseman, E Andres; Virji, M Abbas

    2017-08-01

    Direct reading instruments are valuable tools for measuring exposure as they provide real-time measurements for rapid decision making. However, their use is limited to general survey applications in part due to issues related to their performance. Moreover, statistical analysis of real-time data is complicated by autocorrelation among successive measurements, non-stationary time series, and the presence of left-censoring due to limit-of-detection (LOD). A Bayesian framework is proposed that accounts for non-stationary autocorrelation and LOD issues in exposure time-series data in order to model workplace factors that affect exposure and estimate summary statistics for tasks or other covariates of interest. A spline-based approach is used to model non-stationary autocorrelation with relatively few assumptions about autocorrelation structure. Left-censoring is addressed by integrating over the left tail of the distribution. The model is fit using Markov-Chain Monte Carlo within a Bayesian paradigm. The method can flexibly account for hierarchical relationships, random effects and fixed effects of covariates. The method is implemented using the rjags package in R, and is illustrated by applying it to real-time exposure data. Estimates for task means and covariates from the Bayesian model are compared to those from conventional frequentist models including linear regression, mixed-effects, and time-series models with different autocorrelation structures. Simulations studies are also conducted to evaluate method performance. Simulation studies with percent of measurements below the LOD ranging from 0 to 50% showed lowest root mean squared errors for task means and the least biased standard deviations from the Bayesian model compared to the frequentist models across all levels of LOD. In the application, task means from the Bayesian model were similar to means from the frequentist models, while the standard deviations were different. Parameter estimates for covariates

  3. A General and Flexible Approach to Estimating the Social Relations Model Using Bayesian Methods

    ERIC Educational Resources Information Center

    Ludtke, Oliver; Robitzsch, Alexander; Kenny, David A.; Trautwein, Ulrich

    2013-01-01

    The social relations model (SRM) is a conceptual, methodological, and analytical approach that is widely used to examine dyadic behaviors and interpersonal perception within groups. This article introduces a general and flexible approach to estimating the parameters of the SRM that is based on Bayesian methods using Markov chain Monte Carlo…

  4. A General and Flexible Approach to Estimating the Social Relations Model Using Bayesian Methods

    ERIC Educational Resources Information Center

    Ludtke, Oliver; Robitzsch, Alexander; Kenny, David A.; Trautwein, Ulrich

    2013-01-01

    The social relations model (SRM) is a conceptual, methodological, and analytical approach that is widely used to examine dyadic behaviors and interpersonal perception within groups. This article introduces a general and flexible approach to estimating the parameters of the SRM that is based on Bayesian methods using Markov chain Monte Carlo…

  5. A Bayesian hierarchical modeling approach for analyzing observational data from marine ecological studies.

    PubMed

    Qian, Song S; Craig, J Kevin; Baustian, Melissa M; Rabalais, Nancy N

    2009-12-01

    We introduce the Bayesian hierarchical modeling approach for analyzing observational data from marine ecological studies using a data set intended for inference on the effects of bottom-water hypoxia on macrobenthic communities in the northern Gulf of Mexico off the coast of Louisiana, USA. We illustrate (1) the process of developing a model, (2) the use of the hierarchical model results for statistical inference through innovative graphical presentation, and (3) a comparison to the conventional linear modeling approach (ANOVA). Our results indicate that the Bayesian hierarchical approach is better able to detect a "treatment" effect than classical ANOVA while avoiding several arbitrary assumptions necessary for linear models, and is also more easily interpreted when presented graphically. These results suggest that the hierarchical modeling approach is a better alternative than conventional linear models and should be considered for the analysis of observational field data from marine systems.

  6. Medical Inpatient Journey Modeling and Clustering: A Bayesian Hidden Markov Model Based Approach

    PubMed Central

    Huang, Zhengxing; Dong, Wei; Wang, Fei; Duan, Huilong

    2015-01-01

    Modeling and clustering medical inpatient journeys is useful to healthcare organizations for a number of reasons including inpatient journey reorganization in a more convenient way for understanding and browsing, etc. In this study, we present a probabilistic model-based approach to model and cluster medical inpatient journeys. Specifically, we exploit a Bayesian Hidden Markov Model based approach to transform medical inpatient journeys into a probabilistic space, which can be seen as a richer representation of inpatient journeys to be clustered. Then, using hierarchical clustering on the matrix of similarities, inpatient journeys can be clustered into different categories w.r.t their clinical and temporal characteristics. We evaluated the proposed approach on a real clinical data set pertaining to the unstable angina treatment process. The experimental results reveal that our method can identify and model latent treatment topics underlying in personalized inpatient journeys, and yield impressive clustering quality. PMID:26958200

  7. A Bayesian Approach for Parameter Estimation and Prediction using a Computationally Intensive Model

    SciTech Connect

    Higdon, Dave; McDonnell, Jordan D.; Schunck, Nicolas; Sarich, Jason; Wild, Stefan M.

    2015-03-01

    Bayesian methods have been successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based model eta(theta), where theta denotes the uncertain, best input setting. Hence the statistical model is of the form y = eta(theta) + c, where epsilon accounts for measurement, and possibly other, error sources. When nonlinearity is present in eta(center dot), the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and nonstandard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. Although generally applicable, MCMC requires thousands (or even millions) of evaluations of the physics model eta(center dot). This requirement is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory model, using experimental mass/binding energy measurements from a collection of atomic nuclei. We also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory.

  8. A Bayesian approach for parameter estimation and prediction using a computationally intensive model

    SciTech Connect

    Higdon, Dave; McDonnell, Jordan D.; Schunck, Nicolas; Sarich, Jason; Wild, Stefan M.

    2015-02-05

    Bayesian methods have been successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based model $\\eta (\\theta )$, where θ denotes the uncertain, best input setting. Hence the statistical model is of the form $y=\\eta (\\theta )+\\epsilon ,$ where $\\epsilon $ accounts for measurement, and possibly other, error sources. When nonlinearity is present in $\\eta (\\cdot )$, the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and nonstandard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. Although generally applicable, MCMC requires thousands (or even millions) of evaluations of the physics model $\\eta (\\cdot )$. This requirement is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory model, using experimental mass/binding energy measurements from a collection of atomic nuclei. We also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory.

  9. A Robust Bayesian Approach for Structural Equation Models with Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Xia, Ye-Mao

    2008-01-01

    In this paper, normal/independent distributions, including but not limited to the multivariate t distribution, the multivariate contaminated distribution, and the multivariate slash distribution, are used to develop a robust Bayesian approach for analyzing structural equation models with complete or missing data. In the context of a nonlinear…

  10. A Bayesian Approach for Nonlinear Structural Equation Models with Dichotomous Variables Using Logit and Probit Links

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan; Cai, Jing-Heng

    2010-01-01

    Analysis of ordered binary and unordered binary data has received considerable attention in social and psychological research. This article introduces a Bayesian approach, which has several nice features in practical applications, for analyzing nonlinear structural equation models with dichotomous data. We demonstrate how to use the software…

  11. A Bayesian Approach for Nonlinear Structural Equation Models with Dichotomous Variables Using Logit and Probit Links

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan; Cai, Jing-Heng

    2010-01-01

    Analysis of ordered binary and unordered binary data has received considerable attention in social and psychological research. This article introduces a Bayesian approach, which has several nice features in practical applications, for analyzing nonlinear structural equation models with dichotomous data. We demonstrate how to use the software…

  12. A Robust Bayesian Approach for Structural Equation Models with Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Xia, Ye-Mao

    2008-01-01

    In this paper, normal/independent distributions, including but not limited to the multivariate t distribution, the multivariate contaminated distribution, and the multivariate slash distribution, are used to develop a robust Bayesian approach for analyzing structural equation models with complete or missing data. In the context of a nonlinear…

  13. A Bayesian approach for parameter estimation and prediction using a computationally intensive model

    DOE PAGES

    Higdon, Dave; McDonnell, Jordan D.; Schunck, Nicolas; ...

    2015-02-05

    Bayesian methods have been successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based modelmore » $$\\eta (\\theta )$$, where θ denotes the uncertain, best input setting. Hence the statistical model is of the form $$y=\\eta (\\theta )+\\epsilon ,$$ where $$\\epsilon $$ accounts for measurement, and possibly other, error sources. When nonlinearity is present in $$\\eta (\\cdot )$$, the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and nonstandard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. Although generally applicable, MCMC requires thousands (or even millions) of evaluations of the physics model $$\\eta (\\cdot )$$. This requirement is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory model, using experimental mass/binding energy measurements from a collection of atomic nuclei. Lastly, we also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory.« less

  14. Equifinality of formal (DREAM) and informal (GLUE) bayesian approaches in hydrologic modeling?

    SciTech Connect

    Vrugt, Jasper A; Robinson, Bruce A; Ter Braak, Cajo J F; Gupta, Hoshin V

    2008-01-01

    In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented using the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.

  15. A Bayesian approach to improved calibration and prediction of groundwater models with structural error

    NASA Astrophysics Data System (ADS)

    Xu, Tianfang; Valocchi, Albert J.

    2015-11-01

    Numerical groundwater flow and solute transport models are usually subject to model structural error due to simplification and/or misrepresentation of the real system, which raises questions regarding the suitability of conventional least squares regression-based (LSR) calibration. We present a new framework that explicitly describes the model structural error statistically in an inductive, data-driven way. We adopt a fully Bayesian approach that integrates Gaussian process error models into the calibration, prediction, and uncertainty analysis of groundwater flow models. We test the usefulness of the fully Bayesian approach with a synthetic case study of the impact of pumping on surface-ground water interaction. We illustrate through this example that the Bayesian parameter posterior distributions differ significantly from parameters estimated by conventional LSR, which does not account for model structural error. For the latter method, parameter compensation for model structural error leads to biased, overconfident prediction under changing pumping condition. In contrast, integrating Gaussian process error models significantly reduces predictive bias and leads to prediction intervals that are more consistent with validation data. Finally, we carry out a generalized LSR recalibration step to assimilate the Bayesian prediction while preserving mass conservation and other physical constraints, using a full error covariance matrix obtained from Bayesian results. It is found that the recalibrated model achieved lower predictive bias compared to the model calibrated using conventional LSR. The results highlight the importance of explicit treatment of model structural error especially in circumstances where subsequent decision-making and risk analysis require accurate prediction and uncertainty quantification.

  16. A Bayesian approach to the semi-analytic model of galaxy formation

    NASA Astrophysics Data System (ADS)

    Lu, Yu

    It is believed that a wide range of physical processes conspire to shape the observed galaxy population but it remains unsure of their detailed interactions. The semi-analytic model (SAM) of galaxy formation uses multi-dimensional parameterizations of the physical processes of galaxy formation and provides a tool to constrain these underlying physical interactions. Because of the high dimensionality and large uncertainties in the model, the parametric problem of galaxy formation can be profitably tackled with a Bayesian-inference based approach, which allows one to constrain theory with data in a statistically rigorous way. In this thesis, I present a newly developed method to build SAM upon the framework of Bayesian inference. I show that, aided by advanced Markov-Chain Monte-Carlo algorithms, the method has the power to efficiently combine information from diverse data sources, rigorously establish confidence bounds on model parameters, and provide powerful probability-based methods for hypothesis test. Using various data sets (stellar mass function, conditional stellar mass function, K-band luminosity function, and cold gas mass functions) of galaxies in the local Universe, I carry out a series of Bayesian model inferences. The results show that SAM contains huge degeneracies among its parameters, indicating that some of the conclusions drawn previously with the conventional approach may not be truly valid but need to be revisited by the Bayesian approach. Second, some of the degeneracy of the model can be broken by adopting multiple data sets that constrain different aspects of the galaxy population. Third, the inferences reveal that model has challenge to simultaneously explain some important observational results, suggesting that some key physics governing the evolution of star formation and feedback may still be missing from the model. These analyses show clearly that the Bayesian inference based SAM can be used to perform systematic and statistically

  17. Sequential Bayesian Detection: A Model-Based Approach

    SciTech Connect

    Sullivan, E J; Candy, J V

    2007-08-13

    Sequential detection theory has been known for a long time evolving in the late 1940's by Wald and followed by Middleton's classic exposition in the 1960's coupled with the concurrent enabling technology of digital computer systems and the development of sequential processors. Its development, when coupled to modern sequential model-based processors, offers a reasonable way to attack physics-based problems. In this chapter, the fundamentals of the sequential detection are reviewed from the Neyman-Pearson theoretical perspective and formulated for both linear and nonlinear (approximate) Gauss-Markov, state-space representations. We review the development of modern sequential detectors and incorporate the sequential model-based processors as an integral part of their solution. Motivated by a wealth of physics-based detection problems, we show how both linear and nonlinear processors can seamlessly be embedded into the sequential detection framework to provide a powerful approach to solving non-stationary detection problems.

  18. Sequential Bayesian Detection: A Model-Based Approach

    SciTech Connect

    Candy, J V

    2008-12-08

    Sequential detection theory has been known for a long time evolving in the late 1940's by Wald and followed by Middleton's classic exposition in the 1960's coupled with the concurrent enabling technology of digital computer systems and the development of sequential processors. Its development, when coupled to modern sequential model-based processors, offers a reasonable way to attack physics-based problems. In this chapter, the fundamentals of the sequential detection are reviewed from the Neyman-Pearson theoretical perspective and formulated for both linear and nonlinear (approximate) Gauss-Markov, state-space representations. We review the development of modern sequential detectors and incorporate the sequential model-based processors as an integral part of their solution. Motivated by a wealth of physics-based detection problems, we show how both linear and nonlinear processors can seamlessly be embedded into the sequential detection framework to provide a powerful approach to solving non-stationary detection problems.

  19. A Bayesian Hidden Markov Model-based approach for anomaly detection in electronic systems

    NASA Astrophysics Data System (ADS)

    Dorj, E.; Chen, C.; Pecht, M.

    Early detection of anomalies in any system or component prevents impending failures and enhances performance and availability. The complex architecture of electronics, the interdependency of component functionalities, and the miniaturization of most electronic systems make it difficult to detect and analyze anomalous behaviors. A Hidden Markov Model-based classification technique determines unobservable hidden behaviors of complex and remotely inaccessible electronic systems using observable signals. This paper presents a data-driven approach for anomaly detection in electronic systems based on a Bayesian Hidden Markov Model classification technique. The posterior parameters of the Hidden Markov Models are estimated using the conjugate prior method. An application of the developed Bayesian Hidden Markov Model-based anomaly detection approach is presented for detecting anomalous behavior in Insulated Gate Bipolar Transistors using experimental data. The detection results illustrate that the developed anomaly detection approach can help detect anomalous behaviors in electronic systems, which can help prevent system downtime and catastrophic failures.

  20. Optimal speech motor control and token-to-token variability: a Bayesian modeling approach.

    PubMed

    Patri, Jean-François; Diard, Julien; Perrier, Pascal

    2015-12-01

    The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the central nervous system selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of this approach, one of its drawbacks is the intrinsic contradiction between the concept of optimality and the observed experimental intra-speaker token-to-token variability. The present paper proposes an alternative approach by formulating feedforward optimal control in a probabilistic Bayesian modeling framework. This is illustrated by controlling a biomechanical model of the vocal tract for speech production and by comparing it with an existing optimal control model (GEPPETO). The essential elements of this optimal control model are presented first. From them the Bayesian model is constructed in a progressive way. Performance of the Bayesian model is evaluated based on computer simulations and compared to the optimal control model. This approach is shown to be appropriate for solving the speech planning problem while accounting for variability in a principled way.

  1. An Application of Bayesian Approach in Modeling Risk of Death in an Intensive Care Unit

    PubMed Central

    Wong, Rowena Syn Yin; Ismail, Noor Azina

    2016-01-01

    Background and Objectives There are not many studies that attempt to model intensive care unit (ICU) risk of death in developing countries, especially in South East Asia. The aim of this study was to propose and describe application of a Bayesian approach in modeling in-ICU deaths in a Malaysian ICU. Methods This was a prospective study in a mixed medical-surgery ICU in a multidisciplinary tertiary referral hospital in Malaysia. Data collection included variables that were defined in Acute Physiology and Chronic Health Evaluation IV (APACHE IV) model. Bayesian Markov Chain Monte Carlo (MCMC) simulation approach was applied in the development of four multivariate logistic regression predictive models for the ICU, where the main outcome measure was in-ICU mortality risk. The performance of the models were assessed through overall model fit, discrimination and calibration measures. Results from the Bayesian models were also compared against results obtained using frequentist maximum likelihood method. Results The study involved 1,286 consecutive ICU admissions between January 1, 2009 and June 30, 2010, of which 1,111 met the inclusion criteria. Patients who were admitted to the ICU were generally younger, predominantly male, with low co-morbidity load and mostly under mechanical ventilation. The overall in-ICU mortality rate was 18.5% and the overall mean Acute Physiology Score (APS) was 68.5. All four models exhibited good discrimination, with area under receiver operating characteristic curve (AUC) values approximately 0.8. Calibration was acceptable (Hosmer-Lemeshow p-values > 0.05) for all models, except for model M3. Model M1 was identified as the model with the best overall performance in this study. Conclusion Four prediction models were proposed, where the best model was chosen based on its overall performance in this study. This study has also demonstrated the promising potential of the Bayesian MCMC approach as an alternative in the analysis and modeling of

  2. Modelling household finances: A Bayesian approach to a multivariate two-part model

    PubMed Central

    Brown, Sarah; Ghosh, Pulak; Su, Li; Taylor, Karl

    2016-01-01

    We contribute to the empirical literature on household finances by introducing a Bayesian multivariate two-part model, which has been developed to further our understanding of household finances. Our flexible approach allows for the potential interdependence between the holding of assets and liabilities at the household level and also encompasses a two-part process to allow for differences in the influences on asset or liability holding and on the respective amounts held. Furthermore, the framework is dynamic in order to allow for persistence in household finances over time. Our findings endorse the joint modelling approach and provide evidence supporting the importance of dynamics. In addition, we find that certain independent variables exert different influences on the binary and continuous parts of the model thereby highlighting the flexibility of our framework and revealing a detailed picture of the nature of household finances. PMID:27212801

  3. Modelling household finances: A Bayesian approach to a multivariate two-part model.

    PubMed

    Brown, Sarah; Ghosh, Pulak; Su, Li; Taylor, Karl

    2015-09-01

    We contribute to the empirical literature on household finances by introducing a Bayesian multivariate two-part model, which has been developed to further our understanding of household finances. Our flexible approach allows for the potential interdependence between the holding of assets and liabilities at the household level and also encompasses a two-part process to allow for differences in the influences on asset or liability holding and on the respective amounts held. Furthermore, the framework is dynamic in order to allow for persistence in household finances over time. Our findings endorse the joint modelling approach and provide evidence supporting the importance of dynamics. In addition, we find that certain independent variables exert different influences on the binary and continuous parts of the model thereby highlighting the flexibility of our framework and revealing a detailed picture of the nature of household finances.

  4. A Bayesian approach to modeling associations between pulsatile hormones

    PubMed Central

    Johnson, Timothy D.; Brown, Morton B.

    2010-01-01

    Many hormones are secreted in pulses. The pulsatile relationship between hormones regulates many biological processes. To understand endocrine system regulation, time series of hormone concentrations are collected. The goal is to characterize pulsatile patterns and associations between hormones. Currently each hormone on each subject is fitted univariately. This leads to estimates of the number of pulses and estimates of the amount of hormone secreted; however, when the signal-to-noise ratio is small, pulse detection and parameter estimation remains difficult with existing approaches. In this paper, we present a bivariate deconvolution model of pulsatile hormone data focusing on incorporating pulsatile associations. Through simulation, we exhibit that using the underlying pulsatile association between two hormones improves the estimation of the number of pulses and the other parameters defining each hormone. We develop the one-to-one, driver-response case and show how birth-death MCMC can be used for estimation. We exhibit these features through a simulation study and on the relationship between luteinizing and follicle stimulating hormones. PMID:18759850

  5. Bayesian approach to color-difference models based on threshold and constant-stimuli methods.

    PubMed

    Brusola, Fernando; Tortajada, Ignacio; Lengua, Ismael; Jordá, Begoña; Peris, Guillermo

    2015-06-15

    An alternative approach based on statistical Bayesian inference is presented to deal with the development of color-difference models and the precision of parameter estimation. The approach was applied to simulated data and real data, the latter published by selected authors involved with the development of color-difference formulae using traditional methods. Our results show very good agreement between the Bayesian and classical approaches. Among other benefits, our proposed methodology allows one to determine the marginal posterior distribution of each random individual parameter of the color-difference model. In this manner, it is possible to analyze the effect of individual parameters on the statistical significance calculation of a color-difference equation.

  6. A Bayesian approach for inducing sparsity in generalized linear models with multi-category response

    PubMed Central

    2015-01-01

    Background The dimension and complexity of high-throughput gene expression data create many challenges for downstream analysis. Several approaches exist to reduce the number of variables with respect to small sample sizes. In this study, we utilized the Generalized Double Pareto (GDP) prior to induce sparsity in a Bayesian Generalized Linear Model (GLM) setting. The approach was evaluated using a publicly available microarray dataset containing 99 samples corresponding to four different prostate cancer subtypes. Results A hierarchical Sparse Bayesian GLM using GDP prior (SBGG) was developed to take into account the progressive nature of the response variable. We obtained an average overall classification accuracy between 82.5% and 94%, which was higher than Support Vector Machine, Random Forest or a Sparse Bayesian GLM using double exponential priors. Additionally, SBGG outperforms the other 3 methods in correctly identifying pre-metastatic stages of cancer progression, which can prove extremely valuable for therapeutic and diagnostic purposes. Importantly, using Geneset Cohesion Analysis Tool, we found that the top 100 genes produced by SBGG had an average functional cohesion p-value of 2.0E-4 compared to 0.007 to 0.131 produced by the other methods. Conclusions Using GDP in a Bayesian GLM model applied to cancer progression data results in better subclass prediction. In particular, the method identifies pre-metastatic stages of prostate cancer with substantially better accuracy and produces more functionally relevant gene sets. PMID:26423345

  7. A Fully Bayesian Approach to Improved Calibration and Prediction of Groundwater Models With Structure Error

    NASA Astrophysics Data System (ADS)

    Xu, T.; Valocchi, A. J.

    2014-12-01

    Effective water resource management typically relies on numerical models to analyse groundwater flow and solute transport processes. These models are usually subject to model structure error due to simplification and/or misrepresentation of the real system. As a result, the model outputs may systematically deviate from measurements, thus violating a key assumption for traditional regression-based calibration and uncertainty analysis. On the other hand, model structure error induced bias can be described statistically in an inductive, data-driven way based on historical model-to-measurement misfit. We adopt a fully Bayesian approach that integrates a Gaussian process error model to account for model structure error to the calibration, prediction and uncertainty analysis of groundwater models. The posterior distributions of parameters of the groundwater model and the Gaussian process error model are jointly inferred using DREAM, an efficient Markov chain Monte Carlo sampler. We test the usefulness of the fully Bayesian approach towards a synthetic case study of surface-ground water interaction under changing pumping conditions. We first illustrate through this example that traditional least squares regression without accounting for model structure error yields biased parameter estimates due to parameter compensation as well as biased predictions. In contrast, the Bayesian approach gives less biased parameter estimates. Moreover, the integration of a Gaussian process error model significantly reduces predictive bias and leads to prediction intervals that are more consistent with observations. The results highlight the importance of explicit treatment of model structure error especially in circumstances where subsequent decision-making and risk analysis require accurate prediction and uncertainty quantification. In addition, the data-driven error modelling approach is capable of extracting more information from observation data than using a groundwater model alone.

  8. Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach

    PubMed Central

    Duarte, Belmiro P. M.; Wong, Weng Kee

    2014-01-01

    Summary This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted. PMID:26512159

  9. Modeling uncertainties in estimation of canopy LAI from hyperspectral remote sensing data - A Bayesian approach

    NASA Astrophysics Data System (ADS)

    Varvia, Petri; Rautiainen, Miina; Seppänen, Aku

    2017-04-01

    Hyperspectral remote sensing data carry information on the leaf area index (LAI) of forests, and thus in principle, LAI can be estimated based on the data by inverting a forest reflectance model. However, LAI is usually not the only unknown in a reflectance model; especially, the leaf spectral albedo and understory reflectance are also not known. If the uncertainties of these parameters are not accounted for, the inversion of a forest reflectance model can lead to biased estimates for LAI. In this paper, we study the effects of reflectance model uncertainties on LAI estimates, and further, investigate whether the LAI estimates could recover from these uncertainties with the aid of Bayesian inference. In the proposed approach, the unknown leaf albedo and understory reflectance are estimated simultaneously with LAI from hyperspectral remote sensing data. The feasibility of the approach is tested with numerical simulation studies. The results show that in the presence of unknown parameters, the Bayesian LAI estimates which account for the model uncertainties outperform the conventional estimates that are based on biased model parameters. Moreover, the results demonstrate that the Bayesian inference can also provide feasible measures for the uncertainty of the estimated LAI.

  10. Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach.

    PubMed

    Duarte, Belmiro P M; Wong, Weng Kee

    2015-08-01

    This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted.

  11. Model of Conceptual Change for INQPRO: A Bayesian Network Approach

    ERIC Educational Resources Information Center

    Ting, Choo-Yee; Sam, Yok-Cheng; Wong, Chee-Onn

    2013-01-01

    Constructing a computational model of conceptual change for a computer-based scientific inquiry learning environment is difficult due to two challenges: (i) externalizing the variables of conceptual change and its related variables is difficult. In addition, defining the causal dependencies among the variables is also not trivial. Such difficulty…

  12. Model of Conceptual Change for INQPRO: A Bayesian Network Approach

    ERIC Educational Resources Information Center

    Ting, Choo-Yee; Sam, Yok-Cheng; Wong, Chee-Onn

    2013-01-01

    Constructing a computational model of conceptual change for a computer-based scientific inquiry learning environment is difficult due to two challenges: (i) externalizing the variables of conceptual change and its related variables is difficult. In addition, defining the causal dependencies among the variables is also not trivial. Such difficulty…

  13. A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion-weighted MRI.

    PubMed

    While, Peter T

    2017-03-31

    To assess the performance of various least squares and Bayesian modeling approaches to parameter estimation in intravoxel incoherent motion (IVIM) modeling of diffusion-weighted MRI data. Simulated tissue models of different type (breast/liver) and morphology (discrete/continuous) were used to generate noisy data according to the IVIM model at several signal-to-noise ratios. IVIM parameter maps were generated using six different approaches, including full nonlinear least squares (LSQ), segmented least squares (SEG), Bayesian modeling with a Gaussian shrinkage prior (BSP) and Bayesian modeling with a spatial homogeneity prior (FBM), plus two modified approaches. Estimators were compared by calculating the median absolute percentage error and deviation, and median percentage bias. The Bayesian modeling approaches consistently outperformed the least squares approaches, with lower relative error and deviation, and provided cleaner parameter maps with reduced erroneous heterogeneity. However, a weakness of the Bayesian approaches was exposed, whereby certain tissue features disappeared completely in regions of high parameter uncertainty. Lower error and deviation were generally afforded by FBM compared with BSP, at the cost of higher bias. Bayesian modeling is capable of producing more visually pleasing IVIM parameter maps than least squares approaches, but their potential to mask certain tissue features demands caution during implementation. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. On the limitations of standard statistical modeling in biological systems: a full Bayesian approach for biology.

    PubMed

    Gomez-Ramirez, Jaime; Sanz, Ricardo

    2013-09-01

    One of the most important scientific challenges today is the quantitative and predictive understanding of biological function. Classical mathematical and computational approaches have been enormously successful in modeling inert matter, but they may be inadequate to address inherent features of biological systems. We address the conceptual and methodological obstacles that lie in the inverse problem in biological systems modeling. We introduce a full Bayesian approach (FBA), a theoretical framework to study biological function, in which probability distributions are conditional on biophysical information that physically resides in the biological system that is studied by the scientist. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Lifting a veil on diversity: a Bayesian approach to fitting relative-abundance models.

    PubMed

    Golicher, Duncan J; O'Hara, Robert B; Ruíz-Montoya, Lorena; Cayuela, Luis

    2006-02-01

    Bayesian methods incorporate prior knowledge into a statistical analysis. This prior knowledge is usually restricted to assumptions regarding the form of probability distributions of the parameters of interest, leaving their values to be determined mainly through the data. Here we show how a Bayesian approach can be applied to the problem of drawing inference regarding species abundance distributions and comparing diversity indices between sites. The classic log series and the lognormal models of relative- abundance distribution are apparently quite different in form. The first is a sampling distribution while the other is a model of abundance of the underlying population. Bayesian methods help unite these two models in a common framework. Markov chain Monte Carlo simulation can be used to fit both distributions as small hierarchical models with shared common assumptions. Sampling error can be assumed to follow a Poisson distribution. Species not found in a sample, but suspected to be present in the region or community of interest, can be given zero abundance. This not only simplifies the process of model fitting, but also provides a convenient way of calculating confidence intervals for diversity indices. The method is especially useful when a comparison of species diversity between sites with different sample sizes is the key motivation behind the research. We illustrate the potential of the approach using data on fruit-feeding butterflies in southern Mexico. We conclude that, once all assumptions have been made transparent, a single data set may provide support for the belief that diversity is negatively affected by anthropogenic forest disturbance. Bayesian methods help to apply theory regarding the distribution of abundance in ecological communities to applied conservation.

  16. Residual spatial correlation between geographically referenced observations: a Bayesian hierarchical modeling approach.

    PubMed

    Boyd, Heather A; Flanders, W Dana; Addiss, David G; Waller, Lance A

    2005-07-01

    Analytic methods commonly used in epidemiology do not account for spatial correlation between observations. In regression analyses, this omission can bias parameter estimates and yield incorrect standard error estimates. We present a Bayesian hierarchical model (BHM) approach that accounts for spatial correlation, and illustrate its strengths and weaknesses by applying this modeling approach to data on Wuchereria bancrofti infection in Haiti. A program to eliminate lymphatic filariasis in Haiti assessed prevalence of W. bancrofti infection in 57 schools across Leogane Commune. We analyzed the spatial pattern in the prevalence data using semi-variograms and correlograms. We then modeled the data using (1) standard logistic regression (GLM); (2) non-Bayesian logistic generalized linear mixed models (GLMMs) with school-specific nonspatial random effects; (3) BHMs with school-specific nonspatial random effects; and (4) BHMs with spatial random effects. An exponential semi-variogram with an effective range of 2.15 km best fit the data. GLMM and nonspatial BHM point estimates were comparable and also were generally similar with the marginal GLM point estimates. In contrast, compared with the nonspatial mixed model results, spatial BHM point estimates were markedly attenuated. The clear spatial pattern evident in the Haitian W. bancrofti prevalence data and the observation that point estimates and standard errors differed depending on the modeling approach indicate that it is important to account for residual spatial correlation in analyses of W. bancrofti infection data. Bayesian hierarchical models provide a flexible, readily implementable approach to modeling spatially correlated data. However, our results also illustrate that spatial smoothing must be applied with care.

  17. A study of finite mixture model: Bayesian approach on financial time series data

    NASA Astrophysics Data System (ADS)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir

    2014-07-01

    Recently, statistician have emphasized on the fitting finite mixture model by using Bayesian method. Finite mixture model is a mixture of distributions in modeling a statistical distribution meanwhile Bayesian method is a statistical method that use to fit the mixture model. Bayesian method is being used widely because it has asymptotic properties which provide remarkable result. In addition, Bayesian method also shows consistency characteristic which means the parameter estimates are close to the predictive distributions. In the present paper, the number of components for mixture model is studied by using Bayesian Information Criterion. Identify the number of component is important because it may lead to an invalid result. Later, the Bayesian method is utilized to fit the k-component mixture model in order to explore the relationship between rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia. Lastly, the results showed that there is a negative effect among rubber price and stock market price for all selected countries.

  18. A Bayesian approach to modeling diffraction profiles and application to ferroelectric materials

    DOE PAGES

    Iamsasri, Thanakorn; Guerrier, Jonathon; Esteves, Giovanni; ...

    2017-02-01

    A new statistical approach for modeling diffraction profiles is introduced, using Bayesian inference and a Markov chain Monte Carlo (MCMC) algorithm. This method is demonstrated by modeling the degenerate reflections during application of an electric field to two different ferroelectric materials: thin-film lead zirconate titanate (PZT) of composition PbZr0.3Ti0.7O3and a bulk commercial PZT polycrystalline ferroelectric. Here, the new method offers a unique uncertainty quantification of the model parameters that can be readily propagated into new calculated parameters.

  19. A robust Bayesian approach to modeling epistemic uncertainty in common-cause failure models

    SciTech Connect

    Matthias C. M. Troffaes; Gero Walter; Dana Kelly

    2014-05-01

    In a standard Bayesian approach to the alpha-factor model for common-cause failure, a precise Dirichlet prior distribution models epistemic uncertainty in the alpha-factors. This Dirichlet prior is then updated with observed data to obtain a posterior distribution, which forms the basis for further inferences. In this paper, we adapt the imprecise Dirichlet model of Walley to represent epistemic uncertainty in the alpha-factors. In this approach, epistemic uncertainty is expressed more cautiously via lower and upper expectations for each alpha-factor, along with a learning parameter which determines how quickly the model learns from observed data. For this application, we focus on elicitation of the learning parameter, and find that values in the range of 1 to 10 seem reasonable. The approach is compared with Kelly and Atwood's minimally informative Dirichlet prior for the alpha-factor model, which incorporated precise mean values for the alpha-factors, but which was otherwise quite diffuse. Next, we explore the use of a set of Gamma priors to model epistemic uncertainty in the marginal failure rate, expressed via a lower and upper expectation for this rate, again along with a learning parameter. As zero counts are generally less of an issue here, we find that the choice of this learning parameter is less crucial. Finally, we demonstrate how both epistemic uncertainty models can be combined to arrive at lower and upper expectations for all common-cause failure rates. Thereby, we effectively provide a full sensitivity analysis of common-cause failure rates, properly reflecting epistemic uncertainty of the analyst on all levels of the common-cause failure model.

  20. Competing risk models in reliability systems, a weibull distribution model with bayesian analysis approach

    NASA Astrophysics Data System (ADS)

    Iskandar, Ismed; Satria Gondokaryono, Yudi

    2016-02-01

    In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range

  1. The Continual Reassessment Method for Multiple Toxicity Grades: A Bayesian Model Selection Approach

    PubMed Central

    Yuan, Ying; Zhang, Shemin; Zhang, Wenhong; Li, Chanjuan; Wang, Ling; Xia, Jielai

    2014-01-01

    Grade information has been considered in Yuan et al. (2007) wherein they proposed a Quasi-CRM method to incorporate the grade toxicity information in phase I trials. A potential problem with the Quasi-CRM model is that the choice of skeleton may dramatically vary the performance of the CRM model, which results in similar consequences for the Quasi-CRM model. In this paper, we propose a new model by utilizing bayesian model selection approach – Robust Quasi-CRM model – to tackle the above-mentioned pitfall with the Quasi-CRM model. The Robust Quasi-CRM model literally inherits the BMA-CRM model proposed by Yin and Yuan (2009) to consider a parallel of skeletons for Quasi-CRM. The superior performance of Robust Quasi-CRM model was demonstrated by extensive simulation studies. We conclude that the proposed method can be freely used in real practice. PMID:24875783

  2. An approach based on Hierarchical Bayesian Graphical Models for measurement interpretation under uncertainty

    NASA Astrophysics Data System (ADS)

    Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter

    2017-02-01

    It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.

  3. A Bayesian inverse modeling approach to estimate soil hydraulic properties of a toposequence in southeastern Amazonia.

    NASA Astrophysics Data System (ADS)

    Stucchi Boschi, Raquel; Qin, Mingming; Gimenez, Daniel; Cooper, Miguel

    2016-04-01

    Modeling is an important tool for better understanding and assessing land use impacts on landscape processes. A key point for environmental modeling is the knowledge of soil hydraulic properties. However, direct determination of soil hydraulic properties is difficult and costly, particularly in vast and remote regions such as one constituting the Amazon Biome. One way to overcome this problem is to extrapolate accurately estimated data to pedologically similar sites. The van Genuchten (VG) parametric equation is the most commonly used for modeling SWRC. The use of a Bayesian approach in combination with the Markov chain Monte Carlo to estimate the VG parameters has several advantages compared to the widely used global optimization techniques. The Bayesian approach provides posterior distributions of parameters that are independent from the initial values and allow for uncertainty analyses. The main objectives of this study were: i) to estimate hydraulic parameters from data of pasture and forest sites by the Bayesian inverse modeling approach; and ii) to investigate the extrapolation of the estimated VG parameters to a nearby toposequence with pedologically similar soils to those used for its estimate. The parameters were estimated from volumetric water content and tension observations obtained after rainfall events during a 207-day period from pasture and forest sites located in the southeastern Amazon region. These data were used to run HYDRUS-1D under a Differential Evolution Adaptive Metropolis (DREAM) scheme 10,000 times, and only the last 2,500 times were used to calculate the posterior distributions of each hydraulic parameter along with 95% confidence intervals (CI) of volumetric water content and tension time series. Then, the posterior distributions were used to generate hydraulic parameters for two nearby toposequences composed by six soil profiles, three are under forest and three are under pasture. The parameters of the nearby site were accepted when

  4. Bayesian Model Averaging for Propensity Score Analysis.

    PubMed

    Kaplan, David; Chen, Jianshen

    2014-01-01

    This article considers Bayesian model averaging as a means of addressing uncertainty in the selection of variables in the propensity score equation. We investigate an approximate Bayesian model averaging approach based on the model-averaged propensity score estimates produced by the R package BMA but that ignores uncertainty in the propensity score. We also provide a fully Bayesian model averaging approach via Markov chain Monte Carlo sampling (MCMC) to account for uncertainty in both parameters and models. A detailed study of our approach examines the differences in the causal estimate when incorporating noninformative versus informative priors in the model averaging stage. We examine these approaches under common methods of propensity score implementation. In addition, we evaluate the impact of changing the size of Occam's window used to narrow down the range of possible models. We also assess the predictive performance of both Bayesian model averaging propensity score approaches and compare it with the case without Bayesian model averaging. Overall, results show that both Bayesian model averaging propensity score approaches recover the treatment effect estimates well and generally provide larger uncertainty estimates, as expected. Both Bayesian model averaging approaches offer slightly better prediction of the propensity score compared with the Bayesian approach with a single propensity score equation. Covariate balance checks for the case study show that both Bayesian model averaging approaches offer good balance. The fully Bayesian model averaging approach also provides posterior probability intervals of the balance indices.

  5. [An accurate approach to hyperspectral mineral identification based on naive bayesian classification model].

    PubMed

    He, Jin-Xin; Chen, Sheng-Bo; Wang, Yang; Wu, Yan-Fan

    2014-02-01

    The spectral absorption features are very similar between some minerals, especially hydrothermal alteration minerals related to mineralization, and they are also influenced by other factors such as spectral mixture. As a result, many of the spectral identification approaches for the minerals with similar spectral absorption features are prone to confusion and misjudgment. Therefore, to solve the phenomenon of "same mineral has different spectrums, and same spectrum belongs to different minerals", this paper proposes an accurate approach to hyperspectral mineral identification based on naive bayesian classification model. By testing and analyzing muscovite and kaolinite, the two typical alteration minerals, and comparing this approach with spectral angle matching, binary encoding and spectral feature fitting, the three popular spectral identification approaches, the results show that this approach can make more obvious differences among different minerals having similar spectrums, and has higher classification accuracy, since it is based on the position of absorption feature, absorption depth and the slope of continuum.

  6. Crash risk analysis for Shanghai urban expressways: A Bayesian semi-parametric modeling approach.

    PubMed

    Yu, Rongjie; Wang, Xuesong; Yang, Kui; Abdel-Aty, Mohamed

    2016-10-01

    Urban expressway systems have been developed rapidly in recent years in China; it has become one key part of the city roadway networks as carrying large traffic volume and providing high traveling speed. Along with the increase of traffic volume, traffic safety has become a major issue for Chinese urban expressways due to the frequent crash occurrence and the non-recurrent congestions caused by them. For the purpose of unveiling crash occurrence mechanisms and further developing Active Traffic Management (ATM) control strategies to improve traffic safety, this study developed disaggregate crash risk analysis models with loop detector traffic data and historical crash data. Bayesian random effects logistic regression models were utilized as it can account for the unobserved heterogeneity among crashes. However, previous crash risk analysis studies formulated random effects distributions in a parametric approach, which assigned them to follow normal distributions. Due to the limited information known about random effects distributions, subjective parametric setting may be incorrect. In order to construct more flexible and robust random effects to capture the unobserved heterogeneity, Bayesian semi-parametric inference technique was introduced to crash risk analysis in this study. Models with both inference techniques were developed for total crashes; semi-parametric models were proved to provide substantial better model goodness-of-fit, while the two models shared consistent coefficient estimations. Later on, Bayesian semi-parametric random effects logistic regression models were developed for weekday peak hour crashes, weekday non-peak hour crashes, and weekend non-peak hour crashes to investigate different crash occurrence scenarios. Significant factors that affect crash risk have been revealed and crash mechanisms have been concluded.

  7. A Bayesian approach to the semi-analytic model of galaxy formation: methodology

    NASA Astrophysics Data System (ADS)

    Lu, Yu; Mo, H. J.; Weinberg, Martin D.; Katz, Neal

    2011-09-01

    We believe that a wide range of physical processes conspire to shape the observed galaxy population, but we remain unsure of their detailed interactions. The semi-analytic model (SAM) of galaxy formation uses multidimensional parametrizations of the physical processes of galaxy formation and provides a tool to constrain these underlying physical interactions. Because of the high dimensionality, the parametric problem of galaxy formation may be profitably tackled with a Bayesian-inference-based approach, which allows one to constrain theory with data in a statistically rigorous way. In this paper, we develop a SAM in the framework of Bayesian inference. We show that, with a parallel implementation of an advanced Markov chain Monte Carlo algorithm, it is now possible to rigorously sample the posterior distribution of the high-dimensional parameter space of typical SAMs. As an example, we characterize galaxy formation in the current Λ cold dark matter cosmology using the stellar mass function of galaxies as an observational constraint. We find that the posterior probability distribution is both topologically complex and degenerate in some important model parameters, suggesting that thorough explorations of the parameter space are needed to understand the models. We also demonstrate that because of the model degeneracy, adopting a narrow prior strongly restricts the model. Therefore, the inferences based on SAMs are conditional to the model adopted. Using synthetic data to mimic systematic errors in the stellar mass function, we demonstrate that an accurate observational error model is essential to meaningful inference.

  8. Water quality modeling for load reduction under uncertainty: a Bayesian approach.

    PubMed

    Liu, Yong; Yang, Pingjian; Hu, Cheng; Guo, Huaicheng

    2008-07-01

    A Bayesian approach was applied to river water quality modeling (WQM) for load and parameter estimation. A distributed-source model (DSM) was used as the basic model to support load reduction and effective water quality management in the Hun-Taizi River system, northeastern China. Water quality was surveyed at 18 sites weekly from 1995 to 2004; biological oxygen demand (BOD) and ammonia (NH(4)(+)) were selected as WQM variables. The first-order decay rate (k(i)) and load (L(i)) of the 16 river segments were estimated using the Bayesian approach. The maximum pollutant loading (L(m)) of NH(4)(+) and BOD for each river segment was determined based on DSM and the estimated parameters of k(i). The results showed that for most river segments, the historical loading was beyond the L(m) threshold; thus, reduction for organic matter and nitrogen is necessary to meet water quality goals. Then the effects of inflow pollutant concentration (C(i-1)) and water velocity (v(i)) on water quality standard compliance were used to demonstrate how the proposed model can be applied to water quality management. The results enable decision makers to decide load reductions and allocations among river segments under different C(i-1) and v(i) scenarios.

  9. Modeling of Academic Achievement of Primary School Students in Ethiopia Using Bayesian Multilevel Approach

    ERIC Educational Resources Information Center

    Sebro, Negusse Yohannes; Goshu, Ayele Taye

    2017-01-01

    This study aims to explore Bayesian multilevel modeling to investigate variations of average academic achievement of grade eight school students. A sample of 636 students is randomly selected from 26 private and government schools by a two-stage stratified sampling design. Bayesian method is used to estimate the fixed and random effects. Input and…

  10. A Bayesian Network Approach to Modeling Learning Progressions and Task Performance. CRESST Report 776

    ERIC Educational Resources Information Center

    West, Patti; Rutstein, Daisy Wise; Mislevy, Robert J.; Liu, Junhui; Choi, Younyoung; Levy, Roy; Crawford, Aaron; DiCerbo, Kristen E.; Chappel, Kristina; Behrens, John T.

    2010-01-01

    A major issue in the study of learning progressions (LPs) is linking student performance on assessment tasks to the progressions. This report describes the challenges faced in making this linkage using Bayesian networks to model LPs in the field of computer networking. The ideas are illustrated with exemplar Bayesian networks built on Cisco…

  11. Multimethod, multistate Bayesian hierarchical modeling approach for use in regional monitoring of wolves.

    PubMed

    Jiménez, José; García, Emilio J; Llaneza, Luis; Palacios, Vicente; González, Luis Mariano; García-Domínguez, Francisco; Múñoz-Igualada, Jaime; López-Bao, José Vicente

    2016-08-01

    In many cases, the first step in large-carnivore management is to obtain objective, reliable, and cost-effective estimates of population parameters through procedures that are reproducible over time. However, monitoring predators over large areas is difficult, and the data have a high level of uncertainty. We devised a practical multimethod and multistate modeling approach based on Bayesian hierarchical-site-occupancy models that combined multiple survey methods to estimate different population states for use in monitoring large predators at a regional scale. We used wolves (Canis lupus) as our model species and generated reliable estimates of the number of sites with wolf reproduction (presence of pups). We used 2 wolf data sets from Spain (Western Galicia in 2013 and Asturias in 2004) to test the approach. Based on howling surveys, the naïve estimation (i.e., estimate based only on observations) of the number of sites with reproduction was 9 and 25 sites in Western Galicia and Asturias, respectively. Our model showed 33.4 (SD 9.6) and 34.4 (3.9) sites with wolf reproduction, respectively. The number of occupied sites with wolf reproduction was 0.67 (SD 0.19) and 0.76 (0.11), respectively. This approach can be used to design more cost-effective monitoring programs (i.e., to define the sampling effort needed per site). Our approach should inspire well-coordinated surveys across multiple administrative borders and populations and lead to improved decision making for management of large carnivores on a landscape level. The use of this Bayesian framework provides a simple way to visualize the degree of uncertainty around population-parameter estimates and thus provides managers and stakeholders an intuitive approach to interpreting monitoring results. Our approach can be widely applied to large spatial scales in wildlife monitoring where detection probabilities differ between population states and where several methods are being used to estimate different population

  12. A local approach for focussed Bayesian fusion

    NASA Astrophysics Data System (ADS)

    Sander, Jennifer; Heizmann, Michael; Goussev, Igor; Beyerer, Jürgen

    2009-04-01

    Local Bayesian fusion approaches aim to reduce high storage and computational costs of Bayesian fusion which is separated from fixed modeling assumptions. Using the small world formalism, we argue why this proceeding is conform with Bayesian theory. Then, we concentrate on the realization of local Bayesian fusion by focussing the fusion process solely on local regions that are task relevant with a high probability. The resulting local models correspond then to restricted versions of the original one. In a previous publication, we used bounds for the probability of misleading evidence to show the validity of the pre-evaluation of task specific knowledge and prior information which we perform to build local models. In this paper, we prove the validity of this proceeding using information theoretic arguments. For additional efficiency, local Bayesian fusion can be realized in a distributed manner. Here, several local Bayesian fusion tasks are evaluated and unified after the actual fusion process. For the practical realization of distributed local Bayesian fusion, software agents are predestinated. There is a natural analogy between the resulting agent based architecture and criminal investigations in real life. We show how this analogy can be used to improve the efficiency of distributed local Bayesian fusion additionally. Using a landscape model, we present an experimental study of distributed local Bayesian fusion in the field of reconnaissance, which highlights its high potential.

  13. Bayesian Approach for Inconsistent Information

    PubMed Central

    Stein, M.; Beer, M.; Kreinovich, V.

    2013-01-01

    In engineering situations, we usually have a large amount of prior knowledge that needs to be taken into account when processing data. Traditionally, the Bayesian approach is used to process data in the presence of prior knowledge. Sometimes, when we apply the traditional Bayesian techniques to engineering data, we get inconsistencies between the data and prior knowledge. These inconsistencies are usually caused by the fact that in the traditional approach, we assume that we know the exact sample values, that the prior distribution is exactly known, etc. In reality, the data is imprecise due to measurement errors, the prior knowledge is only approximately known, etc. So, a natural way to deal with the seemingly inconsistent information is to take this imprecision into account in the Bayesian approach – e.g., by using fuzzy techniques. In this paper, we describe several possible scenarios for fuzzifying the Bayesian approach. Particular attention is paid to the interaction between the estimated imprecise parameters. In this paper, to implement the corresponding fuzzy versions of the Bayesian formulas, we use straightforward computations of the related expression – which makes our computations reasonably time-consuming. Computations in the traditional (non-fuzzy) Bayesian approach are much faster – because they use algorithmically efficient reformulations of the Bayesian formulas. We expect that similar reformulations of the fuzzy Bayesian formulas will also drastically decrease the computation time and thus, enhance the practical use of the proposed methods. PMID:24089579

  14. How to interpret the results of medical time series data analysis: Classical statistical approaches versus dynamic Bayesian network modeling.

    PubMed

    Onisko, Agnieszka; Druzdzel, Marek J; Austin, R Marshall

    2016-01-01

    Classical statistics is a well-established approach in the analysis of medical data. While the medical community seems to be familiar with the concept of a statistical analysis and its interpretation, the Bayesian approach, argued by many of its proponents to be superior to the classical frequentist approach, is still not well-recognized in the analysis of medical data. The goal of this study is to encourage data analysts to use the Bayesian approach, such as modeling with graphical probabilistic networks, as an insightful alternative to classical statistical analysis of medical data. This paper offers a comparison of two approaches to analysis of medical time series data: (1) classical statistical approach, such as the Kaplan-Meier estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian network modeling. Our comparison is based on time series cervical cancer screening data collected at Magee-Womens Hospital, University of Pittsburgh Medical Center over 10 years. The main outcomes of our comparison are cervical cancer risk assessments produced by the three approaches. However, our analysis discusses also several aspects of the comparison, such as modeling assumptions, model building, dealing with incomplete data, individualized risk assessment, results interpretation, and model validation. Our study shows that the Bayesian approach is (1) much more flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, which is more cumbersome for classical statistical approaches.

  15. How to interpret the results of medical time series data analysis: Classical statistical approaches versus dynamic Bayesian network modeling

    PubMed Central

    Onisko, Agnieszka; Druzdzel, Marek J.; Austin, R. Marshall

    2016-01-01

    Background: Classical statistics is a well-established approach in the analysis of medical data. While the medical community seems to be familiar with the concept of a statistical analysis and its interpretation, the Bayesian approach, argued by many of its proponents to be superior to the classical frequentist approach, is still not well-recognized in the analysis of medical data. Aim: The goal of this study is to encourage data analysts to use the Bayesian approach, such as modeling with graphical probabilistic networks, as an insightful alternative to classical statistical analysis of medical data. Materials and Methods: This paper offers a comparison of two approaches to analysis of medical time series data: (1) classical statistical approach, such as the Kaplan–Meier estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian network modeling. Our comparison is based on time series cervical cancer screening data collected at Magee-Womens Hospital, University of Pittsburgh Medical Center over 10 years. Results: The main outcomes of our comparison are cervical cancer risk assessments produced by the three approaches. However, our analysis discusses also several aspects of the comparison, such as modeling assumptions, model building, dealing with incomplete data, individualized risk assessment, results interpretation, and model validation. Conclusion: Our study shows that the Bayesian approach is (1) much more flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, which is more cumbersome for classical statistical approaches. PMID:28163973

  16. An Efficient Bayesian Model Selection Approach for Interacting Quantitative Trait Loci Models With Many Effects

    PubMed Central

    Yi, Nengjun; Shriner, Daniel; Banerjee, Samprit; Mehta, Tapan; Pomp, Daniel; Yandell, Brian S.

    2007-01-01

    We extend our Bayesian model selection framework for mapping epistatic QTL in experimental crosses to include environmental effects and gene–environment interactions. We propose a new, fast Markov chain Monte Carlo algorithm to explore the posterior distribution of unknowns. In addition, we take advantage of any prior knowledge about genetic architecture to increase posterior probability on more probable models. These enhancements have significant computational advantages in models with many effects. We illustrate the proposed method by detecting new epistatic and gene–sex interactions for obesity-related traits in two real data sets of mice. Our method has been implemented in the freely available package R/qtlbim (http://www.qtlbim.org) to facilitate the general usage of the Bayesian methodology for genomewide interacting QTL analysis. PMID:17483424

  17. Calibration of crash risk models on freeways with limited real-time traffic data using Bayesian meta-analysis and Bayesian inference approach.

    PubMed

    Xu, Chengcheng; Wang, Wei; Liu, Pan; Li, Zhibin

    2015-12-01

    This study aimed to develop a real-time crash risk model with limited data in China by using Bayesian meta-analysis and Bayesian inference approach. A systematic review was first conducted by using three different Bayesian meta-analyses, including the fixed effect meta-analysis, the random effect meta-analysis, and the meta-regression. The meta-analyses provided a numerical summary of the effects of traffic variables on crash risks by quantitatively synthesizing results from previous studies. The random effect meta-analysis and the meta-regression produced a more conservative estimate for the effects of traffic variables compared with the fixed effect meta-analysis. Then, the meta-analyses results were used as informative priors for developing crash risk models with limited data. Three different meta-analyses significantly affect model fit and prediction accuracy. The model based on meta-regression can increase the prediction accuracy by about 15% as compared to the model that was directly developed with limited data. Finally, the Bayesian predictive densities analysis was used to identify the outliers in the limited data. It can further improve the prediction accuracy by 5.0%.

  18. A Bayesian approach to calibrating apatite fission track annealing models for laboratory and geological timescales

    NASA Astrophysics Data System (ADS)

    Stephenson, John; Gallagher, Kerry; Holmes, Chris

    2006-10-01

    We present a new approach for modelling annealing of fission tracks in apatite, aiming to address various problems with existing models. We cast the model in a fully Bayesian context, which allows us explicitly to deal with data and parameter uncertainties and correlations, and also to deal with the predictive uncertainties. We focus on a well-known annealing algorithm [Laslett, G.M., Green, P.F., Duddy, I.R., Gleadow. A.J.W., 1987. Thermal annealing of fission tracks in apatite. 2. A quantitative-analysis. Chem. Geol., 65 (1), 1-13], and build a hierachical Bayesian model to incorporate both laboratory and geological timescale data as direct constraints. Relative to the original model calibration, we find a better (in terms of likelihood) model conditioned just on the reported laboratory data. We then include the uncertainty on the temperatures recorded during the laboratory annealing experiments. We again find a better model, but the predictive uncertainty when extrapolated to geological timescales is increased due to the uncertainty on the laboratory temperatures. Finally, we explictly include a data set [Vrolijk, P., Donelick, R.A., Quenq, J., Cloos. M., 1992. Testing models of fission track annealing in apatite in a simple thermal setting: site 800, leg 129. In: Larson, R., Lancelet, Y. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 129, pp. 169-176] which provides low-temperature geological timescale constraints for the model calibration. When combined with the laboratory data, we find a model which satisfies both the low-temperature and high-temperature geological timescale benchmarks, although the fit to the original laboratory data is degraded. However, when extrapolated to geological timescales, this combined model significantly reduces the well-known rapid recent cooling artifact found in many published thermal models for geological samples.

  19. A Bayesian approach for temporally scaling climate for modeling ecological systems

    USGS Publications Warehouse

    Post van der Burg, Max; Anteau, Michael J.; McCauley, Lisa A.; Wiltermuth, Mark T.

    2016-01-01

    With climate change becoming more of concern, many ecologists are including climate variables in their system and statistical models. The Standardized Precipitation Evapotranspiration Index (SPEI) is a drought index that has potential advantages in modeling ecological response variables, including a flexible computation of the index over different timescales. However, little development has been made in terms of the choice of timescale for SPEI. We developed a Bayesian modeling approach for estimating the timescale for SPEI and demonstrated its use in modeling wetland hydrologic dynamics in two different eras (i.e., historical [pre-1970] and contemporary [post-2003]). Our goal was to determine whether differences in climate between the two eras could explain changes in the amount of water in wetlands. Our results showed that wetland water surface areas tended to be larger in wetter conditions, but also changed less in response to climate fluctuations in the contemporary era. We also found that the average timescale parameter was greater in the historical period, compared with the contemporary period. We were not able to determine whether this shift in timescale was due to a change in the timing of wet–dry periods or whether it was due to changes in the way wetlands responded to climate. Our results suggest that perhaps some interaction between climate and hydrologic response may be at work, and further analysis is needed to determine which has a stronger influence. Despite this, we suggest that our modeling approach enabled us to estimate the relevant timescale for SPEI and make inferences from those estimates. Likewise, our approach provides a mechanism for using prior information with future data to assess whether these patterns may continue over time. We suggest that ecologists consider using temporally scalable climate indices in conjunction with Bayesian analysis for assessing the role of climate in ecological systems.

  20. A Bayesian approach for temporally scaling climate for modeling ecological systems.

    PubMed

    Post van der Burg, Max; Anteau, Michael J; McCauley, Lisa A; Wiltermuth, Mark T

    2016-05-01

    With climate change becoming more of concern, many ecologists are including climate variables in their system and statistical models. The Standardized Precipitation Evapotranspiration Index (SPEI) is a drought index that has potential advantages in modeling ecological response variables, including a flexible computation of the index over different timescales. However, little development has been made in terms of the choice of timescale for SPEI. We developed a Bayesian modeling approach for estimating the timescale for SPEI and demonstrated its use in modeling wetland hydrologic dynamics in two different eras (i.e., historical [pre-1970] and contemporary [post-2003]). Our goal was to determine whether differences in climate between the two eras could explain changes in the amount of water in wetlands. Our results showed that wetland water surface areas tended to be larger in wetter conditions, but also changed less in response to climate fluctuations in the contemporary era. We also found that the average timescale parameter was greater in the historical period, compared with the contemporary period. We were not able to determine whether this shift in timescale was due to a change in the timing of wet-dry periods or whether it was due to changes in the way wetlands responded to climate. Our results suggest that perhaps some interaction between climate and hydrologic response may be at work, and further analysis is needed to determine which has a stronger influence. Despite this, we suggest that our modeling approach enabled us to estimate the relevant timescale for SPEI and make inferences from those estimates. Likewise, our approach provides a mechanism for using prior information with future data to assess whether these patterns may continue over time. We suggest that ecologists consider using temporally scalable climate indices in conjunction with Bayesian analysis for assessing the role of climate in ecological systems.

  1. A Bayesian Hierarchical Modeling Approach to Predicting Flow in Ungauged Basins

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Alameddine, I.; Anderson, R. M.

    2009-12-01

    Recent innovative approaches to identifying and applying regression-based relationships between land use patterns (such as increasing impervious surface area and decreasing vegetative cover) and rainfall-runoff model parameters represent novel and promising improvements to predicting flow from ungauged basins. In particular, these approaches allow for predicting flows under uncertain and potentially variable future conditions due to rapid land cover changes, variable climate conditions, and other factors. Despite the broad range of literature on estimating rainfall-runoff model parameters, however, the absence of a robust set of modeling tools for identifying and quantifying uncertainties in (and correlation between) rainfall-runoff model parameters represents a significant gap in current hydrological modeling research. Here, we build upon a series of recent publications promoting novel Bayesian and probabilistic modeling strategies for quantifying rainfall-runoff model parameter estimation uncertainty. Our approach applies alternative measures of rainfall-runoff model parameter joint likelihood (including Nash-Sutcliffe efficiency, among others) to simulate samples from the joint parameter posterior probability density function. We then use these correlated samples as response variables in a Bayesian hierarchical model with land use coverage data as predictor variables in order to develop a robust land use-based tool for forecasting flow in ungauged basins while accounting for, and explicitly acknowledging, parameter estimation uncertainty. We apply this modeling strategy to low-relief coastal watersheds of Eastern North Carolina, an area representative of coastal resource waters throughout the world because of its sensitive embayments and because of the abundant (but currently threatened) natural resources it hosts. Consequently, this area is the subject of several ongoing studies and large-scale planning initiatives, including those conducted through the United

  2. Computational Approaches for Developing Informative Prior Distributions for Bayesian Calibration of PBPK Models

    EPA Science Inventory

    Using Bayesian statistical methods to quantify uncertainty and variability in human PBPK model predictions for use in risk assessments requires prior distributions (priors), which characterize what is known or believed about parameters’ values before observing in vivo data. Expe...

  3. Computational Approaches for Developing Informative Prior Distributions for Bayesian Calibration of PBPK Models (Book Chapter)

    EPA Science Inventory

    Using Bayesian statistical methods to quantify uncertainty and variability in human physiologically-based pharmacokinetic (PBPK) model predictions for use in risk assessments requires prior distributions (priors), which characterize what is known or believed about parameters’ val...

  4. A Bayesian Approach in Differential Equation Dynamic Models Incorporating Clinical Factors and Covariates

    PubMed Central

    Huang, Yangxin

    2010-01-01

    A virologic marker, the number of HIV RNA copies or viral load, is currently used to evaluate antiretroviral (ARV) therapies in AIDS clinical trials. This marker can be used to assess the antiviral potency of therapies, but may be easily affected by clinical factors such as drug exposures and drug resistance as well as baseline characteristics during the long-term treatment evaluation process. HIV dynamic studies have significantly contributed to the understanding of HIV pathogenesis and ARV treatment strategies. Viral dynamic models can be formulated through differential equations, but there has been only limited development of statistical methodologies for estimating such models or assessing their agreement with observed data. This paper develops a mechanism-based nonlinear differential equation models for characterizing long-term viral dynamics with ARV therapy. In this model we not only incorporate clinical factors (drug exposures and susceptibility), but also baseline covariate (baseline viral load, CD4 count, weight or age) into a function of treatment efficacy. A Bayesian nonlinear mixed-effects modeling approach is investigated with application to an AIDS clinical trial study. The effects of confounding interaction of clinical factors with covariate-based models are compared using the Deviance Information Criteria (DIC), a Bayesian version of the classical deviance for model assessment, designed from complex hierarchical model settings. Relationships between baseline covariate combined with confounding clinical factors and drug efficacy are explored. In addition, we compared models incorporating each of four baseline covariates through DIC and some interesting findings are presented. Our results suggest that modeling HIV dynamics and virologic responses with consideration of time-varying clinical factors as well as baseline characteristics may play an important role in understanding HIV pathogenesis, designing new treatment strategies for long-term care of

  5. A user-friendly forest model with a multiplicative mathematical structure: a Bayesian approach to calibration

    NASA Astrophysics Data System (ADS)

    Bagnara, M.; Van Oijen, M.; Cameron, D.; Gianelle, D.; Magnani, F.; Sottocornola, M.

    2014-10-01

    Forest models are being increasingly used to study ecosystem functioning, through the reproduction of carbon fluxes and productivity in very different forests all over the world. Over the last two decades, the need for simple and "easy to use" models for practical applications, characterized by few parameters and equations, has become clear, and some have been developed for this purpose. These models aim to represent the main drivers underlying forest ecosystem processes while being applicable to the widest possible range of forest ecosystems. Recently, it has also become clear that model performance should not be assessed only in terms of accuracy of estimations and predictions, but also in terms of estimates of model uncertainties. Therefore, the Bayesian approach has increasingly been applied to calibrate forest models, with the aim of estimating the uncertainty of their results, and of comparing their performances. Some forest models, considered to be user-friendly, rely on a multiplicative or quasi-multiplicative mathematical structure, which is known to cause problems during the calibration process, mainly due to high correlations between parameters. In a Bayesian framework using a Markov Chain Monte Carlo sampling this is likely to impair the reaching of a proper convergence of the chains and the sampling from the correct posterior distribution. Here we show two methods to reach proper convergence when using a forest model with a multiplicative structure, applying different algorithms with different number of iterations during the Markov Chain Monte Carlo or a two-steps calibration. The results showed that recently proposed algorithms for adaptive calibration do not confer a clear advantage over the Metropolis-Hastings Random Walk algorithm for the forest model used here. Moreover, the calibration remains time consuming and mathematically difficult, so advantages of using a fast and user-friendly model can be lost due to the calibration process that is

  6. A Bayesian network approach for modeling local failure in lung cancer

    NASA Astrophysics Data System (ADS)

    Oh, Jung Hun; Craft, Jeffrey; Lozi, Rawan Al; Vaidya, Manushka; Meng, Yifan; Deasy, Joseph O.; Bradley, Jeffrey D.; El Naqa, Issam

    2011-03-01

    Locally advanced non-small cell lung cancer (NSCLC) patients suffer from a high local failure rate following radiotherapy. Despite many efforts to develop new dose-volume models for early detection of tumor local failure, there was no reported significant improvement in their application prospectively. Based on recent studies of biomarker proteins' role in hypoxia and inflammation in predicting tumor response to radiotherapy, we hypothesize that combining physical and biological factors with a suitable framework could improve the overall prediction. To test this hypothesis, we propose a graphical Bayesian network framework for predicting local failure in lung cancer. The proposed approach was tested using two different datasets of locally advanced NSCLC patients treated with radiotherapy. The first dataset was collected retrospectively, which comprises clinical and dosimetric variables only. The second dataset was collected prospectively in which in addition to clinical and dosimetric information, blood was drawn from the patients at various time points to extract candidate biomarkers as well. Our preliminary results show that the proposed method can be used as an efficient method to develop predictive models of local failure in these patients and to interpret relationships among the different variables in the models. We also demonstrate the potential use of heterogeneous physical and biological variables to improve the model prediction. With the first dataset, we achieved better performance compared with competing Bayesian-based classifiers. With the second dataset, the combined model had a slightly higher performance compared to individual physical and biological models, with the biological variables making the largest contribution. Our preliminary results highlight the potential of the proposed integrated approach for predicting post-radiotherapy local failure in NSCLC patients.

  7. Adaptive modelling of gene regulatory network using Bayesian information criterion-guided sparse regression approach.

    PubMed

    Shi, Ming; Shen, Weiming; Wang, Hong-Qiang; Chong, Yanwen

    2016-12-01

    Inferring gene regulatory networks (GRNs) from microarray expression data are an important but challenging issue in systems biology. In this study, the authors propose a Bayesian information criterion (BIC)-guided sparse regression approach for GRN reconstruction. This approach can adaptively model GRNs by optimising the l1-norm regularisation of sparse regression based on a modified version of BIC. The use of the regularisation strategy ensures the inferred GRNs to be as sparse as natural, while the modified BIC allows incorporating prior knowledge on expression regulation and thus avoids the overestimation of expression regulators as usual. Especially, the proposed method provides a clear interpretation of combinatorial regulations of gene expression by optimally extracting regulation coordination for a given target gene. Experimental results on both simulation data and real-world microarray data demonstrate the competent performance of discovering regulatory relationships in GRN reconstruction.

  8. Introduction to Bayesian statistical approaches to compositional analyses of transgenic crops 1. Model validation and setting the stage.

    PubMed

    Harrison, Jay M; Breeze, Matthew L; Harrigan, George G

    2011-08-01

    Statistical comparisons of compositional data generated on genetically modified (GM) crops and their near-isogenic conventional (non-GM) counterparts typically rely on classical significance testing. This manuscript presents an introduction to Bayesian methods for compositional analysis along with recommendations for model validation. The approach is illustrated using protein and fat data from two herbicide tolerant GM soybeans (MON87708 and MON87708×MON89788) and a conventional comparator grown in the US in 2008 and 2009. Guidelines recommended by the US Food and Drug Administration (FDA) in conducting Bayesian analyses of clinical studies on medical devices were followed. This study is the first Bayesian approach to GM and non-GM compositional comparisons. The evaluation presented here supports a conclusion that a Bayesian approach to analyzing compositional data can provide meaningful and interpretable results. We further describe the importance of method validation and approaches to model checking if Bayesian approaches to compositional data analysis are to be considered viable by scientists involved in GM research and regulation.

  9. Uncertainty estimation of a complex water quality model: The influence of Box-Cox transformation on Bayesian approaches and comparison with a non-Bayesian method

    NASA Astrophysics Data System (ADS)

    Freni, Gabriele; Mannina, Giorgio

    In urban drainage modelling, uncertainty analysis is of undoubted necessity. However, uncertainty analysis in urban water-quality modelling is still in its infancy and only few studies have been carried out. Therefore, several methodological aspects still need to be experienced and clarified especially regarding water quality modelling. The use of the Bayesian approach for uncertainty analysis has been stimulated by its rigorous theoretical framework and by the possibility of evaluating the impact of new knowledge on the modelling predictions. Nevertheless, the Bayesian approach relies on some restrictive hypotheses that are not present in less formal methods like the Generalised Likelihood Uncertainty Estimation (GLUE). One crucial point in the application of Bayesian method is the formulation of a likelihood function that is conditioned by the hypotheses made regarding model residuals. Statistical transformations, such as the use of Box-Cox equation, are generally used to ensure the homoscedasticity of residuals. However, this practice may affect the reliability of the analysis leading to a wrong uncertainty estimation. The present paper aims to explore the influence of the Box-Cox equation for environmental water quality models. To this end, five cases were considered one of which was the “real” residuals distributions (i.e. drawn from available data). The analysis was applied to the Nocella experimental catchment (Italy) which is an agricultural and semi-urbanised basin where two sewer systems, two wastewater treatment plants and a river reach were monitored during both dry and wet weather periods. The results show that the uncertainty estimation is greatly affected by residual transformation and a wrong assumption may also affect the evaluation of model uncertainty. The use of less formal methods always provide an overestimation of modelling uncertainty with respect to Bayesian method but such effect is reduced if a wrong assumption is made regarding the

  10. Meta-analysis of diagnostic test data: a bivariate Bayesian modeling approach.

    PubMed

    Verde, Pablo E

    2010-12-30

    In the last decades, the amount of published results on clinical diagnostic tests has expanded very rapidly. The counterpart to this development has been the formal evaluation and synthesis of diagnostic results. However, published results present substantial heterogeneity and they can be regarded as so far removed from the classical domain of meta-analysis, that they can provide a rather severe test of classical statistical methods. Recently, bivariate random effects meta-analytic methods, which model the pairs of sensitivities and specificities, have been presented from the classical point of view. In this work a bivariate Bayesian modeling approach is presented. This approach substantially extends the scope of classical bivariate methods by allowing the structural distribution of the random effects to depend on multiple sources of variability. Meta-analysis is summarized by the predictive posterior distributions for sensitivity and specificity. This new approach allows, also, to perform substantial model checking, model diagnostic and model selection. Statistical computations are implemented in the public domain statistical software (WinBUGS and R) and illustrated with real data examples.

  11. Inference of reactive transport model parameters using a Bayesian multivariate approach

    NASA Astrophysics Data System (ADS)

    Carniato, Luca; Schoups, Gerrit; van de Giesen, Nick

    2014-08-01

    Parameter estimation of subsurface transport models from multispecies data requires the definition of an objective function that includes different types of measurements. Common approaches are weighted least squares (WLS), where weights are specified a priori for each measurement, and weighted least squares with weight estimation (WLS(we)) where weights are estimated from the data together with the parameters. In this study, we formulate the parameter estimation task as a multivariate Bayesian inference problem. The WLS and WLS(we) methods are special cases in this framework, corresponding to specific prior assumptions about the residual covariance matrix. The Bayesian perspective allows for generalizations to cases where residual correlation is important and for efficient inference by analytically integrating out the variances (weights) and selected covariances from the joint posterior. Specifically, the WLS and WLS(we) methods are compared to a multivariate (MV) approach that accounts for specific residual correlations without the need for explicit estimation of the error parameters. When applied to inference of reactive transport model parameters from column-scale data on dissolved species concentrations, the following results were obtained: (1) accounting for residual correlation between species provides more accurate parameter estimation for high residual correlation levels whereas its influence for predictive uncertainty is negligible, (2) integrating out the (co)variances leads to an efficient estimation of the full joint posterior with a reduced computational effort compared to the WLS(we) method, and (3) in the presence of model structural errors, none of the methods is able to identify the correct parameter values.

  12. Bayesian model-based approach for developing a river water quality index

    NASA Astrophysics Data System (ADS)

    Ali, Zalina Mohd; Ibrahim, Noor Akma; Mengersen, Kerrie; Shitan, Mahendran; Juahir, Hafizan

    2014-09-01

    Six main pollutants have been previously identified by expert opinion to determine river condition in Malaysia. The pollutants were Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Suspended Solid (SS), potential of Hydrogen (pH) and Ammonia (AN). The selected variables together with the respective weights have been applied to calculate the water quality index of all rivers in Malaysia. However, the relative weights established in DOE-WQI formula are subjective in nature and not unanimously agreed upon, as indicated by different weight being proposed for the same variables by various panels of experts. Focusing on the Langat River, a Bayesian model-based approach was introduced for the first time in this study to obtain new objective relative weights. The new weights used in WQI calculation are shown to be capable of capturing similar distributions in water quality compared with the existing DOE-WQI.

  13. A Bayesian Approach for Multigroup Nonlinear Factor Analysis.

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2002-01-01

    Developed a Bayesian approach for a general multigroup nonlinear factor analysis model that simultaneously obtains joint Bayesian estimates of the factor scores and the structural parameters subjected to some constraints across different groups. (SLD)

  14. Model Diagnostics for Bayesian Networks

    ERIC Educational Resources Information Center

    Sinharay, Sandip

    2006-01-01

    Bayesian networks are frequently used in educational assessments primarily for learning about students' knowledge and skills. There is a lack of works on assessing fit of Bayesian networks. This article employs the posterior predictive model checking method, a popular Bayesian model checking tool, to assess fit of simple Bayesian networks. A…

  15. Ensemble forecasting of sub-seasonal to seasonal streamflow by a Bayesian joint probability modelling approach

    NASA Astrophysics Data System (ADS)

    Zhao, Tongtiegang; Schepen, Andrew; Wang, Q. J.

    2016-10-01

    The Bayesian joint probability (BJP) modelling approach is used operationally to produce seasonal (three-month-total) ensemble streamflow forecasts in Australia. However, water resource managers are calling for more informative sub-seasonal forecasts. Taking advantage of BJP's capability of handling multiple predictands, ensemble forecasting of sub-seasonal to seasonal streamflows is investigated for 23 catchments around Australia. Using antecedent streamflow and climate indices as predictors, monthly forecasts are developed for the three-month period ahead. Forecast reliability and skill are evaluated for the period 1982-2011 using a rigorous leave-five-years-out cross validation strategy. BJP ensemble forecasts of monthly streamflow volumes are generally reliable in ensemble spread. Forecast skill, relative to climatology, is positive in 74% of cases in the first month, decreasing to 57% and 46% respectively for streamflow forecasts for the final two months of the season. As forecast skill diminishes with increasing lead time, the monthly forecasts approach climatology. Seasonal forecasts accumulated from monthly forecasts are found to be similarly skilful to forecasts from BJP models based on seasonal totals directly. The BJP modelling approach is demonstrated to be a viable option for producing ensemble time-series sub-seasonal to seasonal streamflow forecasts.

  16. Analysis of Blood Transfusion Data Using Bivariate Zero-Inflated Poisson Model: A Bayesian Approach

    PubMed Central

    Mohammadi, Tayeb; Sedehi, Morteza

    2016-01-01

    Recognizing the factors affecting the number of blood donation and blood deferral has a major impact on blood transfusion. There is a positive correlation between the variables “number of blood donation” and “number of blood deferral”: as the number of return for donation increases, so does the number of blood deferral. On the other hand, due to the fact that many donors never return to donate, there is an extra zero frequency for both of the above-mentioned variables. In this study, in order to apply the correlation and to explain the frequency of the excessive zero, the bivariate zero-inflated Poisson regression model was used for joint modeling of the number of blood donation and number of blood deferral. The data was analyzed using the Bayesian approach applying noninformative priors at the presence and absence of covariates. Estimating the parameters of the model, that is, correlation, zero-inflation parameter, and regression coefficients, was done through MCMC simulation. Eventually double-Poisson model, bivariate Poisson model, and bivariate zero-inflated Poisson model were fitted on the data and were compared using the deviance information criteria (DIC). The results showed that the bivariate zero-inflated Poisson regression model fitted the data better than the other models. PMID:27703493

  17. Analysis of Blood Transfusion Data Using Bivariate Zero-Inflated Poisson Model: A Bayesian Approach.

    PubMed

    Mohammadi, Tayeb; Kheiri, Soleiman; Sedehi, Morteza

    2016-01-01

    Recognizing the factors affecting the number of blood donation and blood deferral has a major impact on blood transfusion. There is a positive correlation between the variables "number of blood donation" and "number of blood deferral": as the number of return for donation increases, so does the number of blood deferral. On the other hand, due to the fact that many donors never return to donate, there is an extra zero frequency for both of the above-mentioned variables. In this study, in order to apply the correlation and to explain the frequency of the excessive zero, the bivariate zero-inflated Poisson regression model was used for joint modeling of the number of blood donation and number of blood deferral. The data was analyzed using the Bayesian approach applying noninformative priors at the presence and absence of covariates. Estimating the parameters of the model, that is, correlation, zero-inflation parameter, and regression coefficients, was done through MCMC simulation. Eventually double-Poisson model, bivariate Poisson model, and bivariate zero-inflated Poisson model were fitted on the data and were compared using the deviance information criteria (DIC). The results showed that the bivariate zero-inflated Poisson regression model fitted the data better than the other models.

  18. Nodal predictive error model and Bayesian approach for thermal diffusivity and heat source mapping

    NASA Astrophysics Data System (ADS)

    Massard, H.; Fudym, Olivier; Orlande, H. R. B.; Batsale, J. C.

    2010-07-01

    This article aims at solving a two-dimensional inverse heat conduction problem in order to retrieve both the thermal diffusivity and heat source field in a thin plate. A spatial random heat pulse is applied to the plate and the thermal response is analysed. The inverse approach is based on the minimisation of a nodal predictive error model, which yields a linear estimation problem. As a result of this approach, the sensitivity matrix is directly filled with experimental data, and thus is partially noisy. Bayesian estimators, such as the Maximum A Posteriori and a Markov Chain Monte Carlo approach (Metropolis-Hastings), are implemented and compared with the Ordinary Least Squares solution. Simulated temperature measurements are used in the inverse analysis. The nodal strategy relies on the availability of temperature measurements with fine spatial resolution and high frequency, typical of nowadays infrared cameras. The effects of both the measurement errors and of the model errors on the inverse problem solution are also analysed.

  19. A Bayesian approach to modelling the natural history of a chronic condition from observations with intervention.

    PubMed

    Craig, B A; Fryback, D G; Klein, R; Klein, B E

    1999-06-15

    To assess the costs and benefits of screening and treatment strategies, it is important to know what would have happened had there been no intervention. In today's ethical climate, however, it is almost impossible to observe this directly and therefore must be inferred from observations with intervention. In this paper, we illustrate a Bayesian approach to this situation when the observations are at separated and unequally spaced time points and the time of intervention is interval censored. We develop a discrete-time Markov model which combines a non-homogeneous Markov chain, used to model the natural progression, with mechanisms that describe the possibility of both treatment intervention and death. We apply this approach to a subpopulation of the Wisconsin Epidemiologic Study of Diabetic Retinopathy, a population-based cohort study to investigate prevalence, incidence, and progression of diabetic retinopathy. In addition, posterior predictive distributions are discussed as a prognostic tool to assist researchers in evaluating costs and benefits of treatment protocols. While we focus this approach on diabetic retinopathy cohort data, we believe this methodology can have wide application.

  20. Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach.

    PubMed

    Saa, Pedro A; Nielsen, Lars K

    2016-07-15

    Kinetic models are essential to quantitatively understand and predict the behaviour of metabolic networks. Detailed and thermodynamically feasible kinetic models of metabolism are inherently difficult to formulate and fit. They have a large number of heterogeneous parameters, are non-linear and have complex interactions. Many powerful fitting strategies are ruled out by the intractability of the likelihood function. Here, we have developed a computational framework capable of fitting feasible and accurate kinetic models using Approximate Bayesian Computation. This framework readily supports advanced modelling features such as model selection and model-based experimental design. We illustrate this approach on the tightly-regulated mammalian methionine cycle. Sampling from the posterior distribution, the proposed framework generated thermodynamically feasible parameter samples that converged on the true values, and displayed remarkable prediction accuracy in several validation tests. Furthermore, a posteriori analysis of the parameter distributions enabled appraisal of the systems properties of the network (e.g., control structure) and key metabolic regulations. Finally, the framework was used to predict missing allosteric interactions.

  1. Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach

    PubMed Central

    Saa, Pedro A.; Nielsen, Lars K.

    2016-01-01

    Kinetic models are essential to quantitatively understand and predict the behaviour of metabolic networks. Detailed and thermodynamically feasible kinetic models of metabolism are inherently difficult to formulate and fit. They have a large number of heterogeneous parameters, are non-linear and have complex interactions. Many powerful fitting strategies are ruled out by the intractability of the likelihood function. Here, we have developed a computational framework capable of fitting feasible and accurate kinetic models using Approximate Bayesian Computation. This framework readily supports advanced modelling features such as model selection and model-based experimental design. We illustrate this approach on the tightly-regulated mammalian methionine cycle. Sampling from the posterior distribution, the proposed framework generated thermodynamically feasible parameter samples that converged on the true values, and displayed remarkable prediction accuracy in several validation tests. Furthermore, a posteriori analysis of the parameter distributions enabled appraisal of the systems properties of the network (e.g., control structure) and key metabolic regulations. Finally, the framework was used to predict missing allosteric interactions. PMID:27417285

  2. Modelling multi-hazard hurricane damages on an urbanized coast with a Bayesian Network approach

    USGS Publications Warehouse

    van Verseveld, H.C.W.; Van Dongeren, A. R.; Plant, Nathaniel G.; Jäger, W.S.; den Heijer, C.

    2015-01-01

    Hurricane flood impacts to residential buildings in coastal zones are caused by a number of hazards, such as inundation, overflow currents, erosion, and wave attack. However, traditional hurricane damage models typically make use of stage-damage functions, where the stage is related to flooding depth only. Moreover, these models are deterministic and do not consider the large amount of uncertainty associated with both the processes themselves and with the predictions. This uncertainty becomes increasingly important when multiple hazards (flooding, wave attack, erosion, etc.) are considered simultaneously. This paper focusses on establishing relationships between observed damage and multiple hazard indicators in order to make better probabilistic predictions. The concept consists of (1) determining Local Hazard Indicators (LHIs) from a hindcasted storm with use of a nearshore morphodynamic model, XBeach, and (2) coupling these LHIs and building characteristics to the observed damages. We chose a Bayesian Network approach in order to make this coupling and used the LHIs ‘Inundation depth’, ‘Flow velocity’, ‘Wave attack’, and ‘Scour depth’ to represent flooding, current, wave impacts, and erosion related hazards.The coupled hazard model was tested against four thousand damage observations from a case site at the Rockaway Peninsula, NY, that was impacted by Hurricane Sandy in late October, 2012. The model was able to accurately distinguish ‘Minor damage’ from all other outcomes 95% of the time and could distinguish areas that were affected by the storm, but not severely damaged, 68% of the time. For the most heavily damaged buildings (‘Major Damage’ and ‘Destroyed’), projections of the expected damage underestimated the observed damage. The model demonstrated that including multiple hazards doubled the prediction skill, with Log-Likelihood Ratio test (a measure of improved accuracy and reduction in uncertainty) scores between 0.02 and 0

  3. Bayesian informative dropout model for longitudinal binary data with random effects using conditional and joint modeling approaches.

    PubMed

    Chan, Jennifer S K

    2016-05-01

    Dropouts are common in longitudinal study. If the dropout probability depends on the missing observations at or after dropout, this type of dropout is called informative (or nonignorable) dropout (ID). Failure to accommodate such dropout mechanism into the model will bias the parameter estimates. We propose a conditional autoregressive model for longitudinal binary data with an ID model such that the probabilities of positive outcomes as well as the drop-out indicator in each occasion are logit linear in some covariates and outcomes. This model adopting a marginal model for outcomes and a conditional model for dropouts is called a selection model. To allow for the heterogeneity and clustering effects, the outcome model is extended to incorporate mixture and random effects. Lastly, the model is further extended to a novel model that models the outcome and dropout jointly such that their dependency is formulated through an odds ratio function. Parameters are estimated by a Bayesian approach implemented using the user-friendly Bayesian software WinBUGS. A methadone clinic dataset is analyzed to illustrate the proposed models. Result shows that the treatment time effect is still significant but weaker after allowing for an ID process in the data. Finally the effect of drop-out on parameter estimates is evaluated through simulation studies.

  4. Bayesian parameter estimation for the Wnt pathway: an infinite mixture models approach.

    PubMed

    Koutroumpas, Konstantinos; Ballarini, Paolo; Votsi, Irene; Cournède, Paul-Henry

    2016-09-01

    Likelihood-free methods, like Approximate Bayesian Computation (ABC), have been extensively used in model-based statistical inference with intractable likelihood functions. When combined with Sequential Monte Carlo (SMC) algorithms they constitute a powerful approach for parameter estimation and model selection of mathematical models of complex biological systems. A crucial step in the ABC-SMC algorithms, significantly affecting their performance, is the propagation of a set of parameter vectors through a sequence of intermediate distributions using Markov kernels. In this article, we employ Dirichlet process mixtures (DPMs) to design optimal transition kernels and we present an ABC-SMC algorithm with DPM kernels. We illustrate the use of the proposed methodology using real data for the canonical Wnt signaling pathway. A multi-compartment model of the pathway is developed and it is compared to an existing model. The results indicate that DPMs are more efficient in the exploration of the parameter space and can significantly improve ABC-SMC performance. In comparison to alternative sampling schemes that are commonly used, the proposed approach can bring potential benefits in the estimation of complex multimodal distributions. The method is used to estimate the parameters and the initial state of two models of the Wnt pathway and it is shown that the multi-compartment model fits better the experimental data. Python scripts for the Dirichlet Process Gaussian Mixture model and the Gibbs sampler are available at https://sites.google.com/site/kkoutroumpas/software konstantinos.koutroumpas@ecp.fr. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Estimating the distribution of sensorimotor synchronization data: A Bayesian hierarchical modeling approach.

    PubMed

    Bååth, Rasmus

    2016-06-01

    The sensorimotor synchronization paradigm is used when studying the coordination of rhythmic motor responses with a pacing stimulus and is an important paradigm in the study of human timing and time perception. Two measures of performance frequently calculated using sensorimotor synchronization data are the average offset and variability of the stimulus-to-response asynchronies-the offsets between the stimuli and the motor responses. Here it is shown that assuming that asynchronies are normally distributed when estimating these measures can result in considerable underestimation of both the average offset and variability. This is due to a tendency for the distribution of the asynchronies to be bimodal and left skewed when the interstimulus interval is longer than 2 s. It is argued that (1) this asymmetry is the result of the distribution of the asynchronies being a mixture of two types of responses-predictive and reactive-and (2) the main interest in a sensorimotor synchronization study is the predictive responses. A Bayesian hierarchical modeling approach is proposed in which sensorimotor synchronization data are modeled as coming from a right-censored normal distribution that effectively separates the predictive responses from the reactive responses. Evaluation using both simulated data and experimental data from a study by Repp and Doggett (2007) showed that the proposed approach produces more precise estimates of the average offset and variability, with considerably less underestimation.

  6. Modeling attainment of steady state of drug concentration in plasma by means of a Bayesian approach using MCMC methods.

    PubMed

    Jordan, Paul; Brunschwig, Hadassa; Luedin, Eric

    2008-01-01

    The approach of Bayesian mixed effects modeling is an appropriate method for estimating both population-specific as well as subject-specific times to steady state. In addition to pure estimation, the approach allows to determine the time until a certain fraction of individuals of a population has reached steady state with a pre-specified certainty. In this paper a mixed effects model for the parameters of a nonlinear pharmacokinetic model is used within a Bayesian framework. Model fitting by means of Markov Chain Monte Carlo methods as implemented in the Gibbs sampler as well as the extraction of estimates and probability statements of interest are described. Finally, the proposed approach is illustrated by application to trough data from a multiple dose clinical trial.

  7. Inverse and forward modeling under uncertainty using MRE-based Bayesian approach

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Rubin, Y.

    2004-12-01

    A stochastic inverse approach for subsurface characterization is proposed and applied to shallow vadose zone at a winery field site in north California and to a gas reservoir at the Ormen Lange field site in the North Sea. The approach is formulated in a Bayesian-stochastic framework, whereby the unknown parameters are identified in terms of their statistical moments or their probabilities. Instead of the traditional single-valued estimation /prediction provided by deterministic methods, the approach gives a probability distribution for an unknown parameter. This allows calculating the mean, the mode, and the confidence interval, which is useful for a rational treatment of uncertainty and its consequences. The approach also allows incorporating data of various types and different error levels, including measurements of state variables as well as information such as bounds on or statistical moments of the unknown parameters, which may represent prior information. To obtain minimally subjective prior probabilities required for the Bayesian approach, the principle of Minimum Relative Entropy (MRE) is employed. The approach is tested in field sites for flow parameters identification and soil moisture estimation in the vadose zone and for gas saturation estimation at great depth below the ocean floor. Results indicate the potential of coupling various types of field data within a MRE-based Bayesian formalism for improving the estimation of the parameters of interest.

  8. A Bayesian Performance Prediction Model for Mathematics Education: A Prototypical Approach for Effective Group Composition

    ERIC Educational Resources Information Center

    Bekele, Rahel; McPherson, Maggie

    2011-01-01

    This research work presents a Bayesian Performance Prediction Model that was created in order to determine the strength of personality traits in predicting the level of mathematics performance of high school students in Addis Ababa. It is an automated tool that can be used to collect information from students for the purpose of effective group…

  9. A Bayesian Performance Prediction Model for Mathematics Education: A Prototypical Approach for Effective Group Composition

    ERIC Educational Resources Information Center

    Bekele, Rahel; McPherson, Maggie

    2011-01-01

    This research work presents a Bayesian Performance Prediction Model that was created in order to determine the strength of personality traits in predicting the level of mathematics performance of high school students in Addis Ababa. It is an automated tool that can be used to collect information from students for the purpose of effective group…

  10. Modeling Associations among Multivariate Longitudinal Categorical Variables in Survey Data: A Semiparametric Bayesian Approach

    ERIC Educational Resources Information Center

    Tchumtchoua, Sylvie; Dey, Dipak K.

    2012-01-01

    This paper proposes a semiparametric Bayesian framework for the analysis of associations among multivariate longitudinal categorical variables in high-dimensional data settings. This type of data is frequent, especially in the social and behavioral sciences. A semiparametric hierarchical factor analysis model is developed in which the…

  11. Monitoring schistosomiasis risk in East China over space and time using a Bayesian hierarchical modeling approach.

    PubMed

    Hu, Yi; Ward, Michael P; Xia, Congcong; Li, Rui; Sun, Liqian; Lynn, Henry; Gao, Fenghua; Wang, Qizhi; Zhang, Shiqing; Xiong, Chenglong; Zhang, Zhijie; Jiang, Qingwu

    2016-04-07

    Schistosomiasis remains a major public health problem and causes substantial economic impact in east China, particularly along the Yangtze River Basin. Disease forecasting and surveillance can assist in the development and implementation of more effective intervention measures to control disease. In this study, we applied a Bayesian hierarchical spatio-temporal model to describe trends in schistosomiasis risk in Anhui Province, China, using annual parasitological and environmental data for the period 1997-2010. A computationally efficient approach-Integrated Nested Laplace Approximation-was used for model inference. A zero-inflated, negative binomial model best described the spatio-temporal dynamics of schistosomiasis risk. It predicted that the disease risk would generally be low and stable except for some specific, local areas during the period 2011-2014. High-risk counties were identified in the forecasting maps: three in which the risk remained high, and two in which risk would become high. The results indicated that schistosomiasis risk has been reduced to consistently low levels throughout much of this region of China; however, some counties were identified in which progress in schistosomiasis control was less than satisfactory. Whilst maintaining overall control, specific interventions in the future should focus on these refractive counties as part of a strategy to eliminate schistosomiasis from this region.

  12. Carbon isotope discrimination during branch photosynthesis of Fagus sylvatica: a Bayesian modelling approach.

    PubMed

    Gentsch, Lydia; Hammerle, Albin; Sturm, Patrick; Ogée, Jérôme; Wingate, Lisa; Siegwolf, Rolf; Plüss, Peter; Baur, Thomas; Buchmann, Nina; Knohl, Alexander

    2014-07-01

    Field measurements of photosynthetic carbon isotope discrimination ((13)Δ) of Fagus sylvatica, conducted with branch bags and laser spectrometry, revealed a high variability of (13)Δ, both on diurnal and day-to-day timescales. We tested the prediction capability of three versions of a commonly used model for (13)Δ [called here comprehensive ((13)(Δcomp)), simplified ((13) Δsimple) and revised ((13)(Δrevised)) versions]. A Bayesian approach was used to calibrate major model parameters. Constrained estimates were found for the fractionation during CO(2) fixation in (13)(Δcomp), but not in (13)(Δsimple), and partially for the mesophyll conductance for CO(2)(gi). No constrained estimates were found for fractionations during mitochondrial and photorespiration, and for a diurnally variable apparent fractionation between current assimilates and mitochondrial respiration, specific to (13)(Δrevised). A quantification of parameter estimation uncertainties and interdependencies further helped explore model structure and behaviour. We found that (13)(Δcomp) usually outperformed (13)(Δsimple) because of the explicit consideration of gi and the photorespiratory fractionation in (13)(Δcomp) that enabled a better description of the large observed diurnal variation (≈9‰) of (13)Δ. Flux-weighted daily means of (13)Δ were also better predicted with (13)(Δcomp) than with (13)(Δsimple).

  13. A multinomial logit model-Bayesian network hybrid approach for driver injury severity analyses in rear-end crashes.

    PubMed

    Chen, Cong; Zhang, Guohui; Tarefder, Rafiqul; Ma, Jianming; Wei, Heng; Guan, Hongzhi

    2015-07-01

    Rear-end crash is one of the most common types of traffic crashes in the U.S. A good understanding of its characteristics and contributing factors is of practical importance. Previously, both multinomial Logit models and Bayesian network methods have been used in crash modeling and analysis, respectively, although each of them has its own application restrictions and limitations. In this study, a hybrid approach is developed to combine multinomial logit models and Bayesian network methods for comprehensively analyzing driver injury severities in rear-end crashes based on state-wide crash data collected in New Mexico from 2010 to 2011. A multinomial logit model is developed to investigate and identify significant contributing factors for rear-end crash driver injury severities classified into three categories: no injury, injury, and fatality. Then, the identified significant factors are utilized to establish a Bayesian network to explicitly formulate statistical associations between injury severity outcomes and explanatory attributes, including driver behavior, demographic features, vehicle factors, geometric and environmental characteristics, etc. The test results demonstrate that the proposed hybrid approach performs reasonably well. The Bayesian network reference analyses indicate that the factors including truck-involvement, inferior lighting conditions, windy weather conditions, the number of vehicles involved, etc. could significantly increase driver injury severities in rear-end crashes. The developed methodology and estimation results provide insights for developing effective countermeasures to reduce rear-end crash injury severities and improve traffic system safety performance.

  14. Cyclist activity and injury risk analysis at signalized intersections: a Bayesian modelling approach.

    PubMed

    Strauss, Jillian; Miranda-Moreno, Luis F; Morency, Patrick

    2013-10-01

    This study proposes a two-equation Bayesian modelling approach to simultaneously study cyclist injury occurrence and bicycle activity at signalized intersections as joint outcomes. This approach deals with the potential presence of endogeneity and unobserved heterogeneities and is used to identify factors associated with both cyclist injuries and volumes. Its application to identify high-risk corridors is also illustrated. Montreal, Quebec, Canada is the application environment, using an extensive inventory of a large sample of signalized intersections containing disaggregate motor-vehicle traffic volumes and bicycle flows, geometric design, traffic control and built environment characteristics in the vicinity of the intersections. Cyclist injury data for the period of 2003-2008 is used in this study. Also, manual bicycle counts were standardized using temporal and weather adjustment factors to obtain average annual daily volumes. Results confirm and quantify the effects of both bicycle and motor-vehicle flows on cyclist injury occurrence. Accordingly, more cyclists at an intersection translate into more cyclist injuries but lower injury rates due to the non-linear association between bicycle volume and injury occurrence. Furthermore, the results emphasize the importance of turning motor-vehicle movements. The presence of bus stops and total crosswalk length increase cyclist injury occurrence whereas the presence of a raised median has the opposite effect. Bicycle activity through intersections was found to increase as employment, number of metro stations, land use mix, area of commercial land use type, length of bicycle facilities and the presence of schools within 50-800 m of the intersection increase. Intersections with three approaches are expected to have fewer cyclists than those with four. Using Bayesian analysis, expected injury frequency and injury rates were estimated for each intersection and used to rank corridors. Corridors with high bicycle volumes

  15. Testing comparative phylogeographic models of marine vicariance and dispersal using a hierarchical Bayesian approach

    PubMed Central

    2008-01-01

    Background Marine allopatric speciation is an enigma because pelagic larval dispersal can potentially connect disjunct populations thereby preventing reproductive and morphological divergence. Here we present a new hierarchical approximate Bayesian computation model (HABC) that tests two hypotheses of marine allopatric speciation: 1.) "soft vicariance", where a speciation involves fragmentation of a large widespread ancestral species range that was previously connected by long distance gene flow; and 2.) peripatric colonization, where speciations in peripheral archipelagos emerge from sweepstakes colonizations from central source regions. The HABC approach analyzes all the phylogeographic datasets at once in order to make across taxon-pair inferences about biogeographic processes while explicitly allowing for uncertainty in the demographic differences within each taxon-pair. Our method uses comparative phylogeographic data that consists of single locus mtDNA sequences from multiple co-distributed taxa containing pairs of central and peripheral populations. We use the method on two comparative phylogeographic data sets consisting of cowrie gastropod endemics co-distributed in the Hawaiian (11 taxon-pairs) and Marquesan archipelagos (7 taxon-pairs). Results Given the Marquesan data, we find strong evidence of simultaneous colonization across all seven cowrie gastropod endemics co-distributed in the Marquesas. In contrast, the lower sample sizes in the Hawaiian data lead to greater uncertainty associated with the Hawaiian estimates. Although, the hyper-parameter estimates point to soft vicariance in a subset of the 11 Hawaiian taxon-pairs, the hyper-prior and hyper-posterior are too similar to make a definitive conclusion. Both results are not inconsistent with what is known about the geologic history of the archipelagos. Simulations verify that our method can successfully distinguish these two histories across a wide range of conditions given sufficient sampling

  16. Reconstruction of Layer Densities in a Multilayer Snowpack using a Bayesian Approach to Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Aguayo, M.; Marshall, H.; McNamara, J. P.; Mead, J.; Flores, A. N.

    2013-12-01

    Estimation of snowpack parameters such as depth, density and grain structure is a central focus of hydrology in seasonally snow-covered lands. These parameters are directly estimated by field observations, indirectly estimated from other parameters using statistical correlations, or simulated with a model. Difficulty in sampling thin layers and uncertainty in the transition between layers can cause significant uncertainty in measurements of these parameters. Snow density is one of the most important parameters to measure because it is strictly related with snow water content, an important component of the global water balance. We develop a mathematical framework to estimate snow density from measurements of temperature and thickness of snowpack layers over a particular time period, in conjunction with a physics-based model of snowpack evolution. We formulate a Bayesian approach to estimate the snowpack density profile, using a full range of possible simulations that incorporate key sources of uncertainty to build in prior snowpack knowledge. The posterior probability density function of the snow density, conditioned on snowpack temperature measurements, is computed by multiplying the likelihoods and assumed prior distribution function. Random sampling is used to generate a range of densities with same probability when prior uniform probability function is assumed. A posterior probability density function calculated directly via Bayes' theorem is used to calculate the probability of every sample generated. The forward model is a 1D, multilayer snow energy and mass balance model, which solves for snow temperature, density, and liquid water content on a finite element mesh. The surface and ground temperature data of snowpack (boundary conditions), are provided by the Center for Snow and Avalanche Studies (CSAS), Silverton CO, from snow pits made at Swamp Angel and Senator Beck study plot sites. Standard errors between field observations and results computed denote the

  17. A Bayesian belief network approach for assessing uncertainty in conceptual site models at contaminated sites

    NASA Astrophysics Data System (ADS)

    Thomsen, Nanna I.; Binning, Philip J.; McKnight, Ursula S.; Tuxen, Nina; Bjerg, Poul L.; Troldborg, Mads

    2016-05-01

    A key component in risk assessment of contaminated sites is in the formulation of a conceptual site model (CSM). A CSM is a simplified representation of reality and forms the basis for the mathematical modeling of contaminant fate and transport at the site. The CSM should therefore identify the most important site-specific features and processes that may affect the contaminant transport behavior at the site. However, the development of a CSM will always be associated with uncertainties due to limited data and lack of understanding of the site conditions. CSM uncertainty is often found to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert opinion at different knowledge levels. The developed BBNs combine data from desktop studies and initial site investigations with expert opinion to assess which of the CSMs are more likely to reflect the actual site conditions. The method is demonstrated on a Danish field site, contaminated with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information

  18. A Nonparametric Bayesian Approach to Seismic Hazard Modeling Using the ETAS Framework

    NASA Astrophysics Data System (ADS)

    Ross, G.

    2015-12-01

    The epidemic-type aftershock sequence (ETAS) model is one of the most popular tools for modeling seismicity and quantifying risk in earthquake-prone regions. Under the ETAS model, the occurrence times of earthquakes are treated as a self-exciting Poisson process where each earthquake briefly increases the probability of subsequent earthquakes occurring soon afterwards, which captures the fact that large mainshocks tend to produce long sequences of aftershocks. A triggering kernel controls the amount by which the probability increases based on the magnitude of each earthquake, and the rate at which it then decays over time. This triggering kernel is usually chosen heuristically, to match the parametric form of the modified Omori law for aftershock decay. However recent work has questioned whether this is an appropriate choice. Since the choice of kernel has a large impact on the predictions made by the ETAS model, avoiding misspecification is crucially important. We present a novel nonparametric version of ETAS which avoids making parametric assumptions, and instead learns the correct specification from the data itself. Our approach is based on the Dirichlet process, which is a modern class of Bayesian prior distribution which allows for efficient inference over an infinite dimensional space of functions. We show how our nonparametric ETAS model can be fit to data, and present results demonstrating that the fit is greatly improved compared to the standard parametric specification. Additionally, we explain how our model can be used to perform probabilistic declustering of earthquake catalogs, to classify earthquakes as being either aftershocks or mainshocks. and to learn the causal relations between pairs of earthquakes.

  19. Partially linear models with autoregressive scale-mixtures of normal errors: A Bayesian approach

    NASA Astrophysics Data System (ADS)

    Ferreira, Guillermo; Castro, Mauricio; Lachos, Victor H.

    2012-10-01

    Normality and independence of error terms is a typical assumption for partial linear models. However, such an assumption may be unrealistic on many fields such as economics, finance and biostatistics. In this paper, we develop a Bayesian analysis for partial linear model with first-order autoregressive errors belonging to the class of scale mixtures of normal (SMN) distributions. The proposed model provides a useful generalization of the symmetrical linear regression models with independent error, since the error distribution cover both correlated and thick-tailed distribution, and has a convenient hierarchical representation allowing to us an easily implementation of a Markov chain Monte Carlo (MCMC) scheme. In order to examine the robustness of this distribution against outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler (K-L) divergence. The proposed methodology is applied to the Cuprum Company monthly returns.

  20. Approximating model probabilities in Bayesian information criterion and decision-theoretic approaches to model selection in phylogenetics.

    PubMed

    Evans, Jason; Sullivan, Jack

    2011-01-01

    A priori selection of models for use in phylogeny estimation from molecular sequence data is increasingly important as the number and complexity of available models increases. The Bayesian information criterion (BIC) and the derivative decision-theoretic (DT) approaches rely on a conservative approximation to estimate the posterior probability of a given model. Here, we extended the DT method by using reversible jump Markov chain Monte Carlo approaches to directly estimate model probabilities for an extended candidate pool of all 406 special cases of the general time reversible + Γ family. We analyzed 250 diverse data sets in order to evaluate the effectiveness of the BIC approximation for model selection under the BIC and DT approaches. Model choice under DT differed between the BIC approximation and direct estimation methods for 45% of the data sets (113/250), and differing model choice resulted in significantly different sets of trees in the posterior distributions for 26% of the data sets (64/250). The model with the lowest BIC score differed from the model with the highest posterior probability in 30% of the data sets (76/250). When the data indicate a clear model preference, the BIC approximation works well enough to result in the same model selection as with directly estimated model probabilities, but a substantial proportion of biological data sets lack this characteristic, which leads to selection of underparametrized models.

  1. A hybrid dynamic Bayesian network approach for modelling temporal associations of gene expressions for hypertension diagnosis.

    PubMed

    Akutekwe, Arinze; Seker, Huseyin

    2014-01-01

    Computational and machine learning techniques have been applied in identifying biomarkers and constructing predictive models for diagnosis of hypertension. Strategies such as improved classification rules based on decision trees have been proposed. Other techniques such as Fuzzy Expert Systems (FES) and Neuro-Fuzzy Systems (NFS) have recently been applied. However, these methods lack the ability to detect temporal relationships among biomarker genes that will aid better understanding of the mechanism of hypertension disease. In this paper we apply a proposed two-stage bio-network construction approach that combines the power and computational efficiency of classification methods with the well-established predictive ability of Dynamic Bayesian Network. We demonstrate our method using the analysis of male young-onset hypertension microarray dataset. Four key genes were identified by the Least Angle Shrinkage and Selection Operator (LASSO) and three Support Vector Machine Recursive Feature Elimination (SVM-RFE) methods. Results show that cell regulation FOXQ1 may inhibit the expression of focusyltransferase-6 (FUT6) and that ABCG1 ATP-binding cassette sub-family G may also play inhibitory role against NR2E3 nuclear receptor sub-family 2 and CGB2 Chromatin Gonadotrophin.

  2. A Bayesian estimation approach for the mortality in a stage-structured demographic model.

    PubMed

    Lanzarone, E; Pasquali, S; Gilioli, G; Marchesini, E

    2017-09-01

    Control interventions in sustainable pest management schemes are set according to the phenology and the population abundance of the pests. This information can be obtained using suitable mathematical models that describe the population dynamics based on individual life history responses to environmental conditions and resource availability. These responses are described by development, fecundity and survival rate functions, which can be estimated from laboratory experiments. If experimental data are not available, data on field population dynamics can be used for their estimation. This is the case of the extrinsic mortality term that appears in the mortality rate function due to biotic factors. We propose a Bayesian approach to estimate the probability density functions of the parameters in the extrinsic mortality rate function, starting from data on population abundance. The method investigates the time variability in the mortality parameters by comparing simulated and observed trajectories. The grape berry moth, a pest of great importance in European vineyards, has been considered as a case study. Simulated data have been considered to evaluate the convergence of the algorithm, while field data have been used to obtain estimates of the mortality for the grape berry moth.

  3. Software models: A Bayesian approach to parameter estimation in the Jelenski-Moranda software reliability model

    NASA Technical Reports Server (NTRS)

    Littlewood, B.; Sofer, A.

    1981-01-01

    Maximum likelihood estimation procedures for the Jelinski-Moranda software reliability model often give misleading answers. A reparameterization and a Bayesian analysis eliminate some of the problems incurred by MLE methods and often give better predictions on sets of real and simulated data. Practical difficulties in estimating the initial number of errors N and the failure rate of each error phi by the method of maximum likelihood are: N, the MLE of N, is occasionally infinite (i.e., the routines for calculating N and phi do not converge). It is shown that N is finite sub i only if the regression line of the interevent times t sub i vs. i has positive slope. A serious problem is that often N approximates n, the sample size, and sometimes N = n. Thus the MLE predicts that the program is perfect even when it is far from being so. Only when almost all failures have been removed can N and phi be trusted near the end of debugging.

  4. Comparison of Bayesian and frequentist approaches in modelling risk of preterm birth near the Sydney Tar Ponds, Nova Scotia, Canada

    PubMed Central

    Ismaila, Afisi S; Canty, Angelo; Thabane, Lehana

    2007-01-01

    Background This study compares the Bayesian and frequentist (non-Bayesian) approaches in the modelling of the association between the risk of preterm birth and maternal proximity to hazardous waste and pollution from the Sydney Tar Pond site in Nova Scotia, Canada. Methods The data includes 1604 observed cases of preterm birth out of a total population of 17559 at risk of preterm birth from 144 enumeration districts in the Cape Breton Regional Municipality. Other covariates include the distance from the Tar Pond; the rate of unemployment to population; the proportion of persons who are separated, divorced or widowed; the proportion of persons who have no high school diploma; the proportion of persons living alone; the proportion of single parent families and average income. Bayesian hierarchical Poisson regression, quasi-likelihood Poisson regression and weighted linear regression models were fitted to the data. Results The results of the analyses were compared together with their limitations. Conclusion The results of the weighted linear regression and the quasi-likelihood Poisson regression agrees with the result from the Bayesian hierarchical modelling which incorporates the spatial effects. PMID:17845717

  5. A Bayesian Nonparametric Approach to Test Equating

    ERIC Educational Resources Information Center

    Karabatsos, George; Walker, Stephen G.

    2009-01-01

    A Bayesian nonparametric model is introduced for score equating. It is applicable to all major equating designs, and has advantages over previous equating models. Unlike the previous models, the Bayesian model accounts for positive dependence between distributions of scores from two tests. The Bayesian model and the previous equating models are…

  6. A Bayesian Nonparametric Approach to Test Equating

    ERIC Educational Resources Information Center

    Karabatsos, George; Walker, Stephen G.

    2009-01-01

    A Bayesian nonparametric model is introduced for score equating. It is applicable to all major equating designs, and has advantages over previous equating models. Unlike the previous models, the Bayesian model accounts for positive dependence between distributions of scores from two tests. The Bayesian model and the previous equating models are…

  7. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests.

    PubMed

    Posada, David; Buckley, Thomas R

    2004-10-01

    Model selection is a topic of special relevance in molecular phylogenetics that affects many, if not all, stages of phylogenetic inference. Here we discuss some fundamental concepts and techniques of model selection in the context of phylogenetics. We start by reviewing different aspects of the selection of substitution models in phylogenetics from a theoretical, philosophical and practical point of view, and summarize this comparison in table format. We argue that the most commonly implemented model selection approach, the hierarchical likelihood ratio test, is not the optimal strategy for model selection in phylogenetics, and that approaches like the Akaike Information Criterion (AIC) and Bayesian methods offer important advantages. In particular, the latter two methods are able to simultaneously compare multiple nested or nonnested models, assess model selection uncertainty, and allow for the estimation of phylogenies and model parameters using all available models (model-averaged inference or multimodel inference). We also describe how the relative importance of the different parameters included in substitution models can be depicted. To illustrate some of these points, we have applied AIC-based model averaging to 37 mitochondrial DNA sequences from the subgenus Ohomopterus(genus Carabus) ground beetles described by Sota and Vogler (2001).

  8. Spectral recovery of outdoor illumination by an extension of the Bayesian inverse approach to the Gaussian mixture model.

    PubMed

    Peyvandi, Shahram; Amirshahi, Seyed Hossein; Hernández-Andrés, Javier; Nieves, Juan Luis; Romero, Javier

    2012-10-01

    The Bayesian inference approach to the inverse problem of spectral signal recovery has been extended to mixtures of Gaussian probability distributions of a training dataset in order to increase the efficiency of estimating the spectral signal from the response of a transformation system. Bayesian (BIC) and Akaike (AIC) information criteria were assessed in order to provide the Gaussian mixture model (GMM) with the optimum number of clusters within the spectral space. The spectra of 2600 solar illuminations measured in Granada (Spain) were recovered over the range of 360-830 nm from their corresponding tristimulus values using a linear model of basis functions, the Wiener inverse (WI) method, and the Bayesian inverse approach extended to the GMM (BGMM). A model of Gaussian mixtures for solar irradiance was deemed to be more appropriate than a single Gaussian distribution for representing the probability distribution of the solar spectral data. The results showed that the estimation performance of the BGMM method was better than either the linear model or the WI method for the spectral approximation of daylight from the three-dimensional tristimulus values.

  9. A Bayesian network approach to knowledge integration and representation of farm irrigation: 1. Model development

    NASA Astrophysics Data System (ADS)

    Wang, Q. J.; Robertson, D. E.; Haines, C. L.

    2009-02-01

    Irrigation is important to many agricultural businesses but also has implications for catchment health. A considerable body of knowledge exists on how irrigation management affects farm business and catchment health. However, this knowledge is fragmentary; is available in many forms such as qualitative and quantitative; is dispersed in scientific literature, technical reports, and the minds of individuals; and is of varying degrees of certainty. Bayesian networks allow the integration of dispersed knowledge into quantitative systems models. This study describes the development, validation, and application of a Bayesian network model of farm irrigation in the Shepparton Irrigation Region of northern Victoria, Australia. In this first paper we describe the process used to integrate a range of sources of knowledge to develop a model of farm irrigation. We describe the principal model components and summarize the reaction to the model and its development process by local stakeholders. Subsequent papers in this series describe model validation and the application of the model to assess the regional impact of historical and future management intervention.

  10. Exploring Neighborhood Influences on Small-Area Variations in Intimate Partner Violence Risk: A Bayesian Random-Effects Modeling Approach

    PubMed Central

    Gracia, Enrique; López-Quílez, Antonio; Marco, Miriam; Lladosa, Silvia; Lila, Marisol

    2014-01-01

    This paper uses spatial data of cases of intimate partner violence against women (IPVAW) to examine neighborhood-level influences on small-area variations in IPVAW risk in a police district of the city of Valencia (Spain). To analyze area variations in IPVAW risk and its association with neighborhood-level explanatory variables we use a Bayesian spatial random-effects modeling approach, as well as disease mapping methods to represent risk probabilities in each area. Analyses show that IPVAW cases are more likely in areas of high immigrant concentration, high public disorder and crime, and high physical disorder. Results also show a spatial component indicating remaining variability attributable to spatially structured random effects. Bayesian spatial modeling offers a new perspective to identify IPVAW high and low risk areas, and provides a new avenue for the design of better-informed prevention and intervention strategies. PMID:24413701

  11. Bayesian kinematic earthquake source models

    NASA Astrophysics Data System (ADS)

    Minson, S. E.; Simons, M.; Beck, J. L.; Genrich, J. F.; Galetzka, J. E.; Chowdhury, F.; Owen, S. E.; Webb, F.; Comte, D.; Glass, B.; Leiva, C.; Ortega, F. H.

    2009-12-01

    Most coseismic, postseismic, and interseismic slip models are based on highly regularized optimizations which yield one solution which satisfies the data given a particular set of regularizing constraints. This regularization hampers our ability to answer basic questions such as whether seismic and aseismic slip overlap or instead rupture separate portions of the fault zone. We present a Bayesian methodology for generating kinematic earthquake source models with a focus on large subduction zone earthquakes. Unlike classical optimization approaches, Bayesian techniques sample the ensemble of all acceptable models presented as an a posteriori probability density function (PDF), and thus we can explore the entire solution space to determine, for example, which model parameters are well determined and which are not, or what is the likelihood that two slip distributions overlap in space. Bayesian sampling also has the advantage that all a priori knowledge of the source process can be used to mold the a posteriori ensemble of models. Although very powerful, Bayesian methods have up to now been of limited use in geophysical modeling because they are only computationally feasible for problems with a small number of free parameters due to what is called the "curse of dimensionality." However, our methodology can successfully sample solution spaces of many hundreds of parameters, which is sufficient to produce finite fault kinematic earthquake models. Our algorithm is a modification of the tempered Markov chain Monte Carlo (tempered MCMC or TMCMC) method. In our algorithm, we sample a "tempered" a posteriori PDF using many MCMC simulations running in parallel and evolutionary computation in which models which fit the data poorly are preferentially eliminated in favor of models which better predict the data. We present results for both synthetic test problems as well as for the 2007 Mw 7.8 Tocopilla, Chile earthquake, the latter of which is constrained by InSAR, local high

  12. Online Bayesian modeling and prediction of nonlinear systems--Sequential Monte Carlo approach.

    PubMed

    Matsumoto, T

    2007-01-01

    Given time-series data from an unknown target system, one often wants to build a model for the system behind the data and make predictions. If the target system can be assumed to be linear, there are means of modeling and predicting the target system in question. If, however, one cannot assume the system is linear, various linear theories have natural limitations in terms of modeling and predictive capabilities. This paper attempts to construct a model from time-series data and make an online prediction when the linear assumption is not valid. The problem is formulated within a Bayesian framework implemented by the Sequential Monte Carlo method. Online Bayesian learning/prediction requires computation of a posterior distribution in a sequential manner as each datum arrives. The Sequential Monte Carlo method computes the importance weight in order to draw samples from the posterior distribution. The scheme is tested against time-series data from a noisy Rossler system. The test time-series data is the x-coordinate of the trajectory generated by a noisy Roessler system. Attempts are made with regard to online reconstruction of the attractor and online prediction of the time-series data. The proposed algorithm appears to be functional. The algorithm should be tested against real world data.

  13. Predictability of Regional Climate: A Bayesian Approach to Analysing a WRF Model Ensemble

    NASA Astrophysics Data System (ADS)

    Bruyere, C. L.; Mesquita, M. D. S.; Paimazumder, D.

    2013-12-01

    This study investigates aspects of climate predictability with a focus on climatic variables and different characteristics of extremes over nine North American climatic regions and two selected Atlantic sectors. An ensemble of state-of-the-art Weather Research and Forecasting Model (WRF) simulations is used for the analysis. The ensemble is comprised of a combination of various physics schemes, initial conditions, domain sizes, boundary conditions and breeding techniques. The main objectives of this research are: 1) to increase our understanding of the ability of WRF to capture regional climate information - both at the individual and collective ensemble members, 2) to investigate the role of different members and their synergy in reproducing regional climate 3) to estimate the associated uncertainty. In this study, we propose a Bayesian framework to study the predictability of extremes and associated uncertainties in order to provide a wealth of knowledge about WRF reliability and provide further clarity and understanding of the sensitivities and optimal combinations. The choice of the Bayesian model, as opposed to standard methods, is made because: a) this method has a mean square error that is less than standard statistics, which makes it a more robust method; b) it allows for the use of small sample sizes, which are typical in high-resolution modeling; c) it provides a probabilistic view of uncertainty, which is useful when making decisions concerning ensemble members.

  14. Bayesian Data-Model Fit Assessment for Structural Equation Modeling

    ERIC Educational Resources Information Center

    Levy, Roy

    2011-01-01

    Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…

  15. Bayesian Data-Model Fit Assessment for Structural Equation Modeling

    ERIC Educational Resources Information Center

    Levy, Roy

    2011-01-01

    Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…

  16. Analysis of housing price by means of STAR models with neighbourhood effects: a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Beamonte, Asuncion; Gargallo, Pilar; Salvador, Manuel

    2010-06-01

    In this paper, we extend the Bayesian methodology introduced by Beamonte et al. (Stat Modelling 8:285-311, 2008) for the estimation and comparison of spatio-temporal autoregressive models (STAR) with neighbourhood effects, providing a more general treatment that uses larger and denser nets for the number of spatial and temporal influential neighbours and continuous distributions for their smoothing weights. This new treatment also reduces the computational time and the RAM necessities of the estimation algorithm in Beamonte et al. (Stat Modelling 8:285-311, 2008). The procedure is illustrated by an application to the Zaragoza (Spain) real estate market, improving the goodness of fit and the outsampling behaviour of the model thanks to a more flexible estimation of the neighbourhood parameters.

  17. Integrating health economics modeling in the product development cycle of medical devices: a Bayesian approach.

    PubMed

    Vallejo-Torres, Laura; Steuten, Lotte M G; Buxton, Martin J; Girling, Alan J; Lilford, Richard J; Young, Terry

    2008-01-01

    Medical device companies are under growing pressure to provide health-economic evaluations of their products. Cost-effectiveness analyses are commonly undertaken as a one-off exercise at the late stage of development of new technologies; however, the benefits of an iterative use of economic evaluation during the development process of new products have been acknowledged in the literature. Furthermore, the use of Bayesian methods within health technology assessment has been shown to be of particular value in the dynamic framework of technology appraisal when new information becomes available in the life cycle of technologies. In this study, we set out a methodology to adapt these methods for their application to directly support investment decisions in a commercial setting from early stages of the development of new medical devices. Starting with relatively simple analysis from the very early development phase and proceeding to greater depth of analysis at later stages, a Bayesian approach facilitates the incorporation of all available evidence and would help companies to make better informed choices at each decision point.

  18. Extracting a Whisper from the DIN: A Bayesian-Inductive Approach to Learning an Anticipatory Model of Cavitation

    SciTech Connect

    Kercel, S.W.

    1999-11-07

    For several reasons, Bayesian parameter estimation is superior to other methods for inductively learning a model for an anticipatory system. Since it exploits prior knowledge, the analysis begins from a more advantageous starting point than other methods. Also, since "nuisance parameters" can be removed from the Bayesian analysis, the description of the model need not be as complete as is necessary for such methods as matched filtering. In the limit of perfectly random noise and a perfect description of the model, the signal-to-noise ratio improves as the square root of the number of samples in the data. Even with the imperfections of real-world data, Bayesian methods approach this ideal limit of performance more closely than other methods. These capabilities provide a strategy for addressing a major unsolved problem in pump operation: the identification of precursors of cavitation. Cavitation causes immediate degradation of pump performance and ultimate destruction of the pump. However, the most efficient point to operate a pump is just below the threshold of cavitation. It might be hoped that a straightforward method to minimize pump cavitation damage would be to simply adjust the operating point until the inception of cavitation is detected and then to slightly readjust the operating point to let the cavitation vanish. However, due to the continuously evolving state of the fluid moving through the pump, the threshold of cavitation tends to wander. What is needed is to anticipate cavitation, and this requires the detection and identification of precursor features that occur just before cavitation starts.

  19. Gas turbine engine prognostics using Bayesian hierarchical models: A variational approach

    NASA Astrophysics Data System (ADS)

    Zaidan, Martha A.; Mills, Andrew R.; Harrison, Robert F.; Fleming, Peter J.

    2016-03-01

    Prognostics is an emerging requirement of modern health monitoring that aims to increase the fidelity of failure-time predictions by the appropriate use of sensory and reliability information. In the aerospace industry it is a key technology to reduce life-cycle costs, improve reliability and asset availability for a diverse fleet of gas turbine engines. In this work, a Bayesian hierarchical model is selected to utilise fleet data from multiple assets to perform probabilistic estimation of remaining useful life (RUL) for civil aerospace gas turbine engines. The hierarchical formulation allows Bayesian updates of an individual predictive model to be made, based upon data received asynchronously from a fleet of assets with different in-service lives and for the entry of new assets into the fleet. In this paper, variational inference is applied to the hierarchical formulation to overcome the computational and convergence concerns that are raised by the numerical sampling techniques needed for inference in the original formulation. The algorithm is tested on synthetic data, where the quality of approximation is shown to be satisfactory with respect to prediction performance, computational speed, and ease of use. A case study of in-service gas turbine engine data demonstrates the value of integrating fleet data for accurately predicting degradation trajectories of assets.

  20. Quantifying uncertainty in velocity models for seismic imaging using a Bayesian approach with application to the Mentelle Basin - Australia

    NASA Astrophysics Data System (ADS)

    Michelioudakis, Dimitrios; Hobbs, Richard; Caiado, Camila

    2015-04-01

    Determining the depths of key horizons from seismic reflection data is one of the most important aspects of exploration geophysics. Here, we present Bayesian methods based on an elicitation tool and Gaussian processes to build a detailed and robust velocity model of the Mentelle Basin, located south west of Australia, with the ultimate goal to identify possible drilling targets for the Integrated Ocean Drilling Program (IODP). The Mentelle Basin is a deep water sedimentary basin located between the Naturaliste Plateau and the southern part of the Western Australian Shelf. It is among the few regions of the world where we can investigate the effects of the Cretaceous hot-house and its collapse at high latitude. The Mentelle Basin hosts a continuous shale sequence for this period that it is over a kilometer thick, the study of which, is crucial for the correlation between the paleoclimate conditions and the tectonic history of the region. By reprocessing 2D multichannel seismic reflection profiles around the proposed drill - sites, we create a detailed subsurface velocity model which is used as a priori input to the Bayesian approach. The final goal is to build a multi-layered model to estimate the depth and the root mean square velocity of each layer, both for the isotropic and anisotropic cases in terms of a multivariate posterior distribution. Having determined the RMS velocities for each layer, we can calculate, by inference, their interval velocities and finally estimate the depth of each sequence of interest with improved accuracy. The key advantage of the Bayesian approach and the major difference compared to the traditional semblance spectrum velocity analysis procedure is the calculation of uncertainty of the output model. As a result, our statistical approach can construct a robust velocity model which encompasses the noise and the band-limited nature of the data as an error function. We use this model to control the depth migration of the seismic data and

  1. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography.

    PubMed

    Cai, C; Rodet, T; Legoupil, S; Mohammad-Djafari, A

    2013-11-01

    Dual-energy computed tomography (DECT) makes it possible to get two fractions of basis materials without segmentation. One is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical DECT measurements are usually obtained with polychromatic x-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam polychromaticity fail to estimate the correct decomposition fractions and result in beam-hardening artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log preprocessing and the ill-conditioned water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on nonlinear forward models counting the beam polychromaticity show great potential for giving accurate fraction images. This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint maximum a posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a nonquadratic cost function. To solve it, the use of a monotone conjugate gradient algorithm with suboptimal descent steps is proposed. The performance of the proposed approach is analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also necessary to have the

  2. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography

    SciTech Connect

    Cai, C.; Rodet, T.; Mohammad-Djafari, A.; Legoupil, S.

    2013-11-15

    Purpose: Dual-energy computed tomography (DECT) makes it possible to get two fractions of basis materials without segmentation. One is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical DECT measurements are usually obtained with polychromatic x-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam polychromaticity fail to estimate the correct decomposition fractions and result in beam-hardening artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log preprocessing and the ill-conditioned water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on nonlinear forward models counting the beam polychromaticity show great potential for giving accurate fraction images.Methods: This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint maximum a posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a nonquadratic cost function. To solve it, the use of a monotone conjugate gradient algorithm with suboptimal descent steps is proposed.Results: The performance of the proposed approach is analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also

  3. Nonlinear feature extraction and Bayesian mixture model approaches to target classification using MMW ISAR imagery: a preliminary study

    NASA Astrophysics Data System (ADS)

    Britton, Adrian; Copsey, Keith D.; Maskall, Guy T.; Webb, Andrew R.; West, Karl

    2000-07-01

    The problem we are addressing is one of generalization: given training data characterizing a set of targets (in specific configurations), how can we design a classifier that is robust to changes in target configuration and can generalize to other targets of the same generic class? The specific problem is identifying land vehicles from an inverse synthetic aperture radar image of the target. Issues in data modeling, experimental design and exploratory data analysis are discussed. Two complementary approaches are described: one that seeks to capture structure in the high- dimensional data space by projecting the data nonlinearly to a reduced dimensional feature space prior to classification; and a second that models the data in the data space using a Bayesian mixture model approach. Preliminary results for the mixture model approach are presented.

  4. [Pulmonary nodule: a bayesian approach].

    PubMed

    Meert, A-P

    2010-01-01

    A solitary pulmonary nodule is a common clinical problem. It is usually detected incidentally. The prevalence of solitary pulmonary nodule (SPN) in the lung cancer screening study varies from 8 to 50% (with a prevalence of malignant nodule from 1 to 13%). The bayesian approach can help us to identify promptly malignant nodule in order to treat them surgically and to avoid surgery for benign nodules. Therefore, it is needed to estimate the probability of cancer (Pca) in the SPN. Likelihood ratio (LR) for overall prevalence of malignancy and for different clinical and radiological information (age, smoking exposure, symptoms, cancer history, nodule size, spiculation, calcification, location, growth...) can be obtained from the literature. The odds of cancer-malignancy (odds ca) can be calculated by multiplying all of these LRs together. The Pca = odds ca/1+odds ca. Using this bayeasian approach, the probability of cancer based on an abnormal or normal fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) scan has been estimated. Sensitivity, specificity, positive predictive value and negative predictive value of PET scan are respectively about 90%, 83%, 92% and 90%. Moreover, the LR for malignancy are higher with an abnormal PET scan when compared to most clinical and radiological LRs. Today, the Bayesian approach of SPN must include PET scan.

  5. A Bayesian hierarchical approach to model seasonal algal variability along an upstream to downstream river gradient

    NASA Astrophysics Data System (ADS)

    Cha, YoonKyung; Soon Park, Seok; Won Lee, Hye; Stow, Craig A.

    2016-01-01

    Modeling to accurately predict river phytoplankton distribution and abundance is important in water quality and resource management. Nevertheless, the complex nature of eutrophication processes in highly connected river systems makes the task challenging. To model dynamics of river phytoplankton, represented by chlorophyll a (Chl a) concentration, we propose a Bayesian hierarchical model that explicitly accommodates seasonality and upstream-downstream spatial gradient in the structure. The utility of our model is demonstrated with an application to the Nakdong River (South Korea), which is a eutrophic, intensively regulated river, but functions as an irreplaceable water source for more than 13 million people. Chl a is modeled with two manageable factors, river flow, and total phosphorus (TP) concentration. Our model results highlight the importance of taking seasonal and spatial context into account when describing flow regimes and phosphorus delivery in rivers. A contrasting positive Chl a-flow relationship across stations versus negative Chl a-flow slopes that arose when Chl a was modeled on a station-month basis is an illustration of Simpson's paradox, which necessitates modeling Chl a-flow relationships decomposed into seasonal and spatial components. Similar Chl a-TP slopes among stations and months suggest that, with the flow effect removed, positive TP effects on Chl a are uniform regardless of the season and station in the river. Our model prediction successfully captured the shift in the spatial and monthly patterns of Chl a.

  6. A hybrid approach to monthly streamflow forecasting: Integrating hydrological model outputs into a Bayesian artificial neural network

    NASA Astrophysics Data System (ADS)

    Humphrey, Greer B.; Gibbs, Matthew S.; Dandy, Graeme C.; Maier, Holger R.

    2016-09-01

    Monthly streamflow forecasts are needed to support water resources decision making in the South East of South Australia, where baseflow represents a significant proportion of the total streamflow and soil moisture and groundwater are important predictors of runoff. To address this requirement, the utility of a hybrid monthly streamflow forecasting approach is explored, whereby simulated soil moisture from the GR4J conceptual rainfall-runoff model is used to represent initial catchment conditions in a Bayesian artificial neural network (ANN) statistical forecasting model. To assess the performance of this hybrid forecasting method, a comparison is undertaken of the relative performances of the Bayesian ANN, the GR4J conceptual model and the hybrid streamflow forecasting approach for producing 1-month ahead streamflow forecasts at three key locations in the South East of South Australia. Particular attention is paid to the quantification of uncertainty in each of the forecast models and the potential for reducing forecast uncertainty by using the hybrid approach is considered. Case study results suggest that the hybrid models developed in this study are able to take advantage of the complementary strengths of both the ANN models and the GR4J conceptual models. This was particularly the case when forecasting high flows, where the hybrid models were shown to outperform the two individual modelling approaches in terms of the accuracy of the median forecasts, as well as reliability and resolution of the forecast distributions. In addition, the forecast distributions generated by the hybrid models were up to 8 times more precise than those based on climatology; thus, providing a significant improvement on the information currently available to decision makers.

  7. Matrix models for childhood infections: a Bayesian approach with applications to rubella and mumps.

    PubMed Central

    Kanaan, M. N.; Farrington, C. P.

    2005-01-01

    Mathematical modelling is an established tool for planning and monitoring vaccination programmes. However, the matrices describing contact rates are based on subjective choices, which have a large impact on results. This paper reviews published models and obtains prior model probabilities based on publication frequency and expert opinion. Using serological survey data on rubella and mumps, Bayesian methods of model choice are applied to select the most plausible models. Estimates of the basic reproduction number R0 are derived, taking into account model uncertainty and individual heterogeneity in contact rates. Twenty-two models are documented, for which publication frequency and expert opinion are negatively correlated. Using the expert prior with individual heterogeneity, R0=6.1 [95% credible region (CR) 4.3-9.2] for rubella and R0=19.3 (95% CR 4.0-31.5) for mumps. The posterior modes are insensitive to the prior for rubella but not for mumps. Overall, assortative models with individual heterogeneity are recommended. PMID:16274497

  8. The approach of Bayesian model indicates media awareness of medical errors

    NASA Astrophysics Data System (ADS)

    Ravichandran, K.; Arulchelvan, S.

    2016-06-01

    This research study brings out the factors behind the increase in medical malpractices in the Indian subcontinent in the present day environment and impacts of television media awareness towards it. Increased media reporting of medical malpractices and errors lead to hospitals taking corrective action and improve the quality of medical services that they provide. The model of Cultivation Theory can be used to measure the influence of media in creating awareness of medical errors. The patient's perceptions of various errors rendered by the medical industry from different parts of India were taken up for this study. Bayesian method was used for data analysis and it gives absolute values to indicate satisfaction of the recommended values. To find out the impact of maintaining medical records of a family online by the family doctor in reducing medical malpractices which creates the importance of service quality in medical industry through the ICT.

  9. Determination of parameter identifiability in nonlinear biophysical models: A Bayesian approach

    PubMed Central

    Hines, Keegan E.; Middendorf, Thomas R.

    2014-01-01

    A major goal of biophysics is to understand the physical mechanisms of biological molecules and systems. Mechanistic models are evaluated based on their ability to explain carefully controlled experiments. By fitting models to data, biophysical parameters that cannot be measured directly can be estimated from experimentation. However, it might be the case that many different combinations of model parameters can explain the observations equally well. In these cases, the model parameters are not identifiable: the experimentation has not provided sufficient constraining power to enable unique estimation of their true values. We demonstrate that this pitfall is present even in simple biophysical models. We investigate the underlying causes of parameter non-identifiability and discuss straightforward methods for determining when parameters of simple models can be inferred accurately. However, for models of even modest complexity, more general tools are required to diagnose parameter non-identifiability. We present a method based in Bayesian inference that can be used to establish the reliability of parameter estimates, as well as yield accurate quantification of parameter confidence. PMID:24516188

  10. Bayesian Networks for Social Modeling

    SciTech Connect

    Whitney, Paul D.; White, Amanda M.; Walsh, Stephen J.; Dalton, Angela C.; Brothers, Alan J.

    2011-03-28

    This paper describes a body of work developed over the past five years. The work addresses the use of Bayesian network (BN) models for representing and predicting social/organizational behaviors. The topics covered include model construction, validation, and use. These topics show the bulk of the lifetime of such model, beginning with construction, moving to validation and other aspects of model ‘critiquing’, and finally demonstrating how the modeling approach might be used to inform policy analysis. To conclude, we discuss limitations of using BN for this activity and suggest remedies to address those limitations. The primary benefits of using a well-developed computational, mathematical, and statistical modeling structure, such as BN, are 1) there are significant computational, theoretical and capability bases on which to build 2) ability to empirically critique the model, and potentially evaluate competing models for a social/behavioral phenomena.

  11. Bayesian population receptive field modelling.

    PubMed

    Zeidman, Peter; Silson, Edward Harry; Schwarzkopf, Dietrich Samuel; Baker, Chris Ian; Penny, Will

    2017-09-08

    We introduce a probabilistic (Bayesian) framework and associated software toolbox for mapping population receptive fields (pRFs) based on fMRI data. This generic approach is intended to work with stimuli of any dimension and is demonstrated and validated in the context of 2D retinotopic mapping. The framework enables the experimenter to specify generative (encoding) models of fMRI timeseries, in which experimental stimuli enter a pRF model of neural activity, which in turns drives a nonlinear model of neurovascular coupling and Blood Oxygenation Level Dependent (BOLD) response. The neuronal and haemodynamic parameters are estimated together on a voxel-by-voxel or region-of-interest basis using a Bayesian estimation algorithm (variational Laplace). This offers several novel contributions to receptive field modelling. The variance/covariance of parameters are estimated, enabling receptive fields to be plotted while properly representing uncertainty about pRF size and location. Variability in the haemodynamic response across the brain is accounted for. Furthermore, the framework introduces formal hypothesis testing to pRF analysis, enabling competing models to be evaluated based on their log model evidence (approximated by the variational free energy), which represents the optimal tradeoff between accuracy and complexity. Using simulations and empirical data, we found that parameters typically used to represent pRF size and neuronal scaling are strongly correlated, which is taken into account by the Bayesian methods we describe when making inferences. We used the framework to compare the evidence for six variants of pRF model using 7 T functional MRI data and we found a circular Difference of Gaussians (DoG) model to be the best explanation for our data overall. We hope this framework will prove useful for mapping stimulus spaces with any number of dimensions onto the anatomy of the brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. A Survey of Model Evaluation Approaches with a Tutorial on Hierarchical Bayesian Methods

    ERIC Educational Resources Information Center

    Shiffrin, Richard M.; Lee, Michael D.; Kim, Woojae; Wagenmakers, Eric-Jan

    2008-01-01

    This article reviews current methods for evaluating models in the cognitive sciences, including theoretically based approaches, such as Bayes factors and minimum description length measures; simulation approaches, including model mimicry evaluations; and practical approaches, such as validation and generalization measures. This article argues…

  13. A structured approach to Bayesian data fusion

    NASA Astrophysics Data System (ADS)

    Rubin, Y. N.; Chen, J.; Hubbard, S.; Kowalsky, M. B.; Woodbury, A.

    2002-12-01

    Stochastic formulations of the inverse problem proved to be a powerful tool for data fusion. Bayesian-based methods are particularly attractive due to their generality and structure. A Bayesian method requires defining a prior pdf for the model parameters and a likelihood function to relate between model parameters and observations. A systematic approach for defining these two functions is needed, which departs from the customary, almost-by-default choice of normal-based models. This talk gives an overview of recent trends in Bayesian model construction. The first part of the talk focuses on identifying a prior using the information-based approach of Woodbury and Ulrych, with an application to the Cape Cod large scale tracer transport field experiment. Here we show how the tracer data can augment direct measurements of the hydraulic conductivity. In the second part, we focus on the likelihood function, and present two different concepts. The first concept defines a non-stationary, multivariate normal likelihood function, and the second employs neural networks and identifies a non-normal likelihood function. Both concepts are employed to fuse geophysical data with conventional well logs.

  14. Reducing model structural uncertainty in predictions for ungauged basins via Bayesian approach.

    NASA Astrophysics Data System (ADS)

    Prieto, Cristina; Le Vine, Nataliya; Vitolo, Claudia; García, Eduardo; Medina, Raúl

    2016-04-01

    A catchment is a complex system where a multitude of interrelated energy, water and vegetation processes occur at different temporal and spatial scales. A rainfall-runoff model is a simplified representation of the system, and serves as a hypothesis about an inner catchment working. In predictions for ungauged basins, a common practice is to use a pre-selected assumed-to-be-perfect model structure to represent all catchments under analysis. However, it is unlikely that the same model structure is appropriate for diverse catchments due to the 'uniqueness of the place'. At the same time, there is no obvious justification to select a single model structure as a suitable description of the system. The contribution of this research is a move forward in the 'one size fits all' problem for predicting flows in ungauged basins. We present a statistical methodology, which allows regionalization that considers the information given by different hydrological model structures. First, the information to be regionalised is compactly represented via Principal Component Analysis. Second, the most significant principal components are regionalised using non-linear regionalisation method based on Random Forests. Third, a regionalisation error structure is derived based on the gauged catchments to be used in the Bayesian condition of the rainfall-runoff structures and their parameters. The methodological developments are demonstrated for predicting flows in ungauged basins of Northern Spain; and the results show that the methodology allows improving the flow prediction.

  15. Monitoring schistosomiasis risk in East China over space and time using a Bayesian hierarchical modeling approach

    PubMed Central

    Hu, Yi; Ward, Michael P.; Xia, Congcong; Li, Rui; Sun, Liqian; Lynn, Henry; Gao, Fenghua; Wang, Qizhi; Zhang, Shiqing; Xiong, Chenglong; Zhang, Zhijie; Jiang, Qingwu

    2016-01-01

    Schistosomiasis remains a major public health problem and causes substantial economic impact in east China, particularly along the Yangtze River Basin. Disease forecasting and surveillance can assist in the development and implementation of more effective intervention measures to control disease. In this study, we applied a Bayesian hierarchical spatio-temporal model to describe trends in schistosomiasis risk in Anhui Province, China, using annual parasitological and environmental data for the period 1997–2010. A computationally efficient approach–Integrated Nested Laplace Approximation–was used for model inference. A zero-inflated, negative binomial model best described the spatio-temporal dynamics of schistosomiasis risk. It predicted that the disease risk would generally be low and stable except for some specific, local areas during the period 2011–2014. High-risk counties were identified in the forecasting maps: three in which the risk remained high, and two in which risk would become high. The results indicated that schistosomiasis risk has been reduced to consistently low levels throughout much of this region of China; however, some counties were identified in which progress in schistosomiasis control was less than satisfactory. Whilst maintaining overall control, specific interventions in the future should focus on these refractive counties as part of a strategy to eliminate schistosomiasis from this region. PMID:27053447

  16. Foliar interception of radionuclides in dry conditions: a meta-analysis using a Bayesian modeling approach.

    PubMed

    Sy, Mouhamadou Moustapha; Ancelet, Sophie; Henner, Pascale; Hurtevent, Pierre; Simon-Cornu, Marie

    2015-09-01

    Uncertainty on the parameters that describe the transfer of radioactive materials into the (terrestrial) environment may be characterized thanks to datasets such as those compiled within International Atomic Energy Agency (IAEA) documents. Nevertheless, the information included in these documents is too poor to derive a relevant and informative uncertainty distribution regarding dry interception of radionuclides by the pasture grass and the leaves of vegetables. In this paper, 145 sets of dry interception measurements by the aboveground biomass of specific plants were collected from published scientific papers. A Bayesian meta-analysis was performed to derive the posterior probability distributions of the parameters that reflect their uncertainty given the collected data. Four competing models were compared in terms of both fitting performances and predictive abilities to reproduce plausible dry interception data. The asymptotic interception factor, applicable whatever the species and radionuclide to the highest aboveground biomass values (e.g. mature leafy vegetables), was estimated with the best model, to be 0.87 with a 95% credible interval (0.85, 0.89).

  17. A Bayesian approach to modeling 2D gravity data using polygon states

    NASA Astrophysics Data System (ADS)

    Titus, W. J.; Titus, S.; Davis, J. R.

    2015-12-01

    We present a Bayesian Markov chain Monte Carlo (MCMC) method for the 2D gravity inversion of a localized subsurface object with constant density contrast. Our models have four parameters: the density contrast, the number of vertices in a polygonal approximation of the object, an upper bound on the ratio of the perimeter squared to the area, and the vertices of a polygon container that bounds the object. Reasonable parameter values can be estimated prior to inversion using a forward model and geologic information. In addition, we assume that the field data have a common random uncertainty that lies between two bounds but that it has no systematic uncertainty. Finally, we assume that there is no uncertainty in the spatial locations of the measurement stations. For any set of model parameters, we use MCMC methods to generate an approximate probability distribution of polygons for the object. We then compute various probability distributions for the object, including the variance between the observed and predicted fields (an important quantity in the MCMC method), the area, the center of area, and the occupancy probability (the probability that a spatial point lies within the object). In addition, we compare probabilities of different models using parallel tempering, a technique which also mitigates trapping in local optima that can occur in certain model geometries. We apply our method to several synthetic data sets generated from objects of varying shape and location. We also analyze a natural data set collected across the Rio Grande Gorge Bridge in New Mexico, where the object (i.e. the air below the bridge) is known and the canyon is approximately 2D. Although there are many ways to view results, the occupancy probability proves quite powerful. We also find that the choice of the container is important. In particular, large containers should be avoided, because the more closely a container confines the object, the better the predictions match properties of object.

  18. How does aging affect recognition-based inference? A hierarchical Bayesian modeling approach.

    PubMed

    Horn, Sebastian S; Pachur, Thorsten; Mata, Rui

    2015-01-01

    The recognition heuristic (RH) is a simple strategy for probabilistic inference according to which recognized objects are judged to score higher on a criterion than unrecognized objects. In this article, a hierarchical Bayesian extension of the multinomial r-model is applied to measure use of the RH on the individual participant level and to re-evaluate differences between younger and older adults' strategy reliance across environments. Further, it is explored how individual r-model parameters relate to alternative measures of the use of recognition and other knowledge, such as adherence rates and indices from signal-detection theory (SDT). Both younger and older adults used the RH substantially more often in an environment with high than low recognition validity, reflecting adaptivity in strategy use across environments. In extension of previous analyses (based on adherence rates), hierarchical modeling revealed that in an environment with low recognition validity, (a) older adults had a stronger tendency than younger adults to rely on the RH and (b) variability in RH use between individuals was larger than in an environment with high recognition validity; variability did not differ between age groups. Further, the r-model parameters correlated moderately with an SDT measure expressing how well people can discriminate cases where the RH leads to a correct vs. incorrect inference; this suggests that the r-model and the SDT measures may offer complementary insights into the use of recognition in decision making. In conclusion, younger and older adults are largely adaptive in their application of the RH, but cognitive aging may be associated with an increased tendency to rely on this strategy.

  19. Testing pre-main-sequence models: the power of a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Gennaro, M.; Prada Moroni, P. G.; Tognelli, E.

    2012-02-01

    Pre-main-sequence (PMS) models provide invaluable tools for the study of star-forming regions as they allow us to assign masses and ages to young stars. Thus, it is of primary importance to test the models against observations of PMS stars with dynamically determined masses. We developed a Bayesian method for testing the present generation of PMS models, which allows for a quantitative comparison with observations, largely superseding the widely used isochrones and tracks qualitative superposition. Using the available PMS data, we tested the newest PISA PMS models, establishing good agreement with the observations. The data cover a mass range from ˜0.3 to ˜3.1 M⊙, temperatures from ˜3 × 103 to ˜1.2 × 104 K and luminosities from ˜3 × 10-2 to ˜60 L⊙. Masses are correctly predicted within 20 per cent of the observed values in most of the cases, and for some of them the difference is as small as 5 per cent. Nevertheless, some discrepancies are also observed and critically discussed. By means of simulations, using typical observational errors, we evaluated the spread of log τsim- log τrec, i.e. simulated - recovered age distribution of the single objects. We also found that stars in binary systems simulated as coeval might be recovered as non-coeval, due to observational errors. The actual fraction of fake non-coevality is a complex function of the simulated ages, masses and mass ratios. We demonstrated that it is possible to recover the systems' ages with better precision than for single stars using the composite age-probability distribution, i.e. the product of the components' age distributions. Using this valuable tool, we estimated the ages of the presently observed PMS binary systems.

  20. Bayesian modeling approach for characterizing groundwater arsenic contamination in the Mekong River basin.

    PubMed

    Cha, YoonKyung; Kim, Young Mo; Choi, Jae-Woo; Sthiannopkao, Suthipong; Cho, Kyung Hwa

    2016-01-01

    In the Mekong River basin, groundwater from tube-wells is a major drinking water source. However, arsenic (As) contamination in groundwater resources has become a critical issue in the watershed. In this study, As species such as total As (AsTOT), As(III), and As(V), were monitored across the watershed to investigate their characteristics and inter-relationships with water quality parameters, including pH and redox potential (Eh). The data illustrated a dramatic change in the relationship between AsTOT and Eh over a specific Eh range, suggesting the importance of Eh in predicting AsTOT. Thus, a Bayesian change-point model was developed to predict AsTOT concentrations based on Eh and pH, to determine changes in the AsTOT-Eh relationship. The model captured the Eh change-point (∼-100±15mV), which was compatible with the data. Importantly, the inclusion of this change-point in the model resulted in improved model fit and prediction accuracy; AsTOT concentrations were strongly negatively related to Eh values higher than the change-point. The process underlying this relationship was subsequently posited to be the reductive dissolution of mineral oxides and As release. Overall, AsTOT showed a weak positive relationship with Eh at a lower range, similar to those commonly observed in the Mekong River basin delta. It is expected that these results would serve as a guide for establishing public health strategies in the Mekong River Basin.

  1. Uncertainty analysis for effluent trading planning using a Bayesian estimation-based simulation-optimization modeling approach.

    PubMed

    Zhang, J L; Li, Y P; Huang, G H; Baetz, B W; Liu, J

    2017-03-06

    In this study, a Bayesian estimation-based simulation-optimization modeling approach (BESMA) is developed for identifying effluent trading strategies. BESMA incorporates nutrient fate modeling with soil and water assessment tool (SWAT), Bayesian estimation, and probabilistic-possibilistic interval programming with fuzzy random coefficients (PPI-FRC) within a general framework. Based on the water quality protocols provided by SWAT, posterior distributions of parameters can be analyzed through Bayesian estimation; stochastic characteristic of nutrient loading can be investigated which provides the inputs for the decision making. PPI-FRC can address multiple uncertainties in the form of intervals with fuzzy random boundaries and the associated system risk through incorporating the concept of possibility and necessity measures. The possibility and necessity measures are suitable for optimistic and pessimistic decision making, respectively. BESMA is applied to a real case of effluent trading planning in the Xiangxihe watershed, China. A number of decision alternatives can be obtained under different trading ratios and treatment rates. The results can not only facilitate identification of optimal effluent-trading schemes, but also gain insight into the effects of trading ratio and treatment rate on decision making. The results also reveal that decision maker's preference towards risk would affect decision alternatives on trading scheme as well as system benefit. Compared with the conventional optimization methods, it is proved that BESMA is advantageous in (i) dealing with multiple uncertainties associated with randomness and fuzziness in effluent-trading planning within a multi-source, multi-reach and multi-period context; (ii) reflecting uncertainties existing in nutrient transport behaviors to improve the accuracy in water quality prediction; and (iii) supporting pessimistic and optimistic decision making for effluent trading as well as promoting diversity of decision

  2. Bayesian Monte Carlo and Maximum Likelihood Approach for Uncertainty Estimation and Risk Management: Application to Lake Oxygen Recovery Model

    EPA Science Inventory

    Model uncertainty estimation and risk assessment is essential to environmental management and informed decision making on pollution mitigation strategies. In this study, we apply a probabilistic methodology, which combines Bayesian Monte Carlo simulation and Maximum Likelihood e...

  3. Bayesian Monte Carlo and Maximum Likelihood Approach for Uncertainty Estimation and Risk Management: Application to Lake Oxygen Recovery Model

    EPA Science Inventory

    Model uncertainty estimation and risk assessment is essential to environmental management and informed decision making on pollution mitigation strategies. In this study, we apply a probabilistic methodology, which combines Bayesian Monte Carlo simulation and Maximum Likelihood e...

  4. Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data.

    PubMed

    Bronson, Jonathan E; Fei, Jingyi; Hofman, Jake M; Gonzalez, Ruben L; Wiggins, Chris H

    2009-12-16

    Time series data provided by single-molecule Förster resonance energy transfer (smFRET) experiments offer the opportunity to infer not only model parameters describing molecular complexes, e.g., rate constants, but also information about the model itself, e.g., the number of conformational states. Resolving whether such states exist or how many of them exist requires a careful approach to the problem of model selection, here meaning discrimination among models with differing numbers of states. The most straightforward approach to model selection generalizes the common idea of maximum likelihood--selecting the most likely parameter values--to maximum evidence: selecting the most likely model. In either case, such an inference presents a tremendous computational challenge, which we here address by exploiting an approximation technique termed variational Bayesian expectation maximization. We demonstrate how this technique can be applied to temporal data such as smFRET time series; show superior statistical consistency relative to the maximum likelihood approach; compare its performance on smFRET data generated from experiments on the ribosome; and illustrate how model selection in such probabilistic or generative modeling can facilitate analysis of closely related temporal data currently prevalent in biophysics. Source code used in this analysis, including a graphical user interface, is available open source via http://vbFRET.sourceforge.net.

  5. Bayesian Approach to Model CD137 Signaling in Human M. tuberculosis In Vitro Responses

    PubMed Central

    Fernández Do Porto, Darío A.; Auzmendi, Jerónimo; Peña, Delfina; García, Verónica E.; Moffatt, Luciano

    2013-01-01

    Immune responses are qualitatively and quantitatively influenced by a complex network of receptor-ligand interactions. Among them, the CD137:CD137L pathway is known to modulate innate and adaptive human responses against Mycobacterium tuberculosis. However, the underlying mechanisms of this regulation remain unclear. In this work, we developed a Bayesian Computational Model (BCM) of in vitro CD137 signaling, devised to fit previously gathered experimental data. The BCM is fed with the data and the prior distribution of the model parameters and it returns their posterior distribution and the model evidence, which allows comparing alternative signaling mechanisms. The BCM uses a coupled system of non-linear differential equations to describe the dynamics of Antigen Presenting Cells, Natural Killer and T Cells together with the interpheron (IFN)-γ and tumor necrosis factor (TNF)-α levels in the media culture. Fast and complete mixing of the media is assumed. The prior distribution of the parameters that describe the dynamics of the immunological response was obtained from the literature and theoretical considerations Our BCM applies successively the Levenberg-Marquardt algorithm to find the maximum a posteriori likelihood (MAP); the Metropolis Markov Chain Monte Carlo method to approximate the posterior distribution of the parameters and Thermodynamic Integration to calculate the evidence of alternative hypothesis. Bayes factors provided decisive evidence favoring direct CD137 signaling on T cells. Moreover, the posterior distribution of the parameters that describe the CD137 signaling showed that the regulation of IFN-γ levels is based more on T cells survival than on direct induction. Furthermore, the mechanisms that account for the effect of CD137 signaling on TNF-α production were based on a decrease of TNF-α production by APC and, perhaps, on the increase in APC apoptosis. BCM proved to be a useful tool to gain insight on the mechanisms of CD137 signaling

  6. Bayesian approach to model CD137 signaling in human M. tuberculosis in vitro responses.

    PubMed

    Fernández Do Porto, Darío A; Auzmendi, Jerónimo; Peña, Delfina; García, Verónica E; Moffatt, Luciano

    2013-01-01

    Immune responses are qualitatively and quantitatively influenced by a complex network of receptor-ligand interactions. Among them, the CD137:CD137L pathway is known to modulate innate and adaptive human responses against Mycobacterium tuberculosis. However, the underlying mechanisms of this regulation remain unclear. In this work, we developed a Bayesian Computational Model (BCM) of in vitro CD137 signaling, devised to fit previously gathered experimental data. The BCM is fed with the data and the prior distribution of the model parameters and it returns their posterior distribution and the model evidence, which allows comparing alternative signaling mechanisms. The BCM uses a coupled system of non-linear differential equations to describe the dynamics of Antigen Presenting Cells, Natural Killer and T Cells together with the interpheron (IFN)-γ and tumor necrosis factor (TNF)-α levels in the media culture. Fast and complete mixing of the media is assumed. The prior distribution of the parameters that describe the dynamics of the immunological response was obtained from the literature and theoretical considerations Our BCM applies successively the Levenberg-Marquardt algorithm to find the maximum a posteriori likelihood (MAP); the Metropolis Markov Chain Monte Carlo method to approximate the posterior distribution of the parameters and Thermodynamic Integration to calculate the evidence of alternative hypothesis. Bayes factors provided decisive evidence favoring direct CD137 signaling on T cells. Moreover, the posterior distribution of the parameters that describe the CD137 signaling showed that the regulation of IFN-γ levels is based more on T cells survival than on direct induction. Furthermore, the mechanisms that account for the effect of CD137 signaling on TNF-α production were based on a decrease of TNF-α production by APC and, perhaps, on the increase in APC apoptosis. BCM proved to be a useful tool to gain insight on the mechanisms of CD137 signaling

  7. An evaluation of the Bayesian approach to fitting the N-mixture model for use with pseudo-replicated count data

    USGS Publications Warehouse

    Toribo, S.G.; Gray, B.R.; Liang, S.

    2011-01-01

    The N-mixture model proposed by Royle in 2004 may be used to approximate the abundance and detection probability of animal species in a given region. In 2006, Royle and Dorazio discussed the advantages of using a Bayesian approach in modelling animal abundance and occurrence using a hierarchical N-mixture model. N-mixture models assume replication on sampling sites, an assumption that may be violated when the site is not closed to changes in abundance during the survey period or when nominal replicates are defined spatially. In this paper, we studied the robustness of a Bayesian approach to fitting the N-mixture model for pseudo-replicated count data. Our simulation results showed that the Bayesian estimates for abundance and detection probability are slightly biased when the actual detection probability is small and are sensitive to the presence of extra variability within local sites.

  8. Information content of incubation experiments for inverse estimation of pools in the Rothamsted carbon model: a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Scharnagl, Benedikt; Vrugt, Jasper A.; Vereecken, Harry; Herbst, Michael

    2010-05-01

    Turnover of soil organic matter is usually described with multi-compartment models. However, a major drawback of these models is that the conceptually defined compartments (or pools) do not necessarily correspond to measurable soil organic carbon (SOC) fractions in real practice. This not only impairs our ability to rigorously evaluate SOC models but also makes it difficult to derive accurate initial states. In this study, we tested the usefulness and applicability of inverse modeling to derive the various carbon pool sizes in the Rothamsted carbon model (ROTHC) using a synthetic time series of mineralization rates from laboratory incubation. To appropriately account for data and model uncertainty we considered a Bayesian approach using the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. This Markov chain Monte Carlo scheme derives the posterior probability density distribution of the initial pool sizes at the start of incubation from observed mineralization rates. We used the Kullback-Leibler divergence to quantify the information contained in the data and to illustrate the effect of increasing incubation times on the reliability of the pool size estimates. Our results show that measured mineralization rates generally provide sufficient information to reliably estimate the sizes of all active pools in the ROTHC model. However, with about 900 days of incubation, these experiments are excessively long. The use of prior information on microbial biomass provided a way forward to significantly reduce uncertainty and required duration of incubation to about 600 days. Explicit consideration of model parameter uncertainty in the estimation process further impaired the identifiability of initial pools, especially for the more slowly decomposing pools. Our illustrative case studies show how Bayesian inverse modeling can be used to provide important insights into the information content of incubation experiments. Moreover, the outcome of this

  9. Quantile-based Bayesian maximum entropy approach for spatiotemporal modeling of ambient air quality levels.

    PubMed

    Yu, Hwa-Lung; Wang, Chih-Hsin

    2013-02-05

    Understanding the daily changes in ambient air quality concentrations is important to the assessing human exposure and environmental health. However, the fine temporal scales (e.g., hourly) involved in this assessment often lead to high variability in air quality concentrations. This is because of the complex short-term physical and chemical mechanisms among the pollutants. Consequently, high heterogeneity is usually present in not only the averaged pollution levels, but also the intraday variance levels of the daily observations of ambient concentration across space and time. This characteristic decreases the estimation performance of common techniques. This study proposes a novel quantile-based Bayesian maximum entropy (QBME) method to account for the nonstationary and nonhomogeneous characteristics of ambient air pollution dynamics. The QBME method characterizes the spatiotemporal dependence among the ambient air quality levels based on their location-specific quantiles and accounts for spatiotemporal variations using a local weighted smoothing technique. The epistemic framework of the QBME method can allow researchers to further consider the uncertainty of space-time observations. This study presents the spatiotemporal modeling of daily CO and PM10 concentrations across Taiwan from 1998 to 2009 using the QBME method. Results show that the QBME method can effectively improve estimation accuracy in terms of lower mean absolute errors and standard deviations over space and time, especially for pollutants with strong nonhomogeneous variances across space. In addition, the epistemic framework can allow researchers to assimilate the site-specific secondary information where the observations are absent because of the common preferential sampling issues of environmental data. The proposed QBME method provides a practical and powerful framework for the spatiotemporal modeling of ambient pollutants.

  10. A Bayesian Hierarchical Modeling Approach to Predicting Flow in Ungauged Basins

    EPA Science Inventory

    Recent innovative approaches to identifying and applying regression-based relationships between land use patterns (such as increasing impervious surface area and decreasing vegetative cover) and rainfall-runoff model parameters represent novel and promising improvements to predic...

  11. A Bayesian Hierarchical Modeling Approach to Predicting Flow in Ungauged Basins

    EPA Science Inventory

    Recent innovative approaches to identifying and applying regression-based relationships between land use patterns (such as increasing impervious surface area and decreasing vegetative cover) and rainfall-runoff model parameters represent novel and promising improvements to predic...

  12. An Integrated Bayesian Model for DIF Analysis

    ERIC Educational Resources Information Center

    Soares, Tufi M.; Goncalves, Flavio B.; Gamerman, Dani

    2009-01-01

    In this article, an integrated Bayesian model for differential item functioning (DIF) analysis is proposed. The model is integrated in the sense of modeling the responses along with the DIF analysis. This approach allows DIF detection and explanation in a simultaneous setup. Previous empirical studies and/or subjective beliefs about the item…

  13. Three case studies in the Bayesian analysis of cognitive models.

    PubMed

    Lee, Michael D

    2008-02-01

    Bayesian statistical inference offers a principled and comprehensive approach for relating psychological models to data. This article presents Bayesian analyses of three influential psychological models: multidimensional scaling models of stimulus representation, the generalized context model of category learning, and a signal detection theory model of decision making. In each case, the model is recast as a probabilistic graphical model and is evaluated in relation to a previously considered data set. In each case, it is shown that Bayesian inference is able to provide answers to important theoretical and empirical questions easily and coherently. The generality of the Bayesian approach and its potential for the understanding of models and data in psychology are discussed.

  14. Bayesian modeling of unknown diseases for biosurveillance.

    PubMed

    Shen, Yanna; Cooper, Gregory F

    2009-11-14

    This paper investigates Bayesian modeling of unknown causes of events in the context of disease-outbreak detection. We introduce a Bayesian approach that models and detects both (1) known diseases (e.g., influenza and anthrax) by using informative prior probabilities and (2) unknown diseases (e.g., a new, highly contagious respiratory virus that has never been seen before) by using relatively non-informative prior probabilities. We report the results of simulation experiments which support that this modeling method can improve the detection of new disease outbreaks in a population. A key contribution of this paper is that it introduces a Bayesian approach for jointly modeling both known and unknown causes of events. Such modeling has broad applicability in medical informatics, where the space of known causes of outcomes of interest is seldom complete.

  15. The Bayesian Revolution Approaches Psychological Development

    ERIC Educational Resources Information Center

    Shultz, Thomas R.

    2007-01-01

    This commentary reviews five articles that apply Bayesian ideas to psychological development, some with psychology experiments, some with computational modeling, and some with both experiments and modeling. The reviewed work extends the current Bayesian revolution into tasks often studied in children, such as causal learning and word learning, and…

  16. The Bayesian Revolution Approaches Psychological Development

    ERIC Educational Resources Information Center

    Shultz, Thomas R.

    2007-01-01

    This commentary reviews five articles that apply Bayesian ideas to psychological development, some with psychology experiments, some with computational modeling, and some with both experiments and modeling. The reviewed work extends the current Bayesian revolution into tasks often studied in children, such as causal learning and word learning, and…

  17. Optimal online learning: a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Solla, Sara A.; Winther, Ole

    1999-09-01

    A recently proposed Bayesian approach to online learning is applied to learning a rule defined as a noisy single layer perceptron. In the Bayesian online approach, the exact posterior distribution is approximated by a simple parametric posterior that is updated online as new examples are incorporated to the dataset. In the case of binary weights, the approximate posterior is chosen to be a biased binary distribution. The resulting online algorithm is shown to outperform several other online approaches to this problem.

  18. Bayesian Monte Carlo and maximum likelihood approach for uncertainty estimation and risk management: Application to lake oxygen recovery model.

    PubMed

    Chaudhary, Abhishek; Hantush, Mohamed M

    2017-01-01

    Model uncertainty estimation and risk assessment is essential to environmental management and informed decision making on pollution mitigation strategies. In this study, we apply a probabilistic methodology, which combines Bayesian Monte Carlo simulation and Maximum Likelihood estimation (BMCML) to calibrate a lake oxygen recovery model. We first derive an analytical solution of the differential equation governing lake-averaged oxygen dynamics as a function of time-variable wind speed. Statistical inferences on model parameters and predictive uncertainty are then drawn by Bayesian conditioning of the analytical solution on observed daily wind speed and oxygen concentration data obtained from an earlier study during two recovery periods on a eutrophic lake in upper state New York. The model is calibrated using oxygen recovery data for one year and statistical inferences were validated using recovery data for another year. Compared with essentially two-step, regression and optimization approach, the BMCML results are more comprehensive and performed relatively better in predicting the observed temporal dissolved oxygen levels (DO) in the lake. BMCML also produced comparable calibration and validation results with those obtained using popular Markov Chain Monte Carlo technique (MCMC) and is computationally simpler and easier to implement than the MCMC. Next, using the calibrated model, we derive an optimal relationship between liquid film-transfer coefficient for oxygen and wind speed and associated 95% confidence band, which are shown to be consistent with reported measured values at five different lakes. Finally, we illustrate the robustness of the BMCML to solve risk-based water quality management problems, showing that neglecting cross-correlations between parameters could lead to improper required BOD load reduction to achieve the compliance criteria of 5 mg/L.

  19. Current Challenges in Bayesian Model Choice

    NASA Astrophysics Data System (ADS)

    Clyde, M. A.; Berger, J. O.; Bullard, F.; Ford, E. B.; Jefferys, W. H.; Luo, R.; Paulo, R.; Loredo, T.

    2007-11-01

    Model selection (and the related issue of model uncertainty) arises in many astronomical problems, and, in particular, has been one of the focal areas of the Exoplanet working group under the SAMSI (Statistics and Applied Mathematical Sciences Institute) Astrostatistcs Exoplanet program. We provide an overview of the Bayesian approach to model selection and highlight the challenges involved in implementing Bayesian model choice in four stylized problems. We review some of the current methods used by statisticians and astronomers and present recent developments in the area. We discuss the applicability, computational challenges, and performance of suggested methods and conclude with recommendations and open questions.

  20. Bayesian structural equation modeling in sport and exercise psychology.

    PubMed

    Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus

    2015-08-01

    Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.

  1. Bayesian networks and agent-based modeling approach for urban land-use and population density change: a BNAS model

    NASA Astrophysics Data System (ADS)

    Kocabas, Verda; Dragicevic, Suzana

    2013-10-01

    Land-use change models grounded in complexity theory such as agent-based models (ABMs) are increasingly being used to examine evolving urban systems. The objective of this study is to develop a spatial model that simulates land-use change under the influence of human land-use choice behavior. This is achieved by integrating the key physical and social drivers of land-use change using Bayesian networks (BNs) coupled with agent-based modeling. The BNAS model, integrated Bayesian network-based agent system, presented in this study uses geographic information systems, ABMs, BNs, and influence diagram principles to model population change on an irregular spatial structure. The model is parameterized with historical data and then used to simulate 20 years of future population and land-use change for the City of Surrey, British Columbia, Canada. The simulation results identify feasible new urban areas for development around the main transportation corridors. The obtained new development areas and the projected population trajectories with the“what-if” scenario capabilities can provide insights into urban planners for better and more informed land-use policy or decision-making processes.

  2. Nitrate source apportionment using a combined dual isotope, chemical and bacterial property, and Bayesian model approach in river systems

    NASA Astrophysics Data System (ADS)

    Xia, Yongqiu; Li, Yuefei; Zhang, Xinyu; Yan, Xiaoyuan

    2017-01-01

    Nitrate (NO3-) pollution is a serious problem worldwide, particularly in countries with intensive agricultural and population activities. Previous studies have used δ15N-NO3- and δ18O-NO3- to determine the NO3- sources in rivers. However, this approach is subject to substantial uncertainties and limitations because of the numerous NO3- sources, the wide isotopic ranges, and the existing isotopic fractionations. In this study, we outline a combined procedure for improving the determination of NO3- sources in a paddy agriculture-urban gradient watershed in eastern China. First, the main sources of NO3- in the Qinhuai River were examined by the dual-isotope biplot approach, in which we narrowed the isotope ranges using site-specific isotopic results. Next, the bacterial groups and chemical properties of the river water were analyzed to verify these sources. Finally, we introduced a Bayesian model to apportion the spatiotemporal variations of the NO3- sources. Denitrification was first incorporated into the Bayesian model because denitrification plays an important role in the nitrogen pathway. The results showed that fertilizer contributed large amounts of NO3- to the surface water in traditional agricultural regions, whereas manure effluents were the dominant NO3- source in intensified agricultural regions, especially during the wet seasons. Sewage effluents were important in all three land uses and exhibited great differences between the dry season and the wet season. This combined analysis quantitatively delineates the proportion of NO3- sources from paddy agriculture to urban river water for both dry and wet seasons and incorporates isotopic fractionation and uncertainties in the source compositions.

  3. Source mechanism inversion and ground motion modeling of induced earthquakes in Kuwait - A Bayesian approach

    NASA Astrophysics Data System (ADS)

    Gu, C.; Toksoz, M. N.; Marzouk, Y.; Al-Enezi, A.; Al-Jeri, F.; Buyukozturk, O.

    2016-12-01

    The increasing seismic activity in the regions of oil/gas fields due to fluid injection/extraction and hydraulic fracturing has drawn new attention in both academia and industry. Source mechanism and triggering stress of these induced earthquakes are of great importance for understanding the physics of the seismic processes in reservoirs, and predicting ground motion in the vicinity of oil/gas fields. The induced seismicity data in our study are from Kuwait National Seismic Network (KNSN). Historically, Kuwait has low local seismicity; however, in recent years the KNSN has monitored more and more local earthquakes. Since 1997, the KNSN has recorded more than 1000 earthquakes (Mw < 5). In 2015, two local earthquakes - Mw4.5 in 03/21/2015 and Mw4.1 in 08/18/2015 - have been recorded by both the Incorporated Research Institutions for Seismology (IRIS) and KNSN, and widely felt by people in Kuwait. These earthquakes happen repeatedly in the same locations close to the oil/gas fields in Kuwait (see the uploaded image). The earthquakes are generally small (Mw < 5) and are shallow with focal depths of about 2 to 4 km. Such events are very common in oil/gas reservoirs all over the world, including North America, Europe, and the Middle East. We determined the location and source mechanism of these local earthquakes, with the uncertainties, using a Bayesian inversion method. The triggering stress of these earthquakes was calculated based on the source mechanisms results. In addition, we modeled the ground motion in Kuwait due to these local earthquakes. Our results show that most likely these local earthquakes occurred on pre-existing faults and were triggered by oil field activities. These events are generally smaller than Mw 5; however, these events, occurring in the reservoirs, are very shallow with focal depths less than about 4 km. As a result, in Kuwait, where oil fields are close to populated areas, these induced earthquakes could produce ground accelerations high

  4. A Bayesian approach to earthquake source studies

    NASA Astrophysics Data System (ADS)

    Minson, Sarah

    Bayesian sampling has several advantages over conventional optimization approaches to solving inverse problems. It produces the distribution of all possible models sampled proportionally to how much each model is consistent with the data and the specified prior information, and thus images the entire solution space, revealing the uncertainties and trade-offs in the model. Bayesian sampling is applicable to both linear and non-linear modeling, and the values of the model parameters being sampled can be constrained based on the physics of the process being studied and do not have to be regularized. However, these methods are computationally challenging for high-dimensional problems. Until now the computational expense of Bayesian sampling has been too great for it to be practicable for most geophysical problems. I present a new parallel sampling algorithm called CATMIP for Cascading Adaptive Tempered Metropolis In Parallel. This technique, based on Transitional Markov chain Monte Carlo, makes it possible to sample distributions in many hundreds of dimensions, if the forward model is fast, or to sample computationally expensive forward models in smaller numbers of dimensions. The design of the algorithm is independent of the model being sampled, so CATMIP can be applied to many areas of research. I use CATMIP to produce a finite fault source model for the 2007 Mw 7.7 Tocopilla, Chile earthquake. Surface displacements from the earthquake were recorded by six interferograms and twelve local high-rate GPS stations. Because of the wealth of near-fault data, the source process is well-constrained. I find that the near-field high-rate GPS data have significant resolving power above and beyond the slip distribution determined from static displacements. The location and magnitude of the maximum displacement are resolved. The rupture almost certainly propagated at sub-shear velocities. The full posterior distribution can be used not only to calculate source parameters but also

  5. Rainfall-Runoff Forecast and Model Parameter Estimation: a Dynamic Bayesian Networks Approach

    NASA Astrophysics Data System (ADS)

    Canon Barriga, J. E.; Morillo Leon, F. C.

    2013-12-01

    The suggested climate-driven non-stationarities and intrinsic uncertainties of hydrological processes such as precipitation (P) and runoff (R), represent a fruitful context to develop new methods that may be able to detect parametric variations in time series and incorporate them into forecasts. In this research, we developed a method to forecast runoff from precipitation time series based on Dynamic Bayesian Networks (DBN). The purpose of the research was to determine an appropriate structure of the DBN and the optimal lengths of hydrological time series required to establish statistical parameters (i.e., first two moments) of P and optimal fits of forecasted R at daily and weekly intervals. A DBN can be briefly interpreted as a set of nodes (representing conditional probabilistic variables) connected by arrows that establish a causal, time-oriented, relationship among them. A DBN is defined by two components: a static network (structure) and a transition probability matrix between consecutive stages. Similarly to neural networks, DBN must be trained in order to learn about the subjacent process and make useful predictions. To determine the ability of the DBN to forecast R from P we initially generated long synthetic P series and run a deterministic model (HEC-HMS) to generate R. The DBN were then trained with different lengths of these synthetic series to forecast R (using smoothing and filtering methods). Two structures were considered: 1) DBN with P(t), P(t-1) and R(t-1) and 2) DBN with P(t), P(t-1), R(t-1) and ΔR=[R(t-1)-R(t-2)]. Both smoothing and filtering methods were appropriate to make predictions on a daily and weekly basis (filtration performing better). Setting the complexity (number of states of the random variables) in a DBN proves to be a critical issue, since an increase in the number of states, which implies larger training sets, does not always mean an improvement in the prediction. We found that acceptable results could be obtained from DBN

  6. Evaluation of nonlinear regression approaches to estimation of insulin sensitivity by the minimal model with reference to Bayesian hierarchical analysis.

    PubMed

    Godsland, Ian F; Agbaje, Olorunsola F; Hovorka, Roman

    2006-07-01

    Minimal model analysis of intravenous glucose tolerance test (IVGTT) glucose and insulin concentrations offers a validated approach to measuring insulin sensitivity, but model identification is not always successful. Improvements may be achieved by using alternative settings in the modeling process, although results may differ according to setting, and care must be exercised in combining results. IVGTT data (12 samples, regular test) from 533 men without diabetes was modeled by the traditional nonlinear regression (NLR) approach, using five different permutations of settings. Results were evaluated with reference to the more robust Bayesian hierarchical (BH) approach to model identification and to the proportion of variance they explained in known correlates of insulin sensitivity (age, BMI, blood pressure, fasting glucose and insulin, serum triglyceride, HDL cholesterol, and uric acid concentration). BH analysis was successful in all cases. With NLR analysis, between 17 and 35 IVGTTs were associated with parameter coefficients of variation (PCVs) for minimal model parameters S(I) (insulin sensitivity) and S(G) (glucose effectiveness) of >100%. Systematic use of each different approach in combination reduced this number to five. Mean (interquartile range) S(I)(NLR) was then 3.14 (2.29-4.63) min(-1).mU(-1).l x 10(-4) and 2.56 (1.74-3.83) min(-1).mU(-1).l x 10(-4) for S(I)(BH) (correlation 0.86, P < 0.0001). S(I)(NLR) explained, on average, 10.6% of the variance in known correlates of insulin sensitivity, whereas S(I)(BH) explained 8.5%. In a large body of data, which BH analysis demonstrated could be fully identified, use of alternative modeling settings in NLR analysis could substantially reduce the number of analyses with PCVs >100%. S(I)(NLR) compared favorably with S(I)(BH) in the proportion of variance explained in known correlates of insulin sensitivity.

  7. Moving beyond qualitative evaluations of Bayesian models of cognition.

    PubMed

    Hemmer, Pernille; Tauber, Sean; Steyvers, Mark

    2015-06-01

    Bayesian models of cognition provide a powerful way to understand the behavior and goals of individuals from a computational point of view. Much of the focus in the Bayesian cognitive modeling approach has been on qualitative model evaluations, where predictions from the models are compared to data that is often averaged over individuals. In many cognitive tasks, however, there are pervasive individual differences. We introduce an approach to directly infer individual differences related to subjective mental representations within the framework of Bayesian models of cognition. In this approach, Bayesian data analysis methods are used to estimate cognitive parameters and motivate the inference process within a Bayesian cognitive model. We illustrate this integrative Bayesian approach on a model of memory. We apply the model to behavioral data from a memory experiment involving the recall of heights of people. A cross-validation analysis shows that the Bayesian memory model with inferred subjective priors predicts withheld data better than a Bayesian model where the priors are based on environmental statistics. In addition, the model with inferred priors at the individual subject level led to the best overall generalization performance, suggesting that individual differences are important to consider in Bayesian models of cognition.

  8. A Bayesian approach to functional-based multilevel modeling of longitudinal data: applications to environmental epidemiology.

    PubMed

    Berhane, Kiros; Molitor, Nuoo-Ting

    2008-10-01

    Flexible multilevel models are proposed to allow for cluster-specific smooth estimation of growth curves in a mixed-effects modeling format that includes subject-specific random effects on the growth parameters. Attention is then focused on models that examine between-cluster comparisons of the effects of an ecologic covariate of interest (e.g. air pollution) on nonlinear functionals of growth curves (e.g. maximum rate of growth). A Gibbs sampling approach is used to get posterior mean estimates of nonlinear functionals along with their uncertainty estimates. A second-stage ecologic random-effects model is used to examine the association between a covariate of interest (e.g. air pollution) and the nonlinear functionals. A unified estimation procedure is presented along with its computational and theoretical details. The models are motivated by, and illustrated with, lung function and air pollution data from the Southern California Children's Health Study.

  9. Bayesian analysis of CCDM models

    NASA Astrophysics Data System (ADS)

    Jesus, J. F.; Valentim, R.; Andrade-Oliveira, F.

    2017-09-01

    Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, produces a negative pressure term which can be used to explain the accelerated expansion of the Universe. In this work we tested six different spatially flat models for matter creation using statistical criteria, in light of SNe Ia data: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Bayesian Evidence (BE). These criteria allow to compare models considering goodness of fit and number of free parameters, penalizing excess of complexity. We find that JO model is slightly favoured over LJO/ΛCDM model, however, neither of these, nor Γ = 3αH0 model can be discarded from the current analysis. Three other scenarios are discarded either because poor fitting or because of the excess of free parameters. A method of increasing Bayesian evidence through reparameterization in order to reducing parameter degeneracy is also developed.

  10. Bayesian Calibration of Microsimulation Models.

    PubMed

    Rutter, Carolyn M; Miglioretti, Diana L; Savarino, James E

    2009-12-01

    Microsimulation models that describe disease processes synthesize information from multiple sources and can be used to estimate the effects of screening and treatment on cancer incidence and mortality at a population level. These models are characterized by simulation of individual event histories for an idealized population of interest. Microsimulation models are complex and invariably include parameters that are not well informed by existing data. Therefore, a key component of model development is the choice of parameter values. Microsimulation model parameter values are selected to reproduce expected or known results though the process of model calibration. Calibration may be done by perturbing model parameters one at a time or by using a search algorithm. As an alternative, we propose a Bayesian method to calibrate microsimulation models that uses Markov chain Monte Carlo. We show that this approach converges to the target distribution and use a simulation study to demonstrate its finite-sample performance. Although computationally intensive, this approach has several advantages over previously proposed methods, including the use of statistical criteria to select parameter values, simultaneous calibration of multiple parameters to multiple data sources, incorporation of information via prior distributions, description of parameter identifiability, and the ability to obtain interval estimates of model parameters. We develop a microsimulation model for colorectal cancer and use our proposed method to calibrate model parameters. The microsimulation model provides a good fit to the calibration data. We find evidence that some parameters are identified primarily through prior distributions. Our results underscore the need to incorporate multiple sources of variability (i.e., due to calibration data, unknown parameters, and estimated parameters and predicted values) when calibrating and applying microsimulation models.

  11. A Bayesian Approach to Learning Scoring Systems.

    PubMed

    Ertekin, Şeyda; Rudin, Cynthia

    2015-12-01

    We present a Bayesian method for building scoring systems, which are linear models with coefficients that have very few significant digits. Usually the construction of scoring systems involve manual effort-humans invent the full scoring system without using data, or they choose how logistic regression coefficients should be scaled and rounded to produce a scoring system. These kinds of heuristics lead to suboptimal solutions. Our approach is different in that humans need only specify the prior over what the coefficients should look like, and the scoring system is learned from data. For this approach, we provide a Metropolis-Hastings sampler that tends to pull the coefficient values toward their "natural scale." Empirically, the proposed method achieves a high degree of interpretability of the models while maintaining competitive generalization performances.

  12. Multiple player tracking in sports video: a dual-mode two-way bayesian inference approach with progressive observation modeling.

    PubMed

    Xing, Junliang; Ai, Haizhou; Liu, Liwei; Lao, Shihong

    2011-06-01

    Multiple object tracking (MOT) is a very challenging task yet of fundamental importance for many practical applications. In this paper, we focus on the problem of tracking multiple players in sports video which is even more difficult due to the abrupt movements of players and their complex interactions. To handle the difficulties in this problem, we present a new MOT algorithm which contributes both in the observation modeling level and in the tracking strategy level. For the observation modeling, we develop a progressive observation modeling process that is able to provide strong tracking observations and greatly facilitate the tracking task. For the tracking strategy, we propose a dual-mode two-way Bayesian inference approach which dynamically switches between an offline general model and an online dedicated model to deal with single isolated object tracking and multiple occluded object tracking integrally by forward filtering and backward smoothing. Extensive experiments on different kinds of sports videos, including football, basketball, as well as hockey, demonstrate the effectiveness and efficiency of the proposed method.

  13. A Bayesian Approach to Joint Modeling of Protein-DNA Binding, Gene Expression and Sequence Data

    PubMed Central

    Xie, Yang; Pan, Wei; Jeong, Kyeong S.; Xiao, Guanghua; Khodursky, Arkady B.

    2012-01-01

    The genome-wide DNA-protein binding data, DNA sequence data and gene expression data represent complementary means to deciphering global and local transcriptional regulatory circuits. Combining these different types of data can not only improve the statistical power, but also provide a more comprehensive picture of gene regulation. In this paper, we propose a novel statistical model to augment proteinDNA binding data with gene expression and DNA sequence data when available. We specify a hierarchical Bayes model and use Markov chain Monte Carlo simulations to draw inferences. Both simulation studies and an analysis of an experimental dataset show that the proposed joint modeling method can significantly improve the specificity and sensitivity of identifying target genes as compared to conventional approaches relying on a single data source. PMID:20049751

  14. Probabilistic Tomography: A Pragmatic Bayesian Approach

    NASA Astrophysics Data System (ADS)

    Trampert, J.

    2014-12-01

    'The future lies in uncertainty' (Spiegelhalter, Science, 345, 264, 2014), nothing could be more true for Earth Sciences. We are able to produce ever more sophisticated models but they can only inform us about the Earth in a meaningful way if we can assign uncertainties to the models. Bayesian inference is a natural choice for this task as it handles uncertainty in a natural way by explicitly modeling assumptions. Another desirable property is that Bayes' theorem contains Occam's razor implicitly. I will present our efforts over the that last 10 years to infer Earth properties using an approach we called probabilistic tomography. The word pragmatic has several meanings in this context. In more classical Bayesian inference problems, we usually prescribe subjective or informative priors. I will illustrate this by showing examples which employ the neighborhood algorithm (Sambridge, 1999) or a Metropolis rule (Mosegaard and Tarantola, 1995). Recently we started to use neural networks to parametrize the posterior. In our implementation, we do not sample the posterior directly, but make predictions on some properties of the posterior. The interpretation of the uncertainty is therefore slightly different, but the method informs us on the information gain with respect to the prior. I will show examples on source and structural inversions using so-called mixture density networks.

  15. A spatiotemporal dengue fever early warning model accounting for nonlinear associations with meteorological factors: a Bayesian maximum entropy approach

    NASA Astrophysics Data System (ADS)

    Lee, Chieh-Han; Yu, Hwa-Lung; Chien, Lung-Chang

    2014-05-01

    Dengue fever has been identified as one of the most widespread vector-borne diseases in tropical and sub-tropical. In the last decade, dengue is an emerging infectious disease epidemic in Taiwan especially in the southern area where have annually high incidences. For the purpose of disease prevention and control, an early warning system is urgently needed. Previous studies have showed significant relationships between climate variables, in particular, rainfall and temperature, and the temporal epidemic patterns of dengue cases. However, the transmission of the dengue fever is a complex interactive process that mostly understated the composite space-time effects of dengue fever. This study proposes developing a one-week ahead warning system of dengue fever epidemics in the southern Taiwan that considered nonlinear associations between weekly dengue cases and meteorological factors across space and time. The early warning system based on an integration of distributed lag nonlinear model (DLNM) and stochastic Bayesian Maximum Entropy (BME) analysis. The study identified the most significant meteorological measures including weekly minimum temperature and maximum 24-hour rainfall with continuous 15-week lagged time to dengue cases variation under condition of uncertainty. Subsequently, the combination of nonlinear lagged effects of climate variables and space-time dependence function is implemented via a Bayesian framework to predict dengue fever occurrences in the southern Taiwan during 2012. The result shows the early warning system is useful for providing potential outbreak spatio-temporal prediction of dengue fever distribution. In conclusion, the proposed approach can provide a practical disease control tool for environmental regulators seeking more effective strategies for dengue fever prevention.

  16. Bayesian approach to noninferiority trials for proportions.

    PubMed

    Gamalo, Mark A; Wu, Rui; Tiwari, Ram C

    2011-09-01

    Noninferiority trials are unique because they are dependent upon historical information in order to make meaningful interpretation of their results. Hence, a direct application of the Bayesian paradigm in sequential learning becomes apparently useful in the analysis. This paper describes a Bayesian procedure for testing noninferiority in two-arm studies with a binary primary endpoint that allows the incorporation of historical data on an active control via the use of informative priors. In particular, the posteriors of the response in historical trials are assumed as priors for its corresponding parameters in the current trial, where that treatment serves as the active control. The Bayesian procedure includes a fully Bayesian method and two normal approximation methods on the prior and/or on the posterior distributions. Then a common Bayesian decision criterion is used but with two prespecified cutoff levels, one for the approximation methods and the other for the fully Bayesian method, to determine whether the experimental treatment is noninferior to the active control. This criterion is evaluated and compared with the frequentist method using simulation studies in keeping with regulatory framework that new methods must protect type I error and arrive at a similar conclusion with existing standard strategies. Results show that both methods arrive at comparable conclusions of noninferiority when applied to a modified real data set. The advantage of the proposed Bayesian approach lies in its ability to provide posterior probabilities for effect sizes of the experimental treatment over the active control.

  17. Modelling macronutrient dynamics in the Hampshire Avon river: A Bayesian approach to estimate seasonal variability and total flux.

    PubMed

    Pirani, Monica; Panton, Anouska; Purdie, Duncan A; Sahu, Sujit K

    2016-12-01

    The macronutrients nitrate and phosphate are aquatic pollutants that arise naturally, however, in excess concentrations they can be harmful to human health and ecosystems. These pollutants are driven by river currents and show dynamics that are affected by weather patterns and extreme rainfall events. As a result, the nutrient budget in the receiving estuaries and coasts can change suddenly and seasonally, causing ecological damage to resident wildlife and fish populations. In this paper, we propose a statistical change-point model with interactions between time and river flow, to capture the macronutrient dynamics and their responses to river flow threshold behaviour. It also accounts for the nonlinear effect of water quality properties via nonparametric penalised splines. This model enables us to estimate the daily levels of riverine macronutrient fluxes and their seasonal and annual totals. In particular, we present a study of macronutrient dynamics on the Hampshire Avon River, which flows to the southern coast of the UK through the Christchurch Harbour estuary. We model daily data for more than a year during 2013-14 in which period there were multiple severe meteorological conditions leading to localised flooding. Adopting a Bayesian inference framework, we have quantified riverine macronutrient fluxes based on input river flow values. Out of sample empirical validation methods justify our approach, which captures also the dependencies of macronutrient concentrations with water body characteristics. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Hopes and Cautions in Implementing Bayesian Structural Equation Modeling

    ERIC Educational Resources Information Center

    MacCallum, Robert C.; Edwards, Michael C.; Cai, Li

    2012-01-01

    Muthen and Asparouhov (2012) have proposed and demonstrated an approach to model specification and estimation in structural equation modeling (SEM) using Bayesian methods. Their contribution builds on previous work in this area by (a) focusing on the translation of conventional SEM models into a Bayesian framework wherein parameters fixed at zero…

  19. Bayesian Model Averaging for Propensity Score Analysis

    ERIC Educational Resources Information Center

    Kaplan, David; Chen, Jianshen

    2013-01-01

    The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…

  20. A Bayesian Modeling Approach for Estimation of a Shape-Free Groundwater Age Distribution using Multiple Tracers

    DOE PAGES

    Massoudieh, Arash; Visser, Ate; Sharifi, Soroosh; ...

    2013-10-15

    The mixing of groundwaters with different ages in aquifers, groundwater age is more appropriately represented by a distribution rather than a scalar number. To infer a groundwater age distribution from environmental tracers, a mathematical form is often assumed for the shape of the distribution and the parameters of the mathematical distribution are estimated using deterministic or stochastic inverse methods. We found that the prescription of the mathematical form limits the exploration of the age distribution to the shapes that can be described by the selected distribution. In this paper, the use of freeform histograms as groundwater age distributions is evaluated.more » A Bayesian Markov Chain Monte Carlo approach is used to estimate the fraction of groundwater in each histogram bin. This method was able to capture the shape of a hypothetical gamma distribution from the concentrations of four age tracers. The number of bins that can be considered in this approach is limited based on the number of tracers available. The histogram method was also tested on tracer data sets from Holten (The Netherlands; 3H, 3He, 85Kr, 39Ar) and the La Selva Biological Station (Costa-Rica; SF 6, CFCs, 3H, 4He and 14C), and compared to a number of mathematical forms. According to standard Bayesian measures of model goodness, the best mathematical distribution performs better than the histogram distributions in terms of the ability to capture the observed tracer data relative to their complexity. Among the histogram distributions, the four bin histogram performs better in most of the cases. The Monte Carlo simulations showed strong correlations in the posterior estimates of bin contributions, indicating that these bins cannot be well constrained using the available age tracers. The fact that mathematical forms overall perform better than the freeform histogram does not undermine the benefit of the freeform approach, especially for the cases where a larger amount of observed data is

  1. A Bayesian Modeling Approach for Estimation of a Shape-Free Groundwater Age Distribution using Multiple Tracers

    SciTech Connect

    Massoudieh, Arash; Visser, Ate; Sharifi, Soroosh; Broers, Hans Peter

    2013-10-15

    The mixing of groundwaters with different ages in aquifers, groundwater age is more appropriately represented by a distribution rather than a scalar number. To infer a groundwater age distribution from environmental tracers, a mathematical form is often assumed for the shape of the distribution and the parameters of the mathematical distribution are estimated using deterministic or stochastic inverse methods. We found that the prescription of the mathematical form limits the exploration of the age distribution to the shapes that can be described by the selected distribution. In this paper, the use of freeform histograms as groundwater age distributions is evaluated. A Bayesian Markov Chain Monte Carlo approach is used to estimate the fraction of groundwater in each histogram bin. This method was able to capture the shape of a hypothetical gamma distribution from the concentrations of four age tracers. The number of bins that can be considered in this approach is limited based on the number of tracers available. The histogram method was also tested on tracer data sets from Holten (The Netherlands; 3H, 3He, 85Kr, 39Ar) and the La Selva Biological Station (Costa-Rica; SF 6, CFCs, 3H, 4He and 14C), and compared to a number of mathematical forms. According to standard Bayesian measures of model goodness, the best mathematical distribution performs better than the histogram distributions in terms of the ability to capture the observed tracer data relative to their complexity. Among the histogram distributions, the four bin histogram performs better in most of the cases. The Monte Carlo simulations showed strong correlations in the posterior estimates of bin contributions, indicating that these bins cannot be well constrained using the available age tracers. The fact that mathematical forms overall perform better than the freeform histogram does not undermine the benefit of the

  2. A SEMIPARAMETRIC BAYESIAN MODEL FOR CIRCULAR-LINEAR REGRESSION

    EPA Science Inventory

    We present a Bayesian approach to regress a circular variable on a linear predictor. The regression coefficients are assumed to have a nonparametric distribution with a Dirichlet process prior. The semiparametric Bayesian approach gives added flexibility to the model and is usefu...

  3. A SEMIPARAMETRIC BAYESIAN MODEL FOR CIRCULAR-LINEAR REGRESSION

    EPA Science Inventory

    We present a Bayesian approach to regress a circular variable on a linear predictor. The regression coefficients are assumed to have a nonparametric distribution with a Dirichlet process prior. The semiparametric Bayesian approach gives added flexibility to the model and is usefu...

  4. Introduction to Bayesian modelling in dental research.

    PubMed

    Gilthorpe, M S; Maddick, I H; Petrie, A

    2000-12-01

    To explain the concepts and application of Bayesian modelling and how it can be applied to the analysis of dental research data. Methodological in nature, this article introduces Bayesian modelling through hypothetical dental examples. The synthesis of RCT results with previous evidence, including expert opinion, is used to illustrate full Bayesian modelling. Meta-analysis, in the form of empirical Bayesian modelling, is introduced. An example of full Bayesian modelling is described for the synthesis of evidence from several studies that investigate the success of root canal treatment. Hierarchical (Bayesian) modelling is demonstrated for a survey of childhood caries, where surface data is nested within subjects. Bayesian methods enhance interpretation of research evidence through the synthesis of information from multiple sources. Bayesian modelling is now readily accessible to clinical researchers and is able to augment the application of clinical decision making in the development of guidelines and clinical practice.

  5. Bayesian stable isotope mixing models

    EPA Science Inventory

    In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...

  6. Bayesian stable isotope mixing models

    EPA Science Inventory

    In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...

  7. A Bayesian approach to estimate evoked potentials.

    PubMed

    Sparacino, Giovanni; Milani, Stefano; Arslan, Edoardo; Cobelli, Claudio

    2002-06-01

    Several approaches, based on different assumptions and with various degree of theoretical sophistication and implementation complexity, have been developed for improving the measurement of evoked potentials (EP) performed by conventional averaging (CA). In many of these methods, one of the major challenges is the exploitation of a priori knowledge. In this paper, we present a new method where the 2nd-order statistical information on the background EEG and on the unknown EP, necessary for the optimal filtering of each sweep in a Bayesian estimation framework, is, respectively, estimated from pre-stimulus data and obtained through a multiple integration of a white noise process model. The latter model is flexible (i.e. it can be employed for a large class of EP) and simple enough to be easily identifiable from the post-stimulus data thanks to a smoothing criterion. The mean EP is determined as the weighted average of the filtered sweeps, where each weight is inversely proportional to the expected value of the norm of the correspondent filter error, a quantity determinable thanks to the employment of the Bayesian approach. The performance of the new approach is shown on both simulated and real auditory EP. A signal-to-noise ratio enhancement is obtained that can allow the (possibly automatic) identification of peak latencies and amplitudes with less sweeps than those required by CA. For cochlear EP, the method also allows the audiology investigator to gather new and clinically important information. The possibility of handling single-sweep analysis with further development of the method is also addressed.

  8. Sparse Bayesian infinite factor models

    PubMed Central

    Bhattacharya, A.; Dunson, D. B.

    2011-01-01

    We focus on sparse modelling of high-dimensional covariance matrices using Bayesian latent factor models. We propose a multiplicative gamma process shrinkage prior on the factor loadings which allows introduction of infinitely many factors, with the loadings increasingly shrunk towards zero as the column index increases. We use our prior on a parameter-expanded loading matrix to avoid the order dependence typical in factor analysis models and develop an efficient Gibbs sampler that scales well as data dimensionality increases. The gain in efficiency is achieved by the joint conjugacy property of the proposed prior, which allows block updating of the loadings matrix. We propose an adaptive Gibbs sampler for automatically truncating the infinite loading matrix through selection of the number of important factors. Theoretical results are provided on the support of the prior and truncation approximation bounds. A fast algorithm is proposed to produce approximate Bayes estimates. Latent factor regression methods are developed for prediction and variable selection in applications with high-dimensional correlated predictors. Operating characteristics are assessed through simulation studies, and the approach is applied to predict survival times from gene expression data. PMID:23049129

  9. Estimation of hydrological and thermal parameters in the hyporheic zone using a novel Bayesian inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Cucchi, Karina; Flipo, Nicolas; Rivière, Agnès; Rubin, Yoram

    2016-04-01

    Hydrothermal properties of the stream-aquifer interface are key information for modeling water and heat transfers in hydrological basins. Our study introduces an algorithm to estimate hydrological and thermal parameters of the hyporheic zone (HZ), as well as their associated uncertainties. Properties of the HZ are inferred from a combination of head differential time series and vertically-distributed temperature time series measured continually in a HZ vertical profile. Head differential and two temperature time series are used as boundary conditions for the vertical profile; the other temperature time series are used as conditioning measurements. Following the Bayesian framework, model parameters are treated as random variables and we seek to characterize their probability density function (PDF) conditional on the temperature time series. Our algorithm follows the Method of Anchored Distributions (MAD) implemented in the MAD# software. In order to cut down the number of simulations needed, we develop a hybrid discrete-continuous inversion approach. We first identify the most sensitive parameters in a sensitivity analysis, these parameters are characterized with continuous PDFs. Less sensitive parameters are represented with a discrete PDFs using a finite number of discrete outcomes. We use a non-parametric likelihood function and time series dimension reduction techniques in order to calculate posterior PDFs of HZ parameters. We demonstrate the approach on a synthetic study using an analytical solution and then apply it to field measurements gathered in the Avenelles basin, France. We present one application of this approach, the uncertainty-quantified time series of localized stream-aquifer exchanges.

  10. Particle identification in ALICE: a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Benacek, P.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kostarakis, P.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Pereira Da Costa, H.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shahzad, M. I.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Souza, R. D. de; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thakur, D.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yang, H.; Yang, P.; Yano, S.; Yasin, Z.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2016-05-01

    We present a Bayesian approach to particle identification (PID) within the ALICE experiment. The aim is to more effectively combine the particle identification capabilities of its various detectors. After a brief explanation of the adopted methodology and formalism, the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE is studied. PID is performed via measurements of specific energy loss ( d E/d x) and time of flight. PID efficiencies and misidentification probabilities are extracted and compared with Monte Carlo simulations using high-purity samples of identified particles in the decay channels K0S → π-π+, φ→ K-K+, and Λ→ p π- in p-Pb collisions at √{s_{NN}}=5.02 TeV. In order to thoroughly assess the validity of the Bayesian approach, this methodology was used to obtain corrected pT spectra of pions, kaons, protons, and D0 mesons in pp collisions at √{s}=7 TeV. In all cases, the results using Bayesian PID were found to be consistent with previous measurements performed by ALICE using a standard PID approach. For the measurement of D0 → K-π+, it was found that a Bayesian PID approach gave a higher signal-to-background ratio and a similar or larger statistical significance when compared with standard PID selections, despite a reduced identification efficiency. Finally, we present an exploratory study of the measurement of Λc+ → p K-π+ in pp collisions at √{s}=7 TeV, using the Bayesian approach for the identification of its decay products.

  11. Probabilistic correction of precipitation measurement errors using a Bayesian Model Average Approach applied for the estimation of glacier accumulation

    NASA Astrophysics Data System (ADS)

    Moya Quiroga, Vladimir; Mano, Akira; Asaoka, Yoshihiro; Udo, Keiko; Kure, Shuichi; Mendoza, Javier

    2013-04-01

    Precipitation is a major component of the water cycle that returns atmospheric water to the ground. Without precipitation there would be no water cycle, all the water would run down the rivers and into the seas, then the rivers would dry up with no fresh water from precipitation. Although precipitation measurement seems an easy and simple procedure, it is affected by several systematic errors which lead to underestimation of the actual precipitation. Hence, precipitation measurements should be corrected before their use. Different correction approaches were already suggested in order to correct precipitation measurements. Nevertheless, focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this presentation we propose a Bayesian model average (BMA) approach for correcting rain gauge measurement errors. In the present study we used meteorological data recorded every 10 minutes at the Condoriri station in the Bolivian Andes. Comparing rain gauge measurements with totalisators rain measurements it was possible to estimate the rain underestimation. First, different deterministic models were optimized for the correction of precipitation considering wind effect and precipitation intensities. Then, probabilistic BMA correction was performed. The corrected precipitation was then separated into rainfall and snowfall considering typical Andean temperature thresholds of -1°C and 3°C. Hence, precipitation was separated into rainfall, snowfall and mixed precipitation. Then, relating the total snowfall with the glacier ice density, it was possible to estimate the glacier accumulation. Results show a yearly glacier accumulation of 1200 mm/year. Besides, results confirm that in tropical glaciers winter is not accumulation period, but a low ablation one. Results show that neglecting such correction may induce an underestimation higher than 35 % of total precipitation. Besides, the uncertainty range may induce differences up

  12. BAYESIAN METHODS FOR REGIONAL-SCALE EUTROPHICATION MODELS. (R830887)

    EPA Science Inventory

    We demonstrate a Bayesian classification and regression tree (CART) approach to link multiple environmental stressors to biological responses and quantify uncertainty in model predictions. Such an approach can: (1) report prediction uncertainty, (2) be consistent with the amou...

  13. BAYESIAN METHODS FOR REGIONAL-SCALE EUTROPHICATION MODELS. (R830887)

    EPA Science Inventory

    We demonstrate a Bayesian classification and regression tree (CART) approach to link multiple environmental stressors to biological responses and quantify uncertainty in model predictions. Such an approach can: (1) report prediction uncertainty, (2) be consistent with the amou...

  14. Macroscopic hotspots identification: A Bayesian spatio-temporal interaction approach.

    PubMed

    Dong, Ni; Huang, Helai; Lee, Jaeyoung; Gao, Mingyun; Abdel-Aty, Mohamed

    2016-07-01

    This study proposes a Bayesian spatio-temporal interaction approach for hotspot identification by applying the full Bayesian (FB) technique in the context of macroscopic safety analysis. Compared with the emerging Bayesian spatial and temporal approach, the Bayesian spatio-temporal interaction model contributes to a detailed understanding of differential trends through analyzing and mapping probabilities of area-specific crash trends as differing from the mean trend and highlights specific locations where crash occurrence is deteriorating or improving over time. With traffic analysis zones (TAZs) crash data collected in Florida, an empirical analysis was conducted to evaluate the following three approaches for hotspot identification: FB ranking using a Poisson-lognormal (PLN) model, FB ranking using a Bayesian spatial and temporal (B-ST) model and FB ranking using a Bayesian spatio-temporal interaction (B-ST-I) model. The results show that (a) the models accounting for space-time effects perform better in safety ranking than does the PLN model, and (b) the FB approach using the B-ST-I model significantly outperforms the B-ST approach in correctly identifying hotspots by explicitly accounting for the space-time variation in addition to the stable spatial/temporal patterns of crash occurrence. In practice, the B-ST-I approach plays key roles in addressing two issues: (a) how the identified hotspots have evolved over time and (b) the identification of areas that, whilst not yet hotspots, show a tendency to become hotspots. Finally, it can provide guidance to policy decision makers to efficiently improve zonal-level safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Incorporating Prior Theory in Covariance Structure Analysis: A Bayesian Approach.

    ERIC Educational Resources Information Center

    Fornell, Claes; Rust, Roland T.

    1989-01-01

    A Bayesian approach to the testing of competing covariance structures is developed. Approximate posterior probabilities are easily obtained from the chi square values and other known constants. The approach is illustrated using an example that demonstrates how the prior probabilities can alter results concerning the preferred model specification.…

  16. Performance of two predictive uncertainty estimation approaches for conceptual Rainfall-Runoff Model: Bayesian Joint Inference and Hydrologic Uncertainty Post-processing

    NASA Astrophysics Data System (ADS)

    Hernández-López, Mario R.; Romero-Cuéllar, Jonathan; Camilo Múnera-Estrada, Juan; Coccia, Gabriele; Francés, Félix

    2017-04-01

    It is noticeably important to emphasize the role of uncertainty particularly when the model forecasts are used to support decision-making and water management. This research compares two approaches for the evaluation of the predictive uncertainty in hydrological modeling. First approach is the Bayesian Joint Inference of hydrological and error models. Second approach is carried out through the Model Conditional Processor using the Truncated Normal Distribution in the transformed space. This comparison is focused on the predictive distribution reliability. The case study is applied to two basins included in the Model Parameter Estimation Experiment (MOPEX). These two basins, which have different hydrological complexity, are the French Broad River (North Carolina) and the Guadalupe River (Texas). The results indicate that generally, both approaches are able to provide similar predictive performances. However, the differences between them can arise in basins with complex hydrology (e.g. ephemeral basins). This is because obtained results with Bayesian Joint Inference are strongly dependent on the suitability of the hypothesized error model. Similarly, the results in the case of the Model Conditional Processor are mainly influenced by the selected model of tails or even by the selected full probability distribution model of the data in the real space, and by the definition of the Truncated Normal Distribution in the transformed space. In summary, the different hypotheses that the modeler choose on each of the two approaches are the main cause of the different results. This research also explores a proper combination of both methodologies which could be useful to achieve less biased hydrological parameter estimation. For this approach, firstly the predictive distribution is obtained through the Model Conditional Processor. Secondly, this predictive distribution is used to derive the corresponding additive error model which is employed for the hydrological parameter

  17. Bayesian modeling in virtual high throughput screening.

    PubMed

    Klon, Anthony E

    2009-06-01

    Naïve Bayesian classifiers are a relatively recent addition to the arsenal of tools available to computational chemists. These classifiers fall into a class of algorithms referred to broadly as machine learning algorithms. Bayesian classifiers may be used in conjunction with classical modeling techniques to assist in the rapid virtual screening of large compound libraries in a systematic manner with a minimum of human intervention. This approach allows computational scientists to concentrate their efforts on their core strengths of model building. Bayesian classifiers have an added advantage of being able to handle a variety of numerical or binary data such as physicochemical properties or molecular fingerprints, making the addition of new parameters to existing models a relatively straightforward process. As a result, during a drug discovery project these classifiers can better evolve with the needs of the projects from general models in the lead finding stages to increasingly precise models in the lead optimization stages that are of particular interest to a specific medicinal chemistry team. Although other machine learning algorithms abound, Bayesian classifiers have been shown to compare favorably under most working conditions and have been shown to be tolerant of noisy experimental data.

  18. Exploring links between juvenile offenders and social disorganization at a large map scale: a Bayesian spatial modeling approach

    NASA Astrophysics Data System (ADS)

    Law, Jane; Quick, Matthew

    2013-01-01

    This paper adopts a Bayesian spatial modeling approach to investigate the distribution of young offender residences in York Region, Southern Ontario, Canada, at the census dissemination area level. Few geographic researches have analyzed offender (as opposed to offense) data at a large map scale (i.e., using a relatively small areal unit of analysis) to minimize aggregation effects. Providing context is the social disorganization theory, which hypothesizes that areas with economic deprivation, high population turnover, and high ethnic heterogeneity exhibit social disorganization and are expected to facilitate higher instances of young offenders. Non-spatial and spatial Poisson models indicate that spatial methods are superior to non-spatial models with respect to model fit and that index of ethnic heterogeneity, residential mobility (1 year moving rate), and percentage of residents receiving government transfer payments are, respectively, the most significant explanatory variables related to young offender location. These findings provide overwhelming support for social disorganization theory as it applies to offender location in York Region, Ontario. Targeting areas where prevalence of young offenders could or could not be explained by social disorganization through decomposing the estimated risk map are helpful for dealing with juvenile offenders in the region. Results prompt discussion into geographically targeted police services and young offender placement pertaining to risk of recidivism. We discuss possible reasons for differences and similarities between the previous findings (that analyzed offense data and/or were conducted at a smaller map scale) and our findings, limitations of our study, and practical outcomes of this research from a law enforcement perspective.

  19. Fire risk in San Diego County, California: A weighted Bayesian model approach

    USGS Publications Warehouse

    Kolden, Crystal A.; Weigel, Timothy J.

    2007-01-01

    Fire risk models are widely utilized to mitigate wildfire hazards, but models are often based on expert opinions of less understood fire-ignition and spread processes. In this study, we used an empirically derived weights-of-evidence model to assess what factors produce fire ignitions east of San Diego, California. We created and validated a dynamic model of fire-ignition risk based on land characteristics and existing fire-ignition history data, and predicted ignition risk for a future urbanization scenario. We then combined our empirical ignition-risk model with a fuzzy fire behavior-risk model developed by wildfire experts to create a hybrid model of overall fire risk. We found that roads influence fire ignitions and that future growth will increase risk in new rural development areas. We conclude that empirically derived risk models and hybrid models offer an alternative method to assess current and future fire risk based on management actions.

  20. Bayesian network approach to spatial data mining: a case study

    NASA Astrophysics Data System (ADS)

    Huang, Jiejun; Wan, Youchuan

    2006-10-01

    Spatial data mining is a process of discovering interesting, novel, and potentially useful information or knowledge hidden in spatial data sets. It involves different techniques and different methods from various areas of research. A Bayesian network is a graphical model that encodes causal probabilistic relationships among variables of interest, which has a powerful ability for representing and reasoning and provides an effective way to spatial data mining. In this paper we give an introduction to Bayesian networks, and discuss using Bayesian networks for spatial data mining. We propose a framework of spatial data mining based on Bayesian networks. Then we show a case study and use the experimental results to validate the practical viability of the proposed approach to spatial data mining. Finally, the paper gives a summary and some remarks.

  1. A Bayesian Approach for Analyzing Hierarchical Data with Missing Outcomes through Structural Equation Models

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2008-01-01

    Structural equation models are widely appreciated in behavioral, social, and psychological research to model relations between latent constructs and manifest variables, and to control for measurement errors. Most applications of structural equation models are based on fully observed data that are independently distributed. However, hierarchical…

  2. A Semi-Parametric Bayesian Mixture Modeling Approach for the Analysis of Judge Mediated Data

    ERIC Educational Resources Information Center

    Muckle, Timothy Joseph

    2010-01-01

    Existing methods for the analysis of ordinal-level data arising from judge ratings, such as the Multi-Facet Rasch model (MFRM, or the so-called Facets model) have been widely used in assessment in order to render fair examinee ability estimates in situations where the judges vary in their behavior or severity. However, this model makes certain…

  3. A Semi-Parametric Bayesian Mixture Modeling Approach for the Analysis of Judge Mediated Data

    ERIC Educational Resources Information Center

    Muckle, Timothy Joseph

    2010-01-01

    Existing methods for the analysis of ordinal-level data arising from judge ratings, such as the Multi-Facet Rasch model (MFRM, or the so-called Facets model) have been widely used in assessment in order to render fair examinee ability estimates in situations where the judges vary in their behavior or severity. However, this model makes certain…

  4. A Bayesian Approach for Analyzing Hierarchical Data with Missing Outcomes through Structural Equation Models

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2008-01-01

    Structural equation models are widely appreciated in behavioral, social, and psychological research to model relations between latent constructs and manifest variables, and to control for measurement errors. Most applications of structural equation models are based on fully observed data that are independently distributed. However, hierarchical…

  5. The random set approach to nontraditional measurements is rigorously Bayesian

    NASA Astrophysics Data System (ADS)

    Mahler, Ronald; El-Fallah, Adel

    2012-06-01

    In several previous publications the first author has proposed a "generalized likelihood function" (GLF) approach for processing nontraditional measurements such as attributes, features, natural-language statements, and inference rules. The GLF approach is based on random set "generalized measurement models" for nontraditional measurements. GLFs are not conventional likelihood functions, since they are not density functions and their integrals are usually infinite, rather than equal to 1. For this reason, it has been unclear whether or not the GLF approach is fully rigorous from a strict Bayesian point of view. In a recent paper, the first author demonstrated that the GLF of a specific type of nontraditional measurement-quantized measurements-is rigorously Bayesian. In this paper we show that this result can be generalized to arbitrary nontraditional measurements, thus removing any doubt that the GLF approach is rigorously Bayesian.

  6. Spatially-dependent Bayesian model selection for disease mapping.

    PubMed

    Carroll, Rachel; Lawson, Andrew B; Faes, Christel; Kirby, Russell S; Aregay, Mehreteab; Watjou, Kevin

    2016-01-01

    In disease mapping where predictor effects are to be modeled, it is often the case that sets of predictors are fixed, and the aim is to choose between fixed model sets. Model selection methods, both Bayesian model selection and Bayesian model averaging, are approaches within the Bayesian paradigm for achieving this aim. In the spatial context, model selection could have a spatial component in the sense that some models may be more appropriate for certain areas of a study region than others. In this work, we examine the use of spatially referenced Bayesian model averaging and Bayesian model selection via a large-scale simulation study accompanied by a small-scale case study. Our results suggest that BMS performs well when a strong regression signature is found.

  7. Model Reduction for Dynamic Sensor Steering: A Bayesian Approach to Inverse Problems

    DTIC Science & Technology

    2008-06-01

    Neumann conditions. In particular, a Poiseuille flow is imposed on the inflow boundary, a no- flow (zero velocity) condition is imposed on the top and...can be incorporated into the solution very elegantly. In [34, 35] an approach is proposed for the description of atmospheric flows based on proper...Steering Al- gorithm setting in Chapter 4, which enables a more realistic simulation of physical processes. The posed challenge is to maintain the

  8. Epicatechin ingested via cocoa products reduces blood pressure in humans: a nonlinear regression model with a Bayesian approach.

    PubMed

    Ellinger, Sabine; Reusch, Andreas; Stehle, Peter; Helfrich, Hans-Peter

    2012-06-01

    Four meta-analyses of randomized controlled trials (RCTs) based on the classical random-effects model showed that cocoa consumption can reduce systolic blood pressure (SBP) and diastolic blood pressure (DBP). Because epicatechin is suggested to be responsible for the treatment effect, changes in blood pressure should depend on the dose of ingested epicatechin, which may explain the between-study differences. The objective was to quantify the effect of epicatechin ingested via cocoa products on changes in SBP and DBP. A nonlinear meta-regression model was chosen to investigate the impact of the epicatechin dose on changes in SBP and DBP. A Bayesian approach using Markov chain Monte Carlo methods was applied for an appropriate treatment of the nonlinearity. Data from 16 RCTs on SBP and 15 RCTs on DBP were included. The dose of epicatechin ingested via cocoa products influenced the changes in SBP and DBP. The asymptotic limit for the reduction was estimated at -4.6 mm Hg (95% CI: -5.4, -3.9 mm Hg) for SBP and at -2.1 mm Hg (95% CI: -2.7, -1.6 mm Hg) for DBP. An intake of 25 mg epicatechin/d led to a mean reduction of -4.1 mm Hg (95% CI: -4.6, -3.6 mm Hg) in SBP and of -2.0 mm Hg (95% CI: -2.4, -1.5 mm Hg) in DBP. Blood pressure reduction by consumption of cocoa products depends on the dose of ingested epicatechin, which explains most of the between-study differences in classical meta-analyses. Similar effects may be achieved by consumption of other foods that are also rich in epicatechin.

  9. Frequentist tests for Bayesian models

    NASA Astrophysics Data System (ADS)

    Lucy, L. B.

    2016-04-01

    Analogues of the frequentist chi-square and F tests are proposed for testing goodness-of-fit and consistency for Bayesian models. Simple examples exhibit these tests' detection of inconsistency between consecutive experiments with identical parameters, when the first experiment provides the prior for the second. In a related analysis, a quantitative measure is derived for judging the degree of tension between two different experiments with partially overlapping parameter vectors.

  10. Objective Bayesian model selection for Cox regression.

    PubMed

    Held, Leonhard; Gravestock, Isaac; Sabanés Bové, Daniel

    2016-12-20

    There is now a large literature on objective Bayesian model selection in the linear model based on the g-prior. The methodology has been recently extended to generalized linear models using test-based Bayes factors. In this paper, we show that test-based Bayes factors can also be applied to the Cox proportional hazards model. If the goal is to select a single model, then both the maximum a posteriori and the median probability model can be calculated. For clinical prediction of survival, we shrink the model-specific log hazard ratio estimates with subsequent calculation of the Breslow estimate of the cumulative baseline hazard function. A Bayesian model average can also be employed. We illustrate the proposed methodology with the analysis of survival data on primary biliary cirrhosis patients and the development of a clinical prediction model for future cardiovascular events based on data from the Second Manifestations of ARTerial disease (SMART) cohort study. Cross-validation is applied to compare the predictive performance with alternative model selection approaches based on Harrell's c-Index, the calibration slope and the integrated Brier score. Finally, a novel application of Bayesian variable selection to optimal conditional prediction via landmarking is described. Copyright © 2016 John Wiley & Sons, Ltd.

  11. A Tutorial Introduction to Bayesian Models of Cognitive Development

    ERIC Educational Resources Information Center

    Perfors, Amy; Tenenbaum, Joshua B.; Griffiths, Thomas L.; Xu, Fei

    2011-01-01

    We present an introduction to Bayesian inference as it is used in probabilistic models of cognitive development. Our goal is to provide an intuitive and accessible guide to the "what", the "how", and the "why" of the Bayesian approach: what sorts of problems and data the framework is most relevant for, and how and why it may be useful for…

  12. Bayesian Student Modeling and the Problem of Parameter Specification.

    ERIC Educational Resources Information Center

    Millan, Eva; Agosta, John Mark; Perez de la Cruz, Jose Luis

    2001-01-01

    Discusses intelligent tutoring systems and the application of Bayesian networks to student modeling. Considers reasons for not using Bayesian networks, including the computational complexity of the algorithms and the difficulty of knowledge acquisition, and proposes an approach to simplify knowledge acquisition that applies causal independence to…

  13. A Tutorial Introduction to Bayesian Models of Cognitive Development

    ERIC Educational Resources Information Center

    Perfors, Amy; Tenenbaum, Joshua B.; Griffiths, Thomas L.; Xu, Fei

    2011-01-01

    We present an introduction to Bayesian inference as it is used in probabilistic models of cognitive development. Our goal is to provide an intuitive and accessible guide to the "what", the "how", and the "why" of the Bayesian approach: what sorts of problems and data the framework is most relevant for, and how and why it may be useful for…

  14. Hierarchical Bayesian model updating for structural identification

    NASA Astrophysics Data System (ADS)

    Behmanesh, Iman; Moaveni, Babak; Lombaert, Geert; Papadimitriou, Costas

    2015-12-01

    A new probabilistic finite element (FE) model updating technique based on Hierarchical Bayesian modeling is proposed for identification of civil structural systems under changing ambient/environmental conditions. The performance of the proposed technique is investigated for (1) uncertainty quantification of model updating parameters, and (2) probabilistic damage identification of the structural systems. Accurate estimation of the uncertainty in modeling parameters such as mass or stiffness is a challenging task. Several Bayesian model updating frameworks have been proposed in the literature that can successfully provide the "parameter estimation uncertainty" of model parameters with the assumption that there is no underlying inherent variability in the updating parameters. However, this assumption may not be valid for civil structures where structural mass and stiffness have inherent variability due to different sources of uncertainty such as changing ambient temperature, temperature gradient, wind speed, and traffic loads. Hierarchical Bayesian model updating is capable of predicting the overall uncertainty/variability of updating parameters by assuming time-variability of the underlying linear system. A general solution based on Gibbs Sampler is proposed to estimate the joint probability distributions of the updating parameters. The performance of the proposed Hierarchical approach is evaluated numerically for uncertainty quantification and damage identification of a 3-story shear building model. Effects of modeling errors and incomplete modal data are considered in the numerical study.

  15. Drivers for Rift Valley fever emergence in Mayotte: A Bayesian modelling approach

    PubMed Central

    Fournié, Guillaume; Dommergues, Laure; Camacho, Anton; Cavalerie, Lisa; Mérot, Philippe; Keeling, Matt J.; Cêtre-Sossah, Catherine

    2017-01-01

    Rift Valley fever (RVF) is a major zoonotic and arboviral hemorrhagic fever. The conditions leading to RVF epidemics are still unclear, and the relative role of climatic and anthropogenic factors may vary between ecosystems. Here, we estimate the most likely scenario that led to RVF emergence on the island of Mayotte, following the 2006–2007 African epidemic. We developed the first mathematical model for RVF that accounts for climate, animal imports and livestock susceptibility, which is fitted to a 12-years dataset. RVF emergence was found to be triggered by the import of infectious animals, whilst transmissibility was approximated as a linear or exponential function of vegetation density. Model forecasts indicated a very low probability of virus endemicity in 2017, and therefore of re-emergence in a closed system (i.e. without import of infected animals). However, the very high proportion of naive animals reached in 2016 implies that the island remains vulnerable to the import of infectious animals. We recommend reinforcing surveillance in livestock, should RVF be reported is neighbouring territories. Our model should be tested elsewhere, with ecosystem-specific data. PMID:28732006

  16. Drivers for Rift Valley fever emergence in Mayotte: A Bayesian modelling approach.

    PubMed

    Métras, Raphaëlle; Fournié, Guillaume; Dommergues, Laure; Camacho, Anton; Cavalerie, Lisa; Mérot, Philippe; Keeling, Matt J; Cêtre-Sossah, Catherine; Cardinale, Eric; Edmunds, W John

    2017-07-01

    Rift Valley fever (RVF) is a major zoonotic and arboviral hemorrhagic fever. The conditions leading to RVF epidemics are still unclear, and the relative role of climatic and anthropogenic factors may vary between ecosystems. Here, we estimate the most likely scenario that led to RVF emergence on the island of Mayotte, following the 2006-2007 African epidemic. We developed the first mathematical model for RVF that accounts for climate, animal imports and livestock susceptibility, which is fitted to a 12-years dataset. RVF emergence was found to be triggered by the import of infectious animals, whilst transmissibility was approximated as a linear or exponential function of vegetation density. Model forecasts indicated a very low probability of virus endemicity in 2017, and therefore of re-emergence in a closed system (i.e. without import of infected animals). However, the very high proportion of naive animals reached in 2016 implies that the island remains vulnerable to the import of infectious animals. We recommend reinforcing surveillance in livestock, should RVF be reported is neighbouring territories. Our model should be tested elsewhere, with ecosystem-specific data.

  17. A Bayesian Approach for Image Segmentation with Shape Priors

    SciTech Connect

    Chang, Hang; Yang, Qing; Parvin, Bahram

    2008-06-20

    Color and texture have been widely used in image segmentation; however, their performance is often hindered by scene ambiguities, overlapping objects, or missingparts. In this paper, we propose an interactive image segmentation approach with shape prior models within a Bayesian framework. Interactive features, through mouse strokes, reduce ambiguities, and the incorporation of shape priors enhances quality of the segmentation where color and/or texture are not solely adequate. The novelties of our approach are in (i) formulating the segmentation problem in a well-de?ned Bayesian framework with multiple shape priors, (ii) ef?ciently estimating parameters of the Bayesian model, and (iii) multi-object segmentation through user-speci?ed priors. We demonstrate the effectiveness of our method on a set of natural and synthetic images.

  18. Advances in Bayesian Modeling in Educational Research

    ERIC Educational Resources Information Center

    Levy, Roy

    2016-01-01

    In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…

  19. Advances in Bayesian Modeling in Educational Research

    ERIC Educational Resources Information Center

    Levy, Roy

    2016-01-01

    In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…

  20. Flexible Bayesian Human Fecundity Models.

    PubMed

    Kim, Sungduk; Sundaram, Rajeshwari; Buck Louis, Germaine M; Pyper, Cecilia

    2012-12-01

    Human fecundity is an issue of considerable interest for both epidemiological and clinical audiences, and is dependent upon a couple's biologic capacity for reproduction coupled with behaviors that place a couple at risk for pregnancy. Bayesian hierarchical models have been proposed to better model the conception probabilities by accounting for the acts of intercourse around the day of ovulation, i.e., during the fertile window. These models can be viewed in the framework of a generalized nonlinear model with an exponential link. However, a fixed choice of link function may not always provide the best fit, leading to potentially biased estimates for probability of conception. Motivated by this, we propose a general class of models for fecundity by relaxing the choice of the link function under the generalized nonlinear model framework. We use a sample from the Oxford Conception Study (OCS) to illustrate the utility and fit of this general class of models for estimating human conception. Our findings reinforce the need for attention to be paid to the choice of link function in modeling conception, as it may bias the estimation of conception probabilities. Various properties of the proposed models are examined and a Markov chain Monte Carlo sampling algorithm was developed for implementing the Bayesian computations. The deviance information criterion measure and logarithm of pseudo marginal likelihood are used for guiding the choice of links. The supplemental material section contains technical details of the proof of the theorem stated in the paper, and contains further simulation results and analysis.

  1. Human dental age estimation using third molar developmental stages: does a Bayesian approach outperform regression models to discriminate between juveniles and adults?

    PubMed

    Thevissen, P W; Fieuws, S; Willems, G

    2010-01-01

    Dental age estimation methods based on the radiologically detected third molar developmental stages are implemented in forensic age assessments to discriminate between juveniles and adults considering the judgment of young unaccompanied asylum seekers. Accurate and unbiased age estimates combined with appropriate quantified uncertainties are the required properties for accurate forensic reporting. In this study, a subset of 910 individuals uniformly distributed in age between 16 and 22 years was selected from an existing dataset collected by Gunst et al. containing 2,513 panoramic radiographs with known third molar developmental stages of Belgian Caucasian men and women. This subset was randomly split in a training set to develop a classical regression analysis and a Bayesian model for the multivariate distribution of the third molar developmental stages conditional on age and in a test set to assess the performance of both models. The aim of this study was to verify if the Bayesian approach differentiates the age of maturity more precisely and removes the bias, which disadvantages the systematically overestimated young individuals. The Bayesian model offers the discrimination of subjects being older than 18 years more appropriate and produces more meaningful prediction intervals but does not strongly outperform the classical approaches.

  2. A Bayesian Approach to Sensor Characterization

    NASA Technical Reports Server (NTRS)

    Timucin, Dogan A.

    2003-01-01

    The physical model of a generic electro-optic sensor is derived and incorporated into a Bayesian framework for the estimation of key instrument parameters from calibration data. The sensor characterization thus achieved enables optimal subsequent removal of instrument effects from field data, leading to the highest possible accuracy in the retrieved physical quantities.

  3. A guide to Bayesian model selection for ecologists

    USGS Publications Warehouse

    Hooten, Mevin B.; Hobbs, N.T.

    2015-01-01

    The steady upward trend in the use of model selection and Bayesian methods in ecological research has made it clear that both approaches to inference are important for modern analysis of models and data. However, in teaching Bayesian methods and in working with our research colleagues, we have noticed a general dissatisfaction with the available literature on Bayesian model selection and multimodel inference. Students and researchers new to Bayesian methods quickly find that the published advice on model selection is often preferential in its treatment of options for analysis, frequently advocating one particular method above others. The recent appearance of many articles and textbooks on Bayesian modeling has provided welcome background on relevant approaches to model selection in the Bayesian framework, but most of these are either very narrowly focused in scope or inaccessible to ecologists. Moreover, the methodological details of Bayesian model selection approaches are spread thinly throughout the literature, appearing in journals from many different fields. Our aim with this guide is to condense the large body of literature on Bayesian approaches to model selection and multimodel inference and present it specifically for quantitative ecologists as neutrally as possible. We also bring to light a few important and fundamental concepts relating directly to model selection that seem to have gone unnoticed in the ecological literature. Throughout, we provide only a minimal discussion of philosophy, preferring instead to examine the breadth of approaches as well as their practical advantages and disadvantages. This guide serves as a reference for ecologists using Bayesian methods, so that they can better understand their options and can make an informed choice that is best aligned with their goals for inference.

  4. Hierarchical Bayesian Approach to Locating Seismic Events

    SciTech Connect

    Johannesson, G; Myers, S C; Hanley, W G

    2005-11-09

    We propose a hierarchical Bayesian model for conducting inference on the location of multiple seismic events (earthquakes) given data on the arrival of various seismic phases to sensor locations. The model explicitly accounts for the uncertainty associated with a theoretical seismic-wave travel-time model used along with the uncertainty of the arrival data. Posterior inferences is carried out using Markov chain Monte Carlo (MCMC).

  5. Bayesian Model Selection for Group Studies

    PubMed Central

    Stephan, Klaas Enno; Penny, Will D.; Daunizeau, Jean; Moran, Rosalyn J.; Friston, Karl J.

    2009-01-01

    Bayesian model selection (BMS) is a powerful method for determining the most likely among a set of competing hypotheses about the mechanisms that generated observed data. BMS has recently found widespread application in neuroimaging, particularly in the context of dynamic causal modelling (DCM). However, so far, combining BMS results from several subjects has relied on simple (fixed effects) metrics, e.g. the group Bayes factor (GBF), that do not account for group heterogeneity or outliers. In this paper, we compare the GBF with two random effects methods for BMS at the between-subject or group level. These methods provide inference on model-space using a classical and Bayesian perspective respectively. First, a classical (frequentist) approach uses the log model evidence as a subject-specific summary statistic. This enables one to use analysis of variance to test for differences in log-evidences over models, relative to inter-subject differences. We then consider the same problem in Bayesian terms and describe a novel hierarchical model, which is optimised to furnish a probability density on the models themselves. This new variational Bayes method rests on treating the model as a random variable and estimating the parameters of a Dirichlet distribution which describes the probabilities for all models considered. These probabilities then define a multinomial distribution over model space, allowing one to compute how likely it is that a specific model generated the data of a randomly chosen subject as well as the exceedance probability of one model being more likely than any other model. Using empirical and synthetic data, we show that optimising a conditional density of the model probabilities, given the log-evidences for each model over subjects, is more informative and appropriate than both the GBF and frequentist tests of the log-evidences. In particular, we found that the hierarchical Bayesian approach is considerably more robust than either of the other

  6. Examining the Impact of Prior Models in Transmural Electrophysiological Imaging: A Hierarchical Multiple-Model Bayesian Approach

    PubMed Central

    Rahimi, Azar; Sapp, John; Xu, Jingjia; Bajorski, Peter; Horacek, Milan; Wang, Linwei

    2015-01-01

    Noninvasive cardiac electrophysiological (EP) imaging aims to mathematically reconstruct the spatiotemporal dynamics of cardiac sources from body-surface electrocardiographic (ECG) data. This ill-posed problem is often regularized by a fixed constraining model. However, a fixed-model approach enforces the source distribution to follow a pre-assumed structure that does not always match the varying spatiotemporal distribution of actual sources. To understand the model-data relation and examine the impact of prior models, we present a multiple-model approach for volumetric cardiac EP imaging where multiple prior models are included and automatically picked by the available ECG data. Multiple models are incorporated as an Lp-norm prior for sources, where p is an unknown hyperparameter with a prior uniform distribution. To examine how different combinations of models may be favored by different measurement data, the posterior distribution of cardiac sources and hyperparameter p is calculated using a Markov Chain Monte Carlo (MCMC) technique. The importance of multiple-model prior was assessed in two sets of synthetic and real-data experiments, compared to fixed-model priors (using Laplace and Gaussian priors). The results showed that the posterior combination of models (the posterior distribution of p) as determined by the ECG data differed substantially when reconstructing sources with different sizes and structures. While the use of fixed models is best suited in situations where the prior assumption fits the actual source structures, the use of an automatically adaptive set of models may have the ability to better address model-data mismatch and to provide consistent performance in reconstructing sources with different properties. PMID:26259018

  7. Examining the Impact of Prior Models in Transmural Electrophysiological Imaging: A Hierarchical Multiple-Model Bayesian Approach.

    PubMed

    Rahimi, Azar; Sapp, John; Xu, Jingjia; Bajorski, Peter; Horacek, Milan; Wang, Linwei

    2016-01-01

    Noninvasive cardiac electrophysiological (EP) imaging aims to mathematically reconstruct the spatiotemporal dynamics of cardiac sources from body-surface electrocardiographic (ECG) data. This ill-posed problem is often regularized by a fixed constraining model. However, a fixed-model approach enforces the source distribution to follow a pre-assumed structure that does not always match the varying spatiotemporal distribution of actual sources. To understand the model-data relation and examine the impact of prior models, we present a multiple-model approach for volumetric cardiac EP imaging where multiple prior models are included and automatically picked by the available ECG data. Multiple models are incorporated as an Lp-norm prior for sources, where p is an unknown hyperparameter with a prior uniform distribution. To examine how different combinations of models may be favored by different measurement data, the posterior distribution of cardiac sources and hyperparameter p is calculated using a Markov Chain Monte Carlo (MCMC) technique. The importance of multiple-model prior was assessed in two sets of synthetic and real-data experiments, compared to fixed-model priors (using Laplace and Gaussian priors). The results showed that the posterior combination of models (the posterior distribution of p) as determined by the ECG data differed substantially when reconstructing sources with different sizes and structures. While the use of fixed models is best suited in situations where the prior assumption fits the actual source structures, the use of an automatically adaptive set of models may have the ability to better address model-data mismatch and to provide consistent performance in reconstructing sources with different properties.

  8. Zero-modified Poisson model: Bayesian approach, influence diagnostics, and an application to a Brazilian leptospirosis notification data.

    PubMed

    Conceição, Katiane S; Andrade, Marinho G; Louzada, Francisco

    2013-09-01

    In this paper, a Bayesian method for inference is developed for the zero-modified Poisson (ZMP) regression model. This model is very flexible for analyzing count data without requiring any information about inflation or deflation of zeros in the sample. A general class of prior densities based on an information matrix is considered for the model parameters. A sensitivity study to detect influential cases that can change the results is performed based on the Kullback-Leibler divergence. Simulation studies are presented in order to illustrate the performance of the developed methodology. Two real datasets on leptospirosis notification in Bahia State (Brazil) are analyzed using the proposed methodology for the ZMP model. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A Novel Gibbs Maximum A Posteriori (GMAP) Approach on Bayesian Nonlinear Mixed-Effects Population Pharmacokinetics (PK) Models

    PubMed Central

    Kim, Seongho; Hall, Stephen D.; Li, Lang

    2009-01-01

    In this paper, various Bayesian Monte Carlo Markov Chain (MCMC) methods and the proposed algorithm, Gibbs maximum a posteriori (GMAP) algorithm, are compared for implementing the nonlinear mixed-effects model in pharmacokinetics (PK) studies. An intravenous two-compartmental PK model is adopted to fit the PK data from the midazolam (MDZ) studies, which recruited 24 individuals with 9 different time points per subject. The three-stage hierarchical nonlinear mixed model is constructed. Data analysis and model performance comparisons show that GMAP converges the fastest, and provides reliable results. At the mean time, data augmentation (DA) methods are used for the Random-walk Metropolis method. Data analysis shows that the speed of the convergence of Random-walk Metropolis can be improved by DA, but all of them are not as fast as GMAP. The performance of GMAP and various MCMC algorithms are compared through Midazolam data analysis and simulation. PMID:20183435

  10. A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer.

    PubMed

    Lisboa, P J G; Wong, H; Harris, P; Swindell, R

    2003-05-01

    A Bayesian framework is introduced to carry out Automatic Relevance Determination (ARD) in feedforward neural networks to model censored data. A procedure to identify and interpret the prognostic group allocation is also described. These methodologies are applied to 1616 records routinely collected at Christie Hospital, in a monthly cohort study with 5-year follow-up. Two cohort studies are presented, for low- and high-risk patients allocated by standard clinical staging. The results of contrasting the Partial Logistic Artificial Neural Network (PLANN)-ARD model with the proportional hazards model are that the two are consistent, but the neural network may be more specific in the allocation of patients into prognostic groups. With automatic model selection, the regularised neural network is more conservative than the default stepwise forward selection procedure implemented by SPSS with the Akaike Information Criterion.

  11. Modeling Diagnostic Assessments with Bayesian Networks

    ERIC Educational Resources Information Center

    Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego

    2007-01-01

    This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…

  12. Modeling Diagnostic Assessments with Bayesian Networks

    ERIC Educational Resources Information Center

    Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego

    2007-01-01

    This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…

  13. Kaolin Quality Prediction from Samples: A Bayesian Network Approach

    SciTech Connect

    Rivas, T.; Taboada, J.; Ordonez, C.; Matias, J. M.

    2009-08-13

    We describe the results of an expert system applied to the evaluation of samples of kaolin for industrial use in paper or ceramic manufacture. Different machine learning techniques - classification trees, support vector machines and Bayesian networks - were applied with the aim of evaluating and comparing their interpretability and prediction capacities. The predictive capacity of these models for the samples analyzed was highly satisfactory, both for ceramic quality and paper quality. However, Bayesian networks generally proved to be the most useful technique for our study, as this approach combines good predictive capacity with excellent interpretability of the kaolin quality structure, as it graphically represents relationships between variables and facilitates what-if analyses.

  14. Bayesian Recurrent Neural Network for Language Modeling.

    PubMed

    Chien, Jen-Tzung; Ku, Yuan-Chu

    2016-02-01

    A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.

  15. Probabilistic Damage Characterization Using the Computationally-Efficient Bayesian Approach

    NASA Technical Reports Server (NTRS)

    Warner, James E.; Hochhalter, Jacob D.

    2016-01-01

    This work presents a computationally-ecient approach for damage determination that quanti es uncertainty in the provided diagnosis. Given strain sensor data that are polluted with measurement errors, Bayesian inference is used to estimate the location, size, and orientation of damage. This approach uses Bayes' Theorem to combine any prior knowledge an analyst may have about the nature of the damage with information provided implicitly by the strain sensor data to form a posterior probability distribution over possible damage states. The unknown damage parameters are then estimated based on samples drawn numerically from this distribution using a Markov Chain Monte Carlo (MCMC) sampling algorithm. Several modi cations are made to the traditional Bayesian inference approach to provide signi cant computational speedup. First, an ecient surrogate model is constructed using sparse grid interpolation to replace a costly nite element model that must otherwise be evaluated for each sample drawn with MCMC. Next, the standard Bayesian posterior distribution is modi ed using a weighted likelihood formulation, which is shown to improve the convergence of the sampling process. Finally, a robust MCMC algorithm, Delayed Rejection Adaptive Metropolis (DRAM), is adopted to sample the probability distribution more eciently. Numerical examples demonstrate that the proposed framework e ectively provides damage estimates with uncertainty quanti cation and can yield orders of magnitude speedup over standard Bayesian approaches.

  16. A Bayesian approach to reliability and confidence

    NASA Technical Reports Server (NTRS)

    Barnes, Ron

    1989-01-01

    The historical evolution of NASA's interest in quantitative measures of reliability assessment is outlined. The introduction of some quantitative methodologies into the Vehicle Reliability Branch of the Safety, Reliability and Quality Assurance (SR and QA) Division at Johnson Space Center (JSC) was noted along with the development of the Extended Orbiter Duration--Weakest Link study which will utilize quantitative tools for a Bayesian statistical analysis. Extending the earlier work of NASA sponsor, Richard Heydorn, researchers were able to produce a consistent Bayesian estimate for the reliability of a component and hence by a simple extension for a system of components in some cases where the rate of failure is not constant but varies over time. Mechanical systems in general have this property since the reliability usually decreases markedly as the parts degrade over time. While they have been able to reduce the Bayesian estimator to a simple closed form for a large class of such systems, the form for the most general case needs to be attacked by the computer. Once a table is generated for this form, researchers will have a numerical form for the general solution. With this, the corresponding probability statements about the reliability of a system can be made in the most general setting. Note that the utilization of uniform Bayesian priors represents a worst case scenario in the sense that as researchers incorporate more expert opinion into the model, they will be able to improve the strength of the probability calculations.

  17. Bayesian Nonparametric Models for Multiway Data Analysis.

    PubMed

    Xu, Zenglin; Yan, Feng; Qi, Yuan

    2015-02-01

    Tensor decomposition is a powerful computational tool for multiway data analysis. Many popular tensor decomposition approaches-such as the Tucker decomposition and CANDECOMP/PARAFAC (CP)-amount to multi-linear factorization. They are insufficient to model (i) complex interactions between data entities, (ii) various data types (e.g., missing data and binary data), and (iii) noisy observations and outliers. To address these issues, we propose tensor-variate latent nonparametric Bayesian models for multiway data analysis. We name these models InfTucker. These new models essentially conduct Tucker decomposition in an infinite feature space. Unlike classical tensor decomposition models, our new approaches handle both continuous and binary data in a probabilistic framework. Unlike previous Bayesian models on matrices and tensors, our models are based on latent Gaussian or t processes with nonlinear covariance functions. Moreover, on network data, our models reduce to nonparametric stochastic blockmodels and can be used to discover latent groups and predict missing interactions. To learn the models efficiently from data, we develop a variational inference technique and explore properties of the Kronecker product for computational efficiency. Compared with a classical variational implementation, this technique reduces both time and space complexities by several orders of magnitude. On real multiway and network data, our new models achieved significantly higher prediction accuracy than state-of-art tensor decomposition methods and blockmodels.

  18. Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition.

    PubMed

    Jones, Matt; Love, Bradley C

    2011-08-01

    The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls

  19. The network adjustment aimed for the campaigned gravity survey using a Bayesian approach: methodology and model test

    NASA Astrophysics Data System (ADS)

    Chen, Shi; Liao, Xu; Ma, Hongsheng; Zhou, Longquan; Wang, Xingzhou; Zhuang, Jiancang

    2017-04-01

    The relative gravimeter, which generally uses zero-length springs as the gravity senor, is still as the first choice in the field of terrestrial gravity measurement because of its efficiency and low-cost. Because the drift rate of instrument can be changed with the time and meter, it is necessary for estimating the drift rate to back to the base or known gravity value stations for repeated measurement at regular hour's interval during the practical survey. However, the campaigned gravity survey for the large-scale region, which the distance of stations is far away from serval or tens kilometers, the frequent back to close measurement will highly reduce the gravity survey efficiency and extremely time-consuming. In this paper, we proposed a new gravity data adjustment method for estimating the meter drift by means of Bayesian statistical interference. In our approach, we assumed the change of drift rate is a smooth function depend on the time-lapse. The trade-off parameters were be used to control the fitting residuals. We employed the Akaike's Bayesian Information Criterion (ABIC) for the estimated these trade-off parameters. The comparison and analysis of simulated data between the classical and Bayesian adjustment show that our method is robust and has self-adaptive ability for facing to the unregularly non-linear meter drift. At last, we used this novel approach to process the realistic campaigned gravity data at the North China. Our adjustment method is suitable to recover the time-varied drift rate function of each meter, and also to detect the meter abnormal drift during the gravity survey. We also defined an alternative error estimation for the inversed gravity value at the each station on the basis of the marginal distribution theory. Acknowledgment: This research is supported by Science Foundation Institute of Geophysics, CEA from the Ministry of Science and Technology of China (Nos. DQJB16A05; DQJB16B07), China National Special Fund for Earthquake

  20. Bayesian Models of Individual Differences

    PubMed Central

    Powell, Georgie; Meredith, Zoe; McMillin, Rebecca; Freeman, Tom C. A.

    2016-01-01

    According to Bayesian models, perception and cognition depend on the optimal combination of noisy incoming evidence with prior knowledge of the world. Individual differences in perception should therefore be jointly determined by a person’s sensitivity to incoming evidence and his or her prior expectations. It has been proposed that individuals with autism have flatter prior distributions than do nonautistic individuals, which suggests that prior variance is linked to the degree of autistic traits in the general population. We tested this idea by studying how perceived speed changes during pursuit eye movement and at low contrast. We found that individual differences in these two motion phenomena were predicted by differences in thresholds and autistic traits when combined in a quantitative Bayesian model. Our findings therefore support the flatter-prior hypothesis and suggest that individual differences in prior expectations are more systematic than previously thought. In order to be revealed, however, individual differences in sensitivity must also be taken into account. PMID:27770059

  1. Bayesian variable selection for latent class models.

    PubMed

    Ghosh, Joyee; Herring, Amy H; Siega-Riz, Anna Maria

    2011-09-01

    In this article, we develop a latent class model with class probabilities that depend on subject-specific covariates. One of our major goals is to identify important predictors of latent classes. We consider methodology that allows estimation of latent classes while allowing for variable selection uncertainty. We propose a Bayesian variable selection approach and implement a stochastic search Gibbs sampler for posterior computation to obtain model-averaged estimates of quantities of interest such as marginal inclusion probabilities of predictors. Our methods are illustrated through simulation studies and application to data on weight gain during pregnancy, where it is of interest to identify important predictors of latent weight gain classes.

  2. Radioactive Contraband Detection: A Bayesian Approach

    SciTech Connect

    Candy, J; Breitfeller, E; Guidry, B; Manatt, D; Sale, K; Chambers, D; Axelrod, M; Meyer, A

    2009-03-16

    Radionuclide emissions from nuclear contraband challenge both detection and measurement technologies to capture and record each event. The development of a sequential Bayesian processor incorporating both the physics of gamma-ray emissions and the measurement of photon energies offers a physics-based approach to attack this challenging problem. It is shown that a 'physics-based' structure can be used to develop an effective detection technique, but also motivates the implementation of this approach using or particle filters to enhance and extract the required information.

  3. A Bayesian sequential processor approach to spectroscopic portal system decisions

    SciTech Connect

    Sale, K; Candy, J; Breitfeller, E; Guidry, B; Manatt, D; Gosnell, T; Chambers, D

    2007-07-31

    The development of faster more reliable techniques to detect radioactive contraband in a portal type scenario is an extremely important problem especially in this era of constant terrorist threats. Towards this goal the development of a model-based, Bayesian sequential data processor for the detection problem is discussed. In the sequential processor each datum (detector energy deposit and pulse arrival time) is used to update the posterior probability distribution over the space of model parameters. The nature of the sequential processor approach is that a detection is produced as soon as it is statistically justified by the data rather than waiting for a fixed counting interval before any analysis is performed. In this paper the Bayesian model-based approach, physics and signal processing models and decision functions are discussed along with the first results of our research.

  4. Physiologically based modeling of the pharmacokinetics of acetaminophen and its major metabolites in humans using a Bayesian population approach.

    PubMed

    Zurlinden, Todd J; Reisfeld, Brad

    2016-06-01

    The principal aim of this study was to develop, validate, and demonstrate a physiologically based pharmacokinetic (PBPK) model to predict and characterize the absorption, distribution, metabolism, and excretion of acetaminophen (APAP) in humans. A PBPK model was created that included pharmacologically and toxicologically relevant tissue compartments and incorporated mechanistic descriptions of the absorption and metabolism of APAP, such as gastric emptying time, cofactor kinetics, and transporter-mediated movement of conjugated metabolites in the liver. Through the use of a hierarchical Bayesian framework, unknown model parameters were estimated using a large training set of data from human pharmacokinetic studies, resulting in parameter distributions that account for data uncertainty and inter-study variability. Predictions from the model showed good agreement to a diverse test set of data across several measures, including plasma concentrations over time, renal clearance, APAP absorption, and pharmacokinetic and exposure metrics. The utility of the model was then demonstrated through predictions of cofactor depletion, dose response of several pharmacokinetic endpoints, and the relationship between APAP biomarker levels in the plasma and those in the liver. The model addressed several limitations in previous PBPK models for APAP, and it is anticipated that it will be useful in predicting the pharmacokinetics of APAP in a number of contexts, such as extrapolating across doses, estimating internal concentrations, quantifying population variability, assessing possible impacts of drug coadministration, and, when coupled with a suitable pharmacodynamic model, predicting toxicity.

  5. Properties of the Bayesian Knowledge Tracing Model

    ERIC Educational Resources Information Center

    van de Sande, Brett

    2013-01-01

    Bayesian Knowledge Tracing is used very widely to model student learning. It comes in two different forms: The first form is the Bayesian Knowledge Tracing "hidden Markov model" which predicts the probability of correct application of a skill as a function of the number of previous opportunities to apply that skill and the model…

  6. Properties of the Bayesian Knowledge Tracing Model

    ERIC Educational Resources Information Center

    van de Sande, Brett

    2013-01-01

    Bayesian Knowledge Tracing is used very widely to model student learning. It comes in two different forms: The first form is the Bayesian Knowledge Tracing "hidden Markov model" which predicts the probability of correct application of a skill as a function of the number of previous opportunities to apply that skill and the model…

  7. Bayesian Approach to Effective Model of NiGa2S4 Triangular Lattice with Boltzmann Factor

    NASA Astrophysics Data System (ADS)

    Takenaka, Hikaru; Nagata, Kenji; Mizokawa, Takashi; Okada, Masato

    2016-12-01

    We propose a method for inducting the Boltzmann factor to extract effective classical spin Hamiltonians from mean-field-type electronic structural calculations by means of the Bayesian inference. This method enables us to compare electronic structural calculations with experiments according to the classical model at a finite temperature. Application of this method to the unrestricted Hartree-Fock calculations for NiGa2S4 led to the estimation that the superexchange interaction between the nearest neighbor sites is ferromagnetic at low temperature, which is consistent with magnetic experiment results. This supports the theory that competition between the antiferromagnetic third neighbor interaction and ferromagnetic nearest neighbor interaction may lead to the quantum spin liquid in NiGa2S4.

  8. Experience With Bayesian Image Based Surface Modeling

    NASA Technical Reports Server (NTRS)

    Stutz, John C.

    2005-01-01

    Bayesian surface modeling from images requires modeling both the surface and the image generation process, in order to optimize the models by comparing actual and generated images. Thus it differs greatly, both conceptually and in computational difficulty, from conventional stereo surface recovery techniques. But it offers the possibility of using any number of images, taken under quite different conditions, and by different instruments that provide independent and often complementary information, to generate a single surface model that fuses all available information. I describe an implemented system, with a brief introduction to the underlying mathematical models and the compromises made for computational efficiency. I describe successes and failures achieved on actual imagery, where we went wrong and what we did right, and how our approach could be improved. Lastly I discuss how the same approach can be extended to distinct types of instruments, to achieve true sensor fusion.

  9. A Bayesian approach for combining thermal and hydraulic data

    NASA Astrophysics Data System (ADS)

    Woodbury, Allan D.

    Incorporating temperatures into a modeling effort can take many forms, and both temperatures and hydrologic data can be combined qualitatively and quantitatively. In the latter category, the least formal would be in calibration, followed by parameter estimation and finally by full-inversion. This paper discusses information-based (specifically Bayesian) approaches of incorporating hydraulic parameters and potentials like temperature and hydraulic head together in a formal procedure. This paper reviews the generalized inverse problem for groundwater and heat; discusses Bayesian solutions to inverse problems; empirical and hierarchical Bayes, upscaling and cokriging and Bayesian interpolation. Along these lines, a list of suggested references is provided, along with suitable mentioning of benchmark papers, monographs and textbooks on the subject. The technique described in this paper revolves around shallow, low-temperature groundwater flow systems; and that entails steady 2-D fluid and heat flow. The methodology utilizes a perturbation technique to linearize and then couple the governing equations. For the perturbation approach to work, fluid properties must be decoupled from the temperature field. Once this is done, and through the finite element method, a block-linear system of data, kernel, and model parameters is developed. Two end-members and one set of joint inverse examples are presented. The two end-members are pure heat conduction (an application of Bayesian inversion to Paleoclimate reconstructions), and a pure-groundwater problem which is an example application to the Edwards Aquifer in Texas. Lastly, generic examples of combinations of transmissivity, hydraulic head and temperatures are presented.

  10. Bayesian inference for OPC modeling

    NASA Astrophysics Data System (ADS)

    Burbine, Andrew; Sturtevant, John; Fryer, David; Smith, Bruce W.

    2016-03-01

    The use of optical proximity correction (OPC) demands increasingly accurate models of the photolithographic process. Model building and inference techniques in the data science community have seen great strides in the past two decades which make better use of available information. This paper aims to demonstrate the predictive power of Bayesian inference as a method for parameter selection in lithographic models by quantifying the uncertainty associated with model inputs and wafer data. Specifically, the method combines the model builder's prior information about each modelling assumption with the maximization of each observation's likelihood as a Student's t-distributed random variable. Through the use of a Markov chain Monte Carlo (MCMC) algorithm, a model's parameter space is explored to find the most credible parameter values. During parameter exploration, the parameters' posterior distributions are generated by applying Bayes' rule, using a likelihood function and the a priori knowledge supplied. The MCMC algorithm used, an affine invariant ensemble sampler (AIES), is implemented by initializing many walkers which semiindependently explore the space. The convergence of these walkers to global maxima of the likelihood volume determine the parameter values' highest density intervals (HDI) to reveal champion models. We show that this method of parameter selection provides insights into the data that traditional methods do not and outline continued experiments to vet the method.

  11. The effect of road network patterns on pedestrian safety: A zone-based Bayesian spatial modeling approach.

    PubMed

    Guo, Qiang; Xu, Pengpeng; Pei, Xin; Wong, S C; Yao, Danya

    2017-02-01

    Pedestrian safety is increasingly recognized as a major public health concern. Extensive safety studies have been conducted to examine the influence of multiple variables on the occurrence of pedestrian-vehicle crashes. However, the explicit relationship between pedestrian safety and road network characteristics remains unknown. This study particularly focused on the role of different road network patterns on the occurrence of crashes involving pedestrians. A global integration index via space syntax was introduced to quantify the topological structures of road networks. The Bayesian Poisson-lognormal (PLN) models with conditional autoregressive (CAR) prior were then developed via three different proximity structures: contiguity, geometry-centroid distance, and road network connectivity. The models were also compared with the PLN counterpart without spatial correlation effects. The analysis was based on a comprehensive crash dataset from 131 selected traffic analysis zones in Hong Kong. The results indicated that higher global integration was associated with more pedestrian-vehicle crashes; the irregular pattern network was proved to be safest in terms of pedestrian crash occurrences, whereas the grid pattern was the least safe; the CAR model with a neighborhood structure based on road network connectivity was found to outperform in model goodness-of-fit, implying the importance of accurately accounting for spatial correlation when modeling spatially aggregated crash data.

  12. Bayesian hierarchical modeling of drug stability data.

    PubMed

    Chen, Jie; Zhong, Jinglin; Nie, Lei

    2008-06-15

    Stability data are commonly analyzed using linear fixed or random effect model. The linear fixed effect model does not take into account the batch-to-batch variation, whereas the random effect model may suffer from the unreliable shelf-life estimates due to small sample size. Moreover, both methods do not utilize any prior information that might have been available. In this article, we propose a Bayesian hierarchical approach to modeling drug stability data. Under this hierarchical structure, we first use Bayes factor to test the poolability of batches. Given the decision on poolability of batches, we then estimate the shelf-life that applies to all batches. The approach is illustrated with two example data sets and its performance is compared in simulation studies with that of the commonly used frequentist methods. (c) 2008 John Wiley & Sons, Ltd.

  13. On The Value at Risk Using Bayesian Mixture Laplace Autoregressive Approach for Modelling the Islamic Stock Risk Investment

    NASA Astrophysics Data System (ADS)

    Miftahurrohmah, Brina; Iriawan, Nur; Fithriasari, Kartika

    2017-06-01

    Stocks are known as the financial instruments traded in the capital market which have a high level of risk. Their risks are indicated by their uncertainty of their return which have to be accepted by investors in the future. The higher the risk to be faced, the higher the return would be gained. Therefore, the measurements need to be made against the risk. Value at Risk (VaR) as the most popular risk measurement method, is frequently ignore when the pattern of return is not uni-modal Normal. The calculation of the risks using VaR method with the Normal Mixture Autoregressive (MNAR) approach has been considered. This paper proposes VaR method couple with the Mixture Laplace Autoregressive (MLAR) that would be implemented for analysing the first three biggest capitalization Islamic stock return in JII, namely PT. Astra International Tbk (ASII), PT. Telekomunikasi Indonesia Tbk (TLMK), and PT. Unilever Indonesia Tbk (UNVR). Parameter estimation is performed by employing Bayesian Markov Chain Monte Carlo (MCMC) approaches.

  14. When mechanism matters: Bayesian forecasting using models of ecological diffusion

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.

    2017-01-01

    Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.

  15. A Bayesian approach to simultaneously quantify assignments and linguistic uncertainty

    SciTech Connect

    Chavez, Gregory M; Booker, Jane M; Ross, Timothy J

    2010-10-07

    Subject matter expert assessments can include both assignment and linguistic uncertainty. This paper examines assessments containing linguistic uncertainty associated with a qualitative description of a specific state of interest and the assignment uncertainty associated with assigning a qualitative value to that state. A Bayesian approach is examined to simultaneously quantify both assignment and linguistic uncertainty in the posterior probability. The approach is applied to a simplified damage assessment model involving both assignment and linguistic uncertainty. The utility of the approach and the conditions under which the approach is feasible are examined and identified.

  16. The Importance of Isomorphism for Conclusions about Homology: A Bayesian Multilevel Structural Equation Modeling Approach with Ordinal Indicators.

    PubMed

    Guenole, Nigel

    2016-01-01

    We describe a Monte Carlo study examining the impact of assuming item isomorphism (i.e., equivalent construct meaning across levels of analysis) on conclusions about homology (i.e., equivalent structural relations across levels of analysis) under varying degrees of non-isomorphism in the context of ordinal indicator multilevel structural equation models (MSEMs). We focus on the condition where one or more loadings are higher on the between level than on the within level to show that while much past research on homology has ignored the issue of psychometric isomorphism, psychometric isomorphism is in fact critical to valid conclusions about homology. More specifically, when a measurement model with non-isomorphic items occupies an exogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the within level exogenous latent variance is under-estimated leading to over-estimation of the within level structural coefficient, while the between level exogenous latent variance is overestimated leading to underestimation of the between structural coefficient. When a measurement model with non-isomorphic items occupies an endogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the endogenous within level latent variance is under-estimated leading to under-estimation of the within level structural coefficient while the endogenous between level latent variance is over-estimated leading to over-estimation of the between level structural coefficient. The innovative aspect of this article is demonstrating that even minor violations of psychometric isomorphism render claims of homology untenable. We also show that posterior predictive p-values for ordinal indicator Bayesian MSEMs are insensitive to violations of isomorphism even when they lead to severely biased within and between level structural parameters. We highlight conditions where poor estimation of even correctly specified

  17. The Importance of Isomorphism for Conclusions about Homology: A Bayesian Multilevel Structural Equation Modeling Approach with Ordinal Indicators

    PubMed Central

    Guenole, Nigel

    2016-01-01

    We describe a Monte Carlo study examining the impact of assuming item isomorphism (i.e., equivalent construct meaning across levels of analysis) on conclusions about homology (i.e., equivalent structural relations across levels of analysis) under varying degrees of non-isomorphism in the context of ordinal indicator multilevel structural equation models (MSEMs). We focus on the condition where one or more loadings are higher on the between level than on the within level to show that while much past research on homology has ignored the issue of psychometric isomorphism, psychometric isomorphism is in fact critical to valid conclusions about homology. More specifically, when a measurement model with non-isomorphic items occupies an exogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the within level exogenous latent variance is under-estimated leading to over-estimation of the within level structural coefficient, while the between level exogenous latent variance is overestimated leading to underestimation of the between structural coefficient. When a measurement model with non-isomorphic items occupies an endogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the endogenous within level latent variance is under-estimated leading to under-estimation of the within level structural coefficient while the endogenous between level latent variance is over-estimated leading to over-estimation of the between level structural coefficient. The innovative aspect of this article is demonstrating that even minor violations of psychometric isomorphism render claims of homology untenable. We also show that posterior predictive p-values for ordinal indicator Bayesian MSEMs are insensitive to violations of isomorphism even when they lead to severely biased within and between level structural parameters. We highlight conditions where poor estimation of even correctly specified

  18. Bayesian model selection and isocurvature perturbations

    NASA Astrophysics Data System (ADS)

    Beltrán, María; García-Bellido, Juan; Lesgourgues, Julien; Liddle, Andrew R.; Slosar, Anže

    2005-03-01

    Present cosmological data are well explained assuming purely adiabatic perturbations, but an admixture of isocurvature perturbations is also permitted. We use a Bayesian framework to compare the performance of cosmological models including isocurvature modes with the purely adiabatic case; this framework automatically and consistently penalizes models which use more parameters to fit the data. We compute the Bayesian evidence for fits to a data set comprised of WMAP and other microwave anisotropy data, the galaxy power spectrum from 2dFGRS and SDSS, and Type Ia supernovae luminosity distances. We find that Bayesian model selection favors the purely adiabatic models, but so far only at low significance.

  19. A log-normal distribution model of the effect of bacteria and ear fenestration on hearing loss: a Bayesian approach.

    PubMed

    Gajewski, Byron J; Sedwick, Jack D; Antonelli, Patrick J

    2004-02-15

    Chronic ear infection is a potentially life-threatening illness that medical doctors typically treat with ear surgery. Despite the success of this treatment, complications can occur due to bacteria infection. Surgeons believe that this infection causes the patient to have clinically significant hearing damage. In order to understand such complications, surgeons must quantify the effect of bacteria, their toxins and ear surgery on hearing loss. To this end, the other two authors of this paper performed two experiments on guinea pigs to measure hearing thresholds following a bacterial infection and surgery of the inner ear. The response variable in these experiments is hearing thresholds measured in decibels (dB). The problem in analysing such experiments is that the hearing threshold observations often suffer from missing data and censoring mechanisms of various types. Additionally, the distribution of hearing thresholds has heavy tails and is peaked. In order to account for the above statistical issues, we present a Bayesian method with a location-shifted log-normal distribution. The method accounts for the uncertainty in the data collection mechanism and the parameters associated with a location-shifted log-normal distribution. We refer to one of the parameters as the "location-shift" parameter. The Bayesian approach provides a posterior distribution of the location-shift parameter that we compare with values estimated in previously published studies. The immediate goal of our proposed method was to quantify the effects of ear surgery and bacteria infection on hearing loss. Thus, we present the merits of the method in the form of a case study, and report posterior distributions of mean hearing loss, probability of clinically significant hearing loss and relative risk. The results show that surgeon 2, using the surgical procedure "oval window", poses a greater than 40 per cent chance of a 15dB hearing loss regardless of injection of bacteria or not. However

  20. Covariate Balance in Bayesian Propensity Score Approaches for Observational Studies

    ERIC Educational Resources Information Center

    Chen, Jianshen; Kaplan, David

    2015-01-01

    Bayesian alternatives to frequentist propensity score approaches have recently been proposed. However, few studies have investigated their covariate balancing properties. This article compares a recently developed two-step Bayesian propensity score approach to the frequentist approach with respect to covariate balance. The effects of different…

  1. Covariate Balance in Bayesian Propensity Score Approaches for Observational Studies

    ERIC Educational Resources Information Center

    Chen, Jianshen; Kaplan, David

    2015-01-01

    Bayesian alternatives to frequentist propensity score approaches have recently been proposed. However, few studies have investigated their covariate balancing properties. This article compares a recently developed two-step Bayesian propensity score approach to the frequentist approach with respect to covariate balance. The effects of different…

  2. A Bayesian approach to infer radial models of temperature and anisotropy in the transition zone from surface wave dispersion curves

    NASA Astrophysics Data System (ADS)

    Drilleau, M.; Beucler, É.; Mocquet, A.; Verhoeven, O.; Moebs, G.; Burgos, G.; Montagner, J.-P.; Vacher, P.

    2013-11-01

    Mineralogical transformations and material transfers within the Earth's mantle make the 350-1000 km depth range (referred here as the mantle transition zone) highly heterogeneous and anisotropic. Most of the 3-D global tomographic models are anchored on small perturbations from 1-D models such as PREM, and are secondly interpreted in terms of temperature and composition distributions. However, the degree of heterogeneity in the transition zone can be strong enough so that the concept of a 1-D reference seismic model must be addressed. To avoid the use of any seismic reference model, we present in this paper a Markov chain Monte Carlo algorithm to directly interpret surface wave dispersion curves in terms of temperature and radial anisotropy distributions, here considering a given composition of the mantle. These interpretations are based on laboratory measurements of elastic moduli and Birch-Murnaghan equation of state. An originality of the algorithm is its ability to explore both smoothly varying models and first-order discontinuities, using C1-Bézier curves, which interpolate the randomly chosen values for depth, temperature and radial anisotropy. This parametrization is able to generate a self-adapting parameter space exploration while reducing the computing time. Thanks to a Bayesian exploration, the probability distributions on temperature and anisotropy are governed by uncertainties on the data set. The method is applied to both synthetic data and real dispersion curves. Though surface wave data are weakly sensitive to the sharpness of the of the mid-mantle seismic discontinuities, the interpretation of the temperature distribution is highly related to the chosen composition and to the modelling of mineralogical phase transformations. Surface wave measurements along the Vanuatu-California path suggest a strong anisotropy above 400 km depth, which decreases below, and a monotonous temperature distribution between 350 and 1000 km depth.

  3. Bayesian Finite Mixtures for Nonlinear Modeling of Educational Data.

    ERIC Educational Resources Information Center

    Tirri, Henry; And Others

    A Bayesian approach for finding latent classes in data is discussed. The approach uses finite mixture models to describe the underlying structure in the data and demonstrate that the possibility of using full joint probability models raises interesting new prospects for exploratory data analysis. The concepts and methods discussed are illustrated…

  4. Bayesian Estimation of the Logistic Positive Exponent IRT Model

    ERIC Educational Resources Information Center

    Bolfarine, Heleno; Bazan, Jorge Luis

    2010-01-01

    A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric…

  5. Bayesian Estimation of the Logistic Positive Exponent IRT Model

    ERIC Educational Resources Information Center

    Bolfarine, Heleno; Bazan, Jorge Luis

    2010-01-01

    A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric…

  6. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier-Stokes simulations: A data-driven, physics-informed Bayesian approach

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Wu, J.-L.; Wang, J.-X.; Sun, R.; Roy, C. J.

    2016-11-01

    Despite their well-known limitations, Reynolds-Averaged Navier-Stokes (RANS) models are still the workhorse tools for turbulent flow simulations in today's engineering analysis, design and optimization. While the predictive capability of RANS models depends on many factors, for many practical flows the turbulence models are by far the largest source of uncertainty. As RANS models are used in the design and safety evaluation of many mission-critical systems such as airplanes and nuclear power plants, quantifying their model-form uncertainties has significant implications in enabling risk-informed decision-making. In this work we develop a data-driven, physics-informed Bayesian framework for quantifying model-form uncertainties in RANS simulations. Uncertainties are introduced directly to the Reynolds stresses and are represented with compact parameterization accounting for empirical prior knowledge and physical constraints (e.g., realizability, smoothness, and symmetry). An iterative ensemble Kalman method is used to assimilate the prior knowledge and observation data in a Bayesian framework, and to propagate them to posterior distributions of velocities and other Quantities of Interest (QoIs). We use two representative cases, the flow over periodic hills and the flow in a square duct, to evaluate the performance of the proposed framework. Both cases are challenging for standard RANS turbulence models. Simulation results suggest that, even with very sparse observations, the obtained posterior mean velocities and other QoIs have significantly better agreement with the benchmark data compared to the baseline results. At most locations the posterior distribution adequately captures the true model error within the developed model form uncertainty bounds. The framework is a major improvement over existing black-box, physics-neutral methods for model-form uncertainty quantification, where prior knowledge and details of the models are not exploited. This approach has

  7. Overlapping community detection in weighted networks via a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Wang, Xiaolong; Xiang, Xin; Tang, Buzhou; Chen, Qingcai; Fan, Shixi; Bu, Junzhao

    2017-02-01

    Complex networks as a powerful way to represent complex systems have been widely studied during the past several years. One of the most important tasks of complex network analysis is to detect communities embedded in networks. In the real world, weighted networks are very common and may contain overlapping communities where a node is allowed to belong to multiple communities. In this paper, we propose a novel Bayesian approach, called the Bayesian mixture network (BMN) model, to detect overlapping communities in weighted networks. The advantages of our method are (i) providing soft-partition solutions in weighted networks; (ii) providing soft memberships, which quantify 'how strongly' a node belongs to a community. Experiments on a large number of real and synthetic networks show that our model has the ability in detecting overlapping communities in weighted networks and is competitive with other state-of-the-art models at shedding light on community partition.

  8. Spatiotemporal Modeling of Ozone Levels in Quebec (Canada): A Comparison of Kriging, Land-Use Regression (LUR), and Combined Bayesian Maximum Entropy–LUR Approaches

    PubMed Central

    Adam-Poupart, Ariane; Brand, Allan; Fournier, Michel; Jerrett, Michael

    2014-01-01

    Background: Ambient air ozone (O3) is a pulmonary irritant that has been associated with respiratory health effects including increased lung inflammation and permeability, airway hyperreactivity, respiratory symptoms, and decreased lung function. Estimation of O3 exposure is a complex task because the pollutant exhibits complex spatiotemporal patterns. To refine the quality of exposure estimation, various spatiotemporal methods have been developed worldwide. Objectives: We sought to compare the accuracy of three spatiotemporal models to predict summer ground-level O3 in Quebec, Canada. Methods: We developed a land-use mixed-effects regression (LUR) model based on readily available data (air quality and meteorological monitoring data, road networks information, latitude), a Bayesian maximum entropy (BME) model incorporating both O3 monitoring station data and the land-use mixed model outputs (BME-LUR), and a kriging method model based only on available O3 monitoring station data (BME kriging). We performed leave-one-station-out cross-validation and visually assessed the predictive capability of each model by examining the mean temporal and spatial distributions of the average estimated errors. Results: The BME-LUR was the best predictive model (R2 = 0.653) with the lowest root mean-square error (RMSE ;7.06 ppb), followed by the LUR model (R2 = 0.466, RMSE = 8.747) and the BME kriging model (R2 = 0.414, RMSE = 9.164). Conclusions: Our findings suggest that errors of estimation in the interpolation of O3 concentrations with BME can be greatly reduced by incorporating outputs from a LUR model developed with readily available data. Citation: Adam-Poupart A, Brand A, Fournier M, Jerrett M, Smargiassi A. 2014. Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy–LUR approaches. Environ Health Perspect 122:970–976; http://dx.doi.org/10.1289/ehp.1306566 PMID:24879650

  9. A bayesian approach for modeling cattle movements in the United States: scaling up a partially observed network.

    PubMed

    Lindström, Tom; Grear, Daniel A; Buhnerkempe, Michael; Webb, Colleen T; Miller, Ryan S; Portacci, Katie; Wennergren, Uno

    2013-01-01

    Networks are rarely completely observed and prediction of unobserved edges is an important problem, especially in disease spread modeling where networks are used to represent the pattern of contacts. We focus on a partially observed cattle movement network in the U.S. and present a method for scaling up to a full network based on bayesian inference, with the aim of informing epidemic disease spread models in the United States. The observed network is a 10% state stratified sample of Interstate Certificates of Veterinary Inspection that are required for interstate movement; describing approximately 20,000 movements from 47 of the contiguous states, with origins and destinations aggregated at the county level. We address how to scale up the 10% sample and predict unobserved intrastate movements based on observed movement distances. Edge prediction based on a distance kernel is not straightforward because the probability of movement does not always decline monotonically with distance due to underlying industry infrastructure. Hence, we propose a spatially explicit model where the probability of movement depends on distance, number of premises per county and historical imports of animals. Our model performs well in recapturing overall metrics of the observed network at the node level (U.S. counties), including degree centrality and betweenness; and performs better compared to randomized networks. Kernel generated movement networks also recapture observed global network metrics, including network size, transitivity, reciprocity, and assortativity better than randomized networks. In addition, predicted movements are similar to observed when aggregated at the state level (a broader geographic level relevant for policy) and are concentrated around states where key infrastructures, such as feedlots, are common. We conclude that the method generally performs well in predicting both coarse geographical patterns and network structure and is a promising method to generate full

  10. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach

    SciTech Connect

    Xiao, H. Wu, J.-L.; Wang, J.-X.; Sun, R.; Roy, C.J.

    2016-11-01

    Despite their well-known limitations, Reynolds-Averaged Navier–Stokes (RANS) models are still the workhorse tools for turbulent flow simulations in today's engineering analysis, design and optimization. While the predictive capability of RANS models depends on many factors, for many practical flows the turbulence models are by far the largest source of uncertainty. As RANS models are used in the design and safety evaluation of many mission-critical systems such as airplanes and nuclear power plants, quantifying their model-form uncertainties has significant implications in enabling risk-informed decision-making. In this work we develop a data-driven, physics-informed Bayesian framework for quantifying model-form uncertainties in RANS simulations. Uncertainties are introduced directly to the Reynolds stresses and are represented with compact parameterization accounting for empirical prior knowledge and physical constraints (e.g., realizability, smoothness, and symmetry). An iterative ensemble Kalman method is used to assimilate the prior knowledge and observation data in a Bayesian framework, and to propagate them to posterior distributions of velocities and other Quantities of Interest (QoIs). We use two representative cases, the flow over periodic hills and the flow in a square duct, to evaluate the performance of the proposed framework. Both cases are challenging for standard RANS turbulence models. Simulation results suggest that, even with very sparse observations, the obtained posterior mean velocities and other QoIs have significantly better agreement with the benchmark data compared to the baseline results. At most locations the posterior distribution adequately captures the true model error within the developed model form uncertainty bounds. The framework is a major improvement over existing black-box, physics-neutral methods for model-form uncertainty quantification, where prior knowledge and details of the models are not exploited. This approach has

  11. A Bayesian Deconvolution Approach to Partitioning Soil Respiration: Coupling Carbon Flux and Isotope Data with Process-based Flux and Mixing Models

    NASA Astrophysics Data System (ADS)

    Ogle, K.; Cable, J. M.; Huxman, T. E.

    2006-12-01

    The respiratory loss of carbon from terrestrial ecosystems is a major carbon flux affecting local, regional, and global carbon cycling. Such losses (e.g., soil CO2 efflux), however, are often overly simplified in biogeochemical models compared to processes such as photosynthesis. This discrepancy is partly due to the difficulty associated with partitioning soil respiration (or CO2 efflux) into its various components (e.g., autotrophic vs. heterotrophic). Different components operate at dissimilar temporal and spatial scales, thus estimation of their relative activity based on bulk soil efflux measurements is challenging. Hence, development of a robust, biophysically-inspired method for partitioning the different components is paramount to teasing- apart the mechanisms underlying carbon source-sink dynamics within and across diverse landscapes. Towards this goal, we developed a semi-mechanistic Bayesian deconvolution modeling approach for partitioning soil respiration into its component sources. While the sources can be broadly categorized as autotrophic or heterotrophic, the fundamental sources of biogenic CO2 efflux arises from specific interactions between plants, micro-organisms, and the soil environment. Potential sources have been identified based on their different turnover rates and functional roles, including, (1) activity of roots, (2) rhizomicrobial (e.g., mycorrhiza) respiration, (3) microbial decomposition of plant tissues, (4) microbial activity primed by root exudation, and (5) microbial decomposition of soil organic matter. The relative contribution of each source to soil CO2 efflux can vary within the soil matrix, depending on spatial and temporal variability in soil properties, resource and substrate availability, and microclimate. Our Bayesian deconvolution framework allows for simultaneous analysis of multiple data sources related to soil respiration dynamics, and the data are analyzed within the context of process-based models. The data include

  12. Dichroic polarization at mid-infrared wavelengths: a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, E.

    2016-01-01

    A fast and general Bayesian inference framework to infer the physical properties of dichroic polarization using mid-infrared imaging- and spectro-polarimetric observations is presented. The Bayesian approach is based on a hierarchical regression and No-U-Turn Sampler method. This approach simultaneously infers the normalized Stokes parameters to find the full family of solutions that best describe the observations. In comparison with previous methods, the developed Bayesian approach allows the user to introduce a customized absorptive polarization component based on the dust composition, and the appropriate extinction curve of the object. This approach allows the user to obtain more precise estimations of the magnetic-field strength and geometry for tomographic studies, and information about the dominant polarization components of the object. Based on this model, imaging-polarimetric observations using two or three filters located in the central 9.5-10.5 μm, and the edges 8-9 μm and/or 11-13 μm, of the wavelength range are recommended to optimally disentangle the polarization mechanisms.

  13. A Bayesian Approach to Multifractal Extremes

    NASA Astrophysics Data System (ADS)

    Tchiguirinskaia, Ioulia; Schertzer, Daniel; Lovejoy, Shaun

    2013-04-01

    Drivers such as climate change and rapid urbanisation will result in increasing flood problems in urban environments through this century. Problems encountered in existing flood defence strategies are often related to the data non-stationary, long range dependencies and the clustering of extremes often resulting in fat tailed (i.e., a power-law tail) probability distributions. We discuss how to better predict the floods by using a physically based approach established on systems that respect a scale symmetry over a wide range of space-time scales to determine the relationship between flood magnitude and return period for a wide range of aggregation periods. The classical quantile distributions unfortunately rely on two hypotheses that are questionable: stationarity and independency of the components of the time series. We pointed out that beyond the classical sampling of the extremes and its limitations, there is the possibility to eliminate long-range dependency by uncovering a white-noise process whose fractional integration generates the observed long-range dependent process. The results were obtained during the CEATI Project "Multifractals and physically based estimates of extreme floods". The ambition of this project was to investigate very large data sets of reasonable quality (e.g., daily stream flow data recorded for at least 20 years for several thousands of gages distributed all over Canada and the USA). The multifractal parameters such as the mean intermittency parameter and the multifractality index were estimated on 8332 time series. The results confirm the dependence of multifractal parameter estimates on the length of available data. Then developing a metric for parameter estimation error became a principal step in uncertainty evaluation with respect to the multifractal estimates. A technique for estimating confidence intervals with the help of a Bayesian approach was developed. A detailed comparison of multifractal quantile plots and paleoflood data

  14. A tutorial introduction to Bayesian models of cognitive development.

    PubMed

    Perfors, Amy; Tenenbaum, Joshua B; Griffiths, Thomas L; Xu, Fei

    2011-09-01

    We present an introduction to Bayesian inference as it is used in probabilistic models of cognitive development. Our goal is to provide an intuitive and accessible guide to the what, the how, and the why of the Bayesian approach: what sorts of problems and data the framework is most relevant for, and how and why it may be useful for developmentalists. We emphasize a qualitative understanding of Bayesian inference, but also include information about additional resources for those interested in the cognitive science applications, mathematical foundations, or machine learning details in more depth. In addition, we discuss some important interpretation issues that often arise when evaluating Bayesian models in cognitive science. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Bayesian Methods for High Dimensional Linear Models

    PubMed Central

    Mallick, Himel; Yi, Nengjun

    2013-01-01

    In this article, we present a selective overview of some recent developments in Bayesian model and variable selection methods for high dimensional linear models. While most of the reviews in literature are based on conventional methods, we focus on recently developed methods, which have proven to be successful in dealing with high dimensional variable selection. First, we give a brief overview of the traditional model selection methods (viz. Mallow’s Cp, AIC, BIC, DIC), followed by a discussion on some recently developed methods (viz. EBIC, regularization), which have occupied the minds of many statisticians. Then, we review high dimensional Bayesian methods with a particular emphasis on Bayesian regularization methods, which have been used extensively in recent years. We conclude by briefly addressing the asymptotic behaviors of Bayesian variable selection methods for high dimensional linear models under different regularity conditions. PMID:24511433

  16. Bayesian Inference for Nonnegative Matrix Factorisation Models

    PubMed Central

    Cemgil, Ali Taylan

    2009-01-01

    We describe nonnegative matrix factorisation (NMF) with a Kullback-Leibler (KL) error measure in a statistical framework, with a hierarchical generative model consisting of an observation and a prior component. Omitting the prior leads to the standard KL-NMF algorithms as special cases, where maximum likelihood parameter estimation is carried out via the Expectation-Maximisation (EM) algorithm. Starting from this view, we develop full Bayesian inference via variational Bayes or Monte Carlo. Our construction retains conjugacy and enables us to develop more powerful models while retaining attractive features of standard NMF such as monotonic convergence and easy implementation. We illustrate our approach on model order selection and image reconstruction. PMID:19536273

  17. Transmission parameters estimated for Salmonella typhimurium in swine using susceptible-infectious-resistant models and a Bayesian approach

    PubMed Central

    2014-01-01

    Background Transmission models can aid understanding of disease dynamics and are useful in testing the efficiency of control measures. The aim of this study was to formulate an appropriate stochastic Susceptible-Infectious-Resistant/Carrier (SIR) model for Salmonella Typhimurium in pigs and thus estimate the transmission parameters between states. Results The transmission parameters were estimated using data from a longitudinal study of three Danish farrow-to-finish pig herds known to be infected. A Bayesian model framework was proposed, which comprised Binomial components for the transition from susceptible to infectious and from infectious to carrier; and a Poisson component for carrier to infectious. Cohort random effects were incorporated into these models to allow for unobserved cohort-specific variables as well as unobserved sources of transmission, thus enabling a more realistic estimation of the transmission parameters. In the case of the transition from susceptible to infectious, the cohort random effects were also time varying. The number of infectious pigs not detected by the parallel testing was treated as unknown, and the probability of non-detection was estimated using information about the sensitivity and specificity of the bacteriological and serological tests. The estimate of the transmission rate from susceptible to infectious was 0.33 [0.06, 1.52], from infectious to carrier was 0.18 [0.14, 0.23] and from carrier to infectious was 0.01 [0.0001, 0.04]. The estimate for the basic reproduction ration (R 0 ) was 1.91 [0.78, 5.24]. The probability of non-detection was estimated to be 0.18 [0.12, 0.25]. Conclusions The proposed framework for stochastic SIR models was successfully implemented to estimate transmission rate parameters for Salmonella Typhimurium in swine field data. R 0 was 1.91, implying that there was dissemination of the infection within pigs of the same cohort. There was significant temporal-cohort variability, especially at the

  18. Bayesian Modeling of a Human MMORPG Player

    NASA Astrophysics Data System (ADS)

    Synnaeve, Gabriel; Bessière, Pierre

    2011-03-01

    This paper describes an application of Bayesian programming to the control of an autonomous avatar in a multiplayer role-playing game (the example is based on World of Warcraft). We model a particular task, which consists of choosing what to do and to select which target in a situation where allies and foes are present. We explain the model in Bayesian programming and show how we could learn the conditional probabilities from data gathered during human-played sessions.

  19. Improving randomness characterization through Bayesian model selection.

    PubMed

    Díaz Hernández Rojas, Rafael; Solís, Aldo; Angulo Martínez, Alí M; U'Ren, Alfred B; Hirsch, Jorge G; Marsili, Matteo; Pérez Castillo, Isaac

    2017-06-08

    Random number generation plays an essential role in technology with important applications in areas ranging from cryptography to Monte Carlo methods, and other probabilistic algorithms. All such applications require high-quality sources of random numbers, yet effective methods for assessing whether a source produce truly random sequences are still missing. Current methods either do not rely on a formal description of randomness (NIST test suite) on the one hand, or are inapplicable in principle (the characterization derived from the Algorithmic Theory of Information), on the other, for they require testing all the possible computer programs that could produce the sequence to be analysed. Here we present a rigorous method that overcomes these problems based on Bayesian model selection. We derive analytic expressions for a model's likelihood which is then used to compute its posterior distribution. Our method proves to be more rigorous than NIST's suite and Borel-Normality criterion and its implementation is straightforward. We applied our method to an experimental device based on the process of spontaneous parametric downconversion to confirm it behaves as a genuine quantum random number generator. As our approach relies on Bayesian inference our scheme transcends individual sequence analysis, leading to a characterization of the source itself.

  20. A Bayesian Ensemble Approach for Epidemiological Projections

    PubMed Central

    Lindström, Tom; Tildesley, Michael; Webb, Colleen

    2015-01-01

    Mathematical models are powerful tools for epidemiology and can be used to compare control actions. However, different models and model parameterizations may provide different prediction of outcomes. In other fields of research, ensemble modeling has been used to combine multiple projections. We explore the possibility of applying such methods to epidemiology by adapting Bayesian techniques developed for climate forecasting. We exemplify the implementation with single model ensembles based on different parameterizations of the Warwick model run for the 2001 United Kingdom foot and mouth disease outbreak and compare the efficacy of different control actions. This allows us to investigate the effect that discrepancy among projections based on different modeling assumptions has on the ensemble prediction. A sensitivity analysis showed that the choice of prior can have a pronounced effect on the posterior estimates of quantities of interest, in particular for ensembles with large discrepancy among projections. However, by using a hierarchical extension of the method we show that prior sensitivity can be circumvented. We further extend the method to include a priori beliefs about different modeling assumptions and demonstrate that the effect of this can have different consequences depending on the discrepancy among projections. We propose that the method is a promising analytical tool for ensemble modeling of disease outbreaks. PMID:25927892

  1. Occupancy models for monitoring marine fish: a bayesian hierarchical approach to model imperfect detection with a novel gear combination.

    PubMed

    Coggins, Lewis G; Bacheler, Nathan M; Gwinn, Daniel C

    2014-01-01

    Occupancy models using incidence data collected repeatedly at sites across the range of a population are increasingly employed to infer patterns and processes influencing population distribution and dynamics. While such work is common in terrestrial systems, fewer examples exist in marine applications. This disparity likely exists because the replicate samples required by these models to account for imperfect detection are often impractical to obtain when surveying aquatic organisms, particularly fishes. We employ simultaneous sampling using fish traps and novel underwater camera observations to generate the requisite replicate samples for occupancy models of red snapper, a reef fish species. Since the replicate samples are collected simultaneously by multiple sampling devices, many typical problems encountered when obtaining replicate observations are avoided. Our results suggest that augmenting traditional fish trap sampling with camera observations not only doubled the probability of detecting red snapper in reef habitats off the Southeast coast of the United States, but supplied the necessary observations to infer factors influencing population distribution and abundance while accounting for imperfect detection. We found that detection probabilities tended to be higher for camera traps than traditional fish traps. Furthermore, camera trap detections were influenced by the current direction and turbidity of the water, indicating that collecting data on these variables is important for future monitoring. These models indicate that the distribution and abundance of this species is more heavily influenced by latitude and depth than by micro-scale reef characteristics lending credence to previous characterizations of red snapper as a reef habitat generalist. This study demonstrates the utility of simultaneous sampling devices, including camera traps, in aquatic environments to inform occupancy models and account for imperfect detection when describing factors

  2. Occupancy Models for Monitoring Marine Fish: A Bayesian Hierarchical Approach to Model Imperfect Detection with a Novel Gear Combination

    PubMed Central

    Coggins, Lewis G.; Bacheler, Nathan M.; Gwinn, Daniel C.

    2014-01-01

    Occupancy models using incidence data collected repeatedly at sites across the range of a population are increasingly employed to infer patterns and processes influencing population distribution and dynamics. While such work is common in terrestrial systems, fewer examples exist in marine applications. This disparity likely exists because the replicate samples required by these models to account for imperfect detection are often impractical to obtain when surveying aquatic organisms, particularly fishes. We employ simultaneous sampling using fish traps and novel underwater camera observations to generate the requisite replicate samples for occupancy models of red snapper, a reef fish species. Since the replicate samples are collected simultaneously by multiple sampling devices, many typical problems encountered when obtaining replicate observations are avoided. Our results suggest that augmenting traditional fish trap sampling with camera observations not only doubled the probability of detecting red snapper in reef habitats off the Southeast coast of the United States, but supplied the necessary observations to infer factors influencing population distribution and abundance while accounting for imperfect detection. We found that detection probabilities tended to be higher for camera traps than traditional fish traps. Furthermore, camera trap detections were influenced by the current direction and turbidity of the water, indicating that collecting data on these variables is important for future monitoring. These models indicate that the distribution and abundance of this species is more heavily influenced by latitude and depth than by micro-scale reef characteristics lending credence to previous characterizations of red snapper as a reef habitat generalist. This study demonstrates the utility of simultaneous sampling devices, including camera traps, in aquatic environments to inform occupancy models and account for imperfect detection when describing factors

  3. Technical note: Bayesian calibration of dynamic ruminant nutrition models.

    PubMed

    Reed, K F; Arhonditsis, G B; France, J; Kebreab, E

    2016-08-01

    Mechanistic models of ruminant digestion and metabolism have advanced our understanding of the processes underlying ruminant animal physiology. Deterministic modeling practices ignore the inherent variation within and among individual animals and thus have no way to assess how sources of error influence model outputs. We introduce Bayesian calibration of mathematical models to address the need for robust mechanistic modeling tools that can accommodate error analysis by remaining within the bounds of data-based parameter estimation. For the purpose of prediction, the Bayesian approach generates a posterior predictive distribution that represents the current estimate of the value of the response variable, taking into account both the uncertainty about the parameters and model residual variability. Predictions are expressed as probability distributions, thereby conveying significantly more information than point estimates in regard to uncertainty. Our study illustrates some of the technical advantages of Bayesian calibration and discusses the future perspectives in the context of animal nutrition modeling.

  4. Bayesian failure probability model sensitivity study. Final report

    SciTech Connect

    Not Available

    1986-05-30

    The Office of the Manager, National Communications System (OMNCS) has developed a system-level approach for estimating the effects of High-Altitude Electromagnetic Pulse (HEMP) on the connectivity of telecommunications networks. This approach incorporates a Bayesian statistical model which estimates the HEMP-induced failure probabilities of telecommunications switches and transmission facilities. The purpose of this analysis is to address the sensitivity of the Bayesian model. This is done by systematically varying two model input parameters--the number of observations, and the equipment failure rates. Throughout the study, a non-informative prior distribution is used. The sensitivity of the Bayesian model to the noninformative prior distribution is investigated from a theoretical mathematical perspective.

  5. [Bayesian statistic: an approach fitted to clinic].

    PubMed

    Meyer, N; Vinzio, S; Goichot, B

    2009-03-01

    Bayesian statistic has known a growing success though quite limited. This is surprising since Bayes' theorem on which this paradigm relies is frequently used by the clinicians. There is a direct link between the routine diagnostic test and the Bayesian statistic. This link is the Bayes' theorem which allows one to compute positive and negative predictive values of a test. The principle of this theorem is extended to simple statistical situations as an introduction to Bayesian statistic. The conceptual simplicity of Bayesian statistic should make for a greater acceptance in the biomedical world.

  6. A Bayesian Model Averaging Approach for Estimating the Relative Risk of Mortality Associated with Heat Waves in 105 U.S. Cities

    PubMed Central

    Bobb, Jennifer F.; Dominici, Francesca; Peng, Roger D.

    2011-01-01

    Summary Estimating the risks heat waves pose to human health is a critical part of assessing the future impact of climate change. In this paper we propose a flexible class of time series models to estimate the relative risk of mortality associated with heat waves and conduct Bayesian model averaging (BMA) to account for the multiplicity of potential models. Applying these methods to data from 105 U.S. cities for the period 1987–2005, we identify those cities having a high posterior probability of increased mortality risk during heat waves, examine the heterogeneity of the posterior distributions of mortality risk across cities, assess sensitivity of the results to the selection of prior distributions, and compare our BMA results to a model selection approach. Our results show that no single model best predicts risk across the majority of cities, and that for some cities heat wave risk estimation is sensitive to model choice. While model averaging leads to posterior distributions with increased variance as compared to statistical inference conditional on a model obtained through model selection, we find that the posterior mean of heat wave mortality risk is robust to accounting for model uncertainty over a broad class of models. PMID:21447046

  7. Kaolin Quality Prediction from Samples: A Bayesian Network Approach

    NASA Astrophysics Data System (ADS)

    Rivas, T.; Matías, J. M.; Taboada, J.; Ordóñez, C.

    2009-08-01

    We describe the results of an expert system applied to the evaluation of samples of kaolin for industrial use in paper or ceramic manufacture. Different machine learning techniques—classification trees, support vector machines and Bayesian networks—were applied with the aim of evaluating and comparing their interpretability and prediction capacities. The predictive capacity of these models for the samples analyzed was highly satisfactory, both for ceramic quality and paper quality. However, Bayesian networks generally proved to be the most useful technique for our study, as this approach combines good predictive capacity with excellent interpretability of the kaolin quality structure, as it graphically represents relationships between variables and facilitates what-if analyses.

  8. Bayesian generalized linear mixed modeling of Tuberculosis using informative priors.

    PubMed

    Ojo, Oluwatobi Blessing; Lougue, Siaka; Woldegerima, Woldegebriel Assefa

    2017-01-01

    TB is rated as one of the world's deadliest diseases and South Africa ranks 9th out of the 22 countries with hardest hit of TB. Although many pieces of research have been carried out on this subject, this paper steps further by inculcating past knowledge into the model, using Bayesian approach with informative prior. Bayesian statistics approach is getting popular in data analyses. But, most applications of Bayesian inference technique are limited to situations of non-informative prior, where there is no solid external information about the distribution of the parameter of interest. The main aim of this study is to profile people living with TB in South Africa. In this paper, identical regression models are fitted for classical and Bayesian approach both with non-informative and informative prior, using South Africa General Household Survey (GHS) data for the year 2014. For the Bayesian model with informative prior, South Africa General Household Survey dataset for the year 2011 to 2013 are used to set up priors for the model 2014.

  9. Bayesian generalized linear mixed modeling of Tuberculosis using informative priors

    PubMed Central

    Woldegerima, Woldegebriel Assefa

    2017-01-01

    TB is rated as one of the world’s deadliest diseases and South Africa ranks 9th out of the 22 countries with hardest hit of TB. Although many pieces of research have been carried out on this subject, this paper steps further by inculcating past knowledge into the model, using Bayesian approach with informative prior. Bayesian statistics approach is getting popular in data analyses. But, most applications of Bayesian inference technique are limited to situations of non-informative prior, where there is no solid external information about the distribution of the parameter of interest. The main aim of this study is to profile people living with TB in South Africa. In this paper, identical regression models are fitted for classical and Bayesian approach both with non-informative and informative prior, using South Africa General Household Survey (GHS) data for the year 2014. For the Bayesian model with informative prior, South Africa General Household Survey dataset for the year 2011 to 2013 are used to set up priors for the model 2014. PMID:28257437

  10. Bayesian Analysis of Order-Statistics Models for Ranking Data.

    ERIC Educational Resources Information Center

    Yu, Philip L. H.

    2000-01-01

    Studied the order-statistics models, extending the usual normal order-statistics model into one in which the underlying random variables followed a multivariate normal distribution. Used a Bayesian approach and the Gibbs sampling technique. Applied the proposed method to analyze presidential election data from the American Psychological…

  11. Rasch Model Parameter Estimation in the Presence of a Nonnormal Latent Trait Using a Nonparametric Bayesian Approach

    ERIC Educational Resources Information Center

    Finch, Holmes; Edwards, Julianne M.

    2016-01-01

    Standard approaches for estimating item response theory (IRT) model parameters generally work under the assumption that the latent trait being measured by a set of items follows the normal distribution. Estimation of IRT parameters in the presence of nonnormal latent traits has been shown to generate biased person and item parameter estimates. A…

  12. Rasch Model Parameter Estimation in the Presence of a Nonnormal Latent Trait Using a Nonparametric Bayesian Approach

    ERIC Educational Resources Information Center

    Finch, Holmes; Edwards, Julianne M.

    2016-01-01

    Standard approaches for estimating item response theory (IRT) model parameters generally work under the assumption that the latent trait being measured by a set of items follows the normal distribution. Estimation of IRT parameters in the presence of nonnormal latent traits has been shown to generate biased person and item parameter estimates. A…

  13. Bayesian Models Leveraging Bioactivity and Cytotoxicity Information for Drug Discovery

    PubMed Central

    Ekins, Sean; Reynolds, Robert C.; Kim, Hiyun; Koo, Mi-Sun; Ekonomidis, Marilyn; Talaue, Meliza; Paget, Steve D.; Woolhiser, Lisa K.; Lenaerts, Anne J.; Bunin, Barry A.; Connell, Nancy; Freundlich, Joel S.

    2013-01-01

    SUMMARY Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (HTS) data, to experimentally validate virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screen a commercial library and experimentally confirm actives with hit rates exceeding typical HTS results by 1-2 orders of magnitude. The first dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery. PMID:23521795

  14. Exploring the measurement structure of the Gambling Related Cognitions Scale (GRCS) in treatment-seekers: A Bayesian structural equation modelling approach.

    PubMed

    Smith, David; Woodman, Richard; Drummond, Aaron; Battersby, Malcolm

    2016-03-30

    Knowledge of a problem gambler's underlying gambling related cognitions plays an important role in treatment planning. The Gambling Related Cognitions Scale (GRCS) is therefore frequently used in clinical settings for screening and evaluation of treatment outcomes. However, GRCS validation studies have generated conflicting results regarding its latent structure using traditional confirmatory factor analyses (CFA). This may partly be due to the rigid constraints imposed on cross-factor loadings with traditional CFA. The aim of this investigation was to determine whether a Bayesian structural equation modelling (BSEM) approach to examination of the GRCS factor structure would better replicate substantive theory and also inform model re-specifications. Participants were 454 treatment-seekers at first presentation to a gambling treatment centre between January 2012 and December 2014. Model fit indices were well below acceptable standards for CFA. In contrast, the BSEM model which included small informative priors for the residual covariance matrix in addition to cross-loadings produced excellent model fit for the original hypothesised factor structure. The results also informed re-specification of the CFA model which provided more reasonable model fit. These conclusions have implications that should be useful to both clinicians and researchers evaluating measurement models relating to gambling related cognitions in treatment-seekers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Bayesian Plackett-Luce Mixture Models for Partially Ranked Data.

    PubMed

    Mollica, Cristina; Tardella, Luca

    2017-06-01

    The elicitation of an ordinal judgment on multiple alternatives is often required in many psychological and behavioral experiments to investigate preference/choice orientation of a specific population. The Plackett-Luce model is one of the most popular and frequently applied parametric distributions to analyze rankings of a finite set of items. The present work introduces a Bayesian finite mixture of Plackett-Luce models to account for unobserved sample heterogeneity of partially ranked data. We describe an efficient way to incorporate the latent group structure in the data augmentation approach and the derivation of existing maximum likelihood procedures as special instances of the proposed Bayesian method. Inference can be conducted with the combination of the Expectation-Maximization algorithm for maximum a posteriori estimation and the Gibbs sampling iterative procedure. We additionally investigate several Bayesian criteria for selecting the optimal mixture configuration and describe diagnostic tools for assessing the fitness of ranking distributions conditionally and unconditionally on the number of ranked items. The utility of the novel Bayesian parametric Plackett-Luce mixture for characterizing sample heterogeneity is illustrated with several applications to simulated and real preference ranked data. We compare our method with the frequentist approach and a Bayesian nonparametric mixture model both assuming the Plackett-Luce model as a mixture component. Our analysis on real datasets reveals the importance of an accurate diagnostic check for an appropriate in-depth understanding of the heterogenous nature of the partial ranking data.

  16. Bayesian analysis of the backreaction models

    SciTech Connect

    Kurek, Aleksandra; Bolejko, Krzysztof; Szydlowski, Marek

    2010-03-15

    We present a Bayesian analysis of four different types of backreaction models, which are based on the Buchert equations. In this approach, one considers a solution to the Einstein equations for a general matter distribution and then an average of various observable quantities is taken. Such an approach became of considerable interest when it was shown that it could lead to agreement with observations without resorting to dark energy. In this paper we compare the {Lambda}CDM model and the backreaction models with type Ia supernovae, baryon acoustic oscillations, and cosmic microwave background data, and find that the former is favored. However, the tested models were based on some particular assumptions about the relation between the average spatial curvature and the backreaction, as well as the relation between the curvature and curvature index. In this paper we modified the latter assumption, leaving the former unchanged. We find that, by varying the relation between the curvature and curvature index, we can obtain a better fit. Therefore, some further work is still needed--in particular, the relation between the backreaction and the curvature should be revisited in order to fully determine the feasibility of the backreaction models to mimic dark energy.

  17. Assessment of CT image quality using a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Reginatto, M.; Anton, M.; Elster, C.

    2017-08-01

    One of the most promising approaches for evaluating CT image quality is task-specific quality assessment. This involves a simplified version of a clinical task, e.g. deciding whether an image belongs to the class of images that contain the signature of a lesion or not. Task-specific quality assessment can be done by model observers, which are mathematical procedures that carry out the classification task. The most widely used figure of merit for CT image quality is the area under the ROC curve (AUC), a quantity which characterizes the performance of a given model observer. In order to estimate AUC from a finite sample of images, different approaches from classical statistics have been suggested. The goal of this paper is to introduce task-specific quality assessment of CT images to metrology and to propose a novel Bayesian estimation of AUC for the channelized Hotelling observer (CHO) applied to the task of detecting a lesion at a known image location. It is assumed that signal-present and signal-absent images follow multivariate normal distributions with the same covariance matrix. The Bayesian approach results in a posterior distribution for the AUC of the CHO which provides in addition a complete characterization of the uncertainty of this figure of merit. The approach is illustrated by its application to both simulated and experimental data.

  18. A Bayesian approach to multivariate measurement system assessment

    SciTech Connect

    Hamada, Michael Scott

    2016-07-01

    This article considers system assessment for multivariate measurements and presents a Bayesian approach to analyzing gauge R&R study data. The evaluation of variances for univariate measurement becomes the evaluation of covariance matrices for multivariate measurements. The Bayesian approach ensures positive definite estimates of the covariance matrices and easily provides their uncertainty. Furthermore, various measurement system assessment criteria are easily evaluated. The approach is illustrated with data from a real gauge R&R study as well as simulated data.

  19. A Bayesian approach to multivariate measurement system assessment

    SciTech Connect

    Hamada, Michael Scott

    2016-07-01

    This article considers system assessment for multivariate measurements and presents a Bayesian approach to analyzing gauge R&R study data. The evaluation of variances for univariate measurement becomes the evaluation of covariance matrices for multivariate measurements. The Bayesian approach ensures positive definite estimates of the covariance matrices and easily provides their uncertainty. Furthermore, various measurement system assessment criteria are easily evaluated. The approach is illustrated with data from a real gauge R&R study as well as simulated data.

  20. A hierarchical Bayesian approach to the modified Bartlett-Lewis rectangular pulse model for a joint estimation of model parameters across stations

    NASA Astrophysics Data System (ADS)

    Kim, Jang-Gyeong; Kwon, Hyun-Han; Kim, Dongkyun

    2017-01-01

    Poisson cluster stochastic rainfall generators (e.g., modified Bartlett-Lewis rectangular pulse, MBLRP) have been widely applied to generate synthetic sub-daily rainfall sequences. The MBLRP model reproduces the underlying distribution of the rainfall generating process. The existing optimization techniques are typically based on individual parameter estimates that treat each parameter as independent. However, parameter estimates sometimes compensate for the estimates of other parameters, which can cause high variability in the results if the covariance structure is not formally considered. Moreover, uncertainty associated with model parameters in the MBLRP rainfall generator is not usually addressed properly. Here, we develop a hierarchical Bayesian model (HBM)-based MBLRP model to jointly estimate parameters across weather stations and explicitly consider the covariance and uncertainty through a Bayesian framework. The model is tested using weather stations in South Korea. The HBM-based MBLRP model improves the identification of parameters with better reproduction of rainfall statistics at various temporal scales. Additionally, the spatial variability of the parameters across weather stations is substantially reduced compared to that of other methods.

  1. Posterior Predictive Model Checking in Bayesian Networks

    ERIC Educational Resources Information Center

    Crawford, Aaron

    2014-01-01

    This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…

  2. Posterior Predictive Model Checking in Bayesian Networks

    ERIC Educational Resources Information Center

    Crawford, Aaron

    2014-01-01

    This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…

  3. Bayesian modeling of flexible cognitive control

    PubMed Central

    Jiang, Jiefeng; Heller, Katherine; Egner, Tobias

    2014-01-01

    “Cognitive control” describes endogenous guidance of behavior in situations where routine stimulus-response associations are suboptimal for achieving a desired goal. The computational and neural mechanisms underlying this capacity remain poorly understood. We examine recent advances stemming from the application of a Bayesian learner perspective that provides optimal prediction for control processes. In reviewing the application of Bayesian models to cognitive control, we note that an important limitation in current models is a lack of a plausible mechanism for the flexible adjustment of control over conflict levels changing at varying temporal scales. We then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-driven learning mechanism that modulates dynamically the relative dependence on recent and remote experiences in its prediction of future control demand. We conclude that the emergent Bayesian perspective on computational mechanisms of cognitive control holds considerable promise, especially if future studies can identify neural substrates of the variables encoded by these models, and determine the nature (Bayesian or otherwise) of their neural implementation. PMID:24929218

  4. Bayesian modeling of flexible cognitive control.

    PubMed

    Jiang, Jiefeng; Heller, Katherine; Egner, Tobias

    2014-10-01

    "Cognitive control" describes endogenous guidance of behavior in situations where routine stimulus-response associations are suboptimal for achieving a desired goal. The computational and neural mechanisms underlying this capacity remain poorly understood. We examine recent advances stemming from the application of a Bayesian learner perspective that provides optimal prediction for control processes. In reviewing the application of Bayesian models to cognitive control, we note that an important limitation in current models is a lack of a plausible mechanism for the flexible adjustment of control over conflict levels changing at varying temporal scales. We then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-driven learning mechanism that modulates dynamically the relative dependence on recent and remote experiences in its prediction of future control demand. We conclude that the emergent Bayesian perspective on computational mechanisms of cognitive control holds considerable promise, especially if future studies can identify neural substrates of the variables encoded by these models, and determine the nature (Bayesian or otherwise) of their neural implementation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Bayesian model selection for LISA pathfinder

    NASA Astrophysics Data System (ADS)

    Karnesis, Nikolaos; Nofrarias, Miquel; Sopuerta, Carlos F.; Gibert, Ferran; Armano, Michele; Audley, Heather; Congedo, Giuseppe; Diepholz, Ingo; Ferraioli, Luigi; Hewitson, Martin; Hueller, Mauro; Korsakova, Natalia; McNamara, Paul W.; Plagnol, Eric; Vitale, Stefano

    2014-03-01

    The main goal of the LISA Pathfinder (LPF) mission is to fully characterize the acceleration noise models and to test key technologies for future space-based gravitational-wave observatories similar to the eLISA concept. The data analysis team has developed complex three-dimensional models of the LISA Technology Package (LTP) experiment onboard the LPF. These models are used for simulations, but, more importantly, they will be used for parameter estimation purposes during flight operations. One of the tasks of the data analysis team is to identify the physical effects that contribute significantly to the properties of the instrument noise. A way of approaching this problem is to recover the essential parameters of a LTP model fitting the data. Thus, we want to define the simplest model that efficiently explains the observations. To do so, adopting a Bayesian framework, one has to estimate the so-called Bayes factor between two competing models. In our analysis, we use three main different methods to estimate it: the reversible jump Markov chain Monte Carlo method, the Schwarz criterion, and the Laplace approximation. They are applied to simulated LPF experiments in which the most probable LTP model that explains the observations is recovered. The same type of analysis presented in this paper is expected to be followed during flight operations. Moreover, the correlation of the output of the aforementioned methods with the design of the experiment is explored.

  6. Involving Stakeholders in Building Integrated Fisheries Models Using Bayesian Methods

    NASA Astrophysics Data System (ADS)

    Haapasaari, Päivi; Mäntyniemi, Samu; Kuikka, Sakari

    2013-06-01

    A participatory Bayesian approach was used to investigate how the views of stakeholders could be utilized to develop models to help understand the Central Baltic herring fishery. In task one, we applied the Bayesian belief network methodology to elicit the causal assumptions of six stakeholders on factors that influence natural mortality, growth, and egg survival of the herring stock in probabilistic terms. We also integrated the expressed views into a meta-model using the Bayesian model averaging (BMA) method. In task two, we used influence diagrams to study qualitatively how the stakeholders frame the management problem of the herring fishery and elucidate what kind of causalities the different views involve. The paper combines these two tasks to assess the suitability of the methodological choices to participatory modeling in terms of both a modeling tool and participation mode. The paper also assesses the potential of the study to contribute to the development of participatory modeling practices. It is concluded that the subjective perspective to knowledge, that is fundamental in Bayesian theory, suits participatory modeling better than a positivist paradigm that seeks the objective truth. The methodology provides a flexible tool that can be adapted to different kinds of needs and challenges of participatory modeling. The ability of the approach to deal with small data sets makes it cost-effective in participatory contexts. However, the BMA methodology used in modeling the biological uncertainties is so complex that it needs further development before it can be introduced to wider use in participatory contexts.

  7. Involving stakeholders in building integrated fisheries models using Bayesian methods.

    PubMed

    Haapasaari, Päivi; Mäntyniemi, Samu; Kuikka, Sakari

    2013-06-01

    A participatory Bayesian approach was used to investigate how the views of stakeholders could be utilized to develop models to help understand the Central Baltic herring fishery. In task one, we applied the Bayesian belief network methodology to elicit the causal assumptions of six stakeholders on factors that influence natural mortality, growth, and egg survival of the herring stock in probabilistic terms. We also integrated the expressed views into a meta-model using the Bayesian model averaging (BMA) method. In task two, we used influence diagrams to study qualitatively how the stakeholders frame the management problem of the herring fishery and elucidate what kind of causalities the different views involve. The paper combines these two tasks to assess the suitability of the methodological choices to participatory modeling in terms of both a modeling tool and participation mode. The paper also assesses the potential of the study to contribute to the development of participatory modeling practices. It is concluded that the subjective perspective to knowledge, that is fundamental in Bayesian theory, suits participatory modeling better than a positivist paradigm that seeks the objective truth. The methodology provides a flexible tool that can be adapted to different kinds of needs and challenges of participatory modeling. The ability of the approach to deal with small data sets makes it cost-effective in participatory contexts. However, the BMA methodology used in modeling the biological uncertainties is so complex that it needs further development before it can be introduced to wider use in participatory contexts.

  8. Dynamic Bayesian Network Modeling of Game Based Diagnostic Assessments. CRESST Report 837

    ERIC Educational Resources Information Center

    Levy, Roy

    2014-01-01

    Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…

  9. A Bayesian spatial approach for predicting seagrass occurrence

    NASA Astrophysics Data System (ADS)

    March, D.; Alós, J.; Cabanellas-Reboredo, M.; Infantes, E.; Jordi, A.; Palmer, M.

    2013-10-01

    We implement a Bayesian spatial approach to predict and map the probability of occurrence of seagrass Posidonia oceanica at high spatial resolution based environmental variables. We found that depth, near-bottom orbital velocities and a spectral pattern of Landsat imagery were relevant environmental variables, although there was no effect of slope or water residence time. We generated a data inventory of P. oceanica samples at Palma Bay, NW Mediterranean, from three main sources: side scan sonar, aerial imagery and a customized drop-camera system. A hierarchical Bayesian spatial model for non-Gaussian data was used to relate presence-absence data of P. oceanica with environmental variables in the presence of spatial autocorrelation (SA). A spatial dimension reduction method, the predictive process approach, was implemented to overcome computational constraints for moderately large datasets. Our results suggest that incorporating spatial random effects removes SA from the residuals and improves model fit compared to non-spatial regression models. The main products of this work were probability and uncertainty model maps, which could benefit seagrass management and the assessment of the ecological status of seagrass meadows.

  10. Using a Bayesian approach to improve and calibrate a dynamic model of polycyclic aromatic hydrocarbons degradation in an industrial contaminated soil.

    PubMed

    Brimo, Khaled; Garnier, Patricia; Sun, Siao; Bertrand-Krajewski, Jean-Luc; Cébron, Aurélie; Ouvrard, Stéphanie

    2016-08-01

    A novel kinetics model that describes the dynamics of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils is presented. The model includes two typical biodegradation pathways: the co-metabolic pathway using pseudo first order kinetics and the specific biodegradation pathway modeled using Monod kinetics. The sorption of PAHs to the solid soil occurs through bi-phasic fist order kinetics, and two types of non-extractible bounded residues are considered: the biogenic and the physically sequestrated into soil matrix. The PAH model was developed in Matlab, parameterized and tested successfully on batch experimental data using a Bayesian approach (DREAM). Preliminary results led to significant model simplifications. They also highlighted that the specific biodegradation pathway was the most efficient at explaining experimental data, as would be expected for an old industrial contaminated soil. Global analysis of sensitivity showed that the amount of PAHs ultimately degraded was mostly governed by physicochemical interactions rather than by biological activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Relative risk for HIV in India - An estimate using conditional auto-regressive models with Bayesian approach.

    PubMed

    Kandhasamy, Chandrasekaran; Ghosh, Kaushik

    2017-02-01

    Indian states are currently classified into HIV-risk categories based on the observed prevalence counts, percentage of infected attendees in antenatal clinics, and percentage of infected high-risk individuals. This method, however, does not account for the spatial dependence among the states nor does it provide any measure of statistical uncertainty. We provide an alternative model-based approach to address these issues. Our method uses Poisson log-normal models having various conditional autoregressive structures with neighborhood-based and distance-based weight matrices and incorporates all available covariate information. We use R and WinBugs software to fit these models to the 2011 HIV data. Based on the Deviance Information Criterion, the convolution model using distance-based weight matrix and covariate information on female sex workers, literacy rate and intravenous drug users is found to have the best fit. The relative risk of HIV for the various states is estimated using the best model and the states are then classified into the risk categories based on these estimated values. An HIV risk map of India is constructed based on these results. The choice of the final model suggests that an HIV control strategy which focuses on the female sex workers, intravenous drug users and literacy rate would be most effective.

  12. Evaluating Individualized Reading Programs: A Bayesian Model.

    ERIC Educational Resources Information Center

    Maxwell, Martha

    Simple Bayesian approaches can be applied to answer specific questions in evaluating an individualized reading program. A small reading and study skills program located in the counseling center of a major research university collected and compiled data on student characteristics such as class, number of sessions attended, grade point average, and…

  13. A variational Bayesian approach for inverse problems with skew-t error distributions

    NASA Astrophysics Data System (ADS)

    Guha, Nilabja; Wu, Xiaoqing; Efendiev, Yalchin; Jin, Bangti; Mallick, Bani K.

    2015-11-01

    In this work, we develop a novel robust Bayesian approach to inverse problems with data errors following a skew-t distribution. A hierarchical Bayesian model is developed in the inverse problem setup. The Bayesian approach contains a natural mechanism for regularization in the form of a prior distribution, and a LASSO type prior distribution is used to strongly induce sparseness. We propose a variational type algorithm by minimizing the Kullback-Leibler divergence between the true posterior distribution and a separable approximation. The proposed method is illustrated on several two-dimensional linear and nonlinear inverse problems, e.g. Cauchy problem and permeability estimation problem.

  14. Perturbation Detection Through Modeling of Gene Expression on a Latent Biological Pathway Network: A Bayesian hierarchical approach.

    PubMed

    Pham, Lisa M; Carvalho, Luis; Schaus, Scott; Kolaczyk, Eric D

    Cellular response to a perturbation is the result of a dynamic system of biological variables linked in a complex network. A major challenge in drug and disease studies is identifying the key factors of a biological network that are essential in determining the cell's fate. Here our goal is the identification of perturbed pathways from high-throughput gene expression data. We develop a three-level hierarchical model, where (i) the first level captures the relationship between gene expression and biological pathways using confirmatory factor analysis, (ii) the second level models the behavior within an underlying network of pathways induced by an unknown perturbation using a conditional autoregressive model, and (iii) the third level is a spike-and-slab prior on the perturbations. We then identify perturbations through posterior-based variable selection. We illustrate our approach using gene transcription drug perturbation profiles from the DREAM7 drug sensitivity predication challenge data set. Our proposed method identified regulatory pathways that are known to play a causative role and that were not readily resolved using gene set enrichment analysis or exploratory factor models. Simulation results are presented assessing the performance of this model relative to a network-free variant and its robustness to inaccuracies in biological databases.

  15. Bayesian modeling of differential gene expression.

    PubMed

    Lewin, Alex; Richardson, Sylvia; Marshall, Clare; Glazier, Anne; Aitman, Tim

    2006-03-01

    We present a Bayesian hierarchical model for detecting differentially expressing genes that includes simultaneous estimation of array effects, and show how to use the output for choosing lists of genes for further investigation. We give empirical evidence that expression-level dependent array effects are needed, and explore different nonlinear functions as part of our model-based approach to normalization. The model includes gene-specific variances but imposes some necessary shrinkage through a hierarchical structure. Model criticism via posterior predictive checks is discussed. Modeling the array effects (normalization) simultaneously with differential expression gives fewer false positive results. To choose a list of genes, we propose to combine various criteria (for instance, fold change and overall expression) into a single indicator variable for each gene. The posterior distribution of these variables is used to pick the list of genes, thereby taking into account uncertainty in parameter estimates. In an application to mouse knockout data, Gene Ontology annotations over- and underrepresented among the genes on the chosen list are consistent with biological expectations.

  16. Hierarchical Bayesian models of subtask learning.

    PubMed

    Anglim, Jeromy; Wynton, Sarah K A

    2015-07-01

    The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking task, which logged participant actions, enabling measurement of strategy use and subtask performance. Model comparison was performed using deviance information criterion (DIC), posterior predictive checks, plots of model fits, and model recovery simulations. Results showed that although learning tended to be monotonically decreasing and decelerating, and approaching an asymptote for all subtasks, there was substantial inconsistency in learning curves both at the group- and individual-levels. This inconsistency was most apparent when constraining both the rate and the ratio of learning to asymptote to be equal across subtasks, thereby giving learning curves only 1 parameter for scaling. The inclusion of 6 strategy covariates provided improved prediction of subtask performance capturing different subtask learning processes and subtask trade-offs. In addition, strategy use partially explained the inconsistency in subtask learning. Overall, the model provided a more nuanced representation of how complex tasks can be decomposed in terms of simpler learning mechanisms.

  17. An approach to quantifying the efficiency of a Bayesian filter

    USDA-ARS?s Scientific Manuscript database

    Data assimilation is defined as the Bayesian conditioning of uncertain model simulations on observations for the purpose of reducing uncertainty about model states. Practical data assimilation applications require that simplifying assumptions be made about the prior and posterior state distributions...

  18. Application of the Bayesian dynamic survival model in medicine.

    PubMed

    He, Jianghua; McGee, Daniel L; Niu, Xufeng

    2010-02-10

    The Bayesian dynamic survival model (BDSM), a time-varying coefficient survival model from the Bayesian prospective, was proposed in early 1990s but has not been widely used or discussed. In this paper, we describe the model structure of the BDSM and introduce two estimation approaches for BDSMs: the Markov Chain Monte Carlo (MCMC) approach and the linear Bayesian (LB) method. The MCMC approach estimates model parameters through sampling and is computationally intensive. With the newly developed geoadditive survival models and software BayesX, the BDSM is available for general applications. The LB approach is easier in terms of computations but it requires the prespecification of some unknown smoothing parameters. In a simulation study, we use the LB approach to show the effects of smoothing parameters on the performance of the BDSM and propose an ad hoc method for identifying appropriate values for those parameters. We also demonstrate the performance of the MCMC approach compared with the LB approach and a penalized partial likelihood method available in software R packages. A gastric cancer trial is utilized to illustrate the application of the BDSM.

  19. Survey of Bayesian Models for Modelling of Stochastic Temporal Processes

    SciTech Connect

    Ng, B

    2006-10-12

    This survey gives an overview of popular generative models used in the modeling of stochastic temporal systems. In particular, this survey is organized into two parts. The first part discusses the discrete-time representations of dynamic Bayesian networks and dynamic relational probabilistic models, while the second part discusses the continuous-time representation of continuous-time Bayesian networks.

  20. A Bayesian geostatistical transfer function approach to tracer test analysis

    NASA Astrophysics Data System (ADS)

    Fienen, Michael N.; Luo, Jian; Kitanidis, Peter K.

    2006-07-01

    Reactive transport modeling is often used in support of bioremediation and chemical treatment planning and design. There remains a pressing need for practical and efficient models that do not require (or assume attainable) the high level of characterization needed by complex numerical models. We focus on a linear systems or transfer function approach to the problem of reactive tracer transport in a heterogeneous saprolite aquifer. Transfer functions are obtained through the Bayesian geostatistical inverse method applied to tracer injection histories and breakthrough curves. We employ nonparametric transfer functions, which require minimal assumptions about shape and structure. The resulting flexibility empowers the data to determine the nature of the transfer function with minimal prior assumptions. Nonnegativity is enforced through a reflected Brownian motion stochastic model. The inverse method enables us to quantify uncertainty and to generate conditional realizations of the transfer function. Complex information about a hydrogeologic system is distilled into a relatively simple but rigorously obtained function that describes the transport behavior of the system between two wells. The resulting transfer functions are valuable in reactive transport models based on traveltime and streamline methods. The information contained in the data, particularly in the case of strong heterogeneity, is not overextended but is fully used. This is the first application of Bayesian geostatistical inversion to transfer functions in hydrogeology but the methodology can be extended to any linear system.

  1. Bayesian Monte Carlo and Maximum Likelihood Approach for ...

    EPA Pesticide Factsheets

    Model uncertainty estimation and risk assessment is essential to environmental management and informed decision making on pollution mitigation strategies. In this study, we apply a probabilistic methodology, which combines Bayesian Monte Carlo simulation and Maximum Likelihood estimation (BMCML) to calibrate a lake oxygen recovery model. We first derive an analytical solution of the differential equation governing lake-averaged oxygen dynamics as a function of time-variable wind speed. Statistical inferences on model parameters and predictive uncertainty are then drawn by Bayesian conditioning of the analytical solution on observed daily wind speed and oxygen concentration data obtained from an earlier study during two recovery periods on a eutrophic lake in upper state New York. The model is calibrated using oxygen recovery data for one year and statistical inferences were validated using recovery data for another year. Compared with essentially two-step, regression and optimization approach, the BMCML results are more comprehensive and performed relatively better in predicting the observed temporal dissolved oxygen levels (DO) in the lake. BMCML also produced comparable calibration and validation results with those obtained using popular Markov Chain Monte Carlo technique (MCMC) and is computationally simpler and easier to implement than the MCMC. Next, using the calibrated model, we derive an optimal relationship between liquid film-transfer coefficien

  2. Bayesian Monte Carlo and Maximum Likelihood Approach for ...

    EPA Pesticide Factsheets

    Model uncertainty estimation and risk assessment is essential to environmental management and informed decision making on pollution mitigation strategies. In this study, we apply a probabilistic methodology, which combines Bayesian Monte Carlo simulation and Maximum Likelihood estimation (BMCML) to calibrate a lake oxygen recovery model. We first derive an analytical solution of the differential equation governing lake-averaged oxygen dynamics as a function of time-variable wind speed. Statistical inferences on model parameters and predictive uncertainty are then drawn by Bayesian conditioning of the analytical solution on observed daily wind speed and oxygen concentration data obtained from an earlier study during two recovery periods on a eutrophic lake in upper state New York. The model is calibrated using oxygen recovery data for one year and statistical inferences were validated using recovery data for another year. Compared with essentially two-step, regression and optimization approach, the BMCML results are more comprehensive and performed relatively better in predicting the observed temporal dissolved oxygen levels (DO) in the lake. BMCML also produced comparable calibration and validation results with those obtained using popular Markov Chain Monte Carlo technique (MCMC) and is computationally simpler and easier to implement than the MCMC. Next, using the calibrated model, we derive an optimal relationship between liquid film-transfer coefficien

  3. Bayesian log-periodic model for financial crashes

    NASA Astrophysics Data System (ADS)

    Rodríguez-Caballero, Carlos Vladimir; Knapik, Oskar

    2014-10-01

    This paper introduces a Bayesian approach in econophysics literature about financial bubbles in order to estimate the most probable time for a financial crash to occur. To this end, we propose using noninformative prior distributions to obtain posterior distributions. Since these distributions cannot be performed analytically, we develop a Markov Chain Monte Carlo algorithm to draw from posterior distributions. We consider three Bayesian models that involve normal and Student's t-distributions in the disturbances and an AR(1)-GARCH(1,1) structure only within the first case. In the empirical part of the study, we analyze a well-known example of financial bubble - the S&P 500 1987 crash - to show the usefulness of the three methods under consideration and crashes of Merval-94, Bovespa-97, IPCMX-94, Hang Seng-97 using the simplest method. The novelty of this research is that the Bayesian models provide 95% credible intervals for the estimated crash time.

  4. Bayesian approaches in medical device clinical trials: a discussion with examples in the regulatory setting.

    PubMed

    Bonangelino, Pablo; Irony, Telba; Liang, Shengde; Li, Xuefeng; Mukhi, Vandana; Ruan, Shiling; Xu, Yunling; Yang, Xiting; Wang, Chenguang

    2011-09-01

    Challenging statistical issues often arise in the design and analysis of clinical trials to assess safety and effectiveness of medical devices in the regulatory setting. The use of Bayesian methods in the design and analysis of medical device clinical trials has been increasing significantly in the past decade, not only due to the availability of prior information, but mainly due to the appealing nature of Bayesian clinical trial designs. The Center for Devices and Radiological Health at the Food and Drug Administration (FDA) has gained extensive experience with the use of Bayesian statistical methods and has identified some important issues that need further exploration. In this article, we discuss several topics relating to the use of Bayesian statistical methods in medical device trials, based on our experience and real applications. We illustrate the benefits and challenges of Bayesian approaches when incorporating prior information to evaluate the effectiveness and safety of a medical device. We further present an example of a Bayesian adaptive clinical trial and compare it to a traditional frequentist design. Finally, we discuss the use of Bayesian hierarchical models for multiregional trials and highlight the advantages of the Bayesian approach when specifying clinically relevant study hypotheses.

  5. Estimating hazardous concentrations by an informative Bayesian approach.

    PubMed

    Ciffroy, Philippe; Keller, Merlin; Pasanisi, Alberto

    2013-03-01

    The species sensitivity distribution (SSD) approach is recommended for assessing chemical risk. In practice, however, it can be used only for the few substances for which large-scale ecotoxicological results are available. Indeed, the statistical frequentist approaches used for building SSDs and for deriving hazardous concentrations (HC5) inherently require extensive data to guarantee goodness-of-fit. An alternative Bayesian approach to estimating HC5 from small data sets was developed. In contrast to the noninformative Bayesian approaches that have been tested to date, the authors' method used informative priors related to the expected species sensitivity variance. This method was tested on actual ecotoxicological data for 21 well-informed substances. A cross-validation compared the HC5 values calculated using frequentist approaches with the results of our Bayesian approach, using both complete and truncated data samples. The authors' informative Bayesian approach was compared with noninformative Bayesian methods published in the past, including those incorporating loss functions. The authors found that even for the truncated sample the HC5 values derived from the informative Bayesian approach were generally close to those obtained using the frequentist approach, which requires more data. In addition, the probability of overestimating an HC5 is rather limited. More robust HC5 estimates can be practically obtained from additional data without impairing regulatory protection levels, which will encourage collecting new ecotoxicological data. In conclusion, the Bayesian informative approach was shown to be relatively robust and could be a good surrogate approach for deriving HC5 values from small data sets.

  6. Group sequential control of overall toxicity incidents in clinical trials - non-Bayesian and Bayesian approaches.

    PubMed

    Yu, Jihnhee; Hutson, Alan D; Siddiqui, Adnan H; Kedron, Mary A

    2016-02-01

    In some small clinical trials, toxicity is not a primary endpoint; however, it often has dire effects on patients' quality of life and is even life-threatening. For such clinical trials, rigorous control of the overall incidence of adverse events is desirable, while simultaneously collecting safety information. In this article, we propose group sequential toxicity monitoring strategies to control overall toxicity incidents below a certain level as opposed to performing hypothesis testing, which can be incorporated into an existing study design based on the primary endpoint. We consider two sequential methods: a non-Bayesian approach in which stopping rules are obtained based on the 'future' probability of an excessive toxicity rate; and a Bayesian adaptation modifying the proposed non-Bayesian approach, which can use the information obtained at interim analyses. Through an extensive Monte Carlo study, we show that the Bayesian approach often provides better control of the overall toxicity rate than the non-Bayesian approach. We also investigate adequate toxicity estimation after the studies. We demonstrate the applicability of our proposed methods in controlling the symptomatic intracranial hemorrhage rate for treating acute ischemic stroke patients. © The Author(s) 2012.

  7. Development and comparison in uncertainty assessment based Bayesian modularization method in hydrological modeling

    NASA Astrophysics Data System (ADS)

    Li, Lu; Xu, Chong-Yu; Engeland, Kolbjørn

    2013-04-01

    SummaryWith respect to model calibration, parameter estimation and analysis of uncertainty sources, various regression and probabilistic approaches are used in hydrological modeling. A family of Bayesian methods, which incorporates different sources of information into a single analysis through Bayes' theorem, is widely used for uncertainty assessment. However, none of these approaches can well treat the impact of high flows in hydrological modeling. This study proposes a Bayesian modularization uncertainty assessment approach in which the highest streamflow observations are treated as suspect information that should not influence the inference of the main bulk of the model parameters. This study includes a comprehensive comparison and evaluation of uncertainty assessments by our new Bayesian modularization method and standard Bayesian methods using the Metropolis-Hastings (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions were used in combination with standard Bayesian method: the AR(1) plus Normal model independent of time (Model 1), the AR(1) plus Normal model dependent on time (Model 2) and the AR(1) plus Multi-normal model (Model 3). The results reveal that the Bayesian modularization method provides the most accurate streamflow estimates measured by the Nash-Sutcliffe efficiency and provide the best in uncertainty estimates for low, medium and entire flows compared to standard Bayesian methods. The study thus provides a new approach for reducing the impact of high flows on the discharge uncertainty assessment of hydrological models via Bayesian method.

  8. Forecasting clinical disease in pigs: comparing a naive and a Bayesian approach.

    PubMed

    Baadsgaard, Niels Peter; Højsgaard, Søren; Gröhn, Yrjö T; Schukken, Ynte H

    2004-07-16

    In veterinary practice the clinician often evaluates and predicts herd health status over time according to clinical criteria. In this paper, we modeled three different clinical signs among pigs based on longitudinal clinical observations in 15 pig herds. We compared and discussed the outputs from two different approaches for making clinical forecasts in a herd: a naive approach using a simple time series model with previous disease observations as predictors and a Bayesian state space models approach, in which the time lag variable entered into the random component of the model. We used the Markov chain Monte Carlo technique to calculate posterior distributions of the forecasts. For the herd specific forecasts the results showed that there were only minor differences between the forecasts from the simple time series model and the median forecasts from the Bayesian model. However, the credibility intervals from the Bayesian model were wider than the forecasts from the simple model and, therefore the Bayesian model encompassed the variability in the forecasts better. Compared to the statistical model, the simple time series would be easier to implement in a practical setting. However, the latter lacks the inherent "generality" from the statistical model that allows the user to make statements about the distribution of the herds and to predict disease status based on the "average" correlation among the herds. The applicability of the Bayesian approach within a clinical decision-making framework was discussed, with special emphasis on the use of prior information and clinical forecasting.

  9. Daniel Goodman’s empirical approach to Bayesian statistics

    USGS Publications Warehouse

    Gerrodette, Tim; Ward, Eric; Taylor, Rebecca L.; Schwarz, Lisa K.; Eguchi, Tomoharu; Wade, Paul; Himes Boor, Gina

    2016-01-01

    Bayesian statistics, in contrast to classical statistics, uses probability to represent uncertainty about the state of knowledge. Bayesian statistics has often been associated with the idea that knowledge is subjective and that a probability distribution represents a personal degree of belief. Dr. Daniel Goodman considered this viewpoint problematic for issues of public policy. He sought to ground his Bayesian approach in data, and advocated the construction of a prior as an empirical histogram of “similar” cases. In this way, the posterior distribution that results from a Bayesian analysis combined comparable previous data with case-specific current data, using Bayes’ formula. Goodman championed such a data-based approach, but he acknowledged that it was difficult in practice. If based on a true representation of our knowledge and uncertainty, Goodman argued that risk assessment and decision-making could be an exact science, despite the uncertainties. In his view, Bayesian statistics is a critical component of this science because a Bayesian analysis produces the probabilities of future outcomes. Indeed, Goodman maintained that the Bayesian machinery, following the rules of conditional probability, offered the best legitimate inference from available data. We give an example of an informative prior in a recent study of Steller sea lion spatial use patterns in Alaska.

  10. Multivariate Bayesian Models of Extreme Rainfall

    NASA Astrophysics Data System (ADS)

    Rahill-Marier, B.; Devineni, N.; Lall, U.; Farnham, D.

    2013-12-01

    Accounting for spatial heterogeneity in extreme rainfall has important ramifications in hydrological design and climate models alike. Traditional methods, including areal reduction factors and kriging, are sensitive to catchment shape assumptions and return periods, and do not explicitly model spatial dependence between between data points. More recent spatially dense rainfall simulators depend on newer data sources such as radar and may struggle to reproduce extremes because of physical assumptions in the model and short historical records. Rain gauges offer the longest historical record, key when considering rainfall extremes and changes over time, and particularly relevant in today's environment of designing for climate change. In this paper we propose a probabilistic approach of accounting for spatial dependence using the lengthy but spatially disparate hourly rainfall network in the greater New York City area. We build a hierarchical Bayesian model allowing extremes at one station to co-vary with concurrent rainfall fields occurring at other stations. Subsequently we pool across the extreme rainfall fields of all stations, and demonstrate that the expected catchment-wide events are significantly lower when considering spatial fields instead of maxima-only fields. We additionally demonstrate the importance of using concurrent spatial fields, rather than annual maxima, in producing covariance matrices that describe true storm dynamics. This approach is also unique in that it considers short duration storms - from one hour to twenty-four hours - rather than the daily values typically derived from rainfall gauges. The same methodology can be extended to include the radar fields available in the past decade. The hierarchical multilevel approach lends itself easily to integration of long-record parameters and short-record parameters at a station or regional level. In addition climate covariates can be introduced to support the relationship of spatial covariance with

  11. Bayesian Methods for Analyzing Structural Equation Models with Covariates, Interaction, and Quadratic Latent Variables

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan; Tang, Nian-Sheng

    2007-01-01

    The analysis of interaction among latent variables has received much attention. This article introduces a Bayesian approach to analyze a general structural equation model that accommodates the general nonlinear terms of latent variables and covariates. This approach produces a Bayesian estimate that has the same statistical optimal properties as a…

  12. Hierarchical Bayesian Models of Subtask Learning

    ERIC Educational Resources Information Center

    Anglim, Jeromy; Wynton, Sarah K. A.

    2015-01-01

    The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…

  13. Hierarchical Bayesian Models of Subtask Learning

    ERIC Educational Resources Information Center

    Anglim, Jeromy; Wynton, Sarah K. A.

    2015-01-01

    The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…

  14. A Bayesian approach for evaluation of the effect of water quality model parameter uncertainty on TMDLs: A case study of Miyun Reservoir.

    PubMed

    Liang, Shidong; Jia, Haifeng; Xu, Changqing; Xu, Te; Melching, Charles

    2016-08-01

    Facing increasingly serious water pollution, the Chinese government is changing the environmental management strategy from solely pollutant concentration control to a Total Maximum Daily Load (TMDL) program, and water quality models are increasingly being applied to determine the allowable pollutant load in the TMDL. Despite the frequent use of models, few studies have focused on how parameter uncertainty in water quality models affect the allowable pollutant loads in the TMDL program, particularly for complicated and high-dimension water quality models. Uncertainty analysis for such models is limited by time-consuming simulation and high-dimensionality and nonlinearity in parameter spaces. In this study, an allowable pollutant load calculation platform was established using the Environmental Fluid Dynamics Code (EFDC), which is a widely applied hydrodynamic-water quality model. A Bayesian approach, i.e. the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, which is a high-efficiency, multi-chain Markov Chain Monte Carlo (MCMC) method, was applied to assess the effects of parameter uncertainty on the water quality model simulations and its influence on the allowable pollutant load calculation in the TMDL program. Miyun Reservoir, which is the most important surface drinking water source for Beijing, suffers from eutrophication and was selected as a case study. The relations between pollutant loads and water quality indicators are obtained through a graphical method in the simulation platform. Ranges of allowable pollutant loads were obtained according to the results of parameter uncertainty analysis, i.e. Total Organic Carbon (TOC): 581.5-1030.6t·yr(-1); Total Phosphorus (TP): 23.3-31.0t·yr(-1); and Total Nitrogen (TN): 480-1918.0t·yr(-1). The wide ranges of allowable pollutant loads reveal the importance of parameter uncertainty analysis in a TMDL program for allowable pollutant load calculation and margin of safety (MOS) determination. The sources

  15. High precision dating of mass extinction events: a combined zircon geochronology, apatite tephrochronology, and Bayesian age modelling approach of the Permian-Triassic boundary extinction

    NASA Astrophysics Data System (ADS)

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Bagherpour, Borhan; Schaltegger, Urs

    2016-04-01

    Chemical abrasion isotope dilution thermal ionization mass spectrometry (CA-ID-TIMS) U-Pb dating of single-zircon crystals is preferably applied to tephra beds intercalated in sedimentary sequences. By assuming that the zircon crystallization age closely approximate that of the volcanic eruption and ash deposition, U-Pb zircon geochronology is the preferred approach for dating mass extinction events (such as the Permian-Triassic boundary mass extinction) in the sedimentary record. As tephra from large volcanic eruptions is often transported over long distances, it additionally provide an invaluable tool for stratigraphic correlation across distant geologic sections. Therefore, the combination of high-precision zircon geochronology with apatite chemistry of the same tephra bed (so called apatite tephrochronology) provides a robust fingerprint of one particular volcanic eruption. In addition we provide coherent Bayesian model ages for the Permian-Triassic boundary (PTB) mass extinction, then compare it with PTB model ages at Meishan after Burgess et al. (2014). We will present new high-precision U-Pb zircon dates for a series of volcanic ash beds in deep- and shallow-marine Permian-Triassic sections in the Nanpanjiang Basin, South China. In addition, apatite crystals out of the same ash beds were analysed focusing on their halogen (F, Cl) and trace-element (e.g. Fe, Mg, REE) chemistry. We also show that Bayesian age models produce reproducible results from different geologic sections. On the basis of these data, including litho- and biostratigraphic correlations, we can precisely and accurately constrain the Permian-Triassic boundary in an equatorial marine setting, and correlate tephra beds over different sections and facies in the Nanpanjiang Basin independently from litho-, bio- or chemostratigraphic criteria. The results evidence that data produced in laboratories associated to the global EARTHTIME consortium can provide age information at the 0.05% level of 206

  16. Quantification Of Margins And Uncertainties: A Bayesian Approach (full Paper)

    SciTech Connect

    Wallstrom, Timothy C

    2008-01-01

    Quantification of Margins and Uncertainties (QMU) is 'a formalism for dealing with the reliability of complex technical systems, and the confidence which can be placed in estimates of that reliability.' (Eardleyet al, 2005). In this paper, we show how QMU may be interpreted in the framework of Bayesian statistical inference, using a probabilistic network. The Bayesian approach clarifies the probabilistic underpinnings of the formalism, and shows how the formalism can be used for deciSion-making.

  17. Normativity, interpretation, and Bayesian models

    PubMed Central

    Oaksford, Mike

    2014-01-01

    It has been suggested that evaluative normativity should be expunged from the psychology of reasoning. A broadly Davidsonian response to these arguments is presented. It is suggested that two distinctions, between different types of rationality, are more permeable than this argument requires and that the fundamental objection is to selecting theories that make the most rational sense of the data. It is argued that this is inevitable consequence of radical interpretation where understanding others requires assuming they share our own norms of reasoning. This requires evaluative normativity and it is shown that when asked to evaluate others’ arguments participants conform to rational Bayesian norms. It is suggested that logic and probability are not in competition and that the variety of norms is more limited than the arguments against evaluative normativity suppose. Moreover, the universality of belief ascription suggests that many of our norms are universal and hence evaluative. It is concluded that the union of evaluative normativity and descriptive psychology implicit in Davidson and apparent in the psychology of reasoning is a good thing. PMID:24860519

  18. A Bayesian Hierarchical Approach to Regional Frequency Analysis of Extremes

    NASA Astrophysics Data System (ADS)

    Renard, B.

    2010-12-01

    Rainfall and runoff frequency analysis is a major issue for the hydrological community. The distribution of hydrological extremes varies in space and possibly in time. Describing and understanding this spatiotemporal variability are primary challenges to improve hazard quantification and risk assessment. This presentation proposes a general approach based on a Bayesian hierarchical model, following previous work by Cooley et al. [2007], Micevski [2007], Aryal et al. [2009] or Lima and Lall [2009; 2010]. Such a hierarchical model is made up of two levels: (1) a data level modeling the distribution of observations, and (2) a process level describing the fluctuation of the distribution parameters in space and possibly in time. At the first level of the model, at-site data (e.g., annual maxima series) are modeled with a chosen distribution (e.g., a GEV distribution). Since data from several sites are considered, the joint distribution of a vector of (spatial) observations needs to be derived. This is challenging because data are in general not spatially independent, especially for nearby sites. An elliptical copula is therefore used to formally account for spatial dependence between at-site data. This choice might be questionable in the context of extreme value distributions. However, it is motivated by its applicability in spatial highly dimensional problems, where the joint pdf of a vector of n observations is required to derive the likelihood function (with n possibly amounting to hundreds of sites). At the second level of the model, parameters of the chosen at-site distribution are then modeled by a Gaussian spatial process, whose mean may depend on covariates (e.g. elevation, distance to sea, weather pattern, time). In particular, this spatial process allows estimating parameters at ungauged sites, and deriving the predictive distribution of rainfall/runoff at every pixel/catchment of the studied domain. An application to extreme rainfall series from the French

  19. A model-based approach to Bayesian classification with applications to predicting pregnancy outcomes from longitudinal beta-hCG profiles.

    PubMed

    de la Cruz-Mesía, Rolando; Quintana, Fernando A

    2007-04-01

    This paper discusses Bayesian statistical methods for the classification of observations into two or more groups based on hierarchical models for nonlinear longitudinal profiles. Parameter estimation for a discriminant model that classifies individuals into distinct predefined groups or populations uses appropriate posterior simulation schemes. The methods are illustrated with data from a study involving 173 pregnant women. The main objective in this study is to predict normal versus abnormal pregnancy outcomes from beta human chorionic gonadotropin data available at early stages of pregnancy.

  20. Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum

    2006-01-01

    A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is used to produce the joint Bayesian estimates of…

  1. Bayesian Statistical Model Checking with Application to Stateflow/Simulink Verification

    DTIC Science & Technology

    2010-01-13

    Bayesian Statistical Model Checking with Application to Stateflow/Simulink Verification Paolo Zuliani, André Platzer , Edmund M. Clarke January 13...Legay, A. Platzer , and P. Zuliani. A Bayesian approach to Model Checking biological systems. In CMSB, volume 5688 of LNCS, pages 218–234, 2009. 21 [16

  2. Selecting Bayesian priors for stochastic rates using extended functional models

    NASA Astrophysics Data System (ADS)

    Gibson, Gavin J.

    2003-04-01

    We propose an extension to the functional modelling methods described by Dawid and Stone (1982 Ann. Stat. 10 1119-38) that leads naturally to a method for selecting vague parameter priors for Bayesian analyses involving stochastic population models. Motivated by applications from quantum optics and epidemiology, we focus on analysing observed sequences of event times obeying a non-homogeneous Poisson process, although the techniques are more widely applicable. The extended functional modelling approach is illustrated for the particular case of Bayesian estimation of the death rate in the immigration-death model from observation of the death times only. It is shown that the prior selected naturally leads to a well defined posterior density for parameters and avoids some undesirable pathologies reported by Gibson and Renshaw (2001a Inverse Problems 17 455-66, 2001b Stat. Comput. 11 347-58) for the case of exponential priors. Some limitations of the approach are also discussed.

  3. A Systems Science Approach to Understanding Polytrauma and Blast-Related Injury: Bayesian Network Model of Data From a Survey of the Florida National Guard.

    PubMed

    Toyinbo, Peter A; Vanderploeg, Rodney D; Belanger, Heather G; Spehar, Andrea M; Lapcevic, William A; Scott, Steven G

    2017-01-15

    We sought to further define the epidemiology of the complex, multiple injuries collectively known as polytrauma/blast-related injury (PT/BRI). Using a systems science approach, we performed Bayesian network modeling to find the most accurate representation of the complex system of PT/BRI and identify key variables for understanding the subsequent effects of blast exposure in a sample of Florida National Guard members (1,443 deployed to Operation Enduring Freedom/Operation Iraqi Freedom and 1,655 not deployed) who completed an online survey during the period from 2009 to 2010. We found that postdeployment symptoms reported as present at the time of the survey were largely independent of deployment per se. Blast exposure, not mild traumatic brain injury (TBI), acted as the primary military deployment-related driver of PT/BRI symptoms. Blast exposure was indirectly linked to mild TBI via other deployment-related traumas and was a significant risk for a high level of posttraumatic stress disorder (PTSD) arousal symptoms. PTSD arousal symptoms and tinnitus were directly dependent upon blast exposure, with both acting as bridge symptoms to other postdeployment mental health and physical symptoms, respectively. Neurobehavioral or postconcussion-like symptoms had no significant dependence relationship with mild TBI, but they were synergistic with blast exposure in influencing PTSD arousal symptoms. A replication of this analysis using a larger PT/BRI database is warranted.

  4. Evaluation of Microelectrode Array Data using Bayesian Modeling as an Approach to Screening and Prioritization for Neurotoxicity Testing*

    EPA Science Inventory

    The need to assess large numbers of chemicals for their potential toxicities has resulted in increased emphasis on medium- and high-throughput in vitro screening approaches. For such approaches to be useful, efficient and reliable data analysis and hit detection methods are also ...

  5. Evaluation of Microelectrode Array Data using Bayesian Modeling as an Approach to Screening and Prioritization for Neurotoxicity Testing*

    EPA Science Inventory

    The need to assess large numbers of chemicals for their potential toxicities has resulted in increased emphasis on medium- and high-throughput in vitro screening approaches. For such approaches to be useful, efficient and reliable data analysis and hit detection methods are also ...

  6. Bayesian restoration of ion channel records using hidden Markov models.

    PubMed

    Rosales, R; Stark, J A; Fitzgerald, W J; Hladky, S B

    2001-03-01

    Hidden Markov models have been used to restore recorded signals of single ion channels buried in background noise. Parameter estimation and signal restoration are usually carried out through likelihood maximization by using variants of the Baum-Welch forward-backward procedures. This paper presents an alternative approach for dealing with this inferential task. The inferences are made by using a combination of the framework provided by Bayesian statistics and numerical methods based on Markov chain Monte Carlo stochastic simulation. The reliability of this approach is tested by using synthetic signals of known characteristics. The expectations of the model parameters estimated here are close to those calculated using the Baum-Welch algorithm, but the present methods also yield estimates of their errors. Comparisons of the results of the Bayesian Markov Chain Monte Carlo approach with those obtained by filtering and thresholding demonstrate clearly the superiority of the new methods.

  7. Model-based Bayesian inference for ROC data analysis

    NASA Astrophysics Data System (ADS)

    Lei, Tianhu; Bae, K. Ty

    2013-03-01

    This paper presents a study of model-based Bayesian inference to Receiver Operating Characteristics (ROC) data. The model is a simple version of general non-linear regression model. Different from Dorfman model, it uses a probit link function with a covariate variable having zero-one two values to express binormal distributions in a single formula. Model also includes a scale parameter. Bayesian inference is implemented by Markov Chain Monte Carlo (MCMC) method carried out by Bayesian analysis Using Gibbs Sampling (BUGS). Contrast to the classical statistical theory, Bayesian approach considers model parameters as random variables characterized by prior distributions. With substantial amount of simulated samples generated by sampling algorithm, posterior distributions of parameters as well as parameters themselves can be accurately estimated. MCMC-based BUGS adopts Adaptive Rejection Sampling (ARS) protocol which requires the probability density function (pdf) which samples are drawing from be log concave with respect to the targeted parameters. Our study corrects a common misconception and proves that pdf of this regression model is log concave with respect to its scale parameter. Therefore, ARS's requirement is satisfied and a Gaussian prior which is conjugate and possesses many analytic and computational advantages is assigned to the scale parameter. A cohort of 20 simulated data sets and 20 simulations from each data set are used in our study. Output analysis and convergence diagnostics for MCMC method are assessed by CODA package. Models and methods by using continuous Gaussian prior and discrete categorical prior are compared. Intensive simulations and performance measures are given to illustrate our practice in the framework of model-based Bayesian inference using MCMC method.

  8. A Full Bayesian Approach for Boolean Genetic Network Inference

    PubMed Central

    Han, Shengtong; Wong, Raymond K. W.; Lee, Thomas C. M.; Shen, Linghao; Li, Shuo-Yen R.; Fan, Xiaodan

    2014-01-01

    Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data. PMID:25551820

  9. Bayesian network modelling of upper gastrointestinal bleeding

    NASA Astrophysics Data System (ADS)

    Aisha, Nazziwa; Shohaimi, Shamarina; Adam, Mohd Bakri

    2013-09-01

    Bayesian networks are graphical probabilistic models that represent causal and other relationships between domain variables. In the context of medical decision making, these models have been explored to help in medical diagnosis and prognosis. In this paper, we discuss the Bayesian network formalism in building medical support systems and we learn a tree augmented naive Bayes Network (TAN) from gastrointestinal bleeding data. The accuracy of the TAN in classifying the source of gastrointestinal bleeding into upper or lower source is obtained. The TAN achieves a high classification accuracy of 86% and an area under curve of 92%. A sensitivity analysis of the model shows relatively high levels of entropy reduction for color of the stool, history of gastrointestinal bleeding, consistency and the ratio of blood urea nitrogen to creatinine. The TAN facilitates the identification of the source of GIB and requires further validation.

  10. A Bayesian Approach for Sensor Optimisation in Impact Identification

    PubMed Central

    Mallardo, Vincenzo; Sharif Khodaei, Zahra; Aliabadi, Ferri M. H.

    2016-01-01

    This paper presents a Bayesian approach for optimizing the position of sensors aimed at impact identification in composite structures under operational conditions. The uncertainty in the sensor data has been represented by statistical distributions of the recorded signals. An optimisation strategy based on the genetic algorithm is proposed to find the best sensor combination aimed at locating impacts on composite structures. A Bayesian-based objective function is adopted in the optimisation procedure as an indicator of the performance of meta-models developed for different sensor combinations to locate various impact events. To represent a real structure under operational load and to increase the reliability of the Structural Health Monitoring (SHM) system, the probability of malfunctioning sensors is included in the optimisation. The reliability and the robustness of the procedure is tested with experimental and numerical examples. Finally, the proposed optimisation algorithm is applied to a composite stiffened panel for both the uniform and non-uniform probability of impact occurrence. PMID:28774064

  11. Bayesian approach to non-inferiority trials for normal means.

    PubMed

    Gamalo, M Amper; Wu, Rui; Tiwari, Ram C

    2016-02-01

    Regulatory framework recommends that novel statistical methodology for analyzing trial results parallels the frequentist strategy, e.g. the new method must protect type-I error and arrive at a similar conclusion. Keeping these in mind, we construct a Bayesian approach for non-inferiority trials with normal response. A non-informative prior is assumed for the mean response of the experimental treatment and Jeffrey's prior for its corresponding variance when it is unknown. The posteriors of the mean response and variance of the treatment in historical trials are then assumed as priors for its corresponding parameters in the current trial, where that treatment serves as the active control. From these priors, a Bayesian decision criterion is derived to determine whether the experimental treatment is non-inferior to the active control. This criterion is evaluated and compared with the frequentist method using simulation studies. Results show that both Bayesian and frequentist approaches perform alike, but the Bayesian approach has a higher power when the variances are unknown. Both methods also arrive at the same conclusion of non-inferiority when applied on two real datasets. A major advantage of the proposed Bayesian approach lies in its ability to provide posterior probabilities for varying effect sizes of the experimental treatment over the active control.

  12. Multivariate meta-analysis of mixed outcomes: a Bayesian approach

    PubMed Central

    Bujkiewicz, Sylwia; Thompson, John R; Sutton, Alex J; Cooper, Nicola J; Harrison, Mark J; Symmons, Deborah PM; Abrams, Keith R

    2013-01-01

    Multivariate random effects meta-analysis (MRMA) is an appropriate way for synthesizing data from studies reporting multiple correlated outcomes. In a Bayesian framework, it has great potential for integrating evidence from a variety of sources. In this paper, we propose a Bayesian model for MRMA of mixed outcomes, which extends previously developed bivariate models to the trivariate case and also allows for combination of multiple outcomes that are both continuous and binary. We have constructed informative prior distributions for the correlations by using external evidence. Prior distributions for the within-study correlations were constructed by employing external individual patent data and using a double bootstrap method to obtain the correlations between mixed outcomes. The between-study model of MRMA was parameterized in the form of a product of a series of univariate conditional normal distributions. This allowed us to place explicit prior distributions on the between-study correlations, which were constructed using external summary data. Traditionally, independent ‘vague’ prior distributions are placed on all parameters of the model. In contrast to this approach, we constructed prior distributions for the between-study model parameters in a way that takes into account the inter-relationship between them. This is a flexible method that can be extended to incorporate mixed outcomes other than continuous and binary and beyond the trivariate case. We have applied this model to a motivating example in rheumatoid arthritis with the aim of incorporating all available evidence in the synthesis and potentially reducing uncertainty around the estimate of interest. © 2013 The Authors. Statistics inMedicine Published by John Wiley & Sons, Ltd. PMID:23630081

  13. Macro-level vulnerable road users crash analysis: A Bayesian joint modeling approach of frequency and proportion.

    PubMed

    Cai, Qing; Abdel-Aty, Mohamed; Lee, Jaeyoung

    2017-07-25

    This study aims at contributing to the literature on pedestrian and bicyclist safety by building on the conventional count regression models to explore exogenous factors affecting pedestrian and bicyclist crashes at the macroscopic level. In the traditional count models, effects of exogenous factors on non-motorist crashes were investigated directly. However, the vulnerable road users' crashes are collisions between vehicles and non-motorists. Thus, the exogenous factors can affect the non-motorist crashes through the non-motorists and vehicle drivers. To accommodate for the potentially different impact of exogenous factors we convert the non-motorist crash counts as the product of total crash counts and proportion of non-motorist crashes and formulate a joint model of the negative binomial (NB) model and the logit model to deal with the two parts, respectively. The formulated joint model is estimated using non-motorist crash data based on the Traffic Analysis Districts (TADs) in Florida. Meanwhile, the traditional NB model is also estimated and compared with the joint model. The result indicates that the joint model provides better data fit and can identify more significant variables. Subsequently, a novel joint screening method is suggested based on the proposed model to identify hot zones for non-motorist crashes. The hot zones of non-motorist crashes are identified and divided into three types: hot zones with more dangerous driving environment only, hot zones with more hazardous walking and cycling conditions only, and hot zones with both. It is expected that the joint model and screening method can help decision makers, transportation officials, and community planners to make more efficient treatments to proactively improve pedestrian and bicyclist safety. Published by Elsevier Ltd.

  14. Alternative models in genetic analyses of carcass traits measured by ultrasonography in Guzerá cattle: A Bayesian approach

    USDA-ARS?s Scientific Manuscript database

    The objective was to study alternative models for genetic analyses of carcass traits assessed by ultrasonography in Guzerá cattle. Data from 947 measurements (655 animals) of Rib-eye area (REA), rump fat thickness (RFT) and backfat thickness (BFT) were used. Finite polygenic models (FPM), infinitesi...

  15. A Bayesian optimization approach for wind farm power maximization

    NASA Astrophysics Data System (ADS)

    Park, Jinkyoo; Law, Kincho H.

    2015-03-01

    The objective of this study is to develop a model-free optimization algorithm to improve the total wind farm power production in a cooperative game framework. Conventionally, for a given wind condition, an individual wind turbine maximizes its own power production without taking into consideration the conditions of other wind turbines. Under this greedy control strategy, the wake formed by the upstream wind turbine, due to the reduced wind speed and the increased turbulence intensity inside the wake, would affect and lower the power productions of the downstream wind turbines. To increase the overall wind farm power production, researchers have proposed cooperative wind turbine control approaches to coordinate the actions that mitigate the wake interference among the wind turbines and thus increase the total wind farm power production. This study explores the use of a data-driven optimization approach to identify the optimum coordinated control actions in real time using limited amount of data. Specifically, we propose the Bayesian Ascent (BA) method that combines the strengths of Bayesian optimization and trust region optimization algorithms. Using Gaussian Process regression, BA requires only a few number of data points to model the complex target system. Furthermore, due to the use of trust region constraint on sampling procedure, BA tends to increase the target value and converge toward near the optimum. Simulation studies using analytical functions show that the BA method can achieve an almost monotone increase in a target value with rapid convergence. BA is also implemented and tested in a laboratory setting to maximize the total power using two scaled wind turbine models.

  16. Optimal Skin-to-Stone Distance Is a Positive Predictor for Successful Outcomes in Upper Ureter Calculi following Extracorporeal Shock Wave Lithotripsy: A Bayesian Model Averaging Approach

    PubMed Central

    Cho, Kang Su; Jung, Hae Do; Ham, Won Sik; Chung, Doo Yong; Kang, Yong Jin; Jang, Won Sik; Kwon, Jong Kyou; Choi, Young Deuk; Lee, Joo Yong

    2015-01-01

    Objectives To investigate whether skin-to-stone distance (SSD), which remains controversial in patients with ureter stones, can be a predicting factor for one session success following extracorporeal shock wave lithotripsy (ESWL) in patients with upper ureter stones. Patients and Methods We retrospectively reviewed the medical records of 1,519 patients who underwent their first ESWL between January 2005 and December 2013. Among these patients, 492 had upper ureter stones that measured 4–20 mm and were eligible for our analyses. Maximal stone length, mean stone density (HU), and SSD were determined on pretreatment non-contrast computed tomography (NCCT). For subgroup analyses, patients were divided into four groups. Group 1 consisted of patients with SSD<25th percentile, group 2 consisted of patients with SSD in the 25th to 50th percentile, group 3 patients had SSD in the 50th to 75th percentile, and group 4 patients had SSD≥75th percentile. Results In analyses of group 2 patients versus others, there were no statistical differences in mean age, stone length and density. However, the one session success rate in group 2 was higher than other groups (77.9% vs. 67.0%; P = 0.032). The multivariate logistic regression model revealed that shorter stone length, lower stone density, and the group 2 SSD were positive predictors for successful outcomes in ESWL. Using the Bayesian model-averaging approach, longer stone length, lower stone density, and group 2 SSD can be also positive predictors for successful outcomes following ESWL. Conclusions Our data indicate that a group 2 SSD of approximately 10 cm is a positive predictor for success following ESWL. PMID:26659086

  17. Optimal Skin-to-Stone Distance Is a Positive Predictor for Successful Outcomes in Upper Ureter Calculi following Extracorporeal Shock Wave Lithotripsy: A Bayesian Model Averaging Approach.

    PubMed

    Cho, Kang Su; Jung, Hae Do; Ham, Won Sik; Chung, Doo Yong; Kang, Yong Jin; Jang, Won Sik; Kwon, Jong Kyou; Choi, Young Deuk; Lee, Joo Yong

    2015-01-01

    To investigate whether skin-to-stone distance (SSD), which remains controversial in patients with ureter stones, can be a predicting factor for one session success following extracorporeal shock wave lithotripsy (ESWL) in patients with upper ureter stones. We retrospectively reviewed the medical records of 1,519 patients who underwent their first ESWL between January 2005 and December 2013. Among these patients, 492 had upper ureter stones that measured 4-20 mm and were eligible for our analyses. Maximal stone length, mean stone density (HU), and SSD were determined on pretreatment non-contrast computed tomography (NCCT). For subgroup analyses, patients were divided into four groups. Group 1 consisted of patients with SSD<25th percentile, group 2 consisted of patients with SSD in the 25th to 50th percentile, group 3 patients had SSD in the 50th to 75th percentile, and group 4 patients had SSD≥75th percentile. In analyses of group 2 patients versus others, there were no statistical differences in mean age, stone length and density. However, the one session success rate in group 2 was higher than other groups (77.9% vs. 67.0%; P = 0.032). The multivariate logistic regression model revealed that shorter stone length, lower stone density, and the group 2 SSD were positive predictors for successful outcomes in ESWL. Using the Bayesian model-averaging approach, longer stone length, lower stone density, and group 2 SSD can be also positive predictors for successful outcomes following ESWL. Our data indicate that a group 2 SSD of approximately 10 cm is a positive predictor for success following ESWL.

  18. Bayesian approach to two-stage phase II trial.

    PubMed

    Pepple, P A; Choi, S C

    1997-05-01

    Consider the situation in which there are several different therapeutic agents. It is desired to select the best agent and to examine its efficacy relative to the control. Too often clinical trials terminate with negative outcomes in part due to inadequate phase II studies. A two-stage phase II based on a Bayesian approach is considered in order to reduce such likelihood. The first stage consists of selecting the best agent and the second stage consists of examining the relative efficacy of the selected agent compared to the control. A formal phase III clinical trial can be initiated when the particular agent is shown to be promising on the basis of the proposed phase II study. The Bayesian approach employed uses an ad hoc likelihood due to the fact that the exact likelihood is complex and intractable. In this sense the proposed approach is thus an approximation. A simulation study is conducted to investigate the performance of the proposed Bayesian approach and compared to two fixed-sample-size approaches. Due to the fact that the procedure is approximate, the simulation study is essential to assess the usefulness of the procedure. The study suggests that the Bayesian approach is an attractive alternative to fixed-sample-size approaches.

  19. A Bayesian nonparametric approach for uncovering rat hippocampal population codes during spatial navigation.

    PubMed

    Linderman, Scott W; Johnson, Matthew J; Wilson, Matthew A; Chen, Zhe

    2016-04-01

    Rodent hippocampal population codes represent important spatial information about the environment during navigation. Computational methods have been developed to uncover the neural representation of spatial topology embedded in rodent hippocampal ensemble spike activity. We extend our previous work and propose a novel Bayesian nonparametric approach to infer rat hippocampal population codes during spatial navigation. To tackle the model selection problem, we leverage a Bayesian nonparametric model. Specifically, we apply a hierarchical Dirichlet process-hidden Markov model (HDP-HMM) using two Bayesian inference methods, one based on Markov chain Monte Carlo (MCMC) and the other based on variational Bayes (VB). The effectiveness of our Bayesian approaches is demonstrated on recordings from a freely behaving rat navigating in an open field environment. The HDP-HMM outperforms the finite-state HMM in both simulated and experimental data. For HPD-HMM, the MCMC-based inference with Hamiltonian Monte Carlo (HMC) hyperparameter sampling is flexible and efficient, and outperforms VB and MCMC approaches with hyperparameters set by empirical Bayes. The Bayesian nonparametric HDP-HMM method can efficiently perform model selection and identify model parameters, which can used for modeling latent-state neuronal population dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A nonparametric Bayesian approach for uncovering rat hippocampal population codes during spatial navigation

    PubMed Central

    Linderman, Scott W.; Johnson, Matthew J.; Wilson, Matthew A.; Chen, Zhe

    2016-01-01

    Background Rodent hippocampal population codes represent important spatial information about the environment during navigation. Computational methods have been developed to uncover the neural representation of spatial topology embedded in rodent hippocampal ensemble spike activity. New method We extend our previous work and propose a novel nonparametric Bayesian approach to infer rat hippocampal population codes during spatial navigation. To tackle the model selection problem, we leverage a nonparametric Bayesian model. Specifically, we apply a hierarchical Dirichlet process-hidden Markov model (HDP-HMM) using two Bayesian inference methods, one based on Markov chain Monte Carlo (MCMC) and the other based on variational Bayes (VB). Results The effectiveness of our Bayesian approaches is demonstrated on recordings from a freely-behaving rat navigating in an open field environment. Comparison with existing methods The HDP-HMM outperforms the finite-state HMM in both simulated and experimental data. For HPD-HMM, the MCMC-based inference with Hamiltonian Monte Carlo (HMC) hyperparameter sampling is flexible and efficient, and outperforms VB and MCMC approaches with hyperparameters set by empirical Bayes. Conclusion The nonparametric Bayesian HDP-HMM method can efficiently perform model selection and identify model parameters, which can used for modeling latent-state neuronal population dynamics. PMID:26854398

  1. Bayesian analysis of structural equation models with dichotomous variables.

    PubMed

    Lee, Sik-Yum; Song, Xin-Yuan

    2003-10-15

    Structural equation modelling has been used extensively in the behavioural and social sciences for studying interrelationships among manifest and latent variables. Recently, its uses have been well recognized in medical research. This paper introduces a Bayesian approach to analysing general structural equation models with dichotomous variables. In the posterior analysis, the observed dichotomous data are augmented with the hypothetical missing values, which involve the latent variables in the model and the unobserved continuous measurements underlying the dichotomous data. An algorithm based on the Gibbs sampler is developed for drawing the parameters values and the hypothetical missing values from the joint posterior distributions. Useful statistics, such as the Bayesian estimates and their standard error estimates, and the highest posterior density intervals, can be obtained from the simulated observations. A posterior predictive p-value is used to test the goodness-of-fit of the posited model. The methodology is applied to a study of hypertensive patient non-adherence to medication.

  2. A Bayesian nonlinear mixed-effects disease progression model.

    PubMed

    Kim, Seongho; Jang, Hyejeong; Wu, Dongfeng; Abrams, Judith

    2015-12-01

    A nonlinear mixed-effects approach is developed for disease progression models that incorporate variation in age in a Bayesian framework. We further generalize the probability model for sensitivity to depend on age at diagnosis, time spent in the preclinical state and sojourn time. The developed models are then applied to the Johns Hopkins Lung Project data and the Health Insurance Plan for Greater New York data using Bayesian Markov chain Monte Carlo and are compared with the estimation method that does not consider random-effects from age. Using the developed models, we obtain not only age-specific individual-level distributions, but also population-level distributions of sensitivity, sojourn time and transition probability.

  3. A Bayesian nonlinear mixed-effects disease progression model

    PubMed Central

    Kim, Seongho; Jang, Hyejeong; Wu, Dongfeng; Abrams, Judith

    2016-01-01

    A nonlinear mixed-effects approach is developed for disease progression models that incorporate variation in age in a Bayesian framework. We further generalize the probability model for sensitivity to depend on age at diagnosis, time spent in the preclinical state and sojourn time. The developed models are then applied to the Johns Hopkins Lung Project data and the Health Insurance Plan for Greater New York data using Bayesian Markov chain Monte Carlo and are compared with the estimation method that does not consider random-effects from age. Using the developed models, we obtain not only age-specific individual-level distributions, but also population-level distributions of sensitivity, sojourn time and transition probability. PMID:26798562

  4. Bayesian non parametric modelling of Higgs pair production

    NASA Astrophysics Data System (ADS)

    Scarpa, Bruno; Dorigo, Tommaso

    2017-03-01

    Statistical classification models are commonly used to separate a signal from a background. In this talk we face the problem of isolating the signal of Higgs pair production using the decay channel in which each boson decays into a pair of b-quarks. Typically in this context non parametric methods are used, such as Random Forests or different types of boosting tools. We remain in the same non-parametric framework, but we propose to face the problem following a Bayesian approach. A Dirichlet process is used as prior for the random effects in a logit model which is fitted by leveraging the Polya-Gamma data augmentation. Refinements of the model include the insertion in the simple model of P-splines to relate explanatory variables with the response and the use of Bayesian trees (BART) to describe the atoms in the Dirichlet process.

  5. Spatial Bayesian hierarchical modelling of extreme sea states

    NASA Astrophysics Data System (ADS)

    Clancy, Colm; O'Sullivan, John; Sweeney, Conor; Dias, Frédéric; Parnell, Andrew C.

    2016-11-01

    A Bayesian hierarchical framework is used to model extreme sea states, incorporating a latent spatial process to more effectively capture the spatial variation of the extremes. The model is applied to a 34-year hindcast of significant wave height off the west coast of Ireland. The generalised Pareto distribution is fitted to declustered peaks over a threshold given by the 99.8th percentile of the data. Return levels of significant wave height are computed and compared against those from a model based on the commonly-used maximum likelihood inference method. The Bayesian spatial model produces smoother maps of return levels. Furthermore, this approach greatly reduces the uncertainty in the estimates, thus providing information on extremes which is more useful for practical applications.

  6. Bayesian model selection analysis of WMAP3

    SciTech Connect

    Parkinson, David; Mukherjee, Pia; Liddle, Andrew R.

    2006-06-15

    We present a Bayesian model selection analysis of WMAP3 data using our code CosmoNest. We focus on the density perturbation spectral index n{sub S} and the tensor-to-scalar ratio r, which define the plane of slow-roll inflationary models. We find that while the Bayesian evidence supports the conclusion that n{sub S}{ne}1, the data are not yet powerful enough to do so at a strong or decisive level. If tensors are assumed absent, the current odds are approximately 8 to 1 in favor of n{sub S}{ne}1 under our assumptions, when WMAP3 data is used together with external data sets. WMAP3 data on its own is unable to distinguish between the two models. Further, inclusion of r as a parameter weakens the conclusion against the Harrison-Zel'dovich case (n{sub S}=1, r=0), albeit in a prior-dependent way. In appendices we describe the CosmoNest code in detail, noting its ability to supply posterior samples as well as to accurately compute the Bayesian evidence. We make a first public release of CosmoNest, now available at www.cosmonest.org.

  7. Probabilistic (Bayesian) Modeling of Gene Expression in Transplant Glomerulopathy

    PubMed Central

    Elster, Eric A.; Hawksworth, Jason S.; Cheng, Orlena; Leeser, David B.; Ring, Michael; Tadaki, Douglas K.; Kleiner, David E.; Eberhardt, John S.; Brown, Trevor S.; Mannon, Roslyn B.

    2010-01-01

    Transplant glomerulopathy (TG) is associated with rapid decline in glomerular filtration rate and poor outcome. We used low-density arrays with a novel probabilistic analysis to characterize relationships between gene transcripts and the development of TG in allograft recipients. Retrospective review identified TG in 10.8% of 963 core biopsies from 166 patients; patients with stable function were studied for comparison. The biopsies were analyzed for expression of 87 genes related to immune function and fibrosis by using real-time PCR, and a Bayesian model was generated and validated to predict histopathology based on gene expression. A total of 57 individual genes were increased in TG compared with stable function biopsies (P < 0.05). The Bayesian analysis identified critical relationships between ICAM-1, IL-10, CCL3, CD86, VCAM-1, MMP-9, MMP-7, and LAMC2 and allograft pathology. Moreover, Bayesian models predicted TG when derived from either immune function (area under the curve [95% confidence interval] of 0.875 [0.675 to 0.999], P = 0.004) or fibrosis (area under the curve [95% confidence interval] of 0.859 [0.754 to 0.963], P < 0.001) gene networks. Critical pathways in the Bayesian models were also analyzed by using the Fisher exact test and had P values <0.005. This study demonstrates that evaluating quantitative gene expression profiles with Bayesian modeling can identify significant transcriptional associations that have the potential to support the diagnostic capability of allograft histology. This integrated approach has broad implications in the field of transplant diagnostics. PMID:20688906

  8. A Bayesian subgroup analysis using collections of ANOVA models.

    PubMed

    Liu, Jinzhong; Sivaganesan, Siva; Laud, Purushottam W; Müller, Peter

    2017-03-20

    We develop a Bayesian approach to subgroup analysis using ANOVA models with multiple covariates, extending an earlier work. We assume a two-arm clinical trial with normally distributed response variable. We also assume that the covariates for subgroup finding are categorical and are a priori specified, and parsimonious easy-to-interpret subgroups are preferable. We represent the subgroups of interest by a collection of models and use a model selection approach to finding subgroups with heterogeneous effects. We develop suitable priors for the model space and use an objective Bayesian approach that yields multiplicity adjusted posterior probabilities for the models. We use a structured algorithm based on the posterior probabilities of the models to determine which subgroup effects to report. Frequentist operating characteristics of the approach are evaluated using simulation. While our approach is applicable in more general cases, we mainly focus on the 2 × 2 case of two covariates each at two levels for ease of presentation. The approach is illustrated using a real data example.

  9. Bayesian probability approach to ADHD appraisal.

    PubMed

    Robeva, Raina; Penberthy, Jennifer Kim

    2009-01-01

    Accurate diagnosis of attentional disorders such as attention-deficit hyperactivity disorder (ADHD) is imperative because there are multiple negative psychosocial sequelae related to undiagnosed and untreated ADHD. Early and accurate detection can lead to effective intervention and prevention of negative sequelae. Unfortunately, diagnosing ADHD presents a challenge to traditional assessment paradigms because there is no single test that definitively establishes its presence. Even though ADHD is a physiologically based disorder with a multifactorial etiology, the diagnosis has been traditionally based on a subjective history of symptoms. In this chapter we outline a stochastic method that utilizes a Bayesian interface for quantifying and assessing ADHD. It can be used to combine of a variety of psychometric tests and physiological markers into a single standardized instrument that, on each step, refines a probability for ADHD for each individual based on information provided by the individual assessments. The method is illustrated with data from a small study of six college female students with ADHD and six matched controls in which the method achieves correct classification for all participants, where none of the individual assessments was capable of achieving perfect classification. Further, we provide a framework for applying this Bayesian method for performing meta-analysis of data obtained from disparate studies and using disparate tests for ADHD based on calibration of the data into a unified probability scale. We use this method to combine data from five studies that examine the diagnostic abilities of different behavioral rating scales and EEG assessments of ADHD, enrolling a total of 56 ADHD and 55 control subjects of different age groups and gender.

  10. Bayesian and maximum likelihood estimation of hierarchical response time models

    PubMed Central

    Farrell, Simon; Ludwig, Casimir

    2008-01-01

    Hierarchical (or multilevel) statistical models have become increasingly popular in psychology in the last few years. We consider the application of multilevel modeling to the ex-Gaussian, a popular model of response times. Single-level estimation is compared with hierarchical estimation of parameters of the ex-Gaussian distribution. Additionally, for each approach maximum likelihood (ML) estimation is compared with Bayesian estimation. A set of simulations and analyses of parameter recovery show that although all methods perform adequately well, hierarchical methods are better able to recover the parameters of the ex-Gaussian by reducing the variability in recovered parameters. At each level, little overall difference was observed between the ML and Bayesian methods. PMID:19001592

  11. Cross-validation to select Bayesian hierarchical models in phylogenetics.

    PubMed

    Duchêne, Sebastián; Duchêne, David A; Di Giallonardo, Francesca; Eden, John-Sebastian; Geoghegan, Jemma L; Holt, Kathryn E; Ho, Simon Y W; Holmes, Edward C

    2016-05-26

    Recent developments in Bayesian phylogenetic models have increased the range of inferences that can be drawn from molecular sequence data. Accordingly, model selection has become an important component of phylogenetic analysis. Methods of model selection generally consider the likelihood of the data under the model in question. In the context of Bayesian phylogenetics, the most common approach involves estimating the marginal likelihood, which is typically done by integrating the likelihood across model parameters, weighted by the prior. Although this method is accurate, it is sensitive to the presence of improper priors. We explored an alternative approach based on cross-validation that is widely used in evolutionary analysis. This involves comparing models according to their predictive performance. We analysed simulated data and a range of viral and bacterial data sets using a cross-validation approach to compare a variety of molecular clock and demographic models. Our results show that cross-validation can be effective in distinguishing between strict- and relaxed-clock models and in identifying demographic models that allow growth in population size over time. In most of our empirical data analyses, the model selected using cross-validation was able to match that selected using marginal-likelihood estimation. The accuracy of cross-validation appears to improve with longer sequence data, particularly when distinguishing between relaxed-clock models. Cross-validation is a useful method for Bayesian phylogenetic model selection. This method can be readily implemented even when considering complex models where selecting an appropriate prior for all parameters may be difficult.

  12. Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.

    PubMed

    Hack, C Eric

    2006-04-17

    Physiologically based toxicokinetic (PBTK) and toxicodynamic (TD) models of bromate in animals and humans would improve our ability to accurately estimate the toxic doses in humans based on available animal studies. These mathematical models are often highly parameterized and must be calibrated in order for the model predictions of internal dose to adequately fit the experimentally measured doses. Highly parameterized models are difficult to calibrate and it is difficult to obtain accurate estimates of uncertainty or variability in model parameters with commonly used frequentist calibration methods, such as maximum likelihood estimation (MLE) or least squared error approaches. The Bayesian approach called Markov chain Monte Carlo (MCMC) analysis can be used to successfully calibrate these complex models. Prior knowledge about the biological system and associated model parameters is easily incorporated in this approach in the form of prior parameter distributions, and the distributions are refined or updated using experimental data to generate posterior distributions of parameter estimates. The goal of this paper is to give the non-mathematician a brief description of the Bayesian approach and Markov chain Monte Carlo analysis, how this technique is used in risk assessment, and the issues associated with this approach.

  13. Accurate model selection of relaxed molecular clocks in bayesian phylogenetics.

    PubMed

    Baele, Guy; Li, Wai Lok Sibon; Drummond, Alexei J; Suchard, Marc A; Lemey, Philippe

    2013-02-01

    Recent implementations of path sampling (PS) and stepping-stone sampling (SS) have been shown to outperform the harmonic mean estimator (HME) and a posterior simulation-based analog of Akaike's information criterion through Markov chain Monte Carlo (AICM), in bayesian model selection of demographic and molecular clock models. Almost simultaneously, a bayesian model averaging approach was developed that avoids conditioning on a single model but averages over a set of relaxed clock models. This approach returns estimates of the posterior probability of each clock model through which one can estimate the Bayes factor in favor of the maximum a posteriori (MAP) clock model; however, this Bayes factor estimate may suffer when the posterior probability of the MAP model approaches 1. Here, we compare these two recent developments with the HME, stabilized/smoothed HME (sHME), and AICM, using both synthetic and empirical data. Our comparison shows reassuringly that MAP identification and its Bayes factor provide similar performance to PS and SS and that these approaches considerably outperform HME, sHME, and AICM in selecting the correct underlying clock model. We also illustrate the importance of using proper priors on a large set of empirical data sets.

  14. Bayesian calibration of groundwater models with input data uncertainty

    NASA Astrophysics Data System (ADS)

    Xu, Tianfang; Valocchi, Albert J.; Ye, Ming; Liang, Feng; Lin, Yu-Feng

    2017-04-01

    Effective water resources management typically relies on numerical models to analyze groundwater flow and solute transport processes. Groundwater models are often subject to input data uncertainty, as some inputs (such as recharge and well pumping rates) are estimated and subject to uncertainty. Current practices of groundwater model calibration often overlook uncertainties in input data; this can lead to biased parameter estimates and compromised predictions. Through a synthetic case study of surface-ground water interaction under changing pumping conditions and land use, we investigate the impacts of uncertain pumping and recharge rates on model calibration and uncertainty analysis. We then present a Bayesian framework of model calibration to handle uncertain input of groundwater models. The framework implements a marginalizing step to account for input data uncertainty when evaluating likelihood. It was found that not accounting for input uncertainty may lead to biased, overconfident parameter estimates because parameters could be over-adjusted to compensate for possible input data errors. Parameter compensation can have deleterious impacts when the calibrated model is used to make forecast under a scenario that is different from calibration conditions. By marginalizing input data uncertainty, the Bayesian calibration approach effectively alleviates parameter compensation and gives more accurate predictions in the synthetic case study. The marginalizing Bayesian method also decomposes prediction uncertainty into uncertainties contributed by parameters, input data, and measurements. The results underscore the need to account for input uncertainty to better inform postmodeling decision making.

  15. AutoClass: A Bayesian Approach to Classification

    NASA Technical Reports Server (NTRS)

    Stutz, John; Cheeseman, Peter; Hanson, Robin; Taylor, Will; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    We describe a Bayesian approach to the untutored discovery of classes in a set of cases, sometimes called finite mixture separation or clustering. The main difference between clustering and our approach is that we search for the "best" set of class descriptions rather than grouping the cases themselves. We describe our classes in terms of a probability distribution or density function, and the locally maximal posterior probability valued function parameters. We rate our classifications with an approximate joint probability of the data and functional form, marginalizing over the parameters. Approximation is necessitated by the computational complexity of the joint probability. Thus, we marginalize w.r.t. local maxima in the parameter space. We discuss the rationale behind our approach to classification. We give the mathematical development for the basic mixture model and describe the approximations needed for computational tractability. We instantiate the basic model with the discrete Dirichlet distribution and multivariant Gaussian density likelihoods. Then we show some results for both constructed and actual data.

  16. A Bayesian approach to the alignment of mass spectra

    PubMed Central

    Kong, Xiaoxiao; Reilly, Cavan

    2009-01-01

    Motivation: The need to align spectra to correct for mass-to-charge experimental variation is a problem that arises in mass spectrometry (MS). Most of the MS-based proteomic data analysis methods involve a two-step approach, identify peaks first and then do the alignment and statistical inference on these identified peaks only. However, the peak identification step relies on prior information on the proteins of interest or a peak detection model, which are subject to error. Also numerous additional features such as peak shape and peak width are lost in simple peak detection, and these are informative for correcting mass variation in the alignment step. Results: Here, we present a novel Bayesian approach to align the complete spectra. The approach is based on a parametric model which assumes that the spectrum and alignment function are Gaussian processes, but the alignment function is monotone. We show how to use the expectation–maximization algorithm to find the posterior mode of the set of alignment functions and the mean spectrum for a patient population. After alignment, we conduct tests while controlling for error attributable to multiple comparisons on the level of the peaks identified from the absolute mean spectra difference of two patient populations. Contact: cavanr@biostat.umn.edu PMID:19819887

  17. A Bayesian approach to tracking patients having changing pharmacokinetic parameters

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Jelliffe, Roger W.

    2004-01-01

    This paper considers the updating of Bayesian posterior densities for pharmacokinetic models associated with patients having changing parameter values. For estimation purposes it is proposed to use the Interacting Multiple Model (IMM) estimation algorithm, which is currently a popular algorithm in the aerospace community for tracking maneuvering targets. The IMM algorithm is described, and compared to the multiple model (MM) and Maximum A-Posteriori (MAP) Bayesian estimation methods, which are presently used for posterior updating when pharmacokinetic parameters do not change. Both the MM and MAP Bayesian estimation methods are used in their sequential forms, to facilitate tracking of changing parameters. Results indicate that the IMM algorithm is well suited for tracking time-varying pharmacokinetic parameters in acutely ill and unstable patients, incurring only about half of the integrated error compared to the sequential MM and MAP methods on the same example.

  18. A Bayesian Approach to Multicenter Trials and Metaanalysis.

    ERIC Educational Resources Information Center

    Berry, Donald A.

    The use of a Bayesian approach in evaluating data from clinical trials with many treatment centers and from many studies is discussed. The main distinction between a metaanalysis and an analysis of a multicenter trial is that different studies may have very different designs, while the centers in a multicenter trial usually follow the same…

  19. Bayesian penalized log-likelihood ratio approach for dose response clinical trial studies.

    PubMed

    Tang, Yuanyuan; Cai, Chunyan; Sun, Liangrui; He, Jianghua

    2017-02-13

    In literature, there are a few unified approaches to test proof of concept and estimate a target dose, including the multiple comparison procedure using modeling approach, and the permutation approach proposed by Klingenberg. We discuss and compare the operating characteristics of these unified approaches and further develop an alternative approach in a Bayesian framework based on the posterior distribution of a penalized log-likelihood ratio test statistic. Our Bayesian approach is much more flexible to handle linear or nonlinear dose-response relationships and is more efficient than the permutation approach. The operating characteristics of our Bayesian approach are comparable to and sometimes better than both approaches in a wide range of dose-response relationships. It yields credible intervals as well as predictive distribution for the response rate at a specific dose level for the target dose estimation. Our Bayesian approach can be easily extended to continuous, categorical, and time-to-event responses. We illustrate the performance of our proposed method with extensive simulations and Phase II clinical trial data examples.

  20. A Bayesian nonparametric meta-analysis model.

    PubMed

    Karabatsos, George; Talbott, Elizabeth; Walker, Stephen G

    2015-03-01

    In a meta-analysis, it is important to specify a model that adequately describes the effect-size distribution of the underlying population of studies. The conventional normal fixed-effect and normal random-effects models assume a normal effect-size population distribution, conditionally on parameters and covariates. For estimating the mean overall effect size, such models may be adequate, but for prediction, they surely are not if the effect-size distribution exhibits non-normal behavior. To address this issue, we propose a Bayesian nonparametric meta-analysis model, which can describe a wider range of effect-size distributions, including unimodal symmetric distributions, as well as skewed and more multimodal distributions. We demonstrate our model through the analysis of real meta-analytic data arising from behavioral-genetic research. We compare the predictive performance of the Bayesian nonparametric model against various conventional and more modern normal fixed-effects and random-effects models. Copyright © 2014 John Wiley & Sons, Ltd.

  1. A Bayesian Approach for Graph-constrained Estimation for High-dimensional Regression.

    PubMed

    Sun, Hokeun; Li, Hongzhe

    Many different biological processes are represented by network graphs such as regulatory networks, metabolic pathways, and protein-protein interaction networks. Since genes that are linked on the networks usually have biologically similar functions, the linked genes form molecular modules to affect the clinical phenotypes/outcomes. Similarly, in large-scale genetic association studies, many SNPs are in high linkage disequilibrium (LD), which can also be summarized as a LD graph. In order to incorporate the graph information into regression analysis with high dimensional genomic data as predictors, we introduce a Bayesian approach for graph-constrained estimation (Bayesian GRACE) and regularization, which controls the amount of regularization for sparsity and smoothness of the regression coefficients. The Bayesian estimation with their posterior distributions can provide credible intervals for the estimates of the regression coefficients along with standard errors. The deviance information criterion (DIC) is applied for model assessment and tuning parameter selection. The performance of the proposed Bayesian approach is evaluated through simulation studies and is compared with Bayesian Lasso and Bayesian Elastic-net procedures. We demonstrate our method in an analysis of data from a case-control genome-wide association study of neuroblastoma using a weighted LD graph.

  2. A localization model to localize multiple sources using Bayesian inference

    NASA Astrophysics Data System (ADS)

    Dunham, Joshua Rolv

    Accurate localization of a sound source in a room setting is important in both psychoacoustics and architectural acoustics. Binaural models have been proposed to explain how the brain processes and utilizes the interaural time differences (ITDs) and interaural level differences (ILDs) of sound waves arriving at the ears of a listener in determining source location. Recent work shows that applying Bayesian methods to this problem is proving fruitful. In this thesis, pink noise samples are convolved with head-related transfer functions (HRTFs) and compared to combinations of one and two anechoic speech signals convolved with different HRTFs or binaural room impulse responses (BRIRs) to simulate room positions. Through exhaustive calculation of Bayesian posterior probabilities and using a maximal likelihood approach, model selection will determine the number of sources present, and parameter estimation will result in azimuthal direction of the source(s).

  3. A Bayesian hierarchical model for climate change detection and attribution

    NASA Astrophysics Data System (ADS)

    Katzfuss, Matthias; Hammerling, Dorit; Smith, Richard L.

    2017-06-01

    Regression-based detection and attribution methods continue to take a central role in the study of climate change and its causes. Here we propose a novel Bayesian hierarchical approach to this problem, which allows us to address several open methodological questions. Specifically, we take into account the uncertainties in the true temperature change due to imperfect measurements, the uncertainty in the true climate signal under different forcing scenarios due to the availability of only a small number of climate model simulations, and the uncertainty associated with estimating the climate variability covariance matrix, including the truncation of the number of empirical orthogonal functions (EOFs) in this covariance matrix. We apply Bayesian model averaging to assign optimal probabilistic weights to different possible truncations and incorporate all uncertainties into the inference on the regression coefficients. We provide an efficient implementation of our method in a software package and illustrate its use with a realistic application.

  4. A Bayesian approach to extracting meaning from system behavior

    SciTech Connect

    Dress, W.B.

    1998-08-01

    The modeling relation and its reformulation to include the semiotic hierarchy is essential for the understanding, control, and successful re-creation of natural systems. This presentation will argue for a careful application of Rosen`s modeling relationship to the problems of intelligence and autonomy in natural and artificial systems. To this end, the authors discuss the essential need for a correct theory of induction, learning, and probability; and suggest that modern Bayesian probability theory, developed by Cox, Jaynes, and others, can adequately meet such demands, especially on the operational level of extracting meaning from observations. The methods of Bayesian and maximum Entropy parameter estimation have been applied to measurements of system observables to directly infer the underlying differential equations generating system behavior. This approach by-passes the usual method of parameter estimation based on assuming a functional form for the observable and then estimating the parameters that would lead to the particular observed behavior. The computational savings is great since only location parameters enter into the maximum-entropy calculations; this innovation finesses the need for nonlinear parameters altogether. Such an approach more directly extracts the semantics inherent in a given system by going to the root of system meaning as expressed by abstract form or shape, rather than in syntactic particulars, such as signal amplitude and phase. Examples will be shown how the form of a system can be followed while ignoring unnecessary details. In this sense, the authors are observing the meaning of the words rather than being concerned with their particular expression or language. For the present discussion, empirical models are embodied by the differential equations underlying, producing, or describing the behavior of a process as measured or tracked by a particular variable set--the observables. The a priori models are probability structures that

  5. Inferring land use and land cover impact on stream water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River Watershed, China.

    PubMed

    Wan, Rongrong; Cai, Shanshan; Li, Hengpeng; Yang, Guishan; Li, Zhaofu; Nie, Xiaofei

    2014-01-15

    Lake eutrophication has become a very serious environmental problem in China. If water pollution is to be controlled and ultimately eliminated, it is essential to understand how human activities affect surface water quality. A recently developed technique using the Bayesian hierarchical linear regression model revealed the effects of land use and land cover (LULC) on stream water quality at a watershed scale. Six LULC categories combined with watershed characteristics, including size, slope, and permeability were the variables that were studied. The pollutants of concern were nutrient concentrations of total nitrogen (TN) and total phosphorus (TP), common pollutants found in eutrophication. The monthly monitoring data at 41 sites in the Xitiaoxi Watershed, China during 2009-2010 were used for model demonstration. The results showed that the relationships between LULC and stream water quality are so complicated that the effects are varied over large areas. The models suggested that urban and agricultural land are important sources of TN and TP concentrations, while rural residential land is one of the major sources of TN. Certain agricultural practices (excessive fertilizer application) result in greater concentrations of nutrients in paddy fields, artificial grasslands, and artificial woodlands. This study suggests that Bayesian hierarchical modeling is a powerful tool for examining the complicated relationships between land use and water quality on different scales, and for developing land use and water management policies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Identification of the minimum effective dose for normally distributed data using a Bayesian variable selection approach.

    PubMed

    Otava, Martin; Shkedy, Ziv; Hothorn, Ludwig A; Talloen, Willem; Gerhard, Daniel; Kasim, Adetayo

    2017-02-16

    The identification of the minimum effective dose is of high importance in the drug development process. In early stage screening experiments, establishing the minimum effective dose can be translated into a model selection based on information criteria. The presented alternative, Bayesian variable selection approach, allows for selection of the minimum effective dose, while taking into account model uncertainty. The performance of Bayesian variable selection is compared with the generalized order restricted information criterion on two dose-response experiments and through the simulations study. Which method has performed better depends on the complexity of the underlying model and the effect size relative to noise.

  7. Application of a predictive Bayesian model to environmental accounting.

    PubMed

    Anex, R P; Englehardt, J D

    2001-03-30

    Environmental accounting techniques are intended to capture important environmental costs and benefits that are often overlooked in standard accounting practices. Environmental accounting methods themselves often ignore or inadequately represent large but highly uncertain environmental costs and costs conditioned by specific prior events. Use of a predictive Bayesian model is demonstrated for the assessment of such highly uncertain environmental and contingent costs. The predictive Bayesian approach presented generates probability distributions for the quantity of interest (rather than parameters thereof). A spreadsheet implementation of a previously proposed predictive Bayesian model, extended to represent contingent costs, is described and used to evaluate whether a firm should undertake an accelerated phase-out of its PCB containing transformers. Variability and uncertainty (due to lack of information) in transformer accident frequency and severity are assessed simultaneously using a combination of historical accident data, engineering model-based cost estimates, and subjective judgement. Model results are compared using several different risk measures. Use of the model for incorporation of environmental risk management into a company's overall risk management strategy is discussed.

  8. Bayesian adjustment for covariate measurement errors: a flexible parametric approach.

    PubMed

    Hossain, Shahadut; Gustafson, Paul

    2009-05-15

    In most epidemiological investigations, the study units are people, the outcome variable (or the response) is a health-related event, and the explanatory variables are usually environmental and/or socio-demographic factors. The fundamental task in such investigations is to quantify the association between the explanatory variables (covariates/exposures) and the outcome variable through a suitable regression model. The accuracy of such quantification depends on how precisely the relevant covariates are measured. In many instances, we cannot measure some of the covariates accurately. Rather, we can measure noisy (mismeasured) versions of them. In statistical terminology, mismeasurement in continuous covariates is known as measurement errors or errors-in-variables. Regression analyses based on mismeasured covariates lead to biased inference about the true underlying response-covariate associations. In this paper, we suggest a flexible parametric approach for avoiding this bias when estimating the response-covariate relationship through a logistic regression model. More specifically, we consider the flexible generalized skew-normal and the flexible generalized skew-t distributions for modeling the unobserved true exposure. For inference and computational purposes, we use Bayesian Markov chain Monte Carlo techniques. We investigate the performance of the proposed flexible parametric approach in comparison with a common flexible parametric approach through extensive simulation studies. We also compare the proposed method with the competing flexible parametric method on a real-life data set. Though emphasis is put on the logistic regression model, the proposed method is unified and is applicable to the other generalized linear models, and to other types of non-linear regression models as well. (c) 2009 John Wiley & Sons, Ltd.

  9. A limited sampling method to estimate methotrexate pharmacokinetics in patients with rheumatoid arthritis using a Bayesian approach and the population data modeling program P-PHARM.

    PubMed

    Bressolle, F; Bologna, C; Edno, L; Bernard, J C; Gomeni, R; Sany, J; Combe, B

    1996-01-01

    This paper describes a methodology to calculate methotrexate (MTX) pharmacokinetic parameters after intramuscular administration using two samples and the population parameters. Total and free MTX were measured over a 36-h period in 56 rheumatoid arthritis patients; 14 patients were studied after a two-dose scheme at 15-day intervals. The Hill equation was used to relate the free MTX to the total MTX changes in plasma concentrations, and a two-compartment open model was used to fit the total MTX plasma concentrations. A non-linear mixed effect procedure was used to estimate the population parameters and to explore the interindividual variability in relation to the following covariables: age, weight, height, haemoglobin, erythrocyte sedimentation rate, platelet count, creatinine clearance, rheumatoid factor, C-reactive protein, swelling joint count, and Ritchie's articular index. Population parameters were evaluated for 40 patients using a three-step approach. The population average parameters and the interindividual variabilities expressed as coefficients of variation (CV%) were: CL, 6.94 l center dot h-1 (20.5%); V, 34.8 l (32.2%); k12, 0.0838 h-1 (47.7%); k21, 0.0769 h-1 (61.6%); ka, 4.31 h-1 (58%); Emax, 1.12 mu mol center dot l-1 (19.7%); gamma, 0.932 (12.3%); and EC50, 2.14 mu mol center dot l-1 (27.3%). Thirty additional data sets (16 new patients and 14 patients of the previous population but treated on a separate occasion) were used to evaluate the predictive performance of the population parameters. Twelve blood samples were collected from each individual in order to calculate individual parameters using standard fitting procedures. These values were compared to the ones estimated using a Bayesian approach with population parameters as a priori information together with two samples, selected from the individual observations. The results show that the bias was not statistically different from zero and the precision of these parameters was excellent.

  10. Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum

    2011-01-01

    Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…

  11. Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum

    2011-01-01

    Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…

  12. Using discharge data to reduce structural deficits in a hydrological model with a Bayesian inference approach and the implications for the prediction of critical source areas

    NASA Astrophysics Data System (ADS)

    Frey, M. P.; Stamm, C.; Schneider, M. K.; Reichert, P.

    2011-12-01

    A distributed hydrological model was used to simulate the distribution of fast runoff formation as a proxy for critical source areas for herbicide pollution in a small agricultural catchment in Switzerland. We tested to what degree predictions based on prior knowledge without local measurements could be improved upon relying on observed discharge. This learning process consisted of five steps: For the prior prediction (step 1), knowledge of the model parameters was coarse and predictions were fairly uncertain. In the second step, discharge data were used to update the prior parameter distribution. Effects of uncertainty in input data and model structure were accounted for by an autoregressive error model. This step decreased the width of the marginal distributions of parameters describing the lower boundary (percolation rates) but hardly affected soil hydraulic parameters. Residual analysis (step 3) revealed model structure deficits. We modified the model, and in the subsequent Bayesian updating (step 4) the widths of the posterior marginal distributions were reduced for most parameters compared to those of the prior. This incremental procedure led to a strong reduction in the uncertainty of the spatial prediction. Thus, despite only using spatially integrated data (discharge), the spatially distributed effect of the improved model structure can be expected to improve the spatially distributed predictions also. The fifth step consisted of a test with independent spatial data on herbicide losses and revealed ambiguous results. The comparison depended critically on the ratio of event to preevent water that was discharged. This ratio cannot be estimated from hydrological data only. The results demonstrate that the value of local data is strongly dependent on a correct model structure. An iterative procedure of Bayesian updating, model testing, and model modification is suggested.

  13. Spatial Patterns of Ischemic Heart Disease in Shenzhen, China: A Bayesian Multi-Disease Modelling Approach to Inform Health Planning Policies.

    PubMed

    Du, Qingyun; Zhang, Mingxiao; Li, Yayan; Luan, Hui; Liang, Shi; Ren, Fu

    2016-04-20

    Incorporating the information of hypertension, this paper applies Bayesian multi-disease analysis to model the spatial patterns of Ischemic Heart Disease (IHD) risks. Patterns of harmful alcohol intake (HAI) and overweight/obesity are also modelled as they are common risk factors contributing to both IHD and hypertension. The hospitalization data of IHD and hypertension in 2012 were analyzed with three Bayesian multi-disease models at the sub-district level of Shenzhen. Results revealed that the IHD high-risk cluster shifted slightly north-eastward compared with the IHD Standardized Hospitalization Ratio (SHR). Spatial variations of overweight/obesity and HAI were found to contribute most to the IHD patterns. Identified patterns of IHD risk would benefit IHD integrated prevention. Spatial patterns of overweight/obesity and HAI could supplement the current disease surveillance system by providing information about small-area level risk factors, and thus benefit integrated prevention of related chronic diseases. Middle southern Shenzhen, where high risk of IHD, overweight/obesity, and HAI are present, should be prioritized for interventions, including alcohol control, innovative healthy diet toolkit distribution, insurance system revision, and community-based chronic disease intervention. Related health resource planning is also suggested to focus on these areas first.

  14. Spatial Patterns of Ischemic Heart Disease in Shenzhen, China: A Bayesian Multi-Disease Modelling Approach to Inform Health Planning Policies

    PubMed Central

    Du, Qingyun; Zhang, Mingxiao; Li, Yayan; Luan, Hui; Liang, Shi; Ren, Fu

    2016-01-01

    Incorporating the information of hypertension, this paper applies Bayesian multi-disease analysis to model the spatial patterns of Ischemic Heart Disease (IHD) risks. Patterns of harmful alcohol intake (HAI) and overweight/obesity are also modelled as they are common risk factors contributing to both IHD and hypertension. The hospitalization data of IHD and hypertension in 2012 were analyzed with three Bayesian multi-disease models at the sub-district level of Shenzhen. Results revealed that the IHD high-risk cluster shifted slightly north-eastward compared with the IHD Standardized Hospitalization Ratio (SHR). Spatial variations of overweight/obesity and HAI were found to contribute most to the IHD patterns. Identified patterns of IHD risk would benefit IHD integrated prevention. Spatial patterns of overweight/obesity and HAI could supplement the current disease surveillance system by providing information about small-area level risk factors, and thus benefit integrated prevention of related chronic diseases. Middle southern Shenzhen, where high risk of IHD, overweight/obesity, and HAI are present, should be prioritized for interventions, including alcohol control, innovative healthy diet toolkit distribution, insurance system revision, and community-based chronic disease intervention. Related health resource planning is also suggested to focus on these areas first. PMID:27104551

  15. Quantifying Model-Form Uncertainties in Reynolds Averaged Navier-Stokes Equations: An Open-Box, Physics-Based, Bayesian Approach

    NASA Astrophysics Data System (ADS)

    Xiao, Heng; Wu, Jinlong; Wang, Jianxun; Sun, Rui; Roy, Christopher J.

    2015-11-01

    For many practical flows, the turbulence models are the most important source of uncertainty in Reynolds-Averaged Navier-Stokes (RANS) predictions. In this work, we develop an open-box, physics-informed Bayesian framework for quantifying the model-form uncertainties in RANS simulations. Uncertainties are introduced directly to the Reynolds stresses and are represented with compact parameterization accounting for empirical prior knowledge and physical constraints (e.g., realizability, smoothness, and symmetry). An iterative ensemble Kalman method is used to incorporate the prior information with available observation data in a Bayesian framework to posterior distributions of the Reynolds stresses and other quantities of interest. Two representative cases, the flow over periodic hills and the flow in a square duct, are used to evaluate the performance of the proposed framework. Simulation results suggest that the obtained posterior mean has significantly better agreement with the benchmark data compared to the baseline simulation, even with very sparse observations. At most locations, the posterior distribution adequately represents the model-form uncertainties.

  16. Fast Bayesian Inference in Dirichlet Process Mixture Models.

    PubMed

    Wang, Lianming; Dunson, David B

    2011-01-01

    There has been increasing interest in applying Bayesian nonparametric methods in large samples and high dimensions. As Markov chain Monte Carlo (MCMC) algorithms are often infeasible, there is a pressing need for much faster algorithms. This article proposes a fast approach for inference in Dirichlet process mixture (DPM) models. Viewing the partitioning of subjects into clusters as a model selection problem, we propose a sequential greedy search algorithm for selecting the partition. Then, when conjugate priors are chosen, the resulting posterior conditionally on the selected partition is available in closed form. This approach allows testing of parametric models versus nonparametric alternatives based on Bayes factors. We evaluate the approach using simulation studies and compare it with four other fast nonparametric methods in the literature. We apply the proposed approach to three datasets including one from a large epidemiologic study. Matlab codes for the simulation and data analyses using the proposed approach are available online in the supplemental materials.

  17. A bayesian approach to classification criteria for spectacled eiders

    USGS Publications Warehouse

    Taylor, B.L.; Wade, P.R.; Stehn, R.A.; Cochrane, J.F.

    1996-01-01

    To facilitate decisions to classify species according to risk of extinction, we used Bayesian methods to analyze trend data for the Spectacled Eider, an arctic sea duck. Trend data from three independent surveys of the Yukon-Kuskokwim Delta were analyzed individually and in combination to yield posterior distributions for population growth rates. We used classification criteria developed by the recovery team for Spectacled Eiders that seek to equalize errors of under- or overprotecting the species. We conducted both a Bayesian decision analysis and a frequentist (classical statistical inference) decision analysis. Bayesian decision analyses are computationally easier, yield basically the same results, and yield results that are easier to explain to nonscientists. With the exception of the aerial survey analysis of the 10 most recent years, both Bayesian and frequentist methods indicated that an endangered classification is warranted. The discrepancy between surveys warrants further research. Although the trend data are abundance indices, we used a preliminary estimate of absolute abundance to demonstrate how to calculate extinction distributions using the joint probability distributions for population growth rate and variance in growth rate generated by the Bayesian analysis. Recent apparent increases in abundance highlight the need for models that apply to declining and then recovering species.

  18. Model feedback in Bayesian propensity score estimation.

    PubMed

    Zigler, Corwin M; Watts, Krista; Yeh, Robert W; Wang, Yun; Coull, Brent A; Dominici, Francesca

    2013-03-01

    Methods based on the propensity score comprise one set of valuable tools for comparative effectiveness research and for estimating causal effects more generally. These methods typically consist of two distinct stages: (1) a propensity score stage where a model is fit to predict the propensity to receive treatment (the propensity score), and (2) an outcome stage where responses are compared in treated and untreated units having similar values of the estimated propensity score. Traditional techniques conduct estimation in these two stages separately; estimates from the first stage are treated as fixed and known for use in the second stage. Bayesian methods have natural appeal in these settings because separate likelihoods for the two stages can be combined into a single joint likelihood, with estimation of the two stages carried out simultaneously. One key feature of joint estimation in this context is "feedback" between the outcome stage and the propensity score stage, meaning that quantities in a model for the outcome contribute information to posterior distributions of quantities in the model for the propensity score. We provide a rigorous assessment of Bayesian propensity score estimation to show that model feedback can produce poor estimates of causal effects absent strategies that augment propensity score adjustment with adjustment for individual covariates. We illustrate this phenomenon with a simulation study and with a comparative effectiveness investigation of carotid artery stenting versus carotid endarterectomy among 123,286 Medicare beneficiaries hospitlized for stroke in 2006 and 2007.

  19. Bayesian inference approach to room-acoustic modal analysis

    NASA Astrophysics Data System (ADS)

    Henderson, Wesley; Goggans, Paul; Xiang, Ning; Botts, Jonathan

    2013-08-01

    Spectrum estimation is a problem common to many fields of physics, science, and engineering, and it has thus received a great deal of attention from the Bayesian data analysis community. In room acoustics, the modal or frequency response of a room is important for diagnosing and remedying acoustical defects. The physics of a sound field in a room dictates a model comprised of exponentially decaying sinusoids. Continuing in the tradition of the seminal work of Bretthorst and Jaynes, this work contributes an approach to analyzing the modal responses of rooms with a time-domain model. Room acoustic spectra are constructed of damped sinusoids, and the modelbased approach allows estimation of the number of sinusoids in the signal as well as their frequencies, amplitudes, damping constants, and phase delays. The frequency-amplitude spectrum may be most useful for characterizing a room, but in some settings the damping constants are of primary interest. This is the case for measuring the absorptive properties of materials, for example. A further challenge of the room acoustic spectrum problem is that modal density increases quadratically with frequency. At a point called the Schroeder frequency, adjacent modes overlap enough that the spectrum - particularly when estimated with the discrete Fourier transform - can be treated as a continuum. The time-domain, model-based approach can resolve overlapping modes and in some cases be used to estimate the Schroeder frequency. The proposed approach addresses the issue of filtering and preprocessing in order for the sampling to accurately identify all present room modes with their quadratically increasing density.

  20. A Bayesian approach to meta-analysis of plant pathology studies.

    PubMed

    Mila, A L; Ngugi, H K

    2011-01-01

    Bayesian statistical methods are used for meta-analysis in many disciplines, including medicine, molecular biology, and engineering, but have not yet been applied for quantitative synthesis of plant pathology studies. In this paper, we illustrate the key concepts of Bayesian statistics and outline the differences between Bayesian and classical (frequentist) methods in the way parameters describing population attributes are considered. We then describe a Bayesian approach to meta-analysis and present a plant pathological example based on studies evaluating the efficacy of plant protection products that induce systemic acquired resistance for the management of fire blight of apple. In a simple random-effects model assuming a normal distribution of effect sizes and no prior information (i.e., a noninformative prior), the results of the Bayesian meta-analysis are similar to those obtained with classical methods. Implementing the same model with a Student's t distribution and a noninformative prior for the effect sizes, instead of a normal distribution, yields similar results for all but acibenzolar-S-methyl (Actigard) which was evaluated only in seven studies in this example. Whereas both the classical (P = 0.28) and the Bayesian analysis with a noninformative prior (95% credibility interval [CRI] for the log response ratio: -0.63 to 0.08) indicate a nonsignificant effect for Actigard, specifying a t distribution resulted in a significant, albeit variable, effect for this product (CRI: -0.73 to -0.10). These results confirm the sensitivity of the analytical outcome (i.e., the posterior distribution) to the choice of prior in Bayesian meta-analyses involving a limited number of studies. We review some pertinent literature on more advanced topics, including modeling of among-study heterogeneity, publication bias, analyses involving a limited number of studies, and methods for dealing with missing data, and show how these issues can be approached in a Bayesian framework

  1. A Bayesian view on acoustic model-based techniques for robust speech recognition

    NASA Astrophysics Data System (ADS)

    Maas, Roland; Huemmer, Christian; Sehr, Armin; Kellermann, Walter

    2015-12-01

    This article provides a unifying Bayesian view on various approaches for acoustic model adaptation, missing feature, and uncertainty decoding that are well-known in the literature of robust automatic speech recognition. The representatives of these classes can often be deduced from a Bayesian network that extends the conventional hidden Markov models used in speech recognition. These extensions, in turn, can in many cases be motivated from an underlying observation model that relates clean and distorted feature vectors. By identifying and converting the observation models into a Bayesian network representation, we formulate the corresponding compensation rules. We thus summarize the various approaches as approximations or modifications of the same Bayesian decoding rule leading to a unified view on known derivations as well as to new formulations for certain approaches.

  2. Bayesian Models of Cognition Revisited: Setting Optimality Aside and Letting Data Drive Psychological Theory.

    PubMed

    Tauber, Sean; Navarro, Daniel J; Perfors, Amy; Steyvers, Mark

    2017-03-30

    Recent debates in the psychological literature have raised questions about the assumptions that underpin Bayesian models of cognition and what inferences they license about human cognition. In this paper we revisit this topic, arguing that there are 2 qualitatively different ways in which a Bayesian model could be constructed. The most common approach uses a Bayesian model as a normative standard upon which to license a claim about optimality. In the alternative approach, a descriptive Bayesian model need not correspond to any claim that the underlying cognition is optimal or rational, and is used solely as a tool for instantiating a substantive psychological theory. We present 3 case studies in which these 2 perspectives lead to different computational models and license different conclusions about human cognition. We demonstrate how the descriptive Bayesian approach can be used to answer different sorts of questions than the optimal approach, especially when combined with principled tools for model evaluation and model selection. More generally we argue for the importance of making a clear distinction between the 2 perspectives. Considerable confusion results when descriptive models and optimal models are conflated, and if Bayesians are to avoid contributing to this confusion it is important to avoid making normative claims when none are intended. (PsycINFO Database Record

  3. A Hierarchical Bayesian Model for Crowd Emotions

    PubMed Central

    Urizar, Oscar J.; Baig, Mirza S.; Barakova, Emilia I.; Regazzoni, Carlo S.; Marcenaro, Lucio; Rauterberg, Matthias

    2016-01-01

    Estimation of emotions is an essential aspect in developing intelligent systems intended for crowded environments. However, emotion estimation in crowds remains a challenging problem due to the complexity in which human emotions are manifested and the capability of a system to perceive them in such conditions. This paper proposes a hierarchical Bayesian model to learn in unsupervised manner the behavior of individuals and of the crowd as a single entity, and explore the relation between behavior and emotions to infer emotional states. Information about the motion patterns of individuals are described using a self-organizing map, and a hierarchical Bayesian network builds probabilistic models to identify behaviors and infer the emotional state of individuals and the crowd. This model is trained and tested using data produced from simulated scenarios that resemble real-life environments. The conducted experiments tested the efficiency of our method to learn, detect and associate behaviors with emotional states yielding accuracy levels of 74% for individuals and 81% for the crowd, similar in performance with existing methods for pedestrian behavior detection but with novel concepts regarding the analysis of crowds. PMID:27458366

  4. Sensitivity of fluvial sediment source apportionment to mixing model assumptions: A Bayesian model comparison

    PubMed Central

    Cooper, Richard J; Krueger, Tobias; Hiscock, Kevin M; Rawlins, Barry G

    2014-01-01

    Mixing models have become increasingly common tools for apportioning fluvial sediment load to various sediment sources across catchments using a wide variety of Bayesian and frequentist modeling approaches. In this study, we demonstrate how different model setups can impact upon resulting source apportionment estimates in a Bayesian framework via a one-factor-at-a-time (OFAT) sensitivity analysis. We formulate 13 versions of a mixing model, each with different error assumptions and model structural choices, and apply them to sediment geochemistry data from the River Blackwater, Norfolk, UK, to apportion suspended particulate matter (SPM) contributions from three sources (arable topsoils, road verges, and subsurface material) under base flow conditions between August 2012 and August 2013. Whilst all 13 models estimate subsurface sources to be the largest contributor of SPM (median ∼76%), comparison of apportionment estimates reveal varying degrees of sensitivity to changing priors, inclusion of covariance terms, incorporation of time-variant distributions, and methods of proportion characterization. We also demonstrate differences in apportionment results between a full and an empirical Bayesian setup, and between a Bayesian and a frequentist optimization approach. This OFAT sensitivity analysis reveals that mixing model structural choices and error assumptions can significantly impact upon sediment source apportionment results, with estimated median contributions in this study varying by up to 21% between model versions. Users of mixing models are therefore strongly advised to carefully consider and justify their choice of model structure prior to conducting sediment source apportionment investigations. Key Points An OFAT sensitivity analysis of sediment fingerprinting mixing models is conducted Bayesian models display high sensitivity to error assumptions and structural choices Source apportionment results differ between Bayesian and frequentist approaches PMID

  5. A BAYESIAN STATISTICAL APPROACH FOR THE EVALUATION OF CMAQ

    EPA Science Inventory

    Bayesian statistical methods are used to evaluate Community Multiscale Air Quality (CMAQ) model simulations of sulfate aerosol over a section of the eastern US for 4-week periods in summer and winter 2001. The observed data come from two U.S. Environmental Protection Agency data ...

  6. A BAYESIAN STATISTICAL APPROACH FOR THE EVALUATION OF CMAQ

    EPA Science Inventory

    Bayesian statistical methods are used to evaluate Community Multiscale Air Quality (CMAQ) model simulations of sulfate aerosol over a section of the eastern US for 4-week periods in summer and winter 2001. The observed data come from two U.S. Environmental Protection Agency data ...

  7. Defining statistical perceptions with an empirical Bayesian approach

    NASA Astrophysics Data System (ADS)

    Tajima, Satohiro

    2013-04-01

    Extracting statistical structures (including textures or contrasts) from a natural stimulus is a central challenge in both biological and engineering contexts. This study interprets the process of statistical recognition in terms of hyperparameter estimations and free-energy minimization procedures with an empirical Bayesian approach. This mathematical interpretation resulted in a framework for relating physiological insights in animal sensory systems to the functional properties of recognizing stimulus statistics. We applied the present theoretical framework to two typical models of natural images that are encoded by a population of simulated retinal neurons, and demonstrated that the resulting cognitive performances could be quantified with the Fisher information measure. The current enterprise yielded predictions about the properties of human texture perception, suggesting that the perceptual resolution of image statistics depends on visual field angles, internal noise, and neuronal information processing pathways, such as the magnocellular, parvocellular, and koniocellular systems. Furthermore, the two conceptually similar natural-image models were found to yield qualitatively different predictions, striking a note of warning against confusing the two models when describing a natural image.

  8. A Bayesian approach for estimating bioterror attacks from patient data.

    PubMed

    Ray, J; Marzouk, Y M; Najm, H N

    2011-01-30

    Terrorist attacks using an aerosolized pathogen have gained credibility as a national security concern after the anthrax attacks of 2001. Inferring some important details of the attack quickly, for example, the number of people infected, the time of infection, and a representative dose received can be crucial to planning a medical response. We use a Bayesian approach, based on a short time series of diagnosed patients, to estimate a joint probability density for these parameters. We first test the formulation with idealized cases and then apply it to realistic scenarios, including the Sverdlovsk anthrax outbreak of 1979. We also use simulated outbreaks to explore the impact of model error, as when the model used for generating simulated epidemic curves does not match the model subsequently used to characterize the attack. We find that in all cases except for the smallest attacks (fewer than 100 infected people), 3-5 days of data are sufficient to characterize the outbreak to a specificity that is useful for directing an emergency response. Copyright © 2010 John Wiley & Sons, Ltd.

  9. Bayesian model-based inference of transcription factor activity

    PubMed Central

    Rogers, Simon; Khanin, Raya; Girolami, Mark

    2007-01-01

    Background In many approaches to the inference and modeling of regulatory interactions using microarray data, the expression of the gene coding for the transcription factor is considered to be an accurate surrogate for the true activity of the protein it produces. There are many instances where this is inaccurate due to post-translational modifications of the transcription factor protein. Inference of the activity of the transcription factor from the expression of its targets has predominantly involved linear models that do not reflect the nonlinear nature of transcription. We extend a recent approach to inferring the transcription factor activity based on nonlinear Michaelis-Menten kinetics of transcription from maximum likelihood to fully Bayesian inference and give an example of how the model can be further developed. Results We present results on synthetic and real microarray data. Additionally, we illustrate how gene and replicate specific delays can be incorporated into the model. Conclusion We demonstrate that full Bayesian inference is appropriate in this application and has several benefits over the maximum likelihood approach, especially when the volume of data is limited. We also show the benefits of using a non-linear model over a linear model, particularly in the case of repression. PMID:17493251

  10. Bayesian Hierarchical Models to Augment the Mediterranean Forecast System

    DTIC Science & Technology

    2016-06-07

    Bayesian Hierarchical Models to Augment the Mediterranean Forecast System Ralph F. Milliff Colorado Research Associates Division NorthWest...last year. Our goal is to develop an ensemble ocean forecast methodology, using Bayesian Hierarchical Modelling (BHM) tools. The ocean ensemble...geostrophy model introduced by Royle et al. (1998). The second objective involves the accurate representation of forecast error covariance evolution in

  11. Identification of transmissivity fields using a Bayesian strategy and perturbative approach

    NASA Astrophysics Data System (ADS)

    Zanini, Andrea; Tanda, Maria Giovanna; Woodbury, Allan D.

    2017-10-01

    The paper deals with the crucial problem of the groundwater parameter estimation that is the basis for efficient modeling and reclamation activities. A hierarchical Bayesian approach is developed: it uses the Akaike's Bayesian Information Criteria in order to estimate the hyperparameters (related to the covariance model chosen) and to quantify the unknown noise variance. The transmissivity identification proceeds in two steps: the first, called empirical Bayesian interpolation, uses Y* (Y = lnT) observations to interpolate Y values on a specified grid; the second, called empirical Bayesian update, improve the previous Y estimate through the addition of hydraulic head observations. The relationship between the head and the lnT has been linearized through a perturbative solution of the flow equation. In order to test the proposed approach, synthetic aquifers from literature have been considered. The aquifers in question contain a variety of boundary conditions (both Dirichelet and Neuman type) and scales of heterogeneities (σY2 = 1.0 and σY2 = 5.3). The estimated transmissivity fields were compared to the true one. The joint use of Y* and head measurements improves the estimation of Y considering both degrees of heterogeneity. Even if the variance of the strong transmissivity field can be considered high for the application of the perturbative approach, the results show the same order of approximation of the non-linear methods proposed in literature. The procedure allows to compute the posterior probability distribution of the target quantities and to quantify the uncertainty in the model prediction. Bayesian updating has advantages related both to the Monte-Carlo (MC) and non-MC approaches. In fact, as the MC methods, Bayesian updating allows computing the direct posterior probability distribution of the target quantities and as non-MC methods it has computational times in the order of seconds.

  12. Costal vulnerability systems-network using Fuzzy and Bayesian approaches

    NASA Astrophysics Data System (ADS)

    Taramelli, A.; Valentini, E.; Filipponi, F.; Nguyen Xuan, A.; Arosio, M.

    2016-12-01

    Marine drivers such as surge in the context of SLR, are threatening low-lying coastal plains. In order to deal with disturbances a deeper understanding of benefits deriving from ecosystem services assesment, management and planning (e.g. the role of dune ridges in surge mitigation and climate adaptation) can enhance the resilience of coastal systems. In this frame assessing the vulnerability is a key concern of many SOS (social, ecological, institutional) that deals with several challenges like the definition of Essential Variables (EVs) able to synthesize the required information, the assignment of different weight to be attributed to each considered variable, the selection of method for combining the relevant variables, etc.. To this end it is unclear how SLR, subsidence and erosion might affect coastal subsistence resources because of highly complex interactions and because of the subjective system of weighting many variables and their interaction within the systems. In this contribution, making the best use of many EO products, in situ data and modelling, we propose a multidimensional surge vulnerability assessment that aims at combining together geophysical and socioeconomic variable on the base of different approaches: 1) Fuzzy Logic; 2) Bayesian approach. The final goal is providing insight in understanding how to quantify regulating ecosystem services.

  13. Super-resolution in cardiac MRI using a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Velasco Toledo, Nelson; Rueda, Andrea; Santa Marta, Cristina; Romero, Eduardo

    2013-03-01

    Acquisition of proper cardiac MR images is highly limited by continued heart motion and apnea periods. A typical acquisition results in volumes with inter-slice separations of up to 8 mm. This paper presents a super-resolution strategy that estimates a high-resolution image from a set of low-resolution image series acquired in different non-orthogonal orientations. The proposal is based on a Bayesian approach that implements a Maximum a Posteriori (MAP) estimator combined with a Wiener filter. A pre-processing stage was also included, to correct or eliminate differences in the image intensities and to transform the low-resolution images to a common spatial reference system. The MAP estimation includes an observation image model that represents the different contributions to the voxel intensities based on a 3D Gaussian function. A quantitative and qualitative assessment was performed using synthetic and real images, showing that the proposed approach produces a high-resolution image with significant improvements (about 3dB in PSNR) with respect to a simple trilinear interpolation. The Wiener filter shows little contribution to the final result, demonstrating that the MAP uniformity prior is able to filter out a large amount of the acquisition noise.

  14. Mapping soil water retention curves via spatial Bayesian hierarchical models

    NASA Astrophysics Data System (ADS)

    Yang, Wen-Hsi; Clifford, David; Minasny, Budiman

    2015-05-01

    Soil water retention curves are an important parameter in soil hydrological modeling. These curves are usually represented by the van Genuchten model. Two approaches have previously been taken to predict curves across a field - interpolation of field measurements followed by estimation of the van Genuchten model parameters, or estimation of the parameters according to field measurements followed by interpolation of the estimated parameters. Neither approach is ideal as, due to their two-stage nature, they fail to properly track uncertainty from one stage to the next. In this paper we address this shortcoming through a spatial Bayesian hierarchical model that fits the van Genuchten model and predicts the fields of hydraulic parameters of the van Genuchten model as well as fields of the corresponding soil water retention curves. This approach expands the van Genuchten model to a hierarchical modeling framework. In this framework, soil properties and physical or environmental factors can be treated as covariates to add into the van Genuchten model hierarchically. Consequently, the effects of covariates on the hydraulic parameters of the van Genuchten model can be identified. In addition, our approach takes advantage of Bayesian analysis to account for uncertainty and overcome the shortcomings of other existing methods. The code used to fit these models are available as an appendix to this paper. We apply this approach to data surveyed from part of the alluvial plain of the river Rhône near Yenne in Savoie, France. In this data analysis, we demonstrate how the inclusion of soil type or spatial effects can improve the van Genuchten model's predictions of soil water retention curves.

  15. Study on uncertainty of geospatial semantic Web services composition based on broker approach and Bayesian networks

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodong; Cui, Weihong; Liu, Zhen; Ouyang, Fucheng

    2008-10-01

    The Semantic Web has a major weakness which is lacking of a principled means to represent and reason about uncertainty. This is also located in the services composition approaches such as BPEL4WS and Semantic Description Model. We analyze the uncertainty of Geospatial Web Service composition through mining the knowledge in historical records of composition based on Broker approach and Bayesian Networks. We proved this approach is effective and efficient through a sample scenario in this paper.

  16. Poor-data and data-poor species stock assessment using a Bayesian hierarchical approach.

    PubMed

    Jiao, Yan; Cortés, Enric; Andrews, Kate; Guo, Feng

    2011-10-01

    Appropriate inference for stocks or species with low-quality data (poor data) or limited data (data poor) is extremely important. Hierarchical Bayesian methods are especially applicable to small-area, small-sample-size estimation problems because they allow poor-data species to borrow strength from species with good-quality data. We used a hammerhead shark complex as an example to investigate the advantages of using hierarchical Bayesian models in assessing the status of poor-data and data-poor exploited species. The hammerhead shark complex (Sphyrna spp.) along the Atlantic and Gulf of Mexico coasts of the United States is composed of three species: the scalloped hammerhead (S. lewini), the great hammerhead (S. mokarran), and the smooth hammerhead (S. zygaena) sharks. The scalloped hammerhead comprises 70-80% of the catch and has catch and relative abundance data of good quality, whereas great and smooth hammerheads have relative abundance indices that are both limited and of low quality presumably because of low stock density and limited sampling. Four hierarchical Bayesian state-space surplus production models were developed to simulate variability in population growth rates, carrying capacity, and catchability of the species. The results from the hierarchical Bayesian models were considerably more robust than those of the nonhierarchical models. The hierarchical Bayesian approach represents an intermediate strategy between traditional models that assume different population parameters for each species and those that assume all species share identical parameters. Use of the hierarchical Bayesian approach is suggested for future hammerhead shark stock assessments and for modeling fish complexes with species-specific data, because the poor-data species can borrow strength from the species with good data, making the estimation more stable and robust.

  17. Bayesian model of human color constancy

    PubMed Central

    Brainard, David H.; Longère, Philippe; Delahunt, Peter B.; Freeman, William T.; Kraft, James M.; Xiao, Bei

    2008-01-01

    Vision is difficult because images are ambiguous about the structure of the world. For object color, the ambiguity arises because the same object reflects a different spectrum to the eye under different illuminations. Human vision typically does a good job of resolving this ambiguity—an ability known as color constancy. The past 20 years have seen an explosion of work on color constancy, with advances in both experimental methods and computational algorithms. Here, we connect these two lines of research by developing a quantitative model of human color constancy. The model includes an explicit link between psychophysical data and illuminant estimates obtained via a Bayesian algorithm. The model is fit to the data through a parameterization of the prior distribution of illuminant spectral properties. The fit to the data is good, and the derived prior provides a succinct description of human performance. PMID:17209734

  18. Isotopic reconstruction of the weaning process in the archaeological population of Canímar Abajo, Cuba: A Bayesian probability mixing model approach.

    PubMed

    Chinique de Armas, Yadira; Roksandic, Mirjana; Nikitović, Dejana; Rodríguez Suárez, Roberto; Smith, David; Kanik, Nadine; García Jordá, Dailys; Buhay, William M

    2017-01-01

    The general lack of well-preserved juvenile skeletal remains from Caribbean archaeological sites has, in the past, prevented evaluations of juvenile dietary changes. Canímar Abajo (Cuba), with a large number of well-preserved juvenile and adult skeletal remains, provided a unique opportunity to fully assess juvenile paleodiets from an ancient Caribbean population. Ages for the start and the end of weaning and possible food sources used for weaning were inferred by combining the results of two Bayesian probability models that help to reduce some of the uncertainties inherent to bone collagen isotope based paleodiet reconstructions. Bone collagen (31 juveniles, 18 adult females) was used for carbon and nitrogen isotope analyses. The isotope results were assessed using two Bayesian probability models: Weaning Ages Reconstruction with Nitrogen isotopes and Stable Isotope Analyses in R. Breast milk seems to have been the most important protein source until two years of age with some supplementary food such as tropical fruits and root cultigens likely introduced earlier. After two, juvenile diets were likely continuously supplemented by starch rich foods such as root cultigens and legumes. By the age of three, the model results suggest that the weaning process was completed. Additional indications suggest that animal marine/riverine protein and maize, while part of the Canímar Abajo female diets, were likely not used to supplement juvenile diets. The combined use of both models here provided a more complete assessment of the weaning process for an ancient Caribbean population, indicating not only the start and end ages of weaning but also the relative importance of different food sources for different age juveniles.

  19. Effect on Prediction when Modeling Covariates in Bayesian Nonparametric Models.

    PubMed

    Cruz-Marcelo, Alejandro; Rosner, Gary L; Müller, Peter; Stewart, Clinton F

    2013-04-01

    In biomedical research, it is often of interest to characterize biologic processes giving rise to observations and to make predictions of future observations. Bayesian nonparametric methods provide a means for carrying out Bayesian inference making as few assumptions about restrictive parametric models as possible. There are several proposals in the literature for extending Bayesian nonparametric models to include dependence on covariates. Limited attention, however, has been directed to the following two aspects. In this article, we examine the effect on fitting and predictive performance of incorporating covariates in a class of Bayesian nonparametric models by one of two primary ways: either in the weights or in the locations of a discrete random probability measure. We show that different strategies for incorporating continuous covariates in Bayesian nonparametric models can result in big differences when used for prediction, even though they lead to otherwise similar posterior inferences. When one needs the predictive density, as in optimal design, and this density is a mixture, it is better to make the weights depend on the covariates. We demonstrate these points via a simulated data example and in an application in which one wants to determine the optimal dose of an anticancer drug used in pediatric oncology.

  20. Predicting coastal cliff erosion using a Bayesian probabilistic model

    USGS Publications Warehouse

    Hapke, Cheryl J.; Plant, Nathaniel G.

    2010-01-01

    Regional coastal cliff retreat is difficult to model due to the episodic nature of failures and the along-shore variability of retreat events. There is a growing demand, however, for predictive models that can be used to forecast areas vulnerable to coastal erosion hazards. Increasingly, probabilistic models are being employed that require data sets of high temporal density to define the joint probability density function that relates forcing variables (e.g. wave conditions) and initial conditions (e.g. cliff geometry) to erosion events. In this study we use a multi-parameter Bayesian network to investigate correlations between key variables that control and influence variations in cliff retreat processes. The network uses Bayesian statistical methods to estimate event probabilities using existing observations. Within this framework, we forecast the spatial distribution of cliff retreat along two stretches of cliffed coast in Southern California. The input parameters are the height and slope of the cliff, a descriptor of material strength based on the dominant cliff-forming lithology, and the long-term cliff erosion rate that represents prior behavior. The model is forced using predicted wave impact hours. Results demonstrate that the Bayesian approach is well-suited to the forward modeling of coastal cliff retreat, with the correct outcomes forecast in 70–90% of the modeled transects. The model also performs well in identifying specific locations of high cliff erosion, thus providing a foundation for hazard mapping. This approach can be employed to predict cliff erosion at time-scales ranging from storm events to the impacts of sea-level rise at the century-scale.

  1. Bayesian Models for Astrophysical Data Using R, JAGS, Python, and Stan

    NASA Astrophysics Data System (ADS)

    Hilbe, Joseph M.; de Souza, Rafael S.; Ishida, Emille E. O.

    2017-05-01

    This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.

  2. A Two-Step Bayesian Approach for Propensity Score Analysis: Simulations and Case Study

    ERIC Educational Resources Information Center

    Kaplan, David; Chen, Jianshen

    2012-01-01

    A two-step Bayesian propensity score approach is introduced that incorporates prior information in the propensity score equation and outcome equation without the problems associated with simultaneous Bayesian propensity score approaches. The corresponding variance estimators are also provided. The two-step Bayesian propensity score is provided for…

  3. A Two-Step Bayesian Approach for Propensity Score Analysis: Simulations and Case Study

    ERIC Educational Resources Information Center

    Kaplan, David; Chen, Jianshen

    2012-01-01

    A two-step Bayesian propensity score approach is introduced that incorporates prior information in the propensity score equation and outcome equation without the problems associated with simultaneous Bayesian propensity score approaches. The corresponding variance estimators are also provided. The two-step Bayesian propensity score is provided for…

  4. Bayesian model of Snellen visual acuity.

    PubMed

    Nestares, Oscar; Navarro, Rafael; Antona, Beatriz

    2003-07-01

    A Bayesian model of Snellen visual acuity (VA) has been developed that, as far as we know, is the first one that includes the three main stages of VA: (1) optical degradations, (2) neural image representation and contrast thresholding, and (3) character recognition. The retinal image of a Snellen test chart is obtained from experimental wave-aberration data. Then a subband image decomposition with a set of visual channels tuned to different spatial frequencies and orientations is applied to the retinal image, as in standard computational models of early cortical image representation. A neural threshold is applied to the contrast responses to include the effect of the neural contrast sensitivity. The resulting image representation is the base of a Bayesian pattern-recognition method robust to the presence of optical aberrations. The model is applied to images containing sets of letter optotypes at different scales, and the number of correct answers is obtained at each scale; the final output is the decimal Snellen VA. The model has no free parameters to adjust. The main input data are the eye's optical aberrations, and standard values are used for all other parameters, including the Stiles-Crawford effect, visual channels, and neural contrast threshold, when no subject specific values are available. When aberrations are large, Snellen VA involving pattern recognition differs from grating acuity, which is based on a simpler detection (or orientation-discrimination) task and hence is basically unaffected by phase distortions introduced by the optical transfer function. A preliminary test of the model in one subject produced close agreement between actual measurements and predicted VA values. Two examples are also included: (1) application of the method to the prediction of the VAin refractive-surgery patients and (2) simulation of the VA attainable by correcting ocular aberrations.

  5. Bayesian model of Snellen visual acuity

    NASA Astrophysics Data System (ADS)

    Nestares, Oscar; Navarro, Rafael; Antona, Beatriz

    2003-07-01

    A Bayesian model of Snellen visual acuity (VA) has been developed that, as far as we know, is the first one that includes the three main stages of VA: (1) optical degradations, (2) neural image representation and contrast thresholding, and (3) character recognition. The retinal image of a Snellen test chart is obtained from experimental wave-aberration data. Then a subband image decomposition with a set of visual channels tuned to different spatial frequencies and orientations is applied to the retinal image, as in standard computational models of early cortical image representation. A neural threshold is applied to the contrast responses to include the effect of the neural contrast sensitivity. The resulting image representation is the base of a Bayesian pattern-recognition method robust to the presence of optical aberrations. The model is applied to images containing sets of letter optotypes at different scales, and the number of correct answers is obtained at each scale; the final output is the decimal Snellen VA. The model has no free parameters to adjust. The main input data are the eyes optical aberrations, and standard values are used for all other parameters, including the StilesCrawford effect, visual channels, and neural contrast threshold, when no subject specific values are available. When aberrations are large, Snellen VA involving pattern recognition differs from grating acuity, which is based on a simpler detection (or orientation-discrimination) task and hence is basically unaffected by phase distortions introduced by the optical transfer function. A preliminary test of the model in one subject produced close agreement between actual measurements and predicted VA values. Two examples are also included: (1) application of the method to the prediction of the VA in refractive-surgery patients and (2) simulation of the VA attainable by correcting ocular aberrations. 2003 Optical Society of America

  6. Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.

    PubMed

    Orbanz, Peter; Roy, Daniel M

    2015-02-01

    The natural habitat of most Bayesian methods is data represented by exchangeable sequences of observations, for which de Finetti's theorem provides the theoretical foundation. Dirichlet process clustering, Gaussian process regression, and many other parametric and nonparametric Bayesian models fall within the remit of this framework; many problems arising in modern data analysis do not. This article provides an introduction to Bayesian models of graphs, matrices, and other data that can be modeled by random structures. We describe results in probability theory that generalize de Finetti's theorem to such data and discuss their relevance to nonparametric Bayesian modeling. With the basic ideas in place, we survey example models available in the literature; applications of such models include collaborative filtering, link prediction, and graph and network analysis. We also highlight connections to recent developments in graph theory and probability, and sketch the more general mathematical foundation of Bayesian methods for other types of data beyond sequences and arrays.

  7. A Bayesian Analysis of Finite Mixtures in the LISREL Model.

    ERIC Educational Resources Information Center

    Zhu, Hong-Tu; Lee, Sik-Yum

    2001-01-01

    Proposes a Bayesian framework for estimating finite mixtures of the LISREL model. The model augments the observed data of the manifest variables with the latent variables and allocation variables and uses the Gibbs sampler to obtain the Bayesian solution. Discusses other associated statistical inferences. (SLD)

  8. Bayesian methods for model choice and propagation of model uncertainty in groundwater transport modeling

    NASA Astrophysics Data System (ADS)

    Mendes, B. S.; Draper, D.

    2008-12-01

    The issue of model uncertainty and model choice is central in any groundwater modeling effort [Neuman and Wierenga, 2003]; among the several approaches to the problem we favour using Bayesian statistics because it is a method that integrates in a natural way uncertainties (arising from any source) and experimental data. In this work, we experiment with several Bayesian approaches to model choice, focusing primarily on demonstrating the usefulness of the Reversible Jump Markov Chain Monte Carlo (RJMCMC) simulation method [Green, 1995]; this is an extension of the now- common MCMC methods. Standard MCMC techniques approximate posterior distributions for quantities of interest, often by creating a random walk in parameter space; RJMCMC allows the random walk to take place between parameter spaces with different dimensionalities. This fact allows us to explore state spaces that are associated with different deterministic models for experimental data. Our work is exploratory in nature; we restrict our study to comparing two simple transport models applied to a data set gathered to estimate the breakthrough curve for a tracer compound in groundwater. One model has a mean surface based on a simple advection dispersion differential equation; the second model's mean surface is also governed by a differential equation but in two dimensions. We focus on artificial data sets (in which truth is known) to see if model identification is done correctly, but we also address the issues of over and under-paramerization, and we compare RJMCMC's performance with other traditional methods for model selection and propagation of model uncertainty, including Bayesian model averaging, BIC and DIC.References Neuman and Wierenga (2003). A Comprehensive Strategy of Hydrogeologic Modeling and Uncertainty Analysis for Nuclear Facilities and Sites. NUREG/CR-6805, Division of Systems Analysis and Regulatory Effectiveness Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission

  9. Assessing global vegetation activity using spatio-temporal Bayesian modelling

    NASA Astrophysics Data System (ADS)

    Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.

    2016-04-01

    This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support

  10. Modeling Error Distributions of Growth Curve Models through Bayesian Methods

    ERIC Educational Resources Information Center

    Zhang, Zhiyong

    2016-01-01

    Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is…

  11. Genealogical Working Distributions for Bayesian Model Testing with Phylogenetic Uncertainty.

    PubMed

    Baele, Guy; Lemey, Philippe; Suchard, Marc A

    2016-03-01

    Marginal likelihood estimates to compare models using Bayes factors frequently accompany Bayesian phylogenetic inference. Approaches to estimate marginal likelihoods have garnered increased attention over the past decade. In particular, the introduction of path sampling (PS) and stepping-stone sampling (SS) into Bayesian phylogenetics has tremendously improved the accuracy of model selection. These sampling techniques are now used to evaluate complex evolutionary and population genetic models on empirical data sets, but considerable computational demands hamper their widespread adoption. Further, when very diffuse, but proper priors are specified for model parameters, numerical issues complicate the exploration of the priors, a necessary step in marginal likelihood estimation using PS or SS. To avoid such instabilities, generalized SS (GSS) has recently been proposed, introducing the concept of "working distributions" to facilitate--or shorten--the integration process that underlies marginal likelihood estimation. However, the need to fix the tree topology currently limits GSS in a coalescent-based framework. Here, we extend GSS by relaxing the fixed underlying tree topology assumption. To this purpose, we introduce a "working" distribution on the space of genealogies, which enables estimating marginal likelihoods while accommodating phylogenetic uncertainty. We propose two different "working" distributions that help GSS to outperform PS and SS in terms of accuracy when comparing demographic and evolutionary models applied to synthetic data and real-world examples. Further, we show that the use of very diffuse priors can lead to a considerable overestimation in marginal likelihood when using PS and SS, while still retrieving the correct marginal likelihood using both GSS approaches. The methods used in this article are available in BEAST, a powerful user-friendly software package to perform Bayesian evolutionary analyses. © The Author(s) 2015. Published by Oxford

  12. A multivariate hierarchical Bayesian approach to measuring agreement in repeated measurement method comparison studies

    PubMed Central

    2009-01-01

    Background Assessing agreement in method comparison studies depends on two fundamentally important components; validity (the between method agreement) and reproducibility (the within method agreement). The Bland-Altman limits of agreement technique is one of the favoured approaches in medical literature for assessing between method validity. However, few researchers have adopted this approach for the assessment of both validity and reproducibility. This may be partly due to a lack of a flexible, easily implemented and readily available statistical machinery to analyse repeated measurement method comparison data. Methods Adopting the Bland-Altman framework, but using Bayesian methods, we present this statistical machinery. Two multivariate hierarchical Bayesian models are advocated, one which assumes that the underlying values for subjects remain static (exchangeable replicates) and one which assumes that the underlying values can change between repeated measurements (non-exchangeable replicates). Results We illustrate the salient advantages of these models using two separate datasets that have been previously analysed and presented; (i) assuming static underlying values analysed using both multivariate hierarchical Bayesian models, and (ii) assuming each subject's underlying value is continually changing quantity and analysed using the non-exchangeable replicate multivariate hierarchical Bayesian model. Conclusion These easily implemented models allow for full parameter uncertainty, simultaneous method comparison, handle unbalanced or missing data, and provide estimates and credible regions for all the parameters of interest. Computer code for the analyses in also presented, provided in the freely available and currently cost free software package WinBUGS. PMID:19161599

  13. Investigating different approaches to develop informative priors in hierarchical Bayesian safety performance functions.

    PubMed

    Yu, Rongjie; Abdel-Aty, Mohamed

    2013-07-01

    The Bayesian inference method has been frequently adopted to develop safety performance functions. One advantage of the Bayesian inference is that prior information for the independent variables can be included in the inference procedures. However, there are few studies that discussed how to formulate informative priors for the independent variables and evaluated the effects of incorporating informative priors in developing safety performance functions. This paper addresses this deficiency by introducing four approaches of developing informative priors for the independent variables based on historical data and expert experience. Merits of these informative priors have been tested along with two types of Bayesian hierarchical models (Poisson-gamma and Poisson-lognormal models). Deviance information criterion (DIC), R-square values, and coefficients of variance for the estimations were utilized as evaluation measures to select the best model(s). Comparison across the models indicated that the Poisson-gamma model is superior with a better model fit and it is much more robust with the informative priors. Moreover, the two-stage Bayesian updating informative priors provided the best goodness-of-fit and coefficient estimation accuracies. Furthermore, informative priors for the inverse dispersion parameter have also been introduced and tested. Different types of informative priors' effects on the model estimations and goodness-of-fit have been compared and concluded. Finally, based on the results, recommendations for future research topics and study applications have been made.

  14. A Bayesian approach to nonlinear inversion

    NASA Technical Reports Server (NTRS)

    Jackson, D. D.; Matsuura, M.

    1985-01-01

    Powerful methods are now available for solving linear parametric inverse problems. However, many inverse problems which arise in geohysics are nonlinear. Fortunately, it is possible to treat most of these with the air of linear perturbation theory and liner inversion. But a convenient method is needed for assessing the importance of nonlinearity in these quasi-linear problems. The present paper provides such a method. Matsu'ura and Jackson (1984) have presented a simple algorithm for evaluating the asymptotic covariance matrix fo estimation errors. In the present investigation, aspects of linear inversion are discussed, taking into account linear parametric inverse problems, nonuniqueness, prior information, confidence limits, conditional and marginal statistics, the relative importance of the prior and observational data, and standardized variables. Attention is also given to nonlinear inversion, and the application of the considered approaches to a number of examples.

  15. Prediction of eye color from genetic data using Bayesian approach.

    PubMed

    Pośpiech, Ewelina; Draus-Barini, Jolanta; Kupiec, Tomasz; Wojas-Pelc, Anna; Branicki, Wojciech

    2012-07-01

    Prediction of visible traits from genetic data in certain forensic cases may provide important information that can speed up the process of investigation. Research that has been conducted on the genetics of pigmentation has revealed polymorphisms that explain a significant proportion of the variation observed in human iris color. Here, on the basis of genetic data for the six most relevant eye color predictors, two alternative Bayesian network model variants were developed and evaluated for their accuracy in prediction of eye color. The first model assumed eye color to be categorized into blue, brown, green, and hazel, while the second variant assumed a simplified classification with two states: light and dark. It was found that particularly high accuracy was obtained for the second model, and this proved that reliable differentiation between light and dark irises is possible based on analysis of six single nucleotide polymorphisms and a Bayesian procedure of evidence interpretation. © 2012 American Academy of Forensic Sciences.

  16. A Graphical Approach to Diagnosing the Validity of the Conditional Independence Assumptions of a Bayesian Network Given Data

    SciTech Connect

    Walsh, Stephen J.; Whitney, Paul D.

    2012-12-14

    Bayesian networks have attained widespread use in data analysis and decision making. Well studied topics include: efficient inference, evidence propagation, parameter learning from data for complete and incomplete data scenarios, expert elicitation for calibrating Bayesian network probabilities, and structure learning. It is not uncommon for the researcher to assume the structure of the Bayesian network or to glean the structure from expert elicitation or domain knowledge. In this scenario, the model may be calibrated through learning the parameters from relevant data. There is a lack of work on model diagnostics for fitted Bayesian networks; this is the contribution of this paper. We key on the definition of (conditional) independence to develop a graphical diagnostic method which indicates if the conditional independence assumptions imposed when one assumes the structure of the Bayesian network are supported by the data. We develop the approach theoretically and describe a Monte Carlo method to generate uncertainty measures for the consistency of the data with conditional independence assumptions under the model structure. We describe how this theoretical information and the data are presented in a graphical diagnostic tool. We demonstrate the approach through data simulated from Bayesian networks under different conditional independence assumptions. We also apply the diagnostic to a real world data set. The results indicate that our approach is a reasonable way of visualizing and inspecting the conditional independence assumption of a Bayesian network given data.

  17. Predicting brain activity using a Bayesian spatial model.

    PubMed

    Derado, Gordana; Bowman, F Dubois; Zhang, Lijun

    2013-08-01

    Increasing the clinical applicability of functional neuroimaging technology is an emerging objective, e.g. for diagnostic and treatment purposes. We propose a novel Bayesian spatial hierarchical framework for predicting follow-up neural activity based on an individual's baseline functional neuroimaging data. Our approach attempts to overcome some shortcomings of the modeling methods used in other neuroimaging settings, by borrowing strength from the spatial correlations present in the data. Our proposed methodology is applicable to data from various imaging modalities including functional magnetic resonance imaging and positron emission tomography, and we provide an illustration here using positron emission tomography data from a study of Alzheimer's disease to predict disease progression.

  18. Objective Bayesian Comparison of Constrained Analysis of Variance Models.

    PubMed

    Consonni, Guido; Paroli, Roberta

    2016-10-04

    In the social sciences we are often interested in comparing models specified by parametric equality or inequality constraints. For instance, when examining three group means [Formula: see text] through an analysis of variance (ANOVA), a model may specify that [Formula: see text], while another one may state that [Formula: see text], and finally a third model may instead suggest that all means are unrestricted. This is a challenging problem, because it involves a combination of nonnested models, as well as nested models having the same dimension. We adopt an objective Bayesian approach, requiring no prior specification from the user, and derive the posterior probability of each model under consideration. Our method is based on the intrinsic prior methodology, suitably modified to accommodate equality and inequality constraints. Focussing on normal ANOVA models, a comparative assessment is carried out through simulation studies. We also present an application to real data collected in a psychological experiment.

  19. Markov chain Monte Carlo simulation for Bayesian Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Chan, Lay Guat; Ibrahim, Adriana Irawati Nur Binti

    2016-10-01

    A hidden Markov model (HMM) is a mixture model which has a Markov chain with finite states as its mixing distribution. HMMs have been applied to a variety of fields, such as speech and face recognitions. The main purpose of this study is to investigate the Bayesian approach to HMMs. Using this approach, we can simulate from the parameters' posterior distribution using some Markov chain Monte Carlo (MCMC) sampling methods. HMMs seem to be useful, but there are some limitations. Therefore, by using the Mixture of Dirichlet processes Hidden Markov Model (MDPHMM) based on Yau et. al (2011), we hope to overcome these limitations. We shall conduct a simulation study using MCMC methods to investigate the performance of this model.

  20. A multivariate Bayesian model for embryonic growth.

    PubMed

    Willemsen, Sten P; Eilers, Paul H C; Steegers-Theunissen, Régine P M; Lesaffre, Emmanuel

    2015-04-15

    Most longitudinal growth curve models evaluate the evolution of each of the anthropometric measurements separately. When applied to a 'reference population', this exercise leads to univariate reference curves against which new individuals can be evaluated. However, growth should be evaluated in totality, that is, by evaluating all body characteristics jointly. Recently, Cole et al. suggested the Superimposition by Translation and Rotation (SITAR) model, which expresses individual growth curves by three subject-specific parameters indicating their deviation from a flexible overall growth curve. This model allows the characterization of normal growth in a flexible though compact manner. In this paper, we generalize the SITAR model in a Bayesian way to multiple dimensions. The multivariate SITAR model allows us to create multivariate reference regions, which is advantageous for prediction. The usefulness of the model is illustrated on longitudinal measurements of embryonic growth obtained in the first semester of pregnancy, collected in the ongoing Rotterdam Predict study. Further, we demonstrate how the model can be used to find determinants of embryonic growth.

  1. An evolutionary based Bayesian design optimization approach under incomplete information

    NASA Astrophysics Data System (ADS)

    Srivastava, Rupesh; Deb, Kalyanmoy

    2013-02-01

    Design optimization in the absence of complete information about uncertain quantities has been recently gaining consideration, as expensive repetitive computation tasks are becoming tractable due to the invention of faster and parallel computers. This work uses Bayesian inference to quantify design reliability when only sample measurements of the uncertain quantities are available. A generalized Bayesian reliability based design optimization algorithm has been proposed and implemented for numerical as well as engineering design problems. The approach uses an evolutionary algorithm (EA) to obtain a trade-off front between design objectives and reliability. The Bayesian approach provides a well-defined link between the amount of available information and the reliability through a confidence measure, and the EA acts as an efficient optimizer for a discrete and multi-dimensional objective space. Additionally, a GPU-based parallelization study shows computational speed-up of close to 10