Sample records for bayesian network graphical

  1. Inferring metabolic networks using the Bayesian adaptive graphical lasso with informative priors.

    PubMed

    Peterson, Christine; Vannucci, Marina; Karakas, Cemal; Choi, William; Ma, Lihua; Maletić-Savatić, Mirjana

    2013-10-01

    Metabolic processes are essential for cellular function and survival. We are interested in inferring a metabolic network in activated microglia, a major neuroimmune cell in the brain responsible for the neuroinflammation associated with neurological diseases, based on a set of quantified metabolites. To achieve this, we apply the Bayesian adaptive graphical lasso with informative priors that incorporate known relationships between covariates. To encourage sparsity, the Bayesian graphical lasso places double exponential priors on the off-diagonal entries of the precision matrix. The Bayesian adaptive graphical lasso allows each double exponential prior to have a unique shrinkage parameter. These shrinkage parameters share a common gamma hyperprior. We extend this model to create an informative prior structure by formulating tailored hyperpriors on the shrinkage parameters. By choosing parameter values for each hyperprior that shift probability mass toward zero for nodes that are close together in a reference network, we encourage edges between covariates with known relationships. This approach can improve the reliability of network inference when the sample size is small relative to the number of parameters to be estimated. When applied to the data on activated microglia, the inferred network includes both known relationships and associations of potential interest for further investigation.

  2. Inferring metabolic networks using the Bayesian adaptive graphical lasso with informative priors

    PubMed Central

    PETERSON, CHRISTINE; VANNUCCI, MARINA; KARAKAS, CEMAL; CHOI, WILLIAM; MA, LIHUA; MALETIĆ-SAVATIĆ, MIRJANA

    2014-01-01

    Metabolic processes are essential for cellular function and survival. We are interested in inferring a metabolic network in activated microglia, a major neuroimmune cell in the brain responsible for the neuroinflammation associated with neurological diseases, based on a set of quantified metabolites. To achieve this, we apply the Bayesian adaptive graphical lasso with informative priors that incorporate known relationships between covariates. To encourage sparsity, the Bayesian graphical lasso places double exponential priors on the off-diagonal entries of the precision matrix. The Bayesian adaptive graphical lasso allows each double exponential prior to have a unique shrinkage parameter. These shrinkage parameters share a common gamma hyperprior. We extend this model to create an informative prior structure by formulating tailored hyperpriors on the shrinkage parameters. By choosing parameter values for each hyperprior that shift probability mass toward zero for nodes that are close together in a reference network, we encourage edges between covariates with known relationships. This approach can improve the reliability of network inference when the sample size is small relative to the number of parameters to be estimated. When applied to the data on activated microglia, the inferred network includes both known relationships and associations of potential interest for further investigation. PMID:24533172

  3. Bayesian networks in neuroscience: a survey.

    PubMed

    Bielza, Concha; Larrañaga, Pedro

    2014-01-01

    Bayesian networks are a type of probabilistic graphical models lie at the intersection between statistics and machine learning. They have been shown to be powerful tools to encode dependence relationships among the variables of a domain under uncertainty. Thanks to their generality, Bayesian networks can accommodate continuous and discrete variables, as well as temporal processes. In this paper we review Bayesian networks and how they can be learned automatically from data by means of structure learning algorithms. Also, we examine how a user can take advantage of these networks for reasoning by exact or approximate inference algorithms that propagate the given evidence through the graphical structure. Despite their applicability in many fields, they have been little used in neuroscience, where they have focused on specific problems, like functional connectivity analysis from neuroimaging data. Here we survey key research in neuroscience where Bayesian networks have been used with different aims: discover associations between variables, perform probabilistic reasoning over the model, and classify new observations with and without supervision. The networks are learned from data of any kind-morphological, electrophysiological, -omics and neuroimaging-, thereby broadening the scope-molecular, cellular, structural, functional, cognitive and medical- of the brain aspects to be studied.

  4. Bayesian networks in neuroscience: a survey

    PubMed Central

    Bielza, Concha; Larrañaga, Pedro

    2014-01-01

    Bayesian networks are a type of probabilistic graphical models lie at the intersection between statistics and machine learning. They have been shown to be powerful tools to encode dependence relationships among the variables of a domain under uncertainty. Thanks to their generality, Bayesian networks can accommodate continuous and discrete variables, as well as temporal processes. In this paper we review Bayesian networks and how they can be learned automatically from data by means of structure learning algorithms. Also, we examine how a user can take advantage of these networks for reasoning by exact or approximate inference algorithms that propagate the given evidence through the graphical structure. Despite their applicability in many fields, they have been little used in neuroscience, where they have focused on specific problems, like functional connectivity analysis from neuroimaging data. Here we survey key research in neuroscience where Bayesian networks have been used with different aims: discover associations between variables, perform probabilistic reasoning over the model, and classify new observations with and without supervision. The networks are learned from data of any kind–morphological, electrophysiological, -omics and neuroimaging–, thereby broadening the scope–molecular, cellular, structural, functional, cognitive and medical– of the brain aspects to be studied. PMID:25360109

  5. A Guide to the Literature on Learning Graphical Models

    NASA Technical Reports Server (NTRS)

    Buntine, Wray L.; Friedland, Peter (Technical Monitor)

    1994-01-01

    This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and more generally, learning probabilistic graphical models. Because many problems in artificial intelligence, statistics and neural networks can be represented as a probabilistic graphical model, this area provides a unifying perspective on learning. This paper organizes the research in this area along methodological lines of increasing complexity.

  6. An Intuitive Dashboard for Bayesian Network Inference

    NASA Astrophysics Data System (ADS)

    Reddy, Vikas; Charisse Farr, Anna; Wu, Paul; Mengersen, Kerrie; Yarlagadda, Prasad K. D. V.

    2014-03-01

    Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++.

  7. A Bayesian network approach to the database search problem in criminal proceedings

    PubMed Central

    2012-01-01

    Background The ‘database search problem’, that is, the strengthening of a case - in terms of probative value - against an individual who is found as a result of a database search, has been approached during the last two decades with substantial mathematical analyses, accompanied by lively debate and centrally opposing conclusions. This represents a challenging obstacle in teaching but also hinders a balanced and coherent discussion of the topic within the wider scientific and legal community. This paper revisits and tracks the associated mathematical analyses in terms of Bayesian networks. Their derivation and discussion for capturing probabilistic arguments that explain the database search problem are outlined in detail. The resulting Bayesian networks offer a distinct view on the main debated issues, along with further clarity. Methods As a general framework for representing and analyzing formal arguments in probabilistic reasoning about uncertain target propositions (that is, whether or not a given individual is the source of a crime stain), this paper relies on graphical probability models, in particular, Bayesian networks. This graphical probability modeling approach is used to capture, within a single model, a series of key variables, such as the number of individuals in a database, the size of the population of potential crime stain sources, and the rarity of the corresponding analytical characteristics in a relevant population. Results This paper demonstrates the feasibility of deriving Bayesian network structures for analyzing, representing, and tracking the database search problem. The output of the proposed models can be shown to agree with existing but exclusively formulaic approaches. Conclusions The proposed Bayesian networks allow one to capture and analyze the currently most well-supported but reputedly counter-intuitive and difficult solution to the database search problem in a way that goes beyond the traditional, purely formulaic expressions. The method’s graphical environment, along with its computational and probabilistic architectures, represents a rich package that offers analysts and discussants with additional modes of interaction, concise representation, and coherent communication. PMID:22849390

  8. A General Structure for Legal Arguments about Evidence Using Bayesian Networks

    ERIC Educational Resources Information Center

    Fenton, Norman; Neil, Martin; Lagnado, David A.

    2013-01-01

    A Bayesian network (BN) is a graphical model of uncertainty that is especially well suited to legal arguments. It enables us to visualize and model dependencies between different hypotheses and pieces of evidence and to calculate the revised probability beliefs about all uncertain factors when any piece of new evidence is presented. Although BNs…

  9. Towards Breaking the Histone Code – Bayesian Graphical Models for Histone Modifications

    PubMed Central

    Mitra, Riten; Müller, Peter; Liang, Shoudan; Xu, Yanxun; Ji, Yuan

    2013-01-01

    Background Histones are proteins that wrap DNA around in small spherical structures called nucleosomes. Histone modifications (HMs) refer to the post-translational modifications to the histone tails. At a particular genomic locus, each of these HMs can either be present or absent, and the combinatory patterns of the presence or absence of multiple HMs, or the ‘histone codes,’ are believed to co-regulate important biological processes. We aim to use raw data on HM markers at different genomic loci to (1) decode the complex biological network of HMs in a single region and (2) demonstrate how the HM networks differ in different regulatory regions. We suggest that these differences in network attributes form a significant link between histones and genomic functions. Methods and Results We develop a powerful graphical model under Bayesian paradigm. Posterior inference is fully probabilistic, allowing us to compute the probabilities of distinct dependence patterns of the HMs using graphs. Furthermore, our model-based framework allows for easy but important extensions for inference on differential networks under various conditions, such as the different annotations of the genomic locations (e.g., promoters versus insulators). We applied these models to ChIP-Seq data based on CD4+ T lymphocytes. The results confirmed many existing findings and provided a unified tool to generate various promising hypotheses. Differential network analyses revealed new insights on co-regulation of HMs of transcriptional activities in different genomic regions. Conclusions The use of Bayesian graphical models and borrowing strength across different conditions provide high power to infer histone networks and their differences. PMID:23748248

  10. Quantum Graphical Models and Belief Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leifer, M.S.; Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo Ont., N2L 2Y5; Poulin, D.

    Belief Propagation algorithms acting on Graphical Models of classical probability distributions, such as Markov Networks, Factor Graphs and Bayesian Networks, are amongst the most powerful known methods for deriving probabilistic inferences amongst large numbers of random variables. This paper presents a generalization of these concepts and methods to the quantum case, based on the idea that quantum theory can be thought of as a noncommutative, operator-valued, generalization of classical probability theory. Some novel characterizations of quantum conditional independence are derived, and definitions of Quantum n-Bifactor Networks, Markov Networks, Factor Graphs and Bayesian Networks are proposed. The structure of Quantum Markovmore » Networks is investigated and some partial characterization results are obtained, along the lines of the Hammersley-Clifford theorem. A Quantum Belief Propagation algorithm is presented and is shown to converge on 1-Bifactor Networks and Markov Networks when the underlying graph is a tree. The use of Quantum Belief Propagation as a heuristic algorithm in cases where it is not known to converge is discussed. Applications to decoding quantum error correcting codes and to the simulation of many-body quantum systems are described.« less

  11. bnstruct: an R package for Bayesian Network structure learning in the presence of missing data.

    PubMed

    Franzin, Alberto; Sambo, Francesco; Di Camillo, Barbara

    2017-04-15

    A Bayesian Network is a probabilistic graphical model that encodes probabilistic dependencies between a set of random variables. We introduce bnstruct, an open source R package to (i) learn the structure and the parameters of a Bayesian Network from data in the presence of missing values and (ii) perform reasoning and inference on the learned Bayesian Networks. To the best of our knowledge, there is no other open source software that provides methods for all of these tasks, particularly the manipulation of missing data, which is a common situation in practice. The software is implemented in R and C and is available on CRAN under a GPL licence. francesco.sambo@unipd.it. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  12. Incorporating networks in a probabilistic graphical model to find drivers for complex human diseases.

    PubMed

    Mezlini, Aziz M; Goldenberg, Anna

    2017-10-01

    Discovering genetic mechanisms driving complex diseases is a hard problem. Existing methods often lack power to identify the set of responsible genes. Protein-protein interaction networks have been shown to boost power when detecting gene-disease associations. We introduce a Bayesian framework, Conflux, to find disease associated genes from exome sequencing data using networks as a prior. There are two main advantages to using networks within a probabilistic graphical model. First, networks are noisy and incomplete, a substantial impediment to gene discovery. Incorporating networks into the structure of a probabilistic models for gene inference has less impact on the solution than relying on the noisy network structure directly. Second, using a Bayesian framework we can keep track of the uncertainty of each gene being associated with the phenotype rather than returning a fixed list of genes. We first show that using networks clearly improves gene detection compared to individual gene testing. We then show consistently improved performance of Conflux compared to the state-of-the-art diffusion network-based method Hotnet2 and a variety of other network and variant aggregation methods, using randomly generated and literature-reported gene sets. We test Hotnet2 and Conflux on several network configurations to reveal biases and patterns of false positives and false negatives in each case. Our experiments show that our novel Bayesian framework Conflux incorporates many of the advantages of the current state-of-the-art methods, while offering more flexibility and improved power in many gene-disease association scenarios.

  13. F-MAP: A Bayesian approach to infer the gene regulatory network using external hints

    PubMed Central

    Shahdoust, Maryam; Mahjub, Hossein; Sadeghi, Mehdi

    2017-01-01

    The Common topological features of related species gene regulatory networks suggest reconstruction of the network of one species by using the further information from gene expressions profile of related species. We present an algorithm to reconstruct the gene regulatory network named; F-MAP, which applies the knowledge about gene interactions from related species. Our algorithm sets a Bayesian framework to estimate the precision matrix of one species microarray gene expressions dataset to infer the Gaussian Graphical model of the network. The conjugate Wishart prior is used and the information from related species is applied to estimate the hyperparameters of the prior distribution by using the factor analysis. Applying the proposed algorithm on six related species of drosophila shows that the precision of reconstructed networks is improved considerably compared to the precision of networks constructed by other Bayesian approaches. PMID:28938012

  14. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks.

    PubMed

    Werhli, Adriano V; Grzegorczyk, Marco; Husmeier, Dirk

    2006-10-15

    An important problem in systems biology is the inference of biochemical pathways and regulatory networks from postgenomic data. Various reverse engineering methods have been proposed in the literature, and it is important to understand their relative merits and shortcomings. In the present paper, we compare the accuracy of reconstructing gene regulatory networks with three different modelling and inference paradigms: (1) Relevance networks (RNs): pairwise association scores independent of the remaining network; (2) graphical Gaussian models (GGMs): undirected graphical models with constraint-based inference, and (3) Bayesian networks (BNs): directed graphical models with score-based inference. The evaluation is carried out on the Raf pathway, a cellular signalling network describing the interaction of 11 phosphorylated proteins and phospholipids in human immune system cells. We use both laboratory data from cytometry experiments as well as data simulated from the gold-standard network. We also compare passive observations with active interventions. On Gaussian observational data, BNs and GGMs were found to outperform RNs. The difference in performance was not significant for the non-linear simulated data and the cytoflow data, though. Also, we did not observe a significant difference between BNs and GGMs on observational data in general. However, for interventional data, BNs outperform GGMs and RNs, especially when taking the edge directions rather than just the skeletons of the graphs into account. This suggests that the higher computational costs of inference with BNs over GGMs and RNs are not justified when using only passive observations, but that active interventions in the form of gene knockouts and over-expressions are required to exploit the full potential of BNs. Data, software and supplementary material are available from http://www.bioss.sari.ac.uk/staff/adriano/research.html

  15. Bayes' theorem application in the measure information diagnostic value assessment

    NASA Astrophysics Data System (ADS)

    Orzechowski, Piotr D.; Makal, Jaroslaw; Nazarkiewicz, Andrzej

    2006-03-01

    The paper presents Bayesian method application in the measure information diagnostic value assessment that is used in the computer-aided diagnosis system. The computer system described here has been created basing on the Bayesian Network and is used in Benign Prostatic Hyperplasia (BPH) diagnosis. The graphic diagnostic model enables to juxtapose experts' knowledge with data.

  16. Bayesian networks of age estimation and classification based on dental evidence: A study on the third molar mineralization.

    PubMed

    Sironi, Emanuele; Pinchi, Vilma; Pradella, Francesco; Focardi, Martina; Bozza, Silvia; Taroni, Franco

    2018-04-01

    Not only does the Bayesian approach offer a rational and logical environment for evidence evaluation in a forensic framework, but it also allows scientists to coherently deal with uncertainty related to a collection of multiple items of evidence, due to its flexible nature. Such flexibility might come at the expense of elevated computational complexity, which can be handled by using specific probabilistic graphical tools, namely Bayesian networks. In the current work, such probabilistic tools are used for evaluating dental evidence related to the development of third molars. A set of relevant properties characterizing the graphical models are discussed and Bayesian networks are implemented to deal with the inferential process laying beyond the estimation procedure, as well as to provide age estimates. Such properties include operationality, flexibility, coherence, transparence and sensitivity. A data sample composed of Italian subjects was employed for the analysis; results were in agreement with previous studies in terms of point estimate and age classification. The influence of the prior probability elicitation in terms of Bayesian estimate and classifies was also analyzed. Findings also supported the opportunity to take into consideration multiple teeth in the evaluative procedure, since it can be shown this results in an increased robustness towards the prior probability elicitation process, as well as in more favorable outcomes from a forensic perspective. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  17. Bayesian network modelling of upper gastrointestinal bleeding

    NASA Astrophysics Data System (ADS)

    Aisha, Nazziwa; Shohaimi, Shamarina; Adam, Mohd Bakri

    2013-09-01

    Bayesian networks are graphical probabilistic models that represent causal and other relationships between domain variables. In the context of medical decision making, these models have been explored to help in medical diagnosis and prognosis. In this paper, we discuss the Bayesian network formalism in building medical support systems and we learn a tree augmented naive Bayes Network (TAN) from gastrointestinal bleeding data. The accuracy of the TAN in classifying the source of gastrointestinal bleeding into upper or lower source is obtained. The TAN achieves a high classification accuracy of 86% and an area under curve of 92%. A sensitivity analysis of the model shows relatively high levels of entropy reduction for color of the stool, history of gastrointestinal bleeding, consistency and the ratio of blood urea nitrogen to creatinine. The TAN facilitates the identification of the source of GIB and requires further validation.

  18. Boosting probabilistic graphical model inference by incorporating prior knowledge from multiple sources.

    PubMed

    Praveen, Paurush; Fröhlich, Holger

    2013-01-01

    Inferring regulatory networks from experimental data via probabilistic graphical models is a popular framework to gain insights into biological systems. However, the inherent noise in experimental data coupled with a limited sample size reduces the performance of network reverse engineering. Prior knowledge from existing sources of biological information can address this low signal to noise problem by biasing the network inference towards biologically plausible network structures. Although integrating various sources of information is desirable, their heterogeneous nature makes this task challenging. We propose two computational methods to incorporate various information sources into a probabilistic consensus structure prior to be used in graphical model inference. Our first model, called Latent Factor Model (LFM), assumes a high degree of correlation among external information sources and reconstructs a hidden variable as a common source in a Bayesian manner. The second model, a Noisy-OR, picks up the strongest support for an interaction among information sources in a probabilistic fashion. Our extensive computational studies on KEGG signaling pathways as well as on gene expression data from breast cancer and yeast heat shock response reveal that both approaches can significantly enhance the reconstruction accuracy of Bayesian Networks compared to other competing methods as well as to the situation without any prior. Our framework allows for using diverse information sources, like pathway databases, GO terms and protein domain data, etc. and is flexible enough to integrate new sources, if available.

  19. Detangling complex relationships in forensic data: principles and use of causal networks and their application to clinical forensic science.

    PubMed

    Lefèvre, Thomas; Lepresle, Aude; Chariot, Patrick

    2015-09-01

    The search for complex, nonlinear relationships and causality in data is hindered by the availability of techniques in many domains, including forensic science. Linear multivariable techniques are useful but present some shortcomings. In the past decade, Bayesian approaches have been introduced in forensic science. To date, authors have mainly focused on providing an alternative to classical techniques for quantifying effects and dealing with uncertainty. Causal networks, including Bayesian networks, can help detangle complex relationships in data. A Bayesian network estimates the joint probability distribution of data and graphically displays dependencies between variables and the circulation of information between these variables. In this study, we illustrate the interest in utilizing Bayesian networks for dealing with complex data through an application in clinical forensic science. Evaluating the functional impairment of assault survivors is a complex task for which few determinants are known. As routinely estimated in France, the duration of this impairment can be quantified by days of 'Total Incapacity to Work' ('Incapacité totale de travail,' ITT). In this study, we used a Bayesian network approach to identify the injury type, victim category and time to evaluation as the main determinants of the 'Total Incapacity to Work' (TIW). We computed the conditional probabilities associated with the TIW node and its parents. We compared this approach with a multivariable analysis, and the results of both techniques were converging. Thus, Bayesian networks should be considered a reliable means to detangle complex relationships in data.

  20. Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons

    PubMed Central

    Pecevski, Dejan; Buesing, Lars; Maass, Wolfgang

    2011-01-01

    An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows (“explaining away”) and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons. PMID:22219717

  1. Probabilistic Models and Generative Neural Networks: Towards an Unified Framework for Modeling Normal and Impaired Neurocognitive Functions

    PubMed Central

    Testolin, Alberto; Zorzi, Marco

    2016-01-01

    Connectionist models can be characterized within the more general framework of probabilistic graphical models, which allow to efficiently describe complex statistical distributions involving a large number of interacting variables. This integration allows building more realistic computational models of cognitive functions, which more faithfully reflect the underlying neural mechanisms at the same time providing a useful bridge to higher-level descriptions in terms of Bayesian computations. Here we discuss a powerful class of graphical models that can be implemented as stochastic, generative neural networks. These models overcome many limitations associated with classic connectionist models, for example by exploiting unsupervised learning in hierarchical architectures (deep networks) and by taking into account top-down, predictive processing supported by feedback loops. We review some recent cognitive models based on generative networks, and we point out promising research directions to investigate neuropsychological disorders within this approach. Though further efforts are required in order to fill the gap between structured Bayesian models and more realistic, biophysical models of neuronal dynamics, we argue that generative neural networks have the potential to bridge these levels of analysis, thereby improving our understanding of the neural bases of cognition and of pathologies caused by brain damage. PMID:27468262

  2. Probabilistic Models and Generative Neural Networks: Towards an Unified Framework for Modeling Normal and Impaired Neurocognitive Functions.

    PubMed

    Testolin, Alberto; Zorzi, Marco

    2016-01-01

    Connectionist models can be characterized within the more general framework of probabilistic graphical models, which allow to efficiently describe complex statistical distributions involving a large number of interacting variables. This integration allows building more realistic computational models of cognitive functions, which more faithfully reflect the underlying neural mechanisms at the same time providing a useful bridge to higher-level descriptions in terms of Bayesian computations. Here we discuss a powerful class of graphical models that can be implemented as stochastic, generative neural networks. These models overcome many limitations associated with classic connectionist models, for example by exploiting unsupervised learning in hierarchical architectures (deep networks) and by taking into account top-down, predictive processing supported by feedback loops. We review some recent cognitive models based on generative networks, and we point out promising research directions to investigate neuropsychological disorders within this approach. Though further efforts are required in order to fill the gap between structured Bayesian models and more realistic, biophysical models of neuronal dynamics, we argue that generative neural networks have the potential to bridge these levels of analysis, thereby improving our understanding of the neural bases of cognition and of pathologies caused by brain damage.

  3. Boosting Probabilistic Graphical Model Inference by Incorporating Prior Knowledge from Multiple Sources

    PubMed Central

    Praveen, Paurush; Fröhlich, Holger

    2013-01-01

    Inferring regulatory networks from experimental data via probabilistic graphical models is a popular framework to gain insights into biological systems. However, the inherent noise in experimental data coupled with a limited sample size reduces the performance of network reverse engineering. Prior knowledge from existing sources of biological information can address this low signal to noise problem by biasing the network inference towards biologically plausible network structures. Although integrating various sources of information is desirable, their heterogeneous nature makes this task challenging. We propose two computational methods to incorporate various information sources into a probabilistic consensus structure prior to be used in graphical model inference. Our first model, called Latent Factor Model (LFM), assumes a high degree of correlation among external information sources and reconstructs a hidden variable as a common source in a Bayesian manner. The second model, a Noisy-OR, picks up the strongest support for an interaction among information sources in a probabilistic fashion. Our extensive computational studies on KEGG signaling pathways as well as on gene expression data from breast cancer and yeast heat shock response reveal that both approaches can significantly enhance the reconstruction accuracy of Bayesian Networks compared to other competing methods as well as to the situation without any prior. Our framework allows for using diverse information sources, like pathway databases, GO terms and protein domain data, etc. and is flexible enough to integrate new sources, if available. PMID:23826291

  4. Hip fracture in the elderly: a re-analysis of the EPIDOS study with causal Bayesian networks.

    PubMed

    Caillet, Pascal; Klemm, Sarah; Ducher, Michel; Aussem, Alexandre; Schott, Anne-Marie

    2015-01-01

    Hip fractures commonly result in permanent disability, institutionalization or death in elderly. Existing hip-fracture predicting tools are underused in clinical practice, partly due to their lack of intuitive interpretation. By use of a graphical layer, Bayesian network models could increase the attractiveness of fracture prediction tools. Our aim was to study the potential contribution of a causal Bayesian network in this clinical setting. A logistic regression was performed as a standard control approach to check the robustness of the causal Bayesian network approach. EPIDOS is a multicenter study, conducted in an ambulatory care setting in five French cities between 1992 and 1996 and updated in 2010. The study included 7598 women aged 75 years or older, in which fractures were assessed quarterly during 4 years. A causal Bayesian network and a logistic regression were performed on EPIDOS data to describe major variables involved in hip fractures occurrences. Both models had similar association estimations and predictive performances. They detected gait speed and mineral bone density as variables the most involved in the fracture process. The causal Bayesian network showed that gait speed and bone mineral density were directly connected to fracture and seem to mediate the influence of all the other variables included in our model. The logistic regression approach detected multiple interactions involving psychotropic drug use, age and bone mineral density. Both approaches retrieved similar variables as predictors of hip fractures. However, Bayesian network highlighted the whole web of relation between the variables involved in the analysis, suggesting a possible mechanism leading to hip fracture. According to the latter results, intervention focusing concomitantly on gait speed and bone mineral density may be necessary for an optimal prevention of hip fracture occurrence in elderly people.

  5. Age estimation by assessment of pulp chamber volume: a Bayesian network for the evaluation of dental evidence.

    PubMed

    Sironi, Emanuele; Taroni, Franco; Baldinotti, Claudio; Nardi, Cosimo; Norelli, Gian-Aristide; Gallidabino, Matteo; Pinchi, Vilma

    2017-11-14

    The present study aimed to investigate the performance of a Bayesian method in the evaluation of dental age-related evidence collected by means of a geometrical approximation procedure of the pulp chamber volume. Measurement of this volume was based on three-dimensional cone beam computed tomography images. The Bayesian method was applied by means of a probabilistic graphical model, namely a Bayesian network. Performance of that method was investigated in terms of accuracy and bias of the decisional outcomes. Influence of an informed elicitation of the prior belief of chronological age was also studied by means of a sensitivity analysis. Outcomes in terms of accuracy were adequate with standard requirements for forensic adult age estimation. Findings also indicated that the Bayesian method does not show a particular tendency towards under- or overestimation of the age variable. Outcomes of the sensitivity analysis showed that results on estimation are improved with a ration elicitation of the prior probabilities of age.

  6. Revealing the ISO/IEC 9126-1 Clique Tree for COTS Software Evaluation

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    2007-01-01

    Previous research has shown that acyclic dependency models, if they exist, can be extracted from software quality standards and that these models can be used to assess software safety and product quality. In the case of commercial off-the-shelf (COTS) software, the extracted dependency model can be used in a probabilistic Bayesian network context for COTS software evaluation. Furthermore, while experts typically employ Bayesian networks to encode domain knowledge, secondary structures (clique trees) from Bayesian network graphs can be used to determine the probabilistic distribution of any software variable (attribute) using any clique that contains that variable. Secondary structures, therefore, provide insight into the fundamental nature of graphical networks. This paper will apply secondary structure calculations to reveal the clique tree of the acyclic dependency model extracted from the ISO/IEC 9126-1 software quality standard. Suggestions will be provided to describe how the clique tree may be exploited to aid efficient transformation of an evaluation model.

  7. High-throughput Bayesian Network Learning using Heterogeneous Multicore Computers

    PubMed Central

    Linderman, Michael D.; Athalye, Vivek; Meng, Teresa H.; Asadi, Narges Bani; Bruggner, Robert; Nolan, Garry P.

    2017-01-01

    Aberrant intracellular signaling plays an important role in many diseases. The causal structure of signal transduction networks can be modeled as Bayesian Networks (BNs), and computationally learned from experimental data. However, learning the structure of Bayesian Networks (BNs) is an NP-hard problem that, even with fast heuristics, is too time consuming for large, clinically important networks (20–50 nodes). In this paper, we present a novel graphics processing unit (GPU)-accelerated implementation of a Monte Carlo Markov Chain-based algorithm for learning BNs that is up to 7.5-fold faster than current general-purpose processor (GPP)-based implementations. The GPU-based implementation is just one of several implementations within the larger application, each optimized for a different input or machine configuration. We describe the methodology we use to build an extensible application, assembled from these variants, that can target a broad range of heterogeneous systems, e.g., GPUs, multicore GPPs. Specifically we show how we use the Merge programming model to efficiently integrate, test and intelligently select among the different potential implementations. PMID:28819655

  8. Fuzzy Intervals for Designing Structural Signature: An Application to Graphic Symbol Recognition

    NASA Astrophysics Data System (ADS)

    Luqman, Muhammad Muzzamil; Delalandre, Mathieu; Brouard, Thierry; Ramel, Jean-Yves; Lladós, Josep

    The motivation behind our work is to present a new methodology for symbol recognition. The proposed method employs a structural approach for representing visual associations in symbols and a statistical classifier for recognition. We vectorize a graphic symbol, encode its topological and geometrical information by an attributed relational graph and compute a signature from this structural graph. We have addressed the sensitivity of structural representations to noise, by using data adapted fuzzy intervals. The joint probability distribution of signatures is encoded by a Bayesian network, which serves as a mechanism for pruning irrelevant features and choosing a subset of interesting features from structural signatures of underlying symbol set. The Bayesian network is deployed in a supervised learning scenario for recognizing query symbols. The method has been evaluated for robustness against degradations & deformations on pre-segmented 2D linear architectural & electronic symbols from GREC databases, and for its recognition abilities on symbols with context noise i.e. cropped symbols.

  9. Quantum Inference on Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Yoder, Theodore; Low, Guang Hao; Chuang, Isaac

    2014-03-01

    Because quantum physics is naturally probabilistic, it seems reasonable to expect physical systems to describe probabilities and their evolution in a natural fashion. Here, we use quantum computation to speedup sampling from a graphical probability model, the Bayesian network. A specialization of this sampling problem is approximate Bayesian inference, where the distribution on query variables is sampled given the values e of evidence variables. Inference is a key part of modern machine learning and artificial intelligence tasks, but is known to be NP-hard. Classically, a single unbiased sample is obtained from a Bayesian network on n variables with at most m parents per node in time (nmP(e) - 1 / 2) , depending critically on P(e) , the probability the evidence might occur in the first place. However, by implementing a quantum version of rejection sampling, we obtain a square-root speedup, taking (n2m P(e) -1/2) time per sample. The speedup is the result of amplitude amplification, which is proving to be broadly applicable in sampling and machine learning tasks. In particular, we provide an explicit and efficient circuit construction that implements the algorithm without the need for oracle access.

  10. Uncertainty Quantification of Hypothesis Testing for the Integrated Knowledge Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuellar, Leticia

    2012-05-31

    The Integrated Knowledge Engine (IKE) is a tool of Bayesian analysis, based on Bayesian Belief Networks or Bayesian networks for short. A Bayesian network is a graphical model (directed acyclic graph) that allows representing the probabilistic structure of many variables assuming a localized type of dependency called the Markov property. The Markov property in this instance makes any node or random variable to be independent of any non-descendant node given information about its parent. A direct consequence of this property is that it is relatively easy to incorporate new evidence and derive the appropriate consequences, which in general is notmore » an easy or feasible task. Typically we use Bayesian networks as predictive models for a small subset of the variables, either the leave nodes or the root nodes. In IKE, since most applications deal with diagnostics, we are interested in predicting the likelihood of the root nodes given new observations on any of the children nodes. The root nodes represent the various possible outcomes of the analysis, and an important problem is to determine when we have gathered enough evidence to lean toward one of these particular outcomes. This document presents criteria to decide when the evidence gathered is sufficient to draw a particular conclusion or decide in favor of a particular outcome by quantifying the uncertainty in the conclusions that are drawn from the data. The material in this document is organized as follows: Section 2 presents briefly a forensics Bayesian network, and we explore evaluating the information provided by new evidence by looking first at the posterior distribution of the nodes of interest, and then at the corresponding posterior odds ratios. Section 3 presents a third alternative: Bayes Factors. In section 4 we finalize by showing the relation between the posterior odds ratios and Bayes factors and showing examples these cases, and in section 5 we conclude by providing clear guidelines of how to use these for the type of Bayesian networks used in IKE.« less

  11. Reconstruction of metabolic pathways by combining probabilistic graphical model-based and knowledge-based methods

    PubMed Central

    2014-01-01

    Automatic reconstruction of metabolic pathways for an organism from genomics and transcriptomics data has been a challenging and important problem in bioinformatics. Traditionally, known reference pathways can be mapped into an organism-specific ones based on its genome annotation and protein homology. However, this simple knowledge-based mapping method might produce incomplete pathways and generally cannot predict unknown new relations and reactions. In contrast, ab initio metabolic network construction methods can predict novel reactions and interactions, but its accuracy tends to be low leading to a lot of false positives. Here we combine existing pathway knowledge and a new ab initio Bayesian probabilistic graphical model together in a novel fashion to improve automatic reconstruction of metabolic networks. Specifically, we built a knowledge database containing known, individual gene / protein interactions and metabolic reactions extracted from existing reference pathways. Known reactions and interactions were then used as constraints for Bayesian network learning methods to predict metabolic pathways. Using individual reactions and interactions extracted from different pathways of many organisms to guide pathway construction is new and improves both the coverage and accuracy of metabolic pathway construction. We applied this probabilistic knowledge-based approach to construct the metabolic networks from yeast gene expression data and compared its results with 62 known metabolic networks in the KEGG database. The experiment showed that the method improved the coverage of metabolic network construction over the traditional reference pathway mapping method and was more accurate than pure ab initio methods. PMID:25374614

  12. Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers.

    PubMed

    Borchani, Hanen; Bielza, Concha; Toro, Carlos; Larrañaga, Pedro

    2013-03-01

    Our aim is to use multi-dimensional Bayesian network classifiers in order to predict the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors given an input set of respective resistance mutations that an HIV patient carries. Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models especially designed to solve multi-dimensional classification problems, where each input instance in the data set has to be assigned simultaneously to multiple output class variables that are not necessarily binary. In this paper, we introduce a new method, named MB-MBC, for learning MBCs from data by determining the Markov blanket around each class variable using the HITON algorithm. Our method is applied to both reverse transcriptase and protease data sets obtained from the Stanford HIV-1 database. Regarding the prediction of antiretroviral combination therapies, the experimental study shows promising results in terms of classification accuracy compared with state-of-the-art MBC learning algorithms. For reverse transcriptase inhibitors, we get 71% and 11% in mean and global accuracy, respectively; while for protease inhibitors, we get more than 84% and 31% in mean and global accuracy, respectively. In addition, the analysis of MBC graphical structures lets us gain insight into both known and novel interactions between reverse transcriptase and protease inhibitors and their respective resistance mutations. MB-MBC algorithm is a valuable tool to analyze the HIV-1 reverse transcriptase and protease inhibitors prediction problem and to discover interactions within and between these two classes of inhibitors. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. How to interpret the results of medical time series data analysis: Classical statistical approaches versus dynamic Bayesian network modeling.

    PubMed

    Onisko, Agnieszka; Druzdzel, Marek J; Austin, R Marshall

    2016-01-01

    Classical statistics is a well-established approach in the analysis of medical data. While the medical community seems to be familiar with the concept of a statistical analysis and its interpretation, the Bayesian approach, argued by many of its proponents to be superior to the classical frequentist approach, is still not well-recognized in the analysis of medical data. The goal of this study is to encourage data analysts to use the Bayesian approach, such as modeling with graphical probabilistic networks, as an insightful alternative to classical statistical analysis of medical data. This paper offers a comparison of two approaches to analysis of medical time series data: (1) classical statistical approach, such as the Kaplan-Meier estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian network modeling. Our comparison is based on time series cervical cancer screening data collected at Magee-Womens Hospital, University of Pittsburgh Medical Center over 10 years. The main outcomes of our comparison are cervical cancer risk assessments produced by the three approaches. However, our analysis discusses also several aspects of the comparison, such as modeling assumptions, model building, dealing with incomplete data, individualized risk assessment, results interpretation, and model validation. Our study shows that the Bayesian approach is (1) much more flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, which is more cumbersome for classical statistical approaches.

  14. Probabilistic mapping of descriptive health status responses onto health state utilities using Bayesian networks: an empirical analysis converting SF-12 into EQ-5D utility index in a national US sample.

    PubMed

    Le, Quang A; Doctor, Jason N

    2011-05-01

    As quality-adjusted life years have become the standard metric in health economic evaluations, mapping health-profile or disease-specific measures onto preference-based measures to obtain quality-adjusted life years has become a solution when health utilities are not directly available. However, current mapping methods are limited due to their predictive validity, reliability, and/or other methodological issues. We employ probability theory together with a graphical model, called a Bayesian network, to convert health-profile measures into preference-based measures and to compare the results to those estimated with current mapping methods. A sample of 19,678 adults who completed both the 12-item Short Form Health Survey (SF-12v2) and EuroQoL 5D (EQ-5D) questionnaires from the 2003 Medical Expenditure Panel Survey was split into training and validation sets. Bayesian networks were constructed to explore the probabilistic relationships between each EQ-5D domain and 12 items of the SF-12v2. The EQ-5D utility scores were estimated on the basis of the predicted probability of each response level of the 5 EQ-5D domains obtained from the Bayesian inference process using the following methods: Monte Carlo simulation, expected utility, and most-likely probability. Results were then compared with current mapping methods including multinomial logistic regression, ordinary least squares, and censored least absolute deviations. The Bayesian networks consistently outperformed other mapping models in the overall sample (mean absolute error=0.077, mean square error=0.013, and R overall=0.802), in different age groups, number of chronic conditions, and ranges of the EQ-5D index. Bayesian networks provide a new robust and natural approach to map health status responses into health utility measures for health economic evaluations.

  15. Models and simulation of 3D neuronal dendritic trees using Bayesian networks.

    PubMed

    López-Cruz, Pedro L; Bielza, Concha; Larrañaga, Pedro; Benavides-Piccione, Ruth; DeFelipe, Javier

    2011-12-01

    Neuron morphology is crucial for neuronal connectivity and brain information processing. Computational models are important tools for studying dendritic morphology and its role in brain function. We applied a class of probabilistic graphical models called Bayesian networks to generate virtual dendrites from layer III pyramidal neurons from three different regions of the neocortex of the mouse. A set of 41 morphological variables were measured from the 3D reconstructions of real dendrites and their probability distributions used in a machine learning algorithm to induce the model from the data. A simulation algorithm is also proposed to obtain new dendrites by sampling values from Bayesian networks. The main advantage of this approach is that it takes into account and automatically locates the relationships between variables in the data instead of using predefined dependencies. Therefore, the methodology can be applied to any neuronal class while at the same time exploiting class-specific properties. Also, a Bayesian network was defined for each part of the dendrite, allowing the relationships to change in the different sections and to model heterogeneous developmental factors or spatial influences. Several univariate statistical tests and a novel multivariate test based on Kullback-Leibler divergence estimation confirmed that virtual dendrites were similar to real ones. The analyses of the models showed relationships that conform to current neuroanatomical knowledge and support model correctness. At the same time, studying the relationships in the models can help to identify new interactions between variables related to dendritic morphology.

  16. Application of dynamic uncertain causality graph in spacecraft fault diagnosis: Logic cycle

    NASA Astrophysics Data System (ADS)

    Yao, Quanying; Zhang, Qin; Liu, Peng; Yang, Ping; Zhu, Ma; Wang, Xiaochen

    2017-04-01

    Intelligent diagnosis system are applied to fault diagnosis in spacecraft. Dynamic Uncertain Causality Graph (DUCG) is a new probability graphic model with many advantages. In the knowledge expression of spacecraft fault diagnosis, feedback among variables is frequently encountered, which may cause directed cyclic graphs (DCGs). Probabilistic graphical models (PGMs) such as bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning, but BN does not allow DCGs. In this paper, DUGG is applied to fault diagnosis in spacecraft: introducing the inference algorithm for the DUCG to deal with feedback. Now, DUCG has been tested in 16 typical faults with 100% diagnosis accuracy.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pichara, Karim; Protopapas, Pavlos

    We present an automatic classification method for astronomical catalogs with missing data. We use Bayesian networks and a probabilistic graphical model that allows us to perform inference to predict missing values given observed data and dependency relationships between variables. To learn a Bayesian network from incomplete data, we use an iterative algorithm that utilizes sampling methods and expectation maximization to estimate the distributions and probabilistic dependencies of variables from data with missing values. To test our model, we use three catalogs with missing data (SAGE, Two Micron All Sky Survey, and UBVI) and one complete catalog (MACHO). We examine howmore » classification accuracy changes when information from missing data catalogs is included, how our method compares to traditional missing data approaches, and at what computational cost. Integrating these catalogs with missing data, we find that classification of variable objects improves by a few percent and by 15% for quasar detection while keeping the computational cost the same.« less

  18. Bayesian networks for satellite payload testing

    NASA Astrophysics Data System (ADS)

    Przytula, Krzysztof W.; Hagen, Frank; Yung, Kar

    1999-11-01

    Satellite payloads are fast increasing in complexity, resulting in commensurate growth in cost of manufacturing and operation. A need exists for a software tool, which would assist engineers in production and operation of satellite systems. We have designed and implemented a software tool, which performs part of this task. The tool aids a test engineer in debugging satellite payloads during system testing. At this stage of satellite integration and testing both the tested payload and the testing equipment represent complicated systems consisting of a very large number of components and devices. When an error is detected during execution of a test procedure, the tool presents to the engineer a ranked list of potential sources of the error and a list of recommended further tests. The engineer decides this on this basis if to perform some of the recommended additional test or replace the suspect component. The tool has been installed in payload testing facility. The tool is based on Bayesian networks, a graphical method of representing uncertainty in terms of probabilistic influences. The Bayesian network was configured using detailed flow diagrams of testing procedures and block diagrams of the payload and testing hardware. The conditional and prior probability values were initially obtained from experts and refined in later stages of design. The Bayesian network provided a very informative model of the payload and testing equipment and inspired many new ideas regarding the future test procedures and testing equipment configurations. The tool is the first step in developing a family of tools for various phases of satellite integration and operation.

  19. Constructing a clinical decision-making framework for image-guided radiotherapy using a Bayesian Network

    NASA Astrophysics Data System (ADS)

    Hargrave, C.; Moores, M.; Deegan, T.; Gibbs, A.; Poulsen, M.; Harden, F.; Mengersen, K.

    2014-03-01

    A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific subregions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.

  20. Capturing changes in flood risk with Bayesian approaches for flood damage assessment

    NASA Astrophysics Data System (ADS)

    Vogel, Kristin; Schröter, Kai; Kreibich, Heidi; Thieken, Annegret; Müller, Meike; Sieg, Tobias; Laudan, Jonas; Kienzler, Sarah; Weise, Laura; Merz, Bruno; Scherbaum, Frank

    2016-04-01

    Flood risk is a function of hazard as well as of exposure and vulnerability. All three components are under change over space and time and have to be considered for reliable damage estimations and risk analyses, since this is the basis for an efficient, adaptable risk management. Hitherto, models for estimating flood damage are comparatively simple and cannot sufficiently account for changing conditions. The Bayesian network approach allows for a multivariate modeling of complex systems without relying on expert knowledge about physical constraints. In a Bayesian network each model component is considered to be a random variable. The way of interactions between those variables can be learned from observations or be defined by expert knowledge. Even a combination of both is possible. Moreover, the probabilistic framework captures uncertainties related to the prediction and provides a probability distribution for the damage instead of a point estimate. The graphical representation of Bayesian networks helps to study the change of probabilities for changing circumstances and may thus simplify the communication between scientists and public authorities. In the framework of the DFG-Research Training Group "NatRiskChange" we aim to develop Bayesian networks for flood damage and vulnerability assessments of residential buildings and companies under changing conditions. A Bayesian network learned from data, collected over the last 15 years in flooded regions in the Elbe and Danube catchments (Germany), reveals the impact of many variables like building characteristics, precaution and warning situation on flood damage to residential buildings. While the handling of incomplete and hybrid (discrete mixed with continuous) data are the most challenging issues in the study on residential buildings, a similar study, that focuses on the vulnerability of small to medium sized companies, bears new challenges. Relying on a much smaller data set for the determination of the model parameters, overly complex models should be avoided. A so called Markov Blanket approach aims at the identification of the most relevant factors and constructs a Bayesian network based on those findings. With our approach we want to exploit a major advantage of Bayesian networks which is their ability to consider dependencies not only pairwise, but to capture the joint effects and interactions of driving forces. Hence, the flood damage network does not only show the impact of precaution on the building damage separately, but also reveals the mutual effects of precaution and the quality of warning for a variety of flood settings. Thus, it allows for a consideration of changing conditions and different courses of action and forms a novel and valuable tool for decision support. This study is funded by the Deutsche Forschungsgemeinschaft (DFG) within the research training program GRK 2043/1 "NatRiskChange - Natural hazards and risks in a changing world" at the University of Potsdam.

  1. A Bayesian network analysis of posttraumatic stress disorder symptoms in adults reporting childhood sexual abuse

    PubMed Central

    McNally, Richard J.; Heeren, Alexandre; Robinaugh, Donald J.

    2017-01-01

    ABSTRACT Background: The network approach to mental disorders offers a novel framework for conceptualizing posttraumatic stress disorder (PTSD) as a causal system of interacting symptoms. Objective: In this study, we extended this work by estimating the structure of relations among PTSD symptoms in adults reporting personal histories of childhood sexual abuse (CSA; N = 179).   Method: We employed two complementary methods. First, using the graphical LASSO, we computed a sparse, regularized partial correlation network revealing associations (edges) between pairs of PTSD symptoms (nodes). Next, using a Bayesian approach, we computed a directed acyclic graph (DAG) to estimate a directed, potentially causal model of the relations among symptoms. Results: For the first network, we found that physiological reactivity to reminders of trauma, dreams about the trauma, and lost of interest in previously enjoyed activities were highly central nodes. However, stability analyses suggest that these findings were unstable across subsets of our sample. The DAG suggests that becoming physiologically reactive and upset in response to reminders of the trauma may be key drivers of other symptoms in adult survivors of CSA. Conclusions: Our study illustrates the strengths and limitations of these network analytic approaches to PTSD. PMID:29038690

  2. Power plant fault detection using artificial neural network

    NASA Astrophysics Data System (ADS)

    Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Joini, Nur Fazriana; Hidzir, Hidzrin Dayana Mohd; Awira, Mohammad Zulfikar Khairul

    2018-02-01

    The fault that commonly occurs in power plants is due to various factors that affect the system outage. There are many types of faults in power plants such as single line to ground fault, double line to ground fault, and line to line fault. The primary aim of this paper is to diagnose the fault in 14 buses power plants by using an Artificial Neural Network (ANN). The Multilayered Perceptron Network (MLP) that detection trained utilized the offline training methods such as Gradient Descent Backpropagation (GDBP), Levenberg-Marquardt (LM), and Bayesian Regularization (BR). The best method is used to build the Graphical User Interface (GUI). The modelling of 14 buses power plant, network training, and GUI used the MATLAB software.

  3. Quantum Bayesian networks with application to games displaying Parrondo's paradox

    NASA Astrophysics Data System (ADS)

    Pejic, Michael

    Bayesian networks and their accompanying graphical models are widely used for prediction and analysis across many disciplines. We will reformulate these in terms of linear maps. This reformulation will suggest a natural extension, which we will show is equivalent to standard textbook quantum mechanics. Therefore, this extension will be termed quantum. However, the term quantum should not be taken to imply this extension is necessarily only of utility in situations traditionally thought of as in the domain of quantum mechanics. In principle, it may be employed in any modelling situation, say forecasting the weather or the stock market---it is up to experiment to determine if this extension is useful in practice. Even restricting to the domain of quantum mechanics, with this new formulation the advantages of Bayesian networks can be maintained for models incorporating quantum and mixed classical-quantum behavior. The use of these will be illustrated by various basic examples. Parrondo's paradox refers to the situation where two, multi-round games with a fixed winning criteria, both with probability greater than one-half for one player to win, are combined. Using a possibly biased coin to determine the rule to employ for each round, paradoxically, the previously losing player now wins the combined game with probabilitygreater than one-half. Using the extended Bayesian networks, we will formulate and analyze classical observed, classical hidden, and quantum versions of a game that displays this paradox, finding bounds for the discrepancy from naive expectations for the occurrence of the paradox. A quantum paradox inspired by Parrondo's paradox will also be analyzed. We will prove a bound for the discrepancy from naive expectations for this paradox as well. Games involving quantum walks that achieve this bound will be presented.

  4. Risk Assessment for Mobile Systems Through a Multilayered Hierarchical Bayesian Network.

    PubMed

    Li, Shancang; Tryfonas, Theo; Russell, Gordon; Andriotis, Panagiotis

    2016-08-01

    Mobile systems are facing a number of application vulnerabilities that can be combined together and utilized to penetrate systems with devastating impact. When assessing the overall security of a mobile system, it is important to assess the security risks posed by each mobile applications (apps), thus gaining a stronger understanding of any vulnerabilities present. This paper aims at developing a three-layer framework that assesses the potential risks which apps introduce within the Android mobile systems. A Bayesian risk graphical model is proposed to evaluate risk propagation in a layered risk architecture. By integrating static analysis, dynamic analysis, and behavior analysis in a hierarchical framework, the risks and their propagation through each layer are well modeled by the Bayesian risk graph, which can quantitatively analyze risks faced to both apps and mobile systems. The proposed hierarchical Bayesian risk graph model offers a novel way to investigate the security risks in mobile environment and enables users and administrators to evaluate the potential risks. This strategy allows to strengthen both app security as well as the security of the entire system.

  5. Spatial Bayesian belief networks as a planning decision tool for mapping ecosystem services trade-offs on forested landscapes.

    PubMed

    Gonzalez-Redin, Julen; Luque, Sandra; Poggio, Laura; Smith, Ron; Gimona, Alessandro

    2016-01-01

    An integrated methodology, based on linking Bayesian belief networks (BBN) with GIS, is proposed for combining available evidence to help forest managers evaluate implications and trade-offs between forest production and conservation measures to preserve biodiversity in forested habitats. A Bayesian belief network is a probabilistic graphical model that represents variables and their dependencies through specifying probabilistic relationships. In spatially explicit decision problems where it is difficult to choose appropriate combinations of interventions, the proposed integration of a BBN with GIS helped to facilitate shared understanding of the human-landscape relationships, while fostering collective management that can be incorporated into landscape planning processes. Trades-offs become more and more relevant in these landscape contexts where the participation of many and varied stakeholder groups is indispensable. With these challenges in mind, our integrated approach incorporates GIS-based data with expert knowledge to consider two different land use interests - biodiversity value for conservation and timber production potential - with the focus on a complex mountain landscape in the French Alps. The spatial models produced provided different alternatives of suitable sites that can be used by policy makers in order to support conservation priorities while addressing management options. The approach provided provide a common reasoning language among different experts from different backgrounds while helped to identify spatially explicit conflictive areas. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Markov blanket-based approach for learning multi-dimensional Bayesian network classifiers: an application to predict the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39).

    PubMed

    Borchani, Hanen; Bielza, Concha; Martı Nez-Martı N, Pablo; Larrañaga, Pedro

    2012-12-01

    Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket around each class variable using the HITON algorithm, then specifying the directionality over the MBC subgraphs. Our approach is applied to the prediction problem of the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39) in order to estimate the health-related quality of life of Parkinson's patients. Fivefold cross-validation experiments were carried out on randomly generated synthetic data sets, Yeast data set, as well as on a real-world Parkinson's disease data set containing 488 patients. The experimental study, including comparison with additional Bayesian network-based approaches, back propagation for multi-label learning, multi-label k-nearest neighbor, multinomial logistic regression, ordinary least squares, and censored least absolute deviations, shows encouraging results in terms of predictive accuracy as well as the identification of dependence relationships among class and feature variables. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Probabilistic evaluation of n traces with no putative source: A likelihood ratio based approach in an investigative framework.

    PubMed

    De March, I; Sironi, E; Taroni, F

    2016-09-01

    Analysis of marks recovered from different crime scenes can be useful to detect a linkage between criminal cases, even though a putative source for the recovered traces is not available. This particular circumstance is often encountered in the early stage of investigations and thus, the evaluation of evidence association may provide useful information for the investigators. This association is evaluated here from a probabilistic point of view: a likelihood ratio based approach is suggested in order to quantify the strength of the evidence of trace association in the light of two mutually exclusive propositions, namely that the n traces come from a common source or from an unspecified number of sources. To deal with this kind of problem, probabilistic graphical models are used, in form of Bayesian networks and object-oriented Bayesian networks, allowing users to intuitively handle with uncertainty related to the inferential problem. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Data-driven Modeling of Metal-oxide Sensors with Dynamic Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Gosangi, Rakesh; Gutierrez-Osuna, Ricardo

    2011-09-01

    We present a data-driven probabilistic framework to model the transient response of MOX sensors modulated with a sequence of voltage steps. Analytical models of MOX sensors are usually built based on the physico-chemical properties of the sensing materials. Although building these models provides an insight into the sensor behavior, they also require a thorough understanding of the underlying operating principles. Here we propose a data-driven approach to characterize the dynamical relationship between sensor inputs and outputs. Namely, we use dynamic Bayesian networks (DBNs), probabilistic models that represent temporal relations between a set of random variables. We identify a set of control variables that influence the sensor responses, create a graphical representation that captures the causal relations between these variables, and finally train the model with experimental data. We validated the approach on experimental data in terms of predictive accuracy and classification performance. Our results show that DBNs can accurately predict the dynamic response of MOX sensors, as well as capture the discriminatory information present in the sensor transients.

  9. Using Object Oriented Bayesian Networks to Model Linkage, Linkage Disequilibrium and Mutations between STR Markers

    PubMed Central

    Kling, Daniel; Egeland, Thore; Mostad, Petter

    2012-01-01

    In a number of applications there is a need to determine the most likely pedigree for a group of persons based on genetic markers. Adequate models are needed to reach this goal. The markers used to perform the statistical calculations can be linked and there may also be linkage disequilibrium (LD) in the population. The purpose of this paper is to present a graphical Bayesian Network framework to deal with such data. Potential LD is normally ignored and it is important to verify that the resulting calculations are not biased. Even if linkage does not influence results for regular paternity cases, it may have substantial impact on likelihood ratios involving other, more extended pedigrees. Models for LD influence likelihoods for all pedigrees to some degree and an initial estimate of the impact of ignoring LD and/or linkage is desirable, going beyond mere rules of thumb based on marker distance. Furthermore, we show how one can readily include a mutation model in the Bayesian Network; extending other programs or formulas to include such models may require considerable amounts of work and will in many case not be practical. As an example, we consider the two STR markers vWa and D12S391. We estimate probabilities for population haplotypes to account for LD using a method based on data from trios, while an estimate for the degree of linkage is taken from the literature. The results show that accounting for haplotype frequencies is unnecessary in most cases for this specific pair of markers. When doing calculations on regular paternity cases, the markers can be considered statistically independent. In more complex cases of disputed relatedness, for instance cases involving siblings or so-called deficient cases, or when small differences in the LR matter, independence should not be assumed. (The networks are freely available at http://arken.umb.no/~dakl/BayesianNetworks.) PMID:22984448

  10. From least squares to multilevel modeling: A graphical introduction to Bayesian inference

    NASA Astrophysics Data System (ADS)

    Loredo, Thomas J.

    2016-01-01

    This tutorial presentation will introduce some of the key ideas and techniques involved in applying Bayesian methods to problems in astrostatistics. The focus will be on the big picture: understanding the foundations (interpreting probability, Bayes's theorem, the law of total probability and marginalization), making connections to traditional methods (propagation of errors, least squares, chi-squared, maximum likelihood, Monte Carlo simulation), and highlighting problems where a Bayesian approach can be particularly powerful (Poisson processes, density estimation and curve fitting with measurement error). The "graphical" component of the title reflects an emphasis on pictorial representations of some of the math, but also on the use of graphical models (multilevel or hierarchical models) for analyzing complex data. Code for some examples from the talk will be available to participants, in Python and in the Stan probabilistic programming language.

  11. An approach based on Hierarchical Bayesian Graphical Models for measurement interpretation under uncertainty

    NASA Astrophysics Data System (ADS)

    Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter

    2017-02-01

    It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.

  12. Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks.

    PubMed

    Colclough, Giles L; Woolrich, Mark W; Harrison, Samuel J; Rojas López, Pedro A; Valdes-Sosa, Pedro A; Smith, Stephen M

    2018-05-07

    A Bayesian model for sparse, hierarchical, inver-covariance estimation is presented, and applied to multi-subject functional connectivity estimation in the human brain. It enables simultaneous inference of the strength of connectivity between brain regions at both subject and population level, and is applicable to fMRI, MEG and EEG data. Two versions of the model can encourage sparse connectivity, either using continuous priors to suppress irrelevant connections, or using an explicit description of the network structure to estimate the connection probability between each pair of regions. A large evaluation of this model, and thirteen methods that represent the state of the art of inverse covariance modelling, is conducted using both simulated and resting-state functional imaging datasets. Our novel Bayesian approach has similar performance to the best extant alternative, Ng et al.'s Sparse Group Gaussian Graphical Model algorithm, which also is based on a hierarchical structure. Using data from the Human Connectome Project, we show that these hierarchical models are able to reduce the measurement error in MEG beta-band functional networks by 10%, producing concomitant increases in estimates of the genetic influence on functional connectivity. Copyright © 2018. Published by Elsevier Inc.

  13. Network inference using informative priors

    PubMed Central

    Mukherjee, Sach; Speed, Terence P.

    2008-01-01

    Recent years have seen much interest in the study of systems characterized by multiple interacting components. A class of statistical models called graphical models, in which graphs are used to represent probabilistic relationships between variables, provides a framework for formal inference regarding such systems. In many settings, the object of inference is the network structure itself. This problem of “network inference” is well known to be a challenging one. However, in scientific settings there is very often existing information regarding network connectivity. A natural idea then is to take account of such information during inference. This article addresses the question of incorporating prior information into network inference. We focus on directed models called Bayesian networks, and use Markov chain Monte Carlo to draw samples from posterior distributions over network structures. We introduce prior distributions on graphs capable of capturing information regarding network features including edges, classes of edges, degree distributions, and sparsity. We illustrate our approach in the context of systems biology, applying our methods to network inference in cancer signaling. PMID:18799736

  14. Network inference using informative priors.

    PubMed

    Mukherjee, Sach; Speed, Terence P

    2008-09-23

    Recent years have seen much interest in the study of systems characterized by multiple interacting components. A class of statistical models called graphical models, in which graphs are used to represent probabilistic relationships between variables, provides a framework for formal inference regarding such systems. In many settings, the object of inference is the network structure itself. This problem of "network inference" is well known to be a challenging one. However, in scientific settings there is very often existing information regarding network connectivity. A natural idea then is to take account of such information during inference. This article addresses the question of incorporating prior information into network inference. We focus on directed models called Bayesian networks, and use Markov chain Monte Carlo to draw samples from posterior distributions over network structures. We introduce prior distributions on graphs capable of capturing information regarding network features including edges, classes of edges, degree distributions, and sparsity. We illustrate our approach in the context of systems biology, applying our methods to network inference in cancer signaling.

  15. Combining Bayesian Networks and Agent Based Modeling to develop a decision-support model in Vietnam

    NASA Astrophysics Data System (ADS)

    Nong, Bao Anh; Ertsen, Maurits; Schoups, Gerrit

    2016-04-01

    Complexity and uncertainty in natural resources management have been focus themes in recent years. Within these debates, with the aim to define an approach feasible for water management practice, we are developing an integrated conceptual modeling framework for simulating decision-making processes of citizens, in our case in the Day river area, Vietnam. The model combines Bayesian Networks (BNs) and Agent-Based Modeling (ABM). BNs are able to combine both qualitative data from consultants / experts / stakeholders, and quantitative data from observations on different phenomena or outcomes from other models. Further strengths of BNs are that the relationship between variables in the system is presented in a graphical interface, and that components of uncertainty are explicitly related to their probabilistic dependencies. A disadvantage is that BNs cannot easily identify the feedback of agents in the system once changes appear. Hence, ABM was adopted to represent the reaction among stakeholders under changes. The modeling framework is developed as an attempt to gain better understanding about citizen's behavior and factors influencing their decisions in order to reduce uncertainty in the implementation of water management policy.

  16. Model Diagnostics for Bayesian Networks

    ERIC Educational Resources Information Center

    Sinharay, Sandip

    2006-01-01

    Bayesian networks are frequently used in educational assessments primarily for learning about students' knowledge and skills. There is a lack of works on assessing fit of Bayesian networks. This article employs the posterior predictive model checking method, a popular Bayesian model checking tool, to assess fit of simple Bayesian networks. A…

  17. A Bayesian Belief Network approach to assess the potential of non wood forest products for small scale forest owners

    NASA Astrophysics Data System (ADS)

    Vacik, Harald; Huber, Patrick; Hujala, Teppo; Kurtilla, Mikko; Wolfslehner, Bernhard

    2015-04-01

    It is an integral element of the European understanding of sustainable forest management to foster the design and marketing of forest products, non-wood forest products (NWFPs) and services that go beyond the production of timber. Despite the relevance of NWFPs in Europe, forest management and planning methods have been traditionally tailored towards wood and wood products, because most forest management models and silviculture techniques were developed to ensure a sustained production of timber. Although several approaches exist which explicitly consider NWFPs as management objectives in forest planning, specific models are needed for the assessment of their production potential in different environmental contexts and for different management regimes. Empirical data supporting a comprehensive assessment of the potential of NWFPs are rare, thus making development of statistical models particularly problematic. However, the complex causal relationships between the sustained production of NWFPs, the available ecological resources, as well as the organizational and the market potential of forest management regimes are well suited for knowledge-based expert models. Bayesian belief networks (BBNs) are a kind of probabilistic graphical model that have become very popular to practitioners and scientists mainly due to the powerful probability theory involved, which makes BBNs suitable to deal with a wide range of environmental problems. In this contribution we present the development of a Bayesian belief network to assess the potential of NWFPs for small scale forest owners. A three stage iterative process with stakeholder and expert participation was used to develop the Bayesian Network within the frame of the StarTree Project. The group of participants varied in the stages of the modelling process. A core team, consisting of one technical expert and two domain experts was responsible for the entire modelling process as well as for the first prototype of the network structure, including nodes and relationships. A top-level causal network, was further decomposed to sub level networks. Stakeholder participation including a group of experts from different related subject areas was used in model verification and validation. We demonstrate that BBNs can be used to transfer expert knowledge from science to practice and thus have the ability to contribute to improved problem understanding of non-expert decision makers for a sustainable production of NWFPs.

  18. Taming Many-Parameter BSM Models with Bayesian Neural Networks

    NASA Astrophysics Data System (ADS)

    Kuchera, M. P.; Karbo, A.; Prosper, H. B.; Sanchez, A.; Taylor, J. Z.

    2017-09-01

    The search for physics Beyond the Standard Model (BSM) is a major focus of large-scale high energy physics experiments. One method is to look for specific deviations from the Standard Model that are predicted by BSM models. In cases where the model has a large number of free parameters, standard search methods become intractable due to computation time. This talk presents results using Bayesian Neural Networks, a supervised machine learning method, to enable the study of higher-dimensional models. The popular phenomenological Minimal Supersymmetric Standard Model was studied as an example of the feasibility and usefulness of this method. Graphics Processing Units (GPUs) are used to expedite the calculations. Cross-section predictions for 13 TeV proton collisions will be presented. My participation in the Conference Experience for Undergraduates (CEU) in 2004-2006 exposed me to the national and global significance of cutting-edge research. At the 2005 CEU, I presented work from the previous summer's SULI internship at Lawrence Berkeley Laboratory, where I learned to program while working on the Majorana Project. That work inspired me to follow a similar research path, which led me to my current work on computational methods applied to BSM physics.

  19. Construction of monitoring model and algorithm design on passenger security during shipping based on improved Bayesian network.

    PubMed

    Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng

    2014-01-01

    A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping.

  20. Construction of Monitoring Model and Algorithm Design on Passenger Security during Shipping Based on Improved Bayesian Network

    PubMed Central

    Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng

    2014-01-01

    A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping. PMID:25254227

  1. Sign: large-scale gene network estimation environment for high performance computing.

    PubMed

    Tamada, Yoshinori; Shimamura, Teppei; Yamaguchi, Rui; Imoto, Seiya; Nagasaki, Masao; Miyano, Satoru

    2011-01-01

    Our research group is currently developing software for estimating large-scale gene networks from gene expression data. The software, called SiGN, is specifically designed for the Japanese flagship supercomputer "K computer" which is planned to achieve 10 petaflops in 2012, and other high performance computing environments including Human Genome Center (HGC) supercomputer system. SiGN is a collection of gene network estimation software with three different sub-programs: SiGN-BN, SiGN-SSM and SiGN-L1. In these three programs, five different models are available: static and dynamic nonparametric Bayesian networks, state space models, graphical Gaussian models, and vector autoregressive models. All these models require a huge amount of computational resources for estimating large-scale gene networks and therefore are designed to be able to exploit the speed of 10 petaflops. The software will be available freely for "K computer" and HGC supercomputer system users. The estimated networks can be viewed and analyzed by Cell Illustrator Online and SBiP (Systems Biology integrative Pipeline). The software project web site is available at http://sign.hgc.jp/ .

  2. A Microsoft-Excel-based tool for running and critically appraising network meta-analyses--an overview and application of NetMetaXL.

    PubMed

    Brown, Stephen; Hutton, Brian; Clifford, Tammy; Coyle, Doug; Grima, Daniel; Wells, George; Cameron, Chris

    2014-09-29

    The use of network meta-analysis has increased dramatically in recent years. WinBUGS, a freely available Bayesian software package, has been the most widely used software package to conduct network meta-analyses. However, the learning curve for WinBUGS can be daunting, especially for new users. Furthermore, critical appraisal of network meta-analyses conducted in WinBUGS can be challenging given its limited data manipulation capabilities and the fact that generation of graphical output from network meta-analyses often relies on different software packages than the analyses themselves. We developed a freely available Microsoft-Excel-based tool called NetMetaXL, programmed in Visual Basic for Applications, which provides an interface for conducting a Bayesian network meta-analysis using WinBUGS from within Microsoft Excel. . This tool allows the user to easily prepare and enter data, set model assumptions, and run the network meta-analysis, with results being automatically displayed in an Excel spreadsheet. It also contains macros that use NetMetaXL's interface to generate evidence network diagrams, forest plots, league tables of pairwise comparisons, probability plots (rankograms), and inconsistency plots within Microsoft Excel. All figures generated are publication quality, thereby increasing the efficiency of knowledge transfer and manuscript preparation. We demonstrate the application of NetMetaXL using data from a network meta-analysis published previously which compares combined resynchronization and implantable defibrillator therapy in left ventricular dysfunction. We replicate results from the previous publication while demonstrating result summaries generated by the software. Use of the freely available NetMetaXL successfully demonstrated its ability to make running network meta-analyses more accessible to novice WinBUGS users by allowing analyses to be conducted entirely within Microsoft Excel. NetMetaXL also allows for more efficient and transparent critical appraisal of network meta-analyses, enhanced standardization of reporting, and integration with health economic evaluations which are frequently Excel-based.

  3. A Microsoft-Excel-based tool for running and critically appraising network meta-analyses—an overview and application of NetMetaXL

    PubMed Central

    2014-01-01

    Background The use of network meta-analysis has increased dramatically in recent years. WinBUGS, a freely available Bayesian software package, has been the most widely used software package to conduct network meta-analyses. However, the learning curve for WinBUGS can be daunting, especially for new users. Furthermore, critical appraisal of network meta-analyses conducted in WinBUGS can be challenging given its limited data manipulation capabilities and the fact that generation of graphical output from network meta-analyses often relies on different software packages than the analyses themselves. Methods We developed a freely available Microsoft-Excel-based tool called NetMetaXL, programmed in Visual Basic for Applications, which provides an interface for conducting a Bayesian network meta-analysis using WinBUGS from within Microsoft Excel. . This tool allows the user to easily prepare and enter data, set model assumptions, and run the network meta-analysis, with results being automatically displayed in an Excel spreadsheet. It also contains macros that use NetMetaXL’s interface to generate evidence network diagrams, forest plots, league tables of pairwise comparisons, probability plots (rankograms), and inconsistency plots within Microsoft Excel. All figures generated are publication quality, thereby increasing the efficiency of knowledge transfer and manuscript preparation. Results We demonstrate the application of NetMetaXL using data from a network meta-analysis published previously which compares combined resynchronization and implantable defibrillator therapy in left ventricular dysfunction. We replicate results from the previous publication while demonstrating result summaries generated by the software. Conclusions Use of the freely available NetMetaXL successfully demonstrated its ability to make running network meta-analyses more accessible to novice WinBUGS users by allowing analyses to be conducted entirely within Microsoft Excel. NetMetaXL also allows for more efficient and transparent critical appraisal of network meta-analyses, enhanced standardization of reporting, and integration with health economic evaluations which are frequently Excel-based. PMID:25267416

  4. Sensor fusion V; Proceedings of the Meeting, Boston, MA, Nov. 15-17, 1992

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S. (Editor)

    1992-01-01

    Topics addressed include 3D object perception, human-machine interface in multisensor systems, sensor fusion architecture, fusion of multiple and distributed sensors, interface and decision models for sensor fusion, computational networks, simple sensing for complex action, multisensor-based control, and metrology and calibration of multisensor systems. Particular attention is given to controlling 3D objects by sketching 2D views, the graphical simulation and animation environment for flexible structure robots, designing robotic systems from sensorimotor modules, cylindrical object reconstruction from a sequence of images, an accurate estimation of surface properties by integrating information using Bayesian networks, an adaptive fusion model for a distributed detection system, multiple concurrent object descriptions in support of autonomous navigation, robot control with multiple sensors and heuristic knowledge, and optical array detectors for image sensors calibration. (No individual items are abstracted in this volume)

  5. A Bayesian Network Approach to Modeling Learning Progressions and Task Performance. CRESST Report 776

    ERIC Educational Resources Information Center

    West, Patti; Rutstein, Daisy Wise; Mislevy, Robert J.; Liu, Junhui; Choi, Younyoung; Levy, Roy; Crawford, Aaron; DiCerbo, Kristen E.; Chappel, Kristina; Behrens, John T.

    2010-01-01

    A major issue in the study of learning progressions (LPs) is linking student performance on assessment tasks to the progressions. This report describes the challenges faced in making this linkage using Bayesian networks to model LPs in the field of computer networking. The ideas are illustrated with exemplar Bayesian networks built on Cisco…

  6. Stochastic inference with spiking neurons in the high-conductance state

    NASA Astrophysics Data System (ADS)

    Petrovici, Mihai A.; Bill, Johannes; Bytschok, Ilja; Schemmel, Johannes; Meier, Karlheinz

    2016-10-01

    The highly variable dynamics of neocortical circuits observed in vivo have been hypothesized to represent a signature of ongoing stochastic inference but stand in apparent contrast to the deterministic response of neurons measured in vitro. Based on a propagation of the membrane autocorrelation across spike bursts, we provide an analytical derivation of the neural activation function that holds for a large parameter space, including the high-conductance state. On this basis, we show how an ensemble of leaky integrate-and-fire neurons with conductance-based synapses embedded in a spiking environment can attain the correct firing statistics for sampling from a well-defined target distribution. For recurrent networks, we examine convergence toward stationarity in computer simulations and demonstrate sample-based Bayesian inference in a mixed graphical model. This points to a new computational role of high-conductance states and establishes a rigorous link between deterministic neuron models and functional stochastic dynamics on the network level.

  7. Using Bayesian belief networks in adaptive management.

    Treesearch

    J.B. Nyberg; B.G. Marcot; R. Sulyma

    2006-01-01

    Bayesian belief and decision networks are relatively new modeling methods that are especially well suited to adaptive-management applications, but they appear not to have been widely used in adaptive management to date. Bayesian belief networks (BBNs) can serve many purposes for practioners of adaptive management, from illustrating system relations conceptually to...

  8. Modeling Diagnostic Assessments with Bayesian Networks

    ERIC Educational Resources Information Center

    Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego

    2007-01-01

    This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…

  9. Bayesian networks for maritime traffic accident prevention: benefits and challenges.

    PubMed

    Hänninen, Maria

    2014-12-01

    Bayesian networks are quantitative modeling tools whose applications to the maritime traffic safety context are becoming more popular. This paper discusses the utilization of Bayesian networks in maritime safety modeling. Based on literature and the author's own experiences, the paper studies what Bayesian networks can offer to maritime accident prevention and safety modeling and discusses a few challenges in their application to this context. It is argued that the capability of representing rather complex, not necessarily causal but uncertain relationships makes Bayesian networks an attractive modeling tool for the maritime safety and accidents. Furthermore, as the maritime accident and safety data is still rather scarce and has some quality problems, the possibility to combine data with expert knowledge and the easy way of updating the model after acquiring more evidence further enhance their feasibility. However, eliciting the probabilities from the maritime experts might be challenging and the model validation can be tricky. It is concluded that with the utilization of several data sources, Bayesian updating, dynamic modeling, and hidden nodes for latent variables, Bayesian networks are rather well-suited tools for the maritime safety management and decision-making. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Evidence reasoning method for constructing conditional probability tables in a Bayesian network of multimorbidity.

    PubMed

    Du, Yuanwei; Guo, Yubin

    2015-01-01

    The intrinsic mechanism of multimorbidity is difficult to recognize and prediction and diagnosis are difficult to carry out accordingly. Bayesian networks can help to diagnose multimorbidity in health care, but it is difficult to obtain the conditional probability table (CPT) because of the lack of clinically statistical data. Today, expert knowledge and experience are increasingly used in training Bayesian networks in order to help predict or diagnose diseases, but the CPT in Bayesian networks is usually irrational or ineffective for ignoring realistic constraints especially in multimorbidity. In order to solve these problems, an evidence reasoning (ER) approach is employed to extract and fuse inference data from experts using a belief distribution and recursive ER algorithm, based on which evidence reasoning method for constructing conditional probability tables in Bayesian network of multimorbidity is presented step by step. A multimorbidity numerical example is used to demonstrate the method and prove its feasibility and application. Bayesian network can be determined as long as the inference assessment is inferred by each expert according to his/her knowledge or experience. Our method is more effective than existing methods for extracting expert inference data accurately and is fused effectively for constructing CPTs in a Bayesian network of multimorbidity.

  11. A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.

    2018-02-01

    Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.

  12. Expectation propagation for large scale Bayesian inference of non-linear molecular networks from perturbation data.

    PubMed

    Narimani, Zahra; Beigy, Hamid; Ahmad, Ashar; Masoudi-Nejad, Ali; Fröhlich, Holger

    2017-01-01

    Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference techniques, such as Dynamic Bayesian Networks and ordinary differential equations, are limited by their computational complexity and thus make large scale inference infeasible. This is specifically true if a Bayesian framework is applied in order to deal with the unavoidable uncertainty about the correct model. We devise a novel Bayesian network reverse engineering approach using ordinary differential equations with the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and time dependent perturbations with unknown targets, one of our main contributions is the use of Expectation Propagation, an algorithm for approximate Bayesian inference over large scale network structures in short computation time. We further explore the possibility of integrating prior knowledge into network inference. We evaluate the proposed model on DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing network inference methods.

  13. Learning oncogenetic networks by reducing to mixed integer linear programming.

    PubMed

    Shahrabi Farahani, Hossein; Lagergren, Jens

    2013-01-01

    Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.

  14. Using a Bayesian network to clarify areas requiring research in a host-pathogen system.

    PubMed

    Bower, D S; Mengersen, K; Alford, R A; Schwarzkopf, L

    2017-12-01

    Bayesian network analyses can be used to interactively change the strength of effect of variables in a model to explore complex relationships in new ways. In doing so, they allow one to identify influential nodes that are not well studied empirically so that future research can be prioritized. We identified relationships in host and pathogen biology to examine disease-driven declines of amphibians associated with amphibian chytrid fungus (Batrachochytrium dendrobatidis). We constructed a Bayesian network consisting of behavioral, genetic, physiological, and environmental variables that influence disease and used them to predict host population trends. We varied the impacts of specific variables in the model to reveal factors with the most influence on host population trend. The behavior of the nodes (the way in which the variables probabilistically responded to changes in states of the parents, which are the nodes or variables that directly influenced them in the graphical model) was consistent with published results. The frog population had a 49% probability of decline when all states were set at their original values, and this probability increased when body temperatures were cold, the immune system was not suppressing infection, and the ambient environment was conducive to growth of B. dendrobatidis. These findings suggest the construction of our model reflected the complex relationships characteristic of host-pathogen interactions. Changes to climatic variables alone did not strongly influence the probability of population decline, which suggests that climate interacts with other factors such as the capacity of the frog immune system to suppress disease. Changes to the adaptive immune system and disease reservoirs had a large effect on the population trend, but there was little empirical information available for model construction. Our model inputs can be used as a base to examine other systems, and our results show that such analyses are useful tools for reviewing existing literature, identifying links poorly supported by evidence, and understanding complexities in emerging infectious-disease systems. © 2017 Society for Conservation Biology.

  15. Advanced obstacle avoidance for a laser based wheelchair using optimised Bayesian neural networks.

    PubMed

    Trieu, Hoang T; Nguyen, Hung T; Willey, Keith

    2008-01-01

    In this paper we present an advanced method of obstacle avoidance for a laser based intelligent wheelchair using optimized Bayesian neural networks. Three neural networks are designed for three separate sub-tasks: passing through a door way, corridor and wall following and general obstacle avoidance. The accurate usable accessible space is determined by including the actual wheelchair dimensions in a real-time map used as inputs to each networks. Data acquisitions are performed separately to collect the patterns required for specified sub-tasks. Bayesian frame work is used to determine the optimal neural network structure in each case. Then these networks are trained under the supervision of Bayesian rule. Experiment results showed that compare to the VFH algorithm our neural networks navigated a smoother path following a near optimum trajectory.

  16. Bayesian network modeling applied to coastal geomorphology: lessons learned from a decade of experimentation and application

    NASA Astrophysics Data System (ADS)

    Plant, N. G.; Thieler, E. R.; Gutierrez, B.; Lentz, E. E.; Zeigler, S. L.; Van Dongeren, A.; Fienen, M. N.

    2016-12-01

    We evaluate the strengths and weaknesses of Bayesian networks that have been used to address scientific and decision-support questions related to coastal geomorphology. We will provide an overview of coastal geomorphology research that has used Bayesian networks and describe what this approach can do and when it works (or fails to work). Over the past decade, Bayesian networks have been formulated to analyze the multi-variate structure and evolution of coastal morphology and associated human and ecological impacts. The approach relates observable system variables to each other by estimating discrete correlations. The resulting Bayesian-networks make predictions that propagate errors, conduct inference via Bayes rule, or both. In scientific applications, the model results are useful for hypothesis testing, using confidence estimates to gage the strength of tests while applications to coastal resource management are aimed at decision-support, where the probabilities of desired ecosystems outcomes are evaluated. The range of Bayesian-network applications to coastal morphology includes emulation of high-resolution wave transformation models to make oceanographic predictions, morphologic response to storms and/or sea-level rise, groundwater response to sea-level rise and morphologic variability, habitat suitability for endangered species, and assessment of monetary or human-life risk associated with storms. All of these examples are based on vast observational data sets, numerical model output, or both. We will discuss the progression of our experiments, which has included testing whether the Bayesian-network approach can be implemented and is appropriate for addressing basic and applied scientific problems and evaluating the hindcast and forecast skill of these implementations. We will present and discuss calibration/validation tests that are used to assess the robustness of Bayesian-network models and we will compare these results to tests of other models. This will demonstrate how Bayesian networks are used to extract new insights about coastal morphologic behavior, assess impacts to societal and ecological systems, and communicate probabilistic predictions to decision makers.

  17. Robust Learning of High-dimensional Biological Networks with Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Nägele, Andreas; Dejori, Mathäus; Stetter, Martin

    Structure learning of Bayesian networks applied to gene expression data has become a potentially useful method to estimate interactions between genes. However, the NP-hardness of Bayesian network structure learning renders the reconstruction of the full genetic network with thousands of genes unfeasible. Consequently, the maximal network size is usually restricted dramatically to a small set of genes (corresponding with variables in the Bayesian network). Although this feature reduction step makes structure learning computationally tractable, on the downside, the learned structure might be adversely affected due to the introduction of missing genes. Additionally, gene expression data are usually very sparse with respect to the number of samples, i.e., the number of genes is much greater than the number of different observations. Given these problems, learning robust network features from microarray data is a challenging task. This chapter presents several approaches tackling the robustness issue in order to obtain a more reliable estimation of learned network features.

  18. Bayesian Networks Improve Causal Environmental Assessments for Evidence-Based Policy.

    PubMed

    Carriger, John F; Barron, Mace G; Newman, Michael C

    2016-12-20

    Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on valued ecological resources. These aspects are demonstrated through hypothetical problem scenarios that explore some major benefits of using Bayesian networks for reasoning and making inferences in evidence-based policy.

  19. Calibrating Bayesian Network Representations of Social-Behavioral Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, Paul D.; Walsh, Stephen J.

    2010-04-08

    While human behavior has long been studied, recent and ongoing advances in computational modeling present opportunities for recasting research outcomes in human behavior. In this paper we describe how Bayesian networks can represent outcomes of human behavior research. We demonstrate a Bayesian network that represents political radicalization research – and show a corresponding visual representation of aspects of this research outcome. Since Bayesian networks can be quantitatively compared with external observations, the representation can also be used for empirical assessments of the research which the network summarizes. For a political radicalization model based on published research, we show this empiricalmore » comparison with data taken from the Minorities at Risk Organizational Behaviors database.« less

  20. How good is crude MDL for solving the bias-variance dilemma? An empirical investigation based on Bayesian networks.

    PubMed

    Cruz-Ramírez, Nicandro; Acosta-Mesa, Héctor Gabriel; Mezura-Montes, Efrén; Guerra-Hernández, Alejandro; Hoyos-Rivera, Guillermo de Jesús; Barrientos-Martínez, Rocío Erandi; Gutiérrez-Fragoso, Karina; Nava-Fernández, Luis Alonso; González-Gaspar, Patricia; Novoa-del-Toro, Elva María; Aguilera-Rueda, Vicente Josué; Ameca-Alducin, María Yaneli

    2014-01-01

    The bias-variance dilemma is a well-known and important problem in Machine Learning. It basically relates the generalization capability (goodness of fit) of a learning method to its corresponding complexity. When we have enough data at hand, it is possible to use these data in such a way so as to minimize overfitting (the risk of selecting a complex model that generalizes poorly). Unfortunately, there are many situations where we simply do not have this required amount of data. Thus, we need to find methods capable of efficiently exploiting the available data while avoiding overfitting. Different metrics have been proposed to achieve this goal: the Minimum Description Length principle (MDL), Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC), among others. In this paper, we focus on crude MDL and empirically evaluate its performance in selecting models with a good balance between goodness of fit and complexity: the so-called bias-variance dilemma, decomposition or tradeoff. Although the graphical interaction between these dimensions (bias and variance) is ubiquitous in the Machine Learning literature, few works present experimental evidence to recover such interaction. In our experiments, we argue that the resulting graphs allow us to gain insights that are difficult to unveil otherwise: that crude MDL naturally selects balanced models in terms of bias-variance, which not necessarily need be the gold-standard ones. We carry out these experiments using a specific model: a Bayesian network. In spite of these motivating results, we also should not overlook three other components that may significantly affect the final model selection: the search procedure, the noise rate and the sample size.

  1. How Good Is Crude MDL for Solving the Bias-Variance Dilemma? An Empirical Investigation Based on Bayesian Networks

    PubMed Central

    Cruz-Ramírez, Nicandro; Acosta-Mesa, Héctor Gabriel; Mezura-Montes, Efrén; Guerra-Hernández, Alejandro; Hoyos-Rivera, Guillermo de Jesús; Barrientos-Martínez, Rocío Erandi; Gutiérrez-Fragoso, Karina; Nava-Fernández, Luis Alonso; González-Gaspar, Patricia; Novoa-del-Toro, Elva María; Aguilera-Rueda, Vicente Josué; Ameca-Alducin, María Yaneli

    2014-01-01

    The bias-variance dilemma is a well-known and important problem in Machine Learning. It basically relates the generalization capability (goodness of fit) of a learning method to its corresponding complexity. When we have enough data at hand, it is possible to use these data in such a way so as to minimize overfitting (the risk of selecting a complex model that generalizes poorly). Unfortunately, there are many situations where we simply do not have this required amount of data. Thus, we need to find methods capable of efficiently exploiting the available data while avoiding overfitting. Different metrics have been proposed to achieve this goal: the Minimum Description Length principle (MDL), Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC), among others. In this paper, we focus on crude MDL and empirically evaluate its performance in selecting models with a good balance between goodness of fit and complexity: the so-called bias-variance dilemma, decomposition or tradeoff. Although the graphical interaction between these dimensions (bias and variance) is ubiquitous in the Machine Learning literature, few works present experimental evidence to recover such interaction. In our experiments, we argue that the resulting graphs allow us to gain insights that are difficult to unveil otherwise: that crude MDL naturally selects balanced models in terms of bias-variance, which not necessarily need be the gold-standard ones. We carry out these experiments using a specific model: a Bayesian network. In spite of these motivating results, we also should not overlook three other components that may significantly affect the final model selection: the search procedure, the noise rate and the sample size. PMID:24671204

  2. A Bayesian network approach for modeling local failure in lung cancer

    NASA Astrophysics Data System (ADS)

    Oh, Jung Hun; Craft, Jeffrey; Lozi, Rawan Al; Vaidya, Manushka; Meng, Yifan; Deasy, Joseph O.; Bradley, Jeffrey D.; El Naqa, Issam

    2011-03-01

    Locally advanced non-small cell lung cancer (NSCLC) patients suffer from a high local failure rate following radiotherapy. Despite many efforts to develop new dose-volume models for early detection of tumor local failure, there was no reported significant improvement in their application prospectively. Based on recent studies of biomarker proteins' role in hypoxia and inflammation in predicting tumor response to radiotherapy, we hypothesize that combining physical and biological factors with a suitable framework could improve the overall prediction. To test this hypothesis, we propose a graphical Bayesian network framework for predicting local failure in lung cancer. The proposed approach was tested using two different datasets of locally advanced NSCLC patients treated with radiotherapy. The first dataset was collected retrospectively, which comprises clinical and dosimetric variables only. The second dataset was collected prospectively in which in addition to clinical and dosimetric information, blood was drawn from the patients at various time points to extract candidate biomarkers as well. Our preliminary results show that the proposed method can be used as an efficient method to develop predictive models of local failure in these patients and to interpret relationships among the different variables in the models. We also demonstrate the potential use of heterogeneous physical and biological variables to improve the model prediction. With the first dataset, we achieved better performance compared with competing Bayesian-based classifiers. With the second dataset, the combined model had a slightly higher performance compared to individual physical and biological models, with the biological variables making the largest contribution. Our preliminary results highlight the potential of the proposed integrated approach for predicting post-radiotherapy local failure in NSCLC patients.

  3. An Exploratory Study Examining the Feasibility of Using Bayesian Networks to Predict Circuit Analysis Understanding

    ERIC Educational Resources Information Center

    Chung, Gregory K. W. K.; Dionne, Gary B.; Kaiser, William J.

    2006-01-01

    Our research question was whether we could develop a feasible technique, using Bayesian networks, to diagnose gaps in student knowledge. Thirty-four college-age participants completed tasks designed to measure conceptual knowledge, procedural knowledge, and problem-solving skills related to circuit analysis. A Bayesian network was used to model…

  4. A Comparison of General Diagnostic Models (GDM) and Bayesian Networks Using a Middle School Mathematics Test

    ERIC Educational Resources Information Center

    Wu, Haiyan

    2013-01-01

    General diagnostic models (GDMs) and Bayesian networks are mathematical frameworks that cover a wide variety of psychometric models. Both extend latent class models, and while GDMs also extend item response theory (IRT) models, Bayesian networks can be parameterized using discretized IRT. The purpose of this study is to examine similarities and…

  5. The image recognition based on neural network and Bayesian decision

    NASA Astrophysics Data System (ADS)

    Wang, Chugege

    2018-04-01

    The artificial neural network began in 1940, which is an important part of artificial intelligence. At present, it has become a hot topic in the fields of neuroscience, computer science, brain science, mathematics, and psychology. Thomas Bayes firstly reported the Bayesian theory in 1763. After the development in the twentieth century, it has been widespread in all areas of statistics. In recent years, due to the solution of the problem of high-dimensional integral calculation, Bayesian Statistics has been improved theoretically, which solved many problems that cannot be solved by classical statistics and is also applied to the interdisciplinary fields. In this paper, the related concepts and principles of the artificial neural network are introduced. It also summarizes the basic content and principle of Bayesian Statistics, and combines the artificial neural network technology and Bayesian decision theory and implement them in all aspects of image recognition, such as enhanced face detection method based on neural network and Bayesian decision, as well as the image classification based on the Bayesian decision. It can be seen that the combination of artificial intelligence and statistical algorithms has always been the hot research topic.

  6. Integrated situational awareness for cyber attack detection, analysis, and mitigation

    NASA Astrophysics Data System (ADS)

    Cheng, Yi; Sagduyu, Yalin; Deng, Julia; Li, Jason; Liu, Peng

    2012-06-01

    Real-time cyberspace situational awareness is critical for securing and protecting today's enterprise networks from various cyber threats. When a security incident occurs, network administrators and security analysts need to know what exactly has happened in the network, why it happened, and what actions or countermeasures should be taken to quickly mitigate the potential impacts. In this paper, we propose an integrated cyberspace situational awareness system for efficient cyber attack detection, analysis and mitigation in large-scale enterprise networks. Essentially, a cyberspace common operational picture will be developed, which is a multi-layer graphical model and can efficiently capture and represent the statuses, relationships, and interdependencies of various entities and elements within and among different levels of a network. Once shared among authorized users, this cyberspace common operational picture can provide an integrated view of the logical, physical, and cyber domains, and a unique visualization of disparate data sets to support decision makers. In addition, advanced analyses, such as Bayesian Network analysis, will be explored to address the information uncertainty, dynamic and complex cyber attack detection, and optimal impact mitigation issues. All the developed technologies will be further integrated into an automatic software toolkit to achieve near real-time cyberspace situational awareness and impact mitigation in large-scale computer networks.

  7. European Extremely Large Telescope (E-ELT) availability stochastic model: integrating failure mode and effect analysis (FMEA), influence diagram, and Bayesian network together

    NASA Astrophysics Data System (ADS)

    Verzichelli, Gianluca

    2016-08-01

    An Availability Stochastic Model for the E-ELT has been developed in GeNIE. The latter is a Graphical User Interface (GUI) for the Structural Modeling, Inference, and Learning Engine (SMILE), originally distributed by the Decision Systems Laboratory from the University of Pittsburgh, and now being a product of Bayes Fusion, LLC. The E-ELT will be the largest optical/near-infrared telescope in the world. Its design comprises an Alt-Azimuth mount reflecting telescope with a 39-metre-diameter segmented primary mirror, a 4-metre-diameter secondary mirror, a 3.75-metre-diameter tertiary mirror, adaptive optics and multiple instruments. This paper highlights how a Model has been developed for an earlier on assessment of the Telescope Avail- ability. It also describes the modular structure and the underlying assumptions that have been adopted for developing the model and demonstrates the integration of FMEA, Influence Diagram and Bayesian Network elements. These have been considered for a better characterization of the Model inputs and outputs and for taking into account Degraded-based Reliability (DBR). Lastly, it provides an overview of how the information and knowledge captured in the model may be used for an earlier on definition of the Failure, Detection, Isolation and Recovery (FDIR) Control Strategy and the Telescope Minimum Master Equipment List (T-MMEL).

  8. A Parallel and Incremental Approach for Data-Intensive Learning of Bayesian Networks.

    PubMed

    Yue, Kun; Fang, Qiyu; Wang, Xiaoling; Li, Jin; Liu, Weiyi

    2015-12-01

    Bayesian network (BN) has been adopted as the underlying model for representing and inferring uncertain knowledge. As the basis of realistic applications centered on probabilistic inferences, learning a BN from data is a critical subject of machine learning, artificial intelligence, and big data paradigms. Currently, it is necessary to extend the classical methods for learning BNs with respect to data-intensive computing or in cloud environments. In this paper, we propose a parallel and incremental approach for data-intensive learning of BNs from massive, distributed, and dynamically changing data by extending the classical scoring and search algorithm and using MapReduce. First, we adopt the minimum description length as the scoring metric and give the two-pass MapReduce-based algorithms for computing the required marginal probabilities and scoring the candidate graphical model from sample data. Then, we give the corresponding strategy for extending the classical hill-climbing algorithm to obtain the optimal structure, as well as that for storing a BN by pairs. Further, in view of the dynamic characteristics of the changing data, we give the concept of influence degree to measure the coincidence of the current BN with new data, and then propose the corresponding two-pass MapReduce-based algorithms for BNs incremental learning. Experimental results show the efficiency, scalability, and effectiveness of our methods.

  9. Data-driven confounder selection via Markov and Bayesian networks.

    PubMed

    Häggström, Jenny

    2018-06-01

    To unbiasedly estimate a causal effect on an outcome unconfoundedness is often assumed. If there is sufficient knowledge on the underlying causal structure then existing confounder selection criteria can be used to select subsets of the observed pretreatment covariates, X, sufficient for unconfoundedness, if such subsets exist. Here, estimation of these target subsets is considered when the underlying causal structure is unknown. The proposed method is to model the causal structure by a probabilistic graphical model, for example, a Markov or Bayesian network, estimate this graph from observed data and select the target subsets given the estimated graph. The approach is evaluated by simulation both in a high-dimensional setting where unconfoundedness holds given X and in a setting where unconfoundedness only holds given subsets of X. Several common target subsets are investigated and the selected subsets are compared with respect to accuracy in estimating the average causal effect. The proposed method is implemented with existing software that can easily handle high-dimensional data, in terms of large samples and large number of covariates. The results from the simulation study show that, if unconfoundedness holds given X, this approach is very successful in selecting the target subsets, outperforming alternative approaches based on random forests and LASSO, and that the subset estimating the target subset containing all causes of outcome yields smallest MSE in the average causal effect estimation. © 2017, The International Biometric Society.

  10. Classifying emotion in Twitter using Bayesian network

    NASA Astrophysics Data System (ADS)

    Surya Asriadie, Muhammad; Syahrul Mubarok, Mohamad; Adiwijaya

    2018-03-01

    Language is used to express not only facts, but also emotions. Emotions are noticeable from behavior up to the social media statuses written by a person. Analysis of emotions in a text is done in a variety of media such as Twitter. This paper studies classification of emotions on twitter using Bayesian network because of its ability to model uncertainty and relationships between features. The result is two models based on Bayesian network which are Full Bayesian Network (FBN) and Bayesian Network with Mood Indicator (BNM). FBN is a massive Bayesian network where each word is treated as a node. The study shows the method used to train FBN is not very effective to create the best model and performs worse compared to Naive Bayes. F1-score for FBN is 53.71%, while for Naive Bayes is 54.07%. BNM is proposed as an alternative method which is based on the improvement of Multinomial Naive Bayes and has much lower computational complexity compared to FBN. Even though it’s not better compared to FBN, the resulting model successfully improves the performance of Multinomial Naive Bayes. F1-Score for Multinomial Naive Bayes model is 51.49%, while for BNM is 52.14%.

  11. Bayesian networks improve causal environmental ...

    EPA Pesticide Factsheets

    Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on value

  12. Order priors for Bayesian network discovery with an application to malware phylogeny

    DOE PAGES

    Oyen, Diane; Anderson, Blake; Sentz, Kari; ...

    2017-09-15

    Here, Bayesian networks have been used extensively to model and discover dependency relationships among sets of random variables. We learn Bayesian network structure with a combination of human knowledge about the partial ordering of variables and statistical inference of conditional dependencies from observed data. Our approach leverages complementary information from human knowledge and inference from observed data to produce networks that reflect human beliefs about the system as well as to fit the observed data. Applying prior beliefs about partial orderings of variables is an approach distinctly different from existing methods that incorporate prior beliefs about direct dependencies (or edges)more » in a Bayesian network. We provide an efficient implementation of the partial-order prior in a Bayesian structure discovery learning algorithm, as well as an edge prior, showing that both priors meet the local modularity requirement necessary for an efficient Bayesian discovery algorithm. In benchmark studies, the partial-order prior improves the accuracy of Bayesian network structure learning as well as the edge prior, even though order priors are more general. Our primary motivation is in characterizing the evolution of families of malware to aid cyber security analysts. For the problem of malware phylogeny discovery, we find that our algorithm, compared to existing malware phylogeny algorithms, more accurately discovers true dependencies that are missed by other algorithms.« less

  13. Order priors for Bayesian network discovery with an application to malware phylogeny

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyen, Diane; Anderson, Blake; Sentz, Kari

    Here, Bayesian networks have been used extensively to model and discover dependency relationships among sets of random variables. We learn Bayesian network structure with a combination of human knowledge about the partial ordering of variables and statistical inference of conditional dependencies from observed data. Our approach leverages complementary information from human knowledge and inference from observed data to produce networks that reflect human beliefs about the system as well as to fit the observed data. Applying prior beliefs about partial orderings of variables is an approach distinctly different from existing methods that incorporate prior beliefs about direct dependencies (or edges)more » in a Bayesian network. We provide an efficient implementation of the partial-order prior in a Bayesian structure discovery learning algorithm, as well as an edge prior, showing that both priors meet the local modularity requirement necessary for an efficient Bayesian discovery algorithm. In benchmark studies, the partial-order prior improves the accuracy of Bayesian network structure learning as well as the edge prior, even though order priors are more general. Our primary motivation is in characterizing the evolution of families of malware to aid cyber security analysts. For the problem of malware phylogeny discovery, we find that our algorithm, compared to existing malware phylogeny algorithms, more accurately discovers true dependencies that are missed by other algorithms.« less

  14. Variable Discretisation for Anomaly Detection using Bayesian Networks

    DTIC Science & Technology

    2017-01-01

    UNCLASSIFIED DST- Group –TR–3328 1 Introduction Bayesian network implementations usually require each variable to take on a finite number of mutually...UNCLASSIFIED Variable Discretisation for Anomaly Detection using Bayesian Networks Jonathan Legg National Security and ISR Division Defence Science...and Technology Group DST- Group –TR–3328 ABSTRACT Anomaly detection is the process by which low probability events are automatically found against a

  15. Impact assessment of extreme storm events using a Bayesian network

    USGS Publications Warehouse

    den Heijer, C.(Kees); Knipping, Dirk T.J.A.; Plant, Nathaniel G.; van Thiel de Vries, Jaap S. M.; Baart, Fedor; van Gelder, Pieter H. A. J. M.

    2012-01-01

    This paper describes an investigation on the usefulness of Bayesian Networks in the safety assessment of dune coasts. A network has been created that predicts the erosion volume based on hydraulic boundary conditions and a number of cross-shore profile indicators. Field measurement data along a large part of the Dutch coast has been used to train the network. Corresponding storm impact on the dunes was calculated with an empirical dune erosion model named duros+. Comparison between the Bayesian Network predictions and the original duros+ results, here considered as observations, results in a skill up to 0.88, provided that the training data covers the range of predictions. Hence, the predictions from a deterministic model (duros+) can be captured in a probabilistic model (Bayesian Network) such that both the process knowledge and uncertainties can be included in impact and vulnerability assessments.

  16. Prediction in Health Domain Using Bayesian Networks Optimization Based on Induction Learning Techniques

    NASA Astrophysics Data System (ADS)

    Felgaer, Pablo; Britos, Paola; García-Martínez, Ramón

    A Bayesian network is a directed acyclic graph in which each node represents a variable and each arc a probabilistic dependency; they are used to provide: a compact form to represent the knowledge and flexible methods of reasoning. Obtaining it from data is a learning process that is divided in two steps: structural learning and parametric learning. In this paper we define an automatic learning method that optimizes the Bayesian networks applied to classification, using a hybrid method of learning that combines the advantages of the induction techniques of the decision trees (TDIDT-C4.5) with those of the Bayesian networks. The resulting method is applied to prediction in health domain.

  17. Causal inference in biology networks with integrated belief propagation.

    PubMed

    Chang, Rui; Karr, Jonathan R; Schadt, Eric E

    2015-01-01

    Inferring causal relationships among molecular and higher order phenotypes is a critical step in elucidating the complexity of living systems. Here we propose a novel method for inferring causality that is no longer constrained by the conditional dependency arguments that limit the ability of statistical causal inference methods to resolve causal relationships within sets of graphical models that are Markov equivalent. Our method utilizes Bayesian belief propagation to infer the responses of perturbation events on molecular traits given a hypothesized graph structure. A distance measure between the inferred response distribution and the observed data is defined to assess the 'fitness' of the hypothesized causal relationships. To test our algorithm, we infer causal relationships within equivalence classes of gene networks in which the form of the functional interactions that are possible are assumed to be nonlinear, given synthetic microarray and RNA sequencing data. We also apply our method to infer causality in real metabolic network with v-structure and feedback loop. We show that our method can recapitulate the causal structure and recover the feedback loop only from steady-state data which conventional method cannot.

  18. The explosion at institute: modeling and analyzing the situation awareness factor.

    PubMed

    Naderpour, Mohsen; Lu, Jie; Zhang, Guangquan

    2014-12-01

    In 2008 a runaway chemical reaction caused an explosion at a methomyl unit in West Virginia, USA, killing two employees, injuring eight people, evacuating more than 40,000 residents adjacent to the facility, disrupting traffic on a nearby highway and causing significant business loss and interruption. Although the accident was formally investigated, the role of the situation awareness (SA) factor, i.e., a correct understanding of the situation, and appropriate models to maintain SA, remain unexplained. This paper extracts details of abnormal situations within the methomyl unit and models them into a situational network using dynamic Bayesian networks. A fuzzy logic system is used to resemble the operator's thinking when confronted with these abnormal situations. The combined situational network and fuzzy logic system make it possible for the operator to assess such situations dynamically to achieve accurate SA. The findings show that the proposed structure provides a useful graphical model that facilitates the inclusion of prior background knowledge and the updating of this knowledge when new information is available from monitoring systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Use of limited data to construct Bayesian networks for probabilistic risk assessment.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groth, Katrina M.; Swiler, Laura Painton

    2013-03-01

    Probabilistic Risk Assessment (PRA) is a fundamental part of safety/quality assurance for nuclear power and nuclear weapons. Traditional PRA very effectively models complex hardware system risks using binary probabilistic models. However, traditional PRA models are not flexible enough to accommodate non-binary soft-causal factors, such as digital instrumentation&control, passive components, aging, common cause failure, and human errors. Bayesian Networks offer the opportunity to incorporate these risks into the PRA framework. This report describes the results of an early career LDRD project titled %E2%80%9CUse of Limited Data to Construct Bayesian Networks for Probabilistic Risk Assessment%E2%80%9D. The goal of the work was tomore » establish the capability to develop Bayesian Networks from sparse data, and to demonstrate this capability by producing a data-informed Bayesian Network for use in Human Reliability Analysis (HRA) as part of nuclear power plant Probabilistic Risk Assessment (PRA). This report summarizes the research goal and major products of the research.« less

  20. Diagnosis and Reconfiguration using Bayesian Networks: An Electrical Power System Case Study

    NASA Technical Reports Server (NTRS)

    Knox, W. Bradley; Mengshoel, Ole

    2009-01-01

    Automated diagnosis and reconfiguration are important computational techniques that aim to minimize human intervention in autonomous systems. In this paper, we develop novel techniques and models in the context of diagnosis and reconfiguration reasoning using causal Bayesian networks (BNs). We take as starting point a successful diagnostic approach, using a static BN developed for a real-world electrical power system. We discuss in this paper the extension of this diagnostic approach along two dimensions, namely: (i) from a static BN to a dynamic BN; and (ii) from a diagnostic task to a reconfiguration task. More specifically, we discuss the auto-generation of a dynamic Bayesian network from a static Bayesian network. In addition, we discuss subtle, but important, differences between Bayesian networks when used for diagnosis versus reconfiguration. We discuss a novel reconfiguration agent, which models a system causally, including effects of actions through time, using a dynamic Bayesian network. Though the techniques we discuss are general, we demonstrate them in the context of electrical power systems (EPSs) for aircraft and spacecraft. EPSs are vital subsystems on-board aircraft and spacecraft, and many incidents and accidents of these vehicles have been attributed to EPS failures. We discuss a case study that provides initial but promising results for our approach in the setting of electrical power systems.

  1. Dynamic Bayesian Network Modeling of Game Based Diagnostic Assessments. CRESST Report 837

    ERIC Educational Resources Information Center

    Levy, Roy

    2014-01-01

    Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…

  2. Dynamic Bayesian network modeling for longitudinal brain morphometry

    PubMed Central

    Chen, Rong; Resnick, Susan M; Davatzikos, Christos; Herskovits, Edward H

    2011-01-01

    Identifying interactions among brain regions from structural magnetic-resonance images presents one of the major challenges in computational neuroanatomy. We propose a Bayesian data-mining approach to the detection of longitudinal morphological changes in the human brain. Our method uses a dynamic Bayesian network to represent evolving inter-regional dependencies. The major advantage of dynamic Bayesian network modeling is that it can represent complicated interactions among temporal processes. We validated our approach by analyzing a simulated atrophy study, and found that this approach requires only a small number of samples to detect the ground-truth temporal model. We further applied dynamic Bayesian network modeling to a longitudinal study of normal aging and mild cognitive impairment — the Baltimore Longitudinal Study of Aging. We found that interactions among regional volume-change rates for the mild cognitive impairment group are different from those for the normal-aging group. PMID:21963916

  3. Flood quantile estimation at ungauged sites by Bayesian networks

    NASA Astrophysics Data System (ADS)

    Mediero, L.; Santillán, D.; Garrote, L.

    2012-04-01

    Estimating flood quantiles at a site for which no observed measurements are available is essential for water resources planning and management. Ungauged sites have no observations about the magnitude of floods, but some site and basin characteristics are known. The most common technique used is the multiple regression analysis, which relates physical and climatic basin characteristic to flood quantiles. Regression equations are fitted from flood frequency data and basin characteristics at gauged sites. Regression equations are a rigid technique that assumes linear relationships between variables and cannot take the measurement errors into account. In addition, the prediction intervals are estimated in a very simplistic way from the variance of the residuals in the estimated model. Bayesian networks are a probabilistic computational structure taken from the field of Artificial Intelligence, which have been widely and successfully applied to many scientific fields like medicine and informatics, but application to the field of hydrology is recent. Bayesian networks infer the joint probability distribution of several related variables from observations through nodes, which represent random variables, and links, which represent causal dependencies between them. A Bayesian network is more flexible than regression equations, as they capture non-linear relationships between variables. In addition, the probabilistic nature of Bayesian networks allows taking the different sources of estimation uncertainty into account, as they give a probability distribution as result. A homogeneous region in the Tagus Basin was selected as case study. A regression equation was fitted taking the basin area, the annual maximum 24-hour rainfall for a given recurrence interval and the mean height as explanatory variables. Flood quantiles at ungauged sites were estimated by Bayesian networks. Bayesian networks need to be learnt from a huge enough data set. As observational data are reduced, a stochastic generator of synthetic data was developed. Synthetic basin characteristics were randomised, keeping the statistical properties of observed physical and climatic variables in the homogeneous region. The synthetic flood quantiles were stochastically generated taking the regression equation as basis. The learnt Bayesian network was validated by the reliability diagram, the Brier Score and the ROC diagram, which are common measures used in the validation of probabilistic forecasts. Summarising, the flood quantile estimations through Bayesian networks supply information about the prediction uncertainty as a probability distribution function of discharges is given as result. Therefore, the Bayesian network model has application as a decision support for water resources and planning management.

  4. RevBayes: Bayesian Phylogenetic Inference Using Graphical Models and an Interactive Model-Specification Language

    PubMed Central

    Höhna, Sebastian; Landis, Michael J.

    2016-01-01

    Programs for Bayesian inference of phylogeny currently implement a unique and fixed suite of models. Consequently, users of these software packages are simultaneously forced to use a number of programs for a given study, while also lacking the freedom to explore models that have not been implemented by the developers of those programs. We developed a new open-source software package, RevBayes, to address these problems. RevBayes is entirely based on probabilistic graphical models, a powerful generic framework for specifying and analyzing statistical models. Phylogenetic-graphical models can be specified interactively in RevBayes, piece by piece, using a new succinct and intuitive language called Rev. Rev is similar to the R language and the BUGS model-specification language, and should be easy to learn for most users. The strength of RevBayes is the simplicity with which one can design, specify, and implement new and complex models. Fortunately, this tremendous flexibility does not come at the cost of slower computation; as we demonstrate, RevBayes outperforms competing software for several standard analyses. Compared with other programs, RevBayes has fewer black-box elements. Users need to explicitly specify each part of the model and analysis. Although this explicitness may initially be unfamiliar, we are convinced that this transparency will improve understanding of phylogenetic models in our field. Moreover, it will motivate the search for improvements to existing methods by brazenly exposing the model choices that we make to critical scrutiny. RevBayes is freely available at http://www.RevBayes.com. [Bayesian inference; Graphical models; MCMC; statistical phylogenetics.] PMID:27235697

  5. RevBayes: Bayesian Phylogenetic Inference Using Graphical Models and an Interactive Model-Specification Language.

    PubMed

    Höhna, Sebastian; Landis, Michael J; Heath, Tracy A; Boussau, Bastien; Lartillot, Nicolas; Moore, Brian R; Huelsenbeck, John P; Ronquist, Fredrik

    2016-07-01

    Programs for Bayesian inference of phylogeny currently implement a unique and fixed suite of models. Consequently, users of these software packages are simultaneously forced to use a number of programs for a given study, while also lacking the freedom to explore models that have not been implemented by the developers of those programs. We developed a new open-source software package, RevBayes, to address these problems. RevBayes is entirely based on probabilistic graphical models, a powerful generic framework for specifying and analyzing statistical models. Phylogenetic-graphical models can be specified interactively in RevBayes, piece by piece, using a new succinct and intuitive language called Rev. Rev is similar to the R language and the BUGS model-specification language, and should be easy to learn for most users. The strength of RevBayes is the simplicity with which one can design, specify, and implement new and complex models. Fortunately, this tremendous flexibility does not come at the cost of slower computation; as we demonstrate, RevBayes outperforms competing software for several standard analyses. Compared with other programs, RevBayes has fewer black-box elements. Users need to explicitly specify each part of the model and analysis. Although this explicitness may initially be unfamiliar, we are convinced that this transparency will improve understanding of phylogenetic models in our field. Moreover, it will motivate the search for improvements to existing methods by brazenly exposing the model choices that we make to critical scrutiny. RevBayes is freely available at http://www.RevBayes.com [Bayesian inference; Graphical models; MCMC; statistical phylogenetics.]. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  6. Encoding dependence in Bayesian causal networks

    USDA-ARS?s Scientific Manuscript database

    Bayesian networks (BNs) represent complex, uncertain spatio-temporal dynamics by propagation of conditional probabilities between identifiable states with a testable causal interaction model. Typically, they assume random variables are discrete in time and space with a static network structure that ...

  7. Bayesian inference for psychology. Part II: Example applications with JASP.

    PubMed

    Wagenmakers, Eric-Jan; Love, Jonathon; Marsman, Maarten; Jamil, Tahira; Ly, Alexander; Verhagen, Josine; Selker, Ravi; Gronau, Quentin F; Dropmann, Damian; Boutin, Bruno; Meerhoff, Frans; Knight, Patrick; Raj, Akash; van Kesteren, Erik-Jan; van Doorn, Johnny; Šmíra, Martin; Epskamp, Sacha; Etz, Alexander; Matzke, Dora; de Jong, Tim; van den Bergh, Don; Sarafoglou, Alexandra; Steingroever, Helen; Derks, Koen; Rouder, Jeffrey N; Morey, Richard D

    2018-02-01

    Bayesian hypothesis testing presents an attractive alternative to p value hypothesis testing. Part I of this series outlined several advantages of Bayesian hypothesis testing, including the ability to quantify evidence and the ability to monitor and update this evidence as data come in, without the need to know the intention with which the data were collected. Despite these and other practical advantages, Bayesian hypothesis tests are still reported relatively rarely. An important impediment to the widespread adoption of Bayesian tests is arguably the lack of user-friendly software for the run-of-the-mill statistical problems that confront psychologists for the analysis of almost every experiment: the t-test, ANOVA, correlation, regression, and contingency tables. In Part II of this series we introduce JASP ( http://www.jasp-stats.org ), an open-source, cross-platform, user-friendly graphical software package that allows users to carry out Bayesian hypothesis tests for standard statistical problems. JASP is based in part on the Bayesian analyses implemented in Morey and Rouder's BayesFactor package for R. Armed with JASP, the practical advantages of Bayesian hypothesis testing are only a mouse click away.

  8. Precise Network Modeling of Systems Genetics Data Using the Bayesian Network Webserver.

    PubMed

    Ziebarth, Jesse D; Cui, Yan

    2017-01-01

    The Bayesian Network Webserver (BNW, http://compbio.uthsc.edu/BNW ) is an integrated platform for Bayesian network modeling of biological datasets. It provides a web-based network modeling environment that seamlessly integrates advanced algorithms for probabilistic causal modeling and reasoning with Bayesian networks. BNW is designed for precise modeling of relatively small networks that contain less than 20 nodes. The structure learning algorithms used by BNW guarantee the discovery of the best (most probable) network structure given the data. To facilitate network modeling across multiple biological levels, BNW provides a very flexible interface that allows users to assign network nodes into different tiers and define the relationships between and within the tiers. This function is particularly useful for modeling systems genetics datasets that often consist of multiscalar heterogeneous genotype-to-phenotype data. BNW enables users to, within seconds or minutes, go from having a simply formatted input file containing a dataset to using a network model to make predictions about the interactions between variables and the potential effects of experimental interventions. In this chapter, we will introduce the functions of BNW and show how to model systems genetics datasets with BNW.

  9. Efficient Probabilistic Diagnostics for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole J.; Chavira, Mark; Cascio, Keith; Poll, Scott; Darwiche, Adnan; Uckun, Serdar

    2008-01-01

    We consider in this work the probabilistic approach to model-based diagnosis when applied to electrical power systems (EPSs). Our probabilistic approach is formally well-founded, as it based on Bayesian networks and arithmetic circuits. We investigate the diagnostic task known as fault isolation, and pay special attention to meeting two of the main challenges . model development and real-time reasoning . often associated with real-world application of model-based diagnosis technologies. To address the challenge of model development, we develop a systematic approach to representing electrical power systems as Bayesian networks, supported by an easy-to-use speci.cation language. To address the real-time reasoning challenge, we compile Bayesian networks into arithmetic circuits. Arithmetic circuit evaluation supports real-time diagnosis by being predictable and fast. In essence, we introduce a high-level EPS speci.cation language from which Bayesian networks that can diagnose multiple simultaneous failures are auto-generated, and we illustrate the feasibility of using arithmetic circuits, compiled from Bayesian networks, for real-time diagnosis on real-world EPSs of interest to NASA. The experimental system is a real-world EPS, namely the Advanced Diagnostic and Prognostic Testbed (ADAPT) located at the NASA Ames Research Center. In experiments with the ADAPT Bayesian network, which currently contains 503 discrete nodes and 579 edges, we .nd high diagnostic accuracy in scenarios where one to three faults, both in components and sensors, were inserted. The time taken to compute the most probable explanation using arithmetic circuits has a small mean of 0.2625 milliseconds and standard deviation of 0.2028 milliseconds. In experiments with data from ADAPT we also show that arithmetic circuit evaluation substantially outperforms joint tree propagation and variable elimination, two alternative algorithms for diagnosis using Bayesian network inference.

  10. Artificial and Bayesian Neural Networks

    PubMed

    Korhani Kangi, Azam; Bahrampour, Abbas

    2018-02-26

    Introduction and purpose: In recent years the use of neural networks without any premises for investigation of prognosis in analyzing survival data has increased. Artificial neural networks (ANN) use small processors with a continuous network to solve problems inspired by the human brain. Bayesian neural networks (BNN) constitute a neural-based approach to modeling and non-linearization of complex issues using special algorithms and statistical methods. Gastric cancer incidence is the first and third ranking for men and women in Iran, respectively. The aim of the present study was to assess the value of an artificial neural network and a Bayesian neural network for modeling and predicting of probability of gastric cancer patient death. Materials and Methods: In this study, we used information on 339 patients aged from 20 to 90 years old with positive gastric cancer, referred to Afzalipoor and Shahid Bahonar Hospitals in Kerman City from 2001 to 2015. The three layers perceptron neural network (ANN) and the Bayesian neural network (BNN) were used for predicting the probability of mortality using the available data. To investigate differences between the models, sensitivity, specificity, accuracy and the area under receiver operating characteristic curves (AUROCs) were generated. Results: In this study, the sensitivity and specificity of the artificial neural network and Bayesian neural network models were 0.882, 0.903 and 0.954, 0.909, respectively. Prediction accuracy and the area under curve ROC for the two models were 0.891, 0.944 and 0.935, 0.961. The age at diagnosis of gastric cancer was most important for predicting survival, followed by tumor grade, morphology, gender, smoking history, opium consumption, receiving chemotherapy, presence of metastasis, tumor stage, receiving radiotherapy, and being resident in a village. Conclusion: The findings of the present study indicated that the Bayesian neural network is preferable to an artificial neural network for predicting survival of gastric cancer patients in Iran. Creative Commons Attribution License

  11. Development of an Integrated Team Training Design and Assessment Architecture to Support Adaptability in Healthcare Teams

    DTIC Science & Technology

    2016-10-01

    and implementation of embedded, adaptive feedback and performance assessment. The investigators also initiated work designing a Bayesian Belief ...training; Teamwork; Adaptive performance; Leadership; Simulation; Modeling; Bayesian belief networks (BBN) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...Trauma teams Team training Teamwork Adaptability Adaptive performance Leadership Simulation Modeling Bayesian belief networks (BBN) 6

  12. Python Environment for Bayesian Learning: Inferring the Structure of Bayesian Networks from Knowledge and Data

    PubMed Central

    Shah, Abhik; Woolf, Peter

    2009-01-01

    Summary In this paper, we introduce pebl, a Python library and application for learning Bayesian network structure from data and prior knowledge that provides features unmatched by alternative software packages: the ability to use interventional data, flexible specification of structural priors, modeling with hidden variables and exploitation of parallel processing. PMID:20161541

  13. A Bayesian approach to landscape ecological risk assessment applied to the upper Grande Ronde watershed, Oregon

    Treesearch

    Kimberley K. Ayre; Wayne G. Landis

    2012-01-01

    We present a Bayesian network model based on the ecological risk assessment framework to evaluate potential impacts to habitats and resources resulting from wildfire, grazing, forest management activities, and insect outbreaks in a forested landscape in northeastern Oregon. The Bayesian network structure consisted of three tiers of nodes: landscape disturbances,...

  14. Validation workflow for a clinical Bayesian network model in multidisciplinary decision making in head and neck oncology treatment.

    PubMed

    Cypko, Mario A; Stoehr, Matthaeus; Kozniewski, Marcin; Druzdzel, Marek J; Dietz, Andreas; Berliner, Leonard; Lemke, Heinz U

    2017-11-01

    Oncological treatment is being increasingly complex, and therefore, decision making in multidisciplinary teams is becoming the key activity in the clinical pathways. The increased complexity is related to the number and variability of possible treatment decisions that may be relevant to a patient. In this paper, we describe validation of a multidisciplinary cancer treatment decision in the clinical domain of head and neck oncology. Probabilistic graphical models and corresponding inference algorithms, in the form of Bayesian networks, can support complex decision-making processes by providing a mathematically reproducible and transparent advice. The quality of BN-based advice depends on the quality of the model. Therefore, it is vital to validate the model before it is applied in practice. For an example BN subnetwork of laryngeal cancer with 303 variables, we evaluated 66 patient records. To validate the model on this dataset, a validation workflow was applied in combination with quantitative and qualitative analyses. In the subsequent analyses, we observed four sources of imprecise predictions: incorrect data, incomplete patient data, outvoting relevant observations, and incorrect model. Finally, the four problems were solved by modifying the data and the model. The presented validation effort is related to the model complexity. For simpler models, the validation workflow is the same, although it may require fewer validation methods. The validation success is related to the model's well-founded knowledge base. The remaining laryngeal cancer model may disclose additional sources of imprecise predictions.

  15. ABrox-A user-friendly Python module for approximate Bayesian computation with a focus on model comparison.

    PubMed

    Mertens, Ulf Kai; Voss, Andreas; Radev, Stefan

    2018-01-01

    We give an overview of the basic principles of approximate Bayesian computation (ABC), a class of stochastic methods that enable flexible and likelihood-free model comparison and parameter estimation. Our new open-source software called ABrox is used to illustrate ABC for model comparison on two prominent statistical tests, the two-sample t-test and the Levene-Test. We further highlight the flexibility of ABC compared to classical Bayesian hypothesis testing by computing an approximate Bayes factor for two multinomial processing tree models. Last but not least, throughout the paper, we introduce ABrox using the accompanied graphical user interface.

  16. Estimating extreme river discharges in Europe through a Bayesian network

    NASA Astrophysics Data System (ADS)

    Paprotny, Dominik; Morales-Nápoles, Oswaldo

    2017-06-01

    Large-scale hydrological modelling of flood hazards requires adequate extreme discharge data. In practise, models based on physics are applied alongside those utilizing only statistical analysis. The former require enormous computational power, while the latter are mostly limited in accuracy and spatial coverage. In this paper we introduce an alternate, statistical approach based on Bayesian networks (BNs), a graphical model for dependent random variables. We use a non-parametric BN to describe the joint distribution of extreme discharges in European rivers and variables representing the geographical characteristics of their catchments. Annual maxima of daily discharges from more than 1800 river gauges (stations with catchment areas ranging from 1.4 to 807 000 km2) were collected, together with information on terrain, land use and local climate. The (conditional) correlations between the variables are modelled through copulas, with the dependency structure defined in the network. The results show that using this method, mean annual maxima and return periods of discharges could be estimated with an accuracy similar to existing studies using physical models for Europe and better than a comparable global statistical model. Performance of the model varies slightly between regions of Europe, but is consistent between different time periods, and remains the same in a split-sample validation. Though discharge prediction under climate change is not the main scope of this paper, the BN was applied to a large domain covering all sizes of rivers in the continent both for present and future climate, as an example. Results show substantial variation in the influence of climate change on river discharges. The model can be used to provide quick estimates of extreme discharges at any location for the purpose of obtaining input information for hydraulic modelling.

  17. Overlapping community detection in weighted networks via a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Wang, Xiaolong; Xiang, Xin; Tang, Buzhou; Chen, Qingcai; Fan, Shixi; Bu, Junzhao

    2017-02-01

    Complex networks as a powerful way to represent complex systems have been widely studied during the past several years. One of the most important tasks of complex network analysis is to detect communities embedded in networks. In the real world, weighted networks are very common and may contain overlapping communities where a node is allowed to belong to multiple communities. In this paper, we propose a novel Bayesian approach, called the Bayesian mixture network (BMN) model, to detect overlapping communities in weighted networks. The advantages of our method are (i) providing soft-partition solutions in weighted networks; (ii) providing soft memberships, which quantify 'how strongly' a node belongs to a community. Experiments on a large number of real and synthetic networks show that our model has the ability in detecting overlapping communities in weighted networks and is competitive with other state-of-the-art models at shedding light on community partition.

  18. Bayesian estimation inherent in a Mexican-hat-type neural network

    NASA Astrophysics Data System (ADS)

    Takiyama, Ken

    2016-05-01

    Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.

  19. A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network

    PubMed Central

    Liu, Zengkai; Liu, Yonghong; Shan, Hongkai; Cai, Baoping; Huang, Qing

    2015-01-01

    This paper proposes a fault diagnosis methodology for a gear pump based on the ensemble empirical mode decomposition (EEMD) method and the Bayesian network. Essentially, the presented scheme is a multi-source information fusion based methodology. Compared with the conventional fault diagnosis with only EEMD, the proposed method is able to take advantage of all useful information besides sensor signals. The presented diagnostic Bayesian network consists of a fault layer, a fault feature layer and a multi-source information layer. Vibration signals from sensor measurement are decomposed by the EEMD method and the energy of intrinsic mode functions (IMFs) are calculated as fault features. These features are added into the fault feature layer in the Bayesian network. The other sources of useful information are added to the information layer. The generalized three-layer Bayesian network can be developed by fully incorporating faults and fault symptoms as well as other useful information such as naked eye inspection and maintenance records. Therefore, diagnostic accuracy and capacity can be improved. The proposed methodology is applied to the fault diagnosis of a gear pump and the structure and parameters of the Bayesian network is established. Compared with artificial neural network and support vector machine classification algorithms, the proposed model has the best diagnostic performance when sensor data is used only. A case study has demonstrated that some information from human observation or system repair records is very helpful to the fault diagnosis. It is effective and efficient in diagnosing faults based on uncertain, incomplete information. PMID:25938760

  20. A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network.

    PubMed

    Liu, Zengkai; Liu, Yonghong; Shan, Hongkai; Cai, Baoping; Huang, Qing

    2015-01-01

    This paper proposes a fault diagnosis methodology for a gear pump based on the ensemble empirical mode decomposition (EEMD) method and the Bayesian network. Essentially, the presented scheme is a multi-source information fusion based methodology. Compared with the conventional fault diagnosis with only EEMD, the proposed method is able to take advantage of all useful information besides sensor signals. The presented diagnostic Bayesian network consists of a fault layer, a fault feature layer and a multi-source information layer. Vibration signals from sensor measurement are decomposed by the EEMD method and the energy of intrinsic mode functions (IMFs) are calculated as fault features. These features are added into the fault feature layer in the Bayesian network. The other sources of useful information are added to the information layer. The generalized three-layer Bayesian network can be developed by fully incorporating faults and fault symptoms as well as other useful information such as naked eye inspection and maintenance records. Therefore, diagnostic accuracy and capacity can be improved. The proposed methodology is applied to the fault diagnosis of a gear pump and the structure and parameters of the Bayesian network is established. Compared with artificial neural network and support vector machine classification algorithms, the proposed model has the best diagnostic performance when sensor data is used only. A case study has demonstrated that some information from human observation or system repair records is very helpful to the fault diagnosis. It is effective and efficient in diagnosing faults based on uncertain, incomplete information.

  1. Distributed computation of graphics primitives on a transputer network

    NASA Technical Reports Server (NTRS)

    Ellis, Graham K.

    1988-01-01

    A method is developed for distributing the computation of graphics primitives on a parallel processing network. Off-the-shelf transputer boards are used to perform the graphics transformations and scan-conversion tasks that would normally be assigned to a single transputer based display processor. Each node in the network performs a single graphics primitive computation. Frequently requested tasks can be duplicated on several nodes. The results indicate that the current distribution of commands on the graphics network shows a performance degradation when compared to the graphics display board alone. A change to more computation per node for every communication (perform more complex tasks on each node) may cause the desired increase in throughput.

  2. An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting.

    PubMed

    Hippert, Henrique S; Taylor, James W

    2010-04-01

    Artificial neural networks have frequently been proposed for electricity load forecasting because of their capabilities for the nonlinear modelling of large multivariate data sets. Modelling with neural networks is not an easy task though; two of the main challenges are defining the appropriate level of model complexity, and choosing the input variables. This paper evaluates techniques for automatic neural network modelling within a Bayesian framework, as applied to six samples containing daily load and weather data for four different countries. We analyse input selection as carried out by the Bayesian 'automatic relevance determination', and the usefulness of the Bayesian 'evidence' for the selection of the best structure (in terms of number of neurones), as compared to methods based on cross-validation. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Common quandaries and their practical solutions in Bayesian network modeling

    Treesearch

    Bruce G. Marcot

    2017-01-01

    Use and popularity of Bayesian network (BN) modeling has greatly expanded in recent years, but many common problems remain. Here, I summarize key problems in BN model construction and interpretation,along with suggested practical solutions. Problems in BN model construction include parameterizing probability values, variable definition, complex network structures,...

  4. Bayesian networks in overlay recipe optimization

    NASA Astrophysics Data System (ADS)

    Binns, Lewis A.; Reynolds, Greg; Rigden, Timothy C.; Watkins, Stephen; Soroka, Andrew

    2005-05-01

    Currently, overlay measurements are characterized by "recipe", which defines both physical parameters such as focus, illumination et cetera, and also the software parameters such as algorithm to be used and regions of interest. Setting up these recipes requires both engineering time and wafer availability on an overlay tool, so reducing these requirements will result in higher tool productivity. One of the significant challenges to automating this process is that the parameters are highly and complexly correlated. At the same time, a high level of traceability and transparency is required in the recipe creation process, so a technique that maintains its decisions in terms of well defined physical parameters is desirable. Running time should be short, given the system (automatic recipe creation) is being implemented to reduce overheads. Finally, a failure of the system to determine acceptable parameters should be obvious, so a certainty metric is also desirable. The complex, nonlinear interactions make solution by an expert system difficult at best, especially in the verification of the resulting decision network. The transparency requirements tend to preclude classical neural networks and similar techniques. Genetic algorithms and other "global minimization" techniques require too much computational power (given system footprint and cost requirements). A Bayesian network, however, provides a solution to these requirements. Such a network, with appropriate priors, can be used during recipe creation / optimization not just to select a good set of parameters, but also to guide the direction of search, by evaluating the network state while only incomplete information is available. As a Bayesian network maintains an estimate of the probability distribution of nodal values, a maximum-entropy approach can be utilized to obtain a working recipe in a minimum or near-minimum number of steps. In this paper we discuss the potential use of a Bayesian network in such a capacity, reducing the amount of engineering intervention. We discuss the benefits of this approach, especially improved repeatability and traceability of the learning process, and quantification of uncertainty in decisions made. We also consider the problems associated with this approach, especially in detailed construction of network topology, validation of the Bayesian network and the recipes it generates, and issues arising from the integration of a Bayesian network with a complex multithreaded application; these primarily relate to maintaining Bayesian network and system architecture integrity.

  5. Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga

    2009-01-01

    In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specifically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. (See CASI ID 20100021910 for supplemental data disk.)

  6. MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control

    NASA Astrophysics Data System (ADS)

    Zheng, Mao-Kuan; Ming, Xin-Guo; Zhang, Xian-Yu; Li, Guo-Ming

    2017-09-01

    Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the circumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian network of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly proportionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The integration of bigdata analytics and BN method offers a whole new perspective in manufacturing quality control.

  7. Bayesian Inference and Online Learning in Poisson Neuronal Networks.

    PubMed

    Huang, Yanping; Rao, Rajesh P N

    2016-08-01

    Motivated by the growing evidence for Bayesian computation in the brain, we show how a two-layer recurrent network of Poisson neurons can perform both approximate Bayesian inference and learning for any hidden Markov model. The lower-layer sensory neurons receive noisy measurements of hidden world states. The higher-layer neurons infer a posterior distribution over world states via Bayesian inference from inputs generated by sensory neurons. We demonstrate how such a neuronal network with synaptic plasticity can implement a form of Bayesian inference similar to Monte Carlo methods such as particle filtering. Each spike in a higher-layer neuron represents a sample of a particular hidden world state. The spiking activity across the neural population approximates the posterior distribution over hidden states. In this model, variability in spiking is regarded not as a nuisance but as an integral feature that provides the variability necessary for sampling during inference. We demonstrate how the network can learn the likelihood model, as well as the transition probabilities underlying the dynamics, using a Hebbian learning rule. We present results illustrating the ability of the network to perform inference and learning for arbitrary hidden Markov models.

  8. Network structure exploration in networks with node attributes

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Wang, Xiaolong; Bu, Junzhao; Tang, Buzhou; Xiang, Xin

    2016-05-01

    Complex networks provide a powerful way to represent complex systems and have been widely studied during the past several years. One of the most important tasks of network analysis is to detect structures (also called structural regularities) embedded in networks by determining group number and group partition. Most of network structure exploration models only consider network links. However, in real world networks, nodes may have attributes that are useful for network structure exploration. In this paper, we propose a novel Bayesian nonparametric (BNP) model to explore structural regularities in networks with node attributes, called Bayesian nonparametric attribute (BNPA) model. This model does not only take full advantage of both links between nodes and node attributes for group partition via shared hidden variables, but also determine group number automatically via the Bayesian nonparametric theory. Experiments conducted on a number of real and synthetic networks show that our BNPA model is able to automatically explore structural regularities in networks with node attributes and is competitive with other state-of-the-art models.

  9. SU-F-R-44: Modeling Lung SBRT Tumor Response Using Bayesian Network Averaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamant, A; Ybarra, N; Seuntjens, J

    2016-06-15

    Purpose: The prediction of tumor control after a patient receives lung SBRT (stereotactic body radiation therapy) has proven to be challenging, due to the complex interactions between an individual’s biology and dose-volume metrics. Many of these variables have predictive power when combined, a feature that we exploit using a graph modeling approach based on Bayesian networks. This provides a probabilistic framework that allows for accurate and visually intuitive predictive modeling. The aim of this study is to uncover possible interactions between an individual patient’s characteristics and generate a robust model capable of predicting said patient’s treatment outcome. Methods: We investigatedmore » a cohort of 32 prospective patients from multiple institutions whom had received curative SBRT to the lung. The number of patients exhibiting tumor failure was observed to be 7 (event rate of 22%). The serum concentration of 5 biomarkers previously associated with NSCLC (non-small cell lung cancer) was measured pre-treatment. A total of 21 variables were analyzed including: dose-volume metrics with BED (biologically effective dose) correction and clinical variables. A Markov Chain Monte Carlo technique estimated the posterior probability distribution of the potential graphical structures. The probability of tumor failure was then estimated by averaging the top 100 graphs and applying Baye’s rule. Results: The optimal Bayesian model generated throughout this study incorporated the PTV volume, the serum concentration of the biomarker EGFR (epidermal growth factor receptor) and prescription BED. This predictive model recorded an area under the receiver operating characteristic curve of 0.94(1), providing better performance compared to competing methods in other literature. Conclusion: The use of biomarkers in conjunction with dose-volume metrics allows for the generation of a robust predictive model. The preliminary results of this report demonstrate that it is possible to accurately model the prognosis of an individual lung SBRT patient’s treatment.« less

  10. Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga

    2009-01-01

    This CD contains files that support the talk (see CASI ID 20100021404). There are 24 models that relate to the ADAPT system and 1 Excel worksheet. In the paper an investigation into the use of Bayesian networks to construct large-scale diagnostic systems is described. The high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems are described in the talk. The data in the CD are the models of the 24 different power systems.

  11. Hierarchy Bayesian model based services awareness of high-speed optical access networks

    NASA Astrophysics Data System (ADS)

    Bai, Hui-feng

    2018-03-01

    As the speed of optical access networks soars with ever increasing multiple services, the service-supporting ability of optical access networks suffers greatly from the shortage of service awareness. Aiming to solve this problem, a hierarchy Bayesian model based services awareness mechanism is proposed for high-speed optical access networks. This approach builds a so-called hierarchy Bayesian model, according to the structure of typical optical access networks. Moreover, the proposed scheme is able to conduct simple services awareness operation in each optical network unit (ONU) and to perform complex services awareness from the whole view of system in optical line terminal (OLT). Simulation results show that the proposed scheme is able to achieve better quality of services (QoS), in terms of packet loss rate and time delay.

  12. Technical Topic 3.2.2.d Bayesian and Non-Parametric Statistics: Integration of Neural Networks with Bayesian Networks for Data Fusion and Predictive Modeling

    DTIC Science & Technology

    2016-05-31

    and included explosives such as TATP, HMTD, RDX, RDX, ammonium nitrate , potassium perchlorate, potassium nitrate , sugar, and TNT. The approach...Distribution Unlimited UU UU UU UU 31-05-2016 15-Apr-2014 14-Jan-2015 Final Report: Technical Topic 3.2.2. d Bayesian and Non- parametric Statistics...of Papers published in non peer-reviewed journals: Final Report: Technical Topic 3.2.2. d Bayesian and Non-parametric Statistics: Integration of Neural

  13. Span graphics display utilities handbook, first edition

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Green, J. L.; Newman, R.

    1985-01-01

    The Space Physics Analysis Network (SPAN) is a computer network connecting scientific institutions throughout the United States. This network provides an avenue for timely, correlative research between investigators, in a multidisciplinary approach to space physics studies. An objective in the development of SPAN is to make available direct and simplified procedures that scientists can use, without specialized training, to exchange information over the network. Information exchanges include raw and processes data, analysis programs, correspondence, documents, and graphite images. This handbook details procedures that can be used to exchange graphic images over SPAN. The intent is to periodically update this handbook to reflect the constantly changing facilities available on SPAN. The utilities described within reflect an earnest attempt to provide useful descriptions of working utilities that can be used to transfer graphic images across the network. Whether graphic images are representative of satellite servations or theoretical modeling and whether graphics images are of device dependent or independent type, the SPAN graphics display utilities handbook will be the users guide to graphic image exchange.

  14. Explaining Inference on a Population of Independent Agents Using Bayesian Networks

    ERIC Educational Resources Information Center

    Sutovsky, Peter

    2013-01-01

    The main goal of this research is to design, implement, and evaluate a novel explanation method, the hierarchical explanation method (HEM), for explaining Bayesian network (BN) inference when the network is modeling a population of conditionally independent agents, each of which is modeled as a subnetwork. For example, consider disease-outbreak…

  15. Uncovering robust patterns of microRNA co-expression across cancers using Bayesian Relevance Networks

    PubMed Central

    2017-01-01

    Co-expression networks have long been used as a tool for investigating the molecular circuitry governing biological systems. However, most algorithms for constructing co-expression networks were developed in the microarray era, before high-throughput sequencing—with its unique statistical properties—became the norm for expression measurement. Here we develop Bayesian Relevance Networks, an algorithm that uses Bayesian reasoning about expression levels to account for the differing levels of uncertainty in expression measurements between highly- and lowly-expressed entities, and between samples with different sequencing depths. It combines data from groups of samples (e.g., replicates) to estimate group expression levels and confidence ranges. It then computes uncertainty-moderated estimates of cross-group correlations between entities, and uses permutation testing to assess their statistical significance. Using large scale miRNA data from The Cancer Genome Atlas, we show that our Bayesian update of the classical Relevance Networks algorithm provides improved reproducibility in co-expression estimates and lower false discovery rates in the resulting co-expression networks. Software is available at www.perkinslab.ca. PMID:28817636

  16. Improved head direction command classification using an optimised Bayesian neural network.

    PubMed

    Nguyen, Son T; Nguyen, Hung T; Taylor, Philip B; Middleton, James

    2006-01-01

    Assistive technologies have recently emerged to improve the quality of life of severely disabled people by enhancing their independence in daily activities. Since many of those individuals have limited or non-existing control from the neck downward, alternative hands-free input modalities have become very important for these people to access assistive devices. In hands-free control, head movement has been proved to be a very effective user interface as it can provide a comfortable, reliable and natural way to access the device. Recently, neural networks have been shown to be useful not only for real-time pattern recognition but also for creating user-adaptive models. Since multi-layer perceptron neural networks trained using standard back-propagation may cause poor generalisation, the Bayesian technique has been proposed to improve the generalisation and robustness of these networks. This paper describes the use of Bayesian neural networks in developing a hands-free wheelchair control system. The experimental results show that with the optimised architecture, classification Bayesian neural networks can detect head commands of wheelchair users accurately irrespective to their levels of injuries.

  17. Uncovering robust patterns of microRNA co-expression across cancers using Bayesian Relevance Networks.

    PubMed

    Ramachandran, Parameswaran; Sánchez-Taltavull, Daniel; Perkins, Theodore J

    2017-01-01

    Co-expression networks have long been used as a tool for investigating the molecular circuitry governing biological systems. However, most algorithms for constructing co-expression networks were developed in the microarray era, before high-throughput sequencing-with its unique statistical properties-became the norm for expression measurement. Here we develop Bayesian Relevance Networks, an algorithm that uses Bayesian reasoning about expression levels to account for the differing levels of uncertainty in expression measurements between highly- and lowly-expressed entities, and between samples with different sequencing depths. It combines data from groups of samples (e.g., replicates) to estimate group expression levels and confidence ranges. It then computes uncertainty-moderated estimates of cross-group correlations between entities, and uses permutation testing to assess their statistical significance. Using large scale miRNA data from The Cancer Genome Atlas, we show that our Bayesian update of the classical Relevance Networks algorithm provides improved reproducibility in co-expression estimates and lower false discovery rates in the resulting co-expression networks. Software is available at www.perkinslab.ca.

  18. Using Bayesian Networks for Candidate Generation in Consistency-based Diagnosis

    NASA Technical Reports Server (NTRS)

    Narasimhan, Sriram; Mengshoel, Ole

    2008-01-01

    Consistency-based diagnosis relies heavily on the assumption that discrepancies between model predictions and sensor observations can be detected accurately. When sources of uncertainty like sensor noise and model abstraction exist robust schemes have to be designed to make a binary decision on whether predictions are consistent with observations. This risks the occurrence of false alarms and missed alarms when an erroneous decision is made. Moreover when multiple sensors (with differing sensing properties) are available the degree of match between predictions and observations can be used to guide the search for fault candidates. In this paper we propose a novel approach to handle this problem using Bayesian networks. In the consistency- based diagnosis formulation, automatically generated Bayesian networks are used to encode a probabilistic measure of fit between predictions and observations. A Bayesian network inference algorithm is used to compute most probable fault candidates.

  19. Learning Bayesian Networks from Correlated Data

    NASA Astrophysics Data System (ADS)

    Bae, Harold; Monti, Stefano; Montano, Monty; Steinberg, Martin H.; Perls, Thomas T.; Sebastiani, Paola

    2016-05-01

    Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between observations within the same cluster and ignoring this correlation typically inflates the rate of false positive associations. We describe a novel parameterization of Bayesian networks that uses random effects to model the correlation within sample units and can be used for structure and parameter learning from correlated data without inflating the Type I error rate. We compare different learning metrics using simulations and illustrate the method in two real examples: an analysis of genetic and non-genetic factors associated with human longevity from a family-based study, and an example of risk factors for complications of sickle cell anemia from a longitudinal study with repeated measures.

  20. A Dynamic Bayesian Network Model for the Production and Inventory Control

    NASA Astrophysics Data System (ADS)

    Shin, Ji-Sun; Takazaki, Noriyuki; Lee, Tae-Hong; Kim, Jin-Il; Lee, Hee-Hyol

    In general, the production quantities and delivered goods are changed randomly and then the total stock is also changed randomly. This paper deals with the production and inventory control using the Dynamic Bayesian Network. Bayesian Network is a probabilistic model which represents the qualitative dependence between two or more random variables by the graph structure, and indicates the quantitative relations between individual variables by the conditional probability. The probabilistic distribution of the total stock is calculated through the propagation of the probability on the network. Moreover, an adjusting rule of the production quantities to maintain the probability of a lower limit and a ceiling of the total stock to certain values is shown.

  1. Probabilistic inference using linear Gaussian importance sampling for hybrid Bayesian networks

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Chang, K. C.

    2005-05-01

    Probabilistic inference for Bayesian networks is in general NP-hard using either exact algorithms or approximate methods. However, for very complex networks, only the approximate methods such as stochastic sampling could be used to provide a solution given any time constraint. There are several simulation methods currently available. They include logic sampling (the first proposed stochastic method for Bayesian networks, the likelihood weighting algorithm) the most commonly used simulation method because of its simplicity and efficiency, the Markov blanket scoring method, and the importance sampling algorithm. In this paper, we first briefly review and compare these available simulation methods, then we propose an improved importance sampling algorithm called linear Gaussian importance sampling algorithm for general hybrid model (LGIS). LGIS is aimed for hybrid Bayesian networks consisting of both discrete and continuous random variables with arbitrary distributions. It uses linear function and Gaussian additive noise to approximate the true conditional probability distribution for continuous variable given both its parents and evidence in a Bayesian network. One of the most important features of the newly developed method is that it can adaptively learn the optimal important function from the previous samples. We test the inference performance of LGIS using a 16-node linear Gaussian model and a 6-node general hybrid model. The performance comparison with other well-known methods such as Junction tree (JT) and likelihood weighting (LW) shows that LGIS-GHM is very promising.

  2. Impact of censoring on learning Bayesian networks in survival modelling.

    PubMed

    Stajduhar, Ivan; Dalbelo-Basić, Bojana; Bogunović, Nikola

    2009-11-01

    Bayesian networks are commonly used for presenting uncertainty and covariate interactions in an easily interpretable way. Because of their efficient inference and ability to represent causal relationships, they are an excellent choice for medical decision support systems in diagnosis, treatment, and prognosis. Although good procedures for learning Bayesian networks from data have been defined, their performance in learning from censored survival data has not been widely studied. In this paper, we explore how to use these procedures to learn about possible interactions between prognostic factors and their influence on the variate of interest. We study how censoring affects the probability of learning correct Bayesian network structures. Additionally, we analyse the potential usefulness of the learnt models for predicting the time-independent probability of an event of interest. We analysed the influence of censoring with a simulation on synthetic data sampled from randomly generated Bayesian networks. We used two well-known methods for learning Bayesian networks from data: a constraint-based method and a score-based method. We compared the performance of each method under different levels of censoring to those of the naive Bayes classifier and the proportional hazards model. We did additional experiments on several datasets from real-world medical domains. The machine-learning methods treated censored cases in the data as event-free. We report and compare results for several commonly used model evaluation metrics. On average, the proportional hazards method outperformed other methods in most censoring setups. As part of the simulation study, we also analysed structural similarities of the learnt networks. Heavy censoring, as opposed to no censoring, produces up to a 5% surplus and up to 10% missing total arcs. It also produces up to 50% missing arcs that should originally be connected to the variate of interest. Presented methods for learning Bayesian networks from data can be used to learn from censored survival data in the presence of light censoring (up to 20%) by treating censored cases as event-free. Given intermediate or heavy censoring, the learnt models become tuned to the majority class and would thus require a different approach.

  3. Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis

    NASA Astrophysics Data System (ADS)

    Chernoded, Andrey; Dudko, Lev; Myagkov, Igor; Volkov, Petr

    2017-10-01

    Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.

  4. Distributed multisensory integration in a recurrent network model through supervised learning

    NASA Astrophysics Data System (ADS)

    Wang, He; Wong, K. Y. Michael

    Sensory integration between different modalities has been extensively studied. It is suggested that the brain integrates signals from different modalities in a Bayesian optimal way. However, how the Bayesian rule is implemented in a neural network remains under debate. In this work we propose a biologically plausible recurrent network model, which can perform Bayesian multisensory integration after trained by supervised learning. Our model is composed of two modules, each for one modality. We assume that each module is a recurrent network, whose activity represents the posterior distribution of each stimulus. The feedforward input on each module is the likelihood of each modality. Two modules are integrated through cross-links, which are feedforward connections from the other modality, and reciprocal connections, which are recurrent connections between different modules. By stochastic gradient descent, we successfully trained the feedforward and recurrent coupling matrices simultaneously, both of which resembles the Mexican-hat. We also find that there are more than one set of coupling matrices that can approximate the Bayesian theorem well. Specifically, reciprocal connections and cross-links will compensate each other if one of them is removed. Even though trained with two inputs, the network's performance with only one input is in good accordance with what is predicted by the Bayesian theorem.

  5. Transmembrane Topology and Signal Peptide Prediction Using Dynamic Bayesian Networks

    PubMed Central

    Reynolds, Sheila M.; Käll, Lukas; Riffle, Michael E.; Bilmes, Jeff A.; Noble, William Stafford

    2008-01-01

    Hidden Markov models (HMMs) have been successfully applied to the tasks of transmembrane protein topology prediction and signal peptide prediction. In this paper we expand upon this work by making use of the more powerful class of dynamic Bayesian networks (DBNs). Our model, Philius, is inspired by a previously published HMM, Phobius, and combines a signal peptide submodel with a transmembrane submodel. We introduce a two-stage DBN decoder that combines the power of posterior decoding with the grammar constraints of Viterbi-style decoding. Philius also provides protein type, segment, and topology confidence metrics to aid in the interpretation of the predictions. We report a relative improvement of 13% over Phobius in full-topology prediction accuracy on transmembrane proteins, and a sensitivity and specificity of 0.96 in detecting signal peptides. We also show that our confidence metrics correlate well with the observed precision. In addition, we have made predictions on all 6.3 million proteins in the Yeast Resource Center (YRC) database. This large-scale study provides an overall picture of the relative numbers of proteins that include a signal-peptide and/or one or more transmembrane segments as well as a valuable resource for the scientific community. All DBNs are implemented using the Graphical Models Toolkit. Source code for the models described here is available at http://noble.gs.washington.edu/proj/philius. A Philius Web server is available at http://www.yeastrc.org/philius, and the predictions on the YRC database are available at http://www.yeastrc.org/pdr. PMID:18989393

  6. Tractography-Based Score for Learning Effective Connectivity From Multimodal Imaging Data Using Dynamic Bayesian Networks.

    PubMed

    Dang, Shilpa; Chaudhury, Santanu; Lall, Brejesh; Roy, Prasun K

    2018-05-01

    Effective connectivity (EC) is the methodology for determining functional-integration among the functionally active segregated regions of the brain. By definition EC is "the causal influence exerted by one neuronal group on another" which is constrained by anatomical connectivity (AC) (axonal connections). AC is necessary for EC but does not fully determine it, because synaptic communication occurs dynamically in a context-dependent fashion. Although there is a vast emerging evidence of structure-function relationship using multimodal imaging studies, till date only a few studies have done joint modeling of the two modalities: functional MRI (fMRI) and diffusion tensor imaging (DTI). We aim to propose a unified probabilistic framework that combines information from both sources to learn EC using dynamic Bayesian networks (DBNs). DBNs are probabilistic graphical temporal models that learn EC in an exploratory fashion. Specifically, we propose a novel anatomically informed (AI) score that evaluates fitness of a given connectivity structure to both DTI and fMRI data simultaneously. The AI score is employed in structure learning of DBN given the data. Experiments with synthetic-data demonstrate the face validity of structure learning with our AI score over anatomically uninformed counterpart. Moreover, real-data results are cross-validated by performing classification-experiments. EC inferred on real fMRI-DTI datasets is found to be consistent with previous literature and show promising results in light of the AC present as compared to other classically used techniques such as Granger-causality. Multimodal analyses provide a more reliable basis for differentiating brain under abnormal/diseased conditions than the single modality analysis.

  7. Bayesian network modeling: A case study of an epidemiologic system analysis of cardiovascular risk.

    PubMed

    Fuster-Parra, P; Tauler, P; Bennasar-Veny, M; Ligęza, A; López-González, A A; Aguiló, A

    2016-04-01

    An extensive, in-depth study of cardiovascular risk factors (CVRF) seems to be of crucial importance in the research of cardiovascular disease (CVD) in order to prevent (or reduce) the chance of developing or dying from CVD. The main focus of data analysis is on the use of models able to discover and understand the relationships between different CVRF. In this paper a report on applying Bayesian network (BN) modeling to discover the relationships among thirteen relevant epidemiological features of heart age domain in order to analyze cardiovascular lost years (CVLY), cardiovascular risk score (CVRS), and metabolic syndrome (MetS) is presented. Furthermore, the induced BN was used to make inference taking into account three reasoning patterns: causal reasoning, evidential reasoning, and intercausal reasoning. Application of BN tools has led to discovery of several direct and indirect relationships between different CVRF. The BN analysis showed several interesting results, among them: CVLY was highly influenced by smoking being the group of men the one with highest risk in CVLY; MetS was highly influence by physical activity (PA) being again the group of men the one with highest risk in MetS, and smoking did not show any influence. BNs produce an intuitive, transparent, graphical representation of the relationships between different CVRF. The ability of BNs to predict new scenarios when hypothetical information is introduced makes BN modeling an Artificial Intelligence (AI) tool of special interest in epidemiological studies. As CVD is multifactorial the use of BNs seems to be an adequate modeling tool. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Bayesian networks improve causal environmental assessments for evidence-based policy

    EPA Science Inventory

    Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the p...

  9. Application of a data-mining method based on Bayesian networks to lesion-deficit analysis

    NASA Technical Reports Server (NTRS)

    Herskovits, Edward H.; Gerring, Joan P.

    2003-01-01

    Although lesion-deficit analysis (LDA) has provided extensive information about structure-function associations in the human brain, LDA has suffered from the difficulties inherent to the analysis of spatial data, i.e., there are many more variables than subjects, and data may be difficult to model using standard distributions, such as the normal distribution. We herein describe a Bayesian method for LDA; this method is based on data-mining techniques that employ Bayesian networks to represent structure-function associations. These methods are computationally tractable, and can represent complex, nonlinear structure-function associations. When applied to the evaluation of data obtained from a study of the psychiatric sequelae of traumatic brain injury in children, this method generates a Bayesian network that demonstrates complex, nonlinear associations among lesions in the left caudate, right globus pallidus, right side of the corpus callosum, right caudate, and left thalamus, and subsequent development of attention-deficit hyperactivity disorder, confirming and extending our previous statistical analysis of these data. Furthermore, analysis of simulated data indicates that methods based on Bayesian networks may be more sensitive and specific for detecting associations among categorical variables than methods based on chi-square and Fisher exact statistics.

  10. Posterior Predictive Model Checking in Bayesian Networks

    ERIC Educational Resources Information Center

    Crawford, Aaron

    2014-01-01

    This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…

  11. A conceptual model for site-level ecology of the giant gartersnake (Thamnophis gigas) in the Sacramento Valley, California

    USGS Publications Warehouse

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.; Hansen, Eric C.; Scherer, Rick D.; Patterson, Laura C.

    2015-08-14

    Bayesian networks further provide a clear visual display of the model that facilitates understanding among various stakeholders (Marcot and others, 2001; Uusitalo , 2007). Empirical data and expert judgment can be combined, as continuous or categorical variables, to update knowledge about the system (Marcot and others, 2001; Uusitalo , 2007). Importantly, Bayesian network models allow inference from causes to consequences, but also from consequences to causes, so that data can inform the states of nodes (values of different random variables) in either direction (Marcot and others, 2001; Uusitalo , 2007). Because they can incorporate both decision nodes that represent management actions and utility nodes that quantify the costs and benefits of outcomes, Bayesian networks are ideally suited to risk analysis and adaptive management (Nyberg and others, 2006; Howes and others, 2010). Thus, Bayesian network models are useful in situations where empirical data are not available, such as questions concerning the responses of giant gartersnakes to management.

  12. A Bayesian network to predict vulnerability to sea-level rise: data report

    USGS Publications Warehouse

    Gutierrez, Benjamin T.; Plant, Nathaniel G.; Thieler, E. Robert

    2011-01-01

    During the 21st century, sea-level rise is projected to have a wide range of effects on coastal environments, development, and infrastructure. Consequently, there has been an increased focus on developing modeling or other analytical approaches to evaluate potential impacts to inform coastal management. This report provides the data that were used to develop and evaluate the performance of a Bayesian network designed to predict long-term shoreline change due to sea-level rise. The data include local rates of relative sea-level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline-change rate compiled as part of the U.S. Geological Survey Coastal Vulnerability Index for the U.S. Atlantic coast. In this project, the Bayesian network is used to define relationships among driving forces, geologic constraints, and coastal responses. Using this information, the Bayesian network is used to make probabilistic predictions of shoreline change in response to different future sea-level-rise scenarios.

  13. Application of bayesian networks to real-time flood risk estimation

    NASA Astrophysics Data System (ADS)

    Garrote, L.; Molina, M.; Blasco, G.

    2003-04-01

    This paper presents the application of a computational paradigm taken from the field of artificial intelligence - the bayesian network - to model the behaviour of hydrologic basins during floods. The final goal of this research is to develop representation techniques for hydrologic simulation models in order to define, develop and validate a mechanism, supported by a software environment, oriented to build decision models for the prediction and management of river floods in real time. The emphasis is placed on providing decision makers with tools to incorporate their knowledge of basin behaviour, usually formulated in terms of rainfall-runoff models, in the process of real-time decision making during floods. A rainfall-runoff model is only a step in the process of decision making. If a reliable rainfall forecast is available and the rainfall-runoff model is well calibrated, decisions can be based mainly on model results. However, in most practical situations, uncertainties in rainfall forecasts or model performance have to be incorporated in the decision process. The computation paradigm adopted for the simulation of hydrologic processes is the bayesian network. A bayesian network is a directed acyclic graph that represents causal influences between linked variables. Under this representation, uncertain qualitative variables are related through causal relations quantified with conditional probabilities. The solution algorithm allows the computation of the expected probability distribution of unknown variables conditioned to the observations. An approach to represent hydrologic processes by bayesian networks with temporal and spatial extensions is presented in this paper, together with a methodology for the development of bayesian models using results produced by deterministic hydrologic simulation models

  14. Efficient Dependency Computation for Dynamic Hybrid Bayesian Network in On-line System Health Management Applications

    DTIC Science & Technology

    2014-10-02

    intervals (Neil, Tailor, Marquez, Fenton , & Hear, 2007). This is cumbersome, error prone and usually inaccurate. Even though a universal framework...Science. Neil, M., Tailor, M., Marquez, D., Fenton , N., & Hear. (2007). Inference in Bayesian networks using dynamic discretisation. Statistics

  15. A Bayesian network approach for causal inferences in pesticide risk assessment and management

    EPA Science Inventory

    Pesticide risk assessment and management must balance societal benefits and ecosystem protection, based on quantified risks and the strength of the causal linkages between uses of the pesticide and socioeconomic and ecological endpoints of concern. A Bayesian network (BN) is a gr...

  16. Analog-to-digital clinical data collection on networked workstations with graphic user interface.

    PubMed

    Lunt, D

    1991-02-01

    An innovative respiratory examination system has been developed that combines physiological response measurement, real-time graphic displays, user-driven operating sequences, and networked file archiving and review into a scientific research and clinical diagnosis tool. This newly constructed computer network is being used to enhance the research center's ability to perform patient pulmonary function examinations. Respiratory data are simultaneously acquired and graphically presented during patient breathing maneuvers and rapidly transformed into graphic and numeric reports, suitable for statistical analysis or database access. The environment consists of the hardware (Macintosh computer, MacADIOS converters, analog amplifiers), the software (HyperCard v2.0, HyperTalk, XCMDs), and the network (AppleTalk, fileservers, printers) as building blocks for data acquisition, analysis, editing, and storage. System operation modules include: Calibration, Examination, Reports, On-line Help Library, Graphic/Data Editing, and Network Storage.

  17. Using Bayesian neural networks to classify forest scenes

    NASA Astrophysics Data System (ADS)

    Vehtari, Aki; Heikkonen, Jukka; Lampinen, Jouko; Juujarvi, Jouni

    1998-10-01

    We present results that compare the performance of Bayesian learning methods for neural networks on the task of classifying forest scenes into trees and background. Classification task is demanding due to the texture richness of the trees, occlusions of the forest scene objects and diverse lighting conditions under operation. This makes it difficult to determine which are optimal image features for the classification. A natural way to proceed is to extract many different types of potentially suitable features, and to evaluate their usefulness in later processing stages. One approach to cope with large number of features is to use Bayesian methods to control the model complexity. Bayesian learning uses a prior on model parameters, combines this with evidence from a training data, and the integrates over the resulting posterior to make predictions. With this method, we can use large networks and many features without fear of overfitting. For this classification task we compare two Bayesian learning methods for multi-layer perceptron (MLP) neural networks: (1) The evidence framework of MacKay uses a Gaussian approximation to the posterior weight distribution and maximizes with respect to hyperparameters. (2) In a Markov Chain Monte Carlo (MCMC) method due to Neal, the posterior distribution of the network parameters is numerically integrated using the MCMC method. As baseline classifiers for comparison we use (3) MLP early stop committee, (4) K-nearest-neighbor and (5) Classification And Regression Tree.

  18. Bayesian network prior: network analysis of biological data using external knowledge

    PubMed Central

    Isci, Senol; Dogan, Haluk; Ozturk, Cengizhan; Otu, Hasan H.

    2014-01-01

    Motivation: Reverse engineering GI networks from experimental data is a challenging task due to the complex nature of the networks and the noise inherent in the data. One way to overcome these hurdles would be incorporating the vast amounts of external biological knowledge when building interaction networks. We propose a framework where GI networks are learned from experimental data using Bayesian networks (BNs) and the incorporation of external knowledge is also done via a BN that we call Bayesian Network Prior (BNP). BNP depicts the relation between various evidence types that contribute to the event ‘gene interaction’ and is used to calculate the probability of a candidate graph (G) in the structure learning process. Results: Our simulation results on synthetic, simulated and real biological data show that the proposed approach can identify the underlying interaction network with high accuracy even when the prior information is distorted and outperforms existing methods. Availability: Accompanying BNP software package is freely available for academic use at http://bioe.bilgi.edu.tr/BNP. Contact: hasan.otu@bilgi.edu.tr Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:24215027

  19. Intelligent tutoring system for clinical reasoning skill acquisition in dental students.

    PubMed

    Suebnukarn, Siriwan

    2009-10-01

    Learning clinical reasoning is an important core activity of the modern dental curriculum. This article describes an intelligent tutoring system (ITS) for clinical reasoning skill acquisition. The system is designed to provide an experience that emulates that of live human-tutored problem-based learning (PBL) sessions as much as possible, while at the same time permitting the students to participate collaboratively from disparate locations. The system uses Bayesian networks to model individual student knowledge and activity, as well as that of the group. Tutoring algorithms use the models to generate tutoring hints. The system incorporates a multimodal interface that integrates text and graphics so as to provide a rich communication channel between the students and the system, as well as among students in the group. Comparison of learning outcomes shows that student clinical reasoning gains from the ITS are similar to those obtained from human-tutored sessions.

  20. Predicting Flavonoid UGT Regioselectivity

    PubMed Central

    Jackson, Rhydon; Knisley, Debra; McIntosh, Cecilia; Pfeiffer, Phillip

    2011-01-01

    Machine learning was applied to a challenging and biologically significant protein classification problem: the prediction of avonoid UGT acceptor regioselectivity from primary sequence. Novel indices characterizing graphical models of residues were proposed and found to be widely distributed among existing amino acid indices and to cluster residues appropriately. UGT subsequences biochemically linked to regioselectivity were modeled as sets of index sequences. Several learning techniques incorporating these UGT models were compared with classifications based on standard sequence alignment scores. These techniques included an application of time series distance functions to protein classification. Time series distances defined on the index sequences were used in nearest neighbor and support vector machine classifiers. Additionally, Bayesian neural network classifiers were applied to the index sequences. The experiments identified improvements over the nearest neighbor and support vector machine classifications relying on standard alignment similarity scores, as well as strong correlations between specific subsequences and regioselectivities. PMID:21747849

  1. Decision generation tools and Bayesian inference

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Wang, Wenjian; Forrester, Thomas; Kostrzewski, Andrew; Veeris, Christian; Nielsen, Thomas

    2014-05-01

    Digital Decision Generation (DDG) tools are important software sub-systems of Command and Control (C2) systems and technologies. In this paper, we present a special type of DDGs based on Bayesian Inference, related to adverse (hostile) networks, including such important applications as terrorism-related networks and organized crime ones.

  2. Model Diagnostics for Bayesian Networks. Research Report. ETS RR-04-17

    ERIC Educational Resources Information Center

    Sinharay, Sandip

    2004-01-01

    Assessing fit of psychometric models has always been an issue of enormous interest, but there exists no unanimously agreed upon item fit diagnostic for the models. Bayesian networks, frequently used in educational assessments (see, for example, Mislevy, Almond, Yan, & Steinberg, 2001) primarily for learning about students' knowledge and…

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, B

    This survey gives an overview of popular generative models used in the modeling of stochastic temporal systems. In particular, this survey is organized into two parts. The first part discusses the discrete-time representations of dynamic Bayesian networks and dynamic relational probabilistic models, while the second part discusses the continuous-time representation of continuous-time Bayesian networks.

  4. Metrics for evaluating performance and uncertainty of Bayesian network models

    Treesearch

    Bruce G. Marcot

    2012-01-01

    This paper presents a selected set of existing and new metrics for gauging Bayesian network model performance and uncertainty. Selected existing and new metrics are discussed for conducting model sensitivity analysis (variance reduction, entropy reduction, case file simulation); evaluating scenarios (influence analysis); depicting model complexity (numbers of model...

  5. Parallel processor-based raster graphics system architecture

    DOEpatents

    Littlefield, Richard J.

    1990-01-01

    An apparatus for generating raster graphics images from the graphics command stream includes a plurality of graphics processors connected in parallel, each adapted to receive any part of the graphics command stream for processing the command stream part into pixel data. The apparatus also includes a frame buffer for mapping the pixel data to pixel locations and an interconnection network for interconnecting the graphics processors to the frame buffer. Through the interconnection network, each graphics processor may access any part of the frame buffer concurrently with another graphics processor accessing any other part of the frame buffer. The plurality of graphics processors can thereby transmit concurrently pixel data to pixel locations in the frame buffer.

  6. Using Bayesian networks to support decision-focused information retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehner, P.; Elsaesser, C.; Seligman, L.

    This paper has described an approach to controlling the process of pulling data/information from distributed data bases in a way that is specific to a persons specific decision making context. Our prototype implementation of this approach uses a knowledge-based planner to generate a plan, an automatically constructed Bayesian network to evaluate the plan, specialized processing of the network to derive key information items that would substantially impact the evaluation of the plan (e.g., determine that replanning is needed), automated construction of Standing Requests for Information (SRIs) which are automated functions that monitor changes and trends in distributed data base thatmore » are relevant to the key information items. This emphasis of this paper is on how Bayesian networks are used.« less

  7. Bayesian approaches for Integrated Water Resources Management. A Mediterranean case study.

    NASA Astrophysics Data System (ADS)

    Gulliver, Zacarías; Herrero, Javier; José Polo, María

    2013-04-01

    This study presents the first steps of a short-term/mid-term analysis of the water resources in the Guadalfeo Basin, Spain. Within the basin the recent construction of the Rules dam has required the development of specific management tools and structures for this water system. The climate variability and the high water demand requirements for agriculture irrigation and tourism in this region may cause different controversies in the water management planning process. During the first stages of the study a rigorous analysis of the Water Framework Directive results was done in order to implement the legal requirements and the solutions for the gaps identified by the water authorities. In addition, the stakeholders and water experts identified the variables and geophysical processes for our specific water system case. These particularities need to be taken into account and are required to be reflected in the final computational tool. For decision making process purposes in a mid-term scale, a bayesian network has been used to quantify uncertainty which also provides a structure representation of probabilities, actions-decisions and utilities. On one hand by applying these techniques it is possible the inclusion of decision rules generating influence diagrams that provides clear and coherent semantics for the value of making an observation. On the other hand the utility nodes encode the stakeholders preferences which are measured on a numerical scale, choosing the action that maximizes the expected utility [MEU]. Also this graphical model allows us to identify gaps and project corrective measures, for example, formulating associated scenarios with different event hypotheses. In this sense conditional probability distributions of the seasonal water demand and waste water has been obtained between the established intervals. This fact will give to the regional water managers useful information for future decision making process. The final display is very visual and allows the user to understand quickly the model and the causal relationships between the existing nodes and variables. The input data were collected from the local monitoring networks and the unmonitored data has been generated with a physically based spatially distributed hydrological model WiMMed, which is validated and calibrated. For short-term purposes, pattern analysis has been applied for the management of extreme events scenarios, techniques as Bayesian Neural Networks (BNN) or Gaussian Processes (GP) giving accuracy on the predictions.

  8. Modular analysis of the probabilistic genetic interaction network.

    PubMed

    Hou, Lin; Wang, Lin; Qian, Minping; Li, Dong; Tang, Chao; Zhu, Yunping; Deng, Minghua; Li, Fangting

    2011-03-15

    Epistatic Miniarray Profiles (EMAP) has enabled the mapping of large-scale genetic interaction networks; however, the quantitative information gained from EMAP cannot be fully exploited since the data are usually interpreted as a discrete network based on an arbitrary hard threshold. To address such limitations, we adopted a mixture modeling procedure to construct a probabilistic genetic interaction network and then implemented a Bayesian approach to identify densely interacting modules in the probabilistic network. Mixture modeling has been demonstrated as an effective soft-threshold technique of EMAP measures. The Bayesian approach was applied to an EMAP dataset studying the early secretory pathway in Saccharomyces cerevisiae. Twenty-seven modules were identified, and 14 of those were enriched by gold standard functional gene sets. We also conducted a detailed comparison with state-of-the-art algorithms, hierarchical cluster and Markov clustering. The experimental results show that the Bayesian approach outperforms others in efficiently recovering biologically significant modules.

  9. Development of dynamic Bayesian models for web application test management

    NASA Astrophysics Data System (ADS)

    Azarnova, T. V.; Polukhin, P. V.; Bondarenko, Yu V.; Kashirina, I. L.

    2018-03-01

    The mathematical apparatus of dynamic Bayesian networks is an effective and technically proven tool that can be used to model complex stochastic dynamic processes. According to the results of the research, mathematical models and methods of dynamic Bayesian networks provide a high coverage of stochastic tasks associated with error testing in multiuser software products operated in a dynamically changing environment. Formalized representation of the discrete test process as a dynamic Bayesian model allows us to organize the logical connection between individual test assets for multiple time slices. This approach gives an opportunity to present testing as a discrete process with set structural components responsible for the generation of test assets. Dynamic Bayesian network-based models allow us to combine in one management area individual units and testing components with different functionalities and a direct influence on each other in the process of comprehensive testing of various groups of computer bugs. The application of the proposed models provides an opportunity to use a consistent approach to formalize test principles and procedures, methods used to treat situational error signs, and methods used to produce analytical conclusions based on test results.

  10. In Silico Syndrome Prediction for Coronary Artery Disease in Traditional Chinese Medicine

    PubMed Central

    Lu, Peng; Chen, Jianxin; Zhao, Huihui; Gao, Yibo; Luo, Liangtao; Zuo, Xiaohan; Shi, Qi; Yang, Yiping; Yi, Jianqiang; Wang, Wei

    2012-01-01

    Coronary artery disease (CAD) is the leading causes of deaths in the world. The differentiation of syndrome (ZHENG) is the criterion of diagnosis and therapeutic in TCM. Therefore, syndrome prediction in silico can be improving the performance of treatment. In this paper, we present a Bayesian network framework to construct a high-confidence syndrome predictor based on the optimum subset, that is, collected by Support Vector Machine (SVM) feature selection. Syndrome of CAD can be divided into asthenia and sthenia syndromes. According to the hierarchical characteristics of syndrome, we firstly label every case three types of syndrome (asthenia, sthenia, or both) to solve several syndromes with some patients. On basis of the three syndromes' classes, we design SVM feature selection to achieve the optimum symptom subset and compare this subset with Markov blanket feature select using ROC. Using this subset, the six predictors of CAD's syndrome are constructed by the Bayesian network technique. We also design Naïve Bayes, C4.5 Logistic, Radial basis function (RBF) network compared with Bayesian network. In a conclusion, the Bayesian network method based on the optimum symptoms shows a practical method to predict six syndromes of CAD in TCM. PMID:22567030

  11. Clinical Outcome Prediction in Aneurysmal Subarachnoid Hemorrhage Using Bayesian Neural Networks with Fuzzy Logic Inferences

    PubMed Central

    Lo, Benjamin W. Y.; Macdonald, R. Loch; Baker, Andrew; Levine, Mitchell A. H.

    2013-01-01

    Objective. The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH). Methods. The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients). Results. Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs). Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique) denoted cut-off points for poor prognosis at greater than 2.5 clusters. Discussion. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication. PMID:23690884

  12. Multiprocessor graphics computation and display using transputers

    NASA Technical Reports Server (NTRS)

    Ellis, Graham K.

    1988-01-01

    A package of two-dimensional graphics routines was developed to run on a transputer-based parallel processing system. These routines were designed to enable applications programmers to easily generate and display results from the transputer network in a graphic format. The graphics procedures were designed for the lowest possible network communication overhead for increased performance. The routines were designed for ease of use and to present an intuitive approach to generating graphics on the transputer parallel processing system.

  13. Comparing models for quantitative risk assessment: an application to the European Registry of foreign body injuries in children.

    PubMed

    Berchialla, Paola; Scarinzi, Cecilia; Snidero, Silvia; Gregori, Dario

    2016-08-01

    Risk Assessment is the systematic study of decisions subject to uncertain consequences. An increasing interest has been focused on modeling techniques like Bayesian Networks since their capability of (1) combining in the probabilistic framework different type of evidence including both expert judgments and objective data; (2) overturning previous beliefs in the light of the new information being received and (3) making predictions even with incomplete data. In this work, we proposed a comparison among Bayesian Networks and other classical Quantitative Risk Assessment techniques such as Neural Networks, Classification Trees, Random Forests and Logistic Regression models. Hybrid approaches, combining both Classification Trees and Bayesian Networks, were also considered. Among Bayesian Networks, a clear distinction between purely data-driven approach and combination of expert knowledge with objective data is made. The aim of this paper consists in evaluating among this models which best can be applied, in the framework of Quantitative Risk Assessment, to assess the safety of children who are exposed to the risk of inhalation/insertion/aspiration of consumer products. The issue of preventing injuries in children is of paramount importance, in particular where product design is involved: quantifying the risk associated to product characteristics can be of great usefulness in addressing the product safety design regulation. Data of the European Registry of Foreign Bodies Injuries formed the starting evidence for risk assessment. Results showed that Bayesian Networks appeared to have both the ease of interpretability and accuracy in making prediction, even if simpler models like logistic regression still performed well. © The Author(s) 2013.

  14. Inferring Phylogenetic Networks Using PhyloNet.

    PubMed

    Wen, Dingqiao; Yu, Yun; Zhu, Jiafan; Nakhleh, Luay

    2018-07-01

    PhyloNet was released in 2008 as a software package for representing and analyzing phylogenetic networks. At the time of its release, the main functionalities in PhyloNet consisted of measures for comparing network topologies and a single heuristic for reconciling gene trees with a species tree. Since then, PhyloNet has grown significantly. The software package now includes a wide array of methods for inferring phylogenetic networks from data sets of unlinked loci while accounting for both reticulation (e.g., hybridization) and incomplete lineage sorting. In particular, PhyloNet now allows for maximum parsimony, maximum likelihood, and Bayesian inference of phylogenetic networks from gene tree estimates. Furthermore, Bayesian inference directly from sequence data (sequence alignments or biallelic markers) is implemented. Maximum parsimony is based on an extension of the "minimizing deep coalescences" criterion to phylogenetic networks, whereas maximum likelihood and Bayesian inference are based on the multispecies network coalescent. All methods allow for multiple individuals per species. As computing the likelihood of a phylogenetic network is computationally hard, PhyloNet allows for evaluation and inference of networks using a pseudolikelihood measure. PhyloNet summarizes the results of the various analyzes and generates phylogenetic networks in the extended Newick format that is readily viewable by existing visualization software.

  15. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network

    PubMed Central

    2011-01-01

    Background Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. Results We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism’s metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. Conclusions After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis. PMID:22784571

  16. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network.

    PubMed

    Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2011-01-01

    Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  17. A Bayesian Belief Network Approach to Explore Alternative Decisions for Sediment Control and water Storage Capacity at Lago Lucchetti, Puerto Rico

    EPA Science Inventory

    A Bayesian belief network (BBN) was developed to characterize the effects of sediment accumulation on the water storage capacity of Lago Lucchetti (located in southwest Puerto Rico) and to forecast the life expectancy (usefulness) of the reservoir under different management scena...

  18. Bayesian Network Meta-Analysis for Unordered Categorical Outcomes with Incomplete Data

    ERIC Educational Resources Information Center

    Schmid, Christopher H.; Trikalinos, Thomas A.; Olkin, Ingram

    2014-01-01

    We develop a Bayesian multinomial network meta-analysis model for unordered (nominal) categorical outcomes that allows for partially observed data in which exact event counts may not be known for each category. This model properly accounts for correlations of counts in mutually exclusive categories and enables proper comparison and ranking of…

  19. Predicting forest insect flight activity: A Bayesian network approach

    Treesearch

    Stephen M. Pawson; Bruce G. Marcot; Owen G. Woodberry

    2017-01-01

    Daily flight activity patterns of forest insects are influenced by temporal and meteorological conditions. Temperature and time of day are frequently cited as key drivers of activity; however, complex interactions between multiple contributing factors have also been proposed. Here, we report individual Bayesian network models to assess the probability of flight...

  20. Bayesian belief networks: applications in ecology and natural resource management.

    Treesearch

    R.K. McCann; B.G. Marcot; R. Ellis

    2006-01-01

    We review the use of Bayesian belief networks (BBNs) in natural resource management and ecology. We suggest that BBNs are useful tools for representing expert knowledge of a system, evaluating potential effects of alternative management decisions, and communicating to nonexperts about resource decision issues. BBNs can be used effectively to represent uncertainty in...

  1. Assessment of Matrix Multiplication Learning with a Rule-Based Analytical Model--"A Bayesian Network Representation"

    ERIC Educational Resources Information Center

    Zhang, Zhidong

    2016-01-01

    This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…

  2. Using Discrete Loss Functions and Weighted Kappa for Classification: An Illustration Based on Bayesian Network Analysis

    ERIC Educational Resources Information Center

    Zwick, Rebecca; Lenaburg, Lubella

    2009-01-01

    In certain data analyses (e.g., multiple discriminant analysis and multinomial log-linear modeling), classification decisions are made based on the estimated posterior probabilities that individuals belong to each of several distinct categories. In the Bayesian network literature, this type of classification is often accomplished by assigning…

  3. Potential Uses of Bayesian Networks as Tools for Synthesis of Systematic Reviews of Complex Interventions

    ERIC Educational Resources Information Center

    Stewart, G. B.; Mengersen, K.; Meader, N.

    2014-01-01

    Bayesian networks (BNs) are tools for representing expert knowledge or evidence. They are especially useful for synthesising evidence or belief concerning a complex intervention, assessing the sensitivity of outcomes to different situations or contextual frameworks and framing decision problems that involve alternative types of intervention.…

  4. Maritime Transportation Risk Assessment of Tianjin Port with Bayesian Belief Networks.

    PubMed

    Zhang, Jinfen; Teixeira, Ângelo P; Guedes Soares, C; Yan, Xinping; Liu, Kezhong

    2016-06-01

    This article develops a Bayesian belief network model for the prediction of accident consequences in the Tianjin port. The study starts with a statistical analysis of historical accident data of six years from 2008 to 2013. Then a Bayesian belief network is constructed to express the dependencies between the indicator variables and accident consequences. The statistics and expert knowledge are synthesized in the Bayesian belief network model to obtain the probability distribution of the consequences. By a sensitivity analysis, several indicator variables that have influence on the consequences are identified, including navigational area, ship type and time of the day. The results indicate that the consequences are most sensitive to the position where the accidents occurred, followed by time of day and ship length. The results also reflect that the navigational risk of the Tianjin port is at the acceptable level, despite that there is more room of improvement. These results can be used by the Maritime Safety Administration to take effective measures to enhance maritime safety in the Tianjin port. © 2016 Society for Risk Analysis.

  5. Bayesian hierarchical modeling for detecting safety signals in clinical trials.

    PubMed

    Xia, H Amy; Ma, Haijun; Carlin, Bradley P

    2011-09-01

    Detection of safety signals from clinical trial adverse event data is critical in drug development, but carries a challenging statistical multiplicity problem. Bayesian hierarchical mixture modeling is appealing for its ability to borrow strength across subgroups in the data, as well as moderate extreme findings most likely due merely to chance. We implement such a model for subject incidence (Berry and Berry, 2004 ) using a binomial likelihood, and extend it to subject-year adjusted incidence rate estimation under a Poisson likelihood. We use simulation to choose a signal detection threshold, and illustrate some effective graphics for displaying the flagged signals.

  6. Analysis of nasopharyngeal carcinoma risk factors with Bayesian networks.

    PubMed

    Aussem, Alex; de Morais, Sérgio Rodrigues; Corbex, Marilys

    2012-01-01

    We propose a new graphical framework for extracting the relevant dietary, social and environmental risk factors that are associated with an increased risk of nasopharyngeal carcinoma (NPC) on a case-control epidemiologic study that consists of 1289 subjects and 150 risk factors. This framework builds on the use of Bayesian networks (BNs) for representing statistical dependencies between the random variables. We discuss a novel constraint-based procedure, called Hybrid Parents and Children (HPC), that builds recursively a local graph that includes all the relevant features statistically associated to the NPC, without having to find the whole BN first. The local graph is afterwards directed by the domain expert according to his knowledge. It provides a statistical profile of the recruited population, and meanwhile helps identify the risk factors associated to NPC. Extensive experiments on synthetic data sampled from known BNs show that the HPC outperforms state-of-the-art algorithms that appeared in the recent literature. From a biological perspective, the present study confirms that chemical products, pesticides and domestic fume intake from incomplete combustion of coal and wood are significantly associated with NPC risk. These results suggest that industrial workers are often exposed to noxious chemicals and poisonous substances that are used in the course of manufacturing. This study also supports previous findings that the consumption of a number of preserved food items, like house made proteins and sheep fat, are a major risk factor for NPC. BNs are valuable data mining tools for the analysis of epidemiologic data. They can explicitly combine both expert knowledge from the field and information inferred from the data. These techniques therefore merit consideration as valuable alternatives to traditional multivariate regression techniques in epidemiologic studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. The dynamic programming high-order Dynamic Bayesian Networks learning for identifying effective connectivity in human brain from fMRI.

    PubMed

    Dang, Shilpa; Chaudhury, Santanu; Lall, Brejesh; Roy, Prasun Kumar

    2017-06-15

    Determination of effective connectivity (EC) among brain regions using fMRI is helpful in understanding the underlying neural mechanisms. Dynamic Bayesian Networks (DBNs) are an appropriate class of probabilistic graphical temporal-models that have been used in past to model EC from fMRI, specifically order-one. High-order DBNs (HO-DBNs) have still not been explored for fMRI data. A fundamental problem faced in the structure-learning of HO-DBN is high computational-burden and low accuracy by the existing heuristic search techniques used for EC detection from fMRI. In this paper, we propose using dynamic programming (DP) principle along with integration of properties of scoring-function in a way to reduce search space for structure-learning of HO-DBNs and finally, for identifying EC from fMRI which has not been done yet to the best of our knowledge. The proposed exact search-&-score learning approach HO-DBN-DP is an extension of the technique which was originally devised for learning a BN's structure from static data (Singh and Moore, 2005). The effectiveness in structure-learning is shown on synthetic fMRI dataset. The algorithm reaches globally-optimal solution in appreciably reduced time-complexity than the static counterpart due to integration of properties. The proof of optimality is provided. The results demonstrate that HO-DBN-DP is comparably more accurate and faster than currently used structure-learning algorithms used for identifying EC from fMRI. The real data EC from HO-DBN-DP shows consistency with previous literature than the classical Granger Causality method. Hence, the DP algorithm can be employed for reliable EC estimates from experimental fMRI data. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The Pittsburgh Cervical Cancer Screening Model: a risk assessment tool.

    PubMed

    Austin, R Marshall; Onisko, Agnieszka; Druzdzel, Marek J

    2010-05-01

    Evaluation of cervical cancer screening has grown increasingly complex with the introduction of human papillomavirus (HPV) vaccination and newer screening technologies approved by the US Food and Drug Administration. To create a unique Pittsburgh Cervical Cancer Screening Model (PCCSM) that quantifies risk for histopathologic cervical precancer (cervical intraepithelial neoplasia [CIN] 2, CIN3, and adenocarcinoma in situ) and cervical cancer in an environment predominantly using newer screening technologies. The PCCSM is a dynamic Bayesian network consisting of 19 variables available in the laboratory information system, including patient history data (most recent HPV vaccination data), Papanicolaou test results, high-risk HPV results, procedure data, and histopathologic results. The model's graphic structure was based on the published literature. Results from 375 441 patient records from 2005 through 2008 were used to build and train the model. Additional data from 45 930 patients were used to test the model. The PCCSM compares risk quantitatively over time for histopathologically verifiable CIN2, CIN3, adenocarcinoma in situ, and cervical cancer in screened patients for each current cytology result category and for each HPV result. For each current cytology result, HPV test results affect risk; however, the degree of cytologic abnormality remains the largest positive predictor of risk. Prior history also alters the CIN2, CIN3, adenocarcinoma in situ, and cervical cancer risk for patients with common current cytology and HPV test results. The PCCSM can also generate negative risk projections, estimating the likelihood of the absence of histopathologic CIN2, CIN3, adenocarcinoma in situ, and cervical cancer in screened patients. The PCCSM is a dynamic Bayesian network that computes quantitative cervical disease risk estimates for patients undergoing cervical screening. Continuously updatable with current system data, the PCCSM provides a new tool to monitor cervical disease risk in the evolving postvaccination era.

  9. A Prior for Neural Networks utilizing Enclosing Spheres for Normalization

    NASA Astrophysics Data System (ADS)

    v. Toussaint, U.; Gori, S.; Dose, V.

    2004-11-01

    Neural Networks are famous for their advantageous flexibility for problems when there is insufficient knowledge to set up a proper model. On the other hand this flexibility can cause over-fitting and can hamper the generalization properties of neural networks. Many approaches to regularize NN have been suggested but most of them based on ad-hoc arguments. Employing the principle of transformation invariance we derive a general prior in accordance with the Bayesian probability theory for a class of feedforward networks. Optimal networks are determined by Bayesian model comparison verifying the applicability of this approach.

  10. Bayesian inference of T Tauri star properties using multi-wavelength survey photometry

    NASA Astrophysics Data System (ADS)

    Barentsen, Geert; Vink, J. S.; Drew, J. E.; Sale, S. E.

    2013-03-01

    There are many pertinent open issues in the area of star and planet formation. Large statistical samples of young stars across star-forming regions are needed to trigger a breakthrough in our understanding, but most optical studies are based on a wide variety of spectrographs and analysis methods, which introduces large biases. Here we show how graphical Bayesian networks can be employed to construct a hierarchical probabilistic model which allows pre-main-sequence ages, masses, accretion rates and extinctions to be estimated using two widely available photometric survey data bases (Isaac Newton Telescope Photometric Hα Survey r'/Hα/i' and Two Micron All Sky Survey J-band magnitudes). Because our approach does not rely on spectroscopy, it can easily be applied to ho-mogeneously study the large number of clusters for which Gaia will yield membership lists. We explain how the analysis is carried out using the Markov chain Monte Carlo method and provide PYTHON source code. We then demonstrate its use on 587 known low-mass members of the star-forming region NGC 2264 (Cone Nebula), arriving at a median age of 3.0 Myr, an accretion fraction of 20 ± 2 per cent and a median accretion rate of 10-8.4 M⊙ yr-1. The Bayesian analysis formulated in this work delivers results which are in agreement with spectroscopic studies already in the literature, but achieves this with great efficiency by depending only on photometry. It is a significant step forward from previous photometric studies because the probabilistic approach ensures that nuisance parameters, such as extinction and distance, are fully included in the analysis with a clear picture on any degeneracies.

  11. Bayesian accounts of covert selective attention: A tutorial review.

    PubMed

    Vincent, Benjamin T

    2015-05-01

    Decision making and optimal observer models offer an important theoretical approach to the study of covert selective attention. While their probabilistic formulation allows quantitative comparison to human performance, the models can be complex and their insights are not always immediately apparent. Part 1 establishes the theoretical appeal of the Bayesian approach, and introduces the way in which probabilistic approaches can be applied to covert search paradigms. Part 2 presents novel formulations of Bayesian models of 4 important covert attention paradigms, illustrating optimal observer predictions over a range of experimental manipulations. Graphical model notation is used to present models in an accessible way and Supplementary Code is provided to help bridge the gap between model theory and practical implementation. Part 3 reviews a large body of empirical and modelling evidence showing that many experimental phenomena in the domain of covert selective attention are a set of by-products. These effects emerge as the result of observers conducting Bayesian inference with noisy sensory observations, prior expectations, and knowledge of the generative structure of the stimulus environment.

  12. Detection of Low-order Curves in Images using Biologically-plausible Hardware

    DTIC Science & Technology

    2012-09-29

    the intersections of iso-eccentricity and iso-polar contours were entered into the computer via a graphics tablet . In regions where there was...functional mri . Cerebral Cortex, 7:181 – 192, 1997. [25] Jacob Feldman. Bayesian contour integration. Perception and Psychophysics, 63:1171 – 1182, 2001. [26

  13. Investigating Psychometric Isomorphism for Traditional and Performance-Based Assessment

    ERIC Educational Resources Information Center

    Fay, Derek M.; Levy, Roy; Mehta, Vandhana

    2018-01-01

    A common practice in educational assessment is to construct multiple forms of an assessment that consists of tasks with similar psychometric properties. This study utilizes a Bayesian multilevel item response model and descriptive graphical representations to evaluate the psychometric similarity of variations of the same task. These approaches for…

  14. Updating Parameters for Volcanic Hazard Assessment Using Multi-parameter Monitoring Data Streams And Bayesian Belief Networks

    NASA Astrophysics Data System (ADS)

    Odbert, Henry; Aspinall, Willy

    2014-05-01

    Evidence-based hazard assessment at volcanoes assimilates knowledge about the physical processes of hazardous phenomena and observations that indicate the current state of a volcano. Incorporating both these lines of evidence can inform our belief about the likelihood (probability) and consequences (impact) of possible hazardous scenarios, forming a basis for formal quantitative hazard assessment. However, such evidence is often uncertain, indirect or incomplete. Approaches to volcano monitoring have advanced substantially in recent decades, increasing the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Interpreting these multiple strands of parallel, partial evidence thus becomes increasingly complex. In practice, interpreting many timeseries requires an individual to be familiar with the idiosyncrasies of the volcano, monitoring techniques, configuration of recording instruments, observations from other datasets, and so on. In making such interpretations, an individual must consider how different volcanic processes may manifest as measureable observations, and then infer from the available data what can or cannot be deduced about those processes. We examine how parts of this process may be synthesised algorithmically using Bayesian inference. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple strands of evidence (e.g. observations, model results and interpretations) and their associated uncertainties in a methodical manner. BBNs are usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic data from the long-lived eruption at Soufriere Hills Volcano, Montserrat. We discuss the uncertainty of inferences, and how our method provides a route to formal propagation of uncertainties in hazard models. Such approaches provide an attractive route to developing an interface between volcano monitoring analyses and probabilistic hazard scenario analysis. We discuss the use of BBNs in hazard analysis as a tractable and traceable tool for fast, rational assimilation of complex, multi-parameter data sets in the context of timely volcanic crisis decision support.

  15. Combining Volcano Monitoring Timeseries Analyses with Bayesian Belief Networks to Update Hazard Forecast Estimates

    NASA Astrophysics Data System (ADS)

    Odbert, Henry; Hincks, Thea; Aspinall, Willy

    2015-04-01

    Volcanic hazard assessments must combine information about the physical processes of hazardous phenomena with observations that indicate the current state of a volcano. Incorporating both these lines of evidence can inform our belief about the likelihood (probability) and consequences (impact) of possible hazardous scenarios, forming a basis for formal quantitative hazard assessment. However, such evidence is often uncertain, indirect or incomplete. Approaches to volcano monitoring have advanced substantially in recent decades, increasing the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Interpreting these multiple strands of parallel, partial evidence thus becomes increasingly complex. In practice, interpreting many timeseries requires an individual to be familiar with the idiosyncrasies of the volcano, monitoring techniques, configuration of recording instruments, observations from other datasets, and so on. In making such interpretations, an individual must consider how different volcanic processes may manifest as measureable observations, and then infer from the available data what can or cannot be deduced about those processes. We examine how parts of this process may be synthesised algorithmically using Bayesian inference. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple strands of evidence (e.g. observations, model results and interpretations) and their associated uncertainties in a methodical manner. BBNs are usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic data from the long-lived eruption at Soufriere Hills Volcano, Montserrat. We show how our method provides a route to formal propagation of uncertainties in hazard models. Such approaches provide an attractive route to developing an interface between volcano monitoring analyses and probabilistic hazard scenario analysis. We discuss the use of BBNs in hazard analysis as a tractable and traceable tool for fast, rational assimilation of complex, multi-parameter data sets in the context of timely volcanic crisis decision support.

  16. THREAT ANTICIPATION AND DECEPTIVE REASONING USING BAYESIAN BELIEF NETWORKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E

    Recent events highlight the need for tools to anticipate threats posed by terrorists. Assessing these threats requires combining information from disparate data sources such as analytic models, simulations, historical data, sensor networks, and user judgments. These disparate data can be combined in a coherent, analytically defensible, and understandable manner using a Bayesian belief network (BBN). In this paper, we develop a BBN threat anticipatory model based on a deceptive reasoning algorithm using a network engineering process that treats the probability distributions of the BBN nodes within the broader context of the system development process.

  17. Multinomial Bayesian learning for modeling classical and nonclassical receptive field properties.

    PubMed

    Hosoya, Haruo

    2012-08-01

    We study the interplay of Bayesian inference and natural image learning in a hierarchical vision system, in relation to the response properties of early visual cortex. We particularly focus on a Bayesian network with multinomial variables that can represent discrete feature spaces similar to hypercolumns combining minicolumns, enforce sparsity of activation to learn efficient representations, and explain divisive normalization. We demonstrate that maximal-likelihood learning using sampling-based Bayesian inference gives rise to classical receptive field properties similar to V1 simple cells and V2 cells, while inference performed on the trained network yields nonclassical context-dependent response properties such as cross-orientation suppression and filling in. Comparison with known physiological properties reveals some qualitative and quantitative similarities.

  18. Nursing Home Care Quality: Insights from a Bayesian Network Approach

    ERIC Educational Resources Information Center

    Goodson, Justin; Jang, Wooseung; Rantz, Marilyn

    2008-01-01

    Purpose: The purpose of this research is twofold. The first purpose is to utilize a new methodology (Bayesian networks) for aggregating various quality indicators to measure the overall quality of care in nursing homes. The second is to provide new insight into the relationships that exist among various measures of quality and how such measures…

  19. Implementation of an Adaptive Learning System Using a Bayesian Network

    ERIC Educational Resources Information Center

    Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki

    2015-01-01

    An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…

  20. Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation.

    Treesearch

    B.G. Marcot; J.D. Steventon; G.D. Sutherland; R.K. McCann

    2006-01-01

    We provide practical guidelines for developing, testing, and revising Bayesian belief networks (BBNs). Primary steps in this process include creating influence diagrams of the hypothesized "causal web" of key factors affecting a species or ecological outcome of interest; developing a first, alpha-level BBN model from the influence diagram; revising the model...

  1. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors

    EPA Science Inventory

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity, but development of predictive MoA classification models in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity MoA using a recently pu...

  2. Are Student Evaluations of Teaching Effectiveness Valid for Measuring Student Learning Outcomes in Business Related Classes? A Neural Network and Bayesian Analyses

    ERIC Educational Resources Information Center

    Galbraith, Craig S.; Merrill, Gregory B.; Kline, Doug M.

    2012-01-01

    In this study we investigate the underlying relational structure between student evaluations of teaching effectiveness (SETEs) and achievement of student learning outcomes in 116 business related courses. Utilizing traditional statistical techniques, a neural network analysis and a Bayesian data reduction and classification algorithm, we find…

  3. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors-abstract

    EPA Science Inventory

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity but MoA classification in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity mode of action using a recently published dataset contain...

  4. A Measure of Systems Engineering Effectiveness in Government Acquisition of Complex Information Systems: A Bayesian Belief Network-Based Approach

    ERIC Educational Resources Information Center

    Doskey, Steven Craig

    2014-01-01

    This research presents an innovative means of gauging Systems Engineering effectiveness through a Systems Engineering Relative Effectiveness Index (SE REI) model. The SE REI model uses a Bayesian Belief Network to map causal relationships in government acquisitions of Complex Information Systems (CIS), enabling practitioners to identify and…

  5. Assessing compositional variability through graphical analysis and Bayesian statistical approaches: case studies on transgenic crops.

    PubMed

    Harrigan, George G; Harrison, Jay M

    2012-01-01

    New transgenic (GM) crops are subjected to extensive safety assessments that include compositional comparisons with conventional counterparts as a cornerstone of the process. The influence of germplasm, location, environment, and agronomic treatments on compositional variability is, however, often obscured in these pair-wise comparisons. Furthermore, classical statistical significance testing can often provide an incomplete and over-simplified summary of highly responsive variables such as crop composition. In order to more clearly describe the influence of the numerous sources of compositional variation we present an introduction to two alternative but complementary approaches to data analysis and interpretation. These include i) exploratory data analysis (EDA) with its emphasis on visualization and graphics-based approaches and ii) Bayesian statistical methodology that provides easily interpretable and meaningful evaluations of data in terms of probability distributions. The EDA case-studies include analyses of herbicide-tolerant GM soybean and insect-protected GM maize and soybean. Bayesian approaches are presented in an analysis of herbicide-tolerant GM soybean. Advantages of these approaches over classical frequentist significance testing include the more direct interpretation of results in terms of probabilities pertaining to quantities of interest and no confusion over the application of corrections for multiple comparisons. It is concluded that a standardized framework for these methodologies could provide specific advantages through enhanced clarity of presentation and interpretation in comparative assessments of crop composition.

  6. Using Bayesian Networks to Improve Knowledge Assessment

    ERIC Educational Resources Information Center

    Millan, Eva; Descalco, Luis; Castillo, Gladys; Oliveira, Paula; Diogo, Sandra

    2013-01-01

    In this paper, we describe the integration and evaluation of an existing generic Bayesian student model (GBSM) into an existing computerized testing system within the Mathematics Education Project (PmatE--Projecto Matematica Ensino) of the University of Aveiro. This generic Bayesian student model had been previously evaluated with simulated…

  7. GUIdock: Using Docker Containers with a Common Graphics User Interface to Address the Reproducibility of Research

    PubMed Central

    Yeung, Ka Yee

    2016-01-01

    Reproducibility is vital in science. For complex computational methods, it is often necessary, not just to recreate the code, but also the software and hardware environment to reproduce results. Virtual machines, and container software such as Docker, make it possible to reproduce the exact environment regardless of the underlying hardware and operating system. However, workflows that use Graphical User Interfaces (GUIs) remain difficult to replicate on different host systems as there is no high level graphical software layer common to all platforms. GUIdock allows for the facile distribution of a systems biology application along with its graphics environment. Complex graphics based workflows, ubiquitous in systems biology, can now be easily exported and reproduced on many different platforms. GUIdock uses Docker, an open source project that provides a container with only the absolutely necessary software dependencies and configures a common X Windows (X11) graphic interface on Linux, Macintosh and Windows platforms. As proof of concept, we present a Docker package that contains a Bioconductor application written in R and C++ called networkBMA for gene network inference. Our package also includes Cytoscape, a java-based platform with a graphical user interface for visualizing and analyzing gene networks, and the CyNetworkBMA app, a Cytoscape app that allows the use of networkBMA via the user-friendly Cytoscape interface. PMID:27045593

  8. GUIdock: Using Docker Containers with a Common Graphics User Interface to Address the Reproducibility of Research.

    PubMed

    Hung, Ling-Hong; Kristiyanto, Daniel; Lee, Sung Bong; Yeung, Ka Yee

    2016-01-01

    Reproducibility is vital in science. For complex computational methods, it is often necessary, not just to recreate the code, but also the software and hardware environment to reproduce results. Virtual machines, and container software such as Docker, make it possible to reproduce the exact environment regardless of the underlying hardware and operating system. However, workflows that use Graphical User Interfaces (GUIs) remain difficult to replicate on different host systems as there is no high level graphical software layer common to all platforms. GUIdock allows for the facile distribution of a systems biology application along with its graphics environment. Complex graphics based workflows, ubiquitous in systems biology, can now be easily exported and reproduced on many different platforms. GUIdock uses Docker, an open source project that provides a container with only the absolutely necessary software dependencies and configures a common X Windows (X11) graphic interface on Linux, Macintosh and Windows platforms. As proof of concept, we present a Docker package that contains a Bioconductor application written in R and C++ called networkBMA for gene network inference. Our package also includes Cytoscape, a java-based platform with a graphical user interface for visualizing and analyzing gene networks, and the CyNetworkBMA app, a Cytoscape app that allows the use of networkBMA via the user-friendly Cytoscape interface.

  9. Learning multivariate distributions by competitive assembly of marginals.

    PubMed

    Sánchez-Vega, Francisco; Younes, Laurent; Geman, Donald

    2013-02-01

    We present a new framework for learning high-dimensional multivariate probability distributions from estimated marginals. The approach is motivated by compositional models and Bayesian networks, and designed to adapt to small sample sizes. We start with a large, overlapping set of elementary statistical building blocks, or "primitives," which are low-dimensional marginal distributions learned from data. Each variable may appear in many primitives. Subsets of primitives are combined in a Lego-like fashion to construct a probabilistic graphical model; only a small fraction of the primitives will participate in any valid construction. Since primitives can be precomputed, parameter estimation and structure search are separated. Model complexity is controlled by strong biases; we adapt the primitives to the amount of training data and impose rules which restrict the merging of them into allowable compositions. The likelihood of the data decomposes into a sum of local gains, one for each primitive in the final structure. We focus on a specific subclass of networks which are binary forests. Structure optimization corresponds to an integer linear program and the maximizing composition can be computed for reasonably large numbers of variables. Performance is evaluated using both synthetic data and real datasets from natural language processing and computational biology.

  10. Reliability of a Bayesian network to predict an elevated aldosterone-to-renin ratio.

    PubMed

    Ducher, Michel; Mounier-Véhier, Claire; Lantelme, Pierre; Vaisse, Bernard; Baguet, Jean-Philippe; Fauvel, Jean-Pierre

    2015-05-01

    Resistant hypertension is common, mainly idiopathic, but sometimes related to primary aldosteronism. Thus, most hypertension specialists recommend screening for primary aldosteronism. To optimize the selection of patients whose aldosterone-to-renin ratio (ARR) is elevated from simple clinical and biological characteristics. Data from consecutive patients referred between 1 June 2008 and 30 May 2009 were collected retrospectively from five French 'European excellence hypertension centres' institutional registers. Patients were included if they had at least one of: onset of hypertension before age 40 years, resistant hypertension, history of hypokalaemia, efficient treatment by spironolactone, and potassium supplementation. An ARR>32 ng/L and aldosterone>160 ng/L in patients treated without agents altering the renin-angiotensin system was considered as elevated. Bayesian network and stepwise logistic regression were used to predict an elevated ARR. Of 334 patients, 89 were excluded (31 for incomplete data, 32 for taking agents that alter the renin-angiotensin system and 26 for other reasons). Among 245 included patients, 110 had an elevated ARR. Sensitivity reached 100% or 63.3% using Bayesian network or logistic regression, respectively, and specificity reached 89.6% or 67.2%, respectively. The area under the receiver-operating-characteristic curve obtained with the Bayesian network was significantly higher than that obtained by stepwise regression (0.93±0.02 vs. 0.70±0.03; P<0.001). In hypertension centres, Bayesian network efficiently detected patients with an elevated ARR. An external validation study is required before use in primary clinical settings. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Calculation of Crystallographic Texture of BCC Steels During Cold Rolling

    NASA Astrophysics Data System (ADS)

    Das, Arpan

    2017-05-01

    BCC alloys commonly tend to develop strong fibre textures and often represent as isointensity diagrams in φ 1 sections or by fibre diagrams. Alpha fibre in bcc steels is generally characterised by <110> crystallographic axis parallel to the rolling direction. The objective of present research is to correlate carbon content, carbide dispersion, rolling reduction, Euler angles (ϕ) (when φ 1 = 0° and φ 2 = 45° along alpha fibre) and the resulting alpha fibre texture orientation intensity. In the present research, Bayesian neural computation has been employed to correlate these and compare with the existing feed-forward neural network model comprehensively. Excellent match to the measured texture data within the bounding box of texture training data set has been already predicted through the feed-forward neural network model by other researchers. Feed-forward neural network prediction outside the bounds of training texture data showed deviations from the expected values. Currently, Bayesian computation has been similarly applied to confirm that the predictions are reasonable in the context of basic metallurgical principles, and matched better outside the bounds of training texture data set than the reported feed-forward neural network. Bayesian computation puts error bars on predicted values and allows significance of each individual parameters to be estimated. Additionally, it is also possible by Bayesian computation to estimate the isolated influence of particular variable such as carbon concentration, which exactly cannot in practice be varied independently. This shows the ability of the Bayesian neural network to examine the new phenomenon in situations where the data cannot be accessed through experiments.

  12. Accuracy of dengue clinical diagnosis with and without NS1 antigen rapid test: Comparison between human and Bayesian network model decision.

    PubMed

    Sa-Ngamuang, Chaitawat; Haddawy, Peter; Luvira, Viravarn; Piyaphanee, Watcharapong; Iamsirithaworn, Sopon; Lawpoolsri, Saranath

    2018-06-18

    Differentiating dengue patients from other acute febrile illness patients is a great challenge among physicians. Several dengue diagnosis methods are recommended by WHO. The application of specific laboratory tests is still limited due to high cost, lack of equipment, and uncertain validity. Therefore, clinical diagnosis remains a common practice especially in resource limited settings. Bayesian networks have been shown to be a useful tool for diagnostic decision support. This study aimed to construct Bayesian network models using basic demographic, clinical, and laboratory profiles of acute febrile illness patients to diagnose dengue. Data of 397 acute undifferentiated febrile illness patients who visited the fever clinic of the Bangkok Hospital for Tropical Diseases, Thailand, were used for model construction and validation. The two best final models were selected: one with and one without NS1 rapid test result. The diagnostic accuracy of the models was compared with that of physicians on the same set of patients. The Bayesian network models provided good diagnostic accuracy of dengue infection, with ROC AUC of 0.80 and 0.75 for models with and without NS1 rapid test result, respectively. The models had approximately 80% specificity and 70% sensitivity, similar to the diagnostic accuracy of the hospital's fellows in infectious disease. Including information on NS1 rapid test improved the specificity, but reduced the sensitivity, both in model and physician diagnoses. The Bayesian network model developed in this study could be useful to assist physicians in diagnosing dengue, particularly in regions where experienced physicians and laboratory confirmation tests are limited.

  13. Bayesian models: A statistical primer for ecologists

    USGS Publications Warehouse

    Hobbs, N. Thompson; Hooten, Mevin B.

    2015-01-01

    Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticiansCovers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and moreDeemphasizes computer coding in favor of basic principlesExplains how to write out properly factored statistical expressions representing Bayesian models

  14. Uncertainty aggregation and reduction in structure-material performance prediction

    NASA Astrophysics Data System (ADS)

    Hu, Zhen; Mahadevan, Sankaran; Ao, Dan

    2018-02-01

    An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.

  15. Continuous time Bayesian networks identify Prdm1 as a negative regulator of TH17 cell differentiation in humans

    PubMed Central

    Acerbi, Enzo; Viganò, Elena; Poidinger, Michael; Mortellaro, Alessandra; Zelante, Teresa; Stella, Fabio

    2016-01-01

    T helper 17 (TH17) cells represent a pivotal adaptive cell subset involved in multiple immune disorders in mammalian species. Deciphering the molecular interactions regulating TH17 cell differentiation is particularly critical for novel drug target discovery designed to control maladaptive inflammatory conditions. Using continuous time Bayesian networks over a time-course gene expression dataset, we inferred the global regulatory network controlling TH17 differentiation. From the network, we identified the Prdm1 gene encoding the B lymphocyte-induced maturation protein 1 as a crucial negative regulator of human TH17 cell differentiation. The results have been validated by perturbing Prdm1 expression on freshly isolated CD4+ naïve T cells: reduction of Prdm1 expression leads to augmentation of IL-17 release. These data unravel a possible novel target to control TH17 polarization in inflammatory disorders. Furthermore, this study represents the first in vitro validation of continuous time Bayesian networks as gene network reconstruction method and as hypothesis generation tool for wet-lab biological experiments. PMID:26976045

  16. Incorporating Resilience into Dynamic Social Models

    DTIC Science & Technology

    2016-07-20

    solved by simply using the information provided by the scenario. Instead, additional knowledge is required from relevant fields that study these...resilience function by leveraging Bayesian Knowledge Bases (BKBs), a probabilistic reasoning network framework[5],[6]. BKBs allow for inferencing...reasoning network framework based on Bayesian Knowledge Bases (BKBs). BKBs are central to our social resilience framework as they are used to

  17. A Dynamic Bayesian Network Based Structural Learning towards Automated Handwritten Digit Recognition

    NASA Astrophysics Data System (ADS)

    Pauplin, Olivier; Jiang, Jianmin

    Pattern recognition using Dynamic Bayesian Networks (DBNs) is currently a growing area of study. In this paper, we present DBN models trained for classification of handwritten digit characters. The structure of these models is partly inferred from the training data of each class of digit before performing parameter learning. Classification results are presented for the four described models.

  18. Static and transient performance prediction for CFB boilers using a Bayesian-Gaussian Neural Network

    NASA Astrophysics Data System (ADS)

    Ye, Haiwen; Ni, Weidou

    1997-06-01

    A Bayesian-Gaussian Neural Network (BGNN) is put forward in this paper to predict the static and transient performance of Circulating Fluidized Bed (CFB) boilers. The advantages of this network over Back-Propagation Neural Networks (BPNNs), easier determination of topology, simpler and time saving in training process as well as self-organizing ability, make this network more practical in on-line performance prediction for complicated processes. Simulation shows that this network is comparable to the BPNNs in predicting the performance of CFB boilers. Good and practical on-line performance predictions are essential for operation guide and model predictive control of CFB boilers, which are under research by the authors.

  19. Spatiotemporal Bayesian networks for malaria prediction.

    PubMed

    Haddawy, Peter; Hasan, A H M Imrul; Kasantikul, Rangwan; Lawpoolsri, Saranath; Sa-Angchai, Patiwat; Kaewkungwal, Jaranit; Singhasivanon, Pratap

    2018-01-01

    Targeted intervention and resource allocation are essential for effective malaria control, particularly in remote areas, with predictive models providing important information for decision making. While a diversity of modeling technique have been used to create predictive models of malaria, no work has made use of Bayesian networks. Bayes nets are attractive due to their ability to represent uncertainty, model time lagged and nonlinear relations, and provide explanations. This paper explores the use of Bayesian networks to model malaria, demonstrating the approach by creating village level models with weekly temporal resolution for Tha Song Yang district in northern Thailand. The networks are learned using data on cases and environmental covariates. Three types of networks are explored: networks for numeric prediction, networks for outbreak prediction, and networks that incorporate spatial autocorrelation. Evaluation of the numeric prediction network shows that the Bayes net has prediction accuracy in terms of mean absolute error of about 1.4 cases for 1 week prediction and 1.7 cases for 6 week prediction. The network for outbreak prediction has an ROC AUC above 0.9 for all prediction horizons. Comparison of prediction accuracy of both Bayes nets against several traditional modeling approaches shows the Bayes nets to outperform the other models for longer time horizon prediction of high incidence transmission. To model spread of malaria over space, we elaborate the models with links between the village networks. This results in some very large models which would be far too laborious to build by hand. So we represent the models as collections of probability logic rules and automatically generate the networks. Evaluation of the models shows that the autocorrelation links significantly improve prediction accuracy for some villages in regions of high incidence. We conclude that spatiotemporal Bayesian networks are a highly promising modeling alternative for prediction of malaria and other vector-borne diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks.

    PubMed

    Nariai, N; Kim, S; Imoto, S; Miyano, S

    2004-01-01

    We propose a statistical method to estimate gene networks from DNA microarray data and protein-protein interactions. Because physical interactions between proteins or multiprotein complexes are likely to regulate biological processes, using only mRNA expression data is not sufficient for estimating a gene network accurately. Our method adds knowledge about protein-protein interactions to the estimation method of gene networks under a Bayesian statistical framework. In the estimated gene network, a protein complex is modeled as a virtual node based on principal component analysis. We show the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae cell cycle data. The proposed method improves the accuracy of the estimated gene networks, and successfully identifies some biological facts.

  1. Prediction of Sybil attack on WSN using Bayesian network and swarm intelligence

    NASA Astrophysics Data System (ADS)

    Muraleedharan, Rajani; Ye, Xiang; Osadciw, Lisa Ann

    2008-04-01

    Security in wireless sensor networks is typically sacrificed or kept minimal due to limited resources such as memory and battery power. Hence, the sensor nodes are prone to Denial-of-service attacks and detecting the threats is crucial in any application. In this paper, the Sybil attack is analyzed and a novel prediction method, combining Bayesian algorithm and Swarm Intelligence (SI) is proposed. Bayesian Networks (BN) is used in representing and reasoning problems, by modeling the elements of uncertainty. The decision from the BN is applied to SI forming an Hybrid Intelligence Scheme (HIS) to re-route the information and disconnecting the malicious nodes in future routes. A performance comparison based on the prediction using HIS vs. Ant System (AS) helps in prioritizing applications where decisions are time-critical.

  2. A sub-space greedy search method for efficient Bayesian Network inference.

    PubMed

    Zhang, Qing; Cao, Yong; Li, Yong; Zhu, Yanming; Sun, Samuel S M; Guo, Dianjing

    2011-09-01

    Bayesian network (BN) has been successfully used to infer the regulatory relationships of genes from microarray dataset. However, one major limitation of BN approach is the computational cost because the calculation time grows more than exponentially with the dimension of the dataset. In this paper, we propose a sub-space greedy search method for efficient Bayesian Network inference. Particularly, this method limits the greedy search space by only selecting gene pairs with higher partial correlation coefficients. Using both synthetic and real data, we demonstrate that the proposed method achieved comparable results with standard greedy search method yet saved ∼50% of the computational time. We believe that sub-space search method can be widely used for efficient BN inference in systems biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Software Health Management with Bayesian Networks

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole; Schumann, JOhann

    2011-01-01

    Most modern aircraft as well as other complex machinery is equipped with diagnostics systems for its major subsystems. During operation, sensors provide important information about the subsystem (e.g., the engine) and that information is used to detect and diagnose faults. Most of these systems focus on the monitoring of a mechanical, hydraulic, or electromechanical subsystem of the vehicle or machinery. Only recently, health management systems that monitor software have been developed. In this paper, we will discuss our approach of using Bayesian networks for Software Health Management (SWHM). We will discuss SWHM requirements, which make advanced reasoning capabilities for the detection and diagnosis important. Then we will present our approach to using Bayesian networks for the construction of health models that dynamically monitor a software system and is capable of detecting and diagnosing faults.

  4. Modelling the Flow Stress of Alloy 316L using a Multi-Layered Feed Forward Neural Network with Bayesian Regularization

    NASA Astrophysics Data System (ADS)

    Abiriand Bhekisipho Twala, Olufunminiyi

    2017-08-01

    In this paper, a multilayer feedforward neural network with Bayesian regularization constitutive model is developed for alloy 316L during high strain rate and high temperature plastic deformation. The input variables are strain rate, temperature and strain while the output value is the flow stress of the material. The results show that the use of Bayesian regularized technique reduces the potential of overfitting and overtraining. The prediction quality of the model is thereby improved. The model predictions are in good agreement with experimental measurements. The measurement data used for the network training and model comparison were taken from relevant literature. The developed model is robust as it can be generalized to deformation conditions slightly below or above the training dataset.

  5. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    PubMed

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  6. Bayesian network learning for natural hazard assessments

    NASA Astrophysics Data System (ADS)

    Vogel, Kristin

    2016-04-01

    Even though quite different in occurrence and consequences, from a modelling perspective many natural hazards share similar properties and challenges. Their complex nature as well as lacking knowledge about their driving forces and potential effects make their analysis demanding. On top of the uncertainty about the modelling framework, inaccurate or incomplete event observations and the intrinsic randomness of the natural phenomenon add up to different interacting layers of uncertainty, which require a careful handling. Thus, for reliable natural hazard assessments it is crucial not only to capture and quantify involved uncertainties, but also to express and communicate uncertainties in an intuitive way. Decision-makers, who often find it difficult to deal with uncertainties, might otherwise return to familiar (mostly deterministic) proceedings. In the scope of the DFG research training group „NatRiskChange" we apply the probabilistic framework of Bayesian networks for diverse natural hazard and vulnerability studies. The great potential of Bayesian networks was already shown in previous natural hazard assessments. Treating each model component as random variable, Bayesian networks aim at capturing the joint distribution of all considered variables. Hence, each conditional distribution of interest (e.g. the effect of precautionary measures on damage reduction) can be inferred. The (in-)dependencies between the considered variables can be learned purely data driven or be given by experts. Even a combination of both is possible. By translating the (in-)dependences into a graph structure, Bayesian networks provide direct insights into the workings of the system and allow to learn about the underlying processes. Besides numerous studies on the topic, learning Bayesian networks from real-world data remains challenging. In previous studies, e.g. on earthquake induced ground motion and flood damage assessments, we tackled the problems arising with continuous variables and incomplete observations. Further studies rise the challenge of relying on very small data sets. Since parameter estimates for complex models based on few observations are unreliable, it is necessary to focus on simplified, yet still meaningful models. A so called Markov Blanket approach is developed to identify the most relevant model components and to construct a simple Bayesian network based on those findings. Since the proceeding is completely data driven, it can easily be transferred to various applications in natural hazard domains. This study is funded by the Deutsche Forschungsgemeinschaft (DFG) within the research training programme GRK 2043/1 "NatRiskChange - Natural hazards and risks in a changing world" at Potsdam University.

  7. Systemic antibiotics in the treatment of aggressive periodontitis. A systematic review and a Bayesian Network meta-analysis.

    PubMed

    Rabelo, Cleverton Correa; Feres, Magda; Gonçalves, Cristiane; Figueiredo, Luciene C; Faveri, Marcelo; Tu, Yu-Kang; Chambrone, Leandro

    2015-07-01

    The aim of this study was to assess the effect of systemic antibiotic therapy on the treatment of aggressive periodontitis (AgP). This study was conducted and reported in accordance with the PRISMA statement. The MEDLINE, EMBASE and CENTRAL databases were searched up to June 2014 for randomized clinical trials comparing the treatment of subjects with AgP with either scaling and root planing (SRP) alone or associated with systemic antibiotics. Bayesian network meta-analysis was prepared using the Bayesian random-effects hierarchical models and the outcomes reported at 6-month post-treatment. Out of 350 papers identified, 14 studies were eligible. Greater gain in clinical attachment (CA) (mean difference [MD]: 1.08 mm; p < 0.0001) and reduction in probing depth (PD) (MD: 1.05 mm; p < 0.00001) were observed for SRP + metronidazole (Mtz), and for SRP + Mtz + amoxicillin (Amx) (MD: 0.45 mm, MD: 0.53 mm, respectively; p < 0.00001) than SRP alone/placebo. Bayesian network meta-analysis showed additional benefits in CA gain and PD reduction when SRP was associated with systemic antibiotics. SRP plus systemic antibiotics led to an additional clinical effect compared with SRP alone in the treatment of AgP. Of the antibiotic protocols available for inclusion into the Bayesian network meta-analysis, Mtz and Mtz/Amx provided to the most beneficial outcomes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Bayesian Networks for Modeling Dredging Decisions

    DTIC Science & Technology

    2011-10-01

    change scenarios. Arctic Expert elicitation Netica Bacon et al . 2002 Identify factors that might lead to a change in land use from farming to...tree) algorithms developed by Lauritzen and Spiegelhalter (1988) and Jensen et al . (1990). Statistical inference is simply the process of...causality when constructing a Bayesian network (Kjaerulff and Madsen 2008, Darwiche 2009, Marcot et al . 2006). A knowledge representation approach is the

  9. Characterizing species at risk. II: Using Bayesian belief networks as decision support tools to determine species conservation categories under the Northwest Forest Plan.

    Treesearch

    B.G. Marcot; P.A. Hohenlohe; S. Morey; R. Holmes; R. Molina; M.C. Turley; M.H. Huff; J.A. Laurence

    2006-01-01

    We developed decision-aiding models as Bayesian belief networks (BBNs) that represented evaluation guidelines used to determine the appropriate conservation of hundreds of potentially rare species on federally-administered lands in the Pacific Northwest United States. The models were used in a structured assessment and paneling procedure as part of an adaptive...

  10. Efficient Effects-Based Military Planning Final Report

    DTIC Science & Technology

    2010-11-13

    using probabilistic infer- ence methods,” in Proc. 8th Annu. Conf. Uncertainty Artificial Intelli - gence (UAI), Stanford, CA. San Mateo, CA: Morgan...Imprecise Probabilities, the 24th Conference on Uncertainty in Artificial Intelligence (UAI), 2008. 7. Yan Tong and Qiang Ji, Learning Bayesian Networks...Bayesian Networks using Constraints Cassio P. de Campos cassiopc@acm.org Dalle Molle Institute for Artificial Intelligence Galleria 2, Manno 6928

  11. Mouse Driven Window Graphics for Network Teaching.

    ERIC Educational Resources Information Center

    Makinson, G. J.; And Others

    Computer enhanced teaching of computational mathematics on a network system driving graphics terminals is being redeveloped for a mouse-driven, high resolution, windowed environment of a UNIX work station. Preservation of the features of networked access by heterogeneous terminals is provided by the use of the X Window environment. A dmonstrator…

  12. Teaching Heat Exchanger Network Synthesis Using Interactive Microcomputer Graphics.

    ERIC Educational Resources Information Center

    Dixon, Anthony G.

    1987-01-01

    Describes the Heat Exchanger Network Synthesis (HENS) program used at Worcester Polytechnic Institute (Massachusetts) as an aid to teaching the energy integration step in process design. Focuses on the benefits of the computer graphics used in the program to increase the speed of generating and changing networks. (TW)

  13. Comparison Between Linear and Non-parametric Regression Models for Genome-Enabled Prediction in Wheat

    PubMed Central

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-01-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882

  14. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.

    PubMed

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-12-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.

  15. CGBayesNets: Conditional Gaussian Bayesian Network Learning and Inference with Mixed Discrete and Continuous Data

    PubMed Central

    Weiss, Scott T.

    2014-01-01

    Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs) formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com. PMID:24922310

  16. CGBayesNets: conditional Gaussian Bayesian network learning and inference with mixed discrete and continuous data.

    PubMed

    McGeachie, Michael J; Chang, Hsun-Hsien; Weiss, Scott T

    2014-06-01

    Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs) formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com.

  17. A Bayesian connectivity-based approach to constructing probabilistic gene regulatory networks.

    PubMed

    Zhou, Xiaobo; Wang, Xiaodong; Pal, Ranadip; Ivanov, Ivan; Bittner, Michael; Dougherty, Edward R

    2004-11-22

    We have hypothesized that the construction of transcriptional regulatory networks using a method that optimizes connectivity would lead to regulation consistent with biological expectations. A key expectation is that the hypothetical networks should produce a few, very strong attractors, highly similar to the original observations, mimicking biological state stability and determinism. Another central expectation is that, since it is expected that the biological control is distributed and mutually reinforcing, interpretation of the observations should lead to a very small number of connection schemes. We propose a fully Bayesian approach to constructing probabilistic gene regulatory networks (PGRNs) that emphasizes network topology. The method computes the possible parent sets of each gene, the corresponding predictors and the associated probabilities based on a nonlinear perceptron model, using a reversible jump Markov chain Monte Carlo (MCMC) technique, and an MCMC method is employed to search the network configurations to find those with the highest Bayesian scores to construct the PGRN. The Bayesian method has been used to construct a PGRN based on the observed behavior of a set of genes whose expression patterns vary across a set of melanoma samples exhibiting two very different phenotypes with respect to cell motility and invasiveness. Key biological features have been faithfully reflected in the model. Its steady-state distribution contains attractors that are either identical or very similar to the states observed in the data, and many of the attractors are singletons, which mimics the biological propensity to stably occupy a given state. Most interestingly, the connectivity rules for the most optimal generated networks constituting the PGRN are remarkably similar, as would be expected for a network operating on a distributed basis, with strong interactions between the components.

  18. Bayesian models based on test statistics for multiple hypothesis testing problems.

    PubMed

    Ji, Yuan; Lu, Yiling; Mills, Gordon B

    2008-04-01

    We propose a Bayesian method for the problem of multiple hypothesis testing that is routinely encountered in bioinformatics research, such as the differential gene expression analysis. Our algorithm is based on modeling the distributions of test statistics under both null and alternative hypotheses. We substantially reduce the complexity of the process of defining posterior model probabilities by modeling the test statistics directly instead of modeling the full data. Computationally, we apply a Bayesian FDR approach to control the number of rejections of null hypotheses. To check if our model assumptions for the test statistics are valid for various bioinformatics experiments, we also propose a simple graphical model-assessment tool. Using extensive simulations, we demonstrate the performance of our models and the utility of the model-assessment tool. In the end, we apply the proposed methodology to an siRNA screening and a gene expression experiment.

  19. Understanding the Scalability of Bayesian Network Inference Using Clique Tree Growth Curves

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole J.

    2010-01-01

    One of the main approaches to performing computation in Bayesian networks (BNs) is clique tree clustering and propagation. The clique tree approach consists of propagation in a clique tree compiled from a Bayesian network, and while it was introduced in the 1980s, there is still a lack of understanding of how clique tree computation time depends on variations in BN size and structure. In this article, we improve this understanding by developing an approach to characterizing clique tree growth as a function of parameters that can be computed in polynomial time from BNs, specifically: (i) the ratio of the number of a BN s non-root nodes to the number of root nodes, and (ii) the expected number of moral edges in their moral graphs. Analytically, we partition the set of cliques in a clique tree into different sets, and introduce a growth curve for the total size of each set. For the special case of bipartite BNs, there are two sets and two growth curves, a mixed clique growth curve and a root clique growth curve. In experiments, where random bipartite BNs generated using the BPART algorithm are studied, we systematically increase the out-degree of the root nodes in bipartite Bayesian networks, by increasing the number of leaf nodes. Surprisingly, root clique growth is well-approximated by Gompertz growth curves, an S-shaped family of curves that has previously been used to describe growth processes in biology, medicine, and neuroscience. We believe that this research improves the understanding of the scaling behavior of clique tree clustering for a certain class of Bayesian networks; presents an aid for trade-off studies of clique tree clustering using growth curves; and ultimately provides a foundation for benchmarking and developing improved BN inference and machine learning algorithms.

  20. Probabilistic estimation of dune retreat on the Gold Coast, Australia

    USGS Publications Warehouse

    Palmsten, Margaret L.; Splinter, Kristen D.; Plant, Nathaniel G.; Stockdon, Hilary F.

    2014-01-01

    Sand dunes are an important natural buffer between storm impacts and development backing the beach on the Gold Coast of Queensland, Australia. The ability to forecast dune erosion at a prediction horizon of days to a week would allow efficient and timely response to dune erosion in this highly populated area. Towards this goal, we modified an existing probabilistic dune erosion model for use on the Gold Coast. The original model was trained using observations of dune response from Hurricane Ivan on Santa Rosa Island, Florida, USA (Plant and Stockdon 2012. Probabilistic prediction of barrier-island response to hurricanes, Journal of Geophysical Research, 117(F3), F03015). The model relates dune position change to pre-storm dune elevations, dune widths, and beach widths, along with storm surge and run-up using a Bayesian network. The Bayesian approach captures the uncertainty of inputs and predictions through the conditional probabilities between variables. Three versions of the barrier island response Bayesian network were tested for use on the Gold Coast. One network has the same structure as the original and was trained with the Santa Rosa Island data. The second network has a modified design and was trained using only pre- and post-storm data from 1988-2009 for the Gold Coast. The third version of the network has the same design as the second version of the network and was trained with the combined data from the Gold Coast and Santa Rosa Island. The two networks modified for use on the Gold Coast hindcast dune retreat with equal accuracy. Both networks explained 60% of the observed dune retreat variance, which is comparable to the skill observed by Plant and Stockdon (2012) in the initial Bayesian network application at Santa Rosa Island. The new networks improved predictions relative to application of the original network on the Gold Coast. Dune width was the most important morphologic variable in hindcasting dune retreat, while hydrodynamic variables, surge and run-up elevation, were also important

  1. Temporal abstraction and temporal Bayesian networks in clinical domains: a survey.

    PubMed

    Orphanou, Kalia; Stassopoulou, Athena; Keravnou, Elpida

    2014-03-01

    Temporal abstraction (TA) of clinical data aims to abstract and interpret clinical data into meaningful higher-level interval concepts. Abstracted concepts are used for diagnostic, prediction and therapy planning purposes. On the other hand, temporal Bayesian networks (TBNs) are temporal extensions of the known probabilistic graphical models, Bayesian networks. TBNs can represent temporal relationships between events and their state changes, or the evolution of a process, through time. This paper offers a survey on techniques/methods from these two areas that were used independently in many clinical domains (e.g. diabetes, hepatitis, cancer) for various clinical tasks (e.g. diagnosis, prognosis). A main objective of this survey, in addition to presenting the key aspects of TA and TBNs, is to point out important benefits from a potential integration of TA and TBNs in medical domains and tasks. The motivation for integrating these two areas is their complementary function: TA provides clinicians with high level views of data while TBNs serve as a knowledge representation and reasoning tool under uncertainty, which is inherent in all clinical tasks. Key publications from these two areas of relevance to clinical systems, mainly circumscribed to the latest two decades, are reviewed and classified. TA techniques are compared on the basis of: (a) knowledge acquisition and representation for deriving TA concepts and (b) methodology for deriving basic and complex temporal abstractions. TBNs are compared on the basis of: (a) representation of time, (b) knowledge representation and acquisition, (c) inference methods and the computational demands of the network, and (d) their applications in medicine. The survey performs an extensive comparative analysis to illustrate the separate merits and limitations of various TA and TBN techniques used in clinical systems with the purpose of anticipating potential gains through an integration of the two techniques, thus leading to a unified methodology for clinical systems. The surveyed contributions are evaluated using frameworks of respective key features. In addition, for the evaluation of TBN methods, a unifying clinical domain (diabetes) is used. The main conclusion transpiring from this review is that techniques/methods from these two areas, that so far are being largely used independently of each other in clinical domains, could be effectively integrated in the context of medical decision-support systems. The anticipated key benefits of the perceived integration are: (a) during problem solving, the reasoning can be directed at different levels of temporal and/or conceptual abstractions since the nodes of the TBNs can be complex entities, temporally and structurally and (b) during model building, knowledge generated in the form of basic and/or complex abstractions, can be deployed in a TBN. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Dynamical Bayesian inference of time-evolving interactions: from a pair of coupled oscillators to networks of oscillators.

    PubMed

    Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V E; Stefanovska, Aneta

    2012-12-01

    Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski et al. [Phys. Rev. Lett. 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.

  3. Missing value imputation: with application to handwriting data

    NASA Astrophysics Data System (ADS)

    Xu, Zhen; Srihari, Sargur N.

    2015-01-01

    Missing values make pattern analysis difficult, particularly with limited available data. In longitudinal research, missing values accumulate, thereby aggravating the problem. Here we consider how to deal with temporal data with missing values in handwriting analysis. In the task of studying development of individuality of handwriting, we encountered the fact that feature values are missing for several individuals at several time instances. Six algorithms, i.e., random imputation, mean imputation, most likely independent value imputation, and three methods based on Bayesian network (static Bayesian network, parameter EM, and structural EM), are compared with children's handwriting data. We evaluate the accuracy and robustness of the algorithms under different ratios of missing data and missing values, and useful conclusions are given. Specifically, static Bayesian network is used for our data which contain around 5% missing data to provide adequate accuracy and low computational cost.

  4. A High Performance VLSI Computer Architecture For Computer Graphics

    NASA Astrophysics Data System (ADS)

    Chin, Chi-Yuan; Lin, Wen-Tai

    1988-10-01

    A VLSI computer architecture, consisting of multiple processors, is presented in this paper to satisfy the modern computer graphics demands, e.g. high resolution, realistic animation, real-time display etc.. All processors share a global memory which are partitioned into multiple banks. Through a crossbar network, data from one memory bank can be broadcasted to many processors. Processors are physically interconnected through a hyper-crossbar network (a crossbar-like network). By programming the network, the topology of communication links among processors can be reconfigurated to satisfy specific dataflows of different applications. Each processor consists of a controller, arithmetic operators, local memory, a local crossbar network, and I/O ports to communicate with other processors, memory banks, and a system controller. Operations in each processor are characterized into two modes, i.e. object domain and space domain, to fully utilize the data-independency characteristics of graphics processing. Special graphics features such as 3D-to-2D conversion, shadow generation, texturing, and reflection, can be easily handled. With the current high density interconnection (MI) technology, it is feasible to implement a 64-processor system to achieve 2.5 billion operations per second, a performance needed in most advanced graphics applications.

  5. A sparse structure learning algorithm for Gaussian Bayesian Network identification from high-dimensional data.

    PubMed

    Huang, Shuai; Li, Jing; Ye, Jieping; Fleisher, Adam; Chen, Kewei; Wu, Teresa; Reiman, Eric

    2013-06-01

    Structure learning of Bayesian Networks (BNs) is an important topic in machine learning. Driven by modern applications in genetics and brain sciences, accurate and efficient learning of large-scale BN structures from high-dimensional data becomes a challenging problem. To tackle this challenge, we propose a Sparse Bayesian Network (SBN) structure learning algorithm that employs a novel formulation involving one L1-norm penalty term to impose sparsity and another penalty term to ensure that the learned BN is a Directed Acyclic Graph--a required property of BNs. Through both theoretical analysis and extensive experiments on 11 moderate and large benchmark networks with various sample sizes, we show that SBN leads to improved learning accuracy, scalability, and efficiency as compared with 10 existing popular BN learning algorithms. We apply SBN to a real-world application of brain connectivity modeling for Alzheimer's disease (AD) and reveal findings that could lead to advancements in AD research.

  6. A Sparse Structure Learning Algorithm for Gaussian Bayesian Network Identification from High-Dimensional Data

    PubMed Central

    Huang, Shuai; Li, Jing; Ye, Jieping; Fleisher, Adam; Chen, Kewei; Wu, Teresa; Reiman, Eric

    2014-01-01

    Structure learning of Bayesian Networks (BNs) is an important topic in machine learning. Driven by modern applications in genetics and brain sciences, accurate and efficient learning of large-scale BN structures from high-dimensional data becomes a challenging problem. To tackle this challenge, we propose a Sparse Bayesian Network (SBN) structure learning algorithm that employs a novel formulation involving one L1-norm penalty term to impose sparsity and another penalty term to ensure that the learned BN is a Directed Acyclic Graph (DAG)—a required property of BNs. Through both theoretical analysis and extensive experiments on 11 moderate and large benchmark networks with various sample sizes, we show that SBN leads to improved learning accuracy, scalability, and efficiency as compared with 10 existing popular BN learning algorithms. We apply SBN to a real-world application of brain connectivity modeling for Alzheimer’s disease (AD) and reveal findings that could lead to advancements in AD research. PMID:22665720

  7. Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks

    PubMed Central

    Lähdesmäki, Harri; Hautaniemi, Sampsa; Shmulevich, Ilya; Yli-Harja, Olli

    2006-01-01

    A significant amount of attention has recently been focused on modeling of gene regulatory networks. Two frequently used large-scale modeling frameworks are Bayesian networks (BNs) and Boolean networks, the latter one being a special case of its recent stochastic extension, probabilistic Boolean networks (PBNs). PBN is a promising model class that generalizes the standard rule-based interactions of Boolean networks into the stochastic setting. Dynamic Bayesian networks (DBNs) is a general and versatile model class that is able to represent complex temporal stochastic processes and has also been proposed as a model for gene regulatory systems. In this paper, we concentrate on these two model classes and demonstrate that PBNs and a certain subclass of DBNs can represent the same joint probability distribution over their common variables. The major benefit of introducing the relationships between the models is that it opens up the possibility of applying the standard tools of DBNs to PBNs and vice versa. Hence, the standard learning tools of DBNs can be applied in the context of PBNs, and the inference methods give a natural way of handling the missing values in PBNs which are often present in gene expression measurements. Conversely, the tools for controlling the stationary behavior of the networks, tools for projecting networks onto sub-networks, and efficient learning schemes can be used for DBNs. In other words, the introduced relationships between the models extend the collection of analysis tools for both model classes. PMID:17415411

  8. Software For Graphical Representation Of A Network

    NASA Technical Reports Server (NTRS)

    Mcallister, R. William; Mclellan, James P.

    1993-01-01

    System Visualization Tool (SVT) computer program developed to provide systems engineers with means of graphically representing networks. Generates diagrams illustrating structures and states of networks defined by users. Provides systems engineers powerful tool simplifing analysis of requirements and testing and maintenance of complex software-controlled systems. Employs visual models supporting analysis of chronological sequences of requirements, simulation data, and related software functions. Applied to pneumatic, hydraulic, and propellant-distribution networks. Used to define and view arbitrary configurations of such major hardware components of system as propellant tanks, valves, propellant lines, and engines. Also graphically displays status of each component. Advantage of SVT: utilizes visual cues to represent configuration of each component within network. Written in Turbo Pascal(R), version 5.0.

  9. Identity-by-Descent-Based Phasing and Imputation in Founder Populations Using Graphical Models

    PubMed Central

    Palin, Kimmo; Campbell, Harry; Wright, Alan F; Wilson, James F; Durbin, Richard

    2011-01-01

    Accurate knowledge of haplotypes, the combination of alleles co-residing on a single copy of a chromosome, enables powerful gene mapping and sequence imputation methods. Since humans are diploid, haplotypes must be derived from genotypes by a phasing process. In this study, we present a new computational model for haplotype phasing based on pairwise sharing of haplotypes inferred to be Identical-By-Descent (IBD). We apply the Bayesian network based model in a new phasing algorithm, called systematic long-range phasing (SLRP), that can capitalize on the close genetic relationships in isolated founder populations, and show with simulated and real genome-wide genotype data that SLRP substantially reduces the rate of phasing errors compared to previous phasing algorithms. Furthermore, the method accurately identifies regions of IBD, enabling linkage-like studies without pedigrees, and can be used to impute most genotypes with very low error rate. Genet. Epidemiol. 2011. © 2011 Wiley Periodicals, Inc.35:853-860, 2011 PMID:22006673

  10. A Bayesian network model to assess the public health risk associated with wet weather sewer overflows discharging into waterways.

    PubMed

    Goulding, R; Jayasuriya, N; Horan, E

    2012-10-15

    Overflows from sanitary sewers during wet weather, which occur when the hydraulic capacity of the sewer system is exceeded, are considered a potential threat to the ecological and public health of the waterways which receive these overflows. As a result, water retailers in Australia and internationally commit significant resources to manage and abate sewer overflows. However, whilst some studies have contributed to an increased understanding of the impacts and risks associated with these events, they are relatively few in number and there still is a general lack of knowledge in this area. A Bayesian network model to assess the public health risk associated with wet weather sewer overflows is presented in this paper. The Bayesian network approach is shown to provide significant benefits in the assessment of public health risks associated with wet weather sewer overflows. In particular, the ability for the model to account for the uncertainty inherent in sewer overflow events and subsequent impacts through the use of probabilities is a valuable function. In addition, the paper highlights the benefits of the probabilistic inference function of the Bayesian network in prioritising management options to minimise public health risks associated with sewer overflows. Copyright © 2012. Published by Elsevier Ltd.

  11. An interactive graphics program for manipulation and display of panel method geometry

    NASA Technical Reports Server (NTRS)

    Hall, J. F.; Neuhart, D. H.; Walkley, K. B.

    1983-01-01

    Modern aerodynamic panel methods that handle large, complex geometries have made evident the need to interactively manipulate, modify, and view such configurations. With this purpose in mind, the GEOM program was developed. It is a menu driven, interactive program that uses the Tektronix PLOT 10 graphics software to display geometry configurations which are characterized by an abutting set of networks. These networks are composed of quadrilateral panels which are described by the coordinates of their corners. GEOM is divided into fourteen executive controlled functions. These functions are used to build configurations, scale and rotate networks, transpose networks defining M and N lines, graphically display selected networks, join and split networks, create wake networks, produce symmetric images of networks, repanel and rename networks, display configuration cross sections, and output network geometry in two formats. A data base management system is used to facilitate data transfers in this program. A sample session illustrating various capabilities of the code is included as a guide to program operation.

  12. Incorporating prior information into differential network analysis using non-paranormal graphical models.

    PubMed

    Zhang, Xiao-Fei; Ou-Yang, Le; Yan, Hong

    2017-08-15

    Understanding how gene regulatory networks change under different cellular states is important for revealing insights into network dynamics. Gaussian graphical models, which assume that the data follow a joint normal distribution, have been used recently to infer differential networks. However, the distributions of the omics data are non-normal in general. Furthermore, although much biological knowledge (or prior information) has been accumulated, most existing methods ignore the valuable prior information. Therefore, new statistical methods are needed to relax the normality assumption and make full use of prior information. We propose a new differential network analysis method to address the above challenges. Instead of using Gaussian graphical models, we employ a non-paranormal graphical model that can relax the normality assumption. We develop a principled model to take into account the following prior information: (i) a differential edge less likely exists between two genes that do not participate together in the same pathway; (ii) changes in the networks are driven by certain regulator genes that are perturbed across different cellular states and (iii) the differential networks estimated from multi-view gene expression data likely share common structures. Simulation studies demonstrate that our method outperforms other graphical model-based algorithms. We apply our method to identify the differential networks between platinum-sensitive and platinum-resistant ovarian tumors, and the differential networks between the proneural and mesenchymal subtypes of glioblastoma. Hub nodes in the estimated differential networks rediscover known cancer-related regulator genes and contain interesting predictions. The source code is at https://github.com/Zhangxf-ccnu/pDNA. szuouyl@gmail.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method

    PubMed Central

    Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui

    2017-01-01

    Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli, and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs. PMID:29113310

  14. Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method.

    PubMed

    Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui

    2017-10-06

    Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli , and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.

  15. [Reliability theory based on quality risk network analysis for Chinese medicine injection].

    PubMed

    Li, Zheng; Kang, Li-Yuan; Fan, Xiao-Hui

    2014-08-01

    A new risk analysis method based upon reliability theory was introduced in this paper for the quality risk management of Chinese medicine injection manufacturing plants. The risk events including both cause and effect ones were derived in the framework as nodes with a Bayesian network analysis approach. It thus transforms the risk analysis results from failure mode and effect analysis (FMEA) into a Bayesian network platform. With its structure and parameters determined, the network can be used to evaluate the system reliability quantitatively with probabilistic analytical appraoches. Using network analysis tools such as GeNie and AgenaRisk, we are able to find the nodes that are most critical to influence the system reliability. The importance of each node to the system can be quantitatively evaluated by calculating the effect of the node on the overall risk, and minimization plan can be determined accordingly to reduce their influences and improve the system reliability. Using the Shengmai injection manufacturing plant of SZYY Ltd as a user case, we analyzed the quality risk with both static FMEA analysis and dynamic Bayesian Network analysis. The potential risk factors for the quality of Shengmai injection manufacturing were identified with the network analysis platform. Quality assurance actions were further defined to reduce the risk and improve the product quality.

  16. Remote Sensing Image Classification Applied to the First National Geographical Information Census of China

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Wen, Zongyong; Zhu, Zhaorong; Xia, Qiang; Shun, Lan

    2016-06-01

    Image classification will still be a long way in the future, although it has gone almost half a century. In fact, researchers have gained many fruits in the image classification domain, but there is still a long distance between theory and practice. However, some new methods in the artificial intelligence domain will be absorbed into the image classification domain and draw on the strength of each to offset the weakness of the other, which will open up a new prospect. Usually, networks play the role of a high-level language, as is seen in Artificial Intelligence and statistics, because networks are used to build complex model from simple components. These years, Bayesian Networks, one of probabilistic networks, are a powerful data mining technique for handling uncertainty in complex domains. In this paper, we apply Tree Augmented Naive Bayesian Networks (TAN) to texture classification of High-resolution remote sensing images and put up a new method to construct the network topology structure in terms of training accuracy based on the training samples. Since 2013, China government has started the first national geographical information census project, which mainly interprets geographical information based on high-resolution remote sensing images. Therefore, this paper tries to apply Bayesian network to remote sensing image classification, in order to improve image interpretation in the first national geographical information census project. In the experiment, we choose some remote sensing images in Beijing. Experimental results demonstrate TAN outperform than Naive Bayesian Classifier (NBC) and Maximum Likelihood Classification Method (MLC) in the overall classification accuracy. In addition, the proposed method can reduce the workload of field workers and improve the work efficiency. Although it is time consuming, it will be an attractive and effective method for assisting office operation of image interpretation.

  17. Detecting ‘Wrong Blood in Tube’ Errors: Evaluation of a Bayesian Network Approach

    PubMed Central

    Doctor, Jason N.; Strylewicz, Greg

    2010-01-01

    Objective In an effort to address the problem of laboratory errors, we develop and evaluate a method to detect mismatched specimens from nationally collected blood laboratory data in two experiments. Methods In Experiment 1 and 2 using blood labs from National Health and Nutrition Examination Survey (NHANES) and values derived from the Diabetes Prevention Program (DPP) respectively, a proportion of glucose and HbA1c specimens were randomly mismatched. A Bayesian network that encoded probabilistic relationships among analytes was used to predict mismatches. In Experiment 1 the performance of the network was compared against existing error detection software. In Experiment 2 the network was compared against 11 human experts recruited from the American Academy of Clinical Chemists. Results were compared via area under the receiver-operating characteristics curves (AUCs) and with agreement statistics. Results In Experiment 1 the network was most predictive of mismatches that produced clinically significant discrepancies between true and mismatched scores ((AUC of 0.87 (±0.04) for HbA1c and 0.83 (±0.02) for glucose), performed well in identifying errors among those self-reporting diabetes (N = 329) (AUC = 0.79 (± 0.02)) and performed significantly better than the established approach it was tested against (in all cases p < .0.05). In Experiment 2 it performed better (and in no case worse) than 7 of the 11 human experts. Average percent agreement was 0.79. and Kappa (κ) was 0.59, between experts and the Bayesian network. Conclusions Bayesian network can accurately identify mismatched specimens. The algorithm is best at identifying mismatches that result in a clinically significant magnitude of error. PMID:20566275

  18. Applying dynamic Bayesian networks to perturbed gene expression data.

    PubMed

    Dojer, Norbert; Gambin, Anna; Mizera, Andrzej; Wilczyński, Bartek; Tiuryn, Jerzy

    2006-05-08

    A central goal of molecular biology is to understand the regulatory mechanisms of gene transcription and protein synthesis. Because of their solid basis in statistics, allowing to deal with the stochastic aspects of gene expressions and noisy measurements in a natural way, Bayesian networks appear attractive in the field of inferring gene interactions structure from microarray experiments data. However, the basic formalism has some disadvantages, e.g. it is sometimes hard to distinguish between the origin and the target of an interaction. Two kinds of microarray experiments yield data particularly rich in information regarding the direction of interactions: time series and perturbation experiments. In order to correctly handle them, the basic formalism must be modified. For example, dynamic Bayesian networks (DBN) apply to time series microarray data. To our knowledge the DBN technique has not been applied in the context of perturbation experiments. We extend the framework of dynamic Bayesian networks in order to incorporate perturbations. Moreover, an exact algorithm for inferring an optimal network is proposed and a discretization method specialized for time series data from perturbation experiments is introduced. We apply our procedure to realistic simulations data. The results are compared with those obtained by standard DBN learning techniques. Moreover, the advantages of using exact learning algorithm instead of heuristic methods are analyzed. We show that the quality of inferred networks dramatically improves when using data from perturbation experiments. We also conclude that the exact algorithm should be used when it is possible, i.e. when considered set of genes is small enough.

  19. Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models

    USGS Publications Warehouse

    Plant, Nathaniel G.; Holland, K. Todd

    2011-01-01

    Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.

  20. Program SPACECAP: software for estimating animal density using spatially explicit capture-recapture models

    USGS Publications Warehouse

    Gopalaswamy, Arjun M.; Royle, J. Andrew; Hines, James E.; Singh, Pallavi; Jathanna, Devcharan; Kumar, N. Samba; Karanth, K. Ullas

    2012-01-01

    1. The advent of spatially explicit capture-recapture models is changing the way ecologists analyse capture-recapture data. However, the advantages offered by these new models are not fully exploited because they can be difficult to implement. 2. To address this need, we developed a user-friendly software package, created within the R programming environment, called SPACECAP. This package implements Bayesian spatially explicit hierarchical models to analyse spatial capture-recapture data. 3. Given that a large number of field biologists prefer software with graphical user interfaces for analysing their data, SPACECAP is particularly useful as a tool to increase the adoption of Bayesian spatially explicit capture-recapture methods in practice.

  1. The relationship between gene transcription and combinations of histone modifications

    NASA Astrophysics Data System (ADS)

    Cui, Xiangjun; Li, Hong; Luo, Liaofu

    2012-09-01

    Histone modification is an important subject of epigenetics which plays an intrinsic role in transcriptional regulation. It is known that multiple histone modifications act in a combinatorial fashion. In this study, we demonstrated that the pathways within constructed Bayesian networks can give an indication for the combinations among 12 histone modifications which have been studied in the TSS+1kb region in S. cerevisiae. After Bayesian networks for the genes with high transcript levels (H-network) and low transcript levels (L-network) were constructed, the combinations of modifications within the two networks were analyzed from the view of transcript level. The results showed that different combinations played dissimilar roles in the regulation of gene transcription when there exist differences for gene expression at transcription level.

  2. A bayesian translational framework for knowledge propagation, discovery, and integration under specific contexts.

    PubMed

    Deng, Michelle; Zollanvari, Amin; Alterovitz, Gil

    2012-01-01

    The immense corpus of biomedical literature existing today poses challenges in information search and integration. Many links between pieces of knowledge occur or are significant only under certain contexts-rather than under the entire corpus. This study proposes using networks of ontology concepts, linked based on their co-occurrences in annotations of abstracts of biomedical literature and descriptions of experiments, to draw conclusions based on context-specific queries and to better integrate existing knowledge. In particular, a Bayesian network framework is constructed to allow for the linking of related terms from two biomedical ontologies under the queried context concept. Edges in such a Bayesian network allow associations between biomedical concepts to be quantified and inference to be made about the existence of some concepts given prior information about others. This approach could potentially be a powerful inferential tool for context-specific queries, applicable to ontologies in other fields as well.

  3. A Bayesian Translational Framework for Knowledge Propagation, Discovery, and Integration Under Specific Contexts

    PubMed Central

    Deng, Michelle; Zollanvari, Amin; Alterovitz, Gil

    2012-01-01

    The immense corpus of biomedical literature existing today poses challenges in information search and integration. Many links between pieces of knowledge occur or are significant only under certain contexts—rather than under the entire corpus. This study proposes using networks of ontology concepts, linked based on their co-occurrences in annotations of abstracts of biomedical literature and descriptions of experiments, to draw conclusions based on context-specific queries and to better integrate existing knowledge. In particular, a Bayesian network framework is constructed to allow for the linking of related terms from two biomedical ontologies under the queried context concept. Edges in such a Bayesian network allow associations between biomedical concepts to be quantified and inference to be made about the existence of some concepts given prior information about others. This approach could potentially be a powerful inferential tool for context-specific queries, applicable to ontologies in other fields as well. PMID:22779044

  4. Dynamical Bayesian inference of time-evolving interactions: From a pair of coupled oscillators to networks of oscillators

    NASA Astrophysics Data System (ADS)

    Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V. E.; Stefanovska, Aneta

    2012-12-01

    Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.024101 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.

  5. Predicting Software Suitability Using a Bayesian Belief Network

    NASA Technical Reports Server (NTRS)

    Beaver, Justin M.; Schiavone, Guy A.; Berrios, Joseph S.

    2005-01-01

    The ability to reliably predict the end quality of software under development presents a significant advantage for a development team. It provides an opportunity to address high risk components earlier in the development life cycle, when their impact is minimized. This research proposes a model that captures the evolution of the quality of a software product, and provides reliable forecasts of the end quality of the software being developed in terms of product suitability. Development team skill, software process maturity, and software problem complexity are hypothesized as driving factors of software product quality. The cause-effect relationships between these factors and the elements of software suitability are modeled using Bayesian Belief Networks, a machine learning method. This research presents a Bayesian Network for software quality, and the techniques used to quantify the factors that influence and represent software quality. The developed model is found to be effective in predicting the end product quality of small-scale software development efforts.

  6. Introduction of Bayesian network in risk analysis of maritime accidents in Bangladesh

    NASA Astrophysics Data System (ADS)

    Rahman, Sohanur

    2017-12-01

    Due to the unique geographic location, complex navigation environment and intense vessel traffic, a considerable number of maritime accidents occurred in Bangladesh which caused serious loss of life, property and environmental contamination. Based on the historical data of maritime accidents from 1981 to 2015, which has been collected from Department of Shipping (DOS) and Bangladesh Inland Water Transport Authority (BIWTA), this paper conducted a risk analysis of maritime accidents by applying Bayesian network. In order to conduct this study, a Bayesian network model has been developed to find out the relation among parameters and the probability of them which affect accidents based on the accident investigation report of Bangladesh. Furthermore, number of accidents in different categories has also been investigated in this paper. Finally, some viable recommendations have been proposed in order to ensure greater safety of inland vessels in Bangladesh.

  7. A hierarchical, ontology-driven Bayesian concept for ubiquitous medical environments--a case study for pulmonary diseases.

    PubMed

    Maragoudakis, Manolis; Lymberopoulos, Dimitrios; Fakotakis, Nikos; Spiropoulos, Kostas

    2008-01-01

    The present paper extends work on an existing computer-based Decision Support System (DSS) that aims to provide assistance to physicians as regards to pulmonary diseases. The extension deals with allowing for a hierarchical decomposition of the task, at different levels of domain granularity, using a novel approach, i.e. Hierarchical Bayesian Networks. The proposed framework uses data from various networking appliances such as mobile phones and wireless medical sensors to establish a ubiquitous environment for medical treatment of pulmonary diseases. Domain knowledge is encoded at the upper levels of the hierarchy, thus making the process of generalization easier to accomplish. The experimental results were carried out under the Pulmonary Department, University Regional Hospital Patras, Patras, Greece. They have supported our initial beliefs about the ability of Bayesian networks to provide an effective, yet semantically-oriented, means of prognosis and reasoning under conditions of uncertainty.

  8. Bayesian analysis of stage-fall-discharge rating curves and their uncertainties

    NASA Astrophysics Data System (ADS)

    Mansanarez, V.; Le Coz, J.; Renard, B.; Lang, M.; Pierrefeu, G.; Vauchel, P.

    2016-09-01

    Stage-fall-discharge (SFD) rating curves are traditionally used to compute streamflow records at sites where the energy slope of the flow is variable due to variable backwater effects. We introduce a model with hydraulically interpretable parameters for estimating SFD rating curves and their uncertainties. Conventional power functions for channel and section controls are used. The transition to a backwater-affected channel control is computed based on a continuity condition, solved either analytically or numerically. The practical use of the method is demonstrated with two real twin-gauge stations, the Rhône River at Valence, France, and the Guthusbekken stream at station 0003ṡ0033, Norway. Those stations are typical of a channel control and a section control, respectively, when backwater-unaffected conditions apply. The performance of the method is investigated through sensitivity analysis to prior information on controls and to observations (i.e., available gaugings) for the station of Valence. These analyses suggest that precisely identifying SFD rating curves requires adapted gauging strategy and/or informative priors. The Madeira River, one of the largest tributaries of the Amazon, provides a challenging case typical of large, flat, tropical river networks where bed roughness can also be variable in addition to slope. In this case, the difference in staff gauge reference levels must be estimated as another uncertain parameter of the SFD model. The proposed Bayesian method is a valuable alternative solution to the graphical and empirical techniques still proposed in hydrometry guidance and standards.

  9. Development of a Bayesian model to estimate health care outcomes in the severely wounded

    PubMed Central

    Stojadinovic, Alexander; Eberhardt, John; Brown, Trevor S; Hawksworth, Jason S; Gage, Frederick; Tadaki, Douglas K; Forsberg, Jonathan A; Davis, Thomas A; Potter, Benjamin K; Dunne, James R; Elster, E A

    2010-01-01

    Background: Graphical probabilistic models have the ability to provide insights as to how clinical factors are conditionally related. These models can be used to help us understand factors influencing health care outcomes and resource utilization, and to estimate morbidity and clinical outcomes in trauma patient populations. Study design: Thirty-two combat casualties with severe extremity injuries enrolled in a prospective observational study were analyzed using step-wise machine-learned Bayesian belief network (BBN) and step-wise logistic regression (LR). Models were evaluated using 10-fold cross-validation to calculate area-under-the-curve (AUC) from receiver operating characteristics (ROC) curves. Results: Our BBN showed important associations between various factors in our data set that could not be developed using standard regression methods. Cross-validated ROC curve analysis showed that our BBN model was a robust representation of our data domain and that LR models trained on these findings were also robust: hospital-acquired infection (AUC: LR, 0.81; BBN, 0.79), intensive care unit length of stay (AUC: LR, 0.97; BBN, 0.81), and wound healing (AUC: LR, 0.91; BBN, 0.72) showed strong AUC. Conclusions: A BBN model can effectively represent clinical outcomes and biomarkers in patients hospitalized after severe wounding, and is confirmed by 10-fold cross-validation and further confirmed through logistic regression modeling. The method warrants further development and independent validation in other, more diverse patient populations. PMID:21197361

  10. Online Variational Bayesian Filtering-Based Mobile Target Tracking in Wireless Sensor Networks

    PubMed Central

    Zhou, Bingpeng; Chen, Qingchun; Li, Tiffany Jing; Xiao, Pei

    2014-01-01

    The received signal strength (RSS)-based online tracking for a mobile node in wireless sensor networks (WSNs) is investigated in this paper. Firstly, a multi-layer dynamic Bayesian network (MDBN) is introduced to characterize the target mobility with either directional or undirected movement. In particular, it is proposed to employ the Wishart distribution to approximate the time-varying RSS measurement precision's randomness due to the target movement. It is shown that the proposed MDBN offers a more general analysis model via incorporating the underlying statistical information of both the target movement and observations, which can be utilized to improve the online tracking capability by exploiting the Bayesian statistics. Secondly, based on the MDBN model, a mean-field variational Bayesian filtering (VBF) algorithm is developed to realize the online tracking of a mobile target in the presence of nonlinear observations and time-varying RSS precision, wherein the traditional Bayesian filtering scheme cannot be directly employed. Thirdly, a joint optimization between the real-time velocity and its prior expectation is proposed to enable online velocity tracking in the proposed online tacking scheme. Finally, the associated Bayesian Cramer–Rao Lower Bound (BCRLB) analysis and numerical simulations are conducted. Our analysis unveils that, by exploiting the potential state information via the general MDBN model, the proposed VBF algorithm provides a promising solution to the online tracking of a mobile node in WSNs. In addition, it is shown that the final tracking accuracy linearly scales with its expectation when the RSS measurement precision is time-varying. PMID:25393784

  11. Investigating the Effects of Imputation Methods for Modelling Gene Networks Using a Dynamic Bayesian Network from Gene Expression Data

    PubMed Central

    CHAI, Lian En; LAW, Chow Kuan; MOHAMAD, Mohd Saberi; CHONG, Chuii Khim; CHOON, Yee Wen; DERIS, Safaai; ILLIAS, Rosli Md

    2014-01-01

    Background: Gene expression data often contain missing expression values. Therefore, several imputation methods have been applied to solve the missing values, which include k-nearest neighbour (kNN), local least squares (LLS), and Bayesian principal component analysis (BPCA). However, the effects of these imputation methods on the modelling of gene regulatory networks from gene expression data have rarely been investigated and analysed using a dynamic Bayesian network (DBN). Methods: In the present study, we separately imputed datasets of the Escherichia coli S.O.S. DNA repair pathway and the Saccharomyces cerevisiae cell cycle pathway with kNN, LLS, and BPCA, and subsequently used these to generate gene regulatory networks (GRNs) using a discrete DBN. We made comparisons on the basis of previous studies in order to select the gene network with the least error. Results: We found that BPCA and LLS performed better on larger networks (based on the S. cerevisiae dataset), whereas kNN performed better on smaller networks (based on the E. coli dataset). Conclusion: The results suggest that the performance of each imputation method is dependent on the size of the dataset, and this subsequently affects the modelling of the resultant GRNs using a DBN. In addition, on the basis of these results, a DBN has the capacity to discover potential edges, as well as display interactions, between genes. PMID:24876803

  12. Structural identifiability of cyclic graphical models of biological networks with latent variables.

    PubMed

    Wang, Yulin; Lu, Na; Miao, Hongyu

    2016-06-13

    Graphical models have long been used to describe biological networks for a variety of important tasks such as the determination of key biological parameters, and the structure of graphical model ultimately determines whether such unknown parameters can be unambiguously obtained from experimental observations (i.e., the identifiability problem). Limited by resources or technical capacities, complex biological networks are usually partially observed in experiment, which thus introduces latent variables into the corresponding graphical models. A number of previous studies have tackled the parameter identifiability problem for graphical models such as linear structural equation models (SEMs) with or without latent variables. However, the limited resolution and efficiency of existing approaches necessarily calls for further development of novel structural identifiability analysis algorithms. An efficient structural identifiability analysis algorithm is developed in this study for a broad range of network structures. The proposed method adopts the Wright's path coefficient method to generate identifiability equations in forms of symbolic polynomials, and then converts these symbolic equations to binary matrices (called identifiability matrix). Several matrix operations are introduced for identifiability matrix reduction with system equivalency maintained. Based on the reduced identifiability matrices, the structural identifiability of each parameter is determined. A number of benchmark models are used to verify the validity of the proposed approach. Finally, the network module for influenza A virus replication is employed as a real example to illustrate the application of the proposed approach in practice. The proposed approach can deal with cyclic networks with latent variables. The key advantage is that it intentionally avoids symbolic computation and is thus highly efficient. Also, this method is capable of determining the identifiability of each single parameter and is thus of higher resolution in comparison with many existing approaches. Overall, this study provides a basis for systematic examination and refinement of graphical models of biological networks from the identifiability point of view, and it has a significant potential to be extended to more complex network structures or high-dimensional systems.

  13. Object-oriented Bayesian networks for paternity cases with allelic dependencies

    PubMed Central

    Hepler, Amanda B.; Weir, Bruce S.

    2008-01-01

    This study extends the current use of Bayesian networks by incorporating the effects of allelic dependencies in paternity calculations. The use of object-oriented networks greatly simplify the process of building and interpreting forensic identification models, allowing researchers to solve new, more complex problems. We explore two paternity examples: the most common scenario where DNA evidence is available from the alleged father, the mother and the child; a more complex casewhere DNA is not available from the alleged father, but is available from the alleged father’s brother. Object-oriented networks are built, using HUGIN, for each example which incorporate the effects of allelic dependence caused by evolutionary relatedness. PMID:19079769

  14. Accommodating Uncertainty in Prior Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picard, Richard Roy; Vander Wiel, Scott Alan

    2017-01-19

    A fundamental premise of Bayesian methodology is that a priori information is accurately summarized by a single, precisely de ned prior distribution. In many cases, especially involving informative priors, this premise is false, and the (mis)application of Bayes methods produces posterior quantities whose apparent precisions are highly misleading. We examine the implications of uncertainty in prior distributions, and present graphical methods for dealing with them.

  15. Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity

    PubMed Central

    Nessler, Bernhard; Pfeiffer, Michael; Buesing, Lars; Maass, Wolfgang

    2013-01-01

    The principles by which networks of neurons compute, and how spike-timing dependent plasticity (STDP) of synaptic weights generates and maintains their computational function, are unknown. Preceding work has shown that soft winner-take-all (WTA) circuits, where pyramidal neurons inhibit each other via interneurons, are a common motif of cortical microcircuits. We show through theoretical analysis and computer simulations that Bayesian computation is induced in these network motifs through STDP in combination with activity-dependent changes in the excitability of neurons. The fundamental components of this emergent Bayesian computation are priors that result from adaptation of neuronal excitability and implicit generative models for hidden causes that are created in the synaptic weights through STDP. In fact, a surprising result is that STDP is able to approximate a powerful principle for fitting such implicit generative models to high-dimensional spike inputs: Expectation Maximization. Our results suggest that the experimentally observed spontaneous activity and trial-to-trial variability of cortical neurons are essential features of their information processing capability, since their functional role is to represent probability distributions rather than static neural codes. Furthermore it suggests networks of Bayesian computation modules as a new model for distributed information processing in the cortex. PMID:23633941

  16. The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.

    PubMed

    Epskamp, Sacha; Waldorp, Lourens J; Mõttus, René; Borsboom, Denny

    2018-04-16

    We discuss the Gaussian graphical model (GGM; an undirected network of partial correlation coefficients) and detail its utility as an exploratory data analysis tool. The GGM shows which variables predict one-another, allows for sparse modeling of covariance structures, and may highlight potential causal relationships between observed variables. We describe the utility in three kinds of psychological data sets: data sets in which consecutive cases are assumed independent (e.g., cross-sectional data), temporally ordered data sets (e.g., n = 1 time series), and a mixture of the 2 (e.g., n > 1 time series). In time-series analysis, the GGM can be used to model the residual structure of a vector-autoregression analysis (VAR), also termed graphical VAR. Two network models can then be obtained: a temporal network and a contemporaneous network. When analyzing data from multiple subjects, a GGM can also be formed on the covariance structure of stationary means-the between-subjects network. We discuss the interpretation of these models and propose estimation methods to obtain these networks, which we implement in the R packages graphicalVAR and mlVAR. The methods are showcased in two empirical examples, and simulation studies on these methods are included in the supplementary materials.

  17. A Practical Probabilistic Graphical Modeling Tool for Weighing ...

    EPA Pesticide Factsheets

    Past weight-of-evidence frameworks for adverse ecological effects have provided soft-scoring procedures for judgments based on the quality and measured attributes of evidence. Here, we provide a flexible probabilistic structure for weighing and integrating lines of evidence for ecological risk determinations. Probabilistic approaches can provide both a quantitative weighing of lines of evidence and methods for evaluating risk and uncertainty. The current modeling structure wasdeveloped for propagating uncertainties in measured endpoints and their influence on the plausibility of adverse effects. To illustrate the approach, we apply the model framework to the sediment quality triad using example lines of evidence for sediment chemistry measurements, bioassay results, and in situ infauna diversity of benthic communities using a simplified hypothetical case study. We then combine the three lines evidence and evaluate sensitivity to the input parameters, and show how uncertainties are propagated and how additional information can be incorporated to rapidly update the probability of impacts. The developed network model can be expanded to accommodate additional lines of evidence, variables and states of importance, and different types of uncertainties in the lines of evidence including spatial and temporal as well as measurement errors. We provide a flexible Bayesian network structure for weighing and integrating lines of evidence for ecological risk determinations

  18. Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data

    DTIC Science & Technology

    2015-07-01

    Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data Guy Van den Broeck∗ and Karthika Mohan∗ and Arthur Choi and Adnan ...notwithstanding any other provision of law , no person shall be subject to a penalty for failing to comply with a collection of information if it does...Wasserman, L. (2011). All of Statistics. Springer Science & Business Media. Yaramakala, S., & Margaritis, D. (2005). Speculative markov blanket discovery for optimal feature selection. In Proceedings of ICDM.

  19. A functional-dependencies-based Bayesian networks learning method and its application in a mobile commerce system.

    PubMed

    Liao, Stephen Shaoyi; Wang, Huai Qing; Li, Qiu Dan; Liu, Wei Yi

    2006-06-01

    This paper presents a new method for learning Bayesian networks from functional dependencies (FD) and third normal form (3NF) tables in relational databases. The method sets up a linkage between the theory of relational databases and probabilistic reasoning models, which is interesting and useful especially when data are incomplete and inaccurate. The effectiveness and practicability of the proposed method is demonstrated by its implementation in a mobile commerce system.

  20. Engineering graphics data entry for space station data base

    NASA Technical Reports Server (NTRS)

    Lacovara, R. C.

    1986-01-01

    The entry of graphical engineering data into the Space Station Data Base was examined. Discussed were: representation of graphics objects; representation of connectivity data; graphics capture hardware; graphics display hardware; site-wide distribution of graphics, and consolidation of tools and hardware. A fundamental assumption was that existing equipment such as IBM based graphics capture software and VAX networked facilities would be exploited. Defensible conclusions reached after study and simulations of use of these systems at the engineering level are: (1) existing IBM based graphics capture software is an adequate and economical means of entry of schematic and block diagram data for present and anticipated electronic systems for Space Station; (2) connectivity data from the aforementioned system may be incorporated into the envisioned Space Station Data Base with modest effort; (3) graphics and connectivity data captured on the IBM based system may be exported to the VAX network in a simple and direct fashion; (4) graphics data may be displayed site-wide on VT-125 terminals and lookalikes; (5) graphics hard-copy may be produced site-wide on various dot-matrix printers; and (6) the system may provide integrated engineering services at both the engineering and engineering management level.

  1. Bayesian network interface for assisting radiology interpretation and education

    NASA Astrophysics Data System (ADS)

    Duda, Jeffrey; Botzolakis, Emmanuel; Chen, Po-Hao; Mohan, Suyash; Nasrallah, Ilya; Rauschecker, Andreas; Rudie, Jeffrey; Bryan, R. Nick; Gee, James; Cook, Tessa

    2018-03-01

    In this work, we present the use of Bayesian networks for radiologist decision support during clinical interpretation. This computational approach has the advantage of avoiding incorrect diagnoses that result from known human cognitive biases such as anchoring bias, framing effect, availability bias, and premature closure. To integrate Bayesian networks into clinical practice, we developed an open-source web application that provides diagnostic support for a variety of radiology disease entities (e.g., basal ganglia diseases, bone lesions). The Clinical tool presents the user with a set of buttons representing clinical and imaging features of interest. These buttons are used to set the value for each observed feature. As features are identified, the conditional probabilities for each possible diagnosis are updated in real time. Additionally, using sensitivity analysis, the interface may be set to inform the user which remaining imaging features provide maximum discriminatory information to choose the most likely diagnosis. The Case Submission tools allow the user to submit a validated case and the associated imaging features to a database, which can then be used for future tuning/testing of the Bayesian networks. These submitted cases are then reviewed by an assigned expert using the provided QC tool. The Research tool presents users with cases with previously labeled features and a chosen diagnosis, for the purpose of performance evaluation. Similarly, the Education page presents cases with known features, but provides real time feedback on feature selection.

  2. Model based inference from microvascular measurements: Combining experimental measurements and model predictions using a Bayesian probabilistic approach

    PubMed Central

    Rasmussen, Peter M.; Smith, Amy F.; Sakadžić, Sava; Boas, David A.; Pries, Axel R.; Secomb, Timothy W.; Østergaard, Leif

    2017-01-01

    Objective In vivo imaging of the microcirculation and network-oriented modeling have emerged as powerful means of studying microvascular function and understanding its physiological significance. Network-oriented modeling may provide the means of summarizing vast amounts of data produced by high-throughput imaging techniques in terms of key, physiological indices. To estimate such indices with sufficient certainty, however, network-oriented analysis must be robust to the inevitable presence of uncertainty due to measurement errors as well as model errors. Methods We propose the Bayesian probabilistic data analysis framework as a means of integrating experimental measurements and network model simulations into a combined and statistically coherent analysis. The framework naturally handles noisy measurements and provides posterior distributions of model parameters as well as physiological indices associated with uncertainty. Results We applied the analysis framework to experimental data from three rat mesentery networks and one mouse brain cortex network. We inferred distributions for more than five hundred unknown pressure and hematocrit boundary conditions. Model predictions were consistent with previous analyses, and remained robust when measurements were omitted from model calibration. Conclusion Our Bayesian probabilistic approach may be suitable for optimizing data acquisition and for analyzing and reporting large datasets acquired as part of microvascular imaging studies. PMID:27987383

  3. Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks

    NASA Astrophysics Data System (ADS)

    Jiang, Fei-Bo; Dai, Qian-Wei; Dong, Li

    2016-06-01

    Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.

  4. Markov Chain Monte Carlo Bayesian Learning for Neural Networks

    NASA Technical Reports Server (NTRS)

    Goodrich, Michael S.

    2011-01-01

    Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.

  5. A novel approach for pilot error detection using Dynamic Bayesian Networks.

    PubMed

    Saada, Mohamad; Meng, Qinggang; Huang, Tingwen

    2014-06-01

    In the last decade Dynamic Bayesian Networks (DBNs) have become one type of the most attractive probabilistic modelling framework extensions of Bayesian Networks (BNs) for working under uncertainties from a temporal perspective. Despite this popularity not many researchers have attempted to study the use of these networks in anomaly detection or the implications of data anomalies on the outcome of such models. An abnormal change in the modelled environment's data at a given time, will cause a trailing chain effect on data of all related environment variables in current and consecutive time slices. Albeit this effect fades with time, it still can have an ill effect on the outcome of such models. In this paper we propose an algorithm for pilot error detection, using DBNs as the modelling framework for learning and detecting anomalous data. We base our experiments on the actions of an aircraft pilot, and a flight simulator is created for running the experiments. The proposed anomaly detection algorithm has achieved good results in detecting pilot errors and effects on the whole system.

  6. Bayesian Inference for Time Trends in Parameter Values: Case Study for the Ageing PSA Network of the European Commission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana L. Kelly; Albert Malkhasyan

    2010-06-01

    There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performedmore » for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “industry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an application of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates the development of a generic prior distribution, which incorporates multiple sources of generic data via weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.« less

  7. Bayesian Decision Support for Adaptive Lung Treatments

    NASA Astrophysics Data System (ADS)

    McShan, Daniel; Luo, Yi; Schipper, Matt; TenHaken, Randall

    2014-03-01

    Purpose: A Bayesian Decision Network will be demonstrated to provide clinical decision support for adaptive lung response-driven treatment management based on evidence that physiologic metrics may correlate better with individual patient response than traditional (population-based) dose and volume-based metrics. Further, there is evidence that information obtained during the course of radiation therapy may further improve response predictions. Methods: Clinical factors were gathered for 58 patients including planned mean lung dose, and the bio-markers IL-8 and TGF-β1 obtained prior to treatment and two weeks into treatment along with complication outcomes for these patients. A Bayesian Decision Network was constructed using Netica 5.0.2 from Norsys linking these clinical factors to obtain a prediction of radiation induced lung disese (RILD) complication. A decision node was added to the network to provide a plan adaption recommendation based on the trade-off between the RILD prediction and complexity of replanning. A utility node provides the weighting cost between the competing factors. Results: The decision node predictions were optimized against the data for the 58 cases. With this decision network solution, one can consider the decision result for a new patient with specific findings to obtain a recommendation to adaptively modify the originally planned treatment course. Conclusions: A Bayesian approach allows handling and propagating probabilistic data in a logical and principled manner. Decision networks provide the further ability to provide utility-based trade-offs, reflecting non-medical but practical cost/benefit analysis. The network demonstrated illustrates the basic concept, but many other factors may affect these decisions and work on building better models are being designed and tested. Acknowledgement: Supported by NIH-P01-CA59827

  8. Integrating probabilistic models of perception and interactive neural networks: a historical and tutorial review

    PubMed Central

    McClelland, James L.

    2013-01-01

    This article seeks to establish a rapprochement between explicitly Bayesian models of contextual effects in perception and neural network models of such effects, particularly the connectionist interactive activation (IA) model of perception. The article is in part an historical review and in part a tutorial, reviewing the probabilistic Bayesian approach to understanding perception and how it may be shaped by context, and also reviewing ideas about how such probabilistic computations may be carried out in neural networks, focusing on the role of context in interactive neural networks, in which both bottom-up and top-down signals affect the interpretation of sensory inputs. It is pointed out that connectionist units that use the logistic or softmax activation functions can exactly compute Bayesian posterior probabilities when the bias terms and connection weights affecting such units are set to the logarithms of appropriate probabilistic quantities. Bayesian concepts such the prior, likelihood, (joint and marginal) posterior, probability matching and maximizing, and calculating vs. sampling from the posterior are all reviewed and linked to neural network computations. Probabilistic and neural network models are explicitly linked to the concept of a probabilistic generative model that describes the relationship between the underlying target of perception (e.g., the word intended by a speaker or other source of sensory stimuli) and the sensory input that reaches the perceiver for use in inferring the underlying target. It is shown how a new version of the IA model called the multinomial interactive activation (MIA) model can sample correctly from the joint posterior of a proposed generative model for perception of letters in words, indicating that interactive processing is fully consistent with principled probabilistic computation. Ways in which these computations might be realized in real neural systems are also considered. PMID:23970868

  9. Integrating probabilistic models of perception and interactive neural networks: a historical and tutorial review.

    PubMed

    McClelland, James L

    2013-01-01

    This article seeks to establish a rapprochement between explicitly Bayesian models of contextual effects in perception and neural network models of such effects, particularly the connectionist interactive activation (IA) model of perception. The article is in part an historical review and in part a tutorial, reviewing the probabilistic Bayesian approach to understanding perception and how it may be shaped by context, and also reviewing ideas about how such probabilistic computations may be carried out in neural networks, focusing on the role of context in interactive neural networks, in which both bottom-up and top-down signals affect the interpretation of sensory inputs. It is pointed out that connectionist units that use the logistic or softmax activation functions can exactly compute Bayesian posterior probabilities when the bias terms and connection weights affecting such units are set to the logarithms of appropriate probabilistic quantities. Bayesian concepts such the prior, likelihood, (joint and marginal) posterior, probability matching and maximizing, and calculating vs. sampling from the posterior are all reviewed and linked to neural network computations. Probabilistic and neural network models are explicitly linked to the concept of a probabilistic generative model that describes the relationship between the underlying target of perception (e.g., the word intended by a speaker or other source of sensory stimuli) and the sensory input that reaches the perceiver for use in inferring the underlying target. It is shown how a new version of the IA model called the multinomial interactive activation (MIA) model can sample correctly from the joint posterior of a proposed generative model for perception of letters in words, indicating that interactive processing is fully consistent with principled probabilistic computation. Ways in which these computations might be realized in real neural systems are also considered.

  10. Risk analysis of new oral anticoagulants for gastrointestinal bleeding and intracranial hemorrhage in atrial fibrillation patients: a systematic review and network meta-analysis.

    PubMed

    Xu, Wei-Wei; Hu, Shen-Jiang; Wu, Tao

    2017-07-01

    Antithrombotic therapy using new oral anticoagulants (NOACs) in patients with atrial fibrillation (AF) has been generally shown to have a favorable risk-benefit profile. Since there has been dispute about the risks of gastrointestinal bleeding (GIB) and intracranial hemorrhage (ICH), we sought to conduct a systematic review and network meta-analysis using Bayesian inference to analyze the risks of GIB and ICH in AF patients taking NOACs. We analyzed data from 20 randomized controlled trials of 91 671 AF patients receiving anticoagulants, antiplatelet drugs, or placebo. Bayesian network meta-analysis of two different evidence networks was performed using a binomial likelihood model, based on a network in which different agents (and doses) were treated as separate nodes. Odds ratios (ORs) and 95% confidence intervals (CIs) were modeled using Markov chain Monte Carlo methods. Indirect comparisons with the Bayesian model confirmed that aspirin+clopidogrel significantly increased the risk of GIB in AF patients compared to the placebo (OR 0.33, 95% CI 0.01-0.92). Warfarin was identified as greatly increasing the risk of ICH compared to edoxaban 30 mg (OR 3.42, 95% CI 1.22-7.24) and dabigatran 110 mg (OR 3.56, 95% CI 1.10-8.45). We further ranked the NOACs for the lowest risk of GIB (apixaban 5 mg) and ICH (apixaban 5 mg, dabigatran 110 mg, and edoxaban 30 mg). Bayesian network meta-analysis of treatment of non-valvular AF patients with anticoagulants suggested that NOACs do not increase risks of GIB and/or ICH, compared to each other.

  11. Hybrid ICA-Bayesian network approach reveals distinct effective connectivity differences in schizophrenia.

    PubMed

    Kim, D; Burge, J; Lane, T; Pearlson, G D; Kiehl, K A; Calhoun, V D

    2008-10-01

    We utilized a discrete dynamic Bayesian network (dDBN) approach (Burge, J., Lane, T., Link, H., Qiu, S., Clark, V.P., 2007. Discrete dynamic Bayesian network analysis of fMRI data. Hum Brain Mapp.) to determine differences in brain regions between patients with schizophrenia and healthy controls on a measure of effective connectivity, termed the approximate conditional likelihood score (ACL) (Burge, J., Lane, T., 2005. Learning Class-Discriminative Dynamic Bayesian Networks. Proceedings of the International Conference on Machine Learning, Bonn, Germany, pp. 97-104.). The ACL score represents a class-discriminative measure of effective connectivity by measuring the relative likelihood of the correlation between brain regions in one group versus another. The algorithm is capable of finding non-linear relationships between brain regions because it uses discrete rather than continuous values and attempts to model temporal relationships with a first-order Markov and stationary assumption constraint (Papoulis, A., 1991. Probability, random variables, and stochastic processes. McGraw-Hill, New York.). Since Bayesian networks are overly sensitive to noisy data, we introduced an independent component analysis (ICA) filtering approach that attempted to reduce the noise found in fMRI data by unmixing the raw datasets into a set of independent spatial component maps. Components that represented noise were removed and the remaining components reconstructed into the dimensions of the original fMRI datasets. We applied the dDBN algorithm to a group of 35 patients with schizophrenia and 35 matched healthy controls using an ICA filtered and unfiltered approach. We determined that filtering the data significantly improved the magnitude of the ACL score. Patients showed the greatest ACL scores in several regions, most markedly the cerebellar vermis and hemispheres. Our findings suggest that schizophrenia patients exhibit weaker connectivity than healthy controls in multiple regions, including bilateral temporal, frontal, and cerebellar regions during an auditory paradigm.

  12. Space Shuttle RTOS Bayesian Network

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry; Beling, Peter A.

    2001-01-01

    With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores. Using a prioritization of measures from the decision-maker, trade-offs between the scores are used to rank order the available set of RTOS candidates.

  13. Alveolar ridge preservation after tooth extraction: a Bayesian Network meta-analysis of grafting materials efficacy on prevention of bone height and width reduction.

    PubMed

    Iocca, Oreste; Farcomeni, Alessio; Pardiñas Lopez, Simon; Talib, Huzefa S

    2017-01-01

    To conduct a traditional meta-analysis and a Bayesian Network meta-analysis to synthesize the information coming from randomized controlled trials on different socket grafting materials and combine the resulting indirect evidence in order to make inferences on treatments that have not been compared directly. RCTs were identified for inclusion in the systematic review and subsequent statistical analysis. Bone height and width remodelling were selected as the chosen summary measures for comparison. First, a series of pairwise meta-analyses were performed and overall mean difference (MD) in mm with 95% CI was calculated between grafted versus non-grafted sockets. Then, a Bayesian Network meta-analysis was performed to draw indirect conclusions on which grafting materials can be considered most likely the best compared to the others. From the six included studies, seven comparisons were obtained. Traditional meta-analysis showed statistically significant results in favour of grafting the socket compared to no-graft both for height (MD 1.02, 95% CI 0.44-1.59, p value < 0.001) than for width (MD 1.52 95% CI 1.18-1.86, p value <0.000001) remodelling. Bayesian Network meta-analysis allowed to obtain a rank of intervention efficacy. On the basis of the results of the present analysis, socket grafting seems to be more favourable than unassisted socket healing. Moreover, Bayesian Network meta-analysis indicates that freeze-dried bone graft plus membrane is the most likely effective in the reduction of bone height remodelling. Autologous bone marrow resulted the most likely effective when width remodelling was considered. Studies with larger samples and less risk of bias should be conducted in the future in order to further strengthen the results of this analysis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.

    PubMed

    Taghia, Jalil; Ryali, Srikanth; Chen, Tianwen; Supekar, Kaustubh; Cai, Weidong; Menon, Vinod

    2017-07-15

    There is growing interest in understanding the dynamical properties of functional interactions between distributed brain regions. However, robust estimation of temporal dynamics from functional magnetic resonance imaging (fMRI) data remains challenging due to limitations in extant multivariate methods for modeling time-varying functional interactions between multiple brain areas. Here, we develop a Bayesian generative model for fMRI time-series within the framework of hidden Markov models (HMMs). The model is a dynamic variant of the static factor analysis model (Ghahramani and Beal, 2000). We refer to this model as Bayesian switching factor analysis (BSFA) as it integrates factor analysis into a generative HMM in a unified Bayesian framework. In BSFA, brain dynamic functional networks are represented by latent states which are learnt from the data. Crucially, BSFA is a generative model which estimates the temporal evolution of brain states and transition probabilities between states as a function of time. An attractive feature of BSFA is the automatic determination of the number of latent states via Bayesian model selection arising from penalization of excessively complex models. Key features of BSFA are validated using extensive simulations on carefully designed synthetic data. We further validate BSFA using fingerprint analysis of multisession resting-state fMRI data from the Human Connectome Project (HCP). Our results show that modeling temporal dependencies in the generative model of BSFA results in improved fingerprinting of individual participants. Finally, we apply BSFA to elucidate the dynamic functional organization of the salience, central-executive, and default mode networks-three core neurocognitive systems with central role in cognitive and affective information processing (Menon, 2011). Across two HCP sessions, we demonstrate a high level of dynamic interactions between these networks and determine that the salience network has the highest temporal flexibility among the three networks. Our proposed methods provide a novel and powerful generative model for investigating dynamic brain connectivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Prediction of Postoperative Clinical Recovery of Drop Foot Attributable to Lumbar Degenerative Diseases, via a Bayesian Network.

    PubMed

    Takenaka, Shota; Aono, Hiroyuki

    2017-03-01

    Drop foot resulting from degenerative lumbar diseases can impair activities of daily living. Therefore, predictors of recovery of this symptom have been investigated using univariate or/and multivariate analyses. However, the conclusions have been somewhat controversial. Bayesian network models, which are graphic and intuitive to the clinician, may facilitate understanding of the prognosis of drop foot resulting from degenerative lumbar diseases. (1) To show a layered correlation among predictors of recovery from drop foot resulting from degenerative lumbar diseases; and (2) to develop support tools for clinical decisions to treat drop foot resulting from lumbar degenerative diseases. Between 1993 and 2013, we treated 141 patients with decompressive lumbar spine surgery who presented with drop foot attributable to degenerative diseases. Of those, 102 (72%) were included in this retrospective study because they had drop foot of recent development and had no diseases develop that affect evaluation of drop foot after surgery. Specifically, 28 (20%) patients could not be analyzed because their records were not available at a minimum of 2 years followup after surgery and 11 (8%) were lost owing to postoperative conditions that affect the muscle strength evaluation. Eight candidate variables were sex, age, herniated soft disc, duration of the neurologic injury (duration), preoperative tibialis anterior muscle strength (pretibialis anterior), leg pain, cauda equina syndrome, and number of involved levels. Manual muscle testing was used to assess the tibialis anterior muscle strength. Drop foot was defined as a tibialis anterior muscle strength score of less than 3 of 5 (5 = movement against gravity and full resistance, 4 = movement against gravity and moderate resistance, 3 = movement against gravity through full ROM, 3- = movement against gravity through partial ROM, 2 = movement with gravity eliminated through full ROM, 1 = slight contraction but no movement, and 0 = no contraction). The two outcomes of interest were postoperative tibialis anterior muscle strength (posttibialis anterior) of 3 or greater and posttibialis anterior strength of 4 or greater at 2 years after surgery. We developed two separate Bayesian network models with outcomes of interest for posttibialis anterior strength of 3 or greater and posttibialis anterior strength of 4 or greater. The two outcomes correspond to "good" and "excellent" results based on previous reports, respectively. Direct predictors are defined as variables that have the tail of the arrow connecting the outcome of interest, whereas indirect predictors are defined as variables that have the tail of the arrow connecting either direct predictors or other indirect predictors that have the tail of the arrow connecting direct predictors. Sevenfold cross validation and receiver-operating characteristic (ROC) curve analyses were performed to evaluate the accuracy and robustness of the Bayesian network models. Both of our Bayesian network models showed that weaker muscle power before surgery (pretibialis anterior ≤ 1) and longer duration of neurologic injury before treatment (> 30 days) were associated with a decreased likelihood of return of function by 2 years. The models for posttibialis anterior muscle strength of 3 or greater and posttibialis anterior muscle strength of 4 or greater were the same in terms of the graphs, showing that the two direct predictors were pretibialis anterior muscle strength (score ≤ 1 or ≥ 2) and duration (≤ 30 days or > 30 days). Age, herniated soft disc, and leg pain were identified as indirect predictors. We developed a decision-support tool in which the clinician can enter pretibialis anterior muscle strength and duration, and from this obtain the probability estimates of posttibialis anterior muscle strength. The probability estimates of posttibialis anterior muscle strength of 3 or greater and posttibialis anterior muscle strength of 4 or greater were 94% and 85%, respectively, in the most-favorable conditions (pretibialis anterior ≥ 2; duration ≤ 30 days) and 18% and 14%, respectively, in the least-favorable conditions (pretibialis anterior ≤ 1; duration > 30 days). On the sevenfold cross validation, the area under the ROC curve yielded means of 0.78 (95% CI, 0.68-0.87) and 0.74 (95% CI, 0.64-0.84) for posttibialis anterior muscle strength of 3 or greater and posttibialis anterior muscle strength of 4 or greater, respectively. The results of this study suggest that the clinician can understand intuitively the layered correlation among predictors by Bayesian network models. Based on the models, the decision-support tool successfully provided the probability estimates of posttibialis anterior muscle strength to treat drop foot attributable to lumbar degenerative diseases. These models were shown to be robust on the internal validation but should be externally validated in other populations. Level III, therapeutic study.

  16. A Bayesian belief network approach for assessing uncertainty in conceptual site models at contaminated sites

    NASA Astrophysics Data System (ADS)

    Thomsen, Nanna I.; Binning, Philip J.; McKnight, Ursula S.; Tuxen, Nina; Bjerg, Poul L.; Troldborg, Mads

    2016-05-01

    A key component in risk assessment of contaminated sites is in the formulation of a conceptual site model (CSM). A CSM is a simplified representation of reality and forms the basis for the mathematical modeling of contaminant fate and transport at the site. The CSM should therefore identify the most important site-specific features and processes that may affect the contaminant transport behavior at the site. However, the development of a CSM will always be associated with uncertainties due to limited data and lack of understanding of the site conditions. CSM uncertainty is often found to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert opinion at different knowledge levels. The developed BBNs combine data from desktop studies and initial site investigations with expert opinion to assess which of the CSMs are more likely to reflect the actual site conditions. The method is demonstrated on a Danish field site, contaminated with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information becomes available.

  17. Immune allied genetic algorithm for Bayesian network structure learning

    NASA Astrophysics Data System (ADS)

    Song, Qin; Lin, Feng; Sun, Wei; Chang, KC

    2012-06-01

    Bayesian network (BN) structure learning is a NP-hard problem. In this paper, we present an improved approach to enhance efficiency of BN structure learning. To avoid premature convergence in traditional single-group genetic algorithm (GA), we propose an immune allied genetic algorithm (IAGA) in which the multiple-population and allied strategy are introduced. Moreover, in the algorithm, we apply prior knowledge by injecting immune operator to individuals which can effectively prevent degeneration. To illustrate the effectiveness of the proposed technique, we present some experimental results.

  18. Bayesian networks and statistical analysis application to analyze the diagnostic test accuracy

    NASA Astrophysics Data System (ADS)

    Orzechowski, P.; Makal, Jaroslaw; Onisko, A.

    2005-02-01

    The computer aided BPH diagnosis system based on Bayesian network is described in the paper. First result are compared to a given statistical method. Different statistical methods are used successfully in medicine for years. However, the undoubted advantages of probabilistic methods make them useful in application in newly created systems which are frequent in medicine, but do not have full and competent knowledge. The article presents advantages of the computer aided BPH diagnosis system in clinical practice for urologists.

  19. A Comparison of FPGA and GPGPU Designs for Bayesian Occupancy Filters.

    PubMed

    Medina, Luis; Diez-Ochoa, Miguel; Correal, Raul; Cuenca-Asensi, Sergio; Serrano, Alejandro; Godoy, Jorge; Martínez-Álvarez, Antonio; Villagra, Jorge

    2017-11-11

    Grid-based perception techniques in the automotive sector based on fusing information from different sensors and their robust perceptions of the environment are proliferating in the industry. However, one of the main drawbacks of these techniques is the traditionally prohibitive, high computing performance that is required for embedded automotive systems. In this work, the capabilities of new computing architectures that embed these algorithms are assessed in a real car. The paper compares two ad hoc optimized designs of the Bayesian Occupancy Filter; one for General Purpose Graphics Processing Unit (GPGPU) and the other for Field-Programmable Gate Array (FPGA). The resulting implementations are compared in terms of development effort, accuracy and performance, using datasets from a realistic simulator and from a real automated vehicle.

  20. Understanding causality and uncertainty in volcanic observations: An example of forecasting eruptive activity on Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Sheldrake, T. E.; Aspinall, W. P.; Odbert, H. M.; Wadge, G.; Sparks, R. S. J.

    2017-07-01

    Following a cessation in eruptive activity it is important to understand how a volcano will behave in the future and when it may next erupt. Such an assessment can be based on the volcano's long-term pattern of behaviour and insights into its current state via monitoring observations. We present a Bayesian network that integrates these two strands of evidence to forecast future eruptive scenarios using expert elicitation. The Bayesian approach provides a framework to quantify the magmatic causes in terms of volcanic effects (i.e., eruption and unrest). In October 2013, an expert elicitation was performed to populate a Bayesian network designed to help forecast future eruptive (in-)activity at Soufrière Hills Volcano. The Bayesian network was devised to assess the state of the shallow magmatic system, as a means to forecast the future eruptive activity in the context of the long-term behaviour at similar dome-building volcanoes. The findings highlight coherence amongst experts when interpreting the current behaviour of the volcano, but reveal considerable ambiguity when relating this to longer patterns of volcanism at dome-building volcanoes, as a class. By asking questions in terms of magmatic causes, the Bayesian approach highlights the importance of using short-term unrest indicators from monitoring data as evidence in long-term forecasts at volcanoes. Furthermore, it highlights potential biases in the judgements of volcanologists and identifies sources of uncertainty in terms of magmatic causes rather than scenario-based outcomes.

  1. Parameter inference in small world network disease models with approximate Bayesian Computational methods

    NASA Astrophysics Data System (ADS)

    Walker, David M.; Allingham, David; Lee, Heung Wing Joseph; Small, Michael

    2010-02-01

    Small world network models have been effective in capturing the variable behaviour of reported case data of the SARS coronavirus outbreak in Hong Kong during 2003. Simulations of these models have previously been realized using informed “guesses” of the proposed model parameters and tested for consistency with the reported data by surrogate analysis. In this paper we attempt to provide statistically rigorous parameter distributions using Approximate Bayesian Computation sampling methods. We find that such sampling schemes are a useful framework for fitting parameters of stochastic small world network models where simulation of the system is straightforward but expressing a likelihood is cumbersome.

  2. Assessment of Manual Operation Time for the Manufacturing of Thin Film Transistor Liquid Crystal Display: A Bayesian Approach

    NASA Astrophysics Data System (ADS)

    Shen, Chien-wen

    2009-01-01

    During the processes of TFT-LCD manufacturing, steps like visual inspection of panel surface defects still heavily rely on manual operations. As the manual inspection time of TFT-LCD manufacturing could range from 4 hours to 1 day, the reliability of time forecasting is thus important for production planning, scheduling and customer response. This study would like to propose a practical and easy-to-implement prediction model through the approach of Bayesian networks for time estimation of manual operated procedures in TFT-LCD manufacturing. Given the lack of prior knowledge about manual operation time, algorithms of necessary path condition and expectation-maximization are used for structural learning and estimation of conditional probability distributions respectively. This study also applied Bayesian inference to evaluate the relationships between explanatory variables and manual operation time. With the empirical applications of this proposed forecasting model, approach of Bayesian networks demonstrates its practicability and prediction accountability.

  3. Bayesian Regression with Network Prior: Optimal Bayesian Filtering Perspective

    PubMed Central

    Qian, Xiaoning; Dougherty, Edward R.

    2017-01-01

    The recently introduced intrinsically Bayesian robust filter (IBRF) provides fully optimal filtering relative to a prior distribution over an uncertainty class ofjoint random process models, whereas formerly the theory was limited to model-constrained Bayesian robust filters, for which optimization was limited to the filters that are optimal for models in the uncertainty class. This paper extends the IBRF theory to the situation where there are both a prior on the uncertainty class and sample data. The result is optimal Bayesian filtering (OBF), where optimality is relative to the posterior distribution derived from the prior and the data. The IBRF theories for effective characteristics and canonical expansions extend to the OBF setting. A salient focus of the present work is to demonstrate the advantages of Bayesian regression within the OBF setting over the classical Bayesian approach in the context otlinear Gaussian models. PMID:28824268

  4. The Lifecycle of Bayesian Network Models Developed for Multi-Source Signature Assessment of Nuclear Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gastelum, Zoe N.; White, Amanda M.; Whitney, Paul D.

    2013-06-04

    The Multi-Source Signatures for Nuclear Programs project, part of Pacific Northwest National Laboratory’s (PNNL) Signature Discovery Initiative, seeks to computationally capture expert assessment of multi-type information such as text, sensor output, imagery, or audio/video files, to assess nuclear activities through a series of Bayesian network (BN) models. These models incorporate knowledge from a diverse range of information sources in order to help assess a country’s nuclear activities. The models span engineering topic areas, state-level indicators, and facility-specific characteristics. To illustrate the development, calibration, and use of BN models for multi-source assessment, we present a model that predicts a country’s likelihoodmore » to participate in the international nuclear nonproliferation regime. We validate this model by examining the extent to which the model assists non-experts arrive at conclusions similar to those provided by nuclear proliferation experts. We also describe the PNNL-developed software used throughout the lifecycle of the Bayesian network model development.« less

  5. Real-time prediction of acute cardiovascular events using hardware-implemented Bayesian networks.

    PubMed

    Tylman, Wojciech; Waszyrowski, Tomasz; Napieralski, Andrzej; Kamiński, Marek; Trafidło, Tamara; Kulesza, Zbigniew; Kotas, Rafał; Marciniak, Paweł; Tomala, Radosław; Wenerski, Maciej

    2016-02-01

    This paper presents a decision support system that aims to estimate a patient׳s general condition and detect situations which pose an immediate danger to the patient׳s health or life. The use of this system might be especially important in places such as accident and emergency departments or admission wards, where a small medical team has to take care of many patients in various general conditions. Particular stress is laid on cardiovascular and pulmonary conditions, including those leading to sudden cardiac arrest. The proposed system is a stand-alone microprocessor-based device that works in conjunction with a standard vital signs monitor, which provides input signals such as temperature, blood pressure, pulseoxymetry, ECG, and ICG. The signals are preprocessed and analysed by a set of artificial intelligence algorithms, the core of which is based on Bayesian networks. The paper focuses on the construction and evaluation of the Bayesian network, both its structure and numerical specification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Development of an internet based system for modeling biotin metabolism using Bayesian networks.

    PubMed

    Zhou, Jinglei; Wang, Dong; Schlegel, Vicki; Zempleni, Janos

    2011-11-01

    Biotin is an essential water-soluble vitamin crucial for maintaining normal body functions. The importance of biotin for human health has been under-appreciated but there is plenty of opportunity for future research with great importance for human health. Currently, carrying out predictions of biotin metabolism involves tedious manual manipulations. In this paper, we report the development of BiotinNet, an internet based program that uses Bayesian networks to integrate published data on various aspects of biotin metabolism. Users can provide a combination of values on the levels of biotin related metabolites to obtain the predictions on other metabolites that are not specified. As an inherent feature of Bayesian networks, the uncertainty of the prediction is also quantified and reported to the user. This program enables convenient in silico experiments regarding biotin metabolism, which can help researchers design future experiments while new data can be continuously incorporated. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Predicting ICU mortality: a comparison of stationary and nonstationary temporal models.

    PubMed Central

    Kayaalp, M.; Cooper, G. F.; Clermont, G.

    2000-01-01

    OBJECTIVE: This study evaluates the effectiveness of the stationarity assumption in predicting the mortality of intensive care unit (ICU) patients at the ICU discharge. DESIGN: This is a comparative study. A stationary temporal Bayesian network learned from data was compared to a set of (33) nonstationary temporal Bayesian networks learned from data. A process observed as a sequence of events is stationary if its stochastic properties stay the same when the sequence is shifted in a positive or negative direction by a constant time parameter. The temporal Bayesian networks forecast mortalities of patients, where each patient has one record per day. The predictive performance of the stationary model is compared with nonstationary models using the area under the receiver operating characteristics (ROC) curves. RESULTS: The stationary model usually performed best. However, one nonstationary model using large data sets performed significantly better than the stationary model. CONCLUSION: Results suggest that using a combination of stationary and nonstationary models may predict better than using either alone. PMID:11079917

  8. Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception.

    PubMed

    Kutschireiter, Anna; Surace, Simone Carlo; Sprekeler, Henning; Pfister, Jean-Pascal

    2017-08-18

    The robust estimation of dynamical hidden features, such as the position of prey, based on sensory inputs is one of the hallmarks of perception. This dynamical estimation can be rigorously formulated by nonlinear Bayesian filtering theory. Recent experimental and behavioral studies have shown that animals' performance in many tasks is consistent with such a Bayesian statistical interpretation. However, it is presently unclear how a nonlinear Bayesian filter can be efficiently implemented in a network of neurons that satisfies some minimum constraints of biological plausibility. Here, we propose the Neural Particle Filter (NPF), a sampling-based nonlinear Bayesian filter, which does not rely on importance weights. We show that this filter can be interpreted as the neuronal dynamics of a recurrently connected rate-based neural network receiving feed-forward input from sensory neurons. Further, it captures properties of temporal and multi-sensory integration that are crucial for perception, and it allows for online parameter learning with a maximum likelihood approach. The NPF holds the promise to avoid the 'curse of dimensionality', and we demonstrate numerically its capability to outperform weighted particle filters in higher dimensions and when the number of particles is limited.

  9. Food Web Designer: a flexible tool to visualize interaction networks.

    PubMed

    Sint, Daniela; Traugott, Michael

    Species are embedded in complex networks of ecological interactions and assessing these networks provides a powerful approach to understand what the consequences of these interactions are for ecosystem functioning and services. This is mandatory to develop and evaluate strategies for the management and control of pests. Graphical representations of networks can help recognize patterns that might be overlooked otherwise. However, there is a lack of software which allows visualizing these complex interaction networks. Food Web Designer is a stand-alone, highly flexible and user friendly software tool to quantitatively visualize trophic and other types of bipartite and tripartite interaction networks. It is offered free of charge for use on Microsoft Windows platforms. Food Web Designer is easy to use without the need to learn a specific syntax due to its graphical user interface. Up to three (trophic) levels can be connected using links cascading from or pointing towards the taxa within each level to illustrate top-down and bottom-up connections. Link width/strength and abundance of taxa can be quantified, allowing generating fully quantitative networks. Network datasets can be imported, saved for later adjustment and the interaction webs can be exported as pictures for graphical display in different file formats. We show how Food Web Designer can be used to draw predator-prey and host-parasitoid food webs, demonstrating that this software is a simple and straightforward tool to graphically display interaction networks for assessing pest control or any other type of interaction in both managed and natural ecosystems from an ecological network perspective.

  10. Feasibility of streamlining an interactive Bayesian-based diagnostic support tool designed for clinical practice

    NASA Astrophysics Data System (ADS)

    Chen, Po-Hao; Botzolakis, Emmanuel; Mohan, Suyash; Bryan, R. N.; Cook, Tessa

    2016-03-01

    In radiology, diagnostic errors occur either through the failure of detection or incorrect interpretation. Errors are estimated to occur in 30-35% of all exams and contribute to 40-54% of medical malpractice litigations. In this work, we focus on reducing incorrect interpretation of known imaging features. Existing literature categorizes cognitive bias leading a radiologist to an incorrect diagnosis despite having correctly recognized the abnormal imaging features: anchoring bias, framing effect, availability bias, and premature closure. Computational methods make a unique contribution, as they do not exhibit the same cognitive biases as a human. Bayesian networks formalize the diagnostic process. They modify pre-test diagnostic probabilities using clinical and imaging features, arriving at a post-test probability for each possible diagnosis. To translate Bayesian networks to clinical practice, we implemented an entirely web-based open-source software tool. In this tool, the radiologist first selects a network of choice (e.g. basal ganglia). Then, large, clearly labeled buttons displaying salient imaging features are displayed on the screen serving both as a checklist and for input. As the radiologist inputs the value of an extracted imaging feature, the conditional probabilities of each possible diagnosis are updated. The software presents its level of diagnostic discrimination using a Pareto distribution chart, updated with each additional imaging feature. Active collaboration with the clinical radiologist is a feasible approach to software design and leads to design decisions closely coupling the complex mathematics of conditional probability in Bayesian networks with practice.

  11. Sediment classification using neural networks: An example from the site-U1344A of IODP Expedition 323 in the Bering Sea

    NASA Astrophysics Data System (ADS)

    Ojha, Maheswar; Maiti, Saumen

    2016-03-01

    A novel approach based on the concept of Bayesian neural network (BNN) has been implemented for classifying sediment boundaries using downhole log data obtained during Integrated Ocean Drilling Program (IODP) Expedition 323 in the Bering Sea slope region. The Bayesian framework in conjunction with Markov Chain Monte Carlo (MCMC)/hybrid Monte Carlo (HMC) learning paradigm has been applied to constrain the lithology boundaries using density, density porosity, gamma ray, sonic P-wave velocity and electrical resistivity at the Hole U1344A. We have demonstrated the effectiveness of our supervised classification methodology by comparing our findings with a conventional neural network and a Bayesian neural network optimized by scaled conjugate gradient method (SCG), and tested the robustness of the algorithm in the presence of red noise in the data. The Bayesian results based on the HMC algorithm (BNN.HMC) resolve detailed finer structures at certain depths in addition to main lithology such as silty clay, diatom clayey silt and sandy silt. Our method also recovers the lithology information from a depth ranging between 615 and 655 m Wireline log Matched depth below Sea Floor of no core recovery zone. Our analyses demonstrate that the BNN based approach renders robust means for the classification of complex lithology successions at the Hole U1344A, which could be very useful for other studies and understanding the oceanic crustal inhomogeneity and structural discontinuities.

  12. Identifying causal networks linking cancer processes and anti-tumor immunity using Bayesian network inference and metagene constructs.

    PubMed

    Kaiser, Jacob L; Bland, Cassidy L; Klinke, David J

    2016-03-01

    Cancer arises from a deregulation of both intracellular and intercellular networks that maintain system homeostasis. Identifying the architecture of these networks and how they are changed in cancer is a pre-requisite for designing drugs to restore homeostasis. Since intercellular networks only appear in intact systems, it is difficult to identify how these networks become altered in human cancer using many of the common experimental models. To overcome this, we used the diversity in normal and malignant human tissue samples from the Cancer Genome Atlas (TCGA) database of human breast cancer to identify the topology associated with intercellular networks in vivo. To improve the underlying biological signals, we constructed Bayesian networks using metagene constructs, which represented groups of genes that are concomitantly associated with different immune and cancer states. We also used bootstrap resampling to establish the significance associated with the inferred networks. In short, we found opposing relationships between cell proliferation and epithelial-to-mesenchymal transformation (EMT) with regards to macrophage polarization. These results were consistent across multiple carcinomas in that proliferation was associated with a type 1 cell-mediated anti-tumor immune response and EMT was associated with a pro-tumor anti-inflammatory response. To address the identifiability of these networks from other datasets, we could identify the relationship between EMT and macrophage polarization with fewer samples when the Bayesian network was generated from malignant samples alone. However, the relationship between proliferation and macrophage polarization was identified with fewer samples when the samples were taken from a combination of the normal and malignant samples. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:470-479, 2016. © 2016 American Institute of Chemical Engineers.

  13. Bayesian network models for error detection in radiotherapy plans

    NASA Astrophysics Data System (ADS)

    Kalet, Alan M.; Gennari, John H.; Ford, Eric C.; Phillips, Mark H.

    2015-04-01

    The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.

  14. Bayesian exponential random graph modelling of interhospital patient referral networks.

    PubMed

    Caimo, Alberto; Pallotti, Francesca; Lomi, Alessandro

    2017-08-15

    Using original data that we have collected on referral relations between 110 hospitals serving a large regional community, we show how recently derived Bayesian exponential random graph models may be adopted to illuminate core empirical issues in research on relational coordination among healthcare organisations. We show how a rigorous Bayesian computation approach supports a fully probabilistic analytical framework that alleviates well-known problems in the estimation of model parameters of exponential random graph models. We also show how the main structural features of interhospital patient referral networks that prior studies have described can be reproduced with accuracy by specifying the system of local dependencies that produce - but at the same time are induced by - decentralised collaborative arrangements between hospitals. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Dynamic Bayesian Networks for Student Modeling

    ERIC Educational Resources Information Center

    Kaser, Tanja; Klingler, Severin; Schwing, Alexander G.; Gross, Markus

    2017-01-01

    Intelligent tutoring systems adapt the curriculum to the needs of the individual student. Therefore, an accurate representation and prediction of student knowledge is essential. Bayesian Knowledge Tracing (BKT) is a popular approach for student modeling. The structure of BKT models, however, makes it impossible to represent the hierarchy and…

  16. Bayesian Recurrent Neural Network for Language Modeling.

    PubMed

    Chien, Jen-Tzung; Ku, Yuan-Chu

    2016-02-01

    A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.

  17. Planetary micro-rover operations on Mars using a Bayesian framework for inference and control

    NASA Astrophysics Data System (ADS)

    Post, Mark A.; Li, Junquan; Quine, Brendan M.

    2016-03-01

    With the recent progress toward the application of commercially-available hardware to small-scale space missions, it is now becoming feasible for groups of small, efficient robots based on low-power embedded hardware to perform simple tasks on other planets in the place of large-scale, heavy and expensive robots. In this paper, we describe design and programming of the Beaver micro-rover developed for Northern Light, a Canadian initiative to send a small lander and rover to Mars to study the Martian surface and subsurface. For a small, hardware-limited rover to handle an uncertain and mostly unknown environment without constant management by human operators, we use a Bayesian network of discrete random variables as an abstraction of expert knowledge about the rover and its environment, and inference operations for control. A framework for efficient construction and inference into a Bayesian network using only the C language and fixed-point mathematics on embedded hardware has been developed for the Beaver to make intelligent decisions with minimal sensor data. We study the performance of the Beaver as it probabilistically maps a simple outdoor environment with sensor models that include uncertainty. Results indicate that the Beaver and other small and simple robotic platforms can make use of a Bayesian network to make intelligent decisions in uncertain planetary environments.

  18. What Can Causal Networks Tell Us about Metabolic Pathways?

    PubMed Central

    Blair, Rachael Hageman; Kliebenstein, Daniel J.; Churchill, Gary A.

    2012-01-01

    Graphical models describe the linear correlation structure of data and have been used to establish causal relationships among phenotypes in genetic mapping populations. Data are typically collected at a single point in time. Biological processes on the other hand are often non-linear and display time varying dynamics. The extent to which graphical models can recapitulate the architecture of an underlying biological processes is not well understood. We consider metabolic networks with known stoichiometry to address the fundamental question: “What can causal networks tell us about metabolic pathways?”. Using data from an Arabidopsis BaySha population and simulated data from dynamic models of pathway motifs, we assess our ability to reconstruct metabolic pathways using graphical models. Our results highlight the necessity of non-genetic residual biological variation for reliable inference. Recovery of the ordering within a pathway is possible, but should not be expected. Causal inference is sensitive to subtle patterns in the correlation structure that may be driven by a variety of factors, which may not emphasize the substrate-product relationship. We illustrate the effects of metabolic pathway architecture, epistasis and stochastic variation on correlation structure and graphical model-derived networks. We conclude that graphical models should be interpreted cautiously, especially if the implied causal relationships are to be used in the design of intervention strategies. PMID:22496633

  19. A Bayesian Network approach for flash flood risk assessment

    NASA Astrophysics Data System (ADS)

    Boutkhamouine, Brahim; Roux, Hélène; Pérès, François

    2017-04-01

    Climate change is contributing to the increase of natural disasters such as extreme weather events. Sometimes, these events lead to sudden flash floods causing devastating effects on life and property. Most recently, many regions of the French Mediterranean perimeter have endured such catastrophic flood events; Var (October 2015), Ardèche (November 2014), Nîmes (October 2014), Hérault, Gard and Languedoc (September 2014), and Pyrenees mountains (Jun 2013). Altogether, it resulted in dozens of victims and property damages amounting to millions of euros. With this heavy loss in mind, development of hydrological forecasting and warning systems is becoming an essential element in regional and national strategies. Flash flood forecasting but also monitoring is a difficult task because small ungauged catchments ( 10 km2) are often the most destructive ones as for the extreme flash flood event of September 2002 in the Cévennes region (France) (Ruin et al., 2008). The problem of measurement/prediction uncertainty is particularly crucial when attempting to develop operational flash-flood forecasting methods. Taking into account the uncertainty related to the model structure itself, to the model parametrization or to the model forcing (spatio-temporal rainfall, initial conditions) is crucial in hydrological modelling. Quantifying these uncertainties is of primary importance for risk assessment and decision making. Although significant improvements have been made in computational power and distributed hydrologic modelling, the issue dealing with integration of uncertainties into flood forecasting remains up-to-date and challenging. In order to develop a framework which could handle these uncertainties and explain their propagation through the model, we propose to explore the potential of graphical models (GMs) and, more precisely, Bayesian Networks (BNs). These networks are Directed Acyclic Graphs (DAGs) in which knowledge of a certain phenomenon is represented by influencing variables. Each node of the graph corresponds to a variable and arcs represent the probabilistic dependencies between these variables. Both the quantification of the strength of these probabilistic dependencies and the computation of inferences are based on Bayes' theorem. In order to use BNs for the assessment of the flooding risks, the modelling work is divided into two parts. First, identifying all the factors controlling the flood generation. The qualitative explanation of this issue is then reached by establishing the cause and effect relationships between these factors. These underlying relationships are represented in what we call Conditional Probabilities Tables (CPTs). The next step is to estimate these CPTs using information coming from network of sensors, databases and expertise. By using this basic cognitive structure, we will be able to estimate the magnitude of flood risk in a small geographical area with a homogeneous hydrological system. The second part of our work will be dedicated to the estimation of this risk on the scale of a basin. To do so, we will create a spatio-temporal model able to take in consideration both spatial and temporal variability of all factors involved in the flood generation. Key words: Flash flood forecasting - Uncertainty modelling - flood risk management -Bayesian Networks.

  20. Bayesian Inference for Source Term Estimation: Application to the International Monitoring System Radionuclide Network

    DTIC Science & Technology

    2014-10-01

    de l’exactitude et de la précision), comparativement au modèle de mesure plus simple qui n’utilise pas de multiplicateurs. Importance pour la défense...3) Bayesian experimental design for receptor placement in order to maximize the expected information in the measured concen- tration data for...applications of the Bayesian inferential methodology for source recon- struction have used high-quality concentration data from well- designed atmospheric

  1. Graphical user interface for wireless sensor networks simulator

    NASA Astrophysics Data System (ADS)

    Paczesny, Tomasz; Paczesny, Daniel; Weremczuk, Jerzy

    2008-01-01

    Wireless Sensor Networks (WSN) are currently very popular area of development. It can be suited in many applications form military through environment monitoring, healthcare, home automation and others. Those networks, when working in dynamic, ad-hoc model, need effective protocols which must differ from common computer networks algorithms. Research on those protocols would be difficult without simulation tool, because real applications often use many nodes and tests on such a big networks take much effort and costs. The paper presents Graphical User Interface (GUI) for simulator which is dedicated for WSN studies, especially in routing and data link protocols evaluation.

  2. Probabilistic Graphical Model Representation in Phylogenetics

    PubMed Central

    Höhna, Sebastian; Heath, Tracy A.; Boussau, Bastien; Landis, Michael J.; Ronquist, Fredrik; Huelsenbeck, John P.

    2014-01-01

    Recent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing the need for new approaches to statistical model representation and software development. Clear communication and representation of the chosen model is crucial for: (i) reproducibility of an analysis, (ii) model development, and (iii) software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for beginners and nonspecialists to grasp complex phylogenetic models, including their assumptions and parameter/variable dependencies. Graphical modeling is a unifying framework that has gained in popularity in the statistical literature in recent years. The core idea is to break complex models into conditionally independent distributions. The strength lies in the comprehensibility, flexibility, and adaptability of this formalism, and the large body of computational work based on it. Graphical models are well-suited to teach statistical models, to facilitate communication among phylogeneticists and in the development of generic software for simulation and statistical inference. Here, we provide an introduction to graphical models for phylogeneticists and extend the standard graphical model representation to the realm of phylogenetics. We introduce a new graphical model component, tree plates, to capture the changing structure of the subgraph corresponding to a phylogenetic tree. We describe a range of phylogenetic models using the graphical model framework and introduce modules to simplify the representation of standard components in large and complex models. Phylogenetic model graphs can be readily used in simulation, maximum likelihood inference, and Bayesian inference using, for example, Metropolis–Hastings or Gibbs sampling of the posterior distribution. [Computation; graphical models; inference; modularization; statistical phylogenetics; tree plate.] PMID:24951559

  3. Bayesian Inference of Natural Rankings in Incomplete Competition Networks

    PubMed Central

    Park, Juyong; Yook, Soon-Hyung

    2014-01-01

    Competition between a complex system's constituents and a corresponding reward mechanism based on it have profound influence on the functioning, stability, and evolution of the system. But determining the dominance hierarchy or ranking among the constituent parts from the strongest to the weakest – essential in determining reward and penalty – is frequently an ambiguous task due to the incomplete (partially filled) nature of competition networks. Here we introduce the “Natural Ranking,” an unambiguous ranking method applicable to a round robin tournament, and formulate an analytical model based on the Bayesian formula for inferring the expected mean and error of the natural ranking of nodes from an incomplete network. We investigate its potential and uses in resolving important issues of ranking by applying it to real-world competition networks. PMID:25163528

  4. Bayesian Inference of Natural Rankings in Incomplete Competition Networks

    NASA Astrophysics Data System (ADS)

    Park, Juyong; Yook, Soon-Hyung

    2014-08-01

    Competition between a complex system's constituents and a corresponding reward mechanism based on it have profound influence on the functioning, stability, and evolution of the system. But determining the dominance hierarchy or ranking among the constituent parts from the strongest to the weakest - essential in determining reward and penalty - is frequently an ambiguous task due to the incomplete (partially filled) nature of competition networks. Here we introduce the ``Natural Ranking,'' an unambiguous ranking method applicable to a round robin tournament, and formulate an analytical model based on the Bayesian formula for inferring the expected mean and error of the natural ranking of nodes from an incomplete network. We investigate its potential and uses in resolving important issues of ranking by applying it to real-world competition networks.

  5. A Bayesian network model for predicting pregnancy after in vitro fertilization.

    PubMed

    Corani, G; Magli, C; Giusti, A; Gianaroli, L; Gambardella, L M

    2013-11-01

    We present a Bayesian network model for predicting the outcome of in vitro fertilization (IVF). The problem is characterized by a particular missingness process; we propose a simple but effective averaging approach which improves parameter estimates compared to the traditional MAP estimation. We present results with generated data and the analysis of a real data set. Moreover, we assess by means of a simulation study the effectiveness of the model in supporting the selection of the embryos to be transferred. © 2013 Elsevier Ltd. All rights reserved.

  6. Drug delivery optimization through Bayesian networks.

    PubMed Central

    Bellazzi, R.

    1992-01-01

    This paper describes how Bayesian Networks can be used in combination with compartmental models to plan Recombinant Human Erythropoietin (r-HuEPO) delivery in the treatment of anemia of chronic uremic patients. Past measurements of hematocrit or hemoglobin concentration in a patient during the therapy can be exploited to adjust the parameters of a compartmental model of the erythropoiesis. This adaptive process allows more accurate patient-specific predictions, and hence a more rational dosage planning. We describe a drug delivery optimization protocol, based on our approach. Some results obtained on real data are presented. PMID:1482938

  7. Methods for Probabilistic Fault Diagnosis: An Electrical Power System Case Study

    NASA Technical Reports Server (NTRS)

    Ricks, Brian W.; Mengshoel, Ole J.

    2009-01-01

    Health management systems that more accurately and quickly diagnose faults that may occur in different technical systems on-board a vehicle will play a key role in the success of future NASA missions. We discuss in this paper the diagnosis of abrupt continuous (or parametric) faults within the context of probabilistic graphical models, more specifically Bayesian networks that are compiled to arithmetic circuits. This paper extends our previous research, within the same probabilistic setting, on diagnosis of abrupt discrete faults. Our approach and diagnostic algorithm ProDiagnose are domain-independent; however we use an electrical power system testbed called ADAPT as a case study. In one set of ADAPT experiments, performed as part of the 2009 Diagnostic Challenge, our system turned out to have the best performance among all competitors. In a second set of experiments, we show how we have recently further significantly improved the performance of the probabilistic model of ADAPT. While these experiments are obtained for an electrical power system testbed, we believe they can easily be transitioned to real-world systems, thus promising to increase the success of future NASA missions.

  8. Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks.

    PubMed

    Deeter, Anthony; Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui

    2017-01-01

    The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways.

  9. Nonparametric analysis of Minnesota spruce and aspen tree data and LANDSAT data

    NASA Technical Reports Server (NTRS)

    Scott, D. W.; Jee, R.

    1984-01-01

    The application of nonparametric methods in data-intensive problems faced by NASA is described. The theoretical development of efficient multivariate density estimators and the novel use of color graphics workstations are reviewed. The use of nonparametric density estimates for data representation and for Bayesian classification are described and illustrated. Progress in building a data analysis system in a workstation environment is reviewed and preliminary runs presented.

  10. Bayesian Network Webserver: a comprehensive tool for biological network modeling.

    PubMed

    Ziebarth, Jesse D; Bhattacharya, Anindya; Cui, Yan

    2013-11-01

    The Bayesian Network Webserver (BNW) is a platform for comprehensive network modeling of systems genetics and other biological datasets. It allows users to quickly and seamlessly upload a dataset, learn the structure of the network model that best explains the data and use the model to understand relationships between network variables. Many datasets, including those used to create genetic network models, contain both discrete (e.g. genotype) and continuous (e.g. gene expression traits) variables, and BNW allows for modeling hybrid datasets. Users of BNW can incorporate prior knowledge during structure learning through an easy-to-use structural constraint interface. After structure learning, users are immediately presented with an interactive network model, which can be used to make testable hypotheses about network relationships. BNW, including a downloadable structure learning package, is available at http://compbio.uthsc.edu/BNW. (The BNW interface for adding structural constraints uses HTML5 features that are not supported by current version of Internet Explorer. We suggest using other browsers (e.g. Google Chrome or Mozilla Firefox) when accessing BNW). ycui2@uthsc.edu. Supplementary data are available at Bioinformatics online.

  11. Risk assessment by dynamic representation of vulnerability, exploitation, and impact

    NASA Astrophysics Data System (ADS)

    Cam, Hasan

    2015-05-01

    Assessing and quantifying cyber risk accurately in real-time is essential to providing security and mission assurance in any system and network. This paper presents a modeling and dynamic analysis approach to assessing cyber risk of a network in real-time by representing dynamically its vulnerabilities, exploitations, and impact using integrated Bayesian network and Markov models. Given the set of vulnerabilities detected by a vulnerability scanner in a network, this paper addresses how its risk can be assessed by estimating in real-time the exploit likelihood and impact of vulnerability exploitation on the network, based on real-time observations and measurements over the network. The dynamic representation of the network in terms of its vulnerabilities, sensor measurements, and observations is constructed dynamically using the integrated Bayesian network and Markov models. The transition rates of outgoing and incoming links of states in hidden Markov models are used in determining exploit likelihood and impact of attacks, whereas emission rates help quantify the attack states of vulnerabilities. Simulation results show the quantification and evolving risk scores over time for individual and aggregated vulnerabilities of a network.

  12. A Comparison of FPGA and GPGPU Designs for Bayesian Occupancy Filters

    PubMed Central

    Medina, Luis; Diez-Ochoa, Miguel; Correal, Raul; Cuenca-Asensi, Sergio; Godoy, Jorge; Martínez-Álvarez, Antonio

    2017-01-01

    Grid-based perception techniques in the automotive sector based on fusing information from different sensors and their robust perceptions of the environment are proliferating in the industry. However, one of the main drawbacks of these techniques is the traditionally prohibitive, high computing performance that is required for embedded automotive systems. In this work, the capabilities of new computing architectures that embed these algorithms are assessed in a real car. The paper compares two ad hoc optimized designs of the Bayesian Occupancy Filter; one for General Purpose Graphics Processing Unit (GPGPU) and the other for Field-Programmable Gate Array (FPGA). The resulting implementations are compared in terms of development effort, accuracy and performance, using datasets from a realistic simulator and from a real automated vehicle. PMID:29137137

  13. Nodal network generator for CAVE3

    NASA Technical Reports Server (NTRS)

    Palmieri, J. V.; Rathjen, K. A.

    1982-01-01

    A new extension of CAVE3 code was developed that automates the creation of a finite difference math model in digital form ready for input to the CAVE3 code. The new software, Nodal Network Generator, is broken into two segments. One segment generates the model geometry using a Tektronix Tablet Digitizer and the other generates the actual finite difference model and allows for graphic verification using Tektronix 4014 Graphic Scope. Use of the Nodal Network Generator is described.

  14. Learning Negotiation Policies Using IB3 and Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Nalepa, Gislaine M.; Ávila, Bráulio C.; Enembreck, Fabrício; Scalabrin, Edson E.

    This paper presents an intelligent offer policy in a negotiation environment, in which each agent involved learns the preferences of its opponent in order to improve its own performance. Each agent must also be able to detect drifts in the opponent's preferences so as to quickly adjust itself to their new offer policy. For this purpose, two simple learning techniques were first evaluated: (i) based on instances (IB3) and (ii) based on Bayesian Networks. Additionally, as its known that in theory group learning produces better results than individual/single learning, the efficiency of IB3 and Bayesian classifier groups were also analyzed. Finally, each decision model was evaluated in moments of concept drift, being the drift gradual, moderate or abrupt. Results showed that both groups of classifiers were able to effectively detect drifts in the opponent's preferences.

  15. Bayesian outcome-based strategy classification.

    PubMed

    Lee, Michael D

    2016-03-01

    Hilbig and Moshagen (Psychonomic Bulletin & Review, 21, 1431-1443, 2014) recently developed a method for making inferences about the decision processes people use in multi-attribute forced choice tasks. Their paper makes a number of worthwhile theoretical and methodological contributions. Theoretically, they provide an insightful psychological motivation for a probabilistic extension of the widely-used "weighted additive" (WADD) model, and show how this model, as well as other important models like "take-the-best" (TTB), can and should be expressed in terms of meaningful priors. Methodologically, they develop an inference approach based on the Minimum Description Length (MDL) principles that balances both the goodness-of-fit and complexity of the decision models they consider. This paper aims to preserve these useful contributions, but provide a complementary Bayesian approach with some theoretical and methodological advantages. We develop a simple graphical model, implemented in JAGS, that allows for fully Bayesian inferences about which models people use to make decisions. To demonstrate the Bayesian approach, we apply it to the models and data considered by Hilbig and Moshagen (Psychonomic Bulletin & Review, 21, 1431-1443, 2014), showing how a prior predictive analysis of the models, and posterior inferences about which models people use and the parameter settings at which they use them, can contribute to our understanding of human decision making.

  16. A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites

    NASA Astrophysics Data System (ADS)

    Wang, Q. J.; Robertson, D. E.; Chiew, F. H. S.

    2009-05-01

    Seasonal forecasting of streamflows can be highly valuable for water resources management. In this paper, a Bayesian joint probability (BJP) modeling approach for seasonal forecasting of streamflows at multiple sites is presented. A Box-Cox transformed multivariate normal distribution is proposed to model the joint distribution of future streamflows and their predictors such as antecedent streamflows and El Niño-Southern Oscillation indices and other climate indicators. Bayesian inference of model parameters and uncertainties is implemented using Markov chain Monte Carlo sampling, leading to joint probabilistic forecasts of streamflows at multiple sites. The model provides a parametric structure for quantifying relationships between variables, including intersite correlations. The Box-Cox transformed multivariate normal distribution has considerable flexibility for modeling a wide range of predictors and predictands. The Bayesian inference formulated allows the use of data that contain nonconcurrent and missing records. The model flexibility and data-handling ability means that the BJP modeling approach is potentially of wide practical application. The paper also presents a number of statistical measures and graphical methods for verification of probabilistic forecasts of continuous variables. Results for streamflows at three river gauges in the Murrumbidgee River catchment in southeast Australia show that the BJP modeling approach has good forecast quality and that the fitted model is consistent with observed data.

  17. Measuring Learning Progressions Using Bayesian Modeling in Complex Assessments

    ERIC Educational Resources Information Center

    Rutstein, Daisy Wise

    2012-01-01

    This research examines issues regarding model estimation and robustness in the use of Bayesian Inference Networks (BINs) for measuring Learning Progressions (LPs). It provides background information on LPs and how they might be used in practice. Two simulation studies are performed, along with real data examples. The first study examines the case…

  18. A Bayesian approach to evaluating habitat for woodland caribou in north-central British Columbia.

    Treesearch

    R.S. McNay; B.G. Marcot; V. Brumovsky; R. Ellis

    2006-01-01

    Woodland caribou (Rangifer tarandus caribou) populations are in decline throughout much of their range. With increasing development of caribou habitat, tools are required to make management decisions to support effective conservation of caribou and their range. We developed a series of Bayesian belief networks to evaluate conservation policy...

  19. Stochastic DT-MRI connectivity mapping on the GPU.

    PubMed

    McGraw, Tim; Nadar, Mariappan

    2007-01-01

    We present a method for stochastic fiber tract mapping from diffusion tensor MRI (DT-MRI) implemented on graphics hardware. From the simulated fibers we compute a connectivity map that gives an indication of the probability that two points in the dataset are connected by a neuronal fiber path. A Bayesian formulation of the fiber model is given and it is shown that the inversion method can be used to construct plausible connectivity. An implementation of this fiber model on the graphics processing unit (GPU) is presented. Since the fiber paths can be stochastically generated independently of one another, the algorithm is highly parallelizable. This allows us to exploit the data-parallel nature of the GPU fragment processors. We also present a framework for the connectivity computation on the GPU. Our implementation allows the user to interactively select regions of interest and observe the evolving connectivity results during computation. Results are presented from the stochastic generation of over 250,000 fiber steps per iteration at interactive frame rates on consumer-grade graphics hardware.

  20. Constructing a Bayesian network model for improving safety behavior of employees at workplaces.

    PubMed

    Mohammadfam, Iraj; Ghasemi, Fakhradin; Kalatpour, Omid; Moghimbeigi, Abbas

    2017-01-01

    Unsafe behavior increases the risk of accident at workplaces and needs to be managed properly. The aim of the present study was to provide a model for managing and improving safety behavior of employees using the Bayesian networks approach. The study was conducted in several power plant construction projects in Iran. The data were collected using a questionnaire composed of nine factors, including management commitment, supporting environment, safety management system, employees' participation, safety knowledge, safety attitude, motivation, resource allocation, and work pressure. In order for measuring the score of each factor assigned by a responder, a measurement model was constructed for each of them. The Bayesian network was constructed using experts' opinions and Dempster-Shafer theory. Using belief updating, the best intervention strategies for improving safety behavior also were selected. The result of the present study demonstrated that the majority of employees do not tend to consider safety rules, regulation, procedures and norms in their behavior at the workplace. Safety attitude, safety knowledge, and supporting environment were the best predictor of safety behavior. Moreover, it was determined that instantaneous improvement of supporting environment and employee participation is the best strategy to reach a high proportion of safety behavior at the workplace. The lack of a comprehensive model that can be used for explaining safety behavior was one of the most problematic issues of the study. Furthermore, it can be concluded that belief updating is a unique feature of Bayesian networks that is very useful in comparing various intervention strategies and selecting the best one form them. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A Graphical Modelling Approach to the Dissection of Highly Correlated Transcription Factor Binding Site Profiles

    PubMed Central

    Stojnic, Robert; Fu, Audrey Qiuyan; Adryan, Boris

    2012-01-01

    Inferring the combinatorial regulatory code of transcription factors (TFs) from genome-wide TF binding profiles is challenging. A major reason is that TF binding profiles significantly overlap and are therefore highly correlated. Clustered occurrence of multiple TFs at genomic sites may arise from chromatin accessibility and local cooperation between TFs, or binding sites may simply appear clustered if the profiles are generated from diverse cell populations. Overlaps in TF binding profiles may also result from measurements taken at closely related time intervals. It is thus of great interest to distinguish TFs that directly regulate gene expression from those that are indirectly associated with gene expression. Graphical models, in particular Bayesian networks, provide a powerful mathematical framework to infer different types of dependencies. However, existing methods do not perform well when the features (here: TF binding profiles) are highly correlated, when their association with the biological outcome is weak, and when the sample size is small. Here, we develop a novel computational method, the Neighbourhood Consistent PC (NCPC) algorithms, which deal with these scenarios much more effectively than existing methods do. We further present a novel graphical representation, the Direct Dependence Graph (DDGraph), to better display the complex interactions among variables. NCPC and DDGraph can also be applied to other problems involving highly correlated biological features. Both methods are implemented in the R package ddgraph, available as part of Bioconductor (http://bioconductor.org/packages/2.11/bioc/html/ddgraph.html). Applied to real data, our method identified TFs that specify different classes of cis-regulatory modules (CRMs) in Drosophila mesoderm differentiation. Our analysis also found depletion of the early transcription factor Twist binding at the CRMs regulating expression in visceral and somatic muscle cells at later stages, which suggests a CRM-specific repression mechanism that so far has not been characterised for this class of mesodermal CRMs. PMID:23144600

  2. Functional Interaction Network Construction and Analysis for Disease Discovery.

    PubMed

    Wu, Guanming; Haw, Robin

    2017-01-01

    Network-based approaches project seemingly unrelated genes or proteins onto a large-scale network context, therefore providing a holistic visualization and analysis platform for genomic data generated from high-throughput experiments, reducing the dimensionality of data via using network modules and increasing the statistic analysis power. Based on the Reactome database, the most popular and comprehensive open-source biological pathway knowledgebase, we have developed a highly reliable protein functional interaction network covering around 60 % of total human genes and an app called ReactomeFIViz for Cytoscape, the most popular biological network visualization and analysis platform. In this chapter, we describe the detailed procedures on how this functional interaction network is constructed by integrating multiple external data sources, extracting functional interactions from human curated pathway databases, building a machine learning classifier called a Naïve Bayesian Classifier, predicting interactions based on the trained Naïve Bayesian Classifier, and finally constructing the functional interaction database. We also provide an example on how to use ReactomeFIViz for performing network-based data analysis for a list of genes.

  3. Bayesian Analysis for Exponential Random Graph Models Using the Adaptive Exchange Sampler.

    PubMed

    Jin, Ick Hoon; Yuan, Ying; Liang, Faming

    2013-10-01

    Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the intractable normalizing constant and model degeneracy. In this paper, we consider a fully Bayesian analysis for exponential random graph models using the adaptive exchange sampler, which solves the intractable normalizing constant and model degeneracy issues encountered in Markov chain Monte Carlo (MCMC) simulations. The adaptive exchange sampler can be viewed as a MCMC extension of the exchange algorithm, and it generates auxiliary networks via an importance sampling procedure from an auxiliary Markov chain running in parallel. The convergence of this algorithm is established under mild conditions. The adaptive exchange sampler is illustrated using a few social networks, including the Florentine business network, molecule synthetic network, and dolphins network. The results indicate that the adaptive exchange algorithm can produce more accurate estimates than approximate exchange algorithms, while maintaining the same computational efficiency.

  4. Using graph-based assessments within socratic tutorials to reveal and refine students' analytical thinking about molecular networks.

    PubMed

    Trujillo, Caleb; Cooper, Melanie M; Klymkowsky, Michael W

    2012-01-01

    Biological systems, from the molecular to the ecological, involve dynamic interaction networks. To examine student thinking about networks we used graphical responses, since they are easier to evaluate for implied, but unarticulated assumptions. Senior college level molecular biology students were presented with simple molecular level scenarios; surprisingly, most students failed to articulate the basic assumptions needed to generate reasonable graphical representations; their graphs often contradicted their explicit assumptions. We then developed a tiered Socratic tutorial based on leading questions designed to provoke metacognitive reflection. The activity is characterized by leading questions (prompts) designed to provoke meta-cognitive reflection. When applied in a group or individual setting, there was clear improvement in targeted areas. Our results highlight the promise of using graphical responses and Socratic prompts in a tutorial context as both a formative assessment for students and an informative feedback system for instructors, in part because graphical responses are relatively easy to evaluate for implied, but unarticulated assumptions. Copyright © 2011 Wiley Periodicals, Inc.

  5. Experimental design and Bayesian networks for enhancement of delta-endotoxin production by Bacillus thuringiensis.

    PubMed

    Ennouri, Karim; Ayed, Rayda Ben; Hassen, Hanen Ben; Mazzarello, Maura; Ottaviani, Ennio

    2015-12-01

    Bacillus thuringiensis (Bt) is a Gram-positive bacterium. The entomopathogenic activity of Bt is related to the existence of the crystal consisting of protoxins, also called delta-endotoxins. In order to optimize and explain the production of delta-endotoxins of Bacillus thuringiensis kurstaki, we studied seven medium components: soybean meal, starch, KH₂PO₄, K₂HPO₄, FeSO₄, MnSO₄, and MgSO₄and their relationships with the concentration of delta-endotoxins using an experimental design (Plackett-Burman design) and Bayesian networks modelling. The effects of the ingredients of the culture medium on delta-endotoxins production were estimated. The developed model showed that different medium components are important for the Bacillus thuringiensis fermentation. The most important factors influenced the production of delta-endotoxins are FeSO₄, K2HPO₄, starch and soybean meal. Indeed, it was found that soybean meal, K₂HPO₄, KH₂PO₄and starch also showed positive effect on the delta-endotoxins production. However, FeSO4 and MnSO4 expressed opposite effect. The developed model, based on Bayesian techniques, can automatically learn emerging models in data to serve in the prediction of delta-endotoxins concentrations. The constructed model in the present study implies that experimental design (Plackett-Burman design) joined with Bayesian networks method could be used for identification of effect variables on delta-endotoxins variation.

  6. Neural network modeling and an uncertainty analysis in Bayesian framework: A case study from the KTB borehole site

    NASA Astrophysics Data System (ADS)

    Maiti, Saumen; Tiwari, Ram Krishna

    2010-10-01

    A new probabilistic approach based on the concept of Bayesian neural network (BNN) learning theory is proposed for decoding litho-facies boundaries from well-log data. We show that how a multi-layer-perceptron neural network model can be employed in Bayesian framework to classify changes in litho-log successions. The method is then applied to the German Continental Deep Drilling Program (KTB) well-log data for classification and uncertainty estimation in the litho-facies boundaries. In this framework, a posteriori distribution of network parameter is estimated via the principle of Bayesian probabilistic theory, and an objective function is minimized following the scaled conjugate gradient optimization scheme. For the model development, we inflict a suitable criterion, which provides probabilistic information by emulating different combinations of synthetic data. Uncertainty in the relationship between the data and the model space is appropriately taken care by assuming a Gaussian a priori distribution of networks parameters (e.g., synaptic weights and biases). Prior to applying the new method to the real KTB data, we tested the proposed method on synthetic examples to examine the sensitivity of neural network hyperparameters in prediction. Within this framework, we examine stability and efficiency of this new probabilistic approach using different kinds of synthetic data assorted with different level of correlated noise. Our data analysis suggests that the designed network topology based on the Bayesian paradigm is steady up to nearly 40% correlated noise; however, adding more noise (˜50% or more) degrades the results. We perform uncertainty analyses on training, validation, and test data sets with and devoid of intrinsic noise by making the Gaussian approximation of the a posteriori distribution about the peak model. We present a standard deviation error-map at the network output corresponding to the three types of the litho-facies present over the entire litho-section of the KTB. The comparisons of maximum a posteriori geological sections constructed here, based on the maximum a posteriori probability distribution, with the available geological information and the existing geophysical findings suggest that the BNN results reveal some additional finer details in the KTB borehole data at certain depths, which appears to be of some geological significance. We also demonstrate that the proposed BNN approach is superior to the conventional artificial neural network in terms of both avoiding "over-fitting" and aiding uncertainty estimation, which are vital for meaningful interpretation of geophysical records. Our analyses demonstrate that the BNN-based approach renders a robust means for the classification of complex changes in the litho-facies successions and thus could provide a useful guide for understanding the crustal inhomogeneity and the structural discontinuity in many other tectonically complex regions.

  7. Predicting Mycobacterium tuberculosis Complex Clades Using Knowledge-Based Bayesian Networks

    PubMed Central

    Bennett, Kristin P.

    2014-01-01

    We develop a novel approach for incorporating expert rules into Bayesian networks for classification of Mycobacterium tuberculosis complex (MTBC) clades. The proposed knowledge-based Bayesian network (KBBN) treats sets of expert rules as prior distributions on the classes. Unlike prior knowledge-based support vector machine approaches which require rules expressed as polyhedral sets, KBBN directly incorporates the rules without any modification. KBBN uses data to refine rule-based classifiers when the rule set is incomplete or ambiguous. We develop a predictive KBBN model for 69 MTBC clades found in the SITVIT international collection. We validate the approach using two testbeds that model knowledge of the MTBC obtained from two different experts and large DNA fingerprint databases to predict MTBC genetic clades and sublineages. These models represent strains of MTBC using high-throughput biomarkers called spacer oligonucleotide types (spoligotypes), since these are routinely gathered from MTBC isolates of tuberculosis (TB) patients. Results show that incorporating rules into problems can drastically increase classification accuracy if data alone are insufficient. The SITVIT KBBN is publicly available for use on the World Wide Web. PMID:24864238

  8. Pathway analysis of high-throughput biological data within a Bayesian network framework.

    PubMed

    Isci, Senol; Ozturk, Cengizhan; Jones, Jon; Otu, Hasan H

    2011-06-15

    Most current approaches to high-throughput biological data (HTBD) analysis either perform individual gene/protein analysis or, gene/protein set enrichment analysis for a list of biologically relevant molecules. Bayesian Networks (BNs) capture linear and non-linear interactions, handle stochastic events accounting for noise, and focus on local interactions, which can be related to causal inference. Here, we describe for the first time an algorithm that models biological pathways as BNs and identifies pathways that best explain given HTBD by scoring fitness of each network. Proposed method takes into account the connectivity and relatedness between nodes of the pathway through factoring pathway topology in its model. Our simulations using synthetic data demonstrated robustness of our approach. We tested proposed method, Bayesian Pathway Analysis (BPA), on human microarray data regarding renal cell carcinoma (RCC) and compared our results with gene set enrichment analysis. BPA was able to find broader and more specific pathways related to RCC. Accompanying BPA software (BPAS) package is freely available for academic use at http://bumil.boun.edu.tr/bpa.

  9. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network

    PubMed Central

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-01

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006

  10. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network.

    PubMed

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-08

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.

  11. Using robust Bayesian network to estimate the residuals of fluoroquinolone antibiotic in soil.

    PubMed

    Li, Xuewen; Xie, Yunfeng; Li, Lianfa; Yang, Xunfeng; Wang, Ning; Wang, Jinfeng

    2015-11-01

    Prediction of antibiotic pollution and its consequences is difficult, due to the uncertainties and complexities associated with multiple related factors. This article employed domain knowledge and spatial data to construct a Bayesian network (BN) model to assess fluoroquinolone antibiotic (FQs) pollution in the soil of an intensive vegetable cultivation area. The results show: (1) The relationships between FQs pollution and contributory factors: Three factors (cultivation methods, crop rotations, and chicken manure types) were consistently identified as predictors in the topological structures of three FQs, indicating their importance in FQs pollution; deduced with domain knowledge, the cultivation methods are determined by the crop rotations, which require different nutrients (derived from the manure) according to different plant biomass. (2) The performance of BN model: The integrative robust Bayesian network model achieved the highest detection probability (pd) of high-risk and receiver operating characteristic (ROC) area, since it incorporates domain knowledge and model uncertainty. Our encouraging findings have implications for the use of BN as a robust approach to assessment of FQs pollution and for informing decisions on appropriate remedial measures.

  12. A Bayesian network approach to knowledge integration and representation of farm irrigation: 1. Model development

    NASA Astrophysics Data System (ADS)

    Wang, Q. J.; Robertson, D. E.; Haines, C. L.

    2009-02-01

    Irrigation is important to many agricultural businesses but also has implications for catchment health. A considerable body of knowledge exists on how irrigation management affects farm business and catchment health. However, this knowledge is fragmentary; is available in many forms such as qualitative and quantitative; is dispersed in scientific literature, technical reports, and the minds of individuals; and is of varying degrees of certainty. Bayesian networks allow the integration of dispersed knowledge into quantitative systems models. This study describes the development, validation, and application of a Bayesian network model of farm irrigation in the Shepparton Irrigation Region of northern Victoria, Australia. In this first paper we describe the process used to integrate a range of sources of knowledge to develop a model of farm irrigation. We describe the principal model components and summarize the reaction to the model and its development process by local stakeholders. Subsequent papers in this series describe model validation and the application of the model to assess the regional impact of historical and future management intervention.

  13. Evaluation of a Partial Genome Screening of Two Asthma Susceptibility Regions Using Bayesian Network Based Bayesian Multilevel Analysis of Relevance

    PubMed Central

    Antal, Péter; Kiszel, Petra Sz.; Gézsi, András; Hadadi, Éva; Virág, Viktor; Hajós, Gergely; Millinghoffer, András; Nagy, Adrienne; Kiss, András; Semsei, Ágnes F.; Temesi, Gergely; Melegh, Béla; Kisfali, Péter; Széll, Márta; Bikov, András; Gálffy, Gabriella; Tamási, Lilla; Falus, András; Szalai, Csaba

    2012-01-01

    Genetic studies indicate high number of potential factors related to asthma. Based on earlier linkage analyses we selected the 11q13 and 14q22 asthma susceptibility regions, for which we designed a partial genome screening study using 145 SNPs in 1201 individuals (436 asthmatic children and 765 controls). The results were evaluated with traditional frequentist methods and we applied a new statistical method, called Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA). This method uses Bayesian network representation to provide detailed characterization of the relevance of factors, such as joint significance, the type of dependency, and multi-target aspects. We estimated posteriors for these relations within the Bayesian statistical framework, in order to estimate the posteriors whether a variable is directly relevant or its association is only mediated. With frequentist methods one SNP (rs3751464 in the FRMD6 gene) provided evidence for an association with asthma (OR = 1.43(1.2–1.8); p = 3×10−4). The possible role of the FRMD6 gene in asthma was also confirmed in an animal model and human asthmatics. In the BN-BMLA analysis altogether 5 SNPs in 4 genes were found relevant in connection with asthma phenotype: PRPF19 on chromosome 11, and FRMD6, PTGER2 and PTGDR on chromosome 14. In a subsequent step a partial dataset containing rhinitis and further clinical parameters was used, which allowed the analysis of relevance of SNPs for asthma and multiple targets. These analyses suggested that SNPs in the AHNAK and MS4A2 genes were indirectly associated with asthma. This paper indicates that BN-BMLA explores the relevant factors more comprehensively than traditional statistical methods and extends the scope of strong relevance based methods to include partial relevance, global characterization of relevance and multi-target relevance. PMID:22432035

  14. Weather information network including graphical display

    NASA Technical Reports Server (NTRS)

    Leger, Daniel R. (Inventor); Burdon, David (Inventor); Son, Robert S. (Inventor); Martin, Kevin D. (Inventor); Harrison, John (Inventor); Hughes, Keith R. (Inventor)

    2006-01-01

    An apparatus for providing weather information onboard an aircraft includes a processor unit and a graphical user interface. The processor unit processes weather information after it is received onboard the aircraft from a ground-based source, and the graphical user interface provides a graphical presentation of the weather information to a user onboard the aircraft. Preferably, the graphical user interface includes one or more user-selectable options for graphically displaying at least one of convection information, turbulence information, icing information, weather satellite information, SIGMET information, significant weather prognosis information, and winds aloft information.

  15. HeNCE: A Heterogeneous Network Computing Environment

    DOE PAGES

    Beguelin, Adam; Dongarra, Jack J.; Geist, George Al; ...

    1994-01-01

    Network computing seeks to utilize the aggregate resources of many networked computers to solve a single problem. In so doing it is often possible to obtain supercomputer performance from an inexpensive local area network. The drawback is that network computing is complicated and error prone when done by hand, especially if the computers have different operating systems and data formats and are thus heterogeneous. The heterogeneous network computing environment (HeNCE) is an integrated graphical environment for creating and running parallel programs over a heterogeneous collection of computers. It is built on a lower level package called parallel virtual machine (PVM).more » The HeNCE philosophy of parallel programming is to have the programmer graphically specify the parallelism of a computation and to automate, as much as possible, the tasks of writing, compiling, executing, debugging, and tracing the network computation. Key to HeNCE is a graphical language based on directed graphs that describe the parallelism and data dependencies of an application. Nodes in the graphs represent conventional Fortran or C subroutines and the arcs represent data and control flow. This article describes the present state of HeNCE, its capabilities, limitations, and areas of future research.« less

  16. Understanding the role of speech production in reading: Evidence for a print-to-speech neural network using graphical analysis.

    PubMed

    Cummine, Jacqueline; Cribben, Ivor; Luu, Connie; Kim, Esther; Bahktiari, Reyhaneh; Georgiou, George; Boliek, Carol A

    2016-05-01

    The neural circuitry associated with language processing is complex and dynamic. Graphical models are useful for studying complex neural networks as this method provides information about unique connectivity between regions within the context of the entire network of interest. Here, the authors explored the neural networks during covert reading to determine the role of feedforward and feedback loops in covert speech production. Brain activity of skilled adult readers was assessed in real word and pseudoword reading tasks with functional MRI (fMRI). The authors provide evidence for activity coherence in the feedforward system (inferior frontal gyrus-supplementary motor area) during real word reading and in the feedback system (supramarginal gyrus-precentral gyrus) during pseudoword reading. Graphical models provided evidence of an extensive, highly connected, neural network when individuals read real words that relied on coordination of the feedforward system. In contrast, when individuals read pseudowords the authors found a limited/restricted network that relied on coordination of the feedback system. Together, these results underscore the importance of considering multiple pathways and articulatory loops during language tasks and provide evidence for a print-to-speech neural network. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Exploiting Data Missingness in Bayesian Network Modeling

    NASA Astrophysics Data System (ADS)

    Rodrigues de Morais, Sérgio; Aussem, Alex

    This paper proposes a framework built on the use of Bayesian networks (BN) for representing statistical dependencies between the existing random variables and additional dummy boolean variables, which represent the presence/absence of the respective random variable value. We show how augmenting the BN with these additional variables helps pinpoint the mechanism through which missing data contributes to the classification task. The missing data mechanism is thus explicitly taken into account to predict the class variable using the data at hand. Extensive experiments on synthetic and real-world incomplete data sets reveals that the missingness information improves classification accuracy.

  18. Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks

    PubMed Central

    Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui

    2017-01-01

    The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways. PMID:29049295

  19. Hierarchical graphical-based human pose estimation via local multi-resolution convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhu, Aichun; Wang, Tian; Snoussi, Hichem

    2018-03-01

    This paper addresses the problems of the graphical-based human pose estimation in still images, including the diversity of appearances and confounding background clutter. We present a new architecture for estimating human pose using a Convolutional Neural Network (CNN). Firstly, a Relative Mixture Deformable Model (RMDM) is defined by each pair of connected parts to compute the relative spatial information in the graphical model. Secondly, a Local Multi-Resolution Convolutional Neural Network (LMR-CNN) is proposed to train and learn the multi-scale representation of each body parts by combining different levels of part context. Thirdly, a LMR-CNN based hierarchical model is defined to explore the context information of limb parts. Finally, the experimental results demonstrate the effectiveness of the proposed deep learning approach for human pose estimation.

  20. Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models

    USGS Publications Warehouse

    Plant, Nathaniel G.; Holland, K. Todd

    2011-01-01

    A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.

  1. Inference of Gene Regulatory Networks Using Bayesian Nonparametric Regression and Topology Information.

    PubMed

    Fan, Yue; Wang, Xiao; Peng, Qinke

    2017-01-01

    Gene regulatory networks (GRNs) play an important role in cellular systems and are important for understanding biological processes. Many algorithms have been developed to infer the GRNs. However, most algorithms only pay attention to the gene expression data but do not consider the topology information in their inference process, while incorporating this information can partially compensate for the lack of reliable expression data. Here we develop a Bayesian group lasso with spike and slab priors to perform gene selection and estimation for nonparametric models. B-spline basis functions are used to capture the nonlinear relationships flexibly and penalties are used to avoid overfitting. Further, we incorporate the topology information into the Bayesian method as a prior. We present the application of our method on DREAM3 and DREAM4 datasets and two real biological datasets. The results show that our method performs better than existing methods and the topology information prior can improve the result.

  2. Forensic Signature Detection of Yersinia Pestis Culturing Practices Across Institutions Using a Bayesian Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb-Robertson, Bobbie-Jo M.; Corley, Courtney D.; McCue, Lee Ann

    The field of bioforensics is focused on the analysis of evidence from a biocrime. Existing laboratory analyses can identify the specific strain of an organism in the evidence, as well signatures of the specific culture batch of organisms, such as low-frequency contaminants or indicators of growth and processing methods. To link these disparate types of physical data to potential suspects, investigators may need to identify institutions or individuals whose access to strains and culturing practices match those identified from the evidence. In this work we present a Bayesian statistical network to fuse different types of analytical measurements that predict themore » production environment of a Yersinia pestis sample under investigation with automated test processing of scientific publications to identify institutions with a history of growing Y. pestis under similar conditions. Furthermore, the textual and experimental signatures were evaluated recursively to determine the overall sensitivity of the network across all levels of false positives. We illustrate that institutions associated with several specific culturing practices can be accurately selected based on the experimental signature from only a few analytical measurements. These findings demonstrate that similar Bayesian networks can be generated generically for many organisms of interest and their deployment is not prohibitive due to either computational or experimental factors.« less

  3. Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Zhu, Shijia; Wang, Yadong

    2015-12-01

    Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is ‘stationarity’, and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings.

  4. Quantum-Like Bayesian Networks for Modeling Decision Making

    PubMed Central

    Moreira, Catarina; Wichert, Andreas

    2016-01-01

    In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios. PMID:26858669

  5. Effect of Bayesian Student Modeling on Academic Achievement in Foreign Language Teaching (University Level English Preparatory School Example)

    ERIC Educational Resources Information Center

    Aslan, Burak Galip; Öztürk, Özlem; Inceoglu, Mustafa Murat

    2014-01-01

    Considering the increasing importance of adaptive approaches in CALL systems, this study implemented a machine learning based student modeling middleware with Bayesian networks. The profiling approach of the student modeling system is based on Felder and Silverman's Learning Styles Model and Felder and Soloman's Index of Learning Styles…

  6. Quantifying structural uncertainty on fault networks using a marked point process within a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Aydin, Orhun; Caers, Jef Karel

    2017-08-01

    Faults are one of the building-blocks for subsurface modeling studies. Incomplete observations of subsurface fault networks lead to uncertainty pertaining to location, geometry and existence of faults. In practice, gaps in incomplete fault network observations are filled based on tectonic knowledge and interpreter's intuition pertaining to fault relationships. Modeling fault network uncertainty with realistic models that represent tectonic knowledge is still a challenge. Although methods that address specific sources of fault network uncertainty and complexities of fault modeling exists, a unifying framework is still lacking. In this paper, we propose a rigorous approach to quantify fault network uncertainty. Fault pattern and intensity information are expressed by means of a marked point process, marked Strauss point process. Fault network information is constrained to fault surface observations (complete or partial) within a Bayesian framework. A structural prior model is defined to quantitatively express fault patterns, geometries and relationships within the Bayesian framework. Structural relationships between faults, in particular fault abutting relations, are represented with a level-set based approach. A Markov Chain Monte Carlo sampler is used to sample posterior fault network realizations that reflect tectonic knowledge and honor fault observations. We apply the methodology to a field study from Nankai Trough & Kumano Basin. The target for uncertainty quantification is a deep site with attenuated seismic data with only partially visible faults and many faults missing from the survey or interpretation. A structural prior model is built from shallow analog sites that are believed to have undergone similar tectonics compared to the site of study. Fault network uncertainty for the field is quantified with fault network realizations that are conditioned to structural rules, tectonic information and partially observed fault surfaces. We show the proposed methodology generates realistic fault network models conditioned to data and a conceptual model of the underlying tectonics.

  7. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.

    PubMed

    Excoffier, Laurent; Lischer, Heidi E L

    2010-05-01

    We present here a new version of the Arlequin program available under three different forms: a Windows graphical version (Winarl35), a console version of Arlequin (arlecore), and a specific console version to compute summary statistics (arlsumstat). The command-line versions run under both Linux and Windows. The main innovations of the new version include enhanced outputs in XML format, the possibility to embed graphics displaying computation results directly into output files, and the implementation of a new method to detect loci under selection from genome scans. Command-line versions are designed to handle large series of files, and arlsumstat can be used to generate summary statistics from simulated data sets within an Approximate Bayesian Computation framework. © 2010 Blackwell Publishing Ltd.

  8. Performance evaluation of NASA/KSC CAD/CAE graphics local area network

    NASA Technical Reports Server (NTRS)

    Zobrist, George

    1988-01-01

    This study had as an objective the performance evaluation of the existing CAD/CAE graphics network at NASA/KSC. This evaluation will also aid in projecting planned expansions, such as the Space Station project on the existing CAD/CAE network. The objectives were achieved by collecting packet traffic on the various integrated sub-networks. This included items, such as total number of packets on the various subnetworks, source/destination of packets, percent utilization of network capacity, peak traffic rates, and packet size distribution. The NASA/KSC LAN was stressed to determine the useable bandwidth of the Ethernet network and an average design station workload was used to project the increased traffic on the existing network and the planned T1 link. This performance evaluation of the network will aid the NASA/KSC network managers in planning for the integration of future workload requirements into the existing network.

  9. Statistical modelling of networked human-automation performance using working memory capacity.

    PubMed

    Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja

    2014-01-01

    This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.

  10. Bayesian network analysis revealed the connectivity difference of the default mode network from the resting-state to task-state

    PubMed Central

    Wu, Xia; Yu, Xinyu; Yao, Li; Li, Rui

    2014-01-01

    Functional magnetic resonance imaging (fMRI) studies have converged to reveal the default mode network (DMN), a constellation of regions that display co-activation during resting-state but co-deactivation during attention-demanding tasks in the brain. Here, we employed a Bayesian network (BN) analysis method to construct a directed effective connectivity model of the DMN and compared the organizational architecture and interregional directed connections under both resting-state and task-state. The analysis results indicated that the DMN was consistently organized into two closely interacting subsystems in both resting-state and task-state. The directed connections between DMN regions, however, changed significantly from the resting-state to task-state condition. The results suggest that the DMN intrinsically maintains a relatively stable structure whether at rest or performing tasks but has different information processing mechanisms under varied states. PMID:25309414

  11. Discovering complex interrelationships between socioeconomic status and health in Europe: A case study applying Bayesian Networks.

    PubMed

    Alvarez-Galvez, Javier

    2016-03-01

    Studies assume that socioeconomic status determines individuals' states of health, but how does health determine socioeconomic status? And how does this association vary depending on contextual differences? To answer this question, our study uses an additive Bayesian Networks model to explain the interrelationships between health and socioeconomic determinants using complex and messy data. This model has been used to find the most probable structure in a network to describe the interdependence of these factors in five European welfare state regimes. The advantage of this study is that it offers a specific picture to describe the complex interrelationship between socioeconomic determinants and health, producing a network that is controlled by socio-demographic factors such as gender and age. The present work provides a general framework to describe and understand the complex association between socioeconomic determinants and health. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Network and user interface for PAT DOME virtual motion environment system

    NASA Technical Reports Server (NTRS)

    Worthington, J. W.; Duncan, K. M.; Crosier, W. G.

    1993-01-01

    The Device for Orientation and Motion Environments Preflight Adaptation Trainer (DOME PAT) provides astronauts a virtual microgravity sensory environment designed to help alleviate tye symptoms of space motion sickness (SMS). The system consists of four microcomputers networked to provide real time control, and an image generator (IG) driving a wide angle video display inside a dome structure. The spherical display demands distortion correction. The system is currently being modified with a new graphical user interface (GUI) and a new Silicon Graphics IG. This paper will concentrate on the new GUI and the networking scheme. The new GUI eliminates proprietary graphics hardware and software, and instead makes use of standard and low cost PC video (CGA) and off the shelf software (Microsoft's Quick C). Mouse selection for user input is supported. The new Silicon Graphics IG requires an Ethernet interface. The microcomputer known as the Real Time Controller (RTC), which has overall control of the system and is written in Ada, was modified to use the free public domain NCSA Telnet software for Ethernet communications with the Silicon Graphics IG. The RTC also maintains the original ARCNET communications through Novell Netware IPX with the rest of the system. The Telnet TCP/IP protocol was first used for real-time communication, but because of buffering problems the Telnet datagram (UDP) protocol needed to be implemented. Since the Telnet modules are written in C, the Adap pragma 'Interface' was used to interface with the network calls.

  13. GUIdock-VNC: using a graphical desktop sharing system to provide a browser-based interface for containerized software

    PubMed Central

    Mittal, Varun; Hung, Ling-Hong; Keswani, Jayant; Kristiyanto, Daniel; Lee, Sung Bong

    2017-01-01

    Abstract Background: Software container technology such as Docker can be used to package and distribute bioinformatics workflows consisting of multiple software implementations and dependencies. However, Docker is a command line–based tool, and many bioinformatics pipelines consist of components that require a graphical user interface. Results: We present a container tool called GUIdock-VNC that uses a graphical desktop sharing system to provide a browser-based interface for containerized software. GUIdock-VNC uses the Virtual Network Computing protocol to render the graphics within most commonly used browsers. We also present a minimal image builder that can add our proposed graphical desktop sharing system to any Docker packages, with the end result that any Docker packages can be run using a graphical desktop within a browser. In addition, GUIdock-VNC uses the Oauth2 authentication protocols when deployed on the cloud. Conclusions: As a proof-of-concept, we demonstrated the utility of GUIdock-noVNC in gene network inference. We benchmarked our container implementation on various operating systems and showed that our solution creates minimal overhead. PMID:28327936

  14. GUIdock-VNC: using a graphical desktop sharing system to provide a browser-based interface for containerized software.

    PubMed

    Mittal, Varun; Hung, Ling-Hong; Keswani, Jayant; Kristiyanto, Daniel; Lee, Sung Bong; Yeung, Ka Yee

    2017-04-01

    Software container technology such as Docker can be used to package and distribute bioinformatics workflows consisting of multiple software implementations and dependencies. However, Docker is a command line-based tool, and many bioinformatics pipelines consist of components that require a graphical user interface. We present a container tool called GUIdock-VNC that uses a graphical desktop sharing system to provide a browser-based interface for containerized software. GUIdock-VNC uses the Virtual Network Computing protocol to render the graphics within most commonly used browsers. We also present a minimal image builder that can add our proposed graphical desktop sharing system to any Docker packages, with the end result that any Docker packages can be run using a graphical desktop within a browser. In addition, GUIdock-VNC uses the Oauth2 authentication protocols when deployed on the cloud. As a proof-of-concept, we demonstrated the utility of GUIdock-noVNC in gene network inference. We benchmarked our container implementation on various operating systems and showed that our solution creates minimal overhead. © The Authors 2017. Published by Oxford University Press.

  15. Multivariable and Bayesian Network Analysis of Outcome Predictors in Acute Aneurysmal Subarachnoid Hemorrhage: Review of a Pure Surgical Series in the Post-International Subarachnoid Aneurysm Trial Era.

    PubMed

    Zador, Zsolt; Huang, Wendy; Sperrin, Matthew; Lawton, Michael T

    2018-06-01

    Following the International Subarachnoid Aneurysm Trial (ISAT), evolving treatment modalities for acute aneurysmal subarachnoid hemorrhage (aSAH) has changed the case mix of patients undergoing urgent surgical clipping. To update our knowledge on outcome predictors by analyzing admission parameters in a pure surgical series using variable importance ranking and machine learning. We reviewed a single surgeon's case series of 226 patients suffering from aSAH treated with urgent surgical clipping. Predictions were made using logistic regression models, and predictive performance was assessed using areas under the receiver operating curve (AUC). We established variable importance ranking using partial Nagelkerke R2 scores. Probabilistic associations between variables were depicted using Bayesian networks, a method of machine learning. Importance ranking showed that World Federation of Neurosurgical Societies (WFNS) grade and age were the most influential outcome prognosticators. Inclusion of only these 2 predictors was sufficient to maintain model performance compared to when all variables were considered (AUC = 0.8222, 95% confidence interval (CI): 0.7646-0.88 vs 0.8218, 95% CI: 0.7616-0.8821, respectively, DeLong's P = .992). Bayesian networks showed that age and WFNS grade were associated with several variables such as laboratory results and cardiorespiratory parameters. Our study is the first to report early outcomes and formal predictor importance ranking following aSAH in a post-ISAT surgical case series. Models showed good predictive power with fewer relevant predictors than in similar size series. Bayesian networks proved to be a powerful tool in visualizing the widespread association of the 2 key predictors with admission variables, explaining their importance and demonstrating the potential for hypothesis generation.

  16. A program for the Bayesian Neural Network in the ROOT framework

    NASA Astrophysics Data System (ADS)

    Zhong, Jiahang; Huang, Run-Sheng; Lee, Shih-Chang

    2011-12-01

    We present a Bayesian Neural Network algorithm implemented in the TMVA package (Hoecker et al., 2007 [1]), within the ROOT framework (Brun and Rademakers, 1997 [2]). Comparing to the conventional utilization of Neural Network as discriminator, this new implementation has more advantages as a non-parametric regression tool, particularly for fitting probabilities. It provides functionalities including cost function selection, complexity control and uncertainty estimation. An example of such application in High Energy Physics is shown. The algorithm is available with ROOT release later than 5.29. Program summaryProgram title: TMVA-BNN Catalogue identifier: AEJX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: BSD license No. of lines in distributed program, including test data, etc.: 5094 No. of bytes in distributed program, including test data, etc.: 1,320,987 Distribution format: tar.gz Programming language: C++ Computer: Any computer system or cluster with C++ compiler and UNIX-like operating system Operating system: Most UNIX/Linux systems. The application programs were thoroughly tested under Fedora and Scientific Linux CERN. Classification: 11.9 External routines: ROOT package version 5.29 or higher ( http://root.cern.ch) Nature of problem: Non-parametric fitting of multivariate distributions Solution method: An implementation of Neural Network following the Bayesian statistical interpretation. Uses Laplace approximation for the Bayesian marginalizations. Provides the functionalities of automatic complexity control and uncertainty estimation. Running time: Time consumption for the training depends substantially on the size of input sample, the NN topology, the number of training iterations, etc. For the example in this manuscript, about 7 min was used on a PC/Linux with 2.0 GHz processors.

  17. A comprehensive map of the mTOR signaling network

    PubMed Central

    Caron, Etienne; Ghosh, Samik; Matsuoka, Yukiko; Ashton-Beaucage, Dariel; Therrien, Marc; Lemieux, Sébastien; Perreault, Claude; Roux, Philippe P; Kitano, Hiroaki

    2010-01-01

    The mammalian target of rapamycin (mTOR) is a central regulator of cell growth and proliferation. mTOR signaling is frequently dysregulated in oncogenic cells, and thus an attractive target for anticancer therapy. Using CellDesigner, a modeling support software for graphical notation, we present herein a comprehensive map of the mTOR signaling network, which includes 964 species connected by 777 reactions. The map complies with both the systems biology markup language (SBML) and graphical notation (SBGN) for computational analysis and graphical representation, respectively. As captured in the mTOR map, we review and discuss our current understanding of the mTOR signaling network and highlight the impact of mTOR feedback and crosstalk regulations on drug-based cancer therapy. This map is available on the Payao platform, a Web 2.0 based community-wide interactive process for creating more accurate and information-rich databases. Thus, this comprehensive map of the mTOR network will serve as a tool to facilitate systems-level study of up-to-date mTOR network components and signaling events toward the discovery of novel regulatory processes and therapeutic strategies for cancer. PMID:21179025

  18. Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model

    PubMed Central

    Baskerville, Edward B.; Dobson, Andy P.; Bedford, Trevor; Allesina, Stefano; Anderson, T. Michael; Pascual, Mercedes

    2011-01-01

    Food webs, networks of feeding relationships in an ecosystem, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. A standard approach in food-web analysis, and network analysis in general, has been to identify compartments, or modules, defined by many links within compartments and few links between them. This approach can identify large habitat boundaries in the network but may fail to identify other important structures. Empirical analyses of food webs have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure using a flexible definition that can describe both functional trophic roles and standard compartments. We apply this method to a newly compiled plant-mammal food web from the Serengeti ecosystem that includes high taxonomic resolution at the plant level, allowing a simultaneous examination of the signature of both habitat and trophic roles in network structure. We find that groups at the plant level reflect habitat structure, coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial pattern, in contrast to the standard compartments typically identified. The network topology supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence. Furthermore, our Bayesian approach provides a powerful, flexible framework for the study of network structure, and we believe it will prove instrumental in a variety of biological contexts. PMID:22219719

  19. Recursive Bayesian recurrent neural networks for time-series modeling.

    PubMed

    Mirikitani, Derrick T; Nikolaev, Nikolay

    2010-02-01

    This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.

  20. Incorporating uncertainty into medical decision making: an approach to unexpected test results.

    PubMed

    Bianchi, Matt T; Alexander, Brian M; Cash, Sydney S

    2009-01-01

    The utility of diagnostic tests derives from the ability to translate the population concepts of sensitivity and specificity into information that will be useful for the individual patient: the predictive value of the result. As the array of available diagnostic testing broadens, there is a temptation to de-emphasize history and physical findings and defer to the objective rigor of technology. However, diagnostic test interpretation is not always straightforward. One significant barrier to routine use of probability-based test interpretation is the uncertainty inherent in pretest probability estimation, the critical first step of Bayesian reasoning. The context in which this uncertainty presents the greatest challenge is when test results oppose clinical judgment. It is this situation when decision support would be most helpful. The authors propose a simple graphical approach that incorporates uncertainty in pretest probability and has specific application to the interpretation of unexpected results. This method quantitatively demonstrates how uncertainty in disease probability may be amplified when test results are unexpected (opposing clinical judgment), even for tests with high sensitivity and specificity. The authors provide a simple nomogram for determining whether an unexpected test result suggests that one should "switch diagnostic sides.'' This graphical framework overcomes the limitation of pretest probability uncertainty in Bayesian analysis and guides decision making when it is most challenging: interpretation of unexpected test results.

  1. Virtual Representation of IID Observations in Bayesian Belief Networks

    DTIC Science & Technology

    1994-04-01

    programs for structuring and using Bayesian inference include ERGO ( Noetic Systems, Inc., 1991) and HUGIN (Andersen, Jensen, Olesen, & Jensen, 1989...Nichols, S.. Chipman, & R. Brennan (Eds.), Cognitively diagnostic assessment. Hillsdale, NJ: Erlbaum. Noetic Systems, Inc. (1991). ERGO [computer...Dr Geore Eageiard Jr Chicago IL 60612 US Naval Academy Division of Educational Studies Annapolis MD 21402-5002 Emory University Dr Janice Gifford 210

  2. Predicting Football Matches Results using Bayesian Networks for English Premier League (EPL)

    NASA Astrophysics Data System (ADS)

    Razali, Nazim; Mustapha, Aida; Yatim, Faiz Ahmad; Aziz, Ruhaya Ab

    2017-08-01

    The issues of modeling asscoiation football prediction model has become increasingly popular in the last few years and many different approaches of prediction models have been proposed with the point of evaluating the attributes that lead a football team to lose, draw or win the match. There are three types of approaches has been considered for predicting football matches results which include statistical approaches, machine learning approaches and Bayesian approaches. Lately, many studies regarding football prediction models has been produced using Bayesian approaches. This paper proposes a Bayesian Networks (BNs) to predict the results of football matches in term of home win (H), away win (A) and draw (D). The English Premier League (EPL) for three seasons of 2010-2011, 2011-2012 and 2012-2013 has been selected and reviewed. K-fold cross validation has been used for testing the accuracy of prediction model. The required information about the football data is sourced from a legitimate site at http://www.football-data.co.uk. BNs achieved predictive accuracy of 75.09% in average across three seasons. It is hoped that the results could be used as the benchmark output for future research in predicting football matches results.

  3. Structured, Graphical Analysis of C2 Teams and their Technologies

    DTIC Science & Technology

    2011-01-01

    Two Fratricide Cases Revisited. Paper presented at the 15th International Command and Control Reserach and Technology Symposium (ICCRTS), June 22-24...network-enabled ADF. The paper is thus organized in three sections. The first section introduces the graphics for analyzing the formation and use...summarize, Colored Petri Nets center on networks in which tokens are created, moved, copied, or destroyed (Figure 1). An ellipse denotes a space for

  4. Bayesian estimation of the discrete coefficient of determination.

    PubMed

    Chen, Ting; Braga-Neto, Ulisses M

    2016-12-01

    The discrete coefficient of determination (CoD) measures the nonlinear interaction between discrete predictor and target variables and has had far-reaching applications in Genomic Signal Processing. Previous work has addressed the inference of the discrete CoD using classical parametric and nonparametric approaches. In this paper, we introduce a Bayesian framework for the inference of the discrete CoD. We derive analytically the optimal minimum mean-square error (MMSE) CoD estimator, as well as a CoD estimator based on the Optimal Bayesian Predictor (OBP). For the latter estimator, exact expressions for its bias, variance, and root-mean-square (RMS) are given. The accuracy of both Bayesian CoD estimators with non-informative and informative priors, under fixed or random parameters, is studied via analytical and numerical approaches. We also demonstrate the application of the proposed Bayesian approach in the inference of gene regulatory networks, using gene-expression data from a previously published study on metastatic melanoma.

  5. Bayesian Networks in Educational Assessment

    PubMed Central

    Culbertson, Michael J.

    2015-01-01

    Bayesian networks (BN) provide a convenient and intuitive framework for specifying complex joint probability distributions and are thus well suited for modeling content domains of educational assessments at a diagnostic level. BN have been used extensively in the artificial intelligence community as student models for intelligent tutoring systems (ITS) but have received less attention among psychometricians. This critical review outlines the existing research on BN in educational assessment, providing an introduction to the ITS literature for the psychometric community, and points out several promising research paths. The online appendix lists 40 assessment systems that serve as empirical examples of the use of BN for educational assessment in a variety of domains. PMID:29881033

  6. Application of Bayesian Networks to hindcast barrier island morphodynamics

    USGS Publications Warehouse

    Wilson, Kathleen E.; Adams, Peter N.; Hapke, Cheryl J.; Lentz, Erika E.; Brenner, Owen T.

    2015-01-01

    We refine a preliminary Bayesian Network by 1) increasing model experience through additional observations, 2) including anthropogenic modification history, and 3) replacing parameterized wave impact values with maximum run-up elevation. Further, we develop and train a pair of generalized models with an additional dataset encompassing a different storm event, which expands the observations beyond our hindcast objective. We compare the skill of the generalized models against the Nor'Ida specific model formulation, balancing the reduced skill with an expectation of increased transferability. Results of Nor'Ida hindcasts ranged in skill from 0.37 to 0.51 and accuracy of 65.0 to 81.9%.

  7. Nuclear charge radii: density functional theory meets Bayesian neural networks

    NASA Astrophysics Data System (ADS)

    Utama, R.; Chen, Wei-Chia; Piekarewicz, J.

    2016-11-01

    The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. The aim of this study is to explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain.

  8. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification

    PubMed Central

    Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang

    2016-01-01

    Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975

  9. Potential uses of Bayesian networks as tools for synthesis of systematic reviews of complex interventions.

    PubMed

    Stewart, G B; Mengersen, K; Meader, N

    2014-03-01

    Bayesian networks (BNs) are tools for representing expert knowledge or evidence. They are especially useful for synthesising evidence or belief concerning a complex intervention, assessing the sensitivity of outcomes to different situations or contextual frameworks and framing decision problems that involve alternative types of intervention. Bayesian networks are useful extensions to logic maps when initiating a review or to facilitate synthesis and bridge the gap between evidence acquisition and decision-making. Formal elicitation techniques allow development of BNs on the basis of expert opinion. Such applications are useful alternatives to 'empty' reviews, which identify knowledge gaps but fail to support decision-making. Where review evidence exists, it can inform the development of a BN. We illustrate the construction of a BN using a motivating example that demonstrates how BNs can ensure coherence, transparently structure the problem addressed by a complex intervention and assess sensitivity to context, all of which are critical components of robust reviews of complex interventions. We suggest that BNs should be utilised to routinely synthesise reviews of complex interventions or empty reviews where decisions must be made despite poor evidence. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Reliability modelling and analysis of a multi-state element based on a dynamic Bayesian network

    NASA Astrophysics Data System (ADS)

    Li, Zhiqiang; Xu, Tingxue; Gu, Junyuan; Dong, Qi; Fu, Linyu

    2018-04-01

    This paper presents a quantitative reliability modelling and analysis method for multi-state elements based on a combination of the Markov process and a dynamic Bayesian network (DBN), taking perfect repair, imperfect repair and condition-based maintenance (CBM) into consideration. The Markov models of elements without repair and under CBM are established, and an absorbing set is introduced to determine the reliability of the repairable element. According to the state-transition relations between the states determined by the Markov process, a DBN model is built. In addition, its parameters for series and parallel systems, namely, conditional probability tables, can be calculated by referring to the conditional degradation probabilities. Finally, the power of a control unit in a failure model is used as an example. A dynamic fault tree (DFT) is translated into a Bayesian network model, and subsequently extended to a DBN. The results show the state probabilities of an element and the system without repair, with perfect and imperfect repair, and under CBM, with an absorbing set plotted by differential equations and verified. Through referring forward, the reliability value of the control unit is determined in different kinds of modes. Finally, weak nodes are noted in the control unit.

  11. Inferring Alcoholism SNPs and Regulatory Chemical Compounds Based on Ensemble Bayesian Network.

    PubMed

    Chen, Huan; Sun, Jiatong; Jiang, Hong; Wang, Xianyue; Wu, Lingxiang; Wu, Wei; Wang, Qh

    2017-01-01

    The disturbance of consciousness is one of the most common symptoms of those have alcoholism and may cause disability and mortality. Previous studies indicated that several single nucleotide polymorphisms (SNP) increase the susceptibility of alcoholism. In this study, we utilized the Ensemble Bayesian Network (EBN) method to identify causal SNPs of alcoholism based on the verified GAW14 data. We built a Bayesian network combining random process and greedy search by using Genetic Analysis Workshop 14 (GAW14) dataset to establish EBN of SNPs. Then we predicted the association between SNPs and alcoholism by determining Bayes' prior probability. Thirteen out of eighteen SNPs directly connected with alcoholism were found concordance with potential risk regions of alcoholism in OMIM database. As many SNPs were found contributing to alteration on gene expression, known as expression quantitative trait loci (eQTLs), we further sought to identify chemical compounds acting as regulators of alcoholism genes captured by causal SNPs. Chloroprene and valproic acid were identified as the expression regulators for genes C11orf66 and SALL3 which were captured by alcoholism SNPs, respectively. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. A methodology to model causal relationships on offshore safety assessment focusing on human and organizational factors.

    PubMed

    Ren, J; Jenkinson, I; Wang, J; Xu, D L; Yang, J B

    2008-01-01

    Focusing on people and organizations, this paper aims to contribute to offshore safety assessment by proposing a methodology to model causal relationships. The methodology is proposed in a general sense that it will be capable of accommodating modeling of multiple risk factors considered in offshore operations and will have the ability to deal with different types of data that may come from different resources. Reason's "Swiss cheese" model is used to form a generic offshore safety assessment framework, and Bayesian Network (BN) is tailored to fit into the framework to construct a causal relationship model. The proposed framework uses a five-level-structure model to address latent failures within the causal sequence of events. The five levels include Root causes level, Trigger events level, Incidents level, Accidents level, and Consequences level. To analyze and model a specified offshore installation safety, a BN model was established following the guideline of the proposed five-level framework. A range of events was specified, and the related prior and conditional probabilities regarding the BN model were assigned based on the inherent characteristics of each event. This paper shows that Reason's "Swiss cheese" model and BN can be jointly used in offshore safety assessment. On the one hand, the five-level conceptual model is enhanced by BNs that are capable of providing graphical demonstration of inter-relationships as well as calculating numerical values of occurrence likelihood for each failure event. Bayesian inference mechanism also makes it possible to monitor how a safety situation changes when information flow travel forwards and backwards within the networks. On the other hand, BN modeling relies heavily on experts' personal experiences and is therefore highly domain specific. "Swiss cheese" model is such a theoretic framework that it is based on solid behavioral theory and therefore can be used to provide industry with a roadmap for BN modeling and implications. A case study of the collision risk between a Floating Production, Storage and Offloading (FPSO) unit and authorized vessels caused by human and organizational factors (HOFs) during operations is used to illustrate an industrial application of the proposed methodology.

  13. A tree-like Bayesian structure learning algorithm for small-sample datasets from complex biological model systems.

    PubMed

    Yin, Weiwei; Garimalla, Swetha; Moreno, Alberto; Galinski, Mary R; Styczynski, Mark P

    2015-08-28

    There are increasing efforts to bring high-throughput systems biology techniques to bear on complex animal model systems, often with a goal of learning about underlying regulatory network structures (e.g., gene regulatory networks). However, complex animal model systems typically have significant limitations on cohort sizes, number of samples, and the ability to perform follow-up and validation experiments. These constraints are particularly problematic for many current network learning approaches, which require large numbers of samples and may predict many more regulatory relationships than actually exist. Here, we test the idea that by leveraging the accuracy and efficiency of classifiers, we can construct high-quality networks that capture important interactions between variables in datasets with few samples. We start from a previously-developed tree-like Bayesian classifier and generalize its network learning approach to allow for arbitrary depth and complexity of tree-like networks. Using four diverse sample networks, we demonstrate that this approach performs consistently better at low sample sizes than the Sparse Candidate Algorithm, a representative approach for comparison because it is known to generate Bayesian networks with high positive predictive value. We develop and demonstrate a resampling-based approach to enable the identification of a viable root for the learned tree-like network, important for cases where the root of a network is not known a priori. We also develop and demonstrate an integrated resampling-based approach to the reduction of variable space for the learning of the network. Finally, we demonstrate the utility of this approach via the analysis of a transcriptional dataset of a malaria challenge in a non-human primate model system, Macaca mulatta, suggesting the potential to capture indicators of the earliest stages of cellular differentiation during leukopoiesis. We demonstrate that by starting from effective and efficient approaches for creating classifiers, we can identify interesting tree-like network structures with significant ability to capture the relationships in the training data. This approach represents a promising strategy for inferring networks with high positive predictive value under the constraint of small numbers of samples, meeting a need that will only continue to grow as more high-throughput studies are applied to complex model systems.

  14. Potential Use of a Bayesian Network for Discriminating Flash Type from Future GOES-R Geostationary Lightning Mapper (GLM) data

    NASA Technical Reports Server (NTRS)

    Solakiewiz, Richard; Koshak, William

    2008-01-01

    Continuous monitoring of the ratio of cloud flashes to ground flashes may provide a better understanding of thunderstorm dynamics, intensification, and evolution, and it may be useful in severe weather warning. The National Lighting Detection Network TM (NLDN) senses ground flashes with exceptional detection efficiency and accuracy over most of the continental United States. A proposed Geostationary Lightning Mapper (GLM) aboard the Geostationary Operational Environmental Satellite (GOES-R) will look at the western hemisphere, and among the lightning data products to be made available will be the fundamental optical flash parameters for both cloud and ground flashes: radiance, area, duration, number of optical groups, and number of optical events. Previous studies have demonstrated that the optical flash parameter statistics of ground and cloud lightning, which are observable from space, are significantly different. This study investigates a Bayesian network methodology for discriminating lightning flash type (ground or cloud) using the lightning optical data and ancillary GOES-R data. A Directed Acyclic Graph (DAG) is set up with lightning as a "root" and data observed by GLM as the "leaves." This allows for a direct calculation of the joint probability distribution function for the lighting type and radiance, area, etc. Initially, the conditional probabilities that will be required can be estimated from the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) together with NLDN data. Directly manipulating the joint distribution will yield the conditional probability that a lightning flash is a ground flash given the evidence, which consists of the observed lightning optical data [and possibly cloud data retrieved from the GOES-R Advanced Baseline Imager (ABI) in a more mature Bayesian network configuration]. Later, actual GLM and NLDN data can be used to refine the estimates of the conditional probabilities used in the model; i.e., the Bayesian network is a learning network. Methods for efficient calculation of the conditional probabilities (e.g., an algorithm using junction trees), finding data conflicts, goodness of fit, and dealing with missing data will also be addressed.

  15. Understanding the complex relationships underlying hot flashes: a Bayesian network approach.

    PubMed

    Smith, Rebecca L; Gallicchio, Lisa M; Flaws, Jodi A

    2018-02-01

    The mechanism underlying hot flashes is not well-understood, primarily because of complex relationships between and among hot flashes and their risk factors. We explored those relationships using a Bayesian network approach based on a 2006 to 2015 cohort study of hot flashes among 776 female residents, 45 to 54 years old, in the Baltimore area. Bayesian networks were fit for each outcome (current hot flashes, hot flashes before the end of the study, hot flash severity, hot flash frequency, and age at first hot flashes) separately and together with a list of risk factors (estrogen, progesterone, testosterone, body mass index and obesity, race, income level, education level, smoking history, drinking history, and activity level). Each fitting was conducted separately on all women and only perimenopausal women, at enrollment and 4 years after enrollment. Hormone levels, almost always interrelated, were the most common variable linked to hot flashes; hormone levels were sometimes related to body mass index, but were not directly related to any other risk factors. Smoking was also frequently associated with increased likelihood of severe symptoms, but not through an antiestrogenic pathway. The age at first hot flashes was related only to race. All other factors were either not related to outcomes or were mediated entirely by race, hormone levels, or smoking. These models can serve as a guide for design of studies into the causal network underlying hot flashes.

  16. Which is best for osteoporotic vertebral compression fractures: balloon kyphoplasty, percutaneous vertebroplasty or non-surgical treatment? A study protocol for a Bayesian network meta-analysis

    PubMed Central

    Kan, Shun-Li; Yuan, Zhi-Fang; Chen, Ling-Xiao; Sun, Jing-Cheng; Ning, Guang-Zhi; Feng, Shi-Qing

    2017-01-01

    Introduction Osteoporotic vertebral compression fractures (OVCFs) commonly cause both acute and chronic back pain, substantial spinal deformity, functional disability and decreased quality of life and increase the risk of future vertebral fractures and mortality. Percutaneous vertebroplasty (PVP), balloon kyphoplasty (BK) and non-surgical treatment (NST) are mostly used for the treatment of OVCFs. However, which treatment is preferred is unknown. The purpose of this study is to comprehensively review the literature and ascertain the relative efficacy and safety of BK, PVP and NST for patients with OVCFs using a Bayesian network meta-analysis. Methods and analysis We will comprehensively search PubMed, EMBASE and the Cochrane Central Register of Controlled Trials, to include randomided controlled trials that compare BK, PVP or NST for treating OVCFs. The risk of bias for individual studies will be assessed according to the Cochrane Handbook. Bayesian network meta-analysis will be performed to compare the efficacy and safety of BK, PVP and NST. The quality of evidence will be evaluated by GRADE. Ethics and dissemination Ethical approval and patient consent are not required since this study is a meta-analysis based on published studies. The results of this network meta-analysis will be submitted to a peer-reviewed journal for publication. PROSPERO registration number CRD42016039452; Pre-results. PMID:28093431

  17. Selecting Strategies to Reduce High-Risk Unsafe Work Behaviors Using the Safety Behavior Sampling Technique and Bayesian Network Analysis.

    PubMed

    Ghasemi, Fakhradin; Kalatpour, Omid; Moghimbeigi, Abbas; Mohammadfam, Iraj

    2017-03-04

    High-risk unsafe behaviors (HRUBs) have been known as the main cause of occupational accidents. Considering the financial and societal costs of accidents and the limitations of available resources, there is an urgent need for managing unsafe behaviors at workplaces. The aim of the present study was to find strategies for decreasing the rate of HRUBs using an integrated approach of safety behavior sampling technique and Bayesian networks analysis. A cross-sectional study. The Bayesian network was constructed using a focus group approach. The required data was collected using the safety behavior sampling, and the parameters of the network were estimated using Expectation-Maximization algorithm. Using sensitivity analysis and belief updating, it was determined that which factors had the highest influences on unsafe behavior. Based on BN analyses, safety training was the most important factor influencing employees' behavior at the workplace. High quality safety training courses can reduce the rate of HRUBs about 10%. Moreover, the rate of HRUBs increased by decreasing the age of employees. The rate of HRUBs was higher in the afternoon and last days of a week. Among the investigated variables, training was the most important factor affecting safety behavior of employees. By holding high quality safety training courses, companies would be able to reduce the rate of HRUBs significantly.

  18. An R package for state-trace analysis.

    PubMed

    Prince, Melissa; Hawkins, Guy; Love, Jonathon; Heathcote, Andrew

    2012-09-01

    State-trace analysis (Bamber, Journal of Mathematical Psychology, 19, 137-181, 1979) is a graphical analysis that can determine whether one or more than one latent variable mediates an apparent dissociation between the effects of two experimental manipulations. State-trace analysis makes only ordinal assumptions and so, is not confounded by range effects that plague alternative methods, especially when performance is measured on a bounded scale (such as accuracy). We describe and illustrate the application of a freely available GUI driven package, StateTrace, for the R language. StateTrace automates many aspects of a state-trace analysis of accuracy and other binary response data, including customizable graphics and the efficient management of computationally intensive Bayesian methods for quantifying evidence about the outcomes of a state-trace experiment, developed by Prince, Brown, and Heathcote (Psychological Methods, 17, 78-99, 2012).

  19. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.

    1991-01-01

    Artificial intelligence concepts are applied to robotics. Artificial neural networks, expert systems and laser imaging techniques for autonomous space robots are being studied. A computer graphics laser range finder simulator developed by Wu has been used by Weiland and Norwood to study use of artificial neural networks for path planning and obstacle avoidance. Interest is expressed in applications of CLIPS, NETS, and Fuzzy Control. These applications are applied to robot navigation.

  20. Individual and population pharmacokinetic compartment analysis: a graphic procedure for quantification of predictive performance.

    PubMed

    Eksborg, Staffan

    2013-01-01

    Pharmacokinetic studies are important for optimizing of drug dosing, but requires proper validation of the used pharmacokinetic procedures. However, simple and reliable statistical methods suitable for evaluation of the predictive performance of pharmacokinetic analysis are essentially lacking. The aim of the present study was to construct and evaluate a graphic procedure for quantification of predictive performance of individual and population pharmacokinetic compartment analysis. Original data from previously published pharmacokinetic compartment analyses after intravenous, oral, and epidural administration, and digitized data, obtained from published scatter plots of observed vs predicted drug concentrations from population pharmacokinetic studies using the NPEM algorithm and NONMEM computer program and Bayesian forecasting procedures, were used for estimating the predictive performance according to the proposed graphical method and by the method of Sheiner and Beal. The graphical plot proposed in the present paper proved to be a useful tool for evaluation of predictive performance of both individual and population compartment pharmacokinetic analysis. The proposed method is simple to use and gives valuable information concerning time- and concentration-dependent inaccuracies that might occur in individual and population pharmacokinetic compartment analysis. Predictive performance can be quantified by the fraction of concentration ratios within arbitrarily specified ranges, e.g. within the range 0.8-1.2.

  1. The Importance of Proving the Null

    PubMed Central

    Gallistel, C. R.

    2010-01-01

    Null hypotheses are simple, precise, and theoretically important. Conventional statistical analysis cannot support them; Bayesian analysis can. The challenge in a Bayesian analysis is to formulate a suitably vague alternative, because the vaguer the alternative is (the more it spreads out the unit mass of prior probability), the more the null is favored. A general solution is a sensitivity analysis: Compute the odds for or against the null as a function of the limit(s) on the vagueness of the alternative. If the odds on the null approach 1 from above as the hypothesized maximum size of the possible effect approaches 0, then the data favor the null over any vaguer alternative to it. The simple computations and the intuitive graphic representation of the analysis are illustrated by the analysis of diverse examples from the current literature. They pose 3 common experimental questions: (a) Are 2 means the same? (b) Is performance at chance? (c) Are factors additive? PMID:19348549

  2. pytc: Open-Source Python Software for Global Analyses of Isothermal Titration Calorimetry Data.

    PubMed

    Duvvuri, Hiranmayi; Wheeler, Lucas C; Harms, Michael J

    2018-05-08

    Here we describe pytc, an open-source Python package for global fits of thermodynamic models to multiple isothermal titration calorimetry experiments. Key features include simplicity, the ability to implement new thermodynamic models, a robust maximum likelihood fitter, a fast Bayesian Markov-Chain Monte Carlo sampler, rigorous implementation, extensive documentation, and full cross-platform compatibility. pytc fitting can be done using an application program interface or via a graphical user interface. It is available for download at https://github.com/harmslab/pytc .

  3. Back to BaySICS: a user-friendly program for Bayesian Statistical Inference from Coalescent Simulations.

    PubMed

    Sandoval-Castellanos, Edson; Palkopoulou, Eleftheria; Dalén, Love

    2014-01-01

    Inference of population demographic history has vastly improved in recent years due to a number of technological and theoretical advances including the use of ancient DNA. Approximate Bayesian computation (ABC) stands among the most promising methods due to its simple theoretical fundament and exceptional flexibility. However, limited availability of user-friendly programs that perform ABC analysis renders it difficult to implement, and hence programming skills are frequently required. In addition, there is limited availability of programs able to deal with heterochronous data. Here we present the software BaySICS: Bayesian Statistical Inference of Coalescent Simulations. BaySICS provides an integrated and user-friendly platform that performs ABC analyses by means of coalescent simulations from DNA sequence data. It estimates historical demographic population parameters and performs hypothesis testing by means of Bayes factors obtained from model comparisons. Although providing specific features that improve inference from datasets with heterochronous data, BaySICS also has several capabilities making it a suitable tool for analysing contemporary genetic datasets. Those capabilities include joint analysis of independent tables, a graphical interface and the implementation of Markov-chain Monte Carlo without likelihoods.

  4. An Illustrative Guide to the Minerva Framework

    NASA Astrophysics Data System (ADS)

    Flom, Erik; Leonard, Patrick; Hoeffel, Udo; Kwak, Sehyun; Pavone, Andrea; Svensson, Jakob; Krychowiak, Maciej; Wendelstein 7-X Team Collaboration

    2017-10-01

    Modern phsyics experiments require tracking and modelling data and their associated uncertainties on a large scale, as well as the combined implementation of multiple independent data streams for sophisticated modelling and analysis. The Minerva Framework offers a centralized, user-friendly method of large-scale physics modelling and scientific inference. Currently used by teams at multiple large-scale fusion experiments including the Joint European Torus (JET) and Wendelstein 7-X (W7-X), the Minerva framework provides a forward-model friendly architecture for developing and implementing models for large-scale experiments. One aspect of the framework involves so-called data sources, which are nodes in the graphical model. These nodes are supplied with engineering and physics parameters. When end-user level code calls a node, it is checked network-wide against its dependent nodes for changes since its last implementation and returns version-specific data. Here, a filterscope data node is used as an illustrative example of the Minerva Framework's data management structure and its further application to Bayesian modelling of complex systems. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under Grant Agreement No. 633053.

  5. Decision support systems and methods for complex networks

    DOEpatents

    Huang, Zhenyu [Richland, WA; Wong, Pak Chung [Richland, WA; Ma, Jian [Richland, WA; Mackey, Patrick S [Richland, WA; Chen, Yousu [Richland, WA; Schneider, Kevin P [Seattle, WA

    2012-02-28

    Methods and systems for automated decision support in analyzing operation data from a complex network. Embodiments of the present invention utilize these algorithms and techniques not only to characterize the past and present condition of a complex network, but also to predict future conditions to help operators anticipate deteriorating and/or problem situations. In particular, embodiments of the present invention characterize network conditions from operation data using a state estimator. Contingency scenarios can then be generated based on those network conditions. For at least a portion of all of the contingency scenarios, risk indices are determined that describe the potential impact of each of those scenarios. Contingency scenarios with risk indices are presented visually as graphical representations in the context of a visual representation of the complex network. Analysis of the historical risk indices based on the graphical representations can then provide trends that allow for prediction of future network conditions.

  6. BELM: Bayesian extreme learning machine.

    PubMed

    Soria-Olivas, Emilio; Gómez-Sanchis, Juan; Martín, José D; Vila-Francés, Joan; Martínez, Marcelino; Magdalena, José R; Serrano, Antonio J

    2011-03-01

    The theory of extreme learning machine (ELM) has become very popular on the last few years. ELM is a new approach for learning the parameters of the hidden layers of a multilayer neural network (as the multilayer perceptron or the radial basis function neural network). Its main advantage is the lower computational cost, which is especially relevant when dealing with many patterns defined in a high-dimensional space. This brief proposes a bayesian approach to ELM, which presents some advantages over other approaches: it allows the introduction of a priori knowledge; obtains the confidence intervals (CIs) without the need of applying methods that are computationally intensive, e.g., bootstrap; and presents high generalization capabilities. Bayesian ELM is benchmarked against classical ELM in several artificial and real datasets that are widely used for the evaluation of machine learning algorithms. Achieved results show that the proposed approach produces a competitive accuracy with some additional advantages, namely, automatic production of CIs, reduction of probability of model overfitting, and use of a priori knowledge.

  7. Towards a Bayesian evaluation of features in questioned handwritten signatures.

    PubMed

    Gaborini, Lorenzo; Biedermann, Alex; Taroni, Franco

    2017-05-01

    In this work, we propose the construction of a evaluative framework for supporting experts in questioned signature examinations. Through the use of Bayesian networks, we envision to quantify the probative value of well defined measurements performed on questioned signatures, in a way that is both formalised and part of a coherent approach to evaluation. At the current stage, our project is explorative, focusing on the broad range of aspects that relate to comparative signature examinations. The goal is to identify writing features which are both highly discriminant, and easy for forensic examiners to detect. We also seek for a balance between case-specific features and characteristics which can be measured in the vast majority of signatures. Care is also taken at preserving the interpretability at every step of the reasoning process. This paves the way for future work, which will aim at merging the different contributions to a single probabilistic measure of strength of evidence using Bayesian networks. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Validation of the thermal challenge problem using Bayesian Belief Networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarland, John; Swiler, Laura Painton

    The thermal challenge problem has been developed at Sandia National Laboratories as a testbed for demonstrating various types of validation approaches and prediction methods. This report discusses one particular methodology to assess the validity of a computational model given experimental data. This methodology is based on Bayesian Belief Networks (BBNs) and can incorporate uncertainty in experimental measurements, in physical quantities, and model uncertainties. The approach uses the prior and posterior distributions of model output to compute a validation metric based on Bayesian hypothesis testing (a Bayes' factor). This report discusses various aspects of the BBN, specifically in the context ofmore » the thermal challenge problem. A BBN is developed for a given set of experimental data in a particular experimental configuration. The development of the BBN and the method for ''solving'' the BBN to develop the posterior distribution of model output through Monte Carlo Markov Chain sampling is discussed in detail. The use of the BBN to compute a Bayes' factor is demonstrated.« less

  9. Bayes and the Law

    PubMed Central

    Fenton, Norman; Neil, Martin; Berger, Daniel

    2016-01-01

    Although the last forty years has seen considerable growth in the use of statistics in legal proceedings, it is primarily classical statistical methods rather than Bayesian methods that have been used. Yet the Bayesian approach avoids many of the problems of classical statistics and is also well suited to a broader range of problems. This paper reviews the potential and actual use of Bayes in the law and explains the main reasons for its lack of impact on legal practice. These include misconceptions by the legal community about Bayes’ theorem, over-reliance on the use of the likelihood ratio and the lack of adoption of modern computational methods. We argue that Bayesian Networks (BNs), which automatically produce the necessary Bayesian calculations, provide an opportunity to address most concerns about using Bayes in the law. PMID:27398389

  10. Bayes and the Law.

    PubMed

    Fenton, Norman; Neil, Martin; Berger, Daniel

    2016-06-01

    Although the last forty years has seen considerable growth in the use of statistics in legal proceedings, it is primarily classical statistical methods rather than Bayesian methods that have been used. Yet the Bayesian approach avoids many of the problems of classical statistics and is also well suited to a broader range of problems. This paper reviews the potential and actual use of Bayes in the law and explains the main reasons for its lack of impact on legal practice. These include misconceptions by the legal community about Bayes' theorem, over-reliance on the use of the likelihood ratio and the lack of adoption of modern computational methods. We argue that Bayesian Networks (BNs), which automatically produce the necessary Bayesian calculations, provide an opportunity to address most concerns about using Bayes in the law.

  11. A Probabilistic Approach for Real-Time Volcano Surveillance

    NASA Astrophysics Data System (ADS)

    Cannavo, F.; Cannata, A.; Cassisi, C.; Di Grazia, G.; Maronno, P.; Montalto, P.; Prestifilippo, M.; Privitera, E.; Gambino, S.; Coltelli, M.

    2016-12-01

    Continuous evaluation of the state of potentially dangerous volcanos plays a key role for civil protection purposes. Presently, real-time surveillance of most volcanoes worldwide is essentially delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks. Unfavorably, the coupling of highly non-linear and complex volcanic dynamic processes leads to measurable effects that can show a large variety of different behaviors. Moreover, due to intrinsic uncertainties and possible failures in some recorded data, the volcano state needs to be expressed in probabilistic terms, thus making the fast volcano state assessment sometimes impracticable for the personnel on duty at the control rooms. With the aim of aiding the personnel on duty in volcano surveillance, we present a probabilistic graphical model to estimate automatically the ongoing volcano state from all the available different kind of measurements. The model consists of a Bayesian network able to represent a set of variables and their conditional dependencies via a directed acyclic graph. The model variables are both the measurements and the possible states of the volcano through the time. The model output is an estimation of the probability distribution of the feasible volcano states. We tested the model on the Mt. Etna (Italy) case study by considering a long record of multivariate data from 2011 to 2015 and cross-validated it. Results indicate that the proposed model is effective and of great power for decision making purposes.

  12. General aviation design synthesis utilizing interactive computer graphics

    NASA Technical Reports Server (NTRS)

    Galloway, T. L.; Smith, M. R.

    1976-01-01

    Interactive computer graphics is a fast growing area of computer application, due to such factors as substantial cost reductions in hardware, general availability of software, and expanded data communication networks. In addition to allowing faster and more meaningful input/output, computer graphics permits the use of data in graphic form to carry out parametric studies for configuration selection and for assessing the impact of advanced technologies on general aviation designs. The incorporation of interactive computer graphics into a NASA developed general aviation synthesis program is described, and the potential uses of the synthesis program in preliminary design are demonstrated.

  13. Context Relevant Prediction Model for COPD Domain Using Bayesian Belief Network

    PubMed Central

    Saleh, Lokman; Ajami, Hicham; Mili, Hafedh

    2017-01-01

    In the last three decades, researchers have examined extensively how context-aware systems can assist people, specifically those suffering from incurable diseases, to help them cope with their medical illness. Over the years, a huge number of studies on Chronic Obstructive Pulmonary Disease (COPD) have been published. However, how to derive relevant attributes and early detection of COPD exacerbations remains a challenge. In this research work, we will use an efficient algorithm to select relevant attributes where there is no proper approach in this domain. Such algorithm predicts exacerbations with high accuracy by adding discretization process, and organizes the pertinent attributes in priority order based on their impact to facilitate the emergency medical treatment. In this paper, we propose an extension of our existing Helper Context-Aware Engine System (HCES) for COPD. This project uses Bayesian network algorithm to depict the dependency between the COPD symptoms (attributes) in order to overcome the insufficiency and the independency hypothesis of naïve Bayesian. In addition, the dependency in Bayesian network is realized using TAN algorithm rather than consulting pneumologists. All these combined algorithms (discretization, selection, dependency, and the ordering of the relevant attributes) constitute an effective prediction model, comparing to effective ones. Moreover, an investigation and comparison of different scenarios of these algorithms are also done to verify which sequence of steps of prediction model gives more accurate results. Finally, we designed and validated a computer-aided support application to integrate different steps of this model. The findings of our system HCES has shown promising results using Area Under Receiver Operating Characteristic (AUC = 81.5%). PMID:28644419

  14. Nonparametric Bayesian inference of the microcanonical stochastic block model

    NASA Astrophysics Data System (ADS)

    Peixoto, Tiago P.

    2017-01-01

    A principled approach to characterize the hidden modular structure of networks is to formulate generative models and then infer their parameters from data. When the desired structure is composed of modules or "communities," a suitable choice for this task is the stochastic block model (SBM), where nodes are divided into groups, and the placement of edges is conditioned on the group memberships. Here, we present a nonparametric Bayesian method to infer the modular structure of empirical networks, including the number of modules and their hierarchical organization. We focus on a microcanonical variant of the SBM, where the structure is imposed via hard constraints, i.e., the generated networks are not allowed to violate the patterns imposed by the model. We show how this simple model variation allows simultaneously for two important improvements over more traditional inference approaches: (1) deeper Bayesian hierarchies, with noninformative priors replaced by sequences of priors and hyperpriors, which not only remove limitations that seriously degrade the inference on large networks but also reveal structures at multiple scales; (2) a very efficient inference algorithm that scales well not only for networks with a large number of nodes and edges but also with an unlimited number of modules. We show also how this approach can be used to sample modular hierarchies from the posterior distribution, as well as to perform model selection. We discuss and analyze the differences between sampling from the posterior and simply finding the single parameter estimate that maximizes it. Furthermore, we expose a direct equivalence between our microcanonical approach and alternative derivations based on the canonical SBM.

  15. Bayesian convolutional neural network based MRI brain extraction on nonhuman primates.

    PubMed

    Zhao, Gengyan; Liu, Fang; Oler, Jonathan A; Meyerand, Mary E; Kalin, Ned H; Birn, Rasmus M

    2018-07-15

    Brain extraction or skull stripping of magnetic resonance images (MRI) is an essential step in neuroimaging studies, the accuracy of which can severely affect subsequent image processing procedures. Current automatic brain extraction methods demonstrate good results on human brains, but are often far from satisfactory on nonhuman primates, which are a necessary part of neuroscience research. To overcome the challenges of brain extraction in nonhuman primates, we propose a fully-automated brain extraction pipeline combining deep Bayesian convolutional neural network (CNN) and fully connected three-dimensional (3D) conditional random field (CRF). The deep Bayesian CNN, Bayesian SegNet, is used as the core segmentation engine. As a probabilistic network, it is not only able to perform accurate high-resolution pixel-wise brain segmentation, but also capable of measuring the model uncertainty by Monte Carlo sampling with dropout in the testing stage. Then, fully connected 3D CRF is used to refine the probability result from Bayesian SegNet in the whole 3D context of the brain volume. The proposed method was evaluated with a manually brain-extracted dataset comprising T1w images of 100 nonhuman primates. Our method outperforms six popular publicly available brain extraction packages and three well-established deep learning based methods with a mean Dice coefficient of 0.985 and a mean average symmetric surface distance of 0.220 mm. A better performance against all the compared methods was verified by statistical tests (all p-values < 10 -4 , two-sided, Bonferroni corrected). The maximum uncertainty of the model on nonhuman primate brain extraction has a mean value of 0.116 across all the 100 subjects. The behavior of the uncertainty was also studied, which shows the uncertainty increases as the training set size decreases, the number of inconsistent labels in the training set increases, or the inconsistency between the training set and the testing set increases. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Epistemic-based investigation of the probability of hazard scenarios using Bayesian network for the lifting operation of floating objects

    NASA Astrophysics Data System (ADS)

    Toroody, Ahmad Bahoo; Abaiee, Mohammad Mahdi; Gholamnia, Reza; Ketabdari, Mohammad Javad

    2016-09-01

    Owing to the increase in unprecedented accidents with new root causes in almost all operational areas, the importance of risk management has dramatically risen. Risk assessment, one of the most significant aspects of risk management, has a substantial impact on the system-safety level of organizations, industries, and operations. If the causes of all kinds of failure and the interactions between them are considered, effective risk assessment can be highly accurate. A combination of traditional risk assessment approaches and modern scientific probability methods can help in realizing better quantitative risk assessment methods. Most researchers face the problem of minimal field data with respect to the probability and frequency of each failure. Because of this limitation in the availability of epistemic knowledge, it is important to conduct epistemic estimations by applying the Bayesian theory for identifying plausible outcomes. In this paper, we propose an algorithm and demonstrate its application in a case study for a light-weight lifting operation in the Persian Gulf of Iran. First, we identify potential accident scenarios and present them in an event tree format. Next, excluding human error, we use the event tree to roughly estimate the prior probability of other hazard-promoting factors using a minimal amount of field data. We then use the Success Likelihood Index Method (SLIM) to calculate the probability of human error. On the basis of the proposed event tree, we use the Bayesian network of the provided scenarios to compensate for the lack of data. Finally, we determine the resulting probability of each event based on its evidence in the epistemic estimation format by building on two Bayesian network types: the probability of hazard promotion factors and the Bayesian theory. The study results indicate that despite the lack of available information on the operation of floating objects, a satisfactory result can be achieved using epistemic data.

  17. Object-Oriented Bayesian Networks (OOBN) for Aviation Accident Modeling and Technology Portfolio Impact Assessment

    NASA Technical Reports Server (NTRS)

    Shih, Ann T.; Ancel, Ersin; Jones, Sharon M.

    2012-01-01

    The concern for reducing aviation safety risk is rising as the National Airspace System in the United States transforms to the Next Generation Air Transportation System (NextGen). The NASA Aviation Safety Program is committed to developing an effective aviation safety technology portfolio to meet the challenges of this transformation and to mitigate relevant safety risks. The paper focuses on the reasoning of selecting Object-Oriented Bayesian Networks (OOBN) as the technique and commercial software for the accident modeling and portfolio assessment. To illustrate the benefits of OOBN in a large and complex aviation accident model, the in-flight Loss-of-Control Accident Framework (LOCAF) constructed as an influence diagram is presented. An OOBN approach not only simplifies construction and maintenance of complex causal networks for the modelers, but also offers a well-organized hierarchical network that is easier for decision makers to exploit the model examining the effectiveness of risk mitigation strategies through technology insertions.

  18. A multi-agent intelligent environment for medical knowledge.

    PubMed

    Vicari, Rosa M; Flores, Cecilia D; Silvestre, André M; Seixas, Louise J; Ladeira, Marcelo; Coelho, Helder

    2003-03-01

    AMPLIA is a multi-agent intelligent learning environment designed to support training of diagnostic reasoning and modelling of domains with complex and uncertain knowledge. AMPLIA focuses on the medical area. It is a system that deals with uncertainty under the Bayesian network approach, where learner-modelling tasks will consist of creating a Bayesian network for a problem the system will present. The construction of a network involves qualitative and quantitative aspects. The qualitative part concerns the network topology, that is, causal relations among the domain variables. After it is ready, the quantitative part is specified. It is composed of the distribution of conditional probability of the variables represented. A negotiation process (managed by an intelligent MediatorAgent) will treat the differences of topology and probability distribution between the model the learner built and the one built-in in the system. That negotiation process occurs between the agents that represent the expert knowledge domain (DomainAgent) and the agent that represents the learner knowledge (LearnerAgent).

  19. Classifying environmentally significant urban land uses with satellite imagery.

    PubMed

    Park, Mi-Hyun; Stenstrom, Michael K

    2008-01-01

    We investigated Bayesian networks to classify urban land use from satellite imagery. Landsat Enhanced Thematic Mapper Plus (ETM(+)) images were used for the classification in two study areas: (1) Marina del Rey and its vicinity in the Santa Monica Bay Watershed, CA and (2) drainage basins adjacent to the Sweetwater Reservoir in San Diego, CA. Bayesian networks provided 80-95% classification accuracy for urban land use using four different classification systems. The classifications were robust with small training data sets with normal and reduced radiometric resolution. The networks needed only 5% of the total data (i.e., 1500 pixels) for sample size and only 5- or 6-bit information for accurate classification. The network explicitly showed the relationship among variables from its structure and was also capable of utilizing information from non-spectral data. The classification can be used to provide timely and inexpensive land use information over large areas for environmental purposes such as estimating stormwater pollutant loads.

  20. A novel critical infrastructure resilience assessment approach using dynamic Bayesian networks

    NASA Astrophysics Data System (ADS)

    Cai, Baoping; Xie, Min; Liu, Yonghong; Liu, Yiliu; Ji, Renjie; Feng, Qiang

    2017-10-01

    The word resilience originally originates from the Latin word "resiliere", which means to "bounce back". The concept has been used in various fields, such as ecology, economics, psychology, and society, with different definitions. In the field of critical infrastructure, although some resilience metrics are proposed, they are totally different from each other, which are determined by the performances of the objects of evaluation. Here we bridge the gap by developing a universal critical infrastructure resilience metric from the perspective of reliability engineering. A dynamic Bayesian networks-based assessment approach is proposed to calculate the resilience value. A series, parallel and voting system is used to demonstrate the application of the developed resilience metric and assessment approach.

  1. Systems Biology Graphical Notation: Entity Relationship language Level 1 Version 2.

    PubMed

    Sorokin, Anatoly; Le Novère, Nicolas; Luna, Augustin; Czauderna, Tobias; Demir, Emek; Haw, Robin; Mi, Huaiyu; Moodie, Stuart; Schreiber, Falk; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Entity Relationship language (ER) represents biological entities and their interactions and relationships within a network. SBGN ER focuses on all potential relationships between entities without considering temporal aspects. The nodes (elements) describe biological entities, such as proteins and complexes. The edges (connections) provide descriptions of interactions and relationships (or influences), e.g., complex formation, stimulation and inhibition. Among all three languages of SBGN, ER is the closest to protein interaction networks in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  2. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xuesong; Liang, Faming; Yu, Beibei

    2011-11-09

    Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow forecasting. In this study, we propose a Markov Chain Monte Carlo (MCMC) framework to incorporate the uncertainties associated with input, model structure, and parameter into BNNs. This framework allows the structure of the neural networks to change by removing or adding connections between neurons and enables scaling of input data by using rainfall multipliers. The results show that the new BNNs outperform the BNNs that only consider uncertainties associatedmore » with parameter and model structure. Critical evaluation of posterior distribution of neural network weights, number of effective connections, rainfall multipliers, and hyper-parameters show that the assumptions held in our BNNs are not well supported. Further understanding of characteristics of different uncertainty sources and including output error into the MCMC framework are expected to enhance the application of neural networks for uncertainty analysis of hydrologic forecasting.« less

  3. Evolution of Associative Learning in Chemical Networks

    PubMed Central

    McGregor, Simon; Vasas, Vera; Husbands, Phil; Fernando, Chrisantha

    2012-01-01

    Organisms that can learn about their environment and modify their behaviour appropriately during their lifetime are more likely to survive and reproduce than organisms that do not. While associative learning – the ability to detect correlated features of the environment – has been studied extensively in nervous systems, where the underlying mechanisms are reasonably well understood, mechanisms within single cells that could allow associative learning have received little attention. Here, using in silico evolution of chemical networks, we show that there exists a diversity of remarkably simple and plausible chemical solutions to the associative learning problem, the simplest of which uses only one core chemical reaction. We then asked to what extent a linear combination of chemical concentrations in the network could approximate the ideal Bayesian posterior of an environment given the stimulus history so far? This Bayesian analysis revealed the ‘memory traces’ of the chemical network. The implication of this paper is that there is little reason to believe that a lack of suitable phenotypic variation would prevent associative learning from evolving in cell signalling, metabolic, gene regulatory, or a mixture of these networks in cells. PMID:23133353

  4. A controllable sensor management algorithm capable of learning

    NASA Astrophysics Data System (ADS)

    Osadciw, Lisa A.; Veeramacheneni, Kalyan K.

    2005-03-01

    Sensor management technology progress is challenged by the geographic space it spans, the heterogeneity of the sensors, and the real-time timeframes within which plans controlling the assets are executed. This paper presents a new sensor management paradigm and demonstrates its application in a sensor management algorithm designed for a biometric access control system. This approach consists of an artificial intelligence (AI) algorithm focused on uncertainty measures, which makes the high level decisions to reduce uncertainties and interfaces with the user, integrated cohesively with a bottom up evolutionary algorithm, which optimizes the sensor network"s operation as determined by the AI algorithm. The sensor management algorithm presented is composed of a Bayesian network, the AI algorithm component, and a swarm optimization algorithm, the evolutionary algorithm. Thus, the algorithm can change its own performance goals in real-time and will modify its own decisions based on observed measures within the sensor network. The definition of the measures as well as the Bayesian network determine the robustness of the algorithm and its utility in reacting dynamically to changes in the global system.

  5. Bayesian Logic Programs for Plan Recognition and Machine Reading

    DTIC Science & Technology

    2012-12-01

    models is that they can handle both uncertainty and structured/ relational data. As a result, they are widely used in domains like social network...data. As a result, they are widely used in domains like social net- work analysis, biological data analysis, and natural language processing. Bayesian...the Story Understanding data set. (b) The logical representation of the observations. (c) The set of ground rules obtained from logical abduction

  6. Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach.

    PubMed

    Zou, Cunlu; Ladroue, Christophe; Guo, Shuixia; Feng, Jianfeng

    2010-06-21

    Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs) and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE), Bayesian networks, information theory and Granger Causality. Here we focused on Granger causality both in the time and frequency domain and in local and global networks, and applied our approach to experimental data (genes and proteins). For a small gene network, Granger causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the frequency domain were also recovered. The results on the proteomic data and gene data confirm that Granger causality is a simple and accurate approach to recover the network structure. Our approach is general and can be easily applied to other types of temporal data.

  7. Disaster Response on September 11, 2001 Through the Lens of Statistical Network Analysis.

    PubMed

    Schweinberger, Michael; Petrescu-Prahova, Miruna; Vu, Duy Quang

    2014-05-01

    The rescue and relief operations triggered by the September 11, 2001 attacks on the World Trade Center in New York City demanded collaboration among hundreds of organisations. To shed light on the response to the September 11, 2001 attacks and help to plan and prepare the response to future disasters, we study the inter-organisational network that emerged in response to the attacks. Studying the inter-organisational network can help to shed light on (1) whether some organisations dominated the inter-organisational network and facilitated communication and coordination of the disaster response; (2) whether the dominating organisations were supposed to coordinate disaster response or emerged as coordinators in the wake of the disaster; and (3) the degree of network redundancy and sensitivity of the inter-organisational network to disturbances following the initial disaster. We introduce a Bayesian framework which can answer the substantive questions of interest while being as simple and parsimonious as possible. The framework allows organisations to have varying propensities to collaborate, while taking covariates into account, and allows to assess whether the inter-organisational network had network redundancy-in the form of transitivity-by using a test which may be regarded as a Bayesian score test. We discuss implications in terms of disaster management.

  8. A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks

    PubMed Central

    Zaikin, Alexey; Míguez, Joaquín

    2017-01-01

    We compare three state-of-the-art Bayesian inference methods for the estimation of the unknown parameters in a stochastic model of a genetic network. In particular, we introduce a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ullner et al., 2007. By introducing dynamical noise in the model and assuming that the partial observations of the system are contaminated by additive noise, we enable a principled mechanism to represent experimental uncertainties in the synthesis of the multicellular system and pave the way for the design of probabilistic methods for the estimation of any unknowns in the model. Within this setup, we tackle the Bayesian estimation of a subset of the model parameters. Specifically, we compare three Monte Carlo based numerical methods for the approximation of the posterior probability density function of the unknown parameters given a set of partial and noisy observations of the system. The schemes we assess are the particle Metropolis-Hastings (PMH) algorithm, the nonlinear population Monte Carlo (NPMC) method and the approximate Bayesian computation sequential Monte Carlo (ABC-SMC) scheme. We present an extensive numerical simulation study, which shows that while the three techniques can effectively solve the problem there are significant differences both in estimation accuracy and computational efficiency. PMID:28797087

  9. Statistical comparison of a hybrid approach with approximate and exact inference models for Fusion 2+

    NASA Astrophysics Data System (ADS)

    Lee, K. David; Wiesenfeld, Eric; Gelfand, Andrew

    2007-04-01

    One of the greatest challenges in modern combat is maintaining a high level of timely Situational Awareness (SA). In many situations, computational complexity and accuracy considerations make the development and deployment of real-time, high-level inference tools very difficult. An innovative hybrid framework that combines Bayesian inference, in the form of Bayesian Networks, and Possibility Theory, in the form of Fuzzy Logic systems, has recently been introduced to provide a rigorous framework for high-level inference. In previous research, the theoretical basis and benefits of the hybrid approach have been developed. However, lacking is a concrete experimental comparison of the hybrid framework with traditional fusion methods, to demonstrate and quantify this benefit. The goal of this research, therefore, is to provide a statistical analysis on the comparison of the accuracy and performance of hybrid network theory, with pure Bayesian and Fuzzy systems and an inexact Bayesian system approximated using Particle Filtering. To accomplish this task, domain specific models will be developed under these different theoretical approaches and then evaluated, via Monte Carlo Simulation, in comparison to situational ground truth to measure accuracy and fidelity. Following this, a rigorous statistical analysis of the performance results will be performed, to quantify the benefit of hybrid inference to other fusion tools.

  10. Designing a Graphical Decision Support Tool to Improve System Acquisition Decisions

    DTIC Science & Technology

    2009-06-01

    relationships within the data [9]. Displaying acquisition data in a graphical manner was chosen because graphical formats, in general, have been...acquisition plan which includes information pertaining to the acquisition objectives, the required capability of the system, design trade-off, budgeting...which introduce artificial neural networks to approximate the real world experience of an acquisition manager [8]. However, these strategies lack a

  11. Network Control Center User Planning System (NCC UPS)

    NASA Astrophysics Data System (ADS)

    Dealy, Brian

    1991-09-01

    NCC UPS is presented in the form of the viewgraphs. The following subject areas are covered: UPS overview; NCC UPS role; major NCC UPS functional requirements; interactive user access levels; UPS interfaces; interactive user subsystem; interface navigation; scheduling screen hierarchy; interactive scheduling input panels; autogenerated schedule request panel; schedule data tabular display panel; schedule data graphic display panel; graphic scheduling aid design; and schedule data graphic display.

  12. Network Control Center User Planning System (NCC UPS)

    NASA Technical Reports Server (NTRS)

    Dealy, Brian

    1991-01-01

    NCC UPS is presented in the form of the viewgraphs. The following subject areas are covered: UPS overview; NCC UPS role; major NCC UPS functional requirements; interactive user access levels; UPS interfaces; interactive user subsystem; interface navigation; scheduling screen hierarchy; interactive scheduling input panels; autogenerated schedule request panel; schedule data tabular display panel; schedule data graphic display panel; graphic scheduling aid design; and schedule data graphic display.

  13. Gene network inference by fusing data from diverse distributions

    PubMed Central

    Žitnik, Marinka; Zupan, Blaž

    2015-01-01

    Motivation: Markov networks are undirected graphical models that are widely used to infer relations between genes from experimental data. Their state-of-the-art inference procedures assume the data arise from a Gaussian distribution. High-throughput omics data, such as that from next generation sequencing, often violates this assumption. Furthermore, when collected data arise from multiple related but otherwise nonidentical distributions, their underlying networks are likely to have common features. New principled statistical approaches are needed that can deal with different data distributions and jointly consider collections of datasets. Results: We present FuseNet, a Markov network formulation that infers networks from a collection of nonidentically distributed datasets. Our approach is computationally efficient and general: given any number of distributions from an exponential family, FuseNet represents model parameters through shared latent factors that define neighborhoods of network nodes. In a simulation study, we demonstrate good predictive performance of FuseNet in comparison to several popular graphical models. We show its effectiveness in an application to breast cancer RNA-sequencing and somatic mutation data, a novel application of graphical models. Fusion of datasets offers substantial gains relative to inference of separate networks for each dataset. Our results demonstrate that network inference methods for non-Gaussian data can help in accurate modeling of the data generated by emergent high-throughput technologies. Availability and implementation: Source code is at https://github.com/marinkaz/fusenet. Contact: blaz.zupan@fri.uni-lj.si Supplementary information: Supplementary information is available at Bioinformatics online. PMID:26072487

  14. Network discovery with DCM

    PubMed Central

    Friston, Karl J.; Li, Baojuan; Daunizeau, Jean; Stephan, Klaas E.

    2011-01-01

    This paper is about inferring or discovering the functional architecture of distributed systems using Dynamic Causal Modelling (DCM). We describe a scheme that recovers the (dynamic) Bayesian dependency graph (connections in a network) using observed network activity. This network discovery uses Bayesian model selection to identify the sparsity structure (absence of edges or connections) in a graph that best explains observed time-series. The implicit adjacency matrix specifies the form of the network (e.g., cyclic or acyclic) and its graph-theoretical attributes (e.g., degree distribution). The scheme is illustrated using functional magnetic resonance imaging (fMRI) time series to discover functional brain networks. Crucially, it can be applied to experimentally evoked responses (activation studies) or endogenous activity in task-free (resting state) fMRI studies. Unlike conventional approaches to network discovery, DCM permits the analysis of directed and cyclic graphs. Furthermore, it eschews (implausible) Markovian assumptions about the serial independence of random fluctuations. The scheme furnishes a network description of distributed activity in the brain that is optimal in the sense of having the greatest conditional probability, relative to other networks. The networks are characterised in terms of their connectivity or adjacency matrices and conditional distributions over the directed (and reciprocal) effective connectivity between connected nodes or regions. We envisage that this approach will provide a useful complement to current analyses of functional connectivity for both activation and resting-state studies. PMID:21182971

  15. Data modeling of network dynamics

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Handley, James W.; Faucheux, Jeffery P.; Harris, Brad

    2004-01-01

    This paper highlights Data Modeling theory and its use for text data mining as a graphical network search engine. Data Modeling is then used to create a real-time filter capable of monitoring network traffic down to the port level for unusual dynamics and changes in business as usual. This is accomplished in an unsupervised fashion without a priori knowledge of abnormal characteristics. Two novel methods for converting streaming binary data into a form amenable to graphics based search and change detection are introduced. These techniques are then successfully applied to 1999 KDD Cup network attack data log-on sessions to demonstrate that Data Modeling can detect attacks without prior training on any form of attack behavior. Finally, two new methods for data encryption using these ideas are proposed.

  16. Graphical tools for network meta-analysis in STATA.

    PubMed

    Chaimani, Anna; Higgins, Julian P T; Mavridis, Dimitris; Spyridonos, Panagiota; Salanti, Georgia

    2013-01-01

    Network meta-analysis synthesizes direct and indirect evidence in a network of trials that compare multiple interventions and has the potential to rank the competing treatments according to the studied outcome. Despite its usefulness network meta-analysis is often criticized for its complexity and for being accessible only to researchers with strong statistical and computational skills. The evaluation of the underlying model assumptions, the statistical technicalities and presentation of the results in a concise and understandable way are all challenging aspects in the network meta-analysis methodology. In this paper we aim to make the methodology accessible to non-statisticians by presenting and explaining a series of graphical tools via worked examples. To this end, we provide a set of STATA routines that can be easily employed to present the evidence base, evaluate the assumptions, fit the network meta-analysis model and interpret its results.

  17. Graphical Tools for Network Meta-Analysis in STATA

    PubMed Central

    Chaimani, Anna; Higgins, Julian P. T.; Mavridis, Dimitris; Spyridonos, Panagiota; Salanti, Georgia

    2013-01-01

    Network meta-analysis synthesizes direct and indirect evidence in a network of trials that compare multiple interventions and has the potential to rank the competing treatments according to the studied outcome. Despite its usefulness network meta-analysis is often criticized for its complexity and for being accessible only to researchers with strong statistical and computational skills. The evaluation of the underlying model assumptions, the statistical technicalities and presentation of the results in a concise and understandable way are all challenging aspects in the network meta-analysis methodology. In this paper we aim to make the methodology accessible to non-statisticians by presenting and explaining a series of graphical tools via worked examples. To this end, we provide a set of STATA routines that can be easily employed to present the evidence base, evaluate the assumptions, fit the network meta-analysis model and interpret its results. PMID:24098547

  18. Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Perreault Levasseur, Laurence; Hezaveh, Yashar D.; Wechsler, Risa H.

    2017-11-01

    In Hezaveh et al. we showed that deep learning can be used for model parameter estimation and trained convolutional neural networks to determine the parameters of strong gravitational-lensing systems. Here we demonstrate a method for obtaining the uncertainties of these parameters. We review the framework of variational inference to obtain approximate posteriors of Bayesian neural networks and apply it to a network trained to estimate the parameters of the Singular Isothermal Ellipsoid plus external shear and total flux magnification. We show that the method can capture the uncertainties due to different levels of noise in the input data, as well as training and architecture-related errors made by the network. To evaluate the accuracy of the resulting uncertainties, we calculate the coverage probabilities of marginalized distributions for each lensing parameter. By tuning a single variational parameter, the dropout rate, we obtain coverage probabilities approximately equal to the confidence levels for which they were calculated, resulting in accurate and precise uncertainty estimates. Our results suggest that the application of approximate Bayesian neural networks to astrophysical modeling problems can be a fast alternative to Monte Carlo Markov Chains, allowing orders of magnitude improvement in speed.

  19. An empirical Bayes approach to network recovery using external knowledge.

    PubMed

    Kpogbezan, Gino B; van der Vaart, Aad W; van Wieringen, Wessel N; Leday, Gwenaël G R; van de Wiel, Mark A

    2017-09-01

    Reconstruction of a high-dimensional network may benefit substantially from the inclusion of prior knowledge on the network topology. In the case of gene interaction networks such knowledge may come for instance from pathway repositories like KEGG, or be inferred from data of a pilot study. The Bayesian framework provides a natural means of including such prior knowledge. Based on a Bayesian Simultaneous Equation Model, we develop an appealing Empirical Bayes (EB) procedure that automatically assesses the agreement of the used prior knowledge with the data at hand. We use variational Bayes method for posterior densities approximation and compare its accuracy with that of Gibbs sampling strategy. Our method is computationally fast, and can outperform known competitors. In a simulation study, we show that accurate prior data can greatly improve the reconstruction of the network, but need not harm the reconstruction if wrong. We demonstrate the benefits of the method in an analysis of gene expression data from GEO. In particular, the edges of the recovered network have superior reproducibility (compared to that of competitors) over resampled versions of the data. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Reliability modelling and analysis of a multi-state element based on a dynamic Bayesian network

    PubMed Central

    Xu, Tingxue; Gu, Junyuan; Dong, Qi; Fu, Linyu

    2018-01-01

    This paper presents a quantitative reliability modelling and analysis method for multi-state elements based on a combination of the Markov process and a dynamic Bayesian network (DBN), taking perfect repair, imperfect repair and condition-based maintenance (CBM) into consideration. The Markov models of elements without repair and under CBM are established, and an absorbing set is introduced to determine the reliability of the repairable element. According to the state-transition relations between the states determined by the Markov process, a DBN model is built. In addition, its parameters for series and parallel systems, namely, conditional probability tables, can be calculated by referring to the conditional degradation probabilities. Finally, the power of a control unit in a failure model is used as an example. A dynamic fault tree (DFT) is translated into a Bayesian network model, and subsequently extended to a DBN. The results show the state probabilities of an element and the system without repair, with perfect and imperfect repair, and under CBM, with an absorbing set plotted by differential equations and verified. Through referring forward, the reliability value of the control unit is determined in different kinds of modes. Finally, weak nodes are noted in the control unit. PMID:29765629

  1. Quantification of biophysical adaptation benefits from Climate-Smart Agriculture using a Bayesian Belief Network.

    PubMed

    de Nijs, Patrick J; Berry, Nicholas J; Wells, Geoff J; Reay, Dave S

    2014-10-20

    The need for smallholder farmers to adapt their practices to a changing climate is well recognised, particularly in Africa. The cost of adapting to climate change in Africa is estimated to be $20 to $30 billion per year, but the total amount pledged to finance adaptation falls significantly short of this requirement. The difficulty of assessing and monitoring when adaptation is achieved is one of the key barriers to the disbursement of performance-based adaptation finance. To demonstrate the potential of Bayesian Belief Networks for describing the impacts of specific activities on climate change resilience, we developed a simple model that incorporates climate projections, local environmental data, information from peer-reviewed literature and expert opinion to account for the adaptation benefits derived from Climate-Smart Agriculture activities in Malawi. This novel approach allows assessment of vulnerability to climate change under different land use activities and can be used to identify appropriate adaptation strategies and to quantify biophysical adaptation benefits from activities that are implemented. We suggest that multiple-indicator Bayesian Belief Network approaches can provide insights into adaptation planning for a wide range of applications and, if further explored, could be part of a set of important catalysts for the expansion of adaptation finance.

  2. A Bayesian approach to estimating hidden variables as well as missing and wrong molecular interactions in ordinary differential equation-based mathematical models.

    PubMed

    Engelhardt, Benjamin; Kschischo, Maik; Fröhlich, Holger

    2017-06-01

    Ordinary differential equations (ODEs) are a popular approach to quantitatively model molecular networks based on biological knowledge. However, such knowledge is typically restricted. Wrongly modelled biological mechanisms as well as relevant external influence factors that are not included into the model are likely to manifest in major discrepancies between model predictions and experimental data. Finding the exact reasons for such observed discrepancies can be quite challenging in practice. In order to address this issue, we suggest a Bayesian approach to estimate hidden influences in ODE-based models. The method can distinguish between exogenous and endogenous hidden influences. Thus, we can detect wrongly specified as well as missed molecular interactions in the model. We demonstrate the performance of our Bayesian dynamic elastic-net with several ordinary differential equation models from the literature, such as human JAK-STAT signalling, information processing at the erythropoietin receptor, isomerization of liquid α -Pinene, G protein cycling in yeast and UV-B triggered signalling in plants. Moreover, we investigate a set of commonly known network motifs and a gene-regulatory network. Altogether our method supports the modeller in an algorithmic manner to identify possible sources of errors in ODE-based models on the basis of experimental data. © 2017 The Author(s).

  3. Quantification of biophysical adaptation benefits from Climate-Smart Agriculture using a Bayesian Belief Network

    NASA Astrophysics Data System (ADS)

    de Nijs, Patrick J.; Berry, Nicholas J.; Wells, Geoff J.; Reay, Dave S.

    2014-10-01

    The need for smallholder farmers to adapt their practices to a changing climate is well recognised, particularly in Africa. The cost of adapting to climate change in Africa is estimated to be $20 to $30 billion per year, but the total amount pledged to finance adaptation falls significantly short of this requirement. The difficulty of assessing and monitoring when adaptation is achieved is one of the key barriers to the disbursement of performance-based adaptation finance. To demonstrate the potential of Bayesian Belief Networks for describing the impacts of specific activities on climate change resilience, we developed a simple model that incorporates climate projections, local environmental data, information from peer-reviewed literature and expert opinion to account for the adaptation benefits derived from Climate-Smart Agriculture activities in Malawi. This novel approach allows assessment of vulnerability to climate change under different land use activities and can be used to identify appropriate adaptation strategies and to quantify biophysical adaptation benefits from activities that are implemented. We suggest that multiple-indicator Bayesian Belief Network approaches can provide insights into adaptation planning for a wide range of applications and, if further explored, could be part of a set of important catalysts for the expansion of adaptation finance.

  4. A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation.

    PubMed

    Karabatsos, George

    2017-02-01

    Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected functionals and values of covariates. The software is illustrated through the BNP regression analysis of real data.

  5. OpenSim: A Flexible Distributed Neural Network Simulator with Automatic Interactive Graphics.

    PubMed

    Jarosch, Andreas; Leber, Jean Francois

    1997-06-01

    An object-oriented simulator called OpenSim is presented that achieves a high degree of flexibility by relying on a small set of building blocks. The state variables and algorithms put in this framework can easily be accessed through a command shell. This allows one to distribute a large-scale simulation over several workstations and to generate the interactive graphics automatically. OpenSim opens new possibilities for cooperation among Neural Network researchers. Copyright 1997 Elsevier Science Ltd.

  6. Understanding the Scalability of Bayesian Network Inference using Clique Tree Growth Curves

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole Jakob

    2009-01-01

    Bayesian networks (BNs) are used to represent and efficiently compute with multi-variate probability distributions in a wide range of disciplines. One of the main approaches to perform computation in BNs is clique tree clustering and propagation. In this approach, BN computation consists of propagation in a clique tree compiled from a Bayesian network. There is a lack of understanding of how clique tree computation time, and BN computation time in more general, depends on variations in BN size and structure. On the one hand, complexity results tell us that many interesting BN queries are NP-hard or worse to answer, and it is not hard to find application BNs where the clique tree approach in practice cannot be used. On the other hand, it is well-known that tree-structured BNs can be used to answer probabilistic queries in polynomial time. In this article, we develop an approach to characterizing clique tree growth as a function of parameters that can be computed in polynomial time from BNs, specifically: (i) the ratio of the number of a BN's non-root nodes to the number of root nodes, or (ii) the expected number of moral edges in their moral graphs. Our approach is based on combining analytical and experimental results. Analytically, we partition the set of cliques in a clique tree into different sets, and introduce a growth curve for each set. For the special case of bipartite BNs, we consequently have two growth curves, a mixed clique growth curve and a root clique growth curve. In experiments, we systematically increase the degree of the root nodes in bipartite Bayesian networks, and find that root clique growth is well-approximated by Gompertz growth curves. It is believed that this research improves the understanding of the scaling behavior of clique tree clustering, provides a foundation for benchmarking and developing improved BN inference and machine learning algorithms, and presents an aid for analytical trade-off studies of clique tree clustering using growth curves.

  7. Association of variants in innate immune genes with asthma and eczema

    PubMed Central

    Sharma, Sunita; Poon, Audrey; Himes, Blanca E.; Lasky-Su, Jessica; Sordillo, Joanne E.; Belanger, Kathleen; Milton, Donald K.; Bracken, Michael B.; Triche, Elizabeth W.; Leaderer, Brian P.; Gold, Diane R.; Litonjua, Augusto A.

    2012-01-01

    Background The innate immune pathway is important in the pathogenesis of asthma and eczema. However, only a few variants in these genes have been associated with either disease. We investigate the association between polymorphisms of genes in the innate immune pathway with childhood asthma and eczema. In addition, we compare individual associations with those discovered using a multivariate approach. Methods Using a novel method, case control based association testing (C2BAT), 569 single nucleotide polymorphisms (SNPs) in 44 innate immune genes were tested for association with asthma and eczema in children from the Boston Home Allergens and Asthma Study and the Connecticut Childhood Asthma Study. The screening algorithm was used to identify the top SNPs associated with asthma and eczema. We next investigated the interaction of innate immune variants with asthma and eczema risk using Bayesian networks. Results After correction for multiple comparisons, 7 SNPs in 6 genes (CARD25, TGFB1, LY96, ACAA1, DEFB1, and IFNG) were associated with asthma (adjusted p-value<0.02), while 5 SNPs in 3 different genes (CD80, STAT4, and IRAKI) were significantly associated with eczema (adjusted p-value < 0.02). None of these SNPs were associated with both asthma and eczema. Bayesian network analysis identified 4 SNPs that were predictive of asthma and 10 SNPs that predicted eczema. Of the genes identified using Bayesian networks, only CD80 was associated with eczema in the single-SNP study. Using novel methodology that allows for screening and replication in the same population, we have identified associations of innate immune genes with asthma and eczema. Bayesian network analysis suggests that additional SNPs influence disease susceptibility via SNP interactions. Conclusion Our findings suggest that innate immune genes contribute to the pathogenesis of asthma and eczema, and that these diseases likely have different genetic determinants. PMID:22192168

  8. Prediction of road accidents: A Bayesian hierarchical approach.

    PubMed

    Deublein, Markus; Schubert, Matthias; Adey, Bryan T; Köhler, Jochen; Faber, Michael H

    2013-03-01

    In this paper a novel methodology for the prediction of the occurrence of road accidents is presented. The methodology utilizes a combination of three statistical methods: (1) gamma-updating of the occurrence rates of injury accidents and injured road users, (2) hierarchical multivariate Poisson-lognormal regression analysis taking into account correlations amongst multiple dependent model response variables and effects of discrete accident count data e.g. over-dispersion, and (3) Bayesian inference algorithms, which are applied by means of data mining techniques supported by Bayesian Probabilistic Networks in order to represent non-linearity between risk indicating and model response variables, as well as different types of uncertainties which might be present in the development of the specific models. Prior Bayesian Probabilistic Networks are first established by means of multivariate regression analysis of the observed frequencies of the model response variables, e.g. the occurrence of an accident, and observed values of the risk indicating variables, e.g. degree of road curvature. Subsequently, parameter learning is done using updating algorithms, to determine the posterior predictive probability distributions of the model response variables, conditional on the values of the risk indicating variables. The methodology is illustrated through a case study using data of the Austrian rural motorway network. In the case study, on randomly selected road segments the methodology is used to produce a model to predict the expected number of accidents in which an injury has occurred and the expected number of light, severe and fatally injured road users. Additionally, the methodology is used for geo-referenced identification of road sections with increased occurrence probabilities of injury accident events on a road link between two Austrian cities. It is shown that the proposed methodology can be used to develop models to estimate the occurrence of road accidents for any road network provided that the required data are available. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Smartphone technologies and Bayesian networks to assess shorebird habitat selection

    USGS Publications Warehouse

    Zeigler, Sara; Thieler, E. Robert; Gutierrez, Ben; Plant, Nathaniel G.; Hines, Megan K.; Fraser, James D.; Catlin, Daniel H.; Karpanty, Sarah M.

    2017-01-01

    Understanding patterns of habitat selection across a species’ geographic distribution can be critical for adequately managing populations and planning for habitat loss and related threats. However, studies of habitat selection can be time consuming and expensive over broad spatial scales, and a lack of standardized monitoring targets or methods can impede the generalization of site-based studies. Our objective was to collaborate with natural resource managers to define available nesting habitat for piping plovers (Charadrius melodus) throughout their U.S. Atlantic coast distribution from Maine to North Carolina, with a goal of providing science that could inform habitat management in response to sea-level rise. We characterized a data collection and analysis approach as being effective if it provided low-cost collection of standardized habitat-selection data across the species’ breeding range within 1–2 nesting seasons and accurate nesting location predictions. In the method developed, >30 managers and conservation practitioners from government agencies and private organizations used a smartphone application, “iPlover,” to collect data on landcover characteristics at piping plover nest locations and random points on 83 beaches and barrier islands in 2014 and 2015. We analyzed these data with a Bayesian network that predicted the probability a specific combination of landcover variables would be associated with a nesting site. Although we focused on a shorebird, our approach can be modified for other taxa. Results showed that the Bayesian network performed well in predicting habitat availability and confirmed predicted habitat preferences across the Atlantic coast breeding range of the piping plover. We used the Bayesian network to map areas with a high probability of containing nesting habitat on the Rockaway Peninsula in New York, USA, as an example application. Our approach facilitated the collation of evidence-based information on habitat selection from many locations and sources, which can be used in management and decision-making applications.

  10. GPU MrBayes V3.1: MrBayes on Graphics Processing Units for Protein Sequence Data.

    PubMed

    Pang, Shuai; Stones, Rebecca J; Ren, Ming-Ming; Liu, Xiao-Guang; Wang, Gang; Xia, Hong-ju; Wu, Hao-Yang; Liu, Yang; Xie, Qiang

    2015-09-01

    We present a modified GPU (graphics processing unit) version of MrBayes, called ta(MC)(3) (GPU MrBayes V3.1), for Bayesian phylogenetic inference on protein data sets. Our main contributions are 1) utilizing 64-bit variables, thereby enabling ta(MC)(3) to process larger data sets than MrBayes; and 2) to use Kahan summation to improve accuracy, convergence rates, and consequently runtime. Versus the current fastest software, we achieve a speedup of up to around 2.5 (and up to around 90 vs. serial MrBayes), and more on multi-GPU hardware. GPU MrBayes V3.1 is available from http://sourceforge.net/projects/mrbayes-gpu/. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Validating module network learning algorithms using simulated data.

    PubMed

    Michoel, Tom; Maere, Steven; Bonnet, Eric; Joshi, Anagha; Saeys, Yvan; Van den Bulcke, Tim; Van Leemput, Koenraad; van Remortel, Piet; Kuiper, Martin; Marchal, Kathleen; Van de Peer, Yves

    2007-05-03

    In recent years, several authors have used probabilistic graphical models to learn expression modules and their regulatory programs from gene expression data. Despite the demonstrated success of such algorithms in uncovering biologically relevant regulatory relations, further developments in the area are hampered by a lack of tools to compare the performance of alternative module network learning strategies. Here, we demonstrate the use of the synthetic data generator SynTReN for the purpose of testing and comparing module network learning algorithms. We introduce a software package for learning module networks, called LeMoNe, which incorporates a novel strategy for learning regulatory programs. Novelties include the use of a bottom-up Bayesian hierarchical clustering to construct the regulatory programs, and the use of a conditional entropy measure to assign regulators to the regulation program nodes. Using SynTReN data, we test the performance of LeMoNe in a completely controlled situation and assess the effect of the methodological changes we made with respect to an existing software package, namely Genomica. Additionally, we assess the effect of various parameters, such as the size of the data set and the amount of noise, on the inference performance. Overall, application of Genomica and LeMoNe to simulated data sets gave comparable results. However, LeMoNe offers some advantages, one of them being that the learning process is considerably faster for larger data sets. Additionally, we show that the location of the regulators in the LeMoNe regulation programs and their conditional entropy may be used to prioritize regulators for functional validation, and that the combination of the bottom-up clustering strategy with the conditional entropy-based assignment of regulators improves the handling of missing or hidden regulators. We show that data simulators such as SynTReN are very well suited for the purpose of developing, testing and improving module network algorithms. We used SynTReN data to develop and test an alternative module network learning strategy, which is incorporated in the software package LeMoNe, and we provide evidence that this alternative strategy has several advantages with respect to existing methods.

  12. The Geoinformatica free and open source software stack

    NASA Astrophysics Data System (ADS)

    Jolma, A.

    2012-04-01

    The Geoinformatica free and open source software (FOSS) stack is based mainly on three established FOSS components, namely GDAL, GTK+, and Perl. GDAL provides access to a very large selection of geospatial data formats and data sources, a generic geospatial data model, and a large collection of geospatial analytical and processing functionality. GTK+ and the Cairo graphics library provide generic graphics and graphical user interface capabilities. Perl is a programming language, for which there is a very large set of FOSS modules for a wide range of purposes and which can be used as an integrative tool for building applications. In the Geoinformatica stack, data storages such as FOSS RDBMS PostgreSQL with its geospatial extension PostGIS can be used below the three above mentioned components. The top layer of Geoinformatica consists of a C library and several Perl modules. The C library comprises a general purpose raster algebra library, hydrological terrain analysis functions, and visualization code. The Perl modules define a generic visualized geospatial data layer and subclasses for raster and vector data and graphs. The hydrological terrain functions are already rather old and they suffer for example from the requirement of in-memory rasters. Newer research conducted using the platform include basic geospatial simulation modeling, visualization of ecological data, linking with a Bayesian network engine for spatial risk assessment in coastal areas, and developing standards-based distributed water resources information systems in Internet. The Geoinformatica stack constitutes a platform for geospatial research, which is targeted towards custom analytical tools, prototyping and linking with external libraries. Writing custom analytical tools is supported by the Perl language and the large collection of tools that are available especially in GDAL and Perl modules. Prototyping is supported by the GTK+ library, the GUI tools, and the support for object-oriented programming in Perl. New feature types, geospatial layer classes, and tools as extensions with specific features can be defined, used, and studied. Linking with external libraries is possible using the Perl foreign function interface tools or with generic tools such as Swig. We are interested in implementing and testing linking Geoinformatica with existing or new more specific hydrological FOSS.

  13. State Space Model with hidden variables for reconstruction of gene regulatory networks.

    PubMed

    Wu, Xi; Li, Peng; Wang, Nan; Gong, Ping; Perkins, Edward J; Deng, Youping; Zhang, Chaoyang

    2011-01-01

    State Space Model (SSM) is a relatively new approach to inferring gene regulatory networks. It requires less computational time than Dynamic Bayesian Networks (DBN). There are two types of variables in the linear SSM, observed variables and hidden variables. SSM uses an iterative method, namely Expectation-Maximization, to infer regulatory relationships from microarray datasets. The hidden variables cannot be directly observed from experiments. How to determine the number of hidden variables has a significant impact on the accuracy of network inference. In this study, we used SSM to infer Gene regulatory networks (GRNs) from synthetic time series datasets, investigated Bayesian Information Criterion (BIC) and Principle Component Analysis (PCA) approaches to determining the number of hidden variables in SSM, and evaluated the performance of SSM in comparison with DBN. True GRNs and synthetic gene expression datasets were generated using GeneNetWeaver. Both DBN and linear SSM were used to infer GRNs from the synthetic datasets. The inferred networks were compared with the true networks. Our results show that inference precision varied with the number of hidden variables. For some regulatory networks, the inference precision of DBN was higher but SSM performed better in other cases. Although the overall performance of the two approaches is compatible, SSM is much faster and capable of inferring much larger networks than DBN. This study provides useful information in handling the hidden variables and improving the inference precision.

  14. The Role of Probability-Based Inference in an Intelligent Tutoring System.

    ERIC Educational Resources Information Center

    Mislevy, Robert J.; Gitomer, Drew H.

    Probability-based inference in complex networks of interdependent variables is an active topic in statistical research, spurred by such diverse applications as forecasting, pedigree analysis, troubleshooting, and medical diagnosis. This paper concerns the role of Bayesian inference networks for updating student models in intelligent tutoring…

  15. Building Process Improvement Business Cases Using Bayesian Belief Networks and Monte Carlo Simulation

    DTIC Science & Technology

    2009-07-01

    simulation. The pilot described in this paper used this two-step approach within a Define, Measure, Analyze, Improve, and Control ( DMAIC ) framework to...networks, BBN, Monte Carlo simulation, DMAIC , Six Sigma, business case 15. NUMBER OF PAGES 35 16. PRICE CODE 17. SECURITY CLASSIFICATION OF

  16. Characterizing structural association alterations within brain networks in normal aging using Gaussian Bayesian networks.

    PubMed

    Guo, Xiaojuan; Wang, Yan; Chen, Kewei; Wu, Xia; Zhang, Jiacai; Li, Ke; Jin, Zhen; Yao, Li

    2014-01-01

    Recent multivariate neuroimaging studies have revealed aging-related alterations in brain structural networks. However, the sensory/motor networks such as the auditory, visual and motor networks, have obtained much less attention in normal aging research. In this study, we used Gaussian Bayesian networks (BN), an approach investigating possible inter-regional directed relationship, to characterize aging effects on structural associations between core brain regions within each of these structural sensory/motor networks using volumetric MRI data. We then further examined the discriminability of BN models for the young (N = 109; mean age =22.73 years, range 20-28) and old (N = 82; mean age =74.37 years, range 60-90) groups. The results of the BN modeling demonstrated that structural associations exist between two homotopic brain regions from the left and right hemispheres in each of the three networks. In particular, compared with the young group, the old group had significant connection reductions in each of the three networks and lesser connection numbers in the visual network. Moreover, it was found that the aging-related BN models could distinguish the young and old individuals with 90.05, 73.82, and 88.48% accuracy for the auditory, visual, and motor networks, respectively. Our findings suggest that BN models can be used to investigate the normal aging process with reliable statistical power. Moreover, these differences in structural inter-regional interactions may help elucidate the neuronal mechanism of anatomical changes in normal aging.

  17. Supervised Learning in CINets

    DTIC Science & Technology

    2011-07-01

    supervised learning process is compared to that of Artificial Neural Network ( ANNs ), fuzzy logic rule set, and Bayesian network approaches...of both fuzzy logic systems and Artificial Neural Networks ( ANNs ). Like fuzzy logic systems, the CINet technique allows the use of human- intuitive...fuzzy rule systems [3] CINets also maintain features common to both fuzzy systems and ANNs . The technique can be be shown to possess the property

  18. On the structure of Bayesian network for Indonesian text document paraphrase identification

    NASA Astrophysics Data System (ADS)

    Prayogo, Ario Harry; Syahrul Mubarok, Mohamad; Adiwijaya

    2018-03-01

    Paraphrase identification is an important process within natural language processing. The idea is to automatically recognize phrases that have different forms but contain same meanings. For examples if we input query “causing fire hazard”, then the computer has to recognize this query that this query has same meaning as “the cause of fire hazard. Paraphrasing is an activity that reveals the meaning of an expression, writing, or speech using different words or forms, especially to achieve greater clarity. In this research we will focus on classifying two Indonesian sentences whether it is a paraphrase to each other or not. There are four steps in this research, first is preprocessing, second is feature extraction, third is classifier building, and the last is performance evaluation. Preprocessing consists of tokenization, non-alphanumerical removal, and stemming. After preprocessing we will conduct feature extraction in order to build new features from given dataset. There are two kinds of features in the research, syntactic features and semantic features. Syntactic features consist of normalized levenshtein distance feature, term-frequency based cosine similarity feature, and LCS (Longest Common Subsequence) feature. Semantic features consist of Wu and Palmer feature and Shortest Path Feature. We use Bayesian Networks as the method of training the classifier. Parameter estimation that we use is called MAP (Maximum A Posteriori). For structure learning of Bayesian Networks DAG (Directed Acyclic Graph), we use BDeu (Bayesian Dirichlet equivalent uniform) scoring function and for finding DAG with the best BDeu score, we use K2 algorithm. In evaluation step we perform cross-validation. The average result that we get from testing the classifier as follows: Precision 75.2%, Recall 76.5%, F1-Measure 75.8% and Accuracy 75.6%.

  19. Recognition of degraded handwritten digits using dynamic Bayesian networks

    NASA Astrophysics Data System (ADS)

    Likforman-Sulem, Laurence; Sigelle, Marc

    2007-01-01

    We investigate in this paper the application of dynamic Bayesian networks (DBNs) to the recognition of handwritten digits. The main idea is to couple two separate HMMs into various architectures. First, a vertical HMM and a horizontal HMM are built observing the evolving streams of image columns and image rows respectively. Then, two coupled architectures are proposed to model interactions between these two streams and to capture the 2D nature of character images. Experiments performed on the MNIST handwritten digit database show that coupled architectures yield better recognition performances than non-coupled ones. Additional experiments conducted on artificially degraded (broken) characters demonstrate that coupled architectures better cope with such degradation than non coupled ones and than discriminative methods such as SVMs.

  20. System Analysis by Mapping a Fault-tree into a Bayesian-network

    NASA Astrophysics Data System (ADS)

    Sheng, B.; Deng, C.; Wang, Y. H.; Tang, L. H.

    2018-05-01

    In view of the limitations of fault tree analysis in reliability assessment, Bayesian Network (BN) has been studied as an alternative technology. After a brief introduction to the method for mapping a Fault Tree (FT) into an equivalent BN, equations used to calculate the structure importance degree, the probability importance degree and the critical importance degree are presented. Furthermore, the correctness of these equations is proved mathematically. Combining with an aircraft landing gear’s FT, an equivalent BN is developed and analysed. The results show that richer and more accurate information have been achieved through the BN method than the FT, which demonstrates that the BN is a superior technique in both reliability assessment and fault diagnosis.

  1. Research on Risk Manage of Power Construction Project Based on Bayesian Network

    NASA Astrophysics Data System (ADS)

    Jia, Zhengyuan; Fan, Zhou; Li, Yong

    With China's changing economic structure and increasingly fierce competition in the market, the uncertainty and risk factors in the projects of electric power construction are increasingly complex, the projects will face huge risks or even fail if we don't consider or ignore these risk factors. Therefore, risk management in the projects of electric power construction plays an important role. The paper emphatically elaborated the influence of cost risk in electric power projects through study overall risk management and the behavior of individual in risk management, and introduced the Bayesian network to the project risk management. The paper obtained the order of key factors according to both scene analysis and causal analysis for effective risk management.

  2. Using data mining techniques to predict the severity of bicycle crashes.

    PubMed

    Prati, Gabriele; Pietrantoni, Luca; Fraboni, Federico

    2017-04-01

    To investigate the factors predicting severity of bicycle crashes in Italy, we used an observational study of official statistics. We applied two of the most widely used data mining techniques, CHAID decision tree technique and Bayesian network analysis. We used data provided by the Italian National Institute of Statistics on road crashes that occurred on the Italian road network during the period ranging from 2011 to 2013. In the present study, the dataset contains information about road crashes occurred on the Italian road network during the period ranging from 2011 to 2013. We extracted 49,621 road accidents where at least one cyclist was injured or killed from the original database that comprised a total of 575,093 road accidents. CHAID decision tree technique was employed to establish the relationship between severity of bicycle crashes and factors related to crash characteristics (type of collision and opponent vehicle), infrastructure characteristics (type of carriageway, road type, road signage, pavement type, and type of road segment), cyclists (gender and age), and environmental factors (time of the day, day of the week, month, pavement condition, and weather). CHAID analysis revealed that the most important predictors were, in decreasing order of importance, road type (0.30), crash type (0.24), age of cyclist (0.19), road signage (0.08), gender of cyclist (0.07), type of opponent vehicle (0.05), month (0.04), and type of road segment (0.02). These eight most important predictors of the severity of bicycle crashes were included as predictors of the target (i.e., severity of bicycle crashes) in Bayesian network analysis. Bayesian network analysis identified crash type (0.31), road type (0.19), and type of opponent vehicle (0.18) as the most important predictors of severity of bicycle crashes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition

    PubMed Central

    Bill, Johannes; Buesing, Lars; Habenschuss, Stefan; Nessler, Bernhard; Maass, Wolfgang; Legenstein, Robert

    2015-01-01

    During the last decade, Bayesian probability theory has emerged as a framework in cognitive science and neuroscience for describing perception, reasoning and learning of mammals. However, our understanding of how probabilistic computations could be organized in the brain, and how the observed connectivity structure of cortical microcircuits supports these calculations, is rudimentary at best. In this study, we investigate statistical inference and self-organized learning in a spatially extended spiking network model, that accommodates both local competitive and large-scale associative aspects of neural information processing, under a unified Bayesian account. Specifically, we show how the spiking dynamics of a recurrent network with lateral excitation and local inhibition in response to distributed spiking input, can be understood as sampling from a variational posterior distribution of a well-defined implicit probabilistic model. This interpretation further permits a rigorous analytical treatment of experience-dependent plasticity on the network level. Using machine learning theory, we derive update rules for neuron and synapse parameters which equate with Hebbian synaptic and homeostatic intrinsic plasticity rules in a neural implementation. In computer simulations, we demonstrate that the interplay of these plasticity rules leads to the emergence of probabilistic local experts that form distributed assemblies of similarly tuned cells communicating through lateral excitatory connections. The resulting sparse distributed spike code of a well-adapted network carries compressed information on salient input features combined with prior experience on correlations among them. Our theory predicts that the emergence of such efficient representations benefits from network architectures in which the range of local inhibition matches the spatial extent of pyramidal cells that share common afferent input. PMID:26284370

  4. Ultrascale collaborative visualization using a display-rich global cyberinfrastructure.

    PubMed

    Jeong, Byungil; Leigh, Jason; Johnson, Andrew; Renambot, Luc; Brown, Maxine; Jagodic, Ratko; Nam, Sungwon; Hur, Hyejung

    2010-01-01

    The scalable adaptive graphics environment (SAGE) is high-performance graphics middleware for ultrascale collaborative visualization using a display-rich global cyberinfrastructure. Dozens of sites worldwide use this cyberinfrastructure middleware, which connects high-performance-computing resources over high-speed networks to distributed ultraresolution displays.

  5. A native Bayesian classifier based routing protocol for VANETS

    NASA Astrophysics Data System (ADS)

    Bao, Zhenshan; Zhou, Keqin; Zhang, Wenbo; Gong, Xiaolei

    2016-12-01

    Geographic routing protocols are one of the most hot research areas in VANET (Vehicular Ad-hoc Network). However, there are few routing protocols can take both the transmission efficient and the usage of ratio into account. As we have noticed, different messages in VANET may ask different quality of service. So we raised a Native Bayesian Classifier based routing protocol (Naive Bayesian Classifier-Greedy, NBC-Greedy), which can classify and transmit different messages by its emergency degree. As a result, we can balance the transmission efficient and the usage of ratio with this protocol. Based on Matlab simulation, we can draw a conclusion that NBC-Greedy is more efficient and stable than LR-Greedy and GPSR.

  6. Topics in Computational Bayesian Statistics With Applications to Hierarchical Models in Astronomy and Sociology

    NASA Astrophysics Data System (ADS)

    Sahai, Swupnil

    This thesis includes three parts. The overarching theme is how to analyze structured hierarchical data, with applications to astronomy and sociology. The first part discusses how expectation propagation can be used to parallelize the computation when fitting big hierarchical bayesian models. This methodology is then used to fit a novel, nonlinear mixture model to ultraviolet radiation from various regions of the observable universe. The second part discusses how the Stan probabilistic programming language can be used to numerically integrate terms in a hierarchical bayesian model. This technique is demonstrated on supernovae data to significantly speed up convergence to the posterior distribution compared to a previous study that used a Gibbs-type sampler. The third part builds a formal latent kernel representation for aggregate relational data as a way to more robustly estimate the mixing characteristics of agents in a network. In particular, the framework is applied to sociology surveys to estimate, as a function of ego age, the age and sex composition of the personal networks of individuals in the United States.

  7. Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging.

    PubMed

    Gençay, R; Qi, M

    2001-01-01

    We study the effectiveness of cross validation, Bayesian regularization, early stopping, and bagging to mitigate overfitting and improving generalization for pricing and hedging derivative securities with daily S&P 500 index daily call options from January 1988 to December 1993. Our results indicate that Bayesian regularization can generate significantly smaller pricing and delta-hedging errors than the baseline neural-network (NN) model and the Black-Scholes model for some years. While early stopping does not affect the pricing errors, it significantly reduces the hedging error (HE) in four of the six years we investigated. Although computationally most demanding, bagging seems to provide the most accurate pricing and delta hedging. Furthermore, the standard deviation of the MSPE of bagging is far less than that of the baseline model in all six years, and the standard deviation of the average HE of bagging is far less than that of the baseline model in five out of six years. We conclude that they be used at least in cases when no appropriate hints are available.

  8. Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists.

    PubMed

    Testolin, Alberto; Stoianov, Ivilin; De Filippo De Grazia, Michele; Zorzi, Marco

    2013-01-01

    Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior.

  9. Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists

    PubMed Central

    Testolin, Alberto; Stoianov, Ivilin; De Filippo De Grazia, Michele; Zorzi, Marco

    2013-01-01

    Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior. PMID:23653617

  10. Novel presentational approaches were developed for reporting network meta-analysis.

    PubMed

    Tan, Sze Huey; Cooper, Nicola J; Bujkiewicz, Sylwia; Welton, Nicky J; Caldwell, Deborah M; Sutton, Alexander J

    2014-06-01

    To present graphical tools for reporting network meta-analysis (NMA) results aiming to increase the accessibility, transparency, interpretability, and acceptability of NMA analyses. The key components of NMA results were identified based on recommendations by agencies such as the National Institute for Health and Care Excellence (United Kingdom). Three novel graphs were designed to amalgamate the identified components using familiar graphical tools such as the bar, line, or pie charts and adhering to good graphical design principles. Three key components for presentation of NMA results were identified, namely relative effects and their uncertainty, probability of an intervention being best, and between-study heterogeneity. Two of the three graphs developed present results (for each pairwise comparison of interventions in the network) obtained from both NMA and standard pairwise meta-analysis for easy comparison. They also include options to display the probability best, ranking statistics, heterogeneity, and prediction intervals. The third graph presents rankings of interventions in terms of their effectiveness to enable clinicians to easily identify "top-ranking" interventions. The graphical tools presented can display results tailored to the research question of interest, and targeted at a whole spectrum of users from the technical analyst to the nontechnical clinician. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Risk Management Collaboration through Sharing Interactive Graphics

    NASA Astrophysics Data System (ADS)

    Slingsby, Aidan; Dykes, Jason; Wood, Jo; Foote, Matthew

    2010-05-01

    Risk management involves the cooperation of scientists, underwriters and actuaries all of whom analyse data to support decision-making. Results are often disseminated through static documents with graphics that convey the message the analyst wishes to communicate. Interactive graphics are increasingly popular means of communicating the results of data analyses because they enable other parties to explore and visually analyse some of the data themselves prior to and during discussion. Discussion around interactive graphics can occur synchronously in face-to-face meetings or with video-conferencing and screen sharing or they can occur asynchronously through web-sites such as ManyEyes, web-based fora, blogs, wikis and email. A limitation of approaches that do not involve screen sharing is the difficulty in sharing the results of insights from interacting with the graphic. Static images accompanied can be shared but these themselves cannot be interacted, producing a discussion bottleneck (Baker, 2008). We address this limitation by allowing the state and configuration of graphics to be shared (rather than static images) so that a user can reproduce someone else's graphic, interact with it and then share the results of this accompanied with some commentary. HiVE (Slingsby et al, 2009) is a compact and intuitive text-based language that has been designed for this purpose. We will describe the vizTweets project (a 9-month project funded by JISC) in which we are applying these principles to insurance risk management in the context of the Willis Research Network, the world's largest collaboration between the insurance industry and the academia). The project aims to extend HiVE to meet the needs of the sector, design, implement free-available web services and tools and to provide case studies. We will present a case study that demonstrate the potential of this approach for collaboration within the Willis Research Network. Baker, D. Towards Transparency in Visualisation Based Research. AHRC ICT Methods Network Expert Workshop. Available at http://www.viznet.ac.uk/documents Slingsby, A., Dykes, J. and Wood, J. 2009. Configuring Hierarchical Layouts to Address Research Questions. IEEE Transactions on Visualization and Computer Graphics 15 (6), Nov-Dec 2009, pp977-984.

  12. BGen: A UML Behavior Network Generator Tool

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry; Reder, Leonard J.; Balian, Harry

    2010-01-01

    BGen software was designed for autogeneration of code based on a graphical representation of a behavior network used for controlling automatic vehicles. A common format used for describing a behavior network, such as that used in the JPL-developed behavior-based control system, CARACaS ["Control Architecture for Robotic Agent Command and Sensing" (NPO-43635), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 40] includes a graph with sensory inputs flowing through the behaviors in order to generate the signals for the actuators that drive and steer the vehicle. A computer program to translate Unified Modeling Language (UML) Freeform Implementation Diagrams into a legacy C implementation of Behavior Network has been developed in order to simplify the development of C-code for behavior-based control systems. UML is a popular standard developed by the Object Management Group (OMG) to model software architectures graphically. The C implementation of a Behavior Network is functioning as a decision tree.

  13. Bayesian module identification from multiple noisy networks.

    PubMed

    Zamani Dadaneh, Siamak; Qian, Xiaoning

    2016-12-01

    Module identification has been studied extensively in order to gain deeper understanding of complex systems, such as social networks as well as biological networks. Modules are often defined as groups of vertices in these networks that are topologically cohesive with similar interaction patterns with the rest of the vertices. Most of the existing module identification algorithms assume that the given networks are faithfully measured without errors. However, in many real-world applications, for example, when analyzing protein-protein interaction networks from high-throughput profiling techniques, there is significant noise with both false positive and missing links between vertices. In this paper, we propose a new model for more robust module identification by taking advantage of multiple observed networks with significant noise so that signals in multiple networks can be strengthened and help improve the solution quality by combining information from various sources. We adopt a hierarchical Bayesian model to integrate multiple noisy snapshots that capture the underlying modular structure of the networks under study. By introducing a latent root assignment matrix and its relations to instantaneous module assignments in all the observed networks to capture the underlying modular structure and combine information across multiple networks, an efficient variational Bayes algorithm can be derived to accurately and robustly identify the underlying modules from multiple noisy networks. Experiments on synthetic and protein-protein interaction data sets show that our proposed model enhances both the accuracy and resolution in detecting cohesive modules, and it is less vulnerable to noise in the observed data. In addition, it shows higher power in predicting missing edges compared to individual-network methods.

  14. Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN.

    PubMed

    Hao, Jie; Liebeke, Manuel; Astle, William; De Iorio, Maria; Bundy, Jacob G; Ebbels, Timothy M D

    2014-01-01

    Data processing for 1D NMR spectra is a key bottleneck for metabolomic and other complex-mixture studies, particularly where quantitative data on individual metabolites are required. We present a protocol for automated metabolite deconvolution and quantification from complex NMR spectra by using the Bayesian automated metabolite analyzer for NMR (BATMAN) R package. BATMAN models resonances on the basis of a user-controllable set of templates, each of which specifies the chemical shifts, J-couplings and relative peak intensities for a single metabolite. Peaks are allowed to shift position slightly between spectra, and peak widths are allowed to vary by user-specified amounts. NMR signals not captured by the templates are modeled non-parametrically by using wavelets. The protocol covers setting up user template libraries, optimizing algorithmic input parameters, improving prior information on peak positions, quality control and evaluation of outputs. The outputs include relative concentration estimates for named metabolites together with associated Bayesian uncertainty estimates, as well as the fit of the remainder of the spectrum using wavelets. Graphical diagnostics allow the user to examine the quality of the fit for multiple spectra simultaneously. This approach offers a workflow to analyze large numbers of spectra and is expected to be useful in a wide range of metabolomics studies.

  15. Network, system, and status software enhancements for the autonomously managed electrical power system breadboard. Volume 4: Graphical status display

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1990-01-01

    This volume (4 of 4) contains the description, structured flow charts, prints of the graphical displays, and source code to generate the displays for the AMPS graphical status system. The function of these displays is to present to the manager of the AMPS system a graphical status display with the hot boxes that allow the manager to get more detailed status on selected portions of the AMPS system. The development of the graphical displays is divided into two processes; the creation of the screen images and storage of them in files on the computer, and the running of the status program which uses the screen images.

  16. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.

    1991-01-01

    Research activity has shifted from computer graphics and vision systems to the broader scope of applying concepts of artificial intelligence to robotics. Specifically, the research is directed toward developing Artificial Neural Networks, Expert Systems, and Laser Imaging Techniques for Autonomous Space Robots.

  17. Aircraft vulnerability analysis by modeling and simulation

    NASA Astrophysics Data System (ADS)

    Willers, Cornelius J.; Willers, Maria S.; de Waal, Alta

    2014-10-01

    Infrared missiles pose a significant threat to civilian and military aviation. ManPADS missiles are especially dangerous in the hands of rogue and undisciplined forces. Yet, not all the launched missiles hit their targets; the miss being either attributable to misuse of the weapon or to missile performance restrictions. This paper analyses some of the factors affecting aircraft vulnerability and demonstrates a structured analysis of the risk and aircraft vulnerability problem. The aircraft-missile engagement is a complex series of events, many of which are only partially understood. Aircraft and missile designers focus on the optimal design and performance of their respective systems, often testing only in a limited set of scenarios. Most missiles react to the contrast intensity, but the variability of the background is rarely considered. Finally, the vulnerability of the aircraft depends jointly on the missile's performance and the doctrine governing the missile's launch. These factors are considered in a holistic investigation. The view direction, altitude, time of day, sun position, latitude/longitude and terrain determine the background against which the aircraft is observed. Especially high gradients in sky radiance occur around the sun and on the horizon. This paper considers uncluttered background scenes (uniform terrain and clear sky) and presents examples of background radiance at all view angles across a sphere around the sensor. A detailed geometrical and spatially distributed radiometric model is used to model the aircraft. This model provides the signature at all possible view angles across the sphere around the aircraft. The signature is determined in absolute terms (no background) and in contrast terms (with background). It is shown that the background significantly affects the contrast signature as observed by the missile sensor. A simplified missile model is constructed by defining the thrust and mass profiles, maximum seeker tracking rate, maximum guidance acceleration and seeker sensitivity. For the purpose of this investigation the aircraft is equipped with conventional pyrotechnic decoy flares and the missile has no counter-countermeasure means (security restrictions on open publication). This complete simulation is used to calculate the missile miss distance, when the missile is launched from different locations around the aircraft. The miss distance data is then graphically presented showing miss distance (aircraft vulnerability) as a function of launch direction and range. The aircraft vulnerability graph accounts for aircraft and missile characteristics, but does not account for missile deployment doctrine. A Bayesian network is constructed to fuse the doctrinal rules with the aircraft vulnerability data. The Bayesian network now provides the capability to evaluate the combined risk of missile launch and aircraft vulnerability. It is shown in this paper that it is indeed possible to predict the aircraft vulnerability to missile attack in a comprehensive modelling and a holistic process. By using the appropriate real-world models, this approach is used to evaluate the effectiveness of specific countermeasure techniques against specific missile threats. The use of a Bayesian network provides the means to fuse simulated performance data with more abstract doctrinal rules to provide a realistic assessment of the aircraft vulnerability.

  18. Real-time sensor data validation

    NASA Technical Reports Server (NTRS)

    Bickmore, Timothy W.

    1994-01-01

    This report describes the status of an on-going effort to develop software capable of detecting sensor failures on rocket engines in real time. This software could be used in a rocket engine controller to prevent the erroneous shutdown of an engine due to sensor failures which would otherwise be interpreted as engine failures by the control software. The approach taken combines analytical redundancy with Bayesian belief networks to provide a solution which has well defined real-time characteristics and well-defined error rates. Analytical redundancy is a technique in which a sensor's value is predicted by using values from other sensors and known or empirically derived mathematical relations. A set of sensors and a set of relations among them form a network of cross-checks which can be used to periodically validate all of the sensors in the network. Bayesian belief networks provide a method of determining if each of the sensors in the network is valid, given the results of the cross-checks. This approach has been successfully demonstrated on the Technology Test Bed Engine at the NASA Marshall Space Flight Center. Current efforts are focused on extending the system to provide a validation capability for 100 sensors on the Space Shuttle Main Engine.

  19. Immigrant maternal depression and social networks. A multilevel Bayesian spatial logistic regression in South Western Sydney, Australia.

    PubMed

    Eastwood, John G; Jalaludin, Bin B; Kemp, Lynn A; Phung, Hai N; Barnett, Bryanne E W

    2013-09-01

    The purpose is to explore the multilevel spatial distribution of depressive symptoms among migrant mothers in South Western Sydney and to identify any group level associations that could inform subsequent theory building and local public health interventions. Migrant mothers (n=7256) delivering in 2002 and 2003 were assessed at 2-3 weeks after delivery for risk factors for depressive symptoms. The binary outcome variables were Edinburgh Postnatal Depression Scale scores (EPDS) of >9 and >12. Individual level variables included were: financial income, self-reported maternal health, social support network, emotional support, practical support, baby trouble sleeping, baby demanding and baby not content. The group level variable reported here is aggregated social support networks. We used Bayesian hierarchical multilevel spatial modelling with conditional autoregression. Migrant mothers were at higher risk of having depressive symptoms if they lived in a community with predominantly Australian-born mothers and strong social capital as measured by aggregated social networks. These findings suggest that migrant mothers are socially isolated and current home visiting services should be strengthened for migrant mothers living in communities where they may have poor social networks. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Gaussian Graphical Models Identify Networks of Dietary Intake in a German Adult Population.

    PubMed

    Iqbal, Khalid; Buijsse, Brian; Wirth, Janine; Schulze, Matthias B; Floegel, Anna; Boeing, Heiner

    2016-03-01

    Data-reduction methods such as principal component analysis are often used to derive dietary patterns. However, such methods do not assess how foods are consumed in relation to each other. Gaussian graphical models (GGMs) are a set of novel methods that can address this issue. We sought to apply GGMs to derive sex-specific dietary intake networks representing consumption patterns in a German adult population. Dietary intake data from 10,780 men and 16,340 women of the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort were cross-sectionally analyzed to construct dietary intake networks. Food intake for each participant was estimated using a 148-item food-frequency questionnaire that captured the intake of 49 food groups. GGMs were applied to log-transformed intakes (grams per day) of 49 food groups to construct sex-specific food networks. Semiparametric Gaussian copula graphical models (SGCGMs) were used to confirm GGM results. In men, GGMs identified 1 major dietary network that consisted of intakes of red meat, processed meat, cooked vegetables, sauces, potatoes, cabbage, poultry, legumes, mushrooms, soup, and whole-grain and refined breads. For women, a similar network was identified with the addition of fried potatoes. Other identified networks consisted of dairy products and sweet food groups. SGCGMs yielded results comparable to those of GGMs. GGMs are a powerful exploratory method that can be used to construct dietary networks representing dietary intake patterns that reveal how foods are consumed in relation to each other. GGMs indicated an apparent major role of red meat intake in a consumption pattern in the studied population. In the future, identified networks might be transformed into pattern scores for investigating their associations with health outcomes. © 2016 American Society for Nutrition.

  1. Emulation of reionization simulations for Bayesian inference of astrophysics parameters using neural networks

    NASA Astrophysics Data System (ADS)

    Schmit, C. J.; Pritchard, J. R.

    2018-03-01

    Next generation radio experiments such as LOFAR, HERA, and SKA are expected to probe the Epoch of Reionization (EoR) and claim a first direct detection of the cosmic 21cm signal within the next decade. Data volumes will be enormous and can thus potentially revolutionize our understanding of the early Universe and galaxy formation. However, numerical modelling of the EoR can be prohibitively expensive for Bayesian parameter inference and how to optimally extract information from incoming data is currently unclear. Emulation techniques for fast model evaluations have recently been proposed as a way to bypass costly simulations. We consider the use of artificial neural networks as a blind emulation technique. We study the impact of training duration and training set size on the quality of the network prediction and the resulting best-fitting values of a parameter search. A direct comparison is drawn between our emulation technique and an equivalent analysis using 21CMMC. We find good predictive capabilities of our network using training sets of as low as 100 model evaluations, which is within the capabilities of fully numerical radiative transfer codes.

  2. Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand.

    PubMed

    Lewis, Jim; Mengersen, Kerrie; Buys, Laurie; Vine, Desley; Bell, John; Morris, Peter; Ledwich, Gerard

    2015-01-01

    Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers' peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers' location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price, managed supply, etc., in a conceptual 'map' of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tickbox interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the locations and highlighted that household numbers, demographics as well as the different climates were significant factors. It presented possible network peak demand reductions which would delay any upgrade of networks, resulting in savings for Queensland utilities and ultimately for households. The use of this systems approach using Bayesian networks to assist the management of peak demand in different modelled locations in Queensland provided insights about the most important elements in the system and the intervention strategies that could be tailored to the targeted customer segments.

  3. Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand

    PubMed Central

    Lewis, Jim; Mengersen, Kerrie; Buys, Laurie; Vine, Desley; Bell, John; Morris, Peter; Ledwich, Gerard

    2015-01-01

    Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers’ peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers’ location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price, managed supply, etc., in a conceptual ‘map’ of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tickbox interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the locations and highlighted that household numbers, demographics as well as the different climates were significant factors. It presented possible network peak demand reductions which would delay any upgrade of networks, resulting in savings for Queensland utilities and ultimately for households. The use of this systems approach using Bayesian networks to assist the management of peak demand in different modelled locations in Queensland provided insights about the most important elements in the system and the intervention strategies that could be tailored to the targeted customer segments. PMID:26226511

  4. Multiscale Bayesian neural networks for soil water content estimation

    NASA Astrophysics Data System (ADS)

    Jana, Raghavendra B.; Mohanty, Binayak P.; Springer, Everett P.

    2008-08-01

    Artificial neural networks (ANN) have been used for some time now to estimate soil hydraulic parameters from other available or more easily measurable soil properties. However, most such uses of ANNs as pedotransfer functions (PTFs) have been at matching spatial scales (1:1) of inputs and outputs. This approach assumes that the outputs are only required at the same scale as the input data. Unfortunately, this is rarely true. Different hydrologic, hydroclimatic, and contaminant transport models require soil hydraulic parameter data at different spatial scales, depending upon their grid sizes. While conventional (deterministic) ANNs have been traditionally used in these studies, the use of Bayesian training of ANNs is a more recent development. In this paper, we develop a Bayesian framework to derive soil water retention function including its uncertainty at the point or local scale using PTFs trained with coarser-scale Soil Survey Geographic (SSURGO)-based soil data. The approach includes an ANN trained with Bayesian techniques as a PTF tool with training and validation data collected across spatial extents (scales) in two different regions in the United States. The two study areas include the Las Cruces Trench site in the Rio Grande basin of New Mexico, and the Southern Great Plains 1997 (SGP97) hydrology experimental region in Oklahoma. Each region-specific Bayesian ANN is trained using soil texture and bulk density data from the SSURGO database (scale 1:24,000), and predictions of the soil water contents at different pressure heads with point scale data (1:1) inputs are made. The resulting outputs are corrected for bias using both linear and nonlinear correction techniques. The results show good agreement between the soil water content values measured at the point scale and those predicted by the Bayesian ANN-based PTFs for both the study sites. Overall, Bayesian ANNs coupled with nonlinear bias correction are found to be very suitable tools for deriving soil hydraulic parameters at the local/fine scale from soil physical properties at coarser-scale and across different spatial extents. This approach could potentially be used for soil hydraulic properties estimation and downscaling.

  5. An ecosystem service approach to support integrated pond management: a case study using Bayesian belief networks--highlighting opportunities and risks.

    PubMed

    Landuyt, Dries; Lemmens, Pieter; D'hondt, Rob; Broekx, Steven; Liekens, Inge; De Bie, Tom; Declerck, Steven A J; De Meester, Luc; Goethals, Peter L M

    2014-12-01

    Freshwater ponds deliver a broad range of ecosystem services (ESS). Taking into account this broad range of services to attain cost-effective ESS delivery is an important challenge facing integrated pond management. To assess the strengths and weaknesses of an ESS approach to support decisions in integrated pond management, we applied it on a small case study in Flanders, Belgium. A Bayesian belief network model was developed to assess ESS delivery under three alternative pond management scenarios: intensive fish farming (IFF), extensive fish farming (EFF) and nature conservation management (NCM). A probabilistic cost-benefit analysis was performed that includes both costs associated with pond management practices and benefits associated with ESS delivery. Whether or not a particular ESS is included in the analysis affects the identification of the most preferable management scenario by the model. Assessing the delivery of a more complete set of ecosystem services tends to shift the results away from intensive management to more biodiversity-oriented management scenarios. The proposed methodology illustrates the potential of Bayesian belief networks. BBNs facilitate knowledge integration and their modular nature encourages future model expansion to more encompassing sets of services. Yet, we also illustrate the key weaknesses of such exercises, being that the choice whether or not to include a particular ecosystem service may determine the suggested optimal management practice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Assessing State Nuclear Weapons Proliferation: Using Bayesian Network Analysis of Social Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coles, Garill A.; Brothers, Alan J.; Olson, Jarrod

    A Bayesian network (BN) model of social factors can support proliferation assessments by estimating the likelihood that a state will pursue a nuclear weapon. Social factors including political, economic, nuclear capability, security, and national identity and psychology factors may play as important a role in whether a State pursues nuclear weapons as more physical factors. This paper will show how using Bayesian reasoning on a generic case of a would-be proliferator State can be used to combine evidence that supports proliferation assessment. Theories and analysis by political scientists can be leveraged in a quantitative and transparent way to indicate proliferationmore » risk. BN models facilitate diagnosis and inference in a probabilistic environment by using a network of nodes and acyclic directed arcs between the nodes whose connections, or absence of, indicate probabilistic relevance, or independence. We propose a BN model that would use information from both traditional safeguards and the strengthened safeguards associated with the Additional Protocol to indicate countries with a high risk of proliferating nuclear weapons. This model could be used in a variety of applications such a prioritization tool and as a component of state safeguards evaluations. This paper will discuss the benefits of BN reasoning, the development of Pacific Northwest National Laboratory’s (PNNL) BN state proliferation model and how it could be employed as an analytical tool.« less

  7. Automated high resolution mapping of coffee in Rwanda using an expert Bayesian network

    NASA Astrophysics Data System (ADS)

    Mukashema, A.; Veldkamp, A.; Vrieling, A.

    2014-12-01

    African highland agro-ecosystems are dominated by small-scale agricultural fields that often contain a mix of annual and perennial crops. This makes such systems difficult to map by remote sensing. We developed an expert Bayesian network model to extract the small-scale coffee fields of Rwanda from very high resolution data. The model was subsequently applied to aerial orthophotos covering more than 99% of Rwanda and on one QuickBird image for the remaining part. The method consists of a stepwise adjustment of pixel probabilities, which incorporates expert knowledge on size of coffee trees and fields, and on their location. The initial naive Bayesian network, which is a spectral-based classification, yielded a coffee map with an overall accuracy of around 50%. This confirms that standard spectral variables alone cannot accurately identify coffee fields from high resolution images. The combination of spectral and ancillary data (DEM and a forest map) allowed mapping of coffee fields and associated uncertainties with an overall accuracy of 87%. Aggregated to district units, the mapped coffee areas demonstrated a high correlation with the coffee areas reported in the detailed national coffee census of 2009 (R2 = 0.92). Unlike the census data our map provides high spatial resolution of coffee area patterns of Rwanda. The proposed method has potential for mapping other perennial small scale cropping systems in the East African Highlands and elsewhere.

  8. Capturing Ecosystem Services, Stakeholders' Preferences and Trade-Offs in Coastal Aquaculture Decisions: A Bayesian Belief Network Application

    PubMed Central

    Schmitt, Laetitia Helene Marie; Brugere, Cecile

    2013-01-01

    Aquaculture activities are embedded in complex social-ecological systems. However, aquaculture development decisions have tended to be driven by revenue generation, failing to account for interactions with the environment and the full value of the benefits derived from services provided by local ecosystems. Trade-offs resulting from changes in ecosystem services provision and associated impacts on livelihoods are also often overlooked. This paper proposes an innovative application of Bayesian belief networks - influence diagrams - as a decision support system for mediating trade-offs arising from the development of shrimp aquaculture in Thailand. Senior experts were consulted (n = 12) and primary farm data on the economics of shrimp farming (n = 20) were collected alongside secondary information on ecosystem services, in order to construct and populate the network. Trade-offs were quantitatively assessed through the generation of a probabilistic impact matrix. This matrix captures nonlinearity and uncertainty and describes the relative performance and impacts of shrimp farming management scenarios on local livelihoods. It also incorporates export revenues and provision and value of ecosystem services such as coastal protection and biodiversity. This research shows that Bayesian belief modeling can support complex decision-making on pathways for sustainable coastal aquaculture development and thus contributes to the debate on the role of aquaculture in social-ecological resilience and economic development. PMID:24155876

  9. Integrative Analysis of Transcription Factor Combinatorial Interactions Using a Bayesian Tensor Factorization Approach

    PubMed Central

    Ye, Yusen; Gao, Lin; Zhang, Shihua

    2017-01-01

    Transcription factors play a key role in transcriptional regulation of genes and determination of cellular identity through combinatorial interactions. However, current studies about combinatorial regulation is deficient due to lack of experimental data in the same cellular environment and extensive existence of data noise. Here, we adopt a Bayesian CANDECOMP/PARAFAC (CP) factorization approach (BCPF) to integrate multiple datasets in a network paradigm for determining precise TF interaction landscapes. In our first application, we apply BCPF to integrate three networks built based on diverse datasets of multiple cell lines from ENCODE respectively to predict a global and precise TF interaction network. This network gives 38 novel TF interactions with distinct biological functions. In our second application, we apply BCPF to seven types of cell type TF regulatory networks and predict seven cell lineage TF interaction networks, respectively. By further exploring the dynamics and modularity of them, we find cell lineage-specific hub TFs participate in cell type or lineage-specific regulation by interacting with non-specific TFs. Furthermore, we illustrate the biological function of hub TFs by taking those of cancer lineage and blood lineage as examples. Taken together, our integrative analysis can reveal more precise and extensive description about human TF combinatorial interactions. PMID:29033978

  10. Integrative Analysis of Transcription Factor Combinatorial Interactions Using a Bayesian Tensor Factorization Approach.

    PubMed

    Ye, Yusen; Gao, Lin; Zhang, Shihua

    2017-01-01

    Transcription factors play a key role in transcriptional regulation of genes and determination of cellular identity through combinatorial interactions. However, current studies about combinatorial regulation is deficient due to lack of experimental data in the same cellular environment and extensive existence of data noise. Here, we adopt a Bayesian CANDECOMP/PARAFAC (CP) factorization approach (BCPF) to integrate multiple datasets in a network paradigm for determining precise TF interaction landscapes. In our first application, we apply BCPF to integrate three networks built based on diverse datasets of multiple cell lines from ENCODE respectively to predict a global and precise TF interaction network. This network gives 38 novel TF interactions with distinct biological functions. In our second application, we apply BCPF to seven types of cell type TF regulatory networks and predict seven cell lineage TF interaction networks, respectively. By further exploring the dynamics and modularity of them, we find cell lineage-specific hub TFs participate in cell type or lineage-specific regulation by interacting with non-specific TFs. Furthermore, we illustrate the biological function of hub TFs by taking those of cancer lineage and blood lineage as examples. Taken together, our integrative analysis can reveal more precise and extensive description about human TF combinatorial interactions.

  11. Discriminative Relational Topic Models.

    PubMed

    Chen, Ning; Zhu, Jun; Xia, Fei; Zhang, Bo

    2015-05-01

    Relational topic models (RTMs) provide a probabilistic generative process to describe both the link structure and document contents for document networks, and they have shown promise on predicting network structures and discovering latent topic representations. However, existing RTMs have limitations in both the restricted model expressiveness and incapability of dealing with imbalanced network data. To expand the scope and improve the inference accuracy of RTMs, this paper presents three extensions: 1) unlike the common link likelihood with a diagonal weight matrix that allows the-same-topic interactions only, we generalize it to use a full weight matrix that captures all pairwise topic interactions and is applicable to asymmetric networks; 2) instead of doing standard Bayesian inference, we perform regularized Bayesian inference (RegBayes) with a regularization parameter to deal with the imbalanced link structure issue in real networks and improve the discriminative ability of learned latent representations; and 3) instead of doing variational approximation with strict mean-field assumptions, we present collapsed Gibbs sampling algorithms for the generalized relational topic models by exploring data augmentation without making restricting assumptions. Under the generic RegBayes framework, we carefully investigate two popular discriminative loss functions, namely, the logistic log-loss and the max-margin hinge loss. Experimental results on several real network datasets demonstrate the significance of these extensions on improving prediction performance.

  12. Predicting forest insect flight activity: A Bayesian network approach

    PubMed Central

    Pawson, Stephen M.; Marcot, Bruce G.; Woodberry, Owen G.

    2017-01-01

    Daily flight activity patterns of forest insects are influenced by temporal and meteorological conditions. Temperature and time of day are frequently cited as key drivers of activity; however, complex interactions between multiple contributing factors have also been proposed. Here, we report individual Bayesian network models to assess the probability of flight activity of three exotic insects, Hylurgus ligniperda, Hylastes ater, and Arhopalus ferus in a managed plantation forest context. Models were built from 7,144 individual hours of insect sampling, temperature, wind speed, relative humidity, photon flux density, and temporal data. Discretized meteorological and temporal variables were used to build naïve Bayes tree augmented networks. Calibration results suggested that the H. ater and A. ferus Bayesian network models had the best fit for low Type I and overall errors, and H. ligniperda had the best fit for low Type II errors. Maximum hourly temperature and time since sunrise had the largest influence on H. ligniperda flight activity predictions, whereas time of day and year had the greatest influence on H. ater and A. ferus activity. Type II model errors for the prediction of no flight activity is improved by increasing the model’s predictive threshold. Improvements in model performance can be made by further sampling, increasing the sensitivity of the flight intercept traps, and replicating sampling in other regions. Predicting insect flight informs an assessment of the potential phytosanitary risks of wood exports. Quantifying this risk allows mitigation treatments to be targeted to prevent the spread of invasive species via international trade pathways. PMID:28953904

  13. Performance Testing of GPU-Based Approximate Matching Algorithm on Network Traffic

    DTIC Science & Technology

    2015-03-01

    Defense Department’s use. vi THIS PAGE INTENTIONALLY LEFT BLANK vii TABLE OF CONTENTS I.  INTRODUCTION...22  D.  GENERATING DIGESTS ............................................................................23  1.  Reference...the-shelf GPU Graphical Processing Unit GPGPU General -Purpose Graphic Processing Unit HBSS Host-Based Security System HIPS Host Intrusion

  14. Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans

    DOE PAGES

    Webb-Robertson, Bobbie-Jo; Kreuzer, Helen; Hart, Garret; ...

    2012-01-01

    Recenmore » t years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 60.9 ± 2.1 % versus 55.9 ± 2.1 % and 40.2 ± 1.8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.« less

  15. Bayesian Integration of Isotope Ratios for Geographic Sourcing of Castor Beans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb-Robertson, Bobbie-Jo M.; Kreuzer, Helen W.; Hart, Garret L.

    Recent years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based onmore » the integrated model with a class accuracy of 6 0 . 9 {+-} 2 . 1 % versus 5 5 . 9 {+-} 2 . 1 % and 4 0 . 2 {+-} 1 . 8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.« less

  16. Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb-Robertson, Bobbie-Jo; Kreuzer, Helen; Hart, Garret

    Recenmore » t years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 60.9 ± 2.1 % versus 55.9 ± 2.1 % and 40.2 ± 1.8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.« less

  17. Bayesian joint modelling of benefit and risk in drug development.

    PubMed

    Costa, Maria J; Drury, Thomas

    2018-05-01

    To gain regulatory approval, a new medicine must demonstrate that its benefits outweigh any potential risks, ie, that the benefit-risk balance is favourable towards the new medicine. For transparency and clarity of the decision, a structured and consistent approach to benefit-risk assessment that quantifies uncertainties and accounts for underlying dependencies is desirable. This paper proposes two approaches to benefit-risk evaluation, both based on the idea of joint modelling of mixed outcomes that are potentially dependent at the subject level. Using Bayesian inference, the two approaches offer interpretability and efficiency to enhance qualitative frameworks. Simulation studies show that accounting for correlation leads to a more accurate assessment of the strength of evidence to support benefit-risk profiles of interest. Several graphical approaches are proposed that can be used to communicate the benefit-risk balance to project teams. Finally, the two approaches are illustrated in a case study using real clinical trial data. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans

    PubMed Central

    Webb-Robertson, Bobbie-Jo; Kreuzer, Helen; Hart, Garret; Ehleringer, James; West, Jason; Gill, Gary; Duckworth, Douglas

    2012-01-01

    Recent years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 60.9 ± 2.1% versus 55.9 ± 2.1% and 40.2 ± 1.8% for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model. PMID:22919270

  19. Bayesian accrual prediction for interim review of clinical studies: open source R package and smartphone application.

    PubMed

    Jiang, Yu; Guarino, Peter; Ma, Shuangge; Simon, Steve; Mayo, Matthew S; Raghavan, Rama; Gajewski, Byron J

    2016-07-22

    Subject recruitment for medical research is challenging. Slow patient accrual leads to increased costs and delays in treatment advances. Researchers need reliable tools to manage and predict the accrual rate. The previously developed Bayesian method integrates researchers' experience on former trials and data from an ongoing study, providing a reliable prediction of accrual rate for clinical studies. In this paper, we present a user-friendly graphical user interface program developed in R. A closed-form solution for the total subjects that can be recruited within a fixed time is derived. We also present a built-in Android system using Java for web browsers and mobile devices. Using the accrual software, we re-evaluated the Veteran Affairs Cooperative Studies Program 558- ROBOTICS study. The application of the software in monitoring and management of recruitment is illustrated for different stages of the trial. This developed accrual software provides a more convenient platform for estimation and prediction of the accrual process.

  20. The importance of proving the null.

    PubMed

    Gallistel, C R

    2009-04-01

    Null hypotheses are simple, precise, and theoretically important. Conventional statistical analysis cannot support them; Bayesian analysis can. The challenge in a Bayesian analysis is to formulate a suitably vague alternative, because the vaguer the alternative is (the more it spreads out the unit mass of prior probability), the more the null is favored. A general solution is a sensitivity analysis: Compute the odds for or against the null as a function of the limit(s) on the vagueness of the alternative. If the odds on the null approach 1 from above as the hypothesized maximum size of the possible effect approaches 0, then the data favor the null over any vaguer alternative to it. The simple computations and the intuitive graphic representation of the analysis are illustrated by the analysis of diverse examples from the current literature. They pose 3 common experimental questions: (a) Are 2 means the same? (b) Is performance at chance? (c) Are factors additive? (c) 2009 APA, all rights reserved

Top