Sample records for bayesian nonnegative matrix

  1. A Poisson nonnegative matrix factorization method with parameter subspace clustering constraint for endmember extraction in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Ma, Jun; Yang, Gang; Du, Bo; Zhang, Liangpei

    2017-06-01

    A new Bayesian method named Poisson Nonnegative Matrix Factorization with Parameter Subspace Clustering Constraint (PNMF-PSCC) has been presented to extract endmembers from Hyperspectral Imagery (HSI). First, the method integrates the liner spectral mixture model with the Bayesian framework and it formulates endmember extraction into a Bayesian inference problem. Second, the Parameter Subspace Clustering Constraint (PSCC) is incorporated into the statistical program to consider the clustering of all pixels in the parameter subspace. The PSCC could enlarge differences among ground objects and helps finding endmembers with smaller spectrum divergences. Meanwhile, the PNMF-PSCC method utilizes the Poisson distribution as the prior knowledge of spectral signals to better explain the quantum nature of light in imaging spectrometer. Third, the optimization problem of PNMF-PSCC is formulated into maximizing the joint density via the Maximum A Posterior (MAP) estimator. The program is finally solved by iteratively optimizing two sub-problems via the Alternating Direction Method of Multipliers (ADMM) framework and the FURTHESTSUM initialization scheme. Five state-of-the art methods are implemented to make comparisons with the performance of PNMF-PSCC on both the synthetic and real HSI datasets. Experimental results show that the PNMF-PSCC outperforms all the five methods in Spectral Angle Distance (SAD) and Root-Mean-Square-Error (RMSE), and especially it could identify good endmembers for ground objects with smaller spectrum divergences.

  2. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis.

    PubMed

    Kim, Hyunsoo; Park, Haesun

    2007-06-15

    Many practical pattern recognition problems require non-negativity constraints. For example, pixels in digital images and chemical concentrations in bioinformatics are non-negative. Sparse non-negative matrix factorizations (NMFs) are useful when the degree of sparseness in the non-negative basis matrix or the non-negative coefficient matrix in an NMF needs to be controlled in approximating high-dimensional data in a lower dimensional space. In this article, we introduce a novel formulation of sparse NMF and show how the new formulation leads to a convergent sparse NMF algorithm via alternating non-negativity-constrained least squares. We apply our sparse NMF algorithm to cancer-class discovery and gene expression data analysis and offer biological analysis of the results obtained. Our experimental results illustrate that the proposed sparse NMF algorithm often achieves better clustering performance with shorter computing time compared to other existing NMF algorithms. The software is available as supplementary material.

  3. A Novel Sky-Subtraction Method Based on Non-negative Matrix Factorisation with Sparsity for Multi-object Fibre Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhang, Long; Ye, Zhongfu

    2016-12-01

    A novel sky-subtraction method based on non-negative matrix factorisation with sparsity is proposed in this paper. The proposed non-negative matrix factorisation with sparsity method is redesigned for sky-subtraction considering the characteristics of the skylights. It has two constraint terms, one for sparsity and the other for homogeneity. Different from the standard sky-subtraction techniques, such as the B-spline curve fitting methods and the Principal Components Analysis approaches, sky-subtraction based on non-negative matrix factorisation with sparsity method has higher accuracy and flexibility. The non-negative matrix factorisation with sparsity method has research value for the sky-subtraction on multi-object fibre spectroscopic telescope surveys. To demonstrate the effectiveness and superiority of the proposed algorithm, experiments are performed on Large Sky Area Multi-Object Fiber Spectroscopic Telescope data, as the mechanisms of the multi-object fibre spectroscopic telescopes are similar.

  4. Tracking Time Evolution of Collective Attention Clusters in Twitter: Time Evolving Nonnegative Matrix Factorisation.

    PubMed

    Saito, Shota; Hirata, Yoshito; Sasahara, Kazutoshi; Suzuki, Hideyuki

    2015-01-01

    Micro-blogging services, such as Twitter, offer opportunities to analyse user behaviour. Discovering and distinguishing behavioural patterns in micro-blogging services is valuable. However, it is difficult and challenging to distinguish users, and to track the temporal development of collective attention within distinct user groups in Twitter. In this paper, we formulate this problem as tracking matrices decomposed by Nonnegative Matrix Factorisation for time-sequential matrix data, and propose a novel extension of Nonnegative Matrix Factorisation, which we refer to as Time Evolving Nonnegative Matrix Factorisation (TENMF). In our method, we describe users and words posted in some time interval by a matrix, and use several matrices as time-sequential data. Subsequently, we apply Time Evolving Nonnegative Matrix Factorisation to these time-sequential matrices. TENMF can decompose time-sequential matrices, and can track the connection among decomposed matrices, whereas previous NMF decomposes a matrix into two lower dimension matrices arbitrarily, which might lose the time-sequential connection. Our proposed method has an adequately good performance on artificial data. Moreover, we present several results and insights from experiments using real data from Twitter.

  5. Non-negative matrix factorization in texture feature for classification of dementia with MRI data

    NASA Astrophysics Data System (ADS)

    Sarwinda, D.; Bustamam, A.; Ardaneswari, G.

    2017-07-01

    This paper investigates applications of non-negative matrix factorization as feature selection method to select the features from gray level co-occurrence matrix. The proposed approach is used to classify dementia using MRI data. In this study, texture analysis using gray level co-occurrence matrix is done to feature extraction. In the feature extraction process of MRI data, we found seven features from gray level co-occurrence matrix. Non-negative matrix factorization selected three features that influence of all features produced by feature extractions. A Naïve Bayes classifier is adapted to classify dementia, i.e. Alzheimer's disease, Mild Cognitive Impairment (MCI) and normal control. The experimental results show that non-negative factorization as feature selection method able to achieve an accuracy of 96.4% for classification of Alzheimer's and normal control. The proposed method also compared with other features selection methods i.e. Principal Component Analysis (PCA).

  6. Adaptive multi-view clustering based on nonnegative matrix factorization and pairwise co-regularization

    NASA Astrophysics Data System (ADS)

    Zhang, Tianzhen; Wang, Xiumei; Gao, Xinbo

    2018-04-01

    Nowadays, several datasets are demonstrated by multi-view, which usually include shared and complementary information. Multi-view clustering methods integrate the information of multi-view to obtain better clustering results. Nonnegative matrix factorization has become an essential and popular tool in clustering methods because of its interpretation. However, existing nonnegative matrix factorization based multi-view clustering algorithms do not consider the disagreement between views and neglects the fact that different views will have different contributions to the data distribution. In this paper, we propose a new multi-view clustering method, named adaptive multi-view clustering based on nonnegative matrix factorization and pairwise co-regularization. The proposed algorithm can obtain the parts-based representation of multi-view data by nonnegative matrix factorization. Then, pairwise co-regularization is used to measure the disagreement between views. There is only one parameter to auto learning the weight values according to the contribution of each view to data distribution. Experimental results show that the proposed algorithm outperforms several state-of-the-arts algorithms for multi-view clustering.

  7. Sparse nonnegative matrix factorization with ℓ0-constraints

    PubMed Central

    Peharz, Robert; Pernkopf, Franz

    2012-01-01

    Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of nonnegative data, there is no guarantee for this behavior. Several authors proposed NMF methods which enforce sparseness by constraining or penalizing the ℓ1-norm of the factor matrices. On the other hand, little work has been done using a more natural sparseness measure, the ℓ0-pseudo-norm. In this paper, we propose a framework for approximate NMF which constrains the ℓ0-norm of the basis matrix, or the coefficient matrix, respectively. For this purpose, techniques for unconstrained NMF can be easily incorporated, such as multiplicative update rules, or the alternating nonnegative least-squares scheme. In experiments we demonstrate the benefits of our methods, which compare to, or outperform existing approaches. PMID:22505792

  8. Maximum Entropy/Optimal Projection Design Synthesis for Decentralized Control of Large Space Structures

    DTIC Science & Technology

    1988-05-01

    M 21 M2 I SI M1l[11 II1211 - - - M= II 2+111 I11-211 NONNEGATIVE CONE ORDERING Figure 25. The Matrix Majorant Is a Bound for the Hatrix Block Norm...the with respect to the cone of nonnegative -definite matrices. inequality (1.5) by the r x r nonnegative matrix equation Indeed, the majorant bound...t) eA-) e ea ’ A rT(" 3 ds, t> O , ju E [0 , 1] 0 J(G, )= tr (0,(6)R,) which is monotonically increasing in the nonnegative -definite G , cone with

  9. Optical implementation of systolic array processing

    NASA Technical Reports Server (NTRS)

    Caulfield, H. J.; Rhodes, W. T.; Foster, M. J.; Horvitz, S.

    1981-01-01

    Algorithms for matrix vector multiplication are implemented using acousto-optic cells for multiplication and input data transfer and using charge coupled devices detector arrays for accumulation and output of the results. No two dimensional matrix mask is required; matrix changes are implemented electronically. A system for multiplying a 50 component nonnegative real vector by a 50 by 50 nonnegative real matrix is described. Modifications for bipolar real and complex valued processing are possible, as are extensions to matrix-matrix multiplication and multiplication of a vector by multiple matrices.

  10. On the Quasimonotonicity of a Square Linear Operator with Respect to a Nonnegative Cone

    DTIC Science & Technology

    1998-06-01

    follows from the result from Perron (1907) and Frobenius (1912) on the theory of nonnegative matrices, which states that a nonnegative matrix has a...Dissertation 4. TITLE AND SUBTITLE ON THE QUASIMONOTONICITY OF A SQUARE LINEAR OPERATOR WITH RESPECT TO A NONNEGATIVE CONE 6. AUTHOR(S) Beaver, Philip...ABSTRACT (maximum 200 words) The question of when a square, linear operator is quasimonotone nondecreasing with respect to a nonnegative cone was posed for

  11. On non-negative matrix factorization algorithms for signal-dependent noise with application to electromyography data

    PubMed Central

    Devarajan, Karthik; Cheung, Vincent C.K.

    2017-01-01

    Non-negative matrix factorization (NMF) by the multiplicative updates algorithm is a powerful machine learning method for decomposing a high-dimensional nonnegative matrix V into two nonnegative matrices, W and H where V ~ WH. It has been successfully applied in the analysis and interpretation of large-scale data arising in neuroscience, computational biology and natural language processing, among other areas. A distinctive feature of NMF is its nonnegativity constraints that allow only additive linear combinations of the data, thus enabling it to learn parts that have distinct physical representations in reality. In this paper, we describe an information-theoretic approach to NMF for signal-dependent noise based on the generalized inverse Gaussian model. Specifically, we propose three novel algorithms in this setting, each based on multiplicative updates and prove monotonicity of updates using the EM algorithm. In addition, we develop algorithm-specific measures to evaluate their goodness-of-fit on data. Our methods are demonstrated using experimental data from electromyography studies as well as simulated data in the extraction of muscle synergies, and compared with existing algorithms for signal-dependent noise. PMID:24684448

  12. Discriminant projective non-negative matrix factorization.

    PubMed

    Guan, Naiyang; Zhang, Xiang; Luo, Zhigang; Tao, Dacheng; Yang, Xuejun

    2013-01-01

    Projective non-negative matrix factorization (PNMF) projects high-dimensional non-negative examples X onto a lower-dimensional subspace spanned by a non-negative basis W and considers W(T) X as their coefficients, i.e., X≈WW(T) X. Since PNMF learns the natural parts-based representation Wof X, it has been widely used in many fields such as pattern recognition and computer vision. However, PNMF does not perform well in classification tasks because it completely ignores the label information of the dataset. This paper proposes a Discriminant PNMF method (DPNMF) to overcome this deficiency. In particular, DPNMF exploits Fisher's criterion to PNMF for utilizing the label information. Similar to PNMF, DPNMF learns a single non-negative basis matrix and needs less computational burden than NMF. In contrast to PNMF, DPNMF maximizes the distance between centers of any two classes of examples meanwhile minimizes the distance between any two examples of the same class in the lower-dimensional subspace and thus has more discriminant power. We develop a multiplicative update rule to solve DPNMF and prove its convergence. Experimental results on four popular face image datasets confirm its effectiveness comparing with the representative NMF and PNMF algorithms.

  13. Discriminant Projective Non-Negative Matrix Factorization

    PubMed Central

    Guan, Naiyang; Zhang, Xiang; Luo, Zhigang; Tao, Dacheng; Yang, Xuejun

    2013-01-01

    Projective non-negative matrix factorization (PNMF) projects high-dimensional non-negative examples X onto a lower-dimensional subspace spanned by a non-negative basis W and considers WT X as their coefficients, i.e., X≈WWT X. Since PNMF learns the natural parts-based representation Wof X, it has been widely used in many fields such as pattern recognition and computer vision. However, PNMF does not perform well in classification tasks because it completely ignores the label information of the dataset. This paper proposes a Discriminant PNMF method (DPNMF) to overcome this deficiency. In particular, DPNMF exploits Fisher's criterion to PNMF for utilizing the label information. Similar to PNMF, DPNMF learns a single non-negative basis matrix and needs less computational burden than NMF. In contrast to PNMF, DPNMF maximizes the distance between centers of any two classes of examples meanwhile minimizes the distance between any two examples of the same class in the lower-dimensional subspace and thus has more discriminant power. We develop a multiplicative update rule to solve DPNMF and prove its convergence. Experimental results on four popular face image datasets confirm its effectiveness comparing with the representative NMF and PNMF algorithms. PMID:24376680

  14. Estimating gene function with least squares nonnegative matrix factorization.

    PubMed

    Wang, Guoli; Ochs, Michael F

    2007-01-01

    Nonnegative matrix factorization is a machine learning algorithm that has extracted information from data in a number of fields, including imaging and spectral analysis, text mining, and microarray data analysis. One limitation with the method for linking genes through microarray data in order to estimate gene function is the high variance observed in transcription levels between different genes. Least squares nonnegative matrix factorization uses estimates of the uncertainties on the mRNA levels for each gene in each condition, to guide the algorithm to a local minimum in normalized chi2, rather than a Euclidean distance or divergence between the reconstructed data and the data itself. Herein, application of this method to microarray data is demonstrated in order to predict gene function.

  15. Observer-Based Discrete-Time Nonnegative Edge Synchronization of Networked Systems.

    PubMed

    Su, Housheng; Wu, Han; Chen, Xia

    2017-10-01

    This paper studies the multi-input and multi-output discrete-time nonnegative edge synchronization of networked systems based on neighbors' output information. The communication relationship among the edges of networked systems is modeled by well-known line graph. Two observer-based edge synchronization algorithms are designed, for which some necessary and sufficient synchronization conditions are derived. Moreover, some computable sufficient synchronization conditions are obtained, in which the feedback matrix and the observer matrix are computed by solving the linear programming problems. We finally design several simulation examples to demonstrate the validity of the given nonnegative edge synchronization algorithms.

  16. Lanchester-Type Models of Warfare. Volume II

    DTIC Science & Technology

    1980-10-01

    the so-called PERRON - FROBENIUS theorem50 for nonnegative matrices that one can guarantee that (without any further assumptions about A and B) there...always exists a vector of nonnegative values such that, for example, (7.18.6) holds. Before we state the PERRON - FROBENIUS theorem for nonnegative...a proof of this important theorem). THEOREM .5.-1.1 ( PERRON [121] and FROBENIUS [60]): Let C z 0 be an n x n matrix. Then, 1. C has a nonnegative real

  17. A Fast Gradient Method for Nonnegative Sparse Regression With Self-Dictionary

    NASA Astrophysics Data System (ADS)

    Gillis, Nicolas; Luce, Robert

    2018-01-01

    A nonnegative matrix factorization (NMF) can be computed efficiently under the separability assumption, which asserts that all the columns of the given input data matrix belong to the cone generated by a (small) subset of them. The provably most robust methods to identify these conic basis columns are based on nonnegative sparse regression and self dictionaries, and require the solution of large-scale convex optimization problems. In this paper we study a particular nonnegative sparse regression model with self dictionary. As opposed to previously proposed models, this model yields a smooth optimization problem where the sparsity is enforced through linear constraints. We show that the Euclidean projection on the polyhedron defined by these constraints can be computed efficiently, and propose a fast gradient method to solve our model. We compare our algorithm with several state-of-the-art methods on synthetic data sets and real-world hyperspectral images.

  18. Innovative Methods for High Resolution Imaging

    DTIC Science & Technology

    2012-08-02

    findings, recent publication, and presentations in the areas of lenslet array imaging , wavefront encoding, and non-negative matrix factorization for...on their findings, recent publication, and presentations in the areas of lenslet array imaging , wavefront encoding, and non-negative matrix...Computational Optical Sensing and Imaging . 2007/06/18 00:00:00, . : , 2012/07/16 15:30:42 9 Kelly N. Smith, V. Paul Pauca, Arun Ross, Todd Torgersen, Michael C

  19. Data Reduction Algorithm Using Nonnegative Matrix Factorization with Nonlinear Constraints

    NASA Astrophysics Data System (ADS)

    Sembiring, Pasukat

    2017-12-01

    Processing ofdata with very large dimensions has been a hot topic in recent decades. Various techniques have been proposed in order to execute the desired information or structure. Non- Negative Matrix Factorization (NMF) based on non-negatives data has become one of the popular methods for shrinking dimensions. The main strength of this method is non-negative object, the object model by a combination of some basic non-negative parts, so as to provide a physical interpretation of the object construction. The NMF is a dimension reduction method thathasbeen used widely for numerous applications including computer vision,text mining, pattern recognitions,and bioinformatics. Mathematical formulation for NMF did not appear as a convex optimization problem and various types of algorithms have been proposed to solve the problem. The Framework of Alternative Nonnegative Least Square(ANLS) are the coordinates of the block formulation approaches that have been proven reliable theoretically and empirically efficient. This paper proposes a new algorithm to solve NMF problem based on the framework of ANLS.This algorithm inherits the convergenceproperty of the ANLS framework to nonlinear constraints NMF formulations.

  20. A novel edge-preserving nonnegative matrix factorization method for spectral unmixing

    NASA Astrophysics Data System (ADS)

    Bao, Wenxing; Ma, Ruishi

    2015-12-01

    Spectral unmixing technique is one of the key techniques to identify and classify the material in the hyperspectral image processing. A novel robust spectral unmixing method based on nonnegative matrix factorization(NMF) is presented in this paper. This paper used an edge-preserving function as hypersurface cost function to minimize the nonnegative matrix factorization. To minimize the hypersurface cost function, we constructed the updating functions for signature matrix of end-members and abundance fraction respectively. The two functions are updated alternatively. For evaluation purpose, synthetic data and real data have been used in this paper. Synthetic data is used based on end-members from USGS digital spectral library. AVIRIS Cuprite dataset have been used as real data. The spectral angle distance (SAD) and abundance angle distance(AAD) have been used in this research for assessment the performance of proposed method. The experimental results show that this method can obtain more ideal results and good accuracy for spectral unmixing than present methods.

  1. A unified statistical approach to non-negative matrix factorization and probabilistic latent semantic indexing

    PubMed Central

    Wang, Guoli; Ebrahimi, Nader

    2014-01-01

    Non-negative matrix factorization (NMF) is a powerful machine learning method for decomposing a high-dimensional nonnegative matrix V into the product of two nonnegative matrices, W and H, such that V ∼ W H. It has been shown to have a parts-based, sparse representation of the data. NMF has been successfully applied in a variety of areas such as natural language processing, neuroscience, information retrieval, image processing, speech recognition and computational biology for the analysis and interpretation of large-scale data. There has also been simultaneous development of a related statistical latent class modeling approach, namely, probabilistic latent semantic indexing (PLSI), for analyzing and interpreting co-occurrence count data arising in natural language processing. In this paper, we present a generalized statistical approach to NMF and PLSI based on Renyi's divergence between two non-negative matrices, stemming from the Poisson likelihood. Our approach unifies various competing models and provides a unique theoretical framework for these methods. We propose a unified algorithm for NMF and provide a rigorous proof of monotonicity of multiplicative updates for W and H. In addition, we generalize the relationship between NMF and PLSI within this framework. We demonstrate the applicability and utility of our approach as well as its superior performance relative to existing methods using real-life and simulated document clustering data. PMID:25821345

  2. A unified statistical approach to non-negative matrix factorization and probabilistic latent semantic indexing.

    PubMed

    Devarajan, Karthik; Wang, Guoli; Ebrahimi, Nader

    2015-04-01

    Non-negative matrix factorization (NMF) is a powerful machine learning method for decomposing a high-dimensional nonnegative matrix V into the product of two nonnegative matrices, W and H , such that V ∼ W H . It has been shown to have a parts-based, sparse representation of the data. NMF has been successfully applied in a variety of areas such as natural language processing, neuroscience, information retrieval, image processing, speech recognition and computational biology for the analysis and interpretation of large-scale data. There has also been simultaneous development of a related statistical latent class modeling approach, namely, probabilistic latent semantic indexing (PLSI), for analyzing and interpreting co-occurrence count data arising in natural language processing. In this paper, we present a generalized statistical approach to NMF and PLSI based on Renyi's divergence between two non-negative matrices, stemming from the Poisson likelihood. Our approach unifies various competing models and provides a unique theoretical framework for these methods. We propose a unified algorithm for NMF and provide a rigorous proof of monotonicity of multiplicative updates for W and H . In addition, we generalize the relationship between NMF and PLSI within this framework. We demonstrate the applicability and utility of our approach as well as its superior performance relative to existing methods using real-life and simulated document clustering data.

  3. Recovering hidden diagonal structures via non-negative matrix factorization with multiple constraints.

    PubMed

    Yang, Xi; Han, Guoqiang; Cai, Hongmin; Song, Yan

    2017-03-31

    Revealing data with intrinsically diagonal block structures is particularly useful for analyzing groups of highly correlated variables. Earlier researches based on non-negative matrix factorization (NMF) have been shown to be effective in representing such data by decomposing the observed data into two factors, where one factor is considered to be the feature and the other the expansion loading from a linear algebra perspective. If the data are sampled from multiple independent subspaces, the loading factor would possess a diagonal structure under an ideal matrix decomposition. However, the standard NMF method and its variants have not been reported to exploit this type of data via direct estimation. To address this issue, a non-negative matrix factorization with multiple constraints model is proposed in this paper. The constraints include an sparsity norm on the feature matrix and a total variational norm on each column of the loading matrix. The proposed model is shown to be capable of efficiently recovering diagonal block structures hidden in observed samples. An efficient numerical algorithm using the alternating direction method of multipliers model is proposed for optimizing the new model. Compared with several benchmark models, the proposed method performs robustly and effectively for simulated and real biological data.

  4. Blind separation of positive sources by globally convergent gradient search.

    PubMed

    Oja, Erkki; Plumbley, Mark

    2004-09-01

    The instantaneous noise-free linear mixing model in independent component analysis is largely a solved problem under the usual assumption of independent nongaussian sources and full column rank mixing matrix. However, with some prior information on the sources, like positivity, new analysis and perhaps simplified solution methods may yet become possible. In this letter, we consider the task of independent component analysis when the independent sources are known to be nonnegative and well grounded, which means that they have a nonzero pdf in the region of zero. It can be shown that in this case, the solution method is basically very simple: an orthogonal rotation of the whitened observation vector into nonnegative outputs will give a positive permutation of the original sources. We propose a cost function whose minimum coincides with nonnegativity and derive the gradient algorithm under the whitening constraint, under which the separating matrix is orthogonal. We further prove that in the Stiefel manifold of orthogonal matrices, the cost function is a Lyapunov function for the matrix gradient flow, implying global convergence. Thus, this algorithm is guaranteed to find the nonnegative well-grounded independent sources. The analysis is complemented by a numerical simulation, which illustrates the algorithm.

  5. Nonnegative matrix factorization with the Itakura-Saito divergence: with application to music analysis.

    PubMed

    Févotte, Cédric; Bertin, Nancy; Durrieu, Jean-Louis

    2009-03-01

    This letter presents theoretical, algorithmic, and experimental results about nonnegative matrix factorization (NMF) with the Itakura-Saito (IS) divergence. We describe how IS-NMF is underlaid by a well-defined statistical model of superimposed gaussian components and is equivalent to maximum likelihood estimation of variance parameters. This setting can accommodate regularization constraints on the factors through Bayesian priors. In particular, inverse-gamma and gamma Markov chain priors are considered in this work. Estimation can be carried out using a space-alternating generalized expectation-maximization (SAGE) algorithm; this leads to a novel type of NMF algorithm, whose convergence to a stationary point of the IS cost function is guaranteed. We also discuss the links between the IS divergence and other cost functions used in NMF, in particular, the Euclidean distance and the generalized Kullback-Leibler (KL) divergence. As such, we describe how IS-NMF can also be performed using a gradient multiplicative algorithm (a standard algorithm structure in NMF) whose convergence is observed in practice, though not proven. Finally, we report a furnished experimental comparative study of Euclidean-NMF, KL-NMF, and IS-NMF algorithms applied to the power spectrogram of a short piano sequence recorded in real conditions, with various initializations and model orders. Then we show how IS-NMF can successfully be employed for denoising and upmix (mono to stereo conversion) of an original piece of early jazz music. These experiments indicate that IS-NMF correctly captures the semantics of audio and is better suited to the representation of music signals than NMF with the usual Euclidean and KL costs.

  6. Assessment of phytoplankton class abundance using fluorescence excitation-emission matrix by parallel factor analysis and nonnegative least squares

    NASA Astrophysics Data System (ADS)

    Su, Rongguo; Chen, Xiaona; Wu, Zhenzhen; Yao, Peng; Shi, Xiaoyong

    2015-07-01

    The feasibility of using fluorescence excitation-emission matrix (EEM) along with parallel factor analysis (PARAFAC) and nonnegative least squares (NNLS) method for the differentiation of phytoplankton taxonomic groups was investigated. Forty-one phytoplankton species belonging to 28 genera of five divisions were studied. First, the PARAFAC model was applied to EEMs, and 15 fluorescence components were generated. Second, 15 fluorescence components were found to have a strong discriminating capability based on Bayesian discriminant analysis (BDA). Third, all spectra of the fluorescence component compositions for the 41 phytoplankton species were spectrographically sorted into 61 reference spectra using hierarchical cluster analysis (HCA), and then, the reference spectra were used to establish a database. Finally, the phytoplankton taxonomic groups was differentiated by the reference spectra database using the NNLS method. The five phytoplankton groups were differentiated with the correct discrimination ratios (CDRs) of 100% for single-species samples at the division level. The CDRs for the mixtures were above 91% for the dominant phytoplankton species and above 73% for the subdominant phytoplankton species. Sixteen of the 85 field samples collected from the Changjiang River estuary were analyzed by both HPLC-CHEMTAX and the fluorometric technique developed. The results of both methods reveal that Bacillariophyta was the dominant algal group in these 16 samples and that the subdominant algal groups comprised Dinophyta, Chlorophyta and Cryptophyta. The differentiation results by the fluorometric technique were in good agreement with those from HPLC-CHEMTAX. The results indicate that the fluorometric technique could differentiate algal taxonomic groups accurately at the division level.

  7. A Deep Stochastic Model for Detecting Community in Complex Networks

    NASA Astrophysics Data System (ADS)

    Fu, Jingcheng; Wu, Jianliang

    2017-01-01

    Discovering community structures is an important step to understanding the structure and dynamics of real-world networks in social science, biology and technology. In this paper, we develop a deep stochastic model based on non-negative matrix factorization to identify communities, in which there are two sets of parameters. One is the community membership matrix, of which the elements in a row correspond to the probabilities of the given node belongs to each of the given number of communities in our model, another is the community-community connection matrix, of which the element in the i-th row and j-th column represents the probability of there being an edge between a randomly chosen node from the i-th community and a randomly chosen node from the j-th community. The parameters can be evaluated by an efficient updating rule, and its convergence can be guaranteed. The community-community connection matrix in our model is more precise than the community-community connection matrix in traditional non-negative matrix factorization methods. Furthermore, the method called symmetric nonnegative matrix factorization, is a special case of our model. Finally, based on the experiments on both synthetic and real-world networks data, it can be demonstrated that our algorithm is highly effective in detecting communities.

  8. A Hybrid Algorithm for Non-negative Matrix Factorization Based on Symmetric Information Divergence

    PubMed Central

    Devarajan, Karthik; Ebrahimi, Nader; Soofi, Ehsan

    2017-01-01

    The objective of this paper is to provide a hybrid algorithm for non-negative matrix factorization based on a symmetric version of Kullback-Leibler divergence, known as intrinsic information. The convergence of the proposed algorithm is shown for several members of the exponential family such as the Gaussian, Poisson, gamma and inverse Gaussian models. The speed of this algorithm is examined and its usefulness is illustrated through some applied problems. PMID:28868206

  9. Extraction of food consumption systems by nonnegative matrix factorization (NMF) for the assessment of food choices.

    PubMed

    Zetlaoui, Mélanie; Feinberg, Max; Verger, Philippe; Clémençon, Stephan

    2011-12-01

    In Western countries where food supply is satisfactory, consumers organize their diets around a large combination of foods. It is the purpose of this article to examine how recent nonnegative matrix factorization (NMF) techniques can be applied to food consumption data to understand these combinations. Such data are nonnegative by nature and of high dimension. The NMF model provides a representation of consumption data through latent vectors with nonnegative coefficients, that we call consumption systems (CS), in a small number. As the NMF approach may encourage sparsity of the data representation produced, the resulting CS are easily interpretable. Beyond the illustration of its properties we provide through a simple simulation result, the NMF method is applied to data issued from a French consumption survey. The numerical results thus obtained are displayed and thoroughly discussed. A clustering based on the k-means method is also achieved in the resulting latent consumption space, to recover food consumption patterns easily usable for nutritionists. © 2011, The International Biometric Society.

  10. Unsupervised Bayesian linear unmixing of gene expression microarrays.

    PubMed

    Bazot, Cécile; Dobigeon, Nicolas; Tourneret, Jean-Yves; Zaas, Aimee K; Ginsburg, Geoffrey S; Hero, Alfred O

    2013-03-19

    This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores collected during the study. Using a constrained model allows recovery of all the inflammatory genes in a single factor.

  11. A Perron-Frobenius theory for block matrices associated to a multiplex network

    NASA Astrophysics Data System (ADS)

    Romance, Miguel; Solá, Luis; Flores, Julio; García, Esther; García del Amo, Alejandro; Criado, Regino

    2015-03-01

    The uniqueness of the Perron vector of a nonnegative block matrix associated to a multiplex network is discussed. The conclusions come from the relationships between the irreducibility of some nonnegative block matrix associated to a multiplex network and the irreducibility of the corresponding matrices to each layer as well as the irreducibility of the adjacency matrix of the projection network. In addition the computation of that Perron vector in terms of the Perron vectors of the blocks is also addressed. Finally we present the precise relations that allow to express the Perron eigenvector of the multiplex network in terms of the Perron eigenvectors of its layers.

  12. Nonnegative Matrix Factorization for identification of unknown number of sources emitting delayed signals

    PubMed Central

    Iliev, Filip L.; Stanev, Valentin G.; Vesselinov, Velimir V.

    2018-01-01

    Factor analysis is broadly used as a powerful unsupervised machine learning tool for reconstruction of hidden features in recorded mixtures of signals. In the case of a linear approximation, the mixtures can be decomposed by a variety of model-free Blind Source Separation (BSS) algorithms. Most of the available BSS algorithms consider an instantaneous mixing of signals, while the case when the mixtures are linear combinations of signals with delays is less explored. Especially difficult is the case when the number of sources of the signals with delays is unknown and has to be determined from the data as well. To address this problem, in this paper, we present a new method based on Nonnegative Matrix Factorization (NMF) that is capable of identifying: (a) the unknown number of the sources, (b) the delays and speed of propagation of the signals, and (c) the locations of the sources. Our method can be used to decompose records of mixtures of signals with delays emitted by an unknown number of sources in a nondispersive medium, based only on recorded data. This is the case, for example, when electromagnetic signals from multiple antennas are received asynchronously; or mixtures of acoustic or seismic signals recorded by sensors located at different positions; or when a shift in frequency is induced by the Doppler effect. By applying our method to synthetic datasets, we demonstrate its ability to identify the unknown number of sources as well as the waveforms, the delays, and the strengths of the signals. Using Bayesian analysis, we also evaluate estimation uncertainties and identify the region of likelihood where the positions of the sources can be found. PMID:29518126

  13. Nonnegative Matrix Factorization for identification of unknown number of sources emitting delayed signals.

    PubMed

    Iliev, Filip L; Stanev, Valentin G; Vesselinov, Velimir V; Alexandrov, Boian S

    2018-01-01

    Factor analysis is broadly used as a powerful unsupervised machine learning tool for reconstruction of hidden features in recorded mixtures of signals. In the case of a linear approximation, the mixtures can be decomposed by a variety of model-free Blind Source Separation (BSS) algorithms. Most of the available BSS algorithms consider an instantaneous mixing of signals, while the case when the mixtures are linear combinations of signals with delays is less explored. Especially difficult is the case when the number of sources of the signals with delays is unknown and has to be determined from the data as well. To address this problem, in this paper, we present a new method based on Nonnegative Matrix Factorization (NMF) that is capable of identifying: (a) the unknown number of the sources, (b) the delays and speed of propagation of the signals, and (c) the locations of the sources. Our method can be used to decompose records of mixtures of signals with delays emitted by an unknown number of sources in a nondispersive medium, based only on recorded data. This is the case, for example, when electromagnetic signals from multiple antennas are received asynchronously; or mixtures of acoustic or seismic signals recorded by sensors located at different positions; or when a shift in frequency is induced by the Doppler effect. By applying our method to synthetic datasets, we demonstrate its ability to identify the unknown number of sources as well as the waveforms, the delays, and the strengths of the signals. Using Bayesian analysis, we also evaluate estimation uncertainties and identify the region of likelihood where the positions of the sources can be found.

  14. Transactions of the Conference on Applied Mathematics and Computing (9th) Held in Minneapolis, Minnesota on 18-21 June 1991

    DTIC Science & Technology

    1992-03-01

    the ith row of I<. The preconditioned matrix K is thus a stochastic matrix, and by the Perron - Frobenius theorem (e.g., Horn and Johnson, 1989), K...now be determined. For equations (10) and (11) to be real, the radical must be nonnegative . This condition on d defines the index zero threshold...ddhsi: sfl] [r;I,r;I] . Since h/lh is positive-definite, (3.2) shows that a , and 13, are nonnegative . This fact can be used t~ test a candidates

  15. Algorithms for the Equilibration of Matrices and Their Application to Limited-Memory Quasi-Newton Methods

    DTIC Science & Technology

    2010-05-01

    irreducible, by the Perron - Frobenius theorem (see, for example, Theorem 8.4.4 in [28]), the eigenvalue 1 is simple. Next, the rank-one matrix Q has the...We refer to (2.1) as the scaling equation. Although algorithms must use A, existence and unique- ness theory need consider only the nonnegative matrix...B. If p = 1 and A is nonnegative , then A = B. We reserve the term binormalization for the case p = 2. We say A is scalable if there exists x > 0

  16. MPI-FAUN: An MPI-Based Framework for Alternating-Updating Nonnegative Matrix Factorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kannan, Ramakrishnan; Ballard, Grey; Park, Haesun

    Non-negative matrix factorization (NMF) is the problem of determining two non-negative low rank factors W and H, for the given input matrix A, such that A≈WH. NMF is a useful tool for many applications in different domains such as topic modeling in text mining, background separation in video analysis, and community detection in social networks. Despite its popularity in the data mining community, there is a lack of efficient parallel algorithms to solve the problem for big data sets. The main contribution of this work is a new, high-performance parallel computational framework for a broad class of NMF algorithms thatmore » iteratively solves alternating non-negative least squares (NLS) subproblems for W and H. It maintains the data and factor matrices in memory (distributed across processors), uses MPI for interprocessor communication, and, in the dense case, provably minimizes communication costs (under mild assumptions). The framework is flexible and able to leverage a variety of NMF and NLS algorithms, including Multiplicative Update, Hierarchical Alternating Least Squares, and Block Principal Pivoting. Our implementation allows us to benchmark and compare different algorithms on massive dense and sparse data matrices of size that spans from few hundreds of millions to billions. We demonstrate the scalability of our algorithm and compare it with baseline implementations, showing significant performance improvements. The code and the datasets used for conducting the experiments are available online.« less

  17. MPI-FAUN: An MPI-Based Framework for Alternating-Updating Nonnegative Matrix Factorization

    DOE PAGES

    Kannan, Ramakrishnan; Ballard, Grey; Park, Haesun

    2017-10-30

    Non-negative matrix factorization (NMF) is the problem of determining two non-negative low rank factors W and H, for the given input matrix A, such that A≈WH. NMF is a useful tool for many applications in different domains such as topic modeling in text mining, background separation in video analysis, and community detection in social networks. Despite its popularity in the data mining community, there is a lack of efficient parallel algorithms to solve the problem for big data sets. The main contribution of this work is a new, high-performance parallel computational framework for a broad class of NMF algorithms thatmore » iteratively solves alternating non-negative least squares (NLS) subproblems for W and H. It maintains the data and factor matrices in memory (distributed across processors), uses MPI for interprocessor communication, and, in the dense case, provably minimizes communication costs (under mild assumptions). The framework is flexible and able to leverage a variety of NMF and NLS algorithms, including Multiplicative Update, Hierarchical Alternating Least Squares, and Block Principal Pivoting. Our implementation allows us to benchmark and compare different algorithms on massive dense and sparse data matrices of size that spans from few hundreds of millions to billions. We demonstrate the scalability of our algorithm and compare it with baseline implementations, showing significant performance improvements. The code and the datasets used for conducting the experiments are available online.« less

  18. Impact of the Choice of Normalization Method on Molecular Cancer Class Discovery Using Nonnegative Matrix Factorization.

    PubMed

    Yang, Haixuan; Seoighe, Cathal

    2016-01-01

    Nonnegative Matrix Factorization (NMF) has proved to be an effective method for unsupervised clustering analysis of gene expression data. By the nonnegativity constraint, NMF provides a decomposition of the data matrix into two matrices that have been used for clustering analysis. However, the decomposition is not unique. This allows different clustering results to be obtained, resulting in different interpretations of the decomposition. To alleviate this problem, some existing methods directly enforce uniqueness to some extent by adding regularization terms in the NMF objective function. Alternatively, various normalization methods have been applied to the factor matrices; however, the effects of the choice of normalization have not been carefully investigated. Here we investigate the performance of NMF for the task of cancer class discovery, under a wide range of normalization choices. After extensive evaluations, we observe that the maximum norm showed the best performance, although the maximum norm has not previously been used for NMF. Matlab codes are freely available from: http://maths.nuigalway.ie/~haixuanyang/pNMF/pNMF.htm.

  19. Decomposing Time Series Data by a Non-negative Matrix Factorization Algorithm with Temporally Constrained Coefficients

    PubMed Central

    Cheung, Vincent C. K.; Devarajan, Karthik; Severini, Giacomo; Turolla, Andrea; Bonato, Paolo

    2017-01-01

    The non-negative matrix factorization algorithm (NMF) decomposes a data matrix into a set of non-negative basis vectors, each scaled by a coefficient. In its original formulation, the NMF assumes the data samples and dimensions to be independently distributed, making it a less-than-ideal algorithm for the analysis of time series data with temporal correlations. Here, we seek to derive an NMF that accounts for temporal dependencies in the data by explicitly incorporating a very simple temporal constraint for the coefficients into the NMF update rules. We applied the modified algorithm to 2 multi-dimensional electromyographic data sets collected from the human upper-limb to identify muscle synergies. We found that because it reduced the number of free parameters in the model, our modified NMF made it possible to use the Akaike Information Criterion to objectively identify a model order (i.e., the number of muscle synergies composing the data) that is more functionally interpretable, and closer to the numbers previously determined using ad hoc measures. PMID:26737046

  20. Teaching Tip: When a Matrix and Its Inverse Are Stochastic

    ERIC Educational Resources Information Center

    Ding, J.; Rhee, N. H.

    2013-01-01

    A stochastic matrix is a square matrix with nonnegative entries and row sums 1. The simplest example is a permutation matrix, whose rows permute the rows of an identity matrix. A permutation matrix and its inverse are both stochastic. We prove the converse, that is, if a matrix and its inverse are both stochastic, then it is a permutation matrix.

  1. A time series model: First-order integer-valued autoregressive (INAR(1))

    NASA Astrophysics Data System (ADS)

    Simarmata, D. M.; Novkaniza, F.; Widyaningsih, Y.

    2017-07-01

    Nonnegative integer-valued time series arises in many applications. A time series model: first-order Integer-valued AutoRegressive (INAR(1)) is constructed by binomial thinning operator to model nonnegative integer-valued time series. INAR (1) depends on one period from the process before. The parameter of the model can be estimated by Conditional Least Squares (CLS). Specification of INAR(1) is following the specification of (AR(1)). Forecasting in INAR(1) uses median or Bayesian forecasting methodology. Median forecasting methodology obtains integer s, which is cumulative density function (CDF) until s, is more than or equal to 0.5. Bayesian forecasting methodology forecasts h-step-ahead of generating the parameter of the model and parameter of innovation term using Adaptive Rejection Metropolis Sampling within Gibbs sampling (ARMS), then finding the least integer s, where CDF until s is more than or equal to u . u is a value taken from the Uniform(0,1) distribution. INAR(1) is applied on pneumonia case in Penjaringan, Jakarta Utara, January 2008 until April 2016 monthly.

  2. Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health

    PubMed Central

    Fogel, Paul; Gaston-Mathé, Yann; Hawkins, Douglas; Fogel, Fajwel; Luta, George; Young, S. Stanley

    2016-01-01

    Often data can be represented as a matrix, e.g., observations as rows and variables as columns, or as a doubly classified contingency table. Researchers may be interested in clustering the observations, the variables, or both. If the data is non-negative, then Non-negative Matrix Factorization (NMF) can be used to perform the clustering. By its nature, NMF-based clustering is focused on the large values. If the data is normalized by subtracting the row/column means, it becomes of mixed signs and the original NMF cannot be used. Our idea is to split and then concatenate the positive and negative parts of the matrix, after taking the absolute value of the negative elements. NMF applied to the concatenated data, which we call PosNegNMF, offers the advantages of the original NMF approach, while giving equal weight to large and small values. We use two public health datasets to illustrate the new method and compare it with alternative clustering methods, such as K-means and clustering methods based on the Singular Value Decomposition (SVD) or Principal Component Analysis (PCA). With the exception of situations where a reasonably accurate factorization can be achieved using the first SVD component, we recommend that the epidemiologists and environmental scientists use the new method to obtain clusters with improved quality and interpretability. PMID:27213413

  3. Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health.

    PubMed

    Fogel, Paul; Gaston-Mathé, Yann; Hawkins, Douglas; Fogel, Fajwel; Luta, George; Young, S Stanley

    2016-05-18

    Often data can be represented as a matrix, e.g., observations as rows and variables as columns, or as a doubly classified contingency table. Researchers may be interested in clustering the observations, the variables, or both. If the data is non-negative, then Non-negative Matrix Factorization (NMF) can be used to perform the clustering. By its nature, NMF-based clustering is focused on the large values. If the data is normalized by subtracting the row/column means, it becomes of mixed signs and the original NMF cannot be used. Our idea is to split and then concatenate the positive and negative parts of the matrix, after taking the absolute value of the negative elements. NMF applied to the concatenated data, which we call PosNegNMF, offers the advantages of the original NMF approach, while giving equal weight to large and small values. We use two public health datasets to illustrate the new method and compare it with alternative clustering methods, such as K-means and clustering methods based on the Singular Value Decomposition (SVD) or Principal Component Analysis (PCA). With the exception of situations where a reasonably accurate factorization can be achieved using the first SVD component, we recommend that the epidemiologists and environmental scientists use the new method to obtain clusters with improved quality and interpretability.

  4. A quasi-likelihood approach to non-negative matrix factorization

    PubMed Central

    Devarajan, Karthik; Cheung, Vincent C.K.

    2017-01-01

    A unified approach to non-negative matrix factorization based on the theory of generalized linear models is proposed. This approach embeds a variety of statistical models, including the exponential family, within a single theoretical framework and provides a unified view of such factorizations from the perspective of quasi-likelihood. Using this framework, a family of algorithms for handling signal-dependent noise is developed and its convergence proven using the Expectation-Maximization algorithm. In addition, a measure to evaluate the goodness-of-fit of the resulting factorization is described. The proposed methods allow modeling of non-linear effects via appropriate link functions and are illustrated using an application in biomedical signal processing. PMID:27348511

  5. Deep learning and non-negative matrix factorization in recognition of mammograms

    NASA Astrophysics Data System (ADS)

    Swiderski, Bartosz; Kurek, Jaroslaw; Osowski, Stanislaw; Kruk, Michal; Barhoumi, Walid

    2017-02-01

    This paper presents novel approach to the recognition of mammograms. The analyzed mammograms represent the normal and breast cancer (benign and malignant) cases. The solution applies the deep learning technique in image recognition. To obtain increased accuracy of classification the nonnegative matrix factorization and statistical self-similarity of images are applied. The images reconstructed by using these two approaches enrich the data base and thanks to this improve of quality measures of mammogram recognition (increase of accuracy, sensitivity and specificity). The results of numerical experiments performed on large DDSM data base containing more than 10000 mammograms have confirmed good accuracy of class recognition, exceeding the best results reported in the actual publications for this data base.

  6. Limited-memory fast gradient descent method for graph regularized nonnegative matrix factorization.

    PubMed

    Guan, Naiyang; Wei, Lei; Luo, Zhigang; Tao, Dacheng

    2013-01-01

    Graph regularized nonnegative matrix factorization (GNMF) decomposes a nonnegative data matrix X[Symbol:see text]R(m x n) to the product of two lower-rank nonnegative factor matrices, i.e.,W[Symbol:see text]R(m x r) and H[Symbol:see text]R(r x n) (r < min {m,n}) and aims to preserve the local geometric structure of the dataset by minimizing squared Euclidean distance or Kullback-Leibler (KL) divergence between X and WH. The multiplicative update rule (MUR) is usually applied to optimize GNMF, but it suffers from the drawback of slow-convergence because it intrinsically advances one step along the rescaled negative gradient direction with a non-optimal step size. Recently, a multiple step-sizes fast gradient descent (MFGD) method has been proposed for optimizing NMF which accelerates MUR by searching the optimal step-size along the rescaled negative gradient direction with Newton's method. However, the computational cost of MFGD is high because 1) the high-dimensional Hessian matrix is dense and costs too much memory; and 2) the Hessian inverse operator and its multiplication with gradient cost too much time. To overcome these deficiencies of MFGD, we propose an efficient limited-memory FGD (L-FGD) method for optimizing GNMF. In particular, we apply the limited-memory BFGS (L-BFGS) method to directly approximate the multiplication of the inverse Hessian and the gradient for searching the optimal step size in MFGD. The preliminary results on real-world datasets show that L-FGD is more efficient than both MFGD and MUR. To evaluate the effectiveness of L-FGD, we validate its clustering performance for optimizing KL-divergence based GNMF on two popular face image datasets including ORL and PIE and two text corpora including Reuters and TDT2. The experimental results confirm the effectiveness of L-FGD by comparing it with the representative GNMF solvers.

  7. Structured and Collaborative Signal Models: Theory and Applications in Image, Video, and Audio Analysis

    DTIC Science & Technology

    2013-01-01

    Received Paper 01/22/2013 12.00 E. Esser, M. Moller, S. Osher, G. Sapiro, and J . Xin. A convex modelfor non-negative matrix factorization and...Ernie Esser, Michael M¨ oller , Stanley Osher, Guillermo Sapiro, Jack Xin. A convex model for non-negative matrixfactorization and dimensionality...still have one patent pending (with Adobe): X. Bai, J . Wang, and G. Sapiro, Methods and apparatus for dynamic color modeling. Patents Awarded Awards

  8. Semi-Supervised Projective Non-Negative Matrix Factorization for Cancer Classification.

    PubMed

    Zhang, Xiang; Guan, Naiyang; Jia, Zhilong; Qiu, Xiaogang; Luo, Zhigang

    2015-01-01

    Advances in DNA microarray technologies have made gene expression profiles a significant candidate in identifying different types of cancers. Traditional learning-based cancer identification methods utilize labeled samples to train a classifier, but they are inconvenient for practical application because labels are quite expensive in the clinical cancer research community. This paper proposes a semi-supervised projective non-negative matrix factorization method (Semi-PNMF) to learn an effective classifier from both labeled and unlabeled samples, thus boosting subsequent cancer classification performance. In particular, Semi-PNMF jointly learns a non-negative subspace from concatenated labeled and unlabeled samples and indicates classes by the positions of the maximum entries of their coefficients. Because Semi-PNMF incorporates statistical information from the large volume of unlabeled samples in the learned subspace, it can learn more representative subspaces and boost classification performance. We developed a multiplicative update rule (MUR) to optimize Semi-PNMF and proved its convergence. The experimental results of cancer classification for two multiclass cancer gene expression profile datasets show that Semi-PNMF outperforms the representative methods.

  9. Online blind source separation using incremental nonnegative matrix factorization with volume constraint.

    PubMed

    Zhou, Guoxu; Yang, Zuyuan; Xie, Shengli; Yang, Jun-Mei

    2011-04-01

    Online blind source separation (BSS) is proposed to overcome the high computational cost problem, which limits the practical applications of traditional batch BSS algorithms. However, the existing online BSS methods are mainly used to separate independent or uncorrelated sources. Recently, nonnegative matrix factorization (NMF) shows great potential to separate the correlative sources, where some constraints are often imposed to overcome the non-uniqueness of the factorization. In this paper, an incremental NMF with volume constraint is derived and utilized for solving online BSS. The volume constraint to the mixing matrix enhances the identifiability of the sources, while the incremental learning mode reduces the computational cost. The proposed method takes advantage of the natural gradient based multiplication updating rule, and it performs especially well in the recovery of dependent sources. Simulations in BSS for dual-energy X-ray images, online encrypted speech signals, and high correlative face images show the validity of the proposed method.

  10. Using Dynamic Multi-Task Non-Negative Matrix Factorization to Detect the Evolution of User Preferences in Collaborative Filtering

    PubMed Central

    Ju, Bin; Qian, Yuntao; Ye, Minchao; Ni, Rong; Zhu, Chenxi

    2015-01-01

    Predicting what items will be selected by a target user in the future is an important function for recommendation systems. Matrix factorization techniques have been shown to achieve good performance on temporal rating-type data, but little is known about temporal item selection data. In this paper, we developed a unified model that combines Multi-task Non-negative Matrix Factorization and Linear Dynamical Systems to capture the evolution of user preferences. Specifically, user and item features are projected into latent factor space by factoring co-occurrence matrices into a common basis item-factor matrix and multiple factor-user matrices. Moreover, we represented both within and between relationships of multiple factor-user matrices using a state transition matrix to capture the changes in user preferences over time. The experiments show that our proposed algorithm outperforms the other algorithms on two real datasets, which were extracted from Netflix movies and Last.fm music. Furthermore, our model provides a novel dynamic topic model for tracking the evolution of the behavior of a user over time. PMID:26270539

  11. Using Dynamic Multi-Task Non-Negative Matrix Factorization to Detect the Evolution of User Preferences in Collaborative Filtering.

    PubMed

    Ju, Bin; Qian, Yuntao; Ye, Minchao; Ni, Rong; Zhu, Chenxi

    2015-01-01

    Predicting what items will be selected by a target user in the future is an important function for recommendation systems. Matrix factorization techniques have been shown to achieve good performance on temporal rating-type data, but little is known about temporal item selection data. In this paper, we developed a unified model that combines Multi-task Non-negative Matrix Factorization and Linear Dynamical Systems to capture the evolution of user preferences. Specifically, user and item features are projected into latent factor space by factoring co-occurrence matrices into a common basis item-factor matrix and multiple factor-user matrices. Moreover, we represented both within and between relationships of multiple factor-user matrices using a state transition matrix to capture the changes in user preferences over time. The experiments show that our proposed algorithm outperforms the other algorithms on two real datasets, which were extracted from Netflix movies and Last.fm music. Furthermore, our model provides a novel dynamic topic model for tracking the evolution of the behavior of a user over time.

  12. Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.

    PubMed

    He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej

    2011-12-01

    Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.

  13. Bounds for the Z-spectral radius of nonnegative tensors.

    PubMed

    He, Jun; Liu, Yan-Min; Ke, Hua; Tian, Jun-Kang; Li, Xiang

    2016-01-01

    In this paper, we have proposed some new upper bounds for the largest Z-eigenvalue of an irreducible weakly symmetric and nonnegative tensor, which improve the known upper bounds obtained in Chang et al. (Linear Algebra Appl 438:4166-4182, 2013), Song and Qi (SIAM J Matrix Anal Appl 34:1581-1595, 2013), He and Huang (Appl Math Lett 38:110-114, 2014), Li et al. (J Comput Anal Appl 483:182-199, 2015), He (J Comput Anal Appl 20:1290-1301, 2016).

  14. THz spectral data analysis and components unmixing based on non-negative matrix factorization methods

    NASA Astrophysics Data System (ADS)

    Ma, Yehao; Li, Xian; Huang, Pingjie; Hou, Dibo; Wang, Qiang; Zhang, Guangxin

    2017-04-01

    In many situations the THz spectroscopic data observed from complex samples represent the integrated result of several interrelated variables or feature components acting together. The actual information contained in the original data might be overlapping and there is a necessity to investigate various approaches for model reduction and data unmixing. The development and use of low-rank approximate nonnegative matrix factorization (NMF) and smooth constraint NMF (CNMF) algorithms for feature components extraction and identification in the fields of terahertz time domain spectroscopy (THz-TDS) data analysis are presented. The evolution and convergence properties of NMF and CNMF methods based on sparseness, independence and smoothness constraints for the resulting nonnegative matrix factors are discussed. For general NMF, its cost function is nonconvex and the result is usually susceptible to initialization and noise corruption, and may fall into local minima and lead to unstable decomposition. To reduce these drawbacks, smoothness constraint is introduced to enhance the performance of NMF. The proposed algorithms are evaluated by several THz-TDS data decomposition experiments including a binary system and a ternary system simulating some applications such as medicine tablet inspection. Results show that CNMF is more capable of finding optimal solutions and more robust for random initialization in contrast to NMF. The investigated method is promising for THz data resolution contributing to unknown mixture identification.

  15. Identification of regional activation by factorization of high-density surface EMG signals: A comparison of Principal Component Analysis and Non-negative Matrix factorization.

    PubMed

    Gallina, Alessio; Garland, S Jayne; Wakeling, James M

    2018-05-22

    In this study, we investigated whether principal component analysis (PCA) and non-negative matrix factorization (NMF) perform similarly for the identification of regional activation within the human vastus medialis. EMG signals from 64 locations over the VM were collected from twelve participants while performing a low-force isometric knee extension. The envelope of the EMG signal of each channel was calculated by low-pass filtering (8 Hz) the monopolar EMG signal after rectification. The data matrix was factorized using PCA and NMF, and up to 5 factors were considered for each algorithm. Association between explained variance, spatial weights and temporal scores between the two algorithms were compared using Pearson correlation. For both PCA and NMF, a single factor explained approximately 70% of the variance of the signal, while two and three factors explained just over 85% or 90%. The variance explained by PCA and NMF was highly comparable (R > 0.99). Spatial weights and temporal scores extracted with non-negative reconstruction of PCA and NMF were highly associated (all p < 0.001, mean R > 0.97). Regional VM activation can be identified using high-density surface EMG and factorization algorithms. Regional activation explains up to 30% of the variance of the signal, as identified through both PCA and NMF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. THz spectral data analysis and components unmixing based on non-negative matrix factorization methods.

    PubMed

    Ma, Yehao; Li, Xian; Huang, Pingjie; Hou, Dibo; Wang, Qiang; Zhang, Guangxin

    2017-04-15

    In many situations the THz spectroscopic data observed from complex samples represent the integrated result of several interrelated variables or feature components acting together. The actual information contained in the original data might be overlapping and there is a necessity to investigate various approaches for model reduction and data unmixing. The development and use of low-rank approximate nonnegative matrix factorization (NMF) and smooth constraint NMF (CNMF) algorithms for feature components extraction and identification in the fields of terahertz time domain spectroscopy (THz-TDS) data analysis are presented. The evolution and convergence properties of NMF and CNMF methods based on sparseness, independence and smoothness constraints for the resulting nonnegative matrix factors are discussed. For general NMF, its cost function is nonconvex and the result is usually susceptible to initialization and noise corruption, and may fall into local minima and lead to unstable decomposition. To reduce these drawbacks, smoothness constraint is introduced to enhance the performance of NMF. The proposed algorithms are evaluated by several THz-TDS data decomposition experiments including a binary system and a ternary system simulating some applications such as medicine tablet inspection. Results show that CNMF is more capable of finding optimal solutions and more robust for random initialization in contrast to NMF. The investigated method is promising for THz data resolution contributing to unknown mixture identification. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Doubly Nonparametric Sparse Nonnegative Matrix Factorization Based on Dependent Indian Buffet Processes.

    PubMed

    Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Xu, Richard Yi Da; Luo, Xiangfeng

    2018-05-01

    Sparse nonnegative matrix factorization (SNMF) aims to factorize a data matrix into two optimized nonnegative sparse factor matrices, which could benefit many tasks, such as document-word co-clustering. However, the traditional SNMF typically assumes the number of latent factors (i.e., dimensionality of the factor matrices) to be fixed. This assumption makes it inflexible in practice. In this paper, we propose a doubly sparse nonparametric NMF framework to mitigate this issue by using dependent Indian buffet processes (dIBP). We apply a correlation function for the generation of two stick weights associated with each column pair of factor matrices while still maintaining their respective marginal distribution specified by IBP. As a consequence, the generation of two factor matrices will be columnwise correlated. Under this framework, two classes of correlation function are proposed: 1) using bivariate Beta distribution and 2) using Copula function. Compared with the single IBP-based NMF, this paper jointly makes two factor matrices nonparametric and sparse, which could be applied to broader scenarios, such as co-clustering. This paper is seen to be much more flexible than Gaussian process-based and hierarchial Beta process-based dIBPs in terms of allowing the two corresponding binary matrix columns to have greater variations in their nonzero entries. Our experiments on synthetic data show the merits of this paper compared with the state-of-the-art models in respect of factorization efficiency, sparsity, and flexibility. Experiments on real-world data sets demonstrate the efficiency of this paper in document-word co-clustering tasks.

  18. Attributed community mining using joint general non-negative matrix factorization with graph Laplacian

    NASA Astrophysics Data System (ADS)

    Chen, Zigang; Li, Lixiang; Peng, Haipeng; Liu, Yuhong; Yang, Yixian

    2018-04-01

    Community mining for complex social networks with link and attribute information plays an important role according to different application needs. In this paper, based on our proposed general non-negative matrix factorization (GNMF) algorithm without dimension matching constraints in our previous work, we propose the joint GNMF with graph Laplacian (LJGNMF) to implement community mining of complex social networks with link and attribute information according to different application needs. Theoretical derivation result shows that the proposed LJGNMF is fully compatible with previous methods of integrating traditional NMF and symmetric NMF. In addition, experimental results show that the proposed LJGNMF can meet the needs of different community minings by adjusting its parameters, and the effect is better than traditional NMF in the community vertices attributes entropy.

  19. Nonnegative matrix factorization: a blind sources separation method to extract content of fluorophores mixture media

    NASA Astrophysics Data System (ADS)

    Zhou, Kenneth J.; Chen, Jun

    2014-03-01

    The fluorophores of malignant human breast cells change their compositions that may be exposed in the fluorescence spectroscopy and blind source separation method. The content of the fluorophores mixture media such as tryptophan, collagen, elastin, NADH, and flavin were varied according to the cancer development. The native fluorescence spectra of these key fluorophores mixture media excited by the selective excitation wavelengths of 300 nm and 340 nm were analyzed using a blind source separation method: Nonnegative Matrix Factorization (NMF). The results show that the contribution from tryptophan, NADH and flavin to the fluorescence spectra of the mixture media is proportional to the content of each fluorophore. These data present a possibility that native fluorescence spectra decomposed by NMF can be used as potential native biomarkers for cancer detection evaluation of the cancer.

  20. Nonnegative methods for bilinear discontinuous differencing of the S N equations on quadrilaterals

    DOE PAGES

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    2016-12-22

    Historically, matrix lumping and ad hoc flux fixups have been the only methods used to eliminate or suppress negative angular flux solutions associated with the unlumped bilinear discontinuous (UBLD) finite element spatial discretization of the two-dimensional S N equations. Though matrix lumping inhibits negative angular flux solutions of the S N equations, it does not guarantee strictly positive solutions. In this paper, we develop and define a strictly nonnegative, nonlinear, Petrov-Galerkin finite element method that fully preserves the bilinear discontinuous spatial moments of the transport equation. Additionally, we define two ad hoc fixups that maintain particle balance and explicitly setmore » negative nodes of the UBLD finite element solution to zero but use different auxiliary equations to fully define their respective solutions. We assess the ability to inhibit negative angular flux solutions and the accuracy of every spatial discretization that we consider using a glancing void test problem with a discontinuous solution known to stress numerical methods. Though significantly more computationally intense, the nonlinear Petrov-Galerkin scheme results in a strictly nonnegative solution and is a more accurate solution than all the other methods considered. One fixup, based on shape preserving, results in a strictly nonnegative final solution but has increased numerical diffusion relative to the Petrov-Galerkin scheme and is less accurate than the UBLD solution. The second fixup, which preserves as many spatial moments as possible while setting negative values of the unlumped solution to zero, is less accurate than the Petrov-Galerkin scheme but is more accurate than the other fixup. However, it fails to guarantee a strictly nonnegative final solution. As a result, the fully lumped bilinear discontinuous finite element solution is the least accurate method, with significantly more numerical diffusion than the Petrov-Galerkin scheme and both fixups.« less

  1. Nonnegative methods for bilinear discontinuous differencing of the S N equations on quadrilaterals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    Historically, matrix lumping and ad hoc flux fixups have been the only methods used to eliminate or suppress negative angular flux solutions associated with the unlumped bilinear discontinuous (UBLD) finite element spatial discretization of the two-dimensional S N equations. Though matrix lumping inhibits negative angular flux solutions of the S N equations, it does not guarantee strictly positive solutions. In this paper, we develop and define a strictly nonnegative, nonlinear, Petrov-Galerkin finite element method that fully preserves the bilinear discontinuous spatial moments of the transport equation. Additionally, we define two ad hoc fixups that maintain particle balance and explicitly setmore » negative nodes of the UBLD finite element solution to zero but use different auxiliary equations to fully define their respective solutions. We assess the ability to inhibit negative angular flux solutions and the accuracy of every spatial discretization that we consider using a glancing void test problem with a discontinuous solution known to stress numerical methods. Though significantly more computationally intense, the nonlinear Petrov-Galerkin scheme results in a strictly nonnegative solution and is a more accurate solution than all the other methods considered. One fixup, based on shape preserving, results in a strictly nonnegative final solution but has increased numerical diffusion relative to the Petrov-Galerkin scheme and is less accurate than the UBLD solution. The second fixup, which preserves as many spatial moments as possible while setting negative values of the unlumped solution to zero, is less accurate than the Petrov-Galerkin scheme but is more accurate than the other fixup. However, it fails to guarantee a strictly nonnegative final solution. As a result, the fully lumped bilinear discontinuous finite element solution is the least accurate method, with significantly more numerical diffusion than the Petrov-Galerkin scheme and both fixups.« less

  2. Exploring syndrome differentiation using non-negative matrix factorization and cluster analysis in patients with atopic dermatitis.

    PubMed

    Yun, Younghee; Jung, Wonmo; Kim, Hyunho; Jang, Bo-Hyoung; Kim, Min-Hee; Noh, Jiseong; Ko, Seong-Gyu; Choi, Inhwa

    2017-08-01

    Syndrome differentiation (SD) results in a diagnostic conclusion based on a cluster of concurrent symptoms and signs, including pulse form and tongue color. In Korea, there is a strong interest in the standardization of Traditional Medicine (TM). In order to standardize TM treatment, standardization of SD should be given priority. The aim of this study was to explore the SD, or symptom clusters, of patients with atopic dermatitis (AD) using non-negative factorization methods and k-means clustering analysis. We screened 80 patients and enrolled 73 eligible patients. One TM dermatologist evaluated the symptoms/signs using an existing clinical dataset from patients with AD. This dataset was designed to collect 15 dermatologic and 18 systemic symptoms/signs associated with AD. Non-negative matrix factorization was used to decompose the original data into a matrix with three features and a weight matrix. The point of intersection of the three coordinates from each patient was placed in three-dimensional space. With five clusters, the silhouette score reached 0.484, and this was the best silhouette score obtained from two to nine clusters. Patients were clustered according to the varying severity of concurrent symptoms/signs. Through the distribution of the null hypothesis generated by 10,000 permutation tests, we found significant cluster-specific symptoms/signs from the confidence intervals in the upper and lower 2.5% of the distribution. Patients in each cluster showed differences in symptoms/signs and severity. In a clinical situation, SD and treatment are based on the practitioners' observations and clinical experience. SD, identified through informatics, can contribute to development of standardized, objective, and consistent SD for each disease. Copyright © 2017. Published by Elsevier Ltd.

  3. Investigation on Constrained Matrix Factorization for Hyperspectral Image Analysis

    DTIC Science & Technology

    2005-07-25

    analysis. Keywords: matrix factorization; nonnegative matrix factorization; linear mixture model ; unsupervised linear unmixing; hyperspectral imagery...spatial resolution permits different materials present in the area covered by a single pixel. The linear mixture model says that a pixel reflectance in...in r. In the linear mixture model , r is considered as the linear mixture of m1, m2, …, mP as nMαr += (1) where n is included to account for

  4. Identifying group discriminative and age regressive sub-networks from DTI-based connectivity via a unified framework of non-negative matrix factorization and graph embedding

    PubMed Central

    Ghanbari, Yasser; Smith, Alex R.; Schultz, Robert T.; Verma, Ragini

    2014-01-01

    Diffusion tensor imaging (DTI) offers rich insights into the physical characteristics of white matter (WM) fiber tracts and their development in the brain, facilitating a network representation of brain’s traffic pathways. Such a network representation of brain connectivity has provided a novel means of investigating brain changes arising from pathology, development or aging. The high dimensionality of these connectivity networks necessitates the development of methods that identify the connectivity building blocks or sub-network components that characterize the underlying variation in the population. In addition, the projection of the subject networks into the basis set provides a low dimensional representation of it, that teases apart different sources of variation in the sample, facilitating variation-specific statistical analysis. We propose a unified framework of non-negative matrix factorization and graph embedding for learning sub-network patterns of connectivity by their projective non-negative decomposition into a reconstructive basis set, as well as, additional basis sets representing variational sources in the population like age and pathology. The proposed framework is applied to a study of diffusion-based connectivity in subjects with autism that shows localized sparse sub-networks which mostly capture the changes related to pathology and developmental variations. PMID:25037933

  5. Non-negative Matrix Factorization and Co-clustering: A Promising Tool for Multi-tasks Bearing Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Shen, Fei; Chen, Chao; Yan, Ruqiang

    2017-05-01

    Classical bearing fault diagnosis methods, being designed according to one specific task, always pay attention to the effectiveness of extracted features and the final diagnostic performance. However, most of these approaches suffer from inefficiency when multiple tasks exist, especially in a real-time diagnostic scenario. A fault diagnosis method based on Non-negative Matrix Factorization (NMF) and Co-clustering strategy is proposed to overcome this limitation. Firstly, some high-dimensional matrixes are constructed using the Short-Time Fourier Transform (STFT) features, where the dimension of each matrix equals to the number of target tasks. Then, the NMF algorithm is carried out to obtain different components in each dimension direction through optimized matching, such as Euclidean distance and divergence distance. Finally, a Co-clustering technique based on information entropy is utilized to realize classification of each component. To verity the effectiveness of the proposed approach, a series of bearing data sets were analysed in this research. The tests indicated that although the diagnostic performance of single task is comparable to traditional clustering methods such as K-mean algorithm and Guassian Mixture Model, the accuracy and computational efficiency in multi-tasks fault diagnosis are improved.

  6. Characterizing muscular activities using non-negative matrix factorization from EMG channels for driver swings in golf.

    PubMed

    Ozaki, Yasunori; Aoki, Ryosuke; Kimura, Toshitaka; Takashima, Youichi; Yamada, Tomohiro

    2016-08-01

    The goal of this study is to propose a data driven approach method to characterize muscular activities of complex actions in sports such as golf from a lot of EMG channels. Two problems occur in a many channel measurement. The first problem is that it takes a lot of time to check the many channel data because of combinatorial explosion. The second problem is that it is difficult to understand muscle activities related with complex actions. To solve these problems, we propose an analysis method of multi EMG channels using Non-negative Matrix Factorization and adopt the method to driver swings in golf. We measured 26 EMG channels about 4 professional coaches of golf. The results show that the proposed method detected 9 muscle synergies and the activation of each synergy were mostly fitted by sigmoid curve (R2=0.85).

  7. Comparative study of original recover and recover KL in separable non-negative matrix factorization for topic detection in Twitter

    NASA Astrophysics Data System (ADS)

    Prabandari, R. D.; Murfi, H.

    2017-07-01

    An increasing amount of information on social media such as Twitter requires an efficient way to find the topics so that the information can be well managed. One of an automated method for topic detection is separable non-negative matrix factorization (SNMF). SNMF assumes that each topic has at least one word that does not appear on other topics. This method uses the direct approach and gives polynomial-time complexity, while the previous methods are iterative approaches and have NP-hard complexity. There are three steps of SNMF algorithm, i.e. constructing word co-occurrences, finding anchor words, and recovering topics. In this paper, we examine two topic recover methods, namely original recover that is using algebraic manipulation and recover KL that using probability approach with Kullback-Leibler divergence. Our simulations show that recover KL provides better accuracies in term of topic recall than original recover.

  8. Categorical dimensions of human odor descriptor space revealed by non-negative matrix factorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chennubhotla, Chakra; Castro, Jason

    2013-01-01

    In contrast to most other sensory modalities, the basic perceptual dimensions of olfaction remain un- clear. Here, we use non-negative matrix factorization (NMF) - a dimensionality reduction technique - to uncover structure in a panel of odor profiles, with each odor defined as a point in multi-dimensional descriptor space. The properties of NMF are favorable for the analysis of such lexical and perceptual data, and lead to a high-dimensional account of odor space. We further provide evidence that odor di- mensions apply categorically. That is, odor space is not occupied homogenously, but rather in a discrete and intrinsically clustered manner.more » We discuss the potential implications of these results for the neural coding of odors, as well as for developing classifiers on larger datasets that may be useful for predicting perceptual qualities from chemical structures.« less

  9. Scalable non-negative matrix tri-factorization.

    PubMed

    Čopar, Andrej; Žitnik, Marinka; Zupan, Blaž

    2017-01-01

    Matrix factorization is a well established pattern discovery tool that has seen numerous applications in biomedical data analytics, such as gene expression co-clustering, patient stratification, and gene-disease association mining. Matrix factorization learns a latent data model that takes a data matrix and transforms it into a latent feature space enabling generalization, noise removal and feature discovery. However, factorization algorithms are numerically intensive, and hence there is a pressing challenge to scale current algorithms to work with large datasets. Our focus in this paper is matrix tri-factorization, a popular method that is not limited by the assumption of standard matrix factorization about data residing in one latent space. Matrix tri-factorization solves this by inferring a separate latent space for each dimension in a data matrix, and a latent mapping of interactions between the inferred spaces, making the approach particularly suitable for biomedical data mining. We developed a block-wise approach for latent factor learning in matrix tri-factorization. The approach partitions a data matrix into disjoint submatrices that are treated independently and fed into a parallel factorization system. An appealing property of the proposed approach is its mathematical equivalence with serial matrix tri-factorization. In a study on large biomedical datasets we show that our approach scales well on multi-processor and multi-GPU architectures. On a four-GPU system we demonstrate that our approach can be more than 100-times faster than its single-processor counterpart. A general approach for scaling non-negative matrix tri-factorization is proposed. The approach is especially useful parallel matrix factorization implemented in a multi-GPU environment. We expect the new approach will be useful in emerging procedures for latent factor analysis, notably for data integration, where many large data matrices need to be collectively factorized.

  10. Discriminative non-negative matrix factorization (DNMF) and its application to the fault diagnosis of diesel engine

    NASA Astrophysics Data System (ADS)

    Yang, Yong-sheng; Ming, An-bo; Zhang, You-yun; Zhu, Yong-sheng

    2017-10-01

    Diesel engines, widely used in engineering, are very important for the running of equipments and their fault diagnosis have attracted much attention. In the past several decades, the image based fault diagnosis methods have provided efficient ways for the diesel engine fault diagnosis. By introducing the class information into the traditional non-negative matrix factorization (NMF), an improved NMF algorithm named as discriminative NMF (DNMF) was developed and a novel imaged based fault diagnosis method was proposed by the combination of the DNMF and the KNN classifier. Experiments performed on the fault diagnosis of diesel engine were used to validate the efficacy of the proposed method. It is shown that the fault conditions of diesel engine can be efficiently classified by the proposed method using the coefficient matrix obtained by DNMF. Compared with the original NMF (ONMF) and principle component analysis (PCA), the DNMF can represent the class information more efficiently because the class characters of basis matrices obtained by the DNMF are more visible than those in the basis matrices obtained by the ONMF and PCA.

  11. Statistical classification techniques for engineering and climatic data samples

    NASA Technical Reports Server (NTRS)

    Temple, E. C.; Shipman, J. R.

    1981-01-01

    Fisher's sample linear discriminant function is modified through an appropriate alteration of the common sample variance-covariance matrix. The alteration consists of adding nonnegative values to the eigenvalues of the sample variance covariance matrix. The desired results of this modification is to increase the number of correct classifications by the new linear discriminant function over Fisher's function. This study is limited to the two-group discriminant problem.

  12. Link predication based on matrix factorization by fusion of multi class organizations of the network.

    PubMed

    Jiao, Pengfei; Cai, Fei; Feng, Yiding; Wang, Wenjun

    2017-08-21

    Link predication aims at forecasting the latent or unobserved edges in the complex networks and has a wide range of applications in reality. Almost existing methods and models only take advantage of one class organization of the networks, which always lose important information hidden in other organizations of the network. In this paper, we propose a link predication framework which makes the best of the structure of networks in different level of organizations based on nonnegative matrix factorization, which is called NMF 3 here. We first map the observed network into another space by kernel functions, which could get the different order organizations. Then we combine the adjacency matrix of the network with one of other organizations, which makes us obtain the objective function of our framework for link predication based on the nonnegative matrix factorization. Third, we derive an iterative algorithm to optimize the objective function, which converges to a local optimum, and we propose a fast optimization strategy for large networks. Lastly, we test the proposed framework based on two kernel functions on a series of real world networks under different sizes of training set, and the experimental results show the feasibility, effectiveness, and competitiveness of the proposed framework.

  13. A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations.

    PubMed

    Xiao, Qiu; Luo, Jiawei; Liang, Cheng; Cai, Jie; Ding, Pingjian

    2017-09-01

    MicroRNAs (miRNAs) play crucial roles in post-transcriptional regulations and various cellular processes. The identification of disease-related miRNAs provides great insights into the underlying pathogenesis of diseases at a system level. However, most existing computational approaches are biased towards known miRNA-disease associations, which is inappropriate for those new diseases or miRNAs without any known association information. In this study, we propose a new method with graph regularized non-negative matrix factorization in heterogeneous omics data, called GRNMF, to discover potential associations between miRNAs and diseases, especially for new diseases and miRNAs or those diseases and miRNAs with sparse known associations. First, we integrate the disease semantic information and miRNA functional information to estimate disease similarity and miRNA similarity, respectively. Considering that there is no available interaction observed for new diseases or miRNAs, a preprocessing step is developed to construct the interaction score profiles that will assist in prediction. Next, a graph regularized non-negative matrix factorization framework is utilized to simultaneously identify potential associations for all diseases. The results indicated that our proposed method can effectively prioritize disease-associated miRNAs with higher accuracy compared with other recent approaches. Moreover, case studies also demonstrated the effectiveness of GRNMF to infer unknown miRNA-disease associations for those novel diseases and miRNAs. The code of GRNMF is freely available at https://github.com/XIAO-HN/GRNMF/. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. A note on the Drazin indices of square matrices.

    PubMed

    Yu, Lijun; Bu, Tianyi; Zhou, Jiang

    2014-01-01

    For a square matrix A, the smallest nonnegative integer k such that rank (A(k)) =rank (A(k+1)) is called the Drazin index of A. In this paper, we give some results on the Drazin indices of sum and product of square matrices.

  15. Using Separable Nonnegative Matrix Factorization Techniques for the Analysis of Time-Resolved Raman Spectra

    NASA Astrophysics Data System (ADS)

    Luce, R.; Hildebrandt, P.; Kuhlmann, U.; Liesen, J.

    2016-09-01

    The key challenge of time-resolved Raman spectroscopy is the identification of the constituent species and the analysis of the kinetics of the underlying reaction network. In this work we present an integral approach that allows for determining both the component spectra and the rate constants simultaneously from a series of vibrational spectra. It is based on an algorithm for non-negative matrix factorization which is applied to the experimental data set following a few pre-processing steps. As a prerequisite for physically unambiguous solutions, each component spectrum must include one vibrational band that does not significantly interfere with vibrational bands of other species. The approach is applied to synthetic "experimental" spectra derived from model systems comprising a set of species with component spectra differing with respect to their degree of spectral interferences and signal-to-noise ratios. In each case, the species involved are connected via monomolecular reaction pathways. The potential and limitations of the approach for recovering the respective rate constants and component spectra are discussed.

  16. Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization

    PubMed Central

    Cruz-Roa, Angel; Díaz, Gloria; Romero, Eduardo; González, Fabio A.

    2011-01-01

    Histopathological images are an important resource for clinical diagnosis and biomedical research. From an image understanding point of view, the automatic annotation of these images is a challenging problem. This paper presents a new method for automatic histopathological image annotation based on three complementary strategies, first, a part-based image representation, called the bag of features, which takes advantage of the natural redundancy of histopathological images for capturing the fundamental patterns of biological structures, second, a latent topic model, based on non-negative matrix factorization, which captures the high-level visual patterns hidden in the image, and, third, a probabilistic annotation model that links visual appearance of morphological and architectural features associated to 10 histopathological image annotations. The method was evaluated using 1,604 annotated images of skin tissues, which included normal and pathological architectural and morphological features, obtaining a recall of 74% and a precision of 50%, which improved a baseline annotation method based on support vector machines in a 64% and 24%, respectively. PMID:22811960

  17. Community detection enhancement using non-negative matrix factorization with graph regularization

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Wei, Yi-Ming; Wang, Jian; Wang, Wen-Jun; He, Dong-Xiao; Song, Zhan-Jie

    2016-06-01

    Community detection is a meaningful task in the analysis of complex networks, which has received great concern in various domains. A plethora of exhaustive studies has made great effort and proposed many methods on community detection. Particularly, a kind of attractive one is the two-step method which first makes a preprocessing for the network and then identifies its communities. However, not all types of methods can achieve satisfactory results by using such preprocessing strategy, such as the non-negative matrix factorization (NMF) methods. In this paper, rather than using the above two-step method as most works did, we propose a graph regularized-based model to improve, specialized, the NMF-based methods for the detection of communities, namely NMFGR. In NMFGR, we introduce the similarity metric which contains both the global and local information of networks, to reflect the relationships between two nodes, so as to improve the accuracy of community detection. Experimental results on both artificial and real-world networks demonstrate the superior performance of NMFGR to some competing methods.

  18. Robust extraction of basis functions for simultaneous and proportional myoelectric control via sparse non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Lin, Chuang; Wang, Binghui; Jiang, Ning; Farina, Dario

    2018-04-01

    Objective. This paper proposes a novel simultaneous and proportional multiple degree of freedom (DOF) myoelectric control method for active prostheses. Approach. The approach is based on non-negative matrix factorization (NMF) of surface EMG signals with the inclusion of sparseness constraints. By applying a sparseness constraint to the control signal matrix, it is possible to extract the basis information from arbitrary movements (quasi-unsupervised approach) for multiple DOFs concurrently. Main Results. In online testing based on target hitting, able-bodied subjects reached a greater throughput (TP) when using sparse NMF (SNMF) than with classic NMF or with linear regression (LR). Accordingly, the completion time (CT) was shorter for SNMF than NMF or LR. The same observations were made in two patients with unilateral limb deficiencies. Significance. The addition of sparseness constraints to NMF allows for a quasi-unsupervised approach to myoelectric control with superior results with respect to previous methods for the simultaneous and proportional control of multi-DOF. The proposed factorization algorithm allows robust simultaneous and proportional control, is superior to previous supervised algorithms, and, because of minimal supervision, paves the way to online adaptation in myoelectric control.

  19. Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoke; Sun, Penggang; Wang, Yu

    2018-04-01

    Many networks derived from society and nature are temporal and incomplete. The temporal link prediction problem in networks is to predict links at time T + 1 based on a given temporal network from time 1 to T, which is essential to important applications. The current algorithms either predict the temporal links by collapsing the dynamic networks or collapsing features derived from each network, which are criticized for ignoring the connection among slices. to overcome the issue, we propose a novel graph regularized nonnegative matrix factorization algorithm (GrNMF) for the temporal link prediction problem without collapsing the dynamic networks. To obtain the feature for each network from 1 to t, GrNMF factorizes the matrix associated with networks by setting the rest networks as regularization, which provides a better way to characterize the topological information of temporal links. Then, the GrNMF algorithm collapses the feature matrices to predict temporal links. Compared with state-of-the-art methods, the proposed algorithm exhibits significantly improved accuracy by avoiding the collapse of temporal networks. Experimental results of a number of artificial and real temporal networks illustrate that the proposed method is not only more accurate but also more robust than state-of-the-art approaches.

  20. A Statistical Test of Walrasian Equilibrium by Means of Complex Networks Theory

    NASA Astrophysics Data System (ADS)

    Bargigli, Leonardo; Viaggiu, Stefano; Lionetto, Andrea

    2016-10-01

    We represent an exchange economy in terms of statistical ensembles for complex networks by introducing the concept of market configuration. This is defined as a sequence of nonnegative discrete random variables {w_{ij}} describing the flow of a given commodity from agent i to agent j. This sequence can be arranged in a nonnegative matrix W which we can regard as the representation of a weighted and directed network or digraph G. Our main result consists in showing that general equilibrium theory imposes highly restrictive conditions upon market configurations, which are in most cases not fulfilled by real markets. An explicit example with reference to the e-MID interbank credit market is provided.

  1. Bird sound spectrogram decomposition through Non-Negative Matrix Factorization for the acoustic classification of bird species.

    PubMed

    Ludeña-Choez, Jimmy; Quispe-Soncco, Raisa; Gallardo-Antolín, Ascensión

    2017-01-01

    Feature extraction for Acoustic Bird Species Classification (ABSC) tasks has traditionally been based on parametric representations that were specifically developed for speech signals, such as Mel Frequency Cepstral Coefficients (MFCC). However, the discrimination capabilities of these features for ABSC could be enhanced by accounting for the vocal production mechanisms of birds, and, in particular, the spectro-temporal structure of bird sounds. In this paper, a new front-end for ABSC is proposed that incorporates this specific information through the non-negative decomposition of bird sound spectrograms. It consists of the following two different stages: short-time feature extraction and temporal feature integration. In the first stage, which aims at providing a better spectral representation of bird sounds on a frame-by-frame basis, two methods are evaluated. In the first method, cepstral-like features (NMF_CC) are extracted by using a filter bank that is automatically learned by means of the application of Non-Negative Matrix Factorization (NMF) on bird audio spectrograms. In the second method, the features are directly derived from the activation coefficients of the spectrogram decomposition as performed through NMF (H_CC). The second stage summarizes the most relevant information contained in the short-time features by computing several statistical measures over long segments. The experiments show that the use of NMF_CC and H_CC in conjunction with temporal integration significantly improves the performance of a Support Vector Machine (SVM)-based ABSC system with respect to conventional MFCC.

  2. Bird sound spectrogram decomposition through Non-Negative Matrix Factorization for the acoustic classification of bird species

    PubMed Central

    Quispe-Soncco, Raisa

    2017-01-01

    Feature extraction for Acoustic Bird Species Classification (ABSC) tasks has traditionally been based on parametric representations that were specifically developed for speech signals, such as Mel Frequency Cepstral Coefficients (MFCC). However, the discrimination capabilities of these features for ABSC could be enhanced by accounting for the vocal production mechanisms of birds, and, in particular, the spectro-temporal structure of bird sounds. In this paper, a new front-end for ABSC is proposed that incorporates this specific information through the non-negative decomposition of bird sound spectrograms. It consists of the following two different stages: short-time feature extraction and temporal feature integration. In the first stage, which aims at providing a better spectral representation of bird sounds on a frame-by-frame basis, two methods are evaluated. In the first method, cepstral-like features (NMF_CC) are extracted by using a filter bank that is automatically learned by means of the application of Non-Negative Matrix Factorization (NMF) on bird audio spectrograms. In the second method, the features are directly derived from the activation coefficients of the spectrogram decomposition as performed through NMF (H_CC). The second stage summarizes the most relevant information contained in the short-time features by computing several statistical measures over long segments. The experiments show that the use of NMF_CC and H_CC in conjunction with temporal integration significantly improves the performance of a Support Vector Machine (SVM)-based ABSC system with respect to conventional MFCC. PMID:28628630

  3. Comment on ``The problem of deficiency indices for discrete Schrödinger operators on locally finite graphs'' [J. Math. Phys. 52, 063512 (2011)

    NASA Astrophysics Data System (ADS)

    Golénia, Sylvain; Schumacher, Christoph

    2013-06-01

    In this comment we answer negatively to our conjecture concerning the deficiency indices. More precisely, given any non-negative integer n, there is locally finite graph on which the adjacency matrix has deficiency indices (n, n).

  4. A GRAPHICAL DIAGNOSTIC METHOD FOR ASSESSING THE ROTATION IN FACTOR ANALYTICAL MODELS OF ATMOSPHERIC POLLUTION. (R831078)

    EPA Science Inventory

    Factor analytic tools such as principal component analysis (PCA) and positive matrix factorization (PMF), suffer from rotational ambiguity in the results: different solutions (factors) provide equally good fits to the measured data. The PMF model imposes non-negativity of both...

  5. A New Measure of Wireless Network Connectivity

    DTIC Science & Technology

    2014-10-31

    matrix QG. From Lemma 1, QG is a non-zero nonnegative matrix. Thus from the Perron - Frobenius Theorem, [24], its largest magni- tude eigenvalue, known as...the Perron - Frobenius eigenvalue is real and positive. Further as QG is symmetric, all its eigenval- ues are real, and its largest magnitude...eigenvalue λmax(QG) is also its largest singular value. Also from the Perron - Frobenius Theorem, should the network be connected, i.e. QG is positive as opposed

  6. Applications of Perron-Frobenius theory to population dynamics.

    PubMed

    Li, Chi-Kwong; Schneider, Hans

    2002-05-01

    By the use of Perron-Frobenius theory, simple proofs are given of the Fundamental Theorem of Demography and of a theorem of Cushing and Yicang on the net reproductive rate occurring in matrix models of population dynamics. The latter result, which is closely related to the Stein-Rosenberg theorem in numerical linear algebra, is further refined with some additional nonnegative matrix theory. When the fertility matrix is scaled by the net reproductive rate, the growth rate of the model is $1$. More generally, we show how to achieve a given growth rate for the model by scaling the fertility matrix. Demographic interpretations of the results are given.

  7. Fast Low-Rank Bayesian Matrix Completion With Hierarchical Gaussian Prior Models

    NASA Astrophysics Data System (ADS)

    Yang, Linxiao; Fang, Jun; Duan, Huiping; Li, Hongbin; Zeng, Bing

    2018-06-01

    The problem of low rank matrix completion is considered in this paper. To exploit the underlying low-rank structure of the data matrix, we propose a hierarchical Gaussian prior model, where columns of the low-rank matrix are assumed to follow a Gaussian distribution with zero mean and a common precision matrix, and a Wishart distribution is specified as a hyperprior over the precision matrix. We show that such a hierarchical Gaussian prior has the potential to encourage a low-rank solution. Based on the proposed hierarchical prior model, a variational Bayesian method is developed for matrix completion, where the generalized approximate massage passing (GAMP) technique is embedded into the variational Bayesian inference in order to circumvent cumbersome matrix inverse operations. Simulation results show that our proposed method demonstrates superiority over existing state-of-the-art matrix completion methods.

  8. Nonnegative matrix factorization and sparse representation for the automated detection of periodic limb movements in sleep.

    PubMed

    Shokrollahi, Mehrnaz; Krishnan, Sridhar; Dopsa, Dustin D; Muir, Ryan T; Black, Sandra E; Swartz, Richard H; Murray, Brian J; Boulos, Mark I

    2016-11-01

    Stroke is a leading cause of death and disability in adults, and incurs a significant economic burden to society. Periodic limb movements (PLMs) in sleep are repetitive movements involving the great toe, ankle, and hip. Evolving evidence suggests that PLMs may be associated with high blood pressure and stroke, but this relationship remains underexplored. Several issues limit the study of PLMs including the need to manually score them, which is time-consuming and costly. For this reason, we developed a novel automated method for nocturnal PLM detection, which was shown to be correlated with (a) the manually scored PLM index on polysomnography, and (b) white matter hyperintensities on brain imaging, which have been demonstrated to be associated with PLMs. Our proposed algorithm consists of three main stages: (1) representing the signal in the time-frequency plane using time-frequency matrices (TFM), (2) applying K-nonnegative matrix factorization technique to decompose the TFM matrix into its significant components, and (3) applying kernel sparse representation for classification (KSRC) to the decomposed signal. Our approach was applied to a dataset that consisted of 65 subjects who underwent polysomnography. An overall classification of 97 % was achieved for discrimination of the aforementioned signals, demonstrating the potential of the presented method.

  9. The survey of preconditioners used for accelerating the rate of convergence in the Gauss-Seidel method

    NASA Astrophysics Data System (ADS)

    Niki, Hiroshi; Harada, Kyouji; Morimoto, Munenori; Sakakihara, Michio

    2004-03-01

    Several preconditioned iterative methods reported in the literature have been used for improving the convergence rate of the Gauss-Seidel method. In this article, on the basis of nonnegative matrix, comparisons between some splittings for such preconditioned matrices are derived. Simple numerical examples are also given.

  10. The successive projection algorithm as an initialization method for brain tumor segmentation using non-negative matrix factorization.

    PubMed

    Sauwen, Nicolas; Acou, Marjan; Bharath, Halandur N; Sima, Diana M; Veraart, Jelle; Maes, Frederik; Himmelreich, Uwe; Achten, Eric; Van Huffel, Sabine

    2017-01-01

    Non-negative matrix factorization (NMF) has become a widely used tool for additive parts-based analysis in a wide range of applications. As NMF is a non-convex problem, the quality of the solution will depend on the initialization of the factor matrices. In this study, the successive projection algorithm (SPA) is proposed as an initialization method for NMF. SPA builds on convex geometry and allocates endmembers based on successive orthogonal subspace projections of the input data. SPA is a fast and reproducible method, and it aligns well with the assumptions made in near-separable NMF analyses. SPA was applied to multi-parametric magnetic resonance imaging (MRI) datasets for brain tumor segmentation using different NMF algorithms. Comparison with common initialization methods shows that SPA achieves similar segmentation quality and it is competitive in terms of convergence rate. Whereas SPA was previously applied as a direct endmember extraction tool, we have shown improved segmentation results when using SPA as an initialization method, as it allows further enhancement of the sources during the NMF iterative procedure.

  11. UTOPIAN: user-driven topic modeling based on interactive nonnegative matrix factorization.

    PubMed

    Choo, Jaegul; Lee, Changhyun; Reddy, Chandan K; Park, Haesun

    2013-12-01

    Topic modeling has been widely used for analyzing text document collections. Recently, there have been significant advancements in various topic modeling techniques, particularly in the form of probabilistic graphical modeling. State-of-the-art techniques such as Latent Dirichlet Allocation (LDA) have been successfully applied in visual text analytics. However, most of the widely-used methods based on probabilistic modeling have drawbacks in terms of consistency from multiple runs and empirical convergence. Furthermore, due to the complicatedness in the formulation and the algorithm, LDA cannot easily incorporate various types of user feedback. To tackle this problem, we propose a reliable and flexible visual analytics system for topic modeling called UTOPIAN (User-driven Topic modeling based on Interactive Nonnegative Matrix Factorization). Centered around its semi-supervised formulation, UTOPIAN enables users to interact with the topic modeling method and steer the result in a user-driven manner. We demonstrate the capability of UTOPIAN via several usage scenarios with real-world document corpuses such as InfoVis/VAST paper data set and product review data sets.

  12. Peak picking NMR spectral data using non-negative matrix factorization.

    PubMed

    Tikole, Suhas; Jaravine, Victor; Rogov, Vladimir; Dötsch, Volker; Güntert, Peter

    2014-02-11

    Simple peak-picking algorithms, such as those based on lineshape fitting, perform well when peaks are completely resolved in multidimensional NMR spectra, but often produce wrong intensities and frequencies for overlapping peak clusters. For example, NOESY-type spectra have considerable overlaps leading to significant peak-picking intensity errors, which can result in erroneous structural restraints. Precise frequencies are critical for unambiguous resonance assignments. To alleviate this problem, a more sophisticated peaks decomposition algorithm, based on non-negative matrix factorization (NMF), was developed. We produce peak shapes from Fourier-transformed NMR spectra. Apart from its main goal of deriving components from spectra and producing peak lists automatically, the NMF approach can also be applied if the positions of some peaks are known a priori, e.g. from consistently referenced spectral dimensions of other experiments. Application of the NMF algorithm to a three-dimensional peak list of the 23 kDa bi-domain section of the RcsD protein (RcsD-ABL-HPt, residues 688-890) as well as to synthetic HSQC data shows that peaks can be picked accurately also in spectral regions with strong overlap.

  13. Using Separable Nonnegative Matrix Factorization Techniques for the Analysis of Time-Resolved Raman Spectra.

    PubMed

    Luce, Robert; Hildebrandt, Peter; Kuhlmann, Uwe; Liesen, Jörg

    2016-09-01

    The key challenge of time-resolved Raman spectroscopy is the identification of the constituent species and the analysis of the kinetics of the underlying reaction network. In this work we present an integral approach that allows for determining both the component spectra and the rate constants simultaneously from a series of vibrational spectra. It is based on an algorithm for nonnegative matrix factorization that is applied to the experimental data set following a few pre-processing steps. As a prerequisite for physically unambiguous solutions, each component spectrum must include one vibrational band that does not significantly interfere with the vibrational bands of other species. The approach is applied to synthetic "experimental" spectra derived from model systems comprising a set of species with component spectra differing with respect to their degree of spectral interferences and signal-to-noise ratios. In each case, the species involved are connected via monomolecular reaction pathways. The potential and limitations of the approach for recovering the respective rate constants and component spectra are discussed. © The Author(s) 2016.

  14. The Comparison Between Nmf and Ica in Pigment Mixture Identification of Ancient Chinese Paintings

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Lyu, S.; Hou, M.; Yin, Q.

    2018-04-01

    Since the colour in painting cultural relics observed by our naked eyes or hyperspectral cameras is usually a mixture of several kinds of pigments, the mixed pigments analysis will be an important subject in the field of ancient painting conservation and restoration. This paper aims to find a more effective method to confirm the types of every pure pigment from mixture on the surface of paintings. Firstly, we adopted two kinds of blind source separation algorithms, which are independent component analysis and non-negative matrix factorization, to extract the pure pigment component from mixed spectrum respectively. Moreover, we matched the separated pure spectrum with the pigments spectra library built by our team to determine the pigment type. Furthermore, three kinds of data including simulation data, mixed pigments spectral data measured in laboratory, and the spectral data of an ancient painting were chosen to evaluate the performance of the different algorithms. And the accuracy was compared between the two algorithms. Finally, the experimental results show that non-negative matrix factorization method is more suitable for endmember extraction in the field of ancient painting conservation and restoration.

  15. An automatic search of Alzheimer patterns using a nonnegative matrix factorization

    NASA Astrophysics Data System (ADS)

    Giraldo, Diana L.; García-Arteaga, Juan D.; Romero, Eduardo

    2013-11-01

    This paper presents a fully automatic method that condenses relevant morphometric information from a database of magnetic resonance images (MR) labeled as either normal (NC) or Alzheimer's disease (AD). The proposed method generates class templates using Nonnegative Matrix Factorization (NMF) which will be used to develop an NC/AD classi cator. It then nds regions of interest (ROI) with discerning inter-class properties. by inspecting the di erence volume of the two class templates. From these templates local probability distribution functions associated to low level features such as intensities, orientation and edges within the found ROI are calculated. A sample brain volume can then be characterized by a similarity measure in the ROI to both the normal and the pathological templates. These characteristics feed a simple binary SVM classi er which, when tested with an experimental group extracted from a public brain MR dataset (OASIS), reveals an equal error rate measure which is better than the state-of-the-art tested on the same dataset (0:9 in the former and 0:8 in the latter).

  16. Nonlinear hyperspectral unmixing based on sparse non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Li, Jing; Li, Xiaorun; Zhao, Liaoying

    2016-01-01

    Hyperspectral unmixing aims at extracting pure material spectra, accompanied by their corresponding proportions, from a mixed pixel. Owing to modeling more accurate distribution of real material, nonlinear mixing models (non-LMM) are usually considered to hold better performance than LMMs in complicated scenarios. In the past years, numerous nonlinear models have been successfully applied to hyperspectral unmixing. However, most non-LMMs only think of sum-to-one constraint or positivity constraint while the widespread sparsity among real materials mixing is the very factor that cannot be ignored. That is, for non-LMMs, a pixel is usually composed of a few spectral signatures of different materials from all the pure pixel set. Thus, in this paper, a smooth sparsity constraint is incorporated into the state-of-the-art Fan nonlinear model to exploit the sparsity feature in nonlinear model and use it to enhance the unmixing performance. This sparsity-constrained Fan model is solved with the non-negative matrix factorization. The algorithm was implemented on synthetic and real hyperspectral data and presented its advantage over those competing algorithms in the experiments.

  17. Informed Source Separation of Atmospheric and Surface Signal Contributions in Shortwave Hyperspectral Imagery using Non-negative Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Wright, L.; Coddington, O.; Pilewskie, P.

    2015-12-01

    Current challenges in Earth remote sensing require improved instrument spectral resolution, spectral coverage, and radiometric accuracy. Hyperspectral instruments, deployed on both aircraft and spacecraft, are a growing class of Earth observing sensors designed to meet these challenges. They collect large amounts of spectral data, allowing thorough characterization of both atmospheric and surface properties. The higher accuracy and increased spectral and spatial resolutions of new imagers require new numerical approaches for processing imagery and separating surface and atmospheric signals. One potential approach is source separation, which allows us to determine the underlying physical causes of observed changes. Improved signal separation will allow hyperspectral instruments to better address key science questions relevant to climate change, including land-use changes, trends in clouds and atmospheric water vapor, and aerosol characteristics. In this work, we investigate a Non-negative Matrix Factorization (NMF) method for the separation of atmospheric and land surface signal sources. NMF offers marked benefits over other commonly employed techniques, including non-negativity, which avoids physically impossible results, and adaptability, which allows the method to be tailored to hyperspectral source separation. We adapt our NMF algorithm to distinguish between contributions from different physically distinct sources by introducing constraints on spectral and spatial variability and by using library spectra to inform separation. We evaluate our NMF algorithm with simulated hyperspectral images as well as hyperspectral imagery from several instruments including, the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), NASA Hyperspectral Imager for the Coastal Ocean (HICO) and National Ecological Observatory Network (NEON) Imaging Spectrometer.

  18. Assessment of Matrix Multiplication Learning with a Rule-Based Analytical Model--"A Bayesian Network Representation"

    ERIC Educational Resources Information Center

    Zhang, Zhidong

    2016-01-01

    This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…

  19. Projective-Dual Method for Solving Systems of Linear Equations with Nonnegative Variables

    NASA Astrophysics Data System (ADS)

    Ganin, B. V.; Golikov, A. I.; Evtushenko, Yu. G.

    2018-02-01

    In order to solve an underdetermined system of linear equations with nonnegative variables, the projection of a given point onto its solutions set is sought. The dual of this problem—the problem of unconstrained maximization of a piecewise-quadratic function—is solved by Newton's method. The problem of unconstrained optimization dual of the regularized problem of finding the projection onto the solution set of the system is considered. A connection of duality theory and Newton's method with some known algorithms of projecting onto a standard simplex is shown. On the example of taking into account the specifics of the constraints of the transport linear programming problem, the possibility to increase the efficiency of calculating the generalized Hessian matrix is demonstrated. Some examples of numerical calculations using MATLAB are presented.

  20. Methods for Scaling to Doubly Stochastic Form,

    DTIC Science & Technology

    1981-06-26

    Frobenius -Konig Theorem (MARCUS and MINC [1964],p 97) A nonnegative n xn matrix without support contains an s x t zero subma- trix where: s +t =n + -3...that YA(k) has row sums 1. Then normalize the columns by a diagonal similarity transform defined as follows: Let x = (zx , • z,,) be a left Perron vector

  1. Pattern identification in time-course gene expression data with the CoGAPS matrix factorization.

    PubMed

    Fertig, Elana J; Stein-O'Brien, Genevieve; Jaffe, Andrew; Colantuoni, Carlo

    2014-01-01

    Patterns in time-course gene expression data can represent the biological processes that are active over the measured time period. However, the orthogonality constraint in standard pattern-finding algorithms, including notably principal components analysis (PCA), confounds expression changes resulting from simultaneous, non-orthogonal biological processes. Previously, we have shown that Markov chain Monte Carlo nonnegative matrix factorization algorithms are particularly adept at distinguishing such concurrent patterns. One such matrix factorization is implemented in the software package CoGAPS. We describe the application of this software and several technical considerations for identification of age-related patterns in a public, prefrontal cortex gene expression dataset.

  2. Bayesian Factor Analysis When Only a Sample Covariance Matrix Is Available

    ERIC Educational Resources Information Center

    Hayashi, Kentaro; Arav, Marina

    2006-01-01

    In traditional factor analysis, the variance-covariance matrix or the correlation matrix has often been a form of inputting data. In contrast, in Bayesian factor analysis, the entire data set is typically required to compute the posterior estimates, such as Bayes factor loadings and Bayes unique variances. We propose a simple method for computing…

  3. Algorithm for optimizing bipolar interconnection weights with applications in associative memories and multitarget classification.

    PubMed

    Chang, S; Wong, K W; Zhang, W; Zhang, Y

    1999-08-10

    An algorithm for optimizing a bipolar interconnection weight matrix with the Hopfield network is proposed. The effectiveness of this algorithm is demonstrated by computer simulation and optical implementation. In the optical implementation of the neural network the interconnection weights are biased to yield a nonnegative weight matrix. Moreover, a threshold subchannel is added so that the system can realize, in real time, the bipolar weighted summation in a single channel. Preliminary experimental results obtained from the applications in associative memories and multitarget classification with rotation invariance are shown.

  4. Algorithm for Optimizing Bipolar Interconnection Weights with Applications in Associative Memories and Multitarget Classification

    NASA Astrophysics Data System (ADS)

    Chang, Shengjiang; Wong, Kwok-Wo; Zhang, Wenwei; Zhang, Yanxin

    1999-08-01

    An algorithm for optimizing a bipolar interconnection weight matrix with the Hopfield network is proposed. The effectiveness of this algorithm is demonstrated by computer simulation and optical implementation. In the optical implementation of the neural network the interconnection weights are biased to yield a nonnegative weight matrix. Moreover, a threshold subchannel is added so that the system can realize, in real time, the bipolar weighted summation in a single channel. Preliminary experimental results obtained from the applications in associative memories and multitarget classification with rotation invariance are shown.

  5. Coupling a Reactive Transport Code with a Global Land Surface Model for Mechanistic Biogeochemistry Representation: 1. Addressing the Challenge of Nonnegativity

    DOE PAGES

    Tang, Guoping; Yuan, Fengming; Bisht, Gautam; ...

    2016-01-01

    Reactive transport codes (e.g., PFLOTRAN) are increasingly used to improve the representation of biogeochemical processes in terrestrial ecosystem models (e.g., the Community Land Model, CLM). As CLM and PFLOTRAN use explicit and implicit time stepping, implementation of CLM biogeochemical reactions in PFLOTRAN can result in negative concentration, which is not physical and can cause numerical instability and errors. The objective of this work is to address the nonnegativity challenge to obtain accurate, efficient, and robust solutions. We illustrate the implementation of a reaction network with the CLM-CN decomposition, nitrification, denitrification, and plant nitrogen uptake reactions and test the implementation atmore » arctic, temperate, and tropical sites. We examine use of scaling back the update during each iteration (SU), log transformation (LT), and downregulating the reaction rate to account for reactant availability limitation to enforce nonnegativity. Both SU and LT guarantee nonnegativity but with implications. When a very small scaling factor occurs due to either consumption or numerical overshoot, and the iterations are deemed converged because of too small an update, SU can introduce excessive numerical error. LT involves multiplication of the Jacobian matrix by the concentration vector, which increases the condition number, decreases the time step size, and increases the computational cost. Neither SU nor SE prevents zero concentration. When the concentration is close to machine precision or 0, a small positive update stops all reactions for SU, and LT can fail due to a singular Jacobian matrix. The consumption rate has to be downregulated such that the solution to the mathematical representation is positive. A first-order rate downregulates consumption and is nonnegative, and adding a residual concentration makes it positive. For zero-order rate or when the reaction rate is not a function of a reactant, representing the availability limitation of each reactant with a Monod substrate limiting function provides a smooth transition between a zero-order rate when the reactant is abundant and first-order rate when the reactant becomes limiting. When the half saturation is small, marching through the transition may require small time step sizes to resolve the sharp change within a small range of concentration values. Our results from simple tests and CLM-PFLOTRAN simulations caution against use of SU and indicate that accurate, stable, and relatively efficient solutions can be achieved with LT and downregulation with Monod substrate limiting function and residual concentration.« less

  6. Separating Atmospheric and Surface Contributions in Hyperspectral Imager for the Coastal Ocean (HICO) Scenes using Informed Non-Negative Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Wright, L.; Coddington, O.; Pilewskie, P.

    2016-12-01

    Hyperspectral instruments are a growing class of Earth observing sensors designed to improve remote sensing capabilities beyond discrete multi-band sensors by providing tens to hundreds of continuous spectral channels. Improved spectral resolution, range and radiometric accuracy allow the collection of large amounts of spectral data, facilitating thorough characterization of both atmospheric and surface properties. These new instruments require novel approaches for processing imagery and separating surface and atmospheric signals. One approach is numerical source separation, which allows the determination of the underlying physical causes of observed signals. Improved source separation will enable hyperspectral imagery to better address key science questions relevant to climate change, including land-use changes, trends in clouds and atmospheric water vapor, and aerosol characteristics. We developed an Informed Non-negative Matrix Factorization (INMF) method for separating atmospheric and surface sources. INMF offers marked benefits over other commonly employed techniques including non-negativity, which avoids physically impossible results; and adaptability, which tailors the method to hyperspectral source separation. The INMF algorithm is adapted to separate contributions from physically distinct sources using constraints on spectral and spatial variability, and library spectra to improve the initial guess. We also explore methods to produce an initial guess of the spatial separation patterns. Using this INMF algorithm we decompose hyperspectral imagery from the NASA Hyperspectral Imager for the Coastal Ocean (HICO) with a focus on separating surface and atmospheric signal contributions. HICO's coastal ocean focus provides a dataset with a wide range of atmospheric conditions, including high and low aerosol optical thickness and cloud cover, with only minor contributions from the ocean surfaces in order to isolate the contributions of the multiple atmospheric sources.

  7. Validation of Spectral Unmixing Results from Informed Non-Negative Matrix Factorization (INMF) of Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Wright, L.; Coddington, O.; Pilewskie, P.

    2017-12-01

    Hyperspectral instruments are a growing class of Earth observing sensors designed to improve remote sensing capabilities beyond discrete multi-band sensors by providing tens to hundreds of continuous spectral channels. Improved spectral resolution, range and radiometric accuracy allow the collection of large amounts of spectral data, facilitating thorough characterization of both atmospheric and surface properties. We describe the development of an Informed Non-Negative Matrix Factorization (INMF) spectral unmixing method to exploit this spectral information and separate atmospheric and surface signals based on their physical sources. INMF offers marked benefits over other commonly employed techniques including non-negativity, which avoids physically impossible results; and adaptability, which tailors the method to hyperspectral source separation. The INMF algorithm is adapted to separate contributions from physically distinct sources using constraints on spectral and spatial variability, and library spectra to improve the initial guess. Using this INMF algorithm we decompose hyperspectral imagery from the NASA Hyperspectral Imager for the Coastal Ocean (HICO), with a focus on separating surface and atmospheric signal contributions. HICO's coastal ocean focus provides a dataset with a wide range of atmospheric and surface conditions. These include atmospheres with varying aerosol optical thicknesses and cloud cover. HICO images also provide a range of surface conditions including deep ocean regions, with only minor contributions from the ocean surfaces; and more complex shallow coastal regions with contributions from the seafloor or suspended sediments. We provide extensive comparison of INMF decomposition results against independent measurements of physical properties. These include comparison against traditional model-based retrievals of water-leaving, aerosol, and molecular scattering radiances and other satellite products, such as aerosol optical thickness from the Moderate Resolution Imaging Spectroradiometer (MODIS).

  8. Poster — Thur Eve — 03: Application of the non-negative matrix factorization technique to [{sup 11}C]-DTBZ dynamic PET data for the early detection of Parkinson's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dong-Chang; Jans, Hans; McEwan, Sandy

    2014-08-15

    In this work, a class of non-negative matrix factorization (NMF) technique known as alternating non-negative least squares, combined with the projected gradient method, is used to analyze twenty-five [{sup 11}C]-DTBZ dynamic PET/CT brain data. For each subject, a two-factor model is assumed and two factors representing the striatum (factor 1) and the non-striatum (factor 2) tissues are extracted using the proposed NMF technique and commercially available factor analysis software “Pixies”. The extracted factor 1 and 2 curves represent the binding site of the radiotracer and describe the uptake and clearance of the radiotracer by soft tissues in the brain, respectively.more » The proposed NMF technique uses prior information about the dynamic data to obtain sample time-activity curves representing the striatum and the non-striatum tissues. These curves are then used for “warm” starting the optimization. Factor solutions from the two methods are compared graphically and quantitatively. In healthy subjects, radiotracer uptake by factors 1 and 2 are approximately 35–40% and 60–65%, respectively. The solutions are also used to develop a factor-based metric for the detection of early, untreated Parkinson's disease. The metric stratifies healthy subjects from suspected Parkinson's patients (based on the graphical method). The analysis shows that both techniques produce comparable results with similar computational time. The “semi-automatic” approach used by the NMF technique allows clinicians to manually set a starting condition for “warm” starting the optimization in order to facilitate control and efficient interaction with the data.« less

  9. Iterative Methods for Elliptic Problems and the Discovery of ’q’.

    DTIC Science & Technology

    1984-07-01

    K = M’IlN LN 12 is a nonnegative irreducible matrix. Hence the Perron - Frobenius theory [19] tells us that there is exactly one eigenvalue A with W = p...earlier, the Perron - Frobenius theory implies that p is itself an eigenvalue. However, as we have said, in this instance the eigenvalue problem (l.12a

  10. Peak picking NMR spectral data using non-negative matrix factorization

    PubMed Central

    2014-01-01

    Background Simple peak-picking algorithms, such as those based on lineshape fitting, perform well when peaks are completely resolved in multidimensional NMR spectra, but often produce wrong intensities and frequencies for overlapping peak clusters. For example, NOESY-type spectra have considerable overlaps leading to significant peak-picking intensity errors, which can result in erroneous structural restraints. Precise frequencies are critical for unambiguous resonance assignments. Results To alleviate this problem, a more sophisticated peaks decomposition algorithm, based on non-negative matrix factorization (NMF), was developed. We produce peak shapes from Fourier-transformed NMR spectra. Apart from its main goal of deriving components from spectra and producing peak lists automatically, the NMF approach can also be applied if the positions of some peaks are known a priori, e.g. from consistently referenced spectral dimensions of other experiments. Conclusions Application of the NMF algorithm to a three-dimensional peak list of the 23 kDa bi-domain section of the RcsD protein (RcsD-ABL-HPt, residues 688-890) as well as to synthetic HSQC data shows that peaks can be picked accurately also in spectral regions with strong overlap. PMID:24511909

  11. Tuning of Muscle Synergies During Walking Along Rectilinear and Curvilinear Trajectories in Humans.

    PubMed

    Chia Bejarano, Noelia; Pedrocchi, Alessandra; Nardone, Antonio; Schieppati, Marco; Baccinelli, Walter; Monticone, Marco; Ferrigno, Giancarlo; Ferrante, Simona

    2017-05-01

    The aim of this study was to develop a methodology based on muscle synergies to investigate whether rectilinear and curvilinear walking shared the same neuro-motor organization, and how this organization was fine-tuned by the walking condition. Thirteen healthy subjects walked on rectilinear and curvilinear paths. Electromyographic data from thirteen back and lower-limb muscles were acquired, together with kinematic data using inertial sensors. Four macroscopically invariant muscle synergies, extracted through non-negative matrix factorization, proved a shared modular organization across conditions. The fine-tuning of muscle synergies was studied through non-negative matrix reconstruction, applied by fixing muscle weights or activation profiles to those of the rectilinear condition. The activation profiles tended to be recruited for a longer period and with a larger amplitude during curvilinear walking. The muscles of the posterior side of the lower limb were those mainly influenced by the fine-tuning, with the muscles inside the rotation path being more active than the outer muscles. This study shows that rectilinear and curvilinear walking share a unique motor command. However, a fine-tuning in muscle synergies is introduced during curvilinear conditions, adapting the kinematic strategy to the new biomechanical needs.

  12. Semi-supervised spectral algorithms for community detection in complex networks based on equivalence of clustering methods

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoke; Wang, Bingbo; Yu, Liang

    2018-01-01

    Community detection is fundamental for revealing the structure-functionality relationship in complex networks, which involves two issues-the quantitative function for community as well as algorithms to discover communities. Despite significant research on either of them, few attempt has been made to establish the connection between the two issues. To attack this problem, a generalized quantification function is proposed for community in weighted networks, which provides a framework that unifies several well-known measures. Then, we prove that the trace optimization of the proposed measure is equivalent with the objective functions of algorithms such as nonnegative matrix factorization, kernel K-means as well as spectral clustering. It serves as the theoretical foundation for designing algorithms for community detection. On the second issue, a semi-supervised spectral clustering algorithm is developed by exploring the equivalence relation via combining the nonnegative matrix factorization and spectral clustering. Different from the traditional semi-supervised algorithms, the partial supervision is integrated into the objective of the spectral algorithm. Finally, through extensive experiments on both artificial and real world networks, we demonstrate that the proposed method improves the accuracy of the traditional spectral algorithms in community detection.

  13. Contribution of non-negative matrix factorization to the classification of remote sensing images

    NASA Astrophysics Data System (ADS)

    Karoui, M. S.; Deville, Y.; Hosseini, S.; Ouamri, A.; Ducrot, D.

    2008-10-01

    Remote sensing has become an unavoidable tool for better managing our environment, generally by realizing maps of land cover using classification techniques. The classification process requires some pre-processing, especially for data size reduction. The most usual technique is Principal Component Analysis. Another approach consists in regarding each pixel of the multispectral image as a mixture of pure elements contained in the observed area. Using Blind Source Separation (BSS) methods, one can hope to unmix each pixel and to perform the recognition of the classes constituting the observed scene. Our contribution consists in using Non-negative Matrix Factorization (NMF) combined with sparse coding as a solution to BSS, in order to generate new images (which are at least partly separated images) using HRV SPOT images from Oran area, Algeria). These images are then used as inputs of a supervised classifier integrating textural information. The results of classifications of these "separated" images show a clear improvement (correct pixel classification rate improved by more than 20%) compared to classification of initial (i.e. non separated) images. These results show the contribution of NMF as an attractive pre-processing for classification of multispectral remote sensing imagery.

  14. Hyperspectral and multispectral data fusion based on linear-quadratic nonnegative matrix factorization

    NASA Astrophysics Data System (ADS)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2017-04-01

    This paper proposes three multisharpening approaches to enhance the spatial resolution of urban hyperspectral remote sensing images. These approaches, related to linear-quadratic spectral unmixing techniques, use a linear-quadratic nonnegative matrix factorization (NMF) multiplicative algorithm. These methods begin by unmixing the observable high-spectral/low-spatial resolution hyperspectral and high-spatial/low-spectral resolution multispectral images. The obtained high-spectral/high-spatial resolution features are then recombined, according to the linear-quadratic mixing model, to obtain an unobservable multisharpened high-spectral/high-spatial resolution hyperspectral image. In the first designed approach, hyperspectral and multispectral variables are independently optimized, once they have been coherently initialized. These variables are alternately updated in the second designed approach. In the third approach, the considered hyperspectral and multispectral variables are jointly updated. Experiments, using synthetic and real data, are conducted to assess the efficiency, in spatial and spectral domains, of the designed approaches and of linear NMF-based approaches from the literature. Experimental results show that the designed methods globally yield very satisfactory spectral and spatial fidelities for the multisharpened hyperspectral data. They also prove that these methods significantly outperform the used literature approaches.

  15. Bayesian hierarchical model for large-scale covariance matrix estimation.

    PubMed

    Zhu, Dongxiao; Hero, Alfred O

    2007-12-01

    Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.

  16. M-matrices with prescribed elementary divisors

    NASA Astrophysics Data System (ADS)

    Soto, Ricardo L.; Díaz, Roberto C.; Salas, Mario; Rojo, Oscar

    2017-09-01

    A real matrix A is said to be an M-matrix if it is of the form A=α I-B, where B is a nonnegative matrix with Perron eigenvalue ρ (B), and α ≥slant ρ (B) . This paper provides sufficient conditions for the existence and construction of an M-matrix A with prescribed elementary divisors, which are the characteristic polynomials of the Jordan blocks of the Jordan canonical form of A. This inverse problem on M-matrices has not been treated until now. We solve the inverse elementary divisors problem for diagonalizable M-matrices and the symmetric generalized doubly stochastic inverse M-matrix problem for lists of real numbers and for lists of complex numbers of the form Λ =\\{λ 1, a+/- bi, \\ldots, a+/- bi\\} . The constructive nature of our results allows for the computation of a solution matrix. The paper also discusses an application of M-matrices to a capacity problem in wireless communications.

  17. Clustering Tree-structured Data on Manifold

    PubMed Central

    Lu, Na; Miao, Hongyu

    2016-01-01

    Tree-structured data usually contain both topological and geometrical information, and are necessarily considered on manifold instead of Euclidean space for appropriate data parameterization and analysis. In this study, we propose a novel tree-structured data parameterization, called Topology-Attribute matrix (T-A matrix), so the data clustering task can be conducted on matrix manifold. We incorporate the structure constraints embedded in data into the non-negative matrix factorization method to determine meta-trees from the T-A matrix, and the signature vector of each single tree can then be extracted by meta-tree decomposition. The meta-tree space turns out to be a cone space, in which we explore the distance metric and implement the clustering algorithm based on the concepts like Fréchet mean. Finally, the T-A matrix based clustering (TAMBAC) framework is evaluated and compared using both simulated data and real retinal images to illus trate its efficiency and accuracy. PMID:26660696

  18. Enforced Sparse Non-Negative Matrix Factorization

    DTIC Science & Technology

    2016-01-23

    documents to find interesting pieces of information. With limited resources, analysts often employ automated text - mining tools that highlight common...represented as an undirected bipartite graph. It has become a common method for generating topic models of text data because it is known to produce good results...model and the convergence rate of the underlying algorithm. I. Introduction A common analyst challenge is searching through large quantities of text

  19. A Block Coordinate Descent Method for Multi-Convex Optimization with Applications to Nonnegative Tensor Factorization and Completion

    DTIC Science & Technology

    2012-08-01

    model appears in cosmic microwave background analysis [10] which solves min A,Y λ 2 trace ( (ABY − X)>C−1(ABY − X) ) + r(Y), subject to A ∈ D (1.5...and “×n” represent outer product and tensor-matrix multiplication, respectively. (The necessary background of tensor is reviewed in Sec. 3) Most

  20. Finding Imaging Patterns of Structural Covariance via Non-Negative Matrix Factorization

    PubMed Central

    Sotiras, Aristeidis; Resnick, Susan M.; Davatzikos, Christos

    2015-01-01

    In this paper, we investigate the use of Non-Negative Matrix Factorization (NNMF) for the analysis of structural neuroimaging data. The goal is to identify the brain regions that co-vary across individuals in a consistent way, hence potentially being part of underlying brain networks or otherwise influenced by underlying common mechanisms such as genetics and pathologies. NNMF offers a directly data-driven way of extracting relatively localized co-varying structural regions, thereby transcending limitations of Principal Component Analysis (PCA), Independent Component Analysis (ICA) and other related methods that tend to produce dispersed components of positive and negative loadings. In particular, leveraging upon the well known ability of NNMF to produce parts-based representations of image data, we derive decompositions that partition the brain into regions that vary in consistent ways across individuals. Importantly, these decompositions achieve dimensionality reduction via highly interpretable ways and generalize well to new data as shown via split-sample experiments. We empirically validate NNMF in two data sets: i) a Diffusion Tensor (DT) mouse brain development study, and ii) a structural Magnetic Resonance (sMR) study of human brain aging. We demonstrate the ability of NNMF to produce sparse parts-based representations of the data at various resolutions. These representations seem to follow what we know about the underlying functional organization of the brain and also capture some pathological processes. Moreover, we show that these low dimensional representations favorably compare to descriptions obtained with more commonly used matrix factorization methods like PCA and ICA. PMID:25497684

  1. Bayesian design criteria: computation, comparison, and application to a pharmacokinetic and a pharmacodynamic model.

    PubMed

    Merlé, Y; Mentré, F

    1995-02-01

    In this paper 3 criteria to design experiments for Bayesian estimation of the parameters of nonlinear models with respect to their parameters, when a prior distribution is available, are presented: the determinant of the Bayesian information matrix, the determinant of the pre-posterior covariance matrix, and the expected information provided by an experiment. A procedure to simplify the computation of these criteria is proposed in the case of continuous prior distributions and is compared with the criterion obtained from a linearization of the model about the mean of the prior distribution for the parameters. This procedure is applied to two models commonly encountered in the area of pharmacokinetics and pharmacodynamics: the one-compartment open model with bolus intravenous single-dose injection and the Emax model. They both involve two parameters. Additive as well as multiplicative gaussian measurement errors are considered with normal prior distributions. Various combinations of the variances of the prior distribution and of the measurement error are studied. Our attention is restricted to designs with limited numbers of measurements (1 or 2 measurements). This situation often occurs in practice when Bayesian estimation is performed. The optimal Bayesian designs that result vary with the variances of the parameter distribution and with the measurement error. The two-point optimal designs sometimes differ from the D-optimal designs for the mean of the prior distribution and may consist of replicating measurements. For the studied cases, the determinant of the Bayesian information matrix and its linearized form lead to the same optimal designs. In some cases, the pre-posterior covariance matrix can be far from its lower bound, namely, the inverse of the Bayesian information matrix, especially for the Emax model and a multiplicative measurement error. The expected information provided by the experiment and the determinant of the pre-posterior covariance matrix generally lead to the same designs except for the Emax model and the multiplicative measurement error. Results show that these criteria can be easily computed and that they could be incorporated in modules for designing experiments.

  2. Subgraph augmented non-negative tensor factorization (SANTF) for modeling clinical narrative text

    PubMed Central

    Xin, Yu; Hochberg, Ephraim; Joshi, Rohit; Uzuner, Ozlem; Szolovits, Peter

    2015-01-01

    Objective Extracting medical knowledge from electronic medical records requires automated approaches to combat scalability limitations and selection biases. However, existing machine learning approaches are often regarded by clinicians as black boxes. Moreover, training data for these automated approaches at often sparsely annotated at best. The authors target unsupervised learning for modeling clinical narrative text, aiming at improving both accuracy and interpretability. Methods The authors introduce a novel framework named subgraph augmented non-negative tensor factorization (SANTF). In addition to relying on atomic features (e.g., words in clinical narrative text), SANTF automatically mines higher-order features (e.g., relations of lymphoid cells expressing antigens) from clinical narrative text by converting sentences into a graph representation and identifying important subgraphs. The authors compose a tensor using patients, higher-order features, and atomic features as its respective modes. We then apply non-negative tensor factorization to cluster patients, and simultaneously identify latent groups of higher-order features that link to patient clusters, as in clinical guidelines where a panel of immunophenotypic features and laboratory results are used to specify diagnostic criteria. Results and Conclusion SANTF demonstrated over 10% improvement in averaged F-measure on patient clustering compared to widely used non-negative matrix factorization (NMF) and k-means clustering methods. Multiple baselines were established by modeling patient data using patient-by-features matrices with different feature configurations and then performing NMF or k-means to cluster patients. Feature analysis identified latent groups of higher-order features that lead to medical insights. We also found that the latent groups of atomic features help to better correlate the latent groups of higher-order features. PMID:25862765

  3. Muscle synergies during bench press are reliable across days.

    PubMed

    Kristiansen, Mathias; Samani, Afshin; Madeleine, Pascal; Hansen, Ernst Albin

    2016-10-01

    Muscle synergies have been investigated during different types of human movement using nonnegative matrix factorization. However, there are not any reports available on the reliability of the method. To evaluate between-day reliability, 21 subjects performed bench press, in two test sessions separated by approximately 7days. The movement consisted of 3 sets of 8 repetitions at 60% of the three repetition maximum in bench press. Muscle synergies were extracted from electromyography data of 13 muscles, using nonnegative matrix factorization. To evaluate between-day reliability, we performed a cross-correlation analysis and a cross-validation analysis, in which the synergy components extracted in the first test session were recomputed, using the fixed synergy components from the second test session. Two muscle synergies accounted for >90% of the total variance, and reflected the concentric and eccentric phase, respectively. The cross-correlation values were strong to very strong (r-values between 0.58 and 0.89), while the cross-validation values ranged from substantial to almost perfect (ICC3, 1 values between 0.70 and 0.95). The present findings revealed that the same general structure of the muscle synergies was present across days and the extraction of muscle synergies is thus deemed reliable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Practical limits on muscle synergy identification by non-negative matrix factorization in systems with mechanical constraints.

    PubMed

    Burkholder, Thomas J; van Antwerp, Keith W

    2013-02-01

    Statistical decomposition, including non-negative matrix factorization (NMF), is a convenient tool for identifying patterns of structured variability within behavioral motor programs, but it is unclear how the resolved factors relate to actual neural structures. Factors can be extracted from a uniformly sampled, low-dimension command space. In practical application, the command space is limited, either to those activations that perform some task(s) successfully or to activations induced in response to specific perturbations. NMF was applied to muscle activation patterns synthesized from low dimensional, synergy-like control modules mimicking simple task performance or feedback activation from proprioceptive signals. In the task-constrained paradigm, the accuracy of control module recovery was highly dependent on the sampled volume of control space, such that sampling even 50% of control space produced a substantial degradation in factor accuracy. In the feedback paradigm, NMF was not capable of extracting more than four control modules, even in a mechanical model with seven internal degrees of freedom. Reduced access to the low-dimensional control space imposed by physical constraints may result in substantial distortion of an existing low dimensional controller, such that neither the dimensionality nor the composition of the recovered/extracted factors match the original controller.

  5. Stochastic static fault slip inversion from geodetic data with non-negativity and bound constraints

    NASA Astrophysics Data System (ADS)

    Nocquet, J.-M.

    2018-07-01

    Despite surface displacements observed by geodesy are linear combinations of slip at faults in an elastic medium, determining the spatial distribution of fault slip remains a ill-posed inverse problem. A widely used approach to circumvent the illness of the inversion is to add regularization constraints in terms of smoothing and/or damping so that the linear system becomes invertible. However, the choice of regularization parameters is often arbitrary, and sometimes leads to significantly different results. Furthermore, the resolution analysis is usually empirical and cannot be made independently of the regularization. The stochastic approach of inverse problems provides a rigorous framework where the a priori information about the searched parameters is combined with the observations in order to derive posterior probabilities of the unkown parameters. Here, I investigate an approach where the prior probability density function (pdf) is a multivariate Gaussian function, with single truncation to impose positivity of slip or double truncation to impose positivity and upper bounds on slip for interseismic modelling. I show that the joint posterior pdf is similar to the linear untruncated Gaussian case and can be expressed as a truncated multivariate normal (TMVN) distribution. The TMVN form can then be used to obtain semi-analytical formulae for the single, 2-D or n-D marginal pdf. The semi-analytical formula involves the product of a Gaussian by an integral term that can be evaluated using recent developments in TMVN probabilities calculations. Posterior mean and covariance can also be efficiently derived. I show that the maximum posterior (MAP) can be obtained using a non-negative least-squares algorithm for the single truncated case or using the bounded-variable least-squares algorithm for the double truncated case. I show that the case of independent uniform priors can be approximated using TMVN. The numerical equivalence to Bayesian inversions using Monte Carlo Markov chain (MCMC) sampling is shown for a synthetic example and a real case for interseismic modelling in Central Peru. The TMVN method overcomes several limitations of the Bayesian approach using MCMC sampling. First, the need of computer power is largely reduced. Second, unlike Bayesian MCMC-based approach, marginal pdf, mean, variance or covariance are obtained independently one from each other. Third, the probability and cumulative density functions can be obtained with any density of points. Finally, determining the MAP is extremely fast.

  6. Development of a Real Time Sparse Non-Negative Matrix Factorization Module for Cochlear Implants by Using xPC Target

    PubMed Central

    Hu, Hongmei; Krasoulis, Agamemnon; Lutman, Mark; Bleeck, Stefan

    2013-01-01

    Cochlear implants (CIS) require efficient speech processing to maximize information transmission to the brain, especially in noise. A novel CI processing strategy was proposed in our previous studies, in which sparsity-constrained non-negative matrix factorization (NMF) was applied to the envelope matrix in order to improve the CI performance in noisy environments. It showed that the algorithm needs to be adaptive, rather than fixed, in order to adjust to acoustical conditions and individual characteristics. Here, we explore the benefit of a system that allows the user to adjust the signal processing in real time according to their individual listening needs and their individual hearing capabilities. In this system, which is based on MATLAB®, SIMULINK® and the xPC Target™ environment, the input/outupt (I/O) boards are interfaced between the SIMULINK blocks and the CI stimulation system, such that the output can be controlled successfully in the manner of a hardware-in-the-loop (HIL) simulation, hence offering a convenient way to implement a real time signal processing module that does not require any low level language. The sparsity constrained parameter of the algorithm was adapted online subjectively during an experiment with normal-hearing subjects and noise vocoded speech simulation. Results show that subjects chose different parameter values according to their own intelligibility preferences, indicating that adaptive real time algorithms are beneficial to fully explore subjective preferences. We conclude that the adaptive real time systems are beneficial for the experimental design, and such systems allow one to conduct psychophysical experiments with high ecological validity. PMID:24129021

  7. Development of a real time sparse non-negative matrix factorization module for cochlear implants by using xPC target.

    PubMed

    Hu, Hongmei; Krasoulis, Agamemnon; Lutman, Mark; Bleeck, Stefan

    2013-10-14

    Cochlear implants (CIs) require efficient speech processing to maximize information transmission to the brain, especially in noise. A novel CI processing strategy was proposed in our previous studies, in which sparsity-constrained non-negative matrix factorization (NMF) was applied to the envelope matrix in order to improve the CI performance in noisy environments. It showed that the algorithm needs to be adaptive, rather than fixed, in order to adjust to acoustical conditions and individual characteristics. Here, we explore the benefit of a system that allows the user to adjust the signal processing in real time according to their individual listening needs and their individual hearing capabilities. In this system, which is based on MATLAB®, SIMULINK® and the xPC Target™ environment, the input/outupt (I/O) boards are interfaced between the SIMULINK blocks and the CI stimulation system, such that the output can be controlled successfully in the manner of a hardware-in-the-loop (HIL) simulation, hence offering a convenient way to implement a real time signal processing module that does not require any low level language. The sparsity constrained parameter of the algorithm was adapted online subjectively during an experiment with normal-hearing subjects and noise vocoded speech simulation. Results show that subjects chose different parameter values according to their own intelligibility preferences, indicating that adaptive real time algorithms are beneficial to fully explore subjective preferences. We conclude that the adaptive real time systems are beneficial for the experimental design, and such systems allow one to conduct psychophysical experiments with high ecological validity.

  8. Finding imaging patterns of structural covariance via Non-Negative Matrix Factorization.

    PubMed

    Sotiras, Aristeidis; Resnick, Susan M; Davatzikos, Christos

    2015-03-01

    In this paper, we investigate the use of Non-Negative Matrix Factorization (NNMF) for the analysis of structural neuroimaging data. The goal is to identify the brain regions that co-vary across individuals in a consistent way, hence potentially being part of underlying brain networks or otherwise influenced by underlying common mechanisms such as genetics and pathologies. NNMF offers a directly data-driven way of extracting relatively localized co-varying structural regions, thereby transcending limitations of Principal Component Analysis (PCA), Independent Component Analysis (ICA) and other related methods that tend to produce dispersed components of positive and negative loadings. In particular, leveraging upon the well known ability of NNMF to produce parts-based representations of image data, we derive decompositions that partition the brain into regions that vary in consistent ways across individuals. Importantly, these decompositions achieve dimensionality reduction via highly interpretable ways and generalize well to new data as shown via split-sample experiments. We empirically validate NNMF in two data sets: i) a Diffusion Tensor (DT) mouse brain development study, and ii) a structural Magnetic Resonance (sMR) study of human brain aging. We demonstrate the ability of NNMF to produce sparse parts-based representations of the data at various resolutions. These representations seem to follow what we know about the underlying functional organization of the brain and also capture some pathological processes. Moreover, we show that these low dimensional representations favorably compare to descriptions obtained with more commonly used matrix factorization methods like PCA and ICA. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. GC[Formula: see text]NMF: A Novel Matrix Factorization Framework for Gene-Phenotype Association Prediction.

    PubMed

    Zhang, Yaogong; Liu, Jiahui; Liu, Xiaohu; Hong, Yuxiang; Fan, Xin; Huang, Yalou; Wang, Yuan; Xie, Maoqiang

    2018-04-24

    Gene-phenotype association prediction can be applied to reveal the inherited basis of human diseases and facilitate drug development. Gene-phenotype associations are related to complex biological processes and influenced by various factors, such as relationship between phenotypes and that among genes. While due to sparseness of curated gene-phenotype associations and lack of integrated analysis of the joint effect of multiple factors, existing applications are limited to prediction accuracy and potential gene-phenotype association detection. In this paper, we propose a novel method by exploiting weighted graph constraint learned from hierarchical structures of phenotype data and group prior information among genes by inheriting advantages of Non-negative Matrix Factorization (NMF), called Weighted Graph Constraint and Group Centric Non-negative Matrix Factorization (GC[Formula: see text]NMF). Specifically, first we introduce the depth of parent-child relationships between two adjacent phenotypes in hierarchical phenotypic data as weighted graph constraint for a better phenotype understanding. Second, we utilize intra-group correlation among genes in a gene group as group constraint for gene understanding. Such information provides us with the intuition that genes in a group probably result in similar phenotypes. The model not only allows us to achieve a high-grade prediction performance, but also helps us to learn interpretable representation of genes and phenotypes simultaneously to facilitate future biological analysis. Experimental results on biological gene-phenotype association datasets of mouse and human demonstrate that GC[Formula: see text]NMF can obtain superior prediction accuracy and good understandability for biological explanation over other state-of-the-arts methods.

  10. A neighboring structure reconstructed matching algorithm based on LARK features

    NASA Astrophysics Data System (ADS)

    Xue, Taobei; Han, Jing; Zhang, Yi; Bai, Lianfa

    2015-11-01

    Aimed at the low contrast ratio and high noise of infrared images, and the randomness and ambient occlusion of its objects, this paper presents a neighboring structure reconstructed matching (NSRM) algorithm based on LARK features. The neighboring structure relationships of local window are considered based on a non-negative linear reconstruction method to build a neighboring structure relationship matrix. Then the LARK feature matrix and the NSRM matrix are processed separately to get two different similarity images. By fusing and analyzing the two similarity images, those infrared objects are detected and marked by the non-maximum suppression. The NSRM approach is extended to detect infrared objects with incompact structure. High performance is demonstrated on infrared body set, indicating a lower false detecting rate than conventional methods in complex natural scenes.

  11. shiftNMFk 1.1: Robust Nonnegative matrix factorization with kmeans clustering and signal shift, for allocation of unknown physical sources, toy version for open sourcing with publications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, Boian S.; Lliev, Filip L.; Stanev, Valentin G.

    This code is a toy (short) version of CODE-2016-83. From a general perspective, the code represents an unsupervised adaptive machine learning algorithm that allows efficient and high performance de-mixing and feature extraction of a multitude of non-negative signals mixed and recorded by a network of uncorrelated sensor arrays. The code identifies the number of the mixed original signals and their locations. Further, the code also allows deciphering of signals that have been delayed in regards to the mixing process in each sensor. This code is high customizable and it can be efficiently used for a fast macro-analyses of data. Themore » code is applicable to a plethora of distinct problems: chemical decomposition, pressure transient decomposition, unknown sources/signal allocation, EM signal decomposition. An additional procedure for allocation of the unknown sources is incorporated in the code.« less

  12. HPC-NMF: A High-Performance Parallel Algorithm for Nonnegative Matrix Factorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kannan, Ramakrishnan; Sukumar, Sreenivas R.; Ballard, Grey M.

    NMF is a useful tool for many applications in different domains such as topic modeling in text mining, background separation in video analysis, and community detection in social networks. Despite its popularity in the data mining community, there is a lack of efficient distributed algorithms to solve the problem for big data sets. We propose a high-performance distributed-memory parallel algorithm that computes the factorization by iteratively solving alternating non-negative least squares (NLS) subproblems formore » $$\\WW$$ and $$\\HH$$. It maintains the data and factor matrices in memory (distributed across processors), uses MPI for interprocessor communication, and, in the dense case, provably minimizes communication costs (under mild assumptions). As opposed to previous implementation, our algorithm is also flexible: It performs well for both dense and sparse matrices, and allows the user to choose any one of the multiple algorithms for solving the updates to low rank factors $$\\WW$$ and $$\\HH$$ within the alternating iterations.« less

  13. Optical biopsy using fluorescence spectroscopy for prostate cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Gao, Xin; Smith, Jason; Bailin, Jacob

    2017-02-01

    Native fluorescence spectra are acquired from fresh normal and cancerous human prostate tissues. The fluorescence data are analyzed using a multivariate analysis algorithm such as non-negative matrix factorization. The nonnegative spectral components are retrieved and attributed to the native fluorophores such as collagen, reduced nicotinamide adenine dinucleotide (NADH), and flavin adenine dinucleotide (FAD) in tissue. The retrieved weights of the components, e.g. NADH and FAD are used to estimate the relative concentrations of the native fluorophores and the redox ratio. A machine learning algorithm such as support vector machine (SVM) is used for classification to distinguish normal and cancerous tissue samples based on either the relative concentrations of NADH and FAD or the redox ratio alone. The classification performance is shown based on statistical measures such as sensitivity, specificity, and accuracy, along with the area under receiver operating characteristic (ROC) curve. A cross validation method such as leave-one-out is used to evaluate the predictive performance of the SVM classifier to avoid bias due to overfitting.

  14. Blind decomposition of Herschel-HIFI spectral maps of the NGC 7023 nebula

    NASA Astrophysics Data System (ADS)

    Berné, O.; Joblin, C.; Deville, Y.; Pilleri, P.; Pety, J.; Teyssier, D.; Gerin, M.; Fuente, A.

    2012-12-01

    Large spatial-spectral surveys are more and more common in astronomy. This calls for the need of new methods to analyze such mega- to giga-pixel data-cubes. In this paper we present a method to decompose such observations into a limited and comprehensive set of components. The original data can then be interpreted in terms of linear combinations of these components. The method uses non-negative matrix factorization (NMF) to extract latent spectral end-members in the data. The number of needed end-members is estimated based on the level of noise in the data. A Monte-Carlo scheme is adopted to estimate the optimal end-members, and their standard deviations. Finally, the maps of linear coefficients are reconstructed using non-negative least squares. We apply this method to a set of hyperspectral data of the NGC 7023 nebula, obtained recently with the HIFI instrument onboard the Herschel space observatory, and provide a first interpretation of the results in terms of 3-dimensional dynamical structure of the region.

  15. Evaluation of non-negative matrix factorization of grey matter in age prediction.

    PubMed

    Varikuti, Deepthi P; Genon, Sarah; Sotiras, Aristeidis; Schwender, Holger; Hoffstaedter, Felix; Patil, Kaustubh R; Jockwitz, Christiane; Caspers, Svenja; Moebus, Susanne; Amunts, Katrin; Davatzikos, Christos; Eickhoff, Simon B

    2018-06-01

    The relationship between grey matter volume (GMV) patterns and age can be captured by multivariate pattern analysis, allowing prediction of individuals' age based on structural imaging. Raw data, voxel-wise GMV and non-sparse factorization (with Principal Component Analysis, PCA) show good performance but do not promote relatively localized brain components for post-hoc examinations. Here we evaluated a non-negative matrix factorization (NNMF) approach to provide a reduced, but also interpretable representation of GMV data in age prediction frameworks in healthy and clinical populations. This examination was performed using three datasets: a multi-site cohort of life-span healthy adults, a single site cohort of older adults and clinical samples from the ADNI dataset with healthy subjects, participants with Mild Cognitive Impairment and patients with Alzheimer's disease (AD) subsamples. T1-weighted images were preprocessed with VBM8 standard settings to compute GMV values after normalization, segmentation and modulation for non-linear transformations only. Non-negative matrix factorization was computed on the GM voxel-wise values for a range of granularities (50-690 components) and LASSO (Least Absolute Shrinkage and Selection Operator) regression were used for age prediction. First, we compared the performance of our data compression procedure (i.e., NNMF) to various other approaches (i.e., uncompressed VBM data, PCA-based factorization and parcellation-based compression). We then investigated the impact of the granularity on the accuracy of age prediction, as well as the transferability of the factorization and model generalization across datasets. We finally validated our framework by examining age prediction in ADNI samples. Our results showed that our framework favorably compares with other approaches. They also demonstrated that the NNMF based factorization derived from one dataset could be efficiently applied to compress VBM data of another dataset and that granularities between 300 and 500 components give an optimal representation for age prediction. In addition to the good performance in healthy subjects our framework provided relatively localized brain regions as the features contributing to the prediction, thereby offering further insights into structural changes due to brain aging. Finally, our validation in clinical populations showed that our framework is sensitive to deviance from normal structural variations in pathological aging. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Nonnegative Matrix Factorization for Efficient Hyperspectral Image Projection

    NASA Technical Reports Server (NTRS)

    Iacchetta, Alexander S.; Fienup, James R.; Leisawitz, David T.; Bolcar, Matthew R.

    2015-01-01

    Hyperspectral imaging for remote sensing has prompted development of hyperspectral image projectors that can be used to characterize hyperspectral imaging cameras and techniques in the lab. One such emerging astronomical hyperspectral imaging technique is wide-field double-Fourier interferometry. NASA's current, state-of-the-art, Wide-field Imaging Interferometry Testbed (WIIT) uses a Calibrated Hyperspectral Image Projector (CHIP) to generate test scenes and provide a more complete understanding of wide-field double-Fourier interferometry. Given enough time, the CHIP is capable of projecting scenes with astronomically realistic spatial and spectral complexity. However, this would require a very lengthy data collection process. For accurate but time-efficient projection of complicated hyperspectral images with the CHIP, the field must be decomposed both spectrally and spatially in a way that provides a favorable trade-off between accurately projecting the hyperspectral image and the time required for data collection. We apply nonnegative matrix factorization (NMF) to decompose hyperspectral astronomical datacubes into eigenspectra and eigenimages that allow time-efficient projection with the CHIP. Included is a brief analysis of NMF parameters that affect accuracy, including the number of eigenspectra and eigenimages used to approximate the hyperspectral image to be projected. For the chosen field, the normalized mean squared synthesis error is under 0.01 with just 8 eigenspectra. NMF of hyperspectral astronomical fields better utilizes the CHIP's capabilities, providing time-efficient and accurate representations of astronomical scenes to be imaged with the WIIT.

  17. Factorization-based texture segmentation

    DOE PAGES

    Yuan, Jiangye; Wang, Deliang; Cheriyadat, Anil M.

    2015-06-17

    This study introduces a factorization-based approach that efficiently segments textured images. We use local spectral histograms as features, and construct an M × N feature matrix using M-dimensional feature vectors in an N-pixel image. Based on the observation that each feature can be approximated by a linear combination of several representative features, we factor the feature matrix into two matrices-one consisting of the representative features and the other containing the weights of representative features at each pixel used for linear combination. The factorization method is based on singular value decomposition and nonnegative matrix factorization. The method uses local spectral histogramsmore » to discriminate region appearances in a computationally efficient way and at the same time accurately localizes region boundaries. Finally, the experiments conducted on public segmentation data sets show the promise of this simple yet powerful approach.« less

  18. Identifying constituent spectra sources in multispectral images to quantify and locate cervical neoplasia

    NASA Astrophysics Data System (ADS)

    Baker, Kevin C.; Bambot, Shabbir

    2011-02-01

    Optical spectroscopy has been shown to be an effective method for detecting neoplasia. Guided Therapeutics has developed LightTouch, a non invasive device that uses a combination of reflectance and fluorescence spectroscopy for identifying early cancer of the human cervix. The combination of the multispectral information from the two spectroscopic modalities has been shown to be an effective method to screen for cervical cancer. There has however been a relative paucity of work in identifying the individual spectral components that contribute to the measured fluorescence and reflectance spectra. This work aims to identify the constituent source spectra and their concentrations. We used non-negative matrix factorization (NNMF) numerical methods to decompose the mixed multispectral data into the constituent spectra and their corresponding concentrations. NNMF is an iterative approach that factorizes the measured data into non-negative factors. The factors are chosen to minimize the root-mean-squared residual error. NNMF has shown promise for feature extraction and identification in the fields of text mining and spectral data analysis. Since both the constituent source spectra and their corresponding concentrations are assumed to be non-negative by nature NNMF is a reasonable approach to deconvolve the measured multispectral data. Supervised learning methods were then used to determine which of the constituent spectra sources best predict the amount of neoplasia. The constituent spectra sources found to best predict neoplasia were then compared with spectra of known biological chromophores.

  19. A Novel Semi-Supervised Methodology for Extracting Tumor Type-Specific MRS Sources in Human Brain Data

    PubMed Central

    Ortega-Martorell, Sandra; Ruiz, Héctor; Vellido, Alfredo; Olier, Iván; Romero, Enrique; Julià-Sapé, Margarida; Martín, José D.; Jarman, Ian H.; Arús, Carles; Lisboa, Paulo J. G.

    2013-01-01

    Background The clinical investigation of human brain tumors often starts with a non-invasive imaging study, providing information about the tumor extent and location, but little insight into the biochemistry of the analyzed tissue. Magnetic Resonance Spectroscopy can complement imaging by supplying a metabolic fingerprint of the tissue. This study analyzes single-voxel magnetic resonance spectra, which represent signal information in the frequency domain. Given that a single voxel may contain a heterogeneous mix of tissues, signal source identification is a relevant challenge for the problem of tumor type classification from the spectroscopic signal. Methodology/Principal Findings Non-negative matrix factorization techniques have recently shown their potential for the identification of meaningful sources from brain tissue spectroscopy data. In this study, we use a convex variant of these methods that is capable of handling negatively-valued data and generating sources that can be interpreted as tumor class prototypes. A novel approach to convex non-negative matrix factorization is proposed, in which prior knowledge about class information is utilized in model optimization. Class-specific information is integrated into this semi-supervised process by setting the metric of a latent variable space where the matrix factorization is carried out. The reported experimental study comprises 196 cases from different tumor types drawn from two international, multi-center databases. The results indicate that the proposed approach outperforms a purely unsupervised process by achieving near perfect correlation of the extracted sources with the mean spectra of the tumor types. It also improves tissue type classification. Conclusions/Significance We show that source extraction by unsupervised matrix factorization benefits from the integration of the available class information, so operating in a semi-supervised learning manner, for discriminative source identification and brain tumor labeling from single-voxel spectroscopy data. We are confident that the proposed methodology has wider applicability for biomedical signal processing. PMID:24376744

  20. BJUT at TREC 2015 Microblog Track: Real-Time Filtering Using Non-negative Matrix Factorization

    DTIC Science & Technology

    2015-11-20

    information to extend the query, al- leviates the problem of concept drift in query expansion. In User profiles Twitter Google Bing accurate ambiguity...index as the query expansion document set; second- ly,put the interest file in twitter search energy to get back the relevant twetts, the interest in...for clustering is demonstrated in Figure 2. We will be the result of the search energy Twitter as the original expression of interest, the initial

  1. Dimensionality Reduction in Big Data with Nonnegative Matrix Factorization

    DTIC Science & Technology

    2017-06-20

    appli- cations of data mining, signal processing , computer vision, bioinformatics, etc. Fun- damentally, NMF has two main purposes. First, it reduces...shape of the function becomes more spherical because ∂ 2g ∂y2i = 1, ∀i, and g(y) is convex. This part aims to make the post- processing parts more...maxStop = 0 for each thread of computation */; 3 /*Re-scaling variables*/; 4 Q = H√ diag(H)diag(H)T ; q = h√ diag(H) ; 5 /*Solving NQP: minimizingf(x

  2. TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS

    PubMed Central

    Johndrow, James E.; Bhattacharya, Anirban; Dunson, David B.

    2017-01-01

    Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions. PMID:29332971

  3. Stochastic static fault slip inversion from geodetic data with non-negativity and bounds constraints

    NASA Astrophysics Data System (ADS)

    Nocquet, J.-M.

    2018-04-01

    Despite surface displacements observed by geodesy are linear combinations of slip at faults in an elastic medium, determining the spatial distribution of fault slip remains a ill-posed inverse problem. A widely used approach to circumvent the illness of the inversion is to add regularization constraints in terms of smoothing and/or damping so that the linear system becomes invertible. However, the choice of regularization parameters is often arbitrary, and sometimes leads to significantly different results. Furthermore, the resolution analysis is usually empirical and cannot be made independently of the regularization. The stochastic approach of inverse problems (Tarantola & Valette 1982; Tarantola 2005) provides a rigorous framework where the a priori information about the searched parameters is combined with the observations in order to derive posterior probabilities of the unkown parameters. Here, I investigate an approach where the prior probability density function (pdf) is a multivariate Gaussian function, with single truncation to impose positivity of slip or double truncation to impose positivity and upper bounds on slip for interseismic modeling. I show that the joint posterior pdf is similar to the linear untruncated Gaussian case and can be expressed as a Truncated Multi-Variate Normal (TMVN) distribution. The TMVN form can then be used to obtain semi-analytical formulas for the single, two-dimensional or n-dimensional marginal pdf. The semi-analytical formula involves the product of a Gaussian by an integral term that can be evaluated using recent developments in TMVN probabilities calculations (e.g. Genz & Bretz 2009). Posterior mean and covariance can also be efficiently derived. I show that the Maximum Posterior (MAP) can be obtained using a Non-Negative Least-Squares algorithm (Lawson & Hanson 1974) for the single truncated case or using the Bounded-Variable Least-Squares algorithm (Stark & Parker 1995) for the double truncated case. I show that the case of independent uniform priors can be approximated using TMVN. The numerical equivalence to Bayesian inversions using Monte Carlo Markov Chain (MCMC) sampling is shown for a synthetic example and a real case for interseismic modeling in Central Peru. The TMVN method overcomes several limitations of the Bayesian approach using MCMC sampling. First, the need of computer power is largely reduced. Second, unlike Bayesian MCMC based approach, marginal pdf, mean, variance or covariance are obtained independently one from each other. Third, the probability and cumulative density functions can be obtained with any density of points. Finally, determining the Maximum Posterior (MAP) is extremely fast.

  4. Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data

    PubMed Central

    Pnevmatikakis, Eftychios A.; Soudry, Daniel; Gao, Yuanjun; Machado, Timothy A.; Merel, Josh; Pfau, David; Reardon, Thomas; Mu, Yu; Lacefield, Clay; Yang, Weijian; Ahrens, Misha; Bruno, Randy; Jessell, Thomas M.; Peterka, Darcy S.; Yuste, Rafael; Paninski, Liam

    2016-01-01

    SUMMARY We present a modular approach for analyzing calcium imaging recordings of large neuronal ensembles. Our goal is to simultaneously identify the locations of the neurons, demix spatially overlapping components, and denoise and deconvolve the spiking activity from the slow dynamics of the calcium indicator. Our approach relies on a constrained nonnegative matrix factorization that expresses the spatiotemporal fluorescence activity as the product of a spatial matrix that encodes the spatial footprint of each neuron in the optical field and a temporal matrix that characterizes the calcium concentration of each neuron over time. This framework is combined with a novel constrained deconvolution approach that extracts estimates of neural activity from fluorescence traces, to create a spatiotemporal processing algorithm that requires minimal parameter tuning. We demonstrate the general applicability of our method by applying it to in vitro and in vivo multineuronal imaging data, whole-brain light-sheet imaging data, and dendritic imaging data. PMID:26774160

  5. Automated Robust Image Segmentation: Level Set Method Using Nonnegative Matrix Factorization with Application to Brain MRI.

    PubMed

    Dera, Dimah; Bouaynaya, Nidhal; Fathallah-Shaykh, Hassan M

    2016-07-01

    We address the problem of fully automated region discovery and robust image segmentation by devising a new deformable model based on the level set method (LSM) and the probabilistic nonnegative matrix factorization (NMF). We describe the use of NMF to calculate the number of distinct regions in the image and to derive the local distribution of the regions, which is incorporated into the energy functional of the LSM. The results demonstrate that our NMF-LSM method is superior to other approaches when applied to synthetic binary and gray-scale images and to clinical magnetic resonance images (MRI) of the human brain with and without a malignant brain tumor, glioblastoma multiforme. In particular, the NMF-LSM method is fully automated, highly accurate, less sensitive to the initial selection of the contour(s) or initial conditions, more robust to noise and model parameters, and able to detect as small distinct regions as desired. These advantages stem from the fact that the proposed method relies on histogram information instead of intensity values and does not introduce nuisance model parameters. These properties provide a general approach for automated robust region discovery and segmentation in heterogeneous images. Compared with the retrospective radiological diagnoses of two patients with non-enhancing grade 2 and 3 oligodendroglioma, the NMF-LSM detects earlier progression times and appears suitable for monitoring tumor response. The NMF-LSM method fills an important need of automated segmentation of clinical MRI.

  6. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks.

    PubMed

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S; Celniker, Susan E; Yu, Bin; Frise, Erwin

    2016-04-19

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set ofDrosophilaearly embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation ofDrosophilaexpression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. The performance of PP with theDrosophiladata suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.

  7. Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent.

    PubMed

    Guan, Naiyang; Tao, Dacheng; Luo, Zhigang; Yuan, Bo

    2011-07-01

    Nonnegative matrix factorization (NMF) has become a popular data-representation method and has been widely used in image processing and pattern-recognition problems. This is because the learned bases can be interpreted as a natural parts-based representation of data and this interpretation is consistent with the psychological intuition of combining parts to form a whole. For practical classification tasks, however, NMF ignores both the local geometry of data and the discriminative information of different classes. In addition, existing research results show that the learned basis is unnecessarily parts-based because there is neither explicit nor implicit constraint to ensure the representation parts-based. In this paper, we introduce the manifold regularization and the margin maximization to NMF and obtain the manifold regularized discriminative NMF (MD-NMF) to overcome the aforementioned problems. The multiplicative update rule (MUR) can be applied to optimizing MD-NMF, but it converges slowly. In this paper, we propose a fast gradient descent (FGD) to optimize MD-NMF. FGD contains a Newton method that searches the optimal step length, and thus, FGD converges much faster than MUR. In addition, FGD includes MUR as a special case and can be applied to optimizing NMF and its variants. For a problem with 165 samples in R(1600), FGD converges in 28 s, while MUR requires 282 s. We also apply FGD in a variant of MD-NMF and experimental results confirm its efficiency. Experimental results on several face image datasets suggest the effectiveness of MD-NMF.

  8. Gene expression based mouse brain parcellation using Markov random field regularized non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Pathak, Sayan D.; Haynor, David R.; Thompson, Carol L.; Lein, Ed; Hawrylycz, Michael

    2009-02-01

    Understanding the geography of genetic expression in the mouse brain has opened previously unexplored avenues in neuroinformatics. The Allen Brain Atlas (www.brain-map.org) (ABA) provides genome-wide colorimetric in situ hybridization (ISH) gene expression images at high spatial resolution, all mapped to a common three-dimensional 200μm3 spatial framework defined by the Allen Reference Atlas (ARA) and is a unique data set for studying expression based structural and functional organization of the brain. The goal of this study was to facilitate an unbiased data-driven structural partitioning of the major structures in the mouse brain. We have developed an algorithm that uses nonnegative matrix factorization (NMF) to perform parts based analysis of ISH gene expression images. The standard NMF approach and its variants are limited in their ability to flexibly integrate prior knowledge, in the context of spatial data. In this paper, we introduce spatial connectivity as an additional regularization in NMF decomposition via the use of Markov Random Fields (mNMF). The mNMF algorithm alternates neighborhood updates with iterations of the standard NMF algorithm to exploit spatial correlations in the data. We present the algorithm and show the sub-divisions of hippocampus and somatosensory-cortex obtained via this approach. The results are compared with established neuroanatomic knowledge. We also highlight novel gene expression based sub divisions of the hippocampus identified by using the mNMF algorithm.

  9. Structure constrained semi-nonnegative matrix factorization for EEG-based motor imagery classification.

    PubMed

    Lu, Na; Li, Tengfei; Pan, Jinjin; Ren, Xiaodong; Feng, Zuren; Miao, Hongyu

    2015-05-01

    Electroencephalogram (EEG) provides a non-invasive approach to measure the electrical activities of brain neurons and has long been employed for the development of brain-computer interface (BCI). For this purpose, various patterns/features of EEG data need to be extracted and associated with specific events like cue-paced motor imagery. However, this is a challenging task since EEG data are usually non-stationary time series with a low signal-to-noise ratio. In this study, we propose a novel method, called structure constrained semi-nonnegative matrix factorization (SCS-NMF), to extract the key patterns of EEG data in time domain by imposing the mean envelopes of event-related potentials (ERPs) as constraints on the semi-NMF procedure. The proposed method is applicable to general EEG time series, and the extracted temporal features by SCS-NMF can also be combined with other features in frequency domain to improve the performance of motor imagery classification. Real data experiments have been performed using the SCS-NMF approach for motor imagery classification, and the results clearly suggest the superiority of the proposed method. Comparison experiments have also been conducted. The compared methods include ICA, PCA, Semi-NMF, Wavelets, EMD and CSP, which further verified the effectivity of SCS-NMF. The SCS-NMF method could obtain better or competitive performance over the state of the art methods, which provides a novel solution for brain pattern analysis from the perspective of structure constraint. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Local hyperspectral data multisharpening based on linear/linear-quadratic nonnegative matrix factorization by integrating lidar data

    NASA Astrophysics Data System (ADS)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2015-10-01

    In this paper, a new Spectral-Unmixing-based approach, using Nonnegative Matrix Factorization (NMF), is proposed to locally multi-sharpen hyperspectral data by integrating a Digital Surface Model (DSM) obtained from LIDAR data. In this new approach, the nature of the local mixing model is detected by using the local variance of the object elevations. The hyper/multispectral images are explored using small zones. In each zone, the variance of the object elevations is calculated from the DSM data in this zone. This variance is compared to a threshold value and the adequate linear/linearquadratic spectral unmixing technique is used in the considered zone to independently unmix hyperspectral and multispectral data, using an adequate linear/linear-quadratic NMF-based approach. The obtained spectral and spatial information thus respectively extracted from the hyper/multispectral images are then recombined in the considered zone, according to the selected mixing model. Experiments based on synthetic hyper/multispectral data are carried out to evaluate the performance of the proposed multi-sharpening approach and literature linear/linear-quadratic approaches used on the whole hyper/multispectral data. In these experiments, real DSM data are used to generate synthetic data containing linear and linear-quadratic mixed pixel zones. The DSM data are also used for locally detecting the nature of the mixing model in the proposed approach. Globally, the proposed approach yields good spatial and spectral fidelities for the multi-sharpened data and significantly outperforms the used literature methods.

  11. Action Recognition Using Nonnegative Action Component Representation and Sparse Basis Selection.

    PubMed

    Wang, Haoran; Yuan, Chunfeng; Hu, Weiming; Ling, Haibin; Yang, Wankou; Sun, Changyin

    2014-02-01

    In this paper, we propose using high-level action units to represent human actions in videos and, based on such units, a novel sparse model is developed for human action recognition. There are three interconnected components in our approach. First, we propose a new context-aware spatial-temporal descriptor, named locally weighted word context, to improve the discriminability of the traditionally used local spatial-temporal descriptors. Second, from the statistics of the context-aware descriptors, we learn action units using the graph regularized nonnegative matrix factorization, which leads to a part-based representation and encodes the geometrical information. These units effectively bridge the semantic gap in action recognition. Third, we propose a sparse model based on a joint l2,1-norm to preserve the representative items and suppress noise in the action units. Intuitively, when learning the dictionary for action representation, the sparse model captures the fact that actions from the same class share similar units. The proposed approach is evaluated on several publicly available data sets. The experimental results and analysis clearly demonstrate the effectiveness of the proposed approach.

  12. ShiftNMFk 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, Boian S.; Vesselinov, Velimir V.; Stanev, Valentin

    The ShiftNMFk1.2 code, or as we call it, GreenNMFk, represents a hybrid algorithm combining unsupervised adaptive machine learning and Green's function inverse method. GreenNMFk allows an efficient and high performance de-mixing and feature extraction of a multitude of nonnegative signals that change their shape propagating through the medium. The signals are mixed and recorded by a network of uncorrelated sensors. The code couples Non-negative Matrix Factorization (NMF) and inverse-analysis Green's functions method. GreenNMF synergistically performs decomposition of the recorded mixtures, finds the number of the unknown sources and uses the Green's function of the governing partial differential equation to identifymore » the unknown sources and their charecteristics. GreenNMF can be applied directly to any problem controlled by a known partial-differential parabolic equation where mixtures of an unknown number of sources are measured at multiple locations. Full GreenNMFk method is a subject LANL U.S. Patent application S133364.000 August, 2017. The ShiftNMFk 1.2 version here is a toy version of this method that can work with a limited number of unknown sources (4 or less).« less

  13. Shift-Variant Multidimensional Systems.

    DTIC Science & Technology

    1985-05-29

    i=0,1,** *N-1 in (3.1), one will get 0() i_0,1,* ,N-1 which is nonnegative due to the Perron - Frobenius Theorem [24]. That is, the A nonnegativity ...and the current input. The state-space model was extended in order to model 2-D discrete LSV systems with support on a causality cone . Subsequently...formulated as a special system of linear equations with nonnegative coefficients whose solution is required to satisfy con- straints like nonnegativity in

  14. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    PubMed

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  15. 3D tensor-based blind multispectral image decomposition for tumor demarcation

    NASA Astrophysics Data System (ADS)

    Kopriva, Ivica; Peršin, Antun

    2010-03-01

    Blind decomposition of multi-spectral fluorescent image for tumor demarcation is formulated exploiting tensorial structure of the image. First contribution of the paper is identification of the matrix of spectral responses and 3D tensor of spatial distributions of the materials present in the image from Tucker3 or PARAFAC models of 3D image tensor. Second contribution of the paper is clustering based estimation of the number of the materials present in the image as well as matrix of their spectral profiles. 3D tensor of the spatial distributions of the materials is recovered through 3-mode multiplication of the multi-spectral image tensor and inverse of the matrix of spectral profiles. Tensor representation of the multi-spectral image preserves its local spatial structure that is lost, due to vectorization process, when matrix factorization-based decomposition methods (such as non-negative matrix factorization and independent component analysis) are used. Superior performance of the tensor-based image decomposition over matrix factorization-based decompositions is demonstrated on experimental red-green-blue (RGB) image with known ground truth as well as on RGB fluorescent images of the skin tumor (basal cell carcinoma).

  16. Estimation of tissue optical parameters with hyperspectral imaging and spectral unmixing

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Chen, Zhuo G.; Fei, Baowei

    2015-03-01

    Early detection of oral cancer and its curable precursors can improve patient survival and quality of life. Hyperspectral imaging (HSI) holds the potential for noninvasive early detection of oral cancer. The quantification of tissue chromophores by spectral unmixing of hyperspectral images could provide insights for evaluating cancer progression. In this study, non-negative matrix factorization has been applied for decomposing hyperspectral images into physiologically meaningful chromophore concentration maps. The approach has been validated by computer-simulated hyperspectral images and in vivo tumor hyperspectral images from a head and neck cancer animal model.

  17. Bayesian operational modal analysis with asynchronous data, Part II: Posterior uncertainty

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Chen; Au, Siu-Kui

    2018-01-01

    A Bayesian modal identification method has been proposed in the companion paper that allows the most probable values of modal parameters to be determined using asynchronous ambient vibration data. This paper investigates the identification uncertainty of modal parameters in terms of their posterior covariance matrix. Computational issues are addressed. Analytical expressions are derived to allow the posterior covariance matrix to be evaluated accurately and efficiently. Synthetic, laboratory and field data examples are presented to verify the consistency, investigate potential modelling error and demonstrate practical applications.

  18. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S.

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set of Drosophila early embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identifiedmore » 21 principal patterns (PP). Providing a compact yet biologically interpretable representation of Drosophila expression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. In conclusion, the performance of PP with the Drosophila data suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.« less

  19. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks

    DOE PAGES

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S.; ...

    2016-04-06

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set of Drosophila early embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identifiedmore » 21 principal patterns (PP). Providing a compact yet biologically interpretable representation of Drosophila expression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. In conclusion, the performance of PP with the Drosophila data suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.« less

  20. Gene Ranking of RNA-Seq Data via Discriminant Non-Negative Matrix Factorization.

    PubMed

    Jia, Zhilong; Zhang, Xiang; Guan, Naiyang; Bo, Xiaochen; Barnes, Michael R; Luo, Zhigang

    2015-01-01

    RNA-sequencing is rapidly becoming the method of choice for studying the full complexity of transcriptomes, however with increasing dimensionality, accurate gene ranking is becoming increasingly challenging. This paper proposes an accurate and sensitive gene ranking method that implements discriminant non-negative matrix factorization (DNMF) for RNA-seq data. To the best of our knowledge, this is the first work to explore the utility of DNMF for gene ranking. When incorporating Fisher's discriminant criteria and setting the reduced dimension as two, DNMF learns two factors to approximate the original gene expression data, abstracting the up-regulated or down-regulated metagene by using the sample label information. The first factor denotes all the genes' weights of two metagenes as the additive combination of all genes, while the second learned factor represents the expression values of two metagenes. In the gene ranking stage, all the genes are ranked as a descending sequence according to the differential values of the metagene weights. Leveraging the nature of NMF and Fisher's criterion, DNMF can robustly boost the gene ranking performance. The Area Under the Curve analysis of differential expression analysis on two benchmarking tests of four RNA-seq data sets with similar phenotypes showed that our proposed DNMF-based gene ranking method outperforms other widely used methods. Moreover, the Gene Set Enrichment Analysis also showed DNMF outweighs others. DNMF is also computationally efficient, substantially outperforming all other benchmarked methods. Consequently, we suggest DNMF is an effective method for the analysis of differential gene expression and gene ranking for RNA-seq data.

  1. Color normalization of histology slides using graph regularized sparse NMF

    NASA Astrophysics Data System (ADS)

    Sha, Lingdao; Schonfeld, Dan; Sethi, Amit

    2017-03-01

    Computer based automatic medical image processing and quantification are becoming popular in digital pathology. However, preparation of histology slides can vary widely due to differences in staining equipment, procedures and reagents, which can reduce the accuracy of algorithms that analyze their color and texture information. To re- duce the unwanted color variations, various supervised and unsupervised color normalization methods have been proposed. Compared with supervised color normalization methods, unsupervised color normalization methods have advantages of time and cost efficient and universal applicability. Most of the unsupervised color normaliza- tion methods for histology are based on stain separation. Based on the fact that stain concentration cannot be negative and different parts of the tissue absorb different stains, nonnegative matrix factorization (NMF), and particular its sparse version (SNMF), are good candidates for stain separation. However, most of the existing unsupervised color normalization method like PCA, ICA, NMF and SNMF fail to consider important information about sparse manifolds that its pixels occupy, which could potentially result in loss of texture information during color normalization. Manifold learning methods like Graph Laplacian have proven to be very effective in interpreting high-dimensional data. In this paper, we propose a novel unsupervised stain separation method called graph regularized sparse nonnegative matrix factorization (GSNMF). By considering the sparse prior of stain concentration together with manifold information from high-dimensional image data, our method shows better performance in stain color deconvolution than existing unsupervised color deconvolution methods, especially in keeping connected texture information. To utilized the texture information, we construct a nearest neighbor graph between pixels within a spatial area of an image based on their distances using heat kernal in lαβ space. The representation of a pixel in the stain density space is constrained to follow the feature distance of the pixel to pixels in the neighborhood graph. Utilizing color matrix transfer method with the stain concentrations found using our GSNMF method, the color normalization performance was also better than existing methods.

  2. Comparison of two non-convex mixed-integer nonlinear programming algorithms applied to autoregressive moving average model structure and parameter estimation

    NASA Astrophysics Data System (ADS)

    Uilhoorn, F. E.

    2016-10-01

    In this article, the stochastic modelling approach proposed by Box and Jenkins is treated as a mixed-integer nonlinear programming (MINLP) problem solved with a mesh adaptive direct search and a real-coded genetic class of algorithms. The aim is to estimate the real-valued parameters and non-negative integer, correlated structure of stationary autoregressive moving average (ARMA) processes. The maximum likelihood function of the stationary ARMA process is embedded in Akaike's information criterion and the Bayesian information criterion, whereas the estimation procedure is based on Kalman filter recursions. The constraints imposed on the objective function enforce stability and invertibility. The best ARMA model is regarded as the global minimum of the non-convex MINLP problem. The robustness and computational performance of the MINLP solvers are compared with brute-force enumeration. Numerical experiments are done for existing time series and one new data set.

  3. Open Quantum Random Walks on the Half-Line: The Karlin-McGregor Formula, Path Counting and Foster's Theorem

    NASA Astrophysics Data System (ADS)

    Jacq, Thomas S.; Lardizabal, Carlos F.

    2017-11-01

    In this work we consider open quantum random walks on the non-negative integers. By considering orthogonal matrix polynomials we are able to describe transition probability expressions for classes of walks via a matrix version of the Karlin-McGregor formula. We focus on absorbing boundary conditions and, for simpler classes of examples, we consider path counting and the corresponding combinatorial tools. A non-commutative version of the gambler's ruin is studied by obtaining the probability of reaching a certain fortune and the mean time to reach a fortune or ruin in terms of generating functions. In the case of the Hadamard coin, a counting technique for boundary restricted paths in a lattice is also presented. We discuss an open quantum version of Foster's Theorem for the expected return time together with applications.

  4. Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics

    NASA Astrophysics Data System (ADS)

    Wen, Zijuan; Fu, Shengmao

    2009-08-01

    In this paper, an n-species strongly coupled cooperating diffusive system is considered in a bounded smooth domain, subject to homogeneous Neumann boundary conditions. Employing the method of energy estimates, we obtain some conditions on the diffusion matrix and inter-specific cooperatives to ensure the global existence and uniform boundedness of a nonnegative solution. The globally asymptotical stability of the constant positive steady state is also discussed. As a consequence, all the results hold true for multi-species Lotka-Volterra type competition model and prey-predator model.

  5. Eigenvalues of the Laplacian of a graph

    NASA Technical Reports Server (NTRS)

    Anderson, W. N., Jr.; Morley, T. D.

    1971-01-01

    Let G be a finite undirected graph with no loops or multiple edges. The Laplacian matrix of G, Delta(G), is defined by Delta sub ii = degree of vertex i and Delta sub ij = -1 if there is an edge between vertex i and vertex j. The structure of the graph G is related to the eigenvalues of Delta(G); in particular, it is proved that all the eigenvalues of Delta(G) are nonnegative, less than or equal to the number of vertices, and less than or equal to twice the maximum vertex degree. Precise conditions for equality are given.

  6. Computing Nash equilibria through computational intelligence methods

    NASA Astrophysics Data System (ADS)

    Pavlidis, N. G.; Parsopoulos, K. E.; Vrahatis, M. N.

    2005-03-01

    Nash equilibrium constitutes a central solution concept in game theory. The task of detecting the Nash equilibria of a finite strategic game remains a challenging problem up-to-date. This paper investigates the effectiveness of three computational intelligence techniques, namely, covariance matrix adaptation evolution strategies, particle swarm optimization, as well as, differential evolution, to compute Nash equilibria of finite strategic games, as global minima of a real-valued, nonnegative function. An issue of particular interest is to detect more than one Nash equilibria of a game. The performance of the considered computational intelligence methods on this problem is investigated using multistart and deflection.

  7. Topology of codimension-one foliations of nonnegative curvature. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotov, D V

    We prove that a 3-connected closed manifold M of dimension n≥5 does not admit a codimension-one C{sup 2}-foliation of nonnegative curvature. In particular, this gives a complete answer to a question of Stuck on the existence of codimension-one foliations of nonnegative curvature on spheres. We also consider codimension-one C{sup 2}-foliations of nonnegative Ricci curvature on a closed manifold M with leaves having finitely generated fundamental group, and show that such a foliation is flat if and only if M is a K(π,1)-manifold. Bibliography: 13 titles.

  8. Approximate method of variational Bayesian matrix factorization/completion with sparse prior

    NASA Astrophysics Data System (ADS)

    Kawasumi, Ryota; Takeda, Koujin

    2018-05-01

    We derive the analytical expression of a matrix factorization/completion solution by the variational Bayes method, under the assumption that the observed matrix is originally the product of low-rank, dense and sparse matrices with additive noise. We assume the prior of a sparse matrix is a Laplace distribution by taking matrix sparsity into consideration. Then we use several approximations for the derivation of a matrix factorization/completion solution. By our solution, we also numerically evaluate the performance of a sparse matrix reconstruction in matrix factorization, and completion of a missing matrix element in matrix completion.

  9. Greedy Algorithms for Nonnegativity-Constrained Simultaneous Sparse Recovery

    PubMed Central

    Kim, Daeun; Haldar, Justin P.

    2016-01-01

    This work proposes a family of greedy algorithms to jointly reconstruct a set of vectors that are (i) nonnegative and (ii) simultaneously sparse with a shared support set. The proposed algorithms generalize previous approaches that were designed to impose these constraints individually. Similar to previous greedy algorithms for sparse recovery, the proposed algorithms iteratively identify promising support indices. In contrast to previous approaches, the support index selection procedure has been adapted to prioritize indices that are consistent with both the nonnegativity and shared support constraints. Empirical results demonstrate for the first time that the combined use of simultaneous sparsity and nonnegativity constraints can substantially improve recovery performance relative to existing greedy algorithms that impose less signal structure. PMID:26973368

  10. The Variability and Interpretation of Earthquake Source Mechanisms in The Geysers Geothermal Field From a Bayesian Standpoint Based on the Choice of a Noise Model

    NASA Astrophysics Data System (ADS)

    Mustać, Marija; Tkalčić, Hrvoje; Burky, Alexander L.

    2018-01-01

    Moment tensor (MT) inversion studies of events in The Geysers geothermal field mostly focused on microseismicity and found a large number of earthquakes with significant non-double-couple (non-DC) seismic radiation. Here we concentrate on the largest events in the area in recent years using a hierarchical Bayesian MT inversion. Initially, we show that the non-DC components of the MT can be reliably retrieved using regional waveform data from a small number of stations. Subsequently, we present results for a number of events and show that accounting for noise correlations can lead to retrieval of a lower isotropic (ISO) component and significantly different focal mechanisms. We compute the Bayesian evidence to compare solutions obtained with different assumptions of the noise covariance matrix. Although a diagonal covariance matrix produces a better waveform fit, inversions that account for noise correlations via an empirically estimated noise covariance matrix account for interdependences of data errors and are preferred from a Bayesian point of view. This implies that improper treatment of data noise in waveform inversions can result in fitting the noise and misinterpreting the non-DC components. Finally, one of the analyzed events is characterized as predominantly DC, while the others still have significant non-DC components, probably as a result of crack opening, which is a reasonable hypothesis for The Geysers geothermal field geological setting.

  11. A Comparative Study of the Application of Fluorescence Excitation-Emission Matrices Combined with Parallel Factor Analysis and Nonnegative Matrix Factorization in the Analysis of Zn Complexation by Humic Acids

    PubMed Central

    Boguta, Patrycja; Pieczywek, Piotr M.; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the application of excitation-emission fluorescence matrices (EEMs) combined with two decomposition methods: parallel factor analysis (PARAFAC) and nonnegative matrix factorization (NMF) to study the interaction mechanisms between humic acids (HAs) and Zn(II) over a wide concentration range (0–50 mg·dm−3). The influence of HA properties on Zn(II) complexation was also investigated. Stability constants, quenching degree and complexation capacity were estimated for binding sites found in raw EEM, EEM-PARAFAC and EEM-NMF data using mathematical models. A combination of EEM fluorescence analysis with one of the proposed decomposition methods enabled separation of overlapping binding sites and yielded more accurate calculations of the binding parameters. PARAFAC and NMF processing allowed finding binding sites invisible in a few raw EEM datasets as well as finding totally new maxima attributed to structures of the lowest humification. Decomposed data showed an increase in Zn complexation with an increase in humification, aromaticity and molecular weight of HAs. EEM-PARAFAC analysis also revealed that the most stable compounds were formed by structures containing the highest amounts of nitrogen. The content of oxygen-functional groups did not influence the binding parameters, mainly due to fact of higher competition of metal cation with protons. EEM spectra coupled with NMF and especially PARAFAC processing gave more adequate assessments of interactions as compared to raw EEM data and should be especially recommended for modeling of complexation processes where the fluorescence intensities (FI) changes are weak or where the processes are interfered with by the presence of other fluorophores. PMID:27782078

  12. Video based object representation and classification using multiple covariance matrices.

    PubMed

    Zhang, Yurong; Liu, Quan

    2017-01-01

    Video based object recognition and classification has been widely studied in computer vision and image processing area. One main issue of this task is to develop an effective representation for video. This problem can generally be formulated as image set representation. In this paper, we present a new method called Multiple Covariance Discriminative Learning (MCDL) for image set representation and classification problem. The core idea of MCDL is to represent an image set using multiple covariance matrices with each covariance matrix representing one cluster of images. Firstly, we use the Nonnegative Matrix Factorization (NMF) method to do image clustering within each image set, and then adopt Covariance Discriminative Learning on each cluster (subset) of images. At last, we adopt KLDA and nearest neighborhood classification method for image set classification. Promising experimental results on several datasets show the effectiveness of our MCDL method.

  13. Topology of codimension-one foliations of nonnegative curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotov, Dmitry V

    We show that a transversely oriented C{sup 2}-foliation of codimension one with nonnegative Ricci curvature on a closed orientable manifold is a foliation with almost no holonomy. This allows us to decompose the manifold into blocks on which this foliation has a simple structure. We also show that a manifold homeomorphic to a 5-dimensional sphere does not admit a codimension-one C{sup 2}-foliation with nonnegative sectional curvature. Bibliography: 29 titles.

  14. Recognizing Uncertainty in the Q-Matrix via a Bayesian Extension of the DINA Model

    ERIC Educational Resources Information Center

    DeCarlo, Lawrence T.

    2012-01-01

    In the typical application of a cognitive diagnosis model, the Q-matrix, which reflects the theory with respect to the skills indicated by the items, is assumed to be known. However, the Q-matrix is usually determined by expert judgment, and so there can be uncertainty about some of its elements. Here it is shown that this uncertainty can be…

  15. Discovering SIFIs in Interbank Communities

    PubMed Central

    Pecora, Nicolò; Rovira Kaltwasser, Pablo; Spelta, Alessandro

    2016-01-01

    This paper proposes a new methodology based on non-negative matrix factorization to detect communities and to identify central nodes in a network as well as within communities. The method is specifically designed for directed weighted networks and, consequently, it has been applied to the interbank network derived from the e-MID interbank market. In an interbank network indeed links are directed, representing flows of funds between lenders and borrowers. Besides distinguishing between Systemically Important Borrowers and Lenders, the technique complements the detection of systemically important banks, revealing the community structure of the network, that proxies the most plausible areas of contagion of institutions’ distress. PMID:28002445

  16. A constrained robust least squares approach for contaminant release history identification

    NASA Astrophysics Data System (ADS)

    Sun, Alexander Y.; Painter, Scott L.; Wittmeyer, Gordon W.

    2006-04-01

    Contaminant source identification is an important type of inverse problem in groundwater modeling and is subject to both data and model uncertainty. Model uncertainty was rarely considered in the previous studies. In this work, a robust framework for solving contaminant source recovery problems is introduced. The contaminant source identification problem is first cast into one of solving uncertain linear equations, where the response matrix is constructed using a superposition technique. The formulation presented here is general and is applicable to any porous media flow and transport solvers. The robust least squares (RLS) estimator, which originated in the field of robust identification, directly accounts for errors arising from model uncertainty and has been shown to significantly reduce the sensitivity of the optimal solution to perturbations in model and data. In this work, a new variant of RLS, the constrained robust least squares (CRLS), is formulated for solving uncertain linear equations. CRLS allows for additional constraints, such as nonnegativity, to be imposed. The performance of CRLS is demonstrated through one- and two-dimensional test problems. When the system is ill-conditioned and uncertain, it is found that CRLS gave much better performance than its classical counterpart, the nonnegative least squares. The source identification framework developed in this work thus constitutes a reliable tool for recovering source release histories in real applications.

  17. Deep Learning Role in Early Diagnosis of Prostate Cancer

    PubMed Central

    Reda, Islam; Khalil, Ashraf; Elmogy, Mohammed; Abou El-Fetouh, Ahmed; Shalaby, Ahmed; Abou El-Ghar, Mohamed; Elmaghraby, Adel; Ghazal, Mohammed; El-Baz, Ayman

    2018-01-01

    The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both clinical biomarkers (prostate-specific antigen) and extracted features from diffusion-weighted magnetic resonance imaging collected at multiple b values. The presented system performs 3 major processing steps. First, prostate delineation using a hybrid approach that combines a level-set model with nonnegative matrix factorization. Second, estimation and normalization of diffusion parameters, which are the apparent diffusion coefficients of the delineated prostate volumes at different b values followed by refinement of those apparent diffusion coefficients using a generalized Gaussian Markov random field model. Then, construction of the cumulative distribution functions of the processed apparent diffusion coefficients at multiple b values. In parallel, a K-nearest neighbor classifier is employed to transform the prostate-specific antigen results into diagnostic probabilities. Finally, those prostate-specific antigen–based probabilities are integrated with the initial diagnostic probabilities obtained using stacked nonnegativity constraint sparse autoencoders that employ apparent diffusion coefficient–cumulative distribution functions for better diagnostic accuracy. Experiments conducted on 18 diffusion-weighted magnetic resonance imaging data sets achieved 94.4% diagnosis accuracy (sensitivity = 88.9% and specificity = 100%), which indicate the promising results of the presented computer-aided diagnostic system. PMID:29804518

  18. The Quasimonotonicity of Linear Differential Systems -The Complex Spectrum

    DTIC Science & Technology

    2001-09-12

    proper, simplicial cone determined by the columns of B (see [10]) and that C is essentially nonnegative (see [11]). In [6], Heikkilä used Perron ...a B ≥ 0 such that Ae = B−1AB is essentially nonnegative and ir- reducible, then Perron - Frobenius theory tells us that Ae has a real eigenvalue λ1 with...systems requires that the comparison system be quasimonotone nondecreasing with respect to a cone contained in the nonnegative orthant. For linear

  19. Signal Recovery and System Calibration from Multiple Compressive Poisson Measurements

    DOE PAGES

    Wang, Liming; Huang, Jiaji; Yuan, Xin; ...

    2015-09-17

    The measurement matrix employed in compressive sensing typically cannot be known precisely a priori and must be estimated via calibration. One may take multiple compressive measurements, from which the measurement matrix and underlying signals may be estimated jointly. This is of interest as well when the measurement matrix may change as a function of the details of what is measured. This problem has been considered recently for Gaussian measurement noise, and here we develop this idea with application to Poisson systems. A collaborative maximum likelihood algorithm and alternating proximal gradient algorithm are proposed, and associated theoretical performance guarantees are establishedmore » based on newly derived concentration-of-measure results. A Bayesian model is then introduced, to improve flexibility and generality. Connections between the maximum likelihood methods and the Bayesian model are developed, and example results are presented for a real compressive X-ray imaging system.« less

  20. Discriminative Transfer Subspace Learning via Low-Rank and Sparse Representation.

    PubMed

    Xu, Yong; Fang, Xiaozhao; Wu, Jian; Li, Xuelong; Zhang, David

    2016-02-01

    In this paper, we address the problem of unsupervised domain transfer learning in which no labels are available in the target domain. We use a transformation matrix to transfer both the source and target data to a common subspace, where each target sample can be represented by a combination of source samples such that the samples from different domains can be well interlaced. In this way, the discrepancy of the source and target domains is reduced. By imposing joint low-rank and sparse constraints on the reconstruction coefficient matrix, the global and local structures of data can be preserved. To enlarge the margins between different classes as much as possible and provide more freedom to diminish the discrepancy, a flexible linear classifier (projection) is obtained by learning a non-negative label relaxation matrix that allows the strict binary label matrix to relax into a slack variable matrix. Our method can avoid a potentially negative transfer by using a sparse matrix to model the noise and, thus, is more robust to different types of noise. We formulate our problem as a constrained low-rankness and sparsity minimization problem and solve it by the inexact augmented Lagrange multiplier method. Extensive experiments on various visual domain adaptation tasks show the superiority of the proposed method over the state-of-the art methods. The MATLAB code of our method will be publicly available at http://www.yongxu.org/lunwen.html.

  1. Fluorescence spectroscopy using excitation and emission matrix for quantification of tissue native fluorophores and cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Gayen, S. K.; Xu, M.

    2014-03-01

    Native fluorescence spectrum of normal and cancerous human prostate tissues is studied to distinguish between normal and cancerous tissues, and cancerous tissues at different cancer grade. The tissue samples were obtained from Cooperative Human Tissue Network (CHTN) and National Disease Research Interchange(NDRI). An excitation and emission matrix (EEM) was generated for each tissue sample by acquiring native fluorescence spectrum of the sample using multiple excitation wavelengths. The non-negative matrix factorization algorithm was used to generate fluorescence EEMs that correspond to the fluorophores in biological tissues, including tryptophan, collagen, elastin, nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD) and the background paraffin. We hypothesize that, as a consequence of metabolic changes associated with the development of cancer, the concentrations of NADH and FAD are different in normal and cancerous tissues, and also different for different cancer grades. We used the ratio of the abundances of FAD and NADH to distinguish between normal and cancerous tissues, and the tissue cancer grade. The FAD-to-NADH ratio was found to be the highest for normal tissue and decreased as the cancer grade increased.

  2. A Joint Time-Frequency and Matrix Decomposition Feature Extraction Methodology for Pathological Voice Classification

    NASA Astrophysics Data System (ADS)

    Ghoraani, Behnaz; Krishnan, Sridhar

    2009-12-01

    The number of people affected by speech problems is increasing as the modern world places increasing demands on the human voice via mobile telephones, voice recognition software, and interpersonal verbal communications. In this paper, we propose a novel methodology for automatic pattern classification of pathological voices. The main contribution of this paper is extraction of meaningful and unique features using Adaptive time-frequency distribution (TFD) and nonnegative matrix factorization (NMF). We construct Adaptive TFD as an effective signal analysis domain to dynamically track the nonstationarity in the speech and utilize NMF as a matrix decomposition (MD) technique to quantify the constructed TFD. The proposed method extracts meaningful and unique features from the joint TFD of the speech, and automatically identifies and measures the abnormality of the signal. Depending on the abnormality measure of each signal, we classify the signal into normal or pathological. The proposed method is applied on the Massachusetts Eye and Ear Infirmary (MEEI) voice disorders database which consists of 161 pathological and 51 normal speakers, and an overall classification accuracy of 98.6% was achieved.

  3. Stochastic process approximation for recursive estimation with guaranteed bound on the error covariance

    NASA Technical Reports Server (NTRS)

    Menga, G.

    1975-01-01

    An approach, is proposed for the design of approximate, fixed order, discrete time realizations of stochastic processes from the output covariance over a finite time interval, was proposed. No restrictive assumptions are imposed on the process; it can be nonstationary and lead to a high dimension realization. Classes of fixed order models are defined, having the joint covariance matrix of the combined vector of the outputs in the interval of definition greater or equal than the process covariance; (the difference matrix is nonnegative definite). The design is achieved by minimizing, in one of those classes, a measure of the approximation between the model and the process evaluated by the trace of the difference of the respective covariance matrices. Models belonging to these classes have the notable property that, under the same measurement system and estimator structure, the output estimation error covariance matrix computed on the model is an upper bound of the corresponding covariance on the real process. An application of the approach is illustrated by the modeling of random meteorological wind profiles from the statistical analysis of historical data.

  4. ORACLS: A system for linear-quadratic-Gaussian control law design

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1978-01-01

    A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.

  5. A Bayesian method for detecting pairwise associations in compositional data

    PubMed Central

    Ventz, Steffen; Huttenhower, Curtis

    2017-01-01

    Compositional data consist of vectors of proportions normalized to a constant sum from a basis of unobserved counts. The sum constraint makes inference on correlations between unconstrained features challenging due to the information loss from normalization. However, such correlations are of long-standing interest in fields including ecology. We propose a novel Bayesian framework (BAnOCC: Bayesian Analysis of Compositional Covariance) to estimate a sparse precision matrix through a LASSO prior. The resulting posterior, generated by MCMC sampling, allows uncertainty quantification of any function of the precision matrix, including the correlation matrix. We also use a first-order Taylor expansion to approximate the transformation from the unobserved counts to the composition in order to investigate what characteristics of the unobserved counts can make the correlations more or less difficult to infer. On simulated datasets, we show that BAnOCC infers the true network as well as previous methods while offering the advantage of posterior inference. Larger and more realistic simulated datasets further showed that BAnOCC performs well as measured by type I and type II error rates. Finally, we apply BAnOCC to a microbial ecology dataset from the Human Microbiome Project, which in addition to reproducing established ecological results revealed unique, competition-based roles for Proteobacteria in multiple distinct habitats. PMID:29140991

  6. Robust Controller Design: A Bounded-Input-Bounded-Output Worst-Case Approach

    DTIC Science & Technology

    1992-03-01

    show that 2 implies 1, suppose 1 does not hold, i.e., that p(M) > 1. The Perron - Frobenius theory for nonnegative matrices states that p(M) is itself an...Pz denote the positive cones inside X, Z consisting of elements with nonnegative pointwise components. Define the operator .4 : X -* Z, decomposed...topology.) The dual cone P! again consists of the nonnegative elements in Z*. The Lagrangian can be defined as L(x,z ’) {< x,c" > + < Ax - b,z

  7. Approximate string matching algorithms for limited-vocabulary OCR output correction

    NASA Astrophysics Data System (ADS)

    Lasko, Thomas A.; Hauser, Susan E.

    2000-12-01

    Five methods for matching words mistranslated by optical character recognition to their most likely match in a reference dictionary were tested on data from the archives of the National Library of Medicine. The methods, including an adaptation of the cross correlation algorithm, the generic edit distance algorithm, the edit distance algorithm with a probabilistic substitution matrix, Bayesian analysis, and Bayesian analysis on an actively thinned reference dictionary were implemented and their accuracy rates compared. Of the five, the Bayesian algorithm produced the most correct matches (87%), and had the advantage of producing scores that have a useful and practical interpretation.

  8. Predicting and understanding comprehensive drug-drug interactions via semi-nonnegative matrix factorization.

    PubMed

    Yu, Hui; Mao, Kui-Tao; Shi, Jian-Yu; Huang, Hua; Chen, Zhi; Dong, Kai; Yiu, Siu-Ming

    2018-04-11

    Drug-drug interactions (DDIs) always cause unexpected and even adverse drug reactions. It is important to identify DDIs before drugs are used in the market. However, preclinical identification of DDIs requires much money and time. Computational approaches have exhibited their abilities to predict potential DDIs on a large scale by utilizing pre-market drug properties (e.g. chemical structure). Nevertheless, none of them can predict two comprehensive types of DDIs, including enhancive and degressive DDIs, which increases and decreases the behaviors of the interacting drugs respectively. There is a lack of systematic analysis on the structural relationship among known DDIs. Revealing such a relationship is very important, because it is able to help understand how DDIs occur. Both the prediction of comprehensive DDIs and the discovery of structural relationship among them play an important guidance when making a co-prescription. In this work, treating a set of comprehensive DDIs as a signed network, we design a novel model (DDINMF) for the prediction of enhancive and degressive DDIs based on semi-nonnegative matrix factorization. Inspiringly, DDINMF achieves the conventional DDI prediction (AUROC = 0.872 and AUPR = 0.605) and the comprehensive DDI prediction (AUROC = 0.796 and AUPR = 0.579). Compared with two state-of-the-art approaches, DDINMF shows it superiority. Finally, representing DDIs as a binary network and a signed network respectively, an analysis based on NMF reveals crucial knowledge hidden among DDIs. Our approach is able to predict not only conventional binary DDIs but also comprehensive DDIs. More importantly, it reveals several key points about the DDI network: (1) both binary and signed networks show fairly clear clusters, in which both drug degree and the difference between positive degree and negative degree show significant distribution; (2) the drugs having large degrees tend to have a larger difference between positive degree and negative degree; (3) though the binary DDI network contains no information about enhancive and degressive DDIs at all, it implies some of their relationship in the comprehensive DDI matrix; (4) the occurrence of signs indicating enhancive and degressive DDIs is not random because the comprehensive DDI network is equipped with a structural balance.

  9. A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives

    PubMed Central

    Sartori, Massimo; Gizzi, Leonardo; Lloyd, David G.; Farina, Dario

    2013-01-01

    Human locomotion has been described as being generated by an impulsive (burst-like) excitation of groups of musculotendon units, with timing dependent on the biomechanical goal of the task. Despite this view being supported by many experimental observations on specific locomotion tasks, it is still unknown if the same impulsive controller (i.e., a low-dimensional set of time-delayed excitastion primitives) can be used as input drive for large musculoskeletal models across different human locomotion tasks. For this purpose, we extracted, with non-negative matrix factorization, five non-negative factors from a large sample of muscle electromyograms in two healthy subjects during four motor tasks. These included walking, running, sidestepping, and crossover cutting maneuvers. The extracted non-negative factors were then averaged and parameterized to obtain task-generic Gaussian-shaped impulsive excitation curves or primitives. These were used to drive a subject-specific musculoskeletal model of the human lower extremity. Results showed that the same set of five impulsive excitation primitives could be used to predict the dynamics of 34 musculotendon units and the resulting hip, knee and ankle joint moments (i.e., NRMSE = 0.18 ± 0.08, and R2 = 0.73 ± 0.22 across all tasks and subjects) without substantial loss of accuracy with respect to using experimental electromyograms (i.e., NRMSE = 0.16 ± 0.07, and R2 = 0.78 ± 0.18 across all tasks and subjects). Results support the hypothesis that biomechanically different motor tasks might share similar neuromuscular control strategies. This might have implications in neurorehabilitation technologies such as human-machine interfaces for the torque-driven, proportional control of powered prostheses and orthoses. In this, device control commands (i.e., predicted joint torque) could be derived without direct experimental data but relying on simple parameterized Gaussian-shaped curves, thus decreasing the input drive complexity and the number of needed sensors. PMID:23805099

  10. A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives.

    PubMed

    Sartori, Massimo; Gizzi, Leonardo; Lloyd, David G; Farina, Dario

    2013-01-01

    Human locomotion has been described as being generated by an impulsive (burst-like) excitation of groups of musculotendon units, with timing dependent on the biomechanical goal of the task. Despite this view being supported by many experimental observations on specific locomotion tasks, it is still unknown if the same impulsive controller (i.e., a low-dimensional set of time-delayed excitastion primitives) can be used as input drive for large musculoskeletal models across different human locomotion tasks. For this purpose, we extracted, with non-negative matrix factorization, five non-negative factors from a large sample of muscle electromyograms in two healthy subjects during four motor tasks. These included walking, running, sidestepping, and crossover cutting maneuvers. The extracted non-negative factors were then averaged and parameterized to obtain task-generic Gaussian-shaped impulsive excitation curves or primitives. These were used to drive a subject-specific musculoskeletal model of the human lower extremity. Results showed that the same set of five impulsive excitation primitives could be used to predict the dynamics of 34 musculotendon units and the resulting hip, knee and ankle joint moments (i.e., NRMSE = 0.18 ± 0.08, and R (2) = 0.73 ± 0.22 across all tasks and subjects) without substantial loss of accuracy with respect to using experimental electromyograms (i.e., NRMSE = 0.16 ± 0.07, and R (2) = 0.78 ± 0.18 across all tasks and subjects). Results support the hypothesis that biomechanically different motor tasks might share similar neuromuscular control strategies. This might have implications in neurorehabilitation technologies such as human-machine interfaces for the torque-driven, proportional control of powered prostheses and orthoses. In this, device control commands (i.e., predicted joint torque) could be derived without direct experimental data but relying on simple parameterized Gaussian-shaped curves, thus decreasing the input drive complexity and the number of needed sensors.

  11. Quantifying parameter uncertainty in stochastic models using the Box Cox transformation

    NASA Astrophysics Data System (ADS)

    Thyer, Mark; Kuczera, George; Wang, Q. J.

    2002-08-01

    The Box-Cox transformation is widely used to transform hydrological data to make it approximately Gaussian. Bayesian evaluation of parameter uncertainty in stochastic models using the Box-Cox transformation is hindered by the fact that there is no analytical solution for the posterior distribution. However, the Markov chain Monte Carlo method known as the Metropolis algorithm can be used to simulate the posterior distribution. This method properly accounts for the nonnegativity constraint implicit in the Box-Cox transformation. Nonetheless, a case study using the AR(1) model uncovered a practical problem with the implementation of the Metropolis algorithm. The use of a multivariate Gaussian jump distribution resulted in unacceptable convergence behaviour. This was rectified by developing suitable parameter transformations for the mean and variance of the AR(1) process to remove the strong nonlinear dependencies with the Box-Cox transformation parameter. Applying this methodology to the Sydney annual rainfall data and the Burdekin River annual runoff data illustrates the efficacy of these parameter transformations and demonstrate the value of quantifying parameter uncertainty.

  12. Large-scale optimization-based non-negative computational framework for diffusion equations: Parallel implementation and performance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.

    It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less

  13. Large-scale optimization-based non-negative computational framework for diffusion equations: Parallel implementation and performance studies

    DOE PAGES

    Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.

    2016-07-26

    It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less

  14. Asymptotics in Time, Temperature and Size for Optimization by Simulated Annealing: Theory, Practice and Applications

    DTIC Science & Technology

    1990-01-19

    following theorem from the Perron - Frobenius theory of nonnegative matrices. Theorem 2.2 : [1] Consider an irreducible Markov chain with transition...us suppose to the contrary that both expressions are nonnegative . Then max ,01v,,= max /3,1v,,> max 3OV,,= max /3,0V max i,01v,,, -A.,. A’ ,, A.i. A...induction. For k 1, from (20) we see that (22) /3, 8 ,, _-30,A V(). Clearly, the left-hand side of (22) is nonnegative , implying that the right-hand

  15. Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land

    NASA Astrophysics Data System (ADS)

    Lipponen, Antti; Mielonen, Tero; Pitkänen, Mikko R. A.; Levy, Robert C.; Sawyer, Virginia R.; Romakkaniemi, Sami; Kolehmainen, Ville; Arola, Antti

    2018-03-01

    We have developed a Bayesian aerosol retrieval (BAR) algorithm for the retrieval of aerosol optical depth (AOD) over land from the Moderate Resolution Imaging Spectroradiometer (MODIS). In the BAR algorithm, we simultaneously retrieve all dark land pixels in a granule, utilize spatial correlation models for the unknown aerosol parameters, use a statistical prior model for the surface reflectance, and take into account the uncertainties due to fixed aerosol models. The retrieved parameters are total AOD at 0.55 µm, fine-mode fraction (FMF), and surface reflectances at four different wavelengths (0.47, 0.55, 0.64, and 2.1 µm). The accuracy of the new algorithm is evaluated by comparing the AOD retrievals to Aerosol Robotic Network (AERONET) AOD. The results show that the BAR significantly improves the accuracy of AOD retrievals over the operational Dark Target (DT) algorithm. A reduction of about 29 % in the AOD root mean square error and decrease of about 80 % in the median bias of AOD were found globally when the BAR was used instead of the DT algorithm. Furthermore, the fraction of AOD retrievals inside the ±(0.05+15 %) expected error envelope increased from 55 to 76 %. In addition to retrieving the values of AOD, FMF, and surface reflectance, the BAR also gives pixel-level posterior uncertainty estimates for the retrieved parameters. The BAR algorithm always results in physical, non-negative AOD values, and the average computation time for a single granule was less than a minute on a modern personal computer.

  16. eMBI: Boosting Gene Expression-based Clustering for Cancer Subtypes.

    PubMed

    Chang, Zheng; Wang, Zhenjia; Ashby, Cody; Zhou, Chuan; Li, Guojun; Zhang, Shuzhong; Huang, Xiuzhen

    2014-01-01

    Identifying clinically relevant subtypes of a cancer using gene expression data is a challenging and important problem in medicine, and is a necessary premise to provide specific and efficient treatments for patients of different subtypes. Matrix factorization provides a solution by finding checker-board patterns in the matrices of gene expression data. In the context of gene expression profiles of cancer patients, these checkerboard patterns correspond to genes that are up- or down-regulated in patients with particular cancer subtypes. Recently, a new matrix factorization framework for biclustering called Maximum Block Improvement (MBI) is proposed; however, it still suffers several problems when applied to cancer gene expression data analysis. In this study, we developed many effective strategies to improve MBI and designed a new program called enhanced MBI (eMBI), which is more effective and efficient to identify cancer subtypes. Our tests on several gene expression profiling datasets of cancer patients consistently indicate that eMBI achieves significant improvements in comparison with MBI, in terms of cancer subtype prediction accuracy, robustness, and running time. In addition, the performance of eMBI is much better than another widely used matrix factorization method called nonnegative matrix factorization (NMF) and the method of hierarchical clustering, which is often the first choice of clinical analysts in practice.

  17. eMBI: Boosting Gene Expression-based Clustering for Cancer Subtypes

    PubMed Central

    Chang, Zheng; Wang, Zhenjia; Ashby, Cody; Zhou, Chuan; Li, Guojun; Zhang, Shuzhong; Huang, Xiuzhen

    2014-01-01

    Identifying clinically relevant subtypes of a cancer using gene expression data is a challenging and important problem in medicine, and is a necessary premise to provide specific and efficient treatments for patients of different subtypes. Matrix factorization provides a solution by finding checker-board patterns in the matrices of gene expression data. In the context of gene expression profiles of cancer patients, these checkerboard patterns correspond to genes that are up- or down-regulated in patients with particular cancer subtypes. Recently, a new matrix factorization framework for biclustering called Maximum Block Improvement (MBI) is proposed; however, it still suffers several problems when applied to cancer gene expression data analysis. In this study, we developed many effective strategies to improve MBI and designed a new program called enhanced MBI (eMBI), which is more effective and efficient to identify cancer subtypes. Our tests on several gene expression profiling datasets of cancer patients consistently indicate that eMBI achieves significant improvements in comparison with MBI, in terms of cancer subtype prediction accuracy, robustness, and running time. In addition, the performance of eMBI is much better than another widely used matrix factorization method called nonnegative matrix factorization (NMF) and the method of hierarchical clustering, which is often the first choice of clinical analysts in practice. PMID:25374455

  18. Separating OR, SUM, and XOR Circuits.

    PubMed

    Find, Magnus; Göös, Mika; Järvisalo, Matti; Kaski, Petteri; Koivisto, Mikko; Korhonen, Janne H

    2016-08-01

    Given a boolean n × n matrix A we consider arithmetic circuits for computing the transformation x ↦ Ax over different semirings. Namely, we study three circuit models: monotone OR-circuits, monotone SUM-circuits (addition of non-negative integers), and non-monotone XOR-circuits (addition modulo 2). Our focus is on separating OR-circuits from the two other models in terms of circuit complexity: We show how to obtain matrices that admit OR-circuits of size O ( n ), but require SUM-circuits of size Ω( n 3/2 /log 2 n ).We consider the task of rewriting a given OR-circuit as a XOR-circuit and prove that any subquadratic-time algorithm for this task violates the strong exponential time hypothesis.

  19. The complexity of divisibility.

    PubMed

    Bausch, Johannes; Cubitt, Toby

    2016-09-01

    We address two sets of long-standing open questions in linear algebra and probability theory, from a computational complexity perspective: stochastic matrix divisibility, and divisibility and decomposability of probability distributions. We prove that finite divisibility of stochastic matrices is an NP-complete problem, and extend this result to nonnegative matrices, and completely-positive trace-preserving maps, i.e. the quantum analogue of stochastic matrices. We further prove a complexity hierarchy for the divisibility and decomposability of probability distributions, showing that finite distribution divisibility is in P, but decomposability is NP-hard. For the former, we give an explicit polynomial-time algorithm. All results on distributions extend to weak-membership formulations, proving that the complexity of these problems is robust to perturbations.

  20. Community structure detection based on the neighbor node degree information

    NASA Astrophysics Data System (ADS)

    Tang, Li-Ying; Li, Sheng-Nan; Lin, Jian-Hong; Guo, Qiang; Liu, Jian-Guo

    2016-11-01

    Community structure detection is of great significance for better understanding the network topology property. By taking into account the neighbor degree information of the topological network as the link weight, we present an improved Nonnegative Matrix Factorization (NMF) method for detecting community structure. The results for empirical networks show that the largest improved ratio of the Normalized Mutual Information value could reach 63.21%. Meanwhile, for synthetic networks, the highest Normalized Mutual Information value could closely reach 1, which suggests that the improved method with the optimal λ can detect the community structure more accurately. This work is helpful for understanding the interplay between the link weight and the community structure detection.

  1. Incorporating prior knowledge induced from stochastic differential equations in the classification of stochastic observations.

    PubMed

    Zollanvari, Amin; Dougherty, Edward R

    2016-12-01

    In classification, prior knowledge is incorporated in a Bayesian framework by assuming that the feature-label distribution belongs to an uncertainty class of feature-label distributions governed by a prior distribution. A posterior distribution is then derived from the prior and the sample data. An optimal Bayesian classifier (OBC) minimizes the expected misclassification error relative to the posterior distribution. From an application perspective, prior construction is critical. The prior distribution is formed by mapping a set of mathematical relations among the features and labels, the prior knowledge, into a distribution governing the probability mass across the uncertainty class. In this paper, we consider prior knowledge in the form of stochastic differential equations (SDEs). We consider a vector SDE in integral form involving a drift vector and dispersion matrix. Having constructed the prior, we develop the optimal Bayesian classifier between two models and examine, via synthetic experiments, the effects of uncertainty in the drift vector and dispersion matrix. We apply the theory to a set of SDEs for the purpose of differentiating the evolutionary history between two species.

  2. Learning coefficient of generalization error in Bayesian estimation and vandermonde matrix-type singularity.

    PubMed

    Aoyagi, Miki; Nagata, Kenji

    2012-06-01

    The term algebraic statistics arises from the study of probabilistic models and techniques for statistical inference using methods from algebra and geometry (Sturmfels, 2009 ). The purpose of our study is to consider the generalization error and stochastic complexity in learning theory by using the log-canonical threshold in algebraic geometry. Such thresholds correspond to the main term of the generalization error in Bayesian estimation, which is called a learning coefficient (Watanabe, 2001a , 2001b ). The learning coefficient serves to measure the learning efficiencies in hierarchical learning models. In this letter, we consider learning coefficients for Vandermonde matrix-type singularities, by using a new approach: focusing on the generators of the ideal, which defines singularities. We give tight new bound values of learning coefficients for the Vandermonde matrix-type singularities and the explicit values with certain conditions. By applying our results, we can show the learning coefficients of three-layered neural networks and normal mixture models.

  3. Quantitative assessment in thermal image segmentation for artistic objects

    NASA Astrophysics Data System (ADS)

    Yousefi, Bardia; Sfarra, Stefano; Maldague, Xavier P. V.

    2017-07-01

    The application of the thermal and infrared technology in different areas of research is considerably increasing. These applications involve Non-destructive Testing (NDT), Medical analysis (Computer Aid Diagnosis/Detection- CAD), Arts and Archaeology among many others. In the arts and archaeology field, infrared technology provides significant contributions in term of finding defects of possible impaired regions. This has been done through a wide range of different thermographic experiments and infrared methods. The proposed approach here focuses on application of some known factor analysis methods such as standard Non-Negative Matrix Factorization (NMF) optimized by gradient-descent-based multiplicative rules (SNMF1) and standard NMF optimized by Non-negative least squares (NNLS) active-set algorithm (SNMF2) and eigen decomposition approaches such as Principal Component Thermography (PCT), Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT) to obtain the thermal features. On one hand, these methods are usually applied as preprocessing before clustering for the purpose of segmentation of possible defects. On the other hand, a wavelet based data fusion combines the data of each method with PCT to increase the accuracy of the algorithm. The quantitative assessment of these approaches indicates considerable segmentation along with the reasonable computational complexity. It shows the promising performance and demonstrated a confirmation for the outlined properties. In particular, a polychromatic wooden statue and a fresco were analyzed using the above mentioned methods and interesting results were obtained.

  4. Multilevel modeling of single-case data: A comparison of maximum likelihood and Bayesian estimation.

    PubMed

    Moeyaert, Mariola; Rindskopf, David; Onghena, Patrick; Van den Noortgate, Wim

    2017-12-01

    The focus of this article is to describe Bayesian estimation, including construction of prior distributions, and to compare parameter recovery under the Bayesian framework (using weakly informative priors) and the maximum likelihood (ML) framework in the context of multilevel modeling of single-case experimental data. Bayesian estimation results were found similar to ML estimation results in terms of the treatment effect estimates, regardless of the functional form and degree of information included in the prior specification in the Bayesian framework. In terms of the variance component estimates, both the ML and Bayesian estimation procedures result in biased and less precise variance estimates when the number of participants is small (i.e., 3). By increasing the number of participants to 5 or 7, the relative bias is close to 5% and more precise estimates are obtained for all approaches, except for the inverse-Wishart prior using the identity matrix. When a more informative prior was added, more precise estimates for the fixed effects and random effects were obtained, even when only 3 participants were included. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Population clustering based on copy number variations detected from next generation sequencing data.

    PubMed

    Duan, Junbo; Zhang, Ji-Gang; Wan, Mingxi; Deng, Hong-Wen; Wang, Yu-Ping

    2014-08-01

    Copy number variations (CNVs) can be used as significant bio-markers and next generation sequencing (NGS) provides a high resolution detection of these CNVs. But how to extract features from CNVs and further apply them to genomic studies such as population clustering have become a big challenge. In this paper, we propose a novel method for population clustering based on CNVs from NGS. First, CNVs are extracted from each sample to form a feature matrix. Then, this feature matrix is decomposed into the source matrix and weight matrix with non-negative matrix factorization (NMF). The source matrix consists of common CNVs that are shared by all the samples from the same group, and the weight matrix indicates the corresponding level of CNVs from each sample. Therefore, using NMF of CNVs one can differentiate samples from different ethnic groups, i.e. population clustering. To validate the approach, we applied it to the analysis of both simulation data and two real data set from the 1000 Genomes Project. The results on simulation data demonstrate that the proposed method can recover the true common CNVs with high quality. The results on the first real data analysis show that the proposed method can cluster two family trio with different ancestries into two ethnic groups and the results on the second real data analysis show that the proposed method can be applied to the whole-genome with large sample size consisting of multiple groups. Both results demonstrate the potential of the proposed method for population clustering.

  6. Non-negative Matrix Factorization for Self-calibration of Photometric Redshift Scatter in Weak-lensing Surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Le; Yu, Yu; Zhang, Pengjie, E-mail: lezhang@sjtu.edu.cn

    Photo- z error is one of the major sources of systematics degrading the accuracy of weak-lensing cosmological inferences. Zhang et al. proposed a self-calibration method combining galaxy–galaxy correlations and galaxy–shear correlations between different photo- z bins. Fisher matrix analysis shows that it can determine the rate of photo- z outliers at a level of 0.01%–1% merely using photometric data and do not rely on any prior knowledge. In this paper, we develop a new algorithm to implement this method by solving a constrained nonlinear optimization problem arising in the self-calibration process. Based on the techniques of fixed-point iteration and non-negativemore » matrix factorization, the proposed algorithm can efficiently and robustly reconstruct the scattering probabilities between the true- z and photo- z bins. The algorithm has been tested extensively by applying it to mock data from simulated stage IV weak-lensing projects. We find that the algorithm provides a successful recovery of the scatter rates at the level of 0.01%–1%, and the true mean redshifts of photo- z bins at the level of 0.001, which may satisfy the requirements in future lensing surveys.« less

  7. Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization.

    PubMed

    Sauwen, Nicolas; Acou, Marjan; Sima, Diana M; Veraart, Jelle; Maes, Frederik; Himmelreich, Uwe; Achten, Eric; Huffel, Sabine Van

    2017-05-04

    Segmentation of gliomas in multi-parametric (MP-)MR images is challenging due to their heterogeneous nature in terms of size, appearance and location. Manual tumor segmentation is a time-consuming task and clinical practice would benefit from (semi-) automated segmentation of the different tumor compartments. We present a semi-automated framework for brain tumor segmentation based on non-negative matrix factorization (NMF) that does not require prior training of the method. L1-regularization is incorporated into the NMF objective function to promote spatial consistency and sparseness of the tissue abundance maps. The pathological sources are initialized through user-defined voxel selection. Knowledge about the spatial location of the selected voxels is combined with tissue adjacency constraints in a post-processing step to enhance segmentation quality. The method is applied to an MP-MRI dataset of 21 high-grade glioma patients, including conventional, perfusion-weighted and diffusion-weighted MRI. To assess the effect of using MP-MRI data and the L1-regularization term, analyses are also run using only conventional MRI and without L1-regularization. Robustness against user input variability is verified by considering the statistical distribution of the segmentation results when repeatedly analyzing each patient's dataset with a different set of random seeding points. Using L1-regularized semi-automated NMF segmentation, mean Dice-scores of 65%, 74 and 80% are found for active tumor, the tumor core and the whole tumor region. Mean Hausdorff distances of 6.1 mm, 7.4 mm and 8.2 mm are found for active tumor, the tumor core and the whole tumor region. Lower Dice-scores and higher Hausdorff distances are found without L1-regularization and when only considering conventional MRI data. Based on the mean Dice-scores and Hausdorff distances, segmentation results are competitive with state-of-the-art in literature. Robust results were found for most patients, although careful voxel selection is mandatory to avoid sub-optimal segmentation.

  8. Inferring Aggregated Functional Traits from Metagenomic Data Using Constrained Non-negative Matrix Factorization: Application to Fiber Degradation in the Human Gut Microbiota.

    PubMed

    Raguideau, Sébastien; Plancade, Sandra; Pons, Nicolas; Leclerc, Marion; Laroche, Béatrice

    2016-12-01

    Whole Genome Shotgun (WGS) metagenomics is increasingly used to study the structure and functions of complex microbial ecosystems, both from the taxonomic and functional point of view. Gene inventories of otherwise uncultured microbial communities make the direct functional profiling of microbial communities possible. The concept of community aggregated trait has been adapted from environmental and plant functional ecology to the framework of microbial ecology. Community aggregated traits are quantified from WGS data by computing the abundance of relevant marker genes. They can be used to study key processes at the ecosystem level and correlate environmental factors and ecosystem functions. In this paper we propose a novel model based approach to infer combinations of aggregated traits characterizing specific ecosystemic metabolic processes. We formulate a model of these Combined Aggregated Functional Traits (CAFTs) accounting for a hierarchical structure of genes, which are associated on microbial genomes, further linked at the ecosystem level by complex co-occurrences or interactions. The model is completed with constraints specifically designed to exploit available genomic information, in order to favor biologically relevant CAFTs. The CAFTs structure, as well as their intensity in the ecosystem, is obtained by solving a constrained Non-negative Matrix Factorization (NMF) problem. We developed a multicriteria selection procedure for the number of CAFTs. We illustrated our method on the modelling of ecosystemic functional traits of fiber degradation by the human gut microbiota. We used 1408 samples of gene abundances from several high-throughput sequencing projects and found that four CAFTs only were needed to represent the fiber degradation potential. This data reduction highlighted biologically consistent functional patterns while providing a high quality preservation of the original data. Our method is generic and can be applied to other metabolic processes in the gut or in other ecosystems.

  9. Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms.

    PubMed

    Xie, Jianwen; Douglas, Pamela K; Wu, Ying Nian; Brody, Arthur L; Anderson, Ariana E

    2017-04-15

    Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks. The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects. The sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (p<0.001) for predicting the task being performed within each scan using artifact-cleaned components. The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy compared to the ICA and sparse coding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<0.001). Lower classification accuracy occurred when the extracted spatial maps contained more CSF regions (p<0.001). The success of sparse coding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Statistical properties of color-signal spaces.

    PubMed

    Lenz, Reiner; Bui, Thanh Hai

    2005-05-01

    In applications of principal component analysis (PCA) it has often been observed that the eigenvector with the largest eigenvalue has only nonnegative entries when the vectors of the underlying stochastic process have only nonnegative values. This has been used to show that the coordinate vectors in PCA are all located in a cone. We prove that the nonnegativity of the first eigenvector follows from the Perron-Frobenius (and Krein-Rutman theory). Experiments show also that for stochastic processes with nonnegative signals the mean vector is often very similar to the first eigenvector. This is not true in general, but we first give a heuristical explanation why we can expect such a similarity. We then derive a connection between the dominance of the first eigenvalue and the similarity between the mean and the first eigenvector and show how to check the relative size of the first eigenvalue without actually computing it. In the last part of the paper we discuss the implication of theoretical results for multispectral color processing.

  11. Statistical properties of color-signal spaces

    NASA Astrophysics Data System (ADS)

    Lenz, Reiner; Hai Bui, Thanh

    2005-05-01

    In applications of principal component analysis (PCA) it has often been observed that the eigenvector with the largest eigenvalue has only nonnegative entries when the vectors of the underlying stochastic process have only nonnegative values. This has been used to show that the coordinate vectors in PCA are all located in a cone. We prove that the nonnegativity of the first eigenvector follows from the Perron-Frobenius (and Krein-Rutman theory). Experiments show also that for stochastic processes with nonnegative signals the mean vector is often very similar to the first eigenvector. This is not true in general, but we first give a heuristical explanation why we can expect such a similarity. We then derive a connection between the dominance of the first eigenvalue and the similarity between the mean and the first eigenvector and show how to check the relative size of the first eigenvalue without actually computing it. In the last part of the paper we discuss the implication of theoretical results for multispectral color processing.

  12. Nonnegative constraint quadratic program technique to enhance the resolution of γ spectra

    NASA Astrophysics Data System (ADS)

    Li, Jinglun; Xiao, Wuyun; Ai, Xianyun; Chen, Ye

    2018-04-01

    Two concepts of the nonnegative least squares problem (NNLS) and the linear complementarity problem (LCP) are introduced for the resolution enhancement of the γ spectra. The respective algorithms such as the active set method and the primal-dual interior point method are applied to solve the above two problems. In mathematics, the nonnegative constraint results in the sparsity of the optimal solution of the deconvolution, and it is this sparsity that enhances the resolution. Finally, a comparison in the peak position accuracy and the computation time is made between these two methods and the boosted L_R and Gold methods.

  13. Latent feature decompositions for integrative analysis of multi-platform genomic data

    PubMed Central

    Gregory, Karl B.; Momin, Amin A.; Coombes, Kevin R.; Baladandayuthapani, Veerabhadran

    2015-01-01

    Increased availability of multi-platform genomics data on matched samples has sparked research efforts to discover how diverse molecular features interact both within and between platforms. In addition, simultaneous measurements of genetic and epigenetic characteristics illuminate the roles their complex relationships play in disease progression and outcomes. However, integrative methods for diverse genomics data are faced with the challenges of ultra-high dimensionality and the existence of complex interactions both within and between platforms. We propose a novel modeling framework for integrative analysis based on decompositions of the large number of platform-specific features into a smaller number of latent features. Subsequently we build a predictive model for clinical outcomes accounting for both within- and between-platform interactions based on Bayesian model averaging procedures. Principal components, partial least squares and non-negative matrix factorization as well as sparse counterparts of each are used to define the latent features, and the performance of these decompositions is compared both on real and simulated data. The latent feature interactions are shown to preserve interactions between the original features and not only aid prediction but also allow explicit selection of outcome-related features. The methods are motivated by and applied to, a glioblastoma multiforme dataset from The Cancer Genome Atlas to predict patient survival times integrating gene expression, microRNA, copy number and methylation data. For the glioblastoma data, we find a high concordance between our selected prognostic genes and genes with known associations with glioblastoma. In addition, our model discovers several relevant cross-platform interactions such as copy number variation associated gene dosing and epigenetic regulation through promoter methylation. On simulated data, we show that our proposed method successfully incorporates interactions within and between genomic platforms to aid accurate prediction and variable selection. Our methods perform best when principal components are used to define the latent features. PMID:26146492

  14. Asteroid orbital error analysis: Theory and application

    NASA Technical Reports Server (NTRS)

    Muinonen, K.; Bowell, Edward

    1992-01-01

    We present a rigorous Bayesian theory for asteroid orbital error estimation in which the probability density of the orbital elements is derived from the noise statistics of the observations. For Gaussian noise in a linearized approximation the probability density is also Gaussian, and the errors of the orbital elements at a given epoch are fully described by the covariance matrix. The law of error propagation can then be applied to calculate past and future positional uncertainty ellipsoids (Cappellari et al. 1976, Yeomans et al. 1987, Whipple et al. 1991). To our knowledge, this is the first time a Bayesian approach has been formulated for orbital element estimation. In contrast to the classical Fisherian school of statistics, the Bayesian school allows a priori information to be formally present in the final estimation. However, Bayesian estimation does give the same results as Fisherian estimation when no priori information is assumed (Lehtinen 1988, and reference therein).

  15. Mutation Clusters from Cancer Exome.

    PubMed

    Kakushadze, Zura; Yu, Willie

    2017-08-15

    We apply our statistically deterministic machine learning/clustering algorithm *K-means (recently developed in https://ssrn.com/abstract=2908286) to 10,656 published exome samples for 32 cancer types. A majority of cancer types exhibit a mutation clustering structure. Our results are in-sample stable. They are also out-of-sample stable when applied to 1389 published genome samples across 14 cancer types. In contrast, we find in- and out-of-sample instabilities in cancer signatures extracted from exome samples via nonnegative matrix factorization (NMF), a computationally-costly and non-deterministic method. Extracting stable mutation structures from exome data could have important implications for speed and cost, which are critical for early-stage cancer diagnostics, such as novel blood-test methods currently in development.

  16. Analysis of spectrally resolved autofluorescence images by support vector machines

    NASA Astrophysics Data System (ADS)

    Mateasik, A.; Chorvat, D.; Chorvatova, A.

    2013-02-01

    Spectral analysis of the autofluorescence images of isolated cardiac cells was performed to evaluate and to classify the metabolic state of the cells in respect to the responses to metabolic modulators. The classification was done using machine learning approach based on support vector machine with the set of the automatically calculated features from recorded spectral profile of spectral autofluorescence images. This classification method was compared with the classical approach where the individual spectral components contributing to cell autofluorescence were estimated by spectral analysis, namely by blind source separation using non-negative matrix factorization. Comparison of both methods showed that machine learning can effectively classify the spectrally resolved autofluorescence images without the need of detailed knowledge about the sources of autofluorescence and their spectral properties.

  17. Mutation Clusters from Cancer Exome

    PubMed Central

    Kakushadze, Zura; Yu, Willie

    2017-01-01

    We apply our statistically deterministic machine learning/clustering algorithm *K-means (recently developed in https://ssrn.com/abstract=2908286) to 10,656 published exome samples for 32 cancer types. A majority of cancer types exhibit a mutation clustering structure. Our results are in-sample stable. They are also out-of-sample stable when applied to 1389 published genome samples across 14 cancer types. In contrast, we find in- and out-of-sample instabilities in cancer signatures extracted from exome samples via nonnegative matrix factorization (NMF), a computationally-costly and non-deterministic method. Extracting stable mutation structures from exome data could have important implications for speed and cost, which are critical for early-stage cancer diagnostics, such as novel blood-test methods currently in development. PMID:28809811

  18. Ionospheric-thermospheric UV tomography: 1. Image space reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Dymond, K. F.; Budzien, S. A.; Hei, M. A.

    2017-03-01

    We present and discuss two algorithms of the class known as Image Space Reconstruction Algorithms (ISRAs) that we are applying to the solution of large-scale ionospheric tomography problems. ISRAs have several desirable features that make them useful for ionospheric tomography. In addition to producing nonnegative solutions, ISRAs are amenable to sparse-matrix formulations and are fast, stable, and robust. We present the results of our studies of two types of ISRA: the Least Squares Positive Definite and the Richardson-Lucy algorithms. We compare their performance to the Multiplicative Algebraic Reconstruction and Conjugate Gradient Least Squares algorithms. We then discuss the use of regularization in these algorithms and present our new approach based on regularization to a partial differential equation.

  19. Separating OR, SUM, and XOR Circuits☆

    PubMed Central

    Find, Magnus; Göös, Mika; Järvisalo, Matti; Kaski, Petteri; Koivisto, Mikko; Korhonen, Janne H.

    2017-01-01

    Given a boolean n × n matrix A we consider arithmetic circuits for computing the transformation x ↦ Ax over different semirings. Namely, we study three circuit models: monotone OR-circuits, monotone SUM-circuits (addition of non-negative integers), and non-monotone XOR-circuits (addition modulo 2). Our focus is on separating OR-circuits from the two other models in terms of circuit complexity: We show how to obtain matrices that admit OR-circuits of size O(n), but require SUM-circuits of size Ω(n3/2/log2n).We consider the task of rewriting a given OR-circuit as a XOR-circuit and prove that any subquadratic-time algorithm for this task violates the strong exponential time hypothesis. PMID:28529379

  20. Fault detection for discrete-time LPV systems using interval observers

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Hui; Yang, Guang-Hong

    2017-10-01

    This paper is concerned with the fault detection (FD) problem for discrete-time linear parameter-varying systems subject to bounded disturbances. A parameter-dependent FD interval observer is designed based on parameter-dependent Lyapunov and slack matrices. The design method is presented by translating the parameter-dependent linear matrix inequalities (LMIs) into finite ones. In contrast to the existing results based on parameter-independent and diagonal Lyapunov matrices, the derived disturbance attenuation, fault sensitivity and nonnegative conditions lead to less conservative LMI characterisations. Furthermore, without the need to design the residual evaluation functions and thresholds, the residual intervals generated by the interval observers are used directly for FD decision. Finally, simulation results are presented for showing the effectiveness and superiority of the proposed method.

  1. Estimation of parameter uncertainty for an activated sludge model using Bayesian inference: a comparison with the frequentist method.

    PubMed

    Zonta, Zivko J; Flotats, Xavier; Magrí, Albert

    2014-08-01

    The procedure commonly used for the assessment of the parameters included in activated sludge models (ASMs) relies on the estimation of their optimal value within a confidence region (i.e. frequentist inference). Once optimal values are estimated, parameter uncertainty is computed through the covariance matrix. However, alternative approaches based on the consideration of the model parameters as probability distributions (i.e. Bayesian inference), may be of interest. The aim of this work is to apply (and compare) both Bayesian and frequentist inference methods when assessing uncertainty for an ASM-type model, which considers intracellular storage and biomass growth, simultaneously. Practical identifiability was addressed exclusively considering respirometric profiles based on the oxygen uptake rate and with the aid of probabilistic global sensitivity analysis. Parameter uncertainty was thus estimated according to both the Bayesian and frequentist inferential procedures. Results were compared in order to evidence the strengths and weaknesses of both approaches. Since it was demonstrated that Bayesian inference could be reduced to a frequentist approach under particular hypotheses, the former can be considered as a more generalist methodology. Hence, the use of Bayesian inference is encouraged for tackling inferential issues in ASM environments.

  2. A fast fully constrained geometric unmixing of hyperspectral images

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Li, Xiao-run; Cui, Jian-tao; Zhao, Liao-ying; Zheng, Jun-peng

    2014-11-01

    A great challenge in hyperspectral image analysis is decomposing a mixed pixel into a collection of endmembers and their corresponding abundance fractions. This paper presents an improved implementation of Barycentric Coordinate approach to unmix hyperspectral images, integrating with the Most-Negative Remove Projection method to meet the abundance sum-to-one constraint (ASC) and abundance non-negativity constraint (ANC). The original barycentric coordinate approach interprets the endmember unmixing problem as a simplex volume ratio problem, which is solved by calculate the determinants of two augmented matrix. One consists of all the members and the other consist of the to-be-unmixed pixel and all the endmembers except for the one corresponding to the specific abundance that is to be estimated. In this paper, we first modified the algorithm of Barycentric Coordinate approach by bringing in the Matrix Determinant Lemma to simplify the unmixing process, which makes the calculation only contains linear matrix and vector operations. So, the matrix determinant calculation of every pixel, as the original algorithm did, is avoided. By the end of this step, the estimated abundance meet the ASC constraint. Then, the Most-Negative Remove Projection method is used to make the abundance fractions meet the full constraints. This algorithm is demonstrated both on synthetic and real images. The resulting algorithm yields the abundance maps that are similar to those obtained by FCLS, while the runtime is outperformed as its computational simplicity.

  3. An isometric muscle force estimation framework based on a high-density surface EMG array and an NMF algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu

    2017-08-01

    Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.

  4. Bayesian hierarchical modelling of continuous non-negative longitudinal data with a spike at zero: An application to a study of birds visiting gardens in winter.

    PubMed

    Swallow, Ben; Buckland, Stephen T; King, Ruth; Toms, Mike P

    2016-03-01

    The development of methods for dealing with continuous data with a spike at zero has lagged behind those for overdispersed or zero-inflated count data. We consider longitudinal ecological data corresponding to an annual average of 26 weekly maximum counts of birds, and are hence effectively continuous, bounded below by zero but also with a discrete mass at zero. We develop a Bayesian hierarchical Tweedie regression model that can directly accommodate the excess number of zeros common to this type of data, whilst accounting for both spatial and temporal correlation. Implementation of the model is conducted in a Markov chain Monte Carlo (MCMC) framework, using reversible jump MCMC to explore uncertainty across both parameter and model spaces. This regression modelling framework is very flexible and removes the need to make strong assumptions about mean-variance relationships a priori. It can also directly account for the spike at zero, whilst being easily applicable to other types of data and other model formulations. Whilst a correlative study such as this cannot prove causation, our results suggest that an increase in an avian predator may have led to an overall decrease in the number of one of its prey species visiting garden feeding stations in the United Kingdom. This may reflect a change in behaviour of house sparrows to avoid feeding stations frequented by sparrowhawks, or a reduction in house sparrow population size as a result of sparrowhawk increase. © 2015 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Inverse problems with nonnegative and sparse solutions: algorithms and application to the phase retrieval problem

    NASA Astrophysics Data System (ADS)

    Quy Muoi, Pham; Nho Hào, Dinh; Sahoo, Sujit Kumar; Tang, Dongliang; Cong, Nguyen Huu; Dang, Cuong

    2018-05-01

    In this paper, we study a gradient-type method and a semismooth Newton method for minimization problems in regularizing inverse problems with nonnegative and sparse solutions. We propose a special penalty functional forcing the minimizers of regularized minimization problems to be nonnegative and sparse, and then we apply the proposed algorithms in a practical the problem. The strong convergence of the gradient-type method and the local superlinear convergence of the semismooth Newton method are proven. Then, we use these algorithms for the phase retrieval problem and illustrate their efficiency in numerical examples, particularly in the practical problem of optical imaging through scattering media where all the noises from experiment are presented.

  6. An interior-point method for total variation regularized positron emission tomography image reconstruction

    NASA Astrophysics Data System (ADS)

    Bai, Bing

    2012-03-01

    There has been a lot of work on total variation (TV) regularized tomographic image reconstruction recently. Many of them use gradient-based optimization algorithms with a differentiable approximation of the TV functional. In this paper we apply TV regularization in Positron Emission Tomography (PET) image reconstruction. We reconstruct the PET image in a Bayesian framework, using Poisson noise model and TV prior functional. The original optimization problem is transformed to an equivalent problem with inequality constraints by adding auxiliary variables. Then we use an interior point method with logarithmic barrier functions to solve the constrained optimization problem. In this method, a series of points approaching the solution from inside the feasible region are found by solving a sequence of subproblems characterized by an increasing positive parameter. We use preconditioned conjugate gradient (PCG) algorithm to solve the subproblems directly. The nonnegativity constraint is enforced by bend line search. The exact expression of the TV functional is used in our calculations. Simulation results show that the algorithm converges fast and the convergence is insensitive to the values of the regularization and reconstruction parameters.

  7. Efficient Matrix Models for Relational Learning

    DTIC Science & Technology

    2009-10-01

    74 4.5.3 Comparison to pLSI- pHITS . . . . . . . . . . . . . . . . . . . . 76 5 Hierarchical Bayesian Collective...Behaviour of Newton vs. Stochastic Newton on a three-factor model. 4.5.3 Comparison to pLSI- pHITS Caveat: Collective Matrix Factorization makes no guarantees...leads to better results; and another where a co-clustering model, pLSI- pHITS , has the advantage. pLSI- pHITS [24] is a relational clustering technique

  8. Source term identification in atmospheric modelling via sparse optimization

    NASA Astrophysics Data System (ADS)

    Adam, Lukas; Branda, Martin; Hamburger, Thomas

    2015-04-01

    Inverse modelling plays an important role in identifying the amount of harmful substances released into atmosphere during major incidents such as power plant accidents or volcano eruptions. Another possible application of inverse modelling lies in the monitoring the CO2 emission limits where only observations at certain places are available and the task is to estimate the total releases at given locations. This gives rise to minimizing the discrepancy between the observations and the model predictions. There are two standard ways of solving such problems. In the first one, this discrepancy is regularized by adding additional terms. Such terms may include Tikhonov regularization, distance from a priori information or a smoothing term. The resulting, usually quadratic, problem is then solved via standard optimization solvers. The second approach assumes that the error term has a (normal) distribution and makes use of Bayesian modelling to identify the source term. Instead of following the above-mentioned approaches, we utilize techniques from the field of compressive sensing. Such techniques look for a sparsest solution (solution with the smallest number of nonzeros) of a linear system, where a maximal allowed error term may be added to this system. Even though this field is a developed one with many possible solution techniques, most of them do not consider even the simplest constraints which are naturally present in atmospheric modelling. One of such examples is the nonnegativity of release amounts. We believe that the concept of a sparse solution is natural in both problems of identification of the source location and of the time process of the source release. In the first case, it is usually assumed that there are only few release points and the task is to find them. In the second case, the time window is usually much longer than the duration of the actual release. In both cases, the optimal solution should contain a large amount of zeros, giving rise to the concept of sparsity. In the paper, we summarize several optimization techniques which are used for finding sparse solutions and propose their modifications to handle selected constraints such as nonnegativity constraints and simple linear constraints, for example the minimal or maximal amount of total release. These techniques range from successive convex approximations to solution of one nonconvex problem. On simple examples, we explain these techniques and compare them from the point of implementation simplicity, approximation capability and convergence properties. Finally, these methods will be applied on the European Tracer Experiment (ETEX) data and the results will be compared with the current state of arts techniques such as regularized least squares or Bayesian approach. The obtained results show the surprisingly good results of these techniques. This research is supported by EEA/Norwegian Financial Mechanism under project 7F14287 STRADI.

  9. Bayesian estimation of Karhunen–Loève expansions; A random subspace approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhary, Kenny; Najm, Habib N.

    One of the most widely-used statistical procedures for dimensionality reduction of high dimensional random fields is Principal Component Analysis (PCA), which is based on the Karhunen-Lo eve expansion (KLE) of a stochastic process with finite variance. The KLE is analogous to a Fourier series expansion for a random process, where the goal is to find an orthogonal transformation for the data such that the projection of the data onto this orthogonal subspace is optimal in the L 2 sense, i.e, which minimizes the mean square error. In practice, this orthogonal transformation is determined by performing an SVD (Singular Value Decomposition)more » on the sample covariance matrix or on the data matrix itself. Sampling error is typically ignored when quantifying the principal components, or, equivalently, basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE procedure, allowing one to obtain a probabilistic model on the principal components, which can account for inaccuracies due to limited sample size. The probabilistic model is built via Bayesian inference, from which the posterior becomes the matrix Bingham density over the space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on this space and then build a probabilistic Karhunen-Lo eve expansions over random subspaces to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this probabilistic procedure with a finite dimensional stochastic process inspired by Brownian motion.« less

  10. Bayesian estimation of Karhunen–Loève expansions; A random subspace approach

    DOE PAGES

    Chowdhary, Kenny; Najm, Habib N.

    2016-04-13

    One of the most widely-used statistical procedures for dimensionality reduction of high dimensional random fields is Principal Component Analysis (PCA), which is based on the Karhunen-Lo eve expansion (KLE) of a stochastic process with finite variance. The KLE is analogous to a Fourier series expansion for a random process, where the goal is to find an orthogonal transformation for the data such that the projection of the data onto this orthogonal subspace is optimal in the L 2 sense, i.e, which minimizes the mean square error. In practice, this orthogonal transformation is determined by performing an SVD (Singular Value Decomposition)more » on the sample covariance matrix or on the data matrix itself. Sampling error is typically ignored when quantifying the principal components, or, equivalently, basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE procedure, allowing one to obtain a probabilistic model on the principal components, which can account for inaccuracies due to limited sample size. The probabilistic model is built via Bayesian inference, from which the posterior becomes the matrix Bingham density over the space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on this space and then build a probabilistic Karhunen-Lo eve expansions over random subspaces to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this probabilistic procedure with a finite dimensional stochastic process inspired by Brownian motion.« less

  11. Event-triggered fault detection for a class of discrete-time linear systems using interval observers.

    PubMed

    Zhang, Zhi-Hui; Yang, Guang-Hong

    2017-05-01

    This paper provides a novel event-triggered fault detection (FD) scheme for discrete-time linear systems. First, an event-triggered interval observer is proposed to generate the upper and lower residuals by taking into account the influence of the disturbances and the event error. Second, the robustness of the residual interval against the disturbances and the fault sensitivity are improved by introducing l 1 and H ∞ performances. Third, dilated linear matrix inequalities are used to decouple the Lyapunov matrices from the system matrices. The nonnegative conditions for the estimation error variables are presented with the aid of the slack matrix variables. This technique allows considering a more general Lyapunov function. Furthermore, the FD decision scheme is proposed by monitoring whether the zero value belongs to the residual interval. It is shown that the information communication burden is reduced by designing the event-triggering mechanism, while the FD performance can still be guaranteed. Finally, simulation results demonstrate the effectiveness of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Similarity-based Regularized Latent Feature Model for Link Prediction in Bipartite Networks.

    PubMed

    Wang, Wenjun; Chen, Xue; Jiao, Pengfei; Jin, Di

    2017-12-05

    Link prediction is an attractive research topic in the field of data mining and has significant applications in improving performance of recommendation system and exploring evolving mechanisms of the complex networks. A variety of complex systems in real world should be abstractly represented as bipartite networks, in which there are two types of nodes and no links connect nodes of the same type. In this paper, we propose a framework for link prediction in bipartite networks by combining the similarity based structure and the latent feature model from a new perspective. The framework is called Similarity Regularized Nonnegative Matrix Factorization (SRNMF), which explicitly takes the local characteristics into consideration and encodes the geometrical information of the networks by constructing a similarity based matrix. We also develop an iterative scheme to solve the objective function based on gradient descent. Extensive experiments on a variety of real world bipartite networks show that the proposed framework of link prediction has a more competitive, preferable and stable performance in comparison with the state-of-art methods.

  13. Fourier transform inequalities for phylogenetic trees.

    PubMed

    Matsen, Frederick A

    2009-01-01

    Phylogenetic invariants are not the only constraints on site-pattern frequency vectors for phylogenetic trees. A mutation matrix, by its definition, is the exponential of a matrix with non-negative off-diagonal entries; this positivity requirement implies non-trivial constraints on the site-pattern frequency vectors. We call these additional constraints "edge-parameter inequalities". In this paper, we first motivate the edge-parameter inequalities by considering a pathological site-pattern frequency vector corresponding to a quartet tree with a negative internal edge. This site-pattern frequency vector nevertheless satisfies all of the constraints described up to now in the literature. We next describe two complete sets of edge-parameter inequalities for the group-based models; these constraints are square-free monomial inequalities in the Fourier transformed coordinates. These inequalities, along with the phylogenetic invariants, form a complete description of the set of site-pattern frequency vectors corresponding to bona fide trees. Said in mathematical language, this paper explicitly presents two finite lists of inequalities in Fourier coordinates of the form "monomial < or = 1", each list characterizing the phylogenetically relevant semialgebraic subsets of the phylogenetic varieties.

  14. Statistical analysis and machine learning algorithms for optical biopsy

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Liu, Cheng-hui; Boydston-White, Susie; Beckman, Hugh; Sriramoju, Vidyasagar; Sordillo, Laura; Zhang, Chunyuan; Zhang, Lin; Shi, Lingyan; Smith, Jason; Bailin, Jacob; Alfano, Robert R.

    2018-02-01

    Analyzing spectral or imaging data collected with various optical biopsy methods is often times difficult due to the complexity of the biological basis. Robust methods that can utilize the spectral or imaging data and detect the characteristic spectral or spatial signatures for different types of tissue is challenging but highly desired. In this study, we used various machine learning algorithms to analyze a spectral dataset acquired from human skin normal and cancerous tissue samples using resonance Raman spectroscopy with 532nm excitation. The algorithms including principal component analysis, nonnegative matrix factorization, and autoencoder artificial neural network are used to reduce dimension of the dataset and detect features. A support vector machine with a linear kernel is used to classify the normal tissue and cancerous tissue samples. The efficacies of the methods are compared.

  15. *K-means and cluster models for cancer signatures.

    PubMed

    Kakushadze, Zura; Yu, Willie

    2017-09-01

    We present *K-means clustering algorithm and source code by expanding statistical clustering methods applied in https://ssrn.com/abstract=2802753 to quantitative finance. *K-means is statistically deterministic without specifying initial centers, etc. We apply *K-means to extracting cancer signatures from genome data without using nonnegative matrix factorization (NMF). *K-means' computational cost is a fraction of NMF's. Using 1389 published samples for 14 cancer types, we find that 3 cancers (liver cancer, lung cancer and renal cell carcinoma) stand out and do not have cluster-like structures. Two clusters have especially high within-cluster correlations with 11 other cancers indicating common underlying structures. Our approach opens a novel avenue for studying such structures. *K-means is universal and can be applied in other fields. We discuss some potential applications in quantitative finance.

  16. Joint Dictionary Learning-Based Non-Negative Matrix Factorization for Voice Conversion to Improve Speech Intelligibility After Oral Surgery.

    PubMed

    Fu, Szu-Wei; Li, Pei-Chun; Lai, Ying-Hui; Yang, Cheng-Chien; Hsieh, Li-Chun; Tsao, Yu

    2017-11-01

    Objective: This paper focuses on machine learning based voice conversion (VC) techniques for improving the speech intelligibility of surgical patients who have had parts of their articulators removed. Because of the removal of parts of the articulator, a patient's speech may be distorted and difficult to understand. To overcome this problem, VC methods can be applied to convert the distorted speech such that it is clear and more intelligible. To design an effective VC method, two key points must be considered: 1) the amount of training data may be limited (because speaking for a long time is usually difficult for postoperative patients); 2) rapid conversion is desirable (for better communication). Methods: We propose a novel joint dictionary learning based non-negative matrix factorization (JD-NMF) algorithm. Compared to conventional VC techniques, JD-NMF can perform VC efficiently and effectively with only a small amount of training data. Results: The experimental results demonstrate that the proposed JD-NMF method not only achieves notably higher short-time objective intelligibility (STOI) scores (a standardized objective intelligibility evaluation metric) than those obtained using the original unconverted speech but is also significantly more efficient and effective than a conventional exemplar-based NMF VC method. Conclusion: The proposed JD-NMF method may outperform the state-of-the-art exemplar-based NMF VC method in terms of STOI scores under the desired scenario. Significance: We confirmed the advantages of the proposed joint training criterion for the NMF-based VC. Moreover, we verified that the proposed JD-NMF can effectively improve the speech intelligibility scores of oral surgery patients. Objective: This paper focuses on machine learning based voice conversion (VC) techniques for improving the speech intelligibility of surgical patients who have had parts of their articulators removed. Because of the removal of parts of the articulator, a patient's speech may be distorted and difficult to understand. To overcome this problem, VC methods can be applied to convert the distorted speech such that it is clear and more intelligible. To design an effective VC method, two key points must be considered: 1) the amount of training data may be limited (because speaking for a long time is usually difficult for postoperative patients); 2) rapid conversion is desirable (for better communication). Methods: We propose a novel joint dictionary learning based non-negative matrix factorization (JD-NMF) algorithm. Compared to conventional VC techniques, JD-NMF can perform VC efficiently and effectively with only a small amount of training data. Results: The experimental results demonstrate that the proposed JD-NMF method not only achieves notably higher short-time objective intelligibility (STOI) scores (a standardized objective intelligibility evaluation metric) than those obtained using the original unconverted speech but is also significantly more efficient and effective than a conventional exemplar-based NMF VC method. Conclusion: The proposed JD-NMF method may outperform the state-of-the-art exemplar-based NMF VC method in terms of STOI scores under the desired scenario. Significance: We confirmed the advantages of the proposed joint training criterion for the NMF-based VC. Moreover, we verified that the proposed JD-NMF can effectively improve the speech intelligibility scores of oral surgery patients.

  17. A Sparse Bayesian Approach for Forward-Looking Superresolution Radar Imaging

    PubMed Central

    Zhang, Yin; Zhang, Yongchao; Huang, Yulin; Yang, Jianyu

    2017-01-01

    This paper presents a sparse superresolution approach for high cross-range resolution imaging of forward-looking scanning radar based on the Bayesian criterion. First, a novel forward-looking signal model is established as the product of the measurement matrix and the cross-range target distribution, which is more accurate than the conventional convolution model. Then, based on the Bayesian criterion, the widely-used sparse regularization is considered as the penalty term to recover the target distribution. The derivation of the cost function is described, and finally, an iterative expression for minimizing this function is presented. Alternatively, this paper discusses how to estimate the single parameter of Gaussian noise. With the advantage of a more accurate model, the proposed sparse Bayesian approach enjoys a lower model error. Meanwhile, when compared with the conventional superresolution methods, the proposed approach shows high cross-range resolution and small location error. The superresolution results for the simulated point target, scene data, and real measured data are presented to demonstrate the superior performance of the proposed approach. PMID:28604583

  18. Nonnegative definite EAP and ODF estimation via a unified multi-shell HARDI reconstruction.

    PubMed

    Cheng, Jian; Jiang, Tianzi; Deriche, Rachid

    2012-01-01

    In High Angular Resolution Diffusion Imaging (HARDI), Orientation Distribution Function (ODF) and Ensemble Average Propagator (EAP) are two important Probability Density Functions (PDFs) which reflect the water diffusion and fiber orientations. Spherical Polar Fourier Imaging (SPFI) is a recent model-free multi-shell HARDI method which estimates both EAP and ODF from the diffusion signals with multiple b values. As physical PDFs, ODFs and EAPs are nonnegative definite respectively in their domains S2 and R3. However, existing ODF/EAP estimation methods like SPFI seldom consider this natural constraint. Although some works considered the nonnegative constraint on the given discrete samples of ODF/EAP, the estimated ODF/EAP is not guaranteed to be nonnegative definite in the whole continuous domain. The Riemannian framework for ODFs and EAPs has been proposed via the square root parameterization based on pre-estimated ODFs and EAPs by other methods like SPFI. However, there is no work on how to estimate the square root of ODF/EAP called as the wavefuntion directly from diffusion signals. In this paper, based on the Riemannian framework for ODFs/EAPs and Spherical Polar Fourier (SPF) basis representation, we propose a unified model-free multi-shell HARDI method, named as Square Root Parameterized Estimation (SRPE), to simultaneously estimate both the wavefunction of EAPs and the nonnegative definite ODFs and EAPs from diffusion signals. The experiments on synthetic data and real data showed SRPE is more robust to noise and has better EAP reconstruction than SPFI, especially for EAP profiles at large radius.

  19. A Gaussian random field model for similarity-based smoothing in Bayesian disease mapping.

    PubMed

    Baptista, Helena; Mendes, Jorge M; MacNab, Ying C; Xavier, Miguel; Caldas-de-Almeida, José

    2016-08-01

    Conditionally specified Gaussian Markov random field (GMRF) models with adjacency-based neighbourhood weight matrix, commonly known as neighbourhood-based GMRF models, have been the mainstream approach to spatial smoothing in Bayesian disease mapping. In the present paper, we propose a conditionally specified Gaussian random field (GRF) model with a similarity-based non-spatial weight matrix to facilitate non-spatial smoothing in Bayesian disease mapping. The model, named similarity-based GRF, is motivated for modelling disease mapping data in situations where the underlying small area relative risks and the associated determinant factors do not vary systematically in space, and the similarity is defined by "similarity" with respect to the associated disease determinant factors. The neighbourhood-based GMRF and the similarity-based GRF are compared and accessed via a simulation study and by two case studies, using new data on alcohol abuse in Portugal collected by the World Mental Health Survey Initiative and the well-known lip cancer data in Scotland. In the presence of disease data with no evidence of positive spatial correlation, the simulation study showed a consistent gain in efficiency from the similarity-based GRF, compared with the adjacency-based GMRF with the determinant risk factors as covariate. This new approach broadens the scope of the existing conditional autocorrelation models. © The Author(s) 2016.

  20. High efficient optical remote sensing images acquisition for nano-satellite: reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Feng; Xin, Lei; Fu, Jie; Huang, Puming

    2017-10-01

    Large amount of data is one of the most obvious features in satellite based remote sensing systems, which is also a burden for data processing and transmission. The theory of compressive sensing(CS) has been proposed for almost a decade, and massive experiments show that CS has favorable performance in data compression and recovery, so we apply CS theory to remote sensing images acquisition. In CS, the construction of classical sensing matrix for all sparse signals has to satisfy the Restricted Isometry Property (RIP) strictly, which limits applying CS in practical in image compression. While for remote sensing images, we know some inherent characteristics such as non-negative, smoothness and etc.. Therefore, the goal of this paper is to present a novel measurement matrix that breaks RIP. The new sensing matrix consists of two parts: the standard Nyquist sampling matrix for thumbnails and the conventional CS sampling matrix. Since most of sun-synchronous based satellites fly around the earth 90 minutes and the revisit cycle is also short, lots of previously captured remote sensing images of the same place are available in advance. This drives us to reconstruct remote sensing images through a deep learning approach with those measurements from the new framework. Therefore, we propose a novel deep convolutional neural network (CNN) architecture which takes in undersampsing measurements as input and outputs an intermediate reconstruction image. It is well known that the training procedure to the network costs long time, luckily, the training step can be done only once, which makes the approach attractive for a host of sparse recovery problems.

  1. 49 CFR 40.129 - What are the MRO's functions in reviewing laboratory confirmed non-negative drug test results?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false What are the MRO's functions in reviewing laboratory confirmed non-negative drug test results? 40.129 Section 40.129 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Medical Review Officers and the Verification Proces...

  2. Parallel Nonnegative Least Squares Solvers for Model Order Reduction

    DTIC Science & Technology

    2016-03-01

    NNLS problems that arise when the Energy Conserving Sampling and Weighting hyper -reduction procedure is used when constructing a reduced-order model...ScaLAPACK and performance results are presented. nonnegative least squares, model order reduction, hyper -reduction, Energy Conserving Sampling and...optimal solution. ........................................ 20 Table 6 Reduced mesh sizes produced for each solver in the ECSW hyper -reduction step

  3. Medical image classification based on multi-scale non-negative sparse coding.

    PubMed

    Zhang, Ruijie; Shen, Jian; Wei, Fushan; Li, Xiong; Sangaiah, Arun Kumar

    2017-11-01

    With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Bayesian Approach to the Joint Inversion of Gravity and Magnetic Data, with Application to the Ismenius Area of Mars

    NASA Technical Reports Server (NTRS)

    Jewell, Jeffrey B.; Raymond, C.; Smrekar, S.; Millbury, C.

    2004-01-01

    This viewgraph presentation reviews a Bayesian approach to the inversion of gravity and magnetic data with specific application to the Ismenius Area of Mars. Many inverse problems encountered in geophysics and planetary science are well known to be non-unique (i.e. inversion of gravity the density structure of a body). In hopes of reducing the non-uniqueness of solutions, there has been interest in the joint analysis of data. An example is the joint inversion of gravity and magnetic data, with the assumption that the same physical anomalies generate both the observed magnetic and gravitational anomalies. In this talk, we formulate the joint analysis of different types of data in a Bayesian framework and apply the formalism to the inference of the density and remanent magnetization structure for a local region in the Ismenius area of Mars. The Bayesian approach allows prior information or constraints in the solutions to be incorporated in the inversion, with the "best" solutions those whose forward predictions most closely match the data while remaining consistent with assumed constraints. The application of this framework to the inversion of gravity and magnetic data on Mars reveals two typical challenges - the forward predictions of the data have a linear dependence on some of the quantities of interest, and non-linear dependence on others (termed the "linear" and "non-linear" variables, respectively). For observations with Gaussian noise, a Bayesian approach to inversion for "linear" variables reduces to a linear filtering problem, with an explicitly computable "error" matrix. However, for models whose forward predictions have non-linear dependencies, inference is no longer given by such a simple linear problem, and moreover, the uncertainty in the solution is no longer completely specified by a computable "error matrix". It is therefore important to develop methods for sampling from the full Bayesian posterior to provide a complete and statistically consistent picture of model uncertainty, and what has been learned from observations. We will discuss advanced numerical techniques, including Monte Carlo Markov

  5. Deep data analysis via physically constrained linear unmixing: universal framework, domain examples, and a community-wide platform.

    PubMed

    Kannan, R; Ievlev, A V; Laanait, N; Ziatdinov, M A; Vasudevan, R K; Jesse, S; Kalinin, S V

    2018-01-01

    Many spectral responses in materials science, physics, and chemistry experiments can be characterized as resulting from the superposition of a number of more basic individual spectra. In this context, unmixing is defined as the problem of determining the individual spectra, given measurements of multiple spectra that are spatially resolved across samples, as well as the determination of the corresponding abundance maps indicating the local weighting of each individual spectrum. Matrix factorization is a popular linear unmixing technique that considers that the mixture model between the individual spectra and the spatial maps is linear. Here, we present a tutorial paper targeted at domain scientists to introduce linear unmixing techniques, to facilitate greater understanding of spectroscopic imaging data. We detail a matrix factorization framework that can incorporate different domain information through various parameters of the matrix factorization method. We demonstrate many domain-specific examples to explain the expressivity of the matrix factorization framework and show how the appropriate use of domain-specific constraints such as non-negativity and sum-to-one abundance result in physically meaningful spectral decompositions that are more readily interpretable. Our aim is not only to explain the off-the-shelf available tools, but to add additional constraints when ready-made algorithms are unavailable for the task. All examples use the scalable open source implementation from https://github.com/ramkikannan/nmflibrary that can run from small laptops to supercomputers, creating a user-wide platform for rapid dissemination and adoption across scientific disciplines.

  6. A fast Bayesian approach to discrete object detection in astronomical data sets - PowellSnakes I

    NASA Astrophysics Data System (ADS)

    Carvalho, Pedro; Rocha, Graça; Hobson, M. P.

    2009-03-01

    A new fast Bayesian approach is introduced for the detection of discrete objects immersed in a diffuse background. This new method, called PowellSnakes, speeds up traditional Bayesian techniques by (i) replacing the standard form of the likelihood for the parameters characterizing the discrete objects by an alternative exact form that is much quicker to evaluate; (ii) using a simultaneous multiple minimization code based on Powell's direction set algorithm to locate rapidly the local maxima in the posterior and (iii) deciding whether each located posterior peak corresponds to a real object by performing a Bayesian model selection using an approximate evidence value based on a local Gaussian approximation to the peak. The construction of this Gaussian approximation also provides the covariance matrix of the uncertainties in the derived parameter values for the object in question. This new approach provides a speed up in performance by a factor of `100' as compared to existing Bayesian source extraction methods that use Monte Carlo Markov chain to explore the parameter space, such as that presented by Hobson & McLachlan. The method can be implemented in either real or Fourier space. In the case of objects embedded in a homogeneous random field, working in Fourier space provides a further speed up that takes advantage of the fact that the correlation matrix of the background is circulant. We illustrate the capabilities of the method by applying to some simplified toy models. Furthermore, PowellSnakes has the advantage of consistently defining the threshold for acceptance/rejection based on priors which cannot be said of the frequentist methods. We present here the first implementation of this technique (version I). Further improvements to this implementation are currently under investigation and will be published shortly. The application of the method to realistic simulated Planck observations will be presented in a forthcoming publication.

  7. Non-Negative Spherical Deconvolution (NNSD) for estimation of fiber Orientation Distribution Function in single-/multi-shell diffusion MRI.

    PubMed

    Cheng, Jian; Deriche, Rachid; Jiang, Tianzi; Shen, Dinggang; Yap, Pew-Thian

    2014-11-01

    Spherical Deconvolution (SD) is commonly used for estimating fiber Orientation Distribution Functions (fODFs) from diffusion-weighted signals. Existing SD methods can be classified into two categories: 1) Continuous Representation based SD (CR-SD), where typically Spherical Harmonic (SH) representation is used for convenient analytical solutions, and 2) Discrete Representation based SD (DR-SD), where the signal profile is represented by a discrete set of basis functions uniformly oriented on the unit sphere. A feasible fODF should be non-negative and should integrate to unity throughout the unit sphere S(2). However, to our knowledge, most existing SH-based SD methods enforce non-negativity only on discretized points and not the whole continuum of S(2). Maximum Entropy SD (MESD) and Cartesian Tensor Fiber Orientation Distributions (CT-FOD) are the only SD methods that ensure non-negativity throughout the unit sphere. They are however computational intensive and are susceptible to errors caused by numerical spherical integration. Existing SD methods are also known to overestimate the number of fiber directions, especially in regions with low anisotropy. DR-SD introduces additional error in peak detection owing to the angular discretization of the unit sphere. This paper proposes a SD framework, called Non-Negative SD (NNSD), to overcome all the limitations above. NNSD is significantly less susceptible to the false-positive peaks, uses SH representation for efficient analytical spherical deconvolution, and allows accurate peak detection throughout the whole unit sphere. We further show that NNSD and most existing SD methods can be extended to work on multi-shell data by introducing a three-dimensional fiber response function. We evaluated NNSD in comparison with Constrained SD (CSD), a quadratic programming variant of CSD, MESD, and an L1-norm regularized non-negative least-squares DR-SD. Experiments on synthetic and real single-/multi-shell data indicate that NNSD improves estimation performance in terms of mean difference of angles, peak detection consistency, and anisotropy contrast between isotropic and anisotropic regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Model-free data analysis for source separation based on Non-Negative Matrix Factorization and k-means clustering (NMFk)

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Alexandrov, B.

    2014-12-01

    The identification of the physical sources causing spatial and temporal fluctuations of state variables such as river stage levels and aquifer hydraulic heads is challenging. The fluctuations can be caused by variations in natural and anthropogenic sources such as precipitation events, infiltration, groundwater pumping, barometric pressures, etc. The source identification and separation can be crucial for conceptualization of the hydrological conditions and characterization of system properties. If the original signals that cause the observed state-variable transients can be successfully "unmixed", decoupled physics models may then be applied to analyze the propagation of each signal independently. We propose a new model-free inverse analysis of transient data based on Non-negative Matrix Factorization (NMF) method for Blind Source Separation (BSS) coupled with k-means clustering algorithm, which we call NMFk. NMFk is capable of identifying a set of unique sources from a set of experimentally measured mixed signals, without any information about the sources, their transients, and the physical mechanisms and properties controlling the signal propagation through the system. A classical BSS conundrum is the so-called "cocktail-party" problem where several microphones are recording the sounds in a ballroom (music, conversations, noise, etc.). Each of the microphones is recording a mixture of the sounds. The goal of BSS is to "unmix'" and reconstruct the original sounds from the microphone records. Similarly to the "cocktail-party" problem, our model-freee analysis only requires information about state-variable transients at a number of observation points, m, where m > r, and r is the number of unknown unique sources causing the observed fluctuations. We apply the analysis on a dataset from the Los Alamos National Laboratory (LANL) site. We identify and estimate the impact and sources are barometric pressure and water-supply pumping effects. We also estimate the location of the water-supply pumping wells based on the available data. The possible applications of the NMFk algorithm are not limited to hydrology problems; NMFk can be applied to any problem where temporal system behavior is observed at multiple locations and an unknown number of physical sources are causing these fluctuations.

  9. Disaggregating measurement uncertainty from population variability and Bayesian treatment of uncensored results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strom, Daniel J.; Joyce, Kevin E.; Maclellan, Jay A.

    2012-04-17

    In making low-level radioactivity measurements of populations, it is commonly observed that a substantial portion of net results are negative. Furthermore, the observed variance of the measurement results arises from a combination of measurement uncertainty and population variability. This paper presents a method for disaggregating measurement uncertainty from population variability to produce a probability density function (PDF) of possibly true results. To do this, simple, justifiable, and reasonable assumptions are made about the relationship of the measurements to the measurands (the 'true values'). The measurements are assumed to be unbiased, that is, that their average value is the average ofmore » the measurands. Using traditional estimates of each measurement's uncertainty to disaggregate population variability from measurement uncertainty, a PDF of measurands for the population is produced. Then, using Bayes's theorem, the same assumptions, and all the data from the population of individuals, a prior PDF is computed for each individual's measurand. These PDFs are non-negative, and their average is equal to the average of the measurement results for the population. The uncertainty in these Bayesian posterior PDFs is all Berkson with no remaining classical component. The methods are applied to baseline bioassay data from the Hanford site. The data include 90Sr urinalysis measurements on 128 people, 137Cs in vivo measurements on 5,337 people, and 239Pu urinalysis measurements on 3,270 people. The method produces excellent results for the 90Sr and 137Cs measurements, since there are nonzero concentrations of these global fallout radionuclides in people who have not been occupationally exposed. The method does not work for the 239Pu measurements in non-occupationally exposed people because the population average is essentially zero.« less

  10. A product Pearson-type VII density distribution

    NASA Astrophysics Data System (ADS)

    Nadarajah, Saralees; Kotz, Samuel

    2008-01-01

    The Pearson-type VII distributions (containing the Student's t distributions) are becoming increasing prominent and are being considered as competitors to the normal distribution. Motivated by real examples in decision sciences, Bayesian statistics, probability theory and Physics, a new Pearson-type VII distribution is introduced by taking the product of two Pearson-type VII pdfs. Various structural properties of this distribution are derived, including its cdf, moments, mean deviation about the mean, mean deviation about the median, entropy, asymptotic distribution of the extreme order statistics, maximum likelihood estimates and the Fisher information matrix. Finally, an application to a Bayesian testing problem is illustrated.

  11. Bayesian source term determination with unknown covariance of measurements

    NASA Astrophysics Data System (ADS)

    Belal, Alkomiet; Tichý, Ondřej; Šmídl, Václav

    2017-04-01

    Determination of a source term of release of a hazardous material into the atmosphere is a very important task for emergency response. We are concerned with the problem of estimation of the source term in the conventional linear inverse problem, y = Mx, where the relationship between the vector of observations y is described using the source-receptor-sensitivity (SRS) matrix M and the unknown source term x. Since the system is typically ill-conditioned, the problem is recast as an optimization problem minR,B(y - Mx)TR-1(y - Mx) + xTB-1x. The first term minimizes the error of the measurements with covariance matrix R, and the second term is a regularization of the source term. There are different types of regularization arising for different choices of matrices R and B, for example, Tikhonov regularization assumes covariance matrix B as the identity matrix multiplied by scalar parameter. In this contribution, we adopt a Bayesian approach to make inference on the unknown source term x as well as unknown R and B. We assume prior on x to be a Gaussian with zero mean and unknown diagonal covariance matrix B. The covariance matrix of the likelihood R is also unknown. We consider two potential choices of the structure of the matrix R. First is the diagonal matrix and the second is a locally correlated structure using information on topology of the measuring network. Since the inference of the model is intractable, iterative variational Bayes algorithm is used for simultaneous estimation of all model parameters. The practical usefulness of our contribution is demonstrated on an application of the resulting algorithm to real data from the European Tracer Experiment (ETEX). This research is supported by EEA/Norwegian Financial Mechanism under project MSMT-28477/2014 Source-Term Determination of Radionuclide Releases by Inverse Atmospheric Dispersion Modelling (STRADI).

  12. Bayesian statistics and Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Koch, K. R.

    2018-03-01

    The Bayesian approach allows an intuitive way to derive the methods of statistics. Probability is defined as a measure of the plausibility of statements or propositions. Three rules are sufficient to obtain the laws of probability. If the statements refer to the numerical values of variables, the so-called random variables, univariate and multivariate distributions follow. They lead to the point estimation by which unknown quantities, i.e. unknown parameters, are computed from measurements. The unknown parameters are random variables, they are fixed quantities in traditional statistics which is not founded on Bayes' theorem. Bayesian statistics therefore recommends itself for Monte Carlo methods, which generate random variates from given distributions. Monte Carlo methods, of course, can also be applied in traditional statistics. The unknown parameters, are introduced as functions of the measurements, and the Monte Carlo methods give the covariance matrix and the expectation of these functions. A confidence region is derived where the unknown parameters are situated with a given probability. Following a method of traditional statistics, hypotheses are tested by determining whether a value for an unknown parameter lies inside or outside the confidence region. The error propagation of a random vector by the Monte Carlo methods is presented as an application. If the random vector results from a nonlinearly transformed vector, its covariance matrix and its expectation follow from the Monte Carlo estimate. This saves a considerable amount of derivatives to be computed, and errors of the linearization are avoided. The Monte Carlo method is therefore efficient. If the functions of the measurements are given by a sum of two or more random vectors with different multivariate distributions, the resulting distribution is generally not known. TheMonte Carlo methods are then needed to obtain the covariance matrix and the expectation of the sum.

  13. Non-negative matrix factorisation methods for the spectral decomposition of MRS data from human brain tumours

    PubMed Central

    2012-01-01

    Background In-vivo single voxel proton magnetic resonance spectroscopy (SV 1H-MRS), coupled with supervised pattern recognition (PR) methods, has been widely used in clinical studies of discrimination of brain tumour types and follow-up of patients bearing abnormal brain masses. SV 1H-MRS provides useful biochemical information about the metabolic state of tumours and can be performed at short (< 45 ms) or long (> 45 ms) echo time (TE), each with particular advantages. Short-TE spectra are more adequate for detecting lipids, while the long-TE provides a much flatter signal baseline in between peaks but also negative signals for metabolites such as lactate. Both, lipids and lactate, are respectively indicative of specific metabolic processes taking place. Ideally, the information provided by both TE should be of use for clinical purposes. In this study, we characterise the performance of a range of Non-negative Matrix Factorisation (NMF) methods in two respects: first, to derive sources correlated with the mean spectra of known tissue types (tumours and normal tissue); second, taking the best performing NMF method for source separation, we compare its accuracy for class assignment when using the mixing matrix directly as a basis for classification, as against using the method for dimensionality reduction (DR). For this, we used SV 1H-MRS data with positive and negative peaks, from a widely tested SV 1H-MRS human brain tumour database. Results The results reported in this paper reveal the advantage of using a recently described variant of NMF, namely Convex-NMF, as an unsupervised method of source extraction from SV1H-MRS. Most of the sources extracted in our experiments closely correspond to the mean spectra of some of the analysed tumour types. This similarity allows accurate diagnostic predictions to be made both in fully unsupervised mode and using Convex-NMF as a DR step previous to standard supervised classification. The obtained results are comparable to, or more accurate than those obtained with supervised techniques. Conclusions The unsupervised properties of Convex-NMF place this approach one step ahead of classical label-requiring supervised methods for the discrimination of brain tumour types, as it accounts for their increasingly recognised molecular subtype heterogeneity. The application of Convex-NMF in computer assisted decision support systems is expected to facilitate further improvements in the uptake of MRS-derived information by clinicians. PMID:22401579

  14. Conservation of Mass and Preservation of Positivity with Ensemble-Type Kalman Filter Algorithms

    NASA Technical Reports Server (NTRS)

    Janjic, Tijana; Mclaughlin, Dennis; Cohn, Stephen E.; Verlaan, Martin

    2014-01-01

    This paper considers the incorporation of constraints to enforce physically based conservation laws in the ensemble Kalman filter. In particular, constraints are used to ensure that the ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. In certain situations filtering algorithms such as the ensemble Kalman filter (EnKF) and ensemble transform Kalman filter (ETKF) yield updated ensembles that conserve mass but are negative, even though the actual states must be nonnegative. In such situations if negative values are set to zero, or a log transform is introduced, the total mass will not be conserved. In this study, mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate non-negativity constraints. Simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. In two examples, an update that includes a non-negativity constraint is able to properly describe the transport of a sharp feature (e.g., a triangle or cone). A number of implementation questions still need to be addressed, particularly the need to develop a computationally efficient quadratic programming update for large ensemble.

  15. New subspace methods for ATR

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Peng, Jing; Sims, S. Richard F.

    2005-05-01

    In ATR applications, each feature is a convolution of an image with a filter. It is important to use most discriminant features to produce compact representations. We propose two novel subspace methods for dimension reduction to address limitations associated with Fukunaga-Koontz Transform (FKT). The first method, Scatter-FKT, assumes that target is more homogeneous, while clutter can be anything other than target and anywhere. Thus, instead of estimating a clutter covariance matrix, Scatter-FKT computes a clutter scatter matrix that measures the spread of clutter from the target mean. We choose dimensions along which the difference in variation between target and clutter is most pronounced. When the target follows a Gaussian distribution, Scatter-FKT can be viewed as a generalization of FKT. The second method, Optimal Bayesian Subspace, is derived from the optimal Bayesian classifier. It selects dimensions such that the minimum Bayes error rate can be achieved. When both target and clutter follow Gaussian distributions, OBS computes optimal subspace representations. We compare our methods against FKT using character image as well as IR data.

  16. Speech enhancement on smartphone voice recording

    NASA Astrophysics Data System (ADS)

    Tris Atmaja, Bagus; Nur Farid, Mifta; Arifianto, Dhany

    2016-11-01

    Speech enhancement is challenging task in audio signal processing to enhance the quality of targeted speech signal while suppress other noises. In the beginning, the speech enhancement algorithm growth rapidly from spectral subtraction, Wiener filtering, spectral amplitude MMSE estimator to Non-negative Matrix Factorization (NMF). Smartphone as revolutionary device now is being used in all aspect of life including journalism; personally and professionally. Although many smartphones have two microphones (main and rear) the only main microphone is widely used for voice recording. This is why the NMF algorithm widely used for this purpose of speech enhancement. This paper evaluate speech enhancement on smartphone voice recording by using some algorithms mentioned previously. We also extend the NMF algorithm to Kulback-Leibler NMF with supervised separation. The last algorithm shows improved result compared to others by spectrogram and PESQ score evaluation.

  17. Asynchronous Gossip for Averaging and Spectral Ranking

    NASA Astrophysics Data System (ADS)

    Borkar, Vivek S.; Makhijani, Rahul; Sundaresan, Rajesh

    2014-08-01

    We consider two variants of the classical gossip algorithm. The first variant is a version of asynchronous stochastic approximation. We highlight a fundamental difficulty associated with the classical asynchronous gossip scheme, viz., that it may not converge to a desired average, and suggest an alternative scheme based on reinforcement learning that has guaranteed convergence to the desired average. We then discuss a potential application to a wireless network setting with simultaneous link activation constraints. The second variant is a gossip algorithm for distributed computation of the Perron-Frobenius eigenvector of a nonnegative matrix. While the first variant draws upon a reinforcement learning algorithm for an average cost controlled Markov decision problem, the second variant draws upon a reinforcement learning algorithm for risk-sensitive control. We then discuss potential applications of the second variant to ranking schemes, reputation networks, and principal component analysis.

  18. Correlated Noise: How it Breaks NMF, and What to Do About It.

    PubMed

    Plis, Sergey M; Potluru, Vamsi K; Lane, Terran; Calhoun, Vince D

    2011-01-12

    Non-negative matrix factorization (NMF) is a problem of decomposing multivariate data into a set of features and their corresponding activations. When applied to experimental data, NMF has to cope with noise, which is often highly correlated. We show that correlated noise can break the Donoho and Stodden separability conditions of a dataset and a regular NMF algorithm will fail to decompose it, even when given freedom to be able to represent the noise as a separate feature. To cope with this issue, we present an algorithm for NMF with a generalized least squares objective function (glsNMF) and derive multiplicative updates for the method together with proving their convergence. The new algorithm successfully recovers the true representation from the noisy data. Robust performance can make glsNMF a valuable tool for analyzing empirical data.

  19. Correlated Noise: How it Breaks NMF, and What to Do About It

    PubMed Central

    Plis, Sergey M.; Potluru, Vamsi K.; Lane, Terran; Calhoun, Vince D.

    2010-01-01

    Non-negative matrix factorization (NMF) is a problem of decomposing multivariate data into a set of features and their corresponding activations. When applied to experimental data, NMF has to cope with noise, which is often highly correlated. We show that correlated noise can break the Donoho and Stodden separability conditions of a dataset and a regular NMF algorithm will fail to decompose it, even when given freedom to be able to represent the noise as a separate feature. To cope with this issue, we present an algorithm for NMF with a generalized least squares objective function (glsNMF) and derive multiplicative updates for the method together with proving their convergence. The new algorithm successfully recovers the true representation from the noisy data. Robust performance can make glsNMF a valuable tool for analyzing empirical data. PMID:23750288

  20. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  1. Discovering mutated driver genes through a robust and sparse co-regularized matrix factorization framework with prior information from mRNA expression patterns and interaction network.

    PubMed

    Xi, Jianing; Wang, Minghui; Li, Ao

    2018-06-05

    Discovery of mutated driver genes is one of the primary objective for studying tumorigenesis. To discover some relatively low frequently mutated driver genes from somatic mutation data, many existing methods incorporate interaction network as prior information. However, the prior information of mRNA expression patterns are not exploited by these existing network-based methods, which is also proven to be highly informative of cancer progressions. To incorporate prior information from both interaction network and mRNA expressions, we propose a robust and sparse co-regularized nonnegative matrix factorization to discover driver genes from mutation data. Furthermore, our framework also conducts Frobenius norm regularization to overcome overfitting issue. Sparsity-inducing penalty is employed to obtain sparse scores in gene representations, of which the top scored genes are selected as driver candidates. Evaluation experiments by known benchmarking genes indicate that the performance of our method benefits from the two type of prior information. Our method also outperforms the existing network-based methods, and detect some driver genes that are not predicted by the competing methods. In summary, our proposed method can improve the performance of driver gene discovery by effectively incorporating prior information from interaction network and mRNA expression patterns into a robust and sparse co-regularized matrix factorization framework.

  2. Removing non-stationary noise in spectrum sensing using matrix factorization

    NASA Astrophysics Data System (ADS)

    van Bloem, Jan-Willem; Schiphorst, Roel; Slump, Cornelis H.

    2013-12-01

    Spectrum sensing is key to many applications like dynamic spectrum access (DSA) systems or telecom regulators who need to measure utilization of frequency bands. The International Telecommunication Union (ITU) recommends a 10 dB threshold above the noise to decide whether a channel is occupied or not. However, radio frequency (RF) receiver front-ends are non-ideal. This means that the obtained data is distorted with noise and imperfections from the analog front-end. As part of the front-end the automatic gain control (AGC) circuitry mainly affects the sensing performance as strong adjacent signals lift the noise level. To enhance the performance of spectrum sensing significantly we focus in this article on techniques to remove the noise caused by the AGC from the sensing data. In order to do this we have applied matrix factorization techniques, i.e., SVD (singular value decomposition) and NMF (non-negative matrix factorization), which enables signal space analysis. In addition, we use live measurement results to verify the performance and to remove the effects of the AGC from the sensing data using above mentioned techniques, i.e., applied on block-wise available spectrum data. In this article it is shown that the occupancy in the industrial, scientific and medical (ISM) band, obtained by using energy detection (ITU recommended threshold), can be an overestimation of spectrum usage by 60%.

  3. Capturing Ecosystem Services, Stakeholders' Preferences and Trade-Offs in Coastal Aquaculture Decisions: A Bayesian Belief Network Application

    PubMed Central

    Schmitt, Laetitia Helene Marie; Brugere, Cecile

    2013-01-01

    Aquaculture activities are embedded in complex social-ecological systems. However, aquaculture development decisions have tended to be driven by revenue generation, failing to account for interactions with the environment and the full value of the benefits derived from services provided by local ecosystems. Trade-offs resulting from changes in ecosystem services provision and associated impacts on livelihoods are also often overlooked. This paper proposes an innovative application of Bayesian belief networks - influence diagrams - as a decision support system for mediating trade-offs arising from the development of shrimp aquaculture in Thailand. Senior experts were consulted (n = 12) and primary farm data on the economics of shrimp farming (n = 20) were collected alongside secondary information on ecosystem services, in order to construct and populate the network. Trade-offs were quantitatively assessed through the generation of a probabilistic impact matrix. This matrix captures nonlinearity and uncertainty and describes the relative performance and impacts of shrimp farming management scenarios on local livelihoods. It also incorporates export revenues and provision and value of ecosystem services such as coastal protection and biodiversity. This research shows that Bayesian belief modeling can support complex decision-making on pathways for sustainable coastal aquaculture development and thus contributes to the debate on the role of aquaculture in social-ecological resilience and economic development. PMID:24155876

  4. Bayesian Multi-Trait Analysis Reveals a Useful Tool to Increase Oil Concentration and to Decrease Toxicity in Jatropha curcas L.

    PubMed Central

    Silva Junqueira, Vinícius; de Azevedo Peixoto, Leonardo; Galvêas Laviola, Bruno; Lopes Bhering, Leonardo; Mendonça, Simone; Agostini Costa, Tania da Silveira; Antoniassi, Rosemar

    2016-01-01

    The biggest challenge for jatropha breeding is to identify superior genotypes that present high seed yield and seed oil content with reduced toxicity levels. Therefore, the objective of this study was to estimate genetic parameters for three important traits (weight of 100 seed, oil seed content, and phorbol ester concentration), and to select superior genotypes to be used as progenitors in jatropha breeding. Additionally, the genotypic values and the genetic parameters estimated under the Bayesian multi-trait approach were used to evaluate different selection indices scenarios of 179 half-sib families. Three different scenarios and economic weights were considered. It was possible to simultaneously reduce toxicity and increase seed oil content and weight of 100 seed by using index selection based on genotypic value estimated by the Bayesian multi-trait approach. Indeed, we identified two families that present these characteristics by evaluating genetic diversity using the Ward clustering method, which suggested nine homogenous clusters. Future researches must integrate the Bayesian multi-trait methods with realized relationship matrix, aiming to build accurate selection indices models. PMID:27281340

  5. A quasi-Newton approach to optimization problems with probability density constraints. [problem solving in mathematical programming

    NASA Technical Reports Server (NTRS)

    Tapia, R. A.; Vanrooy, D. L.

    1976-01-01

    A quasi-Newton method is presented for minimizing a nonlinear function while constraining the variables to be nonnegative and sum to one. The nonnegativity constraints were eliminated by working with the squares of the variables and the resulting problem was solved using Tapia's general theory of quasi-Newton methods for constrained optimization. A user's guide for a computer program implementing this algorithm is provided.

  6. From individual to population level effects of toxicants in the tubicifid Branchiura sowerbyi using threshold effect models in a Bayesian framework.

    PubMed

    Ducrot, Virginie; Billoir, Elise; Péry, Alexandre R R; Garric, Jeanne; Charles, Sandrine

    2010-05-01

    Effects of zinc were studied in the freshwater worm Branchiura sowerbyi using partial and full life-cycle tests. Only newborn and juveniles were sensitive to zinc, displaying effects on survival, growth, and age at first brood at environmentally relevant concentrations. Threshold effect models were proposed to assess toxic effects on individuals. They were fitted to life-cycle test data using Bayesian inference and adequately described life-history trait data in exposed organisms. The daily asymptotic growth rate of theoretical populations was then simulated with a matrix population model, based upon individual-level outputs. Population-level outputs were in accordance with existing literature for controls. Working in a Bayesian framework allowed incorporating parameter uncertainty in the simulation of the population-level response to zinc exposure, thus increasing the relevance of test results in the context of ecological risk assessment.

  7. F-MAP: A Bayesian approach to infer the gene regulatory network using external hints

    PubMed Central

    Shahdoust, Maryam; Mahjub, Hossein; Sadeghi, Mehdi

    2017-01-01

    The Common topological features of related species gene regulatory networks suggest reconstruction of the network of one species by using the further information from gene expressions profile of related species. We present an algorithm to reconstruct the gene regulatory network named; F-MAP, which applies the knowledge about gene interactions from related species. Our algorithm sets a Bayesian framework to estimate the precision matrix of one species microarray gene expressions dataset to infer the Gaussian Graphical model of the network. The conjugate Wishart prior is used and the information from related species is applied to estimate the hyperparameters of the prior distribution by using the factor analysis. Applying the proposed algorithm on six related species of drosophila shows that the precision of reconstructed networks is improved considerably compared to the precision of networks constructed by other Bayesian approaches. PMID:28938012

  8. Sparse Bayesian learning for DOA estimation with mutual coupling.

    PubMed

    Dai, Jisheng; Hu, Nan; Xu, Weichao; Chang, Chunqi

    2015-10-16

    Sparse Bayesian learning (SBL) has given renewed interest to the problem of direction-of-arrival (DOA) estimation. It is generally assumed that the measurement matrix in SBL is precisely known. Unfortunately, this assumption may be invalid in practice due to the imperfect manifold caused by unknown or misspecified mutual coupling. This paper describes a modified SBL method for joint estimation of DOAs and mutual coupling coefficients with uniform linear arrays (ULAs). Unlike the existing method that only uses stationary priors, our new approach utilizes a hierarchical form of the Student t prior to enforce the sparsity of the unknown signal more heavily. We also provide a distinct Bayesian inference for the expectation-maximization (EM) algorithm, which can update the mutual coupling coefficients more efficiently. Another difference is that our method uses an additional singular value decomposition (SVD) to reduce the computational complexity of the signal reconstruction process and the sensitivity to the measurement noise.

  9. Bayesian block-diagonal variable selection and model averaging

    PubMed Central

    Papaspiliopoulos, O.; Rossell, D.

    2018-01-01

    Summary We propose a scalable algorithmic framework for exact Bayesian variable selection and model averaging in linear models under the assumption that the Gram matrix is block-diagonal, and as a heuristic for exploring the model space for general designs. In block-diagonal designs our approach returns the most probable model of any given size without resorting to numerical integration. The algorithm also provides a novel and efficient solution to the frequentist best subset selection problem for block-diagonal designs. Posterior probabilities for any number of models are obtained by evaluating a single one-dimensional integral, and other quantities of interest such as variable inclusion probabilities and model-averaged regression estimates are obtained by an adaptive, deterministic one-dimensional numerical integration. The overall computational cost scales linearly with the number of blocks, which can be processed in parallel, and exponentially with the block size, rendering it most adequate in situations where predictors are organized in many moderately-sized blocks. For general designs, we approximate the Gram matrix by a block-diagonal matrix using spectral clustering and propose an iterative algorithm that capitalizes on the block-diagonal algorithms to explore efficiently the model space. All methods proposed in this paper are implemented in the R library mombf. PMID:29861501

  10. A Class of Manifold Regularized Multiplicative Update Algorithms for Image Clustering.

    PubMed

    Yang, Shangming; Yi, Zhang; He, Xiaofei; Li, Xuelong

    2015-12-01

    Multiplicative update algorithms are important tools for information retrieval, image processing, and pattern recognition. However, when the graph regularization is added to the cost function, different classes of sample data may be mapped to the same subspace, which leads to the increase of data clustering error rate. In this paper, an improved nonnegative matrix factorization (NMF) cost function is introduced. Based on the cost function, a class of novel graph regularized NMF algorithms is developed, which results in a class of extended multiplicative update algorithms with manifold structure regularization. Analysis shows that in the learning, the proposed algorithms can efficiently minimize the rank of the data representation matrix. Theoretical results presented in this paper are confirmed by simulations. For different initializations and data sets, variation curves of cost functions and decomposition data are presented to show the convergence features of the proposed update rules. Basis images, reconstructed images, and clustering results are utilized to present the efficiency of the new algorithms. Last, the clustering accuracies of different algorithms are also investigated, which shows that the proposed algorithms can achieve state-of-the-art performance in applications of image clustering.

  11. A Constrained Bayesian Approach for Testing TTBT Compliance

    DTIC Science & Technology

    1992-03-06

    These figures show that the treatment of the covariance matrix is very im- portant. In many of the previous figures the power curves of all four...Drawer 719 Richland, WA 99352 Santa Barbara, CA 93102 Prof Stale Fla. Dr. James Hannon AplidSceces Bilding Lawrence Uivermare National Labory Uveity

  12. Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions

    NASA Astrophysics Data System (ADS)

    Kraberger, Gernot J.; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus

    2017-10-01

    We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued Green's functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way, all matrix elements of the Green's function matrix can be analytically continued; we introduce a computationally cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity. To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously. We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT) Green's functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where off-diagonal matrix elements in the Green's function appear due to the distorted crystal structure.

  13. Muscle-tendon units localization and activation level analysis based on high-density surface EMG array and NMF algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Zhang, Xu

    2016-12-01

    Objective. Some skeletal muscles can be subdivided into smaller segments called muscle-tendon units (MTUs). The purpose of this paper is to propose a framework to locate the active region of the corresponding MTUs within a single skeletal muscle and to analyze the activation level varieties of different MTUs during a dynamic motion task. Approach. Biceps brachii and gastrocnemius were selected as targeted muscles and three dynamic motion tasks were designed and studied. Eight healthy male subjects participated in the data collection experiments, and 128-channel surface electromyographic (sEMG) signals were collected with a high-density sEMG electrode grid (a grid consists of 8 rows and 16 columns). Then the sEMG envelopes matrix was factorized into a matrix of weighting vectors and a matrix of time-varying coefficients by nonnegative matrix factorization algorithm. Main results. The experimental results demonstrated that the weightings vectors, which represent invariant pattern of muscle activity across all channels, could be used to estimate the location of MTUs and the time-varying coefficients could be used to depict the variation of MTUs activation level during dynamic motion task. Significance. The proposed method provides one way to analyze in-depth the functional state of MTUs during dynamic tasks and thus can be employed on multiple noteworthy sEMG-based applications such as muscle force estimation, muscle fatigue research and the control of myoelectric prostheses. This work was supported by the National Nature Science Foundation of China under Grant 61431017 and 61271138.

  14. Linear quadratic optimization for positive LTI system

    NASA Astrophysics Data System (ADS)

    Muhafzan, Yenti, Syafrida Wirma; Zulakmal

    2017-05-01

    Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.

  15. Stochastic determination of matrix determinants

    NASA Astrophysics Data System (ADS)

    Dorn, Sebastian; Enßlin, Torsten A.

    2015-07-01

    Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations—matrices—acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.

  16. Stochastic determination of matrix determinants.

    PubMed

    Dorn, Sebastian; Ensslin, Torsten A

    2015-07-01

    Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations-matrices-acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.

  17. Distinct sets of locomotor modules control the speed and modes of human locomotion

    PubMed Central

    Yokoyama, Hikaru; Ogawa, Tetsuya; Kawashima, Noritaka; Shinya, Masahiro; Nakazawa, Kimitaka

    2016-01-01

    Although recent vertebrate studies have revealed that different spinal networks are recruited in locomotor mode- and speed-dependent manners, it is unknown whether humans share similar neural mechanisms. Here, we tested whether speed- and mode-dependence in the recruitment of human locomotor networks exists or not by statistically extracting locomotor networks. From electromyographic activity during walking and running over a wide speed range, locomotor modules generating basic patterns of muscle activities were extracted using non-negative matrix factorization. The results showed that the number of modules changed depending on the modes and speeds. Different combinations of modules were extracted during walking and running, and at different speeds even during the same locomotor mode. These results strongly suggest that, in humans, different spinal locomotor networks are recruited while walking and running, and even in the same locomotor mode different networks are probably recruited at different speeds. PMID:27805015

  18. Factor models for cancer signatures

    NASA Astrophysics Data System (ADS)

    Kakushadze, Zura; Yu, Willie

    2016-11-01

    We present a novel method for extracting cancer signatures by applying statistical risk models (http://ssrn.com/abstract=2732453) from quantitative finance to cancer genome data. Using 1389 whole genome sequenced samples from 14 cancers, we identify an ;overall; mode of somatic mutational noise. We give a prescription for factoring out this noise and source code for fixing the number of signatures. We apply nonnegative matrix factorization (NMF) to genome data aggregated by cancer subtype and filtered using our method. The resultant signatures have substantially lower variability than those from unfiltered data. Also, the computational cost of signature extraction is cut by about a factor of 10. We find 3 novel cancer signatures, including a liver cancer dominant signature (96% contribution) and a renal cell carcinoma signature (70% contribution). Our method accelerates finding new cancer signatures and improves their overall stability. Reciprocally, the methods for extracting cancer signatures could have interesting applications in quantitative finance.

  19. Machine learning for cardiac ultrasound time series data

    NASA Astrophysics Data System (ADS)

    Yuan, Baichuan; Chitturi, Sathya R.; Iyer, Geoffrey; Li, Nuoyu; Xu, Xiaochuan; Zhan, Ruohan; Llerena, Rafael; Yen, Jesse T.; Bertozzi, Andrea L.

    2017-03-01

    We consider the problem of identifying frames in a cardiac ultrasound video associated with left ventricular chamber end-systolic (ES, contraction) and end-diastolic (ED, expansion) phases of the cardiac cycle. Our procedure involves a simple application of non-negative matrix factorization (NMF) to a series of frames of a video from a single patient. Rank-2 NMF is performed to compute two end-members. The end members are shown to be close representations of the actual heart morphology at the end of each phase of the heart function. Moreover, the entire time series can be represented as a linear combination of these two end-member states thus providing a very low dimensional representation of the time dynamics of the heart. Unlike previous work, our methods do not require any electrocardiogram (ECG) information in order to select the end-diastolic frame. Results are presented for a data set of 99 patients including both healthy and diseased examples.

  20. [A method for the analysis of overlapped peaks in the high performance liquid chromatogram based on spectrum analysis].

    PubMed

    Liu, Bao; Fan, Xiaoming; Huo, Shengnan; Zhou, Lili; Wang, Jun; Zhang, Hui; Hu, Mei; Zhu, Jianhua

    2011-12-01

    A method was established to analyse the overlapped chromatographic peaks based on the chromatographic-spectra data detected by the diode-array ultraviolet detector. In the method, the three-dimensional data were de-noised and normalized firstly; secondly the differences and clustering analysis of the spectra at different time points were calculated; then the purity of the whole chromatographic peak were analysed and the region were sought out in which the spectra of different time points were stable. The feature spectra were extracted from the spectrum-stable region as the basic foundation. The nonnegative least-square method was chosen to separate the overlapped peaks and get the flow curve which was based on the feature spectrum. The three-dimensional divided chromatographic-spectrum peak could be gained by the matrix operations of the feature spectra with the flow curve. The results displayed that this method could separate the overlapped peaks.

  1. Electron energy-loss spectroscopy of single nanocrystals: mapping of tin allotropes.

    PubMed

    Roesgaard, Søren; Ramasse, Quentin; Chevallier, Jacques; Fyhn, Mogens; Julsgaard, Brian

    2018-05-25

    Using monochromated electron energy-loss spectroscopy (EELS), we are able to map different allotropes in Sn-nanocrystals embedded in Si. It is demonstrated that α-Sn and β-Sn, as well as an interface related plasmon, can be distinguished in embedded Sn-nanostructures. The EELS data is interpreted by standard non-negative matrix factorization followed by a manual Lorentzian decomposition. The decomposition allows for a more physical understanding of the EELS mapping without reducing the level of information. Extending the analysis from a reference system to smaller nanocrystals demonstrates that allotrope determination in nanoscale systems down below 5 nm is possible. Such local information proves the use of monochromated EELS mapping as a powerful technique to study nanoscale systems. This possibility enables investigation of small nanostructures that cannot be investigated through other means, allowing for a better understanding and thus leading to realizations that can result in nanomaterials with improved properties.

  2. The positronium and the dipositronium in a Hartree-Fock approximation of quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Sok, Jérémy

    2016-02-01

    The Bogoliubov-Dirac-Fock (BDF) model is a no-photon approximation of quantum electrodynamics. It allows to study relativistic electrons in interaction with the Dirac sea. A state is fully characterized by its one-body density matrix, an infinite rank non-negative projector. We prove the existence of the para-positronium, the bound state of an electron and a positron with antiparallel spins, in the BDF model represented by a critical point of the energy functional in the absence of an external field. We also prove the existence of the dipositronium, a molecule made of two electrons and two positrons that also appears as a critical point. More generally, for any half integer j ∈ 1/2 + Z + , we prove the existence of a critical point of the energy functional made of 2j + 1 electrons and 2j + 1 positrons.

  3. Electron energy-loss spectroscopy of single nanocrystals: mapping of tin allotropes

    NASA Astrophysics Data System (ADS)

    Roesgaard, Søren; Ramasse, Quentin; Chevallier, Jacques; Fyhn, Mogens; Julsgaard, Brian

    2018-05-01

    Using monochromated electron energy-loss spectroscopy (EELS), we are able to map different allotropes in Sn-nanocrystals embedded in Si. It is demonstrated that α-Sn and β-Sn, as well as an interface related plasmon, can be distinguished in embedded Sn-nanostructures. The EELS data is interpreted by standard non-negative matrix factorization followed by a manual Lorentzian decomposition. The decomposition allows for a more physical understanding of the EELS mapping without reducing the level of information. Extending the analysis from a reference system to smaller nanocrystals demonstrates that allotrope determination in nanoscale systems down below 5 nm is possible. Such local information proves the use of monochromated EELS mapping as a powerful technique to study nanoscale systems. This possibility enables investigation of small nanostructures that cannot be investigated through other means, allowing for a better understanding and thus leading to realizations that can result in nanomaterials with improved properties.

  4. Weakly Informative Prior for Point Estimation of Covariance Matrices in Hierarchical Models

    ERIC Educational Resources Information Center

    Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent

    2015-01-01

    When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix (S) of group-level varying coefficients are often degenerate. One can do better, even from…

  5. Inferring metabolic networks using the Bayesian adaptive graphical lasso with informative priors.

    PubMed

    Peterson, Christine; Vannucci, Marina; Karakas, Cemal; Choi, William; Ma, Lihua; Maletić-Savatić, Mirjana

    2013-10-01

    Metabolic processes are essential for cellular function and survival. We are interested in inferring a metabolic network in activated microglia, a major neuroimmune cell in the brain responsible for the neuroinflammation associated with neurological diseases, based on a set of quantified metabolites. To achieve this, we apply the Bayesian adaptive graphical lasso with informative priors that incorporate known relationships between covariates. To encourage sparsity, the Bayesian graphical lasso places double exponential priors on the off-diagonal entries of the precision matrix. The Bayesian adaptive graphical lasso allows each double exponential prior to have a unique shrinkage parameter. These shrinkage parameters share a common gamma hyperprior. We extend this model to create an informative prior structure by formulating tailored hyperpriors on the shrinkage parameters. By choosing parameter values for each hyperprior that shift probability mass toward zero for nodes that are close together in a reference network, we encourage edges between covariates with known relationships. This approach can improve the reliability of network inference when the sample size is small relative to the number of parameters to be estimated. When applied to the data on activated microglia, the inferred network includes both known relationships and associations of potential interest for further investigation.

  6. Inferring metabolic networks using the Bayesian adaptive graphical lasso with informative priors

    PubMed Central

    PETERSON, CHRISTINE; VANNUCCI, MARINA; KARAKAS, CEMAL; CHOI, WILLIAM; MA, LIHUA; MALETIĆ-SAVATIĆ, MIRJANA

    2014-01-01

    Metabolic processes are essential for cellular function and survival. We are interested in inferring a metabolic network in activated microglia, a major neuroimmune cell in the brain responsible for the neuroinflammation associated with neurological diseases, based on a set of quantified metabolites. To achieve this, we apply the Bayesian adaptive graphical lasso with informative priors that incorporate known relationships between covariates. To encourage sparsity, the Bayesian graphical lasso places double exponential priors on the off-diagonal entries of the precision matrix. The Bayesian adaptive graphical lasso allows each double exponential prior to have a unique shrinkage parameter. These shrinkage parameters share a common gamma hyperprior. We extend this model to create an informative prior structure by formulating tailored hyperpriors on the shrinkage parameters. By choosing parameter values for each hyperprior that shift probability mass toward zero for nodes that are close together in a reference network, we encourage edges between covariates with known relationships. This approach can improve the reliability of network inference when the sample size is small relative to the number of parameters to be estimated. When applied to the data on activated microglia, the inferred network includes both known relationships and associations of potential interest for further investigation. PMID:24533172

  7. A Formally-Verified Decision Procedure for Univariate Polynomial Computation Based on Sturm's Theorem

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.

    2014-01-01

    Sturm's Theorem is a well-known result in real algebraic geometry that provides a function that computes the number of roots of a univariate polynomial in a semiopen interval. This paper presents a formalization of this theorem in the PVS theorem prover, as well as a decision procedure that checks whether a polynomial is always positive, nonnegative, nonzero, negative, or nonpositive on any input interval. The soundness and completeness of the decision procedure is proven in PVS. The procedure and its correctness properties enable the implementation of a PVS strategy for automatically proving existential and universal univariate polynomial inequalities. Since the decision procedure is formally verified in PVS, the soundness of the strategy depends solely on the internal logic of PVS rather than on an external oracle. The procedure itself uses a combination of Sturm's Theorem, an interval bisection procedure, and the fact that a polynomial with exactly one root in a bounded interval is always nonnegative on that interval if and only if it is nonnegative at both endpoints.

  8. Pavement crack detection combining non-negative feature with fast LoG in complex scene

    NASA Astrophysics Data System (ADS)

    Wang, Wanli; Zhang, Xiuhua; Hong, Hanyu

    2015-12-01

    Pavement crack detection is affected by much interference in the realistic situation, such as the shadow, road sign, oil stain, salt and pepper noise etc. Due to these unfavorable factors, the exist crack detection methods are difficult to distinguish the crack from background correctly. How to extract crack information effectively is the key problem to the road crack detection system. To solve this problem, a novel method for pavement crack detection based on combining non-negative feature with fast LoG is proposed. The two key novelties and benefits of this new approach are that 1) using image pixel gray value compensation to acquisit uniform image, and 2) combining non-negative feature with fast LoG to extract crack information. The image preprocessing results demonstrate that the method is indeed able to homogenize the crack image with more accurately compared to existing methods. A large number of experimental results demonstrate the proposed approach can detect the crack regions more correctly compared with traditional methods.

  9. Fossil Signatures Using Elemental Abundance Distributions and Bayesian Probabilistic Classification

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Storrie-Lombardi, Michael C.

    2004-01-01

    Elemental abundances (C6, N7, O8, Na11, Mg12, Al3, P15, S16, Cl17, K19, Ca20, Ti22, Mn25, Fe26, and Ni28) were obtained for a set of terrestrial fossils and the rock matrix surrounding them. Principal Component Analysis extracted five factors accounting for the 92.5% of the data variance, i.e. information content, of the elemental abundance data. Hierarchical Cluster Analysis provided unsupervised sample classification distinguishing fossil from matrix samples on the basis of either raw abundances or PCA input that agreed strongly with visual classification. A stochastic, non-linear Artificial Neural Network produced a Bayesian probability of correct sample classification. The results provide a quantitative probabilistic methodology for discriminating terrestrial fossils from the surrounding rock matrix using chemical information. To demonstrate the applicability of these techniques to the assessment of meteoritic samples or in situ extraterrestrial exploration, we present preliminary data on samples of the Orgueil meteorite. In both systems an elemental signature produces target classification decisions remarkably consistent with morphological classification by a human expert using only structural (visual) information. We discuss the possibility of implementing a complexity analysis metric capable of automating certain image analysis and pattern recognition abilities of the human eye using low magnification optical microscopy images and discuss the extension of this technique across multiple scales.

  10. COMPADRE: an R and web resource for pathway activity analysis by component decompositions.

    PubMed

    Ramos-Rodriguez, Roberto-Rafael; Cuevas-Diaz-Duran, Raquel; Falciani, Francesco; Tamez-Peña, Jose-Gerardo; Trevino, Victor

    2012-10-15

    The analysis of biological networks has become essential to study functional genomic data. Compadre is a tool to estimate pathway/gene sets activity indexes using sub-matrix decompositions for biological networks analyses. The Compadre pipeline also includes one of the direct uses of activity indexes to detect altered gene sets. For this, the gene expression sub-matrix of a gene set is decomposed into components, which are used to test differences between groups of samples. This procedure is performed with and without differentially expressed genes to decrease false calls. During this process, Compadre also performs an over-representation test. Compadre already implements four decomposition methods [principal component analysis (PCA), Isomaps, independent component analysis (ICA) and non-negative matrix factorization (NMF)], six statistical tests (t- and f-test, SAM, Kruskal-Wallis, Welch and Brown-Forsythe), several gene sets (KEGG, BioCarta, Reactome, GO and MsigDB) and can be easily expanded. Our simulation results shown in Supplementary Information suggest that Compadre detects more pathways than over-representation tools like David, Babelomics and Webgestalt and less false positives than PLAGE. The output is composed of results from decomposition and over-representation analyses providing a more complete biological picture. Examples provided in Supplementary Information show the utility, versatility and simplicity of Compadre for analyses of biological networks. Compadre is freely available at http://bioinformatica.mty.itesm.mx:8080/compadre. The R package is also available at https://sourceforge.net/p/compadre.

  11. NMF-mGPU: non-negative matrix factorization on multi-GPU systems.

    PubMed

    Mejía-Roa, Edgardo; Tabas-Madrid, Daniel; Setoain, Javier; García, Carlos; Tirado, Francisco; Pascual-Montano, Alberto

    2015-02-13

    In the last few years, the Non-negative Matrix Factorization ( NMF ) technique has gained a great interest among the Bioinformatics community, since it is able to extract interpretable parts from high-dimensional datasets. However, the computing time required to process large data matrices may become impractical, even for a parallel application running on a multiprocessors cluster. In this paper, we present NMF-mGPU, an efficient and easy-to-use implementation of the NMF algorithm that takes advantage of the high computing performance delivered by Graphics-Processing Units ( GPUs ). Driven by the ever-growing demands from the video-games industry, graphics cards usually provided in PCs and laptops have evolved from simple graphics-drawing platforms into high-performance programmable systems that can be used as coprocessors for linear-algebra operations. However, these devices may have a limited amount of on-board memory, which is not considered by other NMF implementations on GPU. NMF-mGPU is based on CUDA ( Compute Unified Device Architecture ), the NVIDIA's framework for GPU computing. On devices with low memory available, large input matrices are blockwise transferred from the system's main memory to the GPU's memory, and processed accordingly. In addition, NMF-mGPU has been explicitly optimized for the different CUDA architectures. Finally, platforms with multiple GPUs can be synchronized through MPI ( Message Passing Interface ). In a four-GPU system, this implementation is about 120 times faster than a single conventional processor, and more than four times faster than a single GPU device (i.e., a super-linear speedup). Applications of GPUs in Bioinformatics are getting more and more attention due to their outstanding performance when compared to traditional processors. In addition, their relatively low price represents a highly cost-effective alternative to conventional clusters. In life sciences, this results in an excellent opportunity to facilitate the daily work of bioinformaticians that are trying to extract biological meaning out of hundreds of gigabytes of experimental information. NMF-mGPU can be used "out of the box" by researchers with little or no expertise in GPU programming in a variety of platforms, such as PCs, laptops, or high-end GPU clusters. NMF-mGPU is freely available at https://github.com/bioinfo-cnb/bionmf-gpu .

  12. Multivariate Bayesian analysis of Gaussian, right censored Gaussian, ordered categorical and binary traits using Gibbs sampling

    PubMed Central

    Korsgaard, Inge Riis; Lund, Mogens Sandø; Sorensen, Daniel; Gianola, Daniel; Madsen, Per; Jensen, Just

    2003-01-01

    A fully Bayesian analysis using Gibbs sampling and data augmentation in a multivariate model of Gaussian, right censored, and grouped Gaussian traits is described. The grouped Gaussian traits are either ordered categorical traits (with more than two categories) or binary traits, where the grouping is determined via thresholds on the underlying Gaussian scale, the liability scale. Allowances are made for unequal models, unknown covariance matrices and missing data. Having outlined the theory, strategies for implementation are reviewed. These include joint sampling of location parameters; efficient sampling from the fully conditional posterior distribution of augmented data, a multivariate truncated normal distribution; and sampling from the conditional inverse Wishart distribution, the fully conditional posterior distribution of the residual covariance matrix. Finally, a simulated dataset was analysed to illustrate the methodology. This paper concentrates on a model where residuals associated with liabilities of the binary traits are assumed to be independent. A Bayesian analysis using Gibbs sampling is outlined for the model where this assumption is relaxed. PMID:12633531

  13. Π4U: A high performance computing framework for Bayesian uncertainty quantification of complex models

    NASA Astrophysics Data System (ADS)

    Hadjidoukas, P. E.; Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P.

    2015-03-01

    We present Π4U, an extensible framework, for non-intrusive Bayesian Uncertainty Quantification and Propagation (UQ+P) of complex and computationally demanding physical models, that can exploit massively parallel computer architectures. The framework incorporates Laplace asymptotic approximations as well as stochastic algorithms, along with distributed numerical differentiation and task-based parallelism for heterogeneous clusters. Sampling is based on the Transitional Markov Chain Monte Carlo (TMCMC) algorithm and its variants. The optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). A modified subset simulation method is used for posterior reliability measurements of rare events. The framework accommodates scheduling of multiple physical model evaluations based on an adaptive load balancing library and shows excellent scalability. In addition to the software framework, we also provide guidelines as to the applicability and efficiency of Bayesian tools when applied to computationally demanding physical models. Theoretical and computational developments are demonstrated with applications drawn from molecular dynamics, structural dynamics and granular flow.

  14. A physiologically motivated sparse, compact, and smooth (SCS) approach to EEG source localization.

    PubMed

    Cao, Cheng; Akalin Acar, Zeynep; Kreutz-Delgado, Kenneth; Makeig, Scott

    2012-01-01

    Here, we introduce a novel approach to the EEG inverse problem based on the assumption that principal cortical sources of multi-channel EEG recordings may be assumed to be spatially sparse, compact, and smooth (SCS). To enforce these characteristics of solutions to the EEG inverse problem, we propose a correlation-variance model which factors a cortical source space covariance matrix into the multiplication of a pre-given correlation coefficient matrix and the square root of the diagonal variance matrix learned from the data under a Bayesian learning framework. We tested the SCS method using simulated EEG data with various SNR and applied it to a real ECOG data set. We compare the results of SCS to those of an established SBL algorithm.

  15. Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems

    NASA Astrophysics Data System (ADS)

    Volyanskyy, Kostyantyn Y.

    Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods. Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance rejection and noise suppression for nonnegative and compartmental dynamical systems with noise and exogenous system disturbances. We then use the developed framework to control the infusion of the anesthetic drug propofol for maintaining a desired constant level of depth of anesthesia for surgery in the face of continuing hemorrhage and hemodilution. Critical care patients, whether undergoing surgery or recovering in intensive care units, require drug administration to regulate physiological variables such as blood pressure, cardiac output, heart rate, and degree of consciousness. The rate of infusion of each administered drug is critical, requiring constant monitoring and frequent adjustments. In this dissertation, we develop a neuroadaptive output feedback control framework for nonlinear uncertain nonnegative and compartmental systems with nonnegative control inputs and noisy measurements. The proposed framework is Lyapunov-based and guarantees ultimate boundedness of the error signals. In addition, the neuroadaptive controller guarantees that the physical system states remain in the nonnegative orthant of the state space. Finally, the developed approach is used to control the infusion of the anesthetic drug propofol for maintaining a desired constant level of depth of anesthesia for surgery in the face of noisy electroencephalographic (EEG) measurements. Clinical trials demonstrate excellent regulation of unconsciousness allowing for a safe and effective administration of the anesthetic agent propofol. Furthermore, a neuroadaptive output feedback control architecture for nonlinear nonnegative dynamical systems with input amplitude and integral constraints is developed. Specifically, the neuroadaptive controller guarantees that the imposed amplitude and integral input constraints are satisfied and the physical system states remain in the nonnegative orthant of the state space. The proposed approach is used to control the infusion of the anesthetic drug propofol for maintaining a desired constant level of depth of anesthesia for noncardiac surgery in the face of infusion rate constraints and a drug dosing constraint over a specified period. In addition, the aforementioned control architecture is used to control lung volume and minute ventilation with input pressure constraints that also accounts for spontaneous breathing by the patient. Specifically, we develop a pressure- and work-limited neuroadaptive controller for mechanical ventilation based on a nonlinear multi-compartmental lung model. The control framework does not rely on any averaged data and is designed to automatically adjust the input pressure to the patient's physiological characteristics capturing lung resistance and compliance modeling uncertainty. Moreover, the controller accounts for input pressure constraints as well as work of breathing constraints. The effect of spontaneous breathing is incorporated within the lung model and the control framework. Finally, a neural network hybrid adaptive control framework for nonlinear uncertain hybrid dynamical systems is developed. The proposed hybrid adaptive control framework is Lyapunov-based and guarantees partial asymptotic stability of the closed-loop hybrid system; that is, asymptotic stability with respect to part of the closed-loop system states associated with the hybrid plant states. A numerical example is provided to demonstrate the efficacy of the proposed hybrid adaptive stabilization approach.

  16. Innovative Bayesian and Parsimony Phylogeny of Dung Beetles (Coleoptera, Scarabaeidae, Scarabaeinae) Enhanced by Ontology-Based Partitioning of Morphological Characters

    PubMed Central

    Tarasov, Sergei; Génier, François

    2015-01-01

    Scarabaeine dung beetles are the dominant dung feeding group of insects and are widely used as model organisms in conservation, ecology and developmental biology. Due to the conflicts among 13 recently published phylogenies dealing with the higher-level relationships of dung beetles, the phylogeny of this lineage remains largely unresolved. In this study, we conduct rigorous phylogenetic analyses of dung beetles, based on an unprecedented taxon sample (110 taxa) and detailed investigation of morphology (205 characters). We provide the description of morphology and thoroughly illustrate the used characters. Along with parsimony, traditionally used in the analysis of morphological data, we also apply the Bayesian method with a novel approach that uses anatomy ontology for matrix partitioning. This approach allows for heterogeneity in evolutionary rates among characters from different anatomical regions. Anatomy ontology generates a number of parameter-partition schemes which we compare using Bayes factor. We also test the effect of inclusion of autapomorphies in the morphological analysis, which hitherto has not been examined. Generally, schemes with more parameters were favored in the Bayesian comparison suggesting that characters located on different body regions evolve at different rates and that partitioning of the data matrix using anatomy ontology is reasonable; however, trees from the parsimony and all the Bayesian analyses were quite consistent. The hypothesized phylogeny reveals many novel clades and provides additional support for some clades recovered in previous analyses. Our results provide a solid basis for a new classification of dung beetles, in which the taxonomic limits of the tribes Dichotomiini, Deltochilini and Coprini are restricted and many new tribes must be described. Based on the consistency of the phylogeny with biogeography, we speculate that dung beetles may have originated in the Mesozoic contrary to the traditional view pointing to a Cenozoic origin. PMID:25781019

  17. Convex Optimization Methods for Graphs and Statistical Modeling

    DTIC Science & Technology

    2011-06-01

    of a set obtained by taking nonnegative linear combinations of elements of the set. The cone TC(x) is the set of directions to points in C from the...Proof. The tangent cone at any signed vector x? with respect to the `∞ ball is a rotation of the nonnegative orthant. Thus we only need to compute the...that ξ(B ?) 1−4ξ(B?)µ(A?) < γ in the second inequality. Sec. A.2. Proofs 167 Proof of Proposition 3.4.2 Based on the Perron - Frobenius theorem [82

  18. Circular distributions based on nonnegative trigonometric sums.

    PubMed

    Fernández-Durán, J J

    2004-06-01

    A new family of distributions for circular random variables is proposed. It is based on nonnegative trigonometric sums and can be used to model data sets which present skewness and/or multimodality. In this family of distributions, the trigonometric moments are easily expressed in terms of the parameters of the distribution. The proposed family is applied to two data sets, one related with the directions taken by ants and the other with the directions taken by turtles, to compare their goodness of fit versus common distributions used in the literature.

  19. A stochastic approach to quantifying the blur with uncertainty estimation for high-energy X-ray imaging systems

    DOE PAGES

    Fowler, Michael J.; Howard, Marylesa; Luttman, Aaron; ...

    2015-06-03

    One of the primary causes of blur in a high-energy X-ray imaging system is the shape and extent of the radiation source, or ‘spot’. It is important to be able to quantify the size of the spot as it provides a lower bound on the recoverable resolution for a radiograph, and penumbral imaging methods – which involve the analysis of blur caused by a structured aperture – can be used to obtain the spot’s spatial profile. We present a Bayesian approach for estimating the spot shape that, unlike variational methods, is robust to the initial choice of parameters. The posteriormore » is obtained from a normal likelihood, which was constructed from a weighted least squares approximation to a Poisson noise model, and prior assumptions that enforce both smoothness and non-negativity constraints. A Markov chain Monte Carlo algorithm is used to obtain samples from the target posterior, and the reconstruction and uncertainty estimates are the computed mean and variance of the samples, respectively. Lastly, synthetic data-sets are used to demonstrate accurate reconstruction, while real data taken with high-energy X-ray imaging systems are used to demonstrate applicability and feasibility.« less

  20. A Hybrid Probabilistic Model for Unified Collaborative and Content-Based Image Tagging.

    PubMed

    Zhou, Ning; Cheung, William K; Qiu, Guoping; Xue, Xiangyang

    2011-07-01

    The increasing availability of large quantities of user contributed images with labels has provided opportunities to develop automatic tools to tag images to facilitate image search and retrieval. In this paper, we present a novel hybrid probabilistic model (HPM) which integrates low-level image features and high-level user provided tags to automatically tag images. For images without any tags, HPM predicts new tags based solely on the low-level image features. For images with user provided tags, HPM jointly exploits both the image features and the tags in a unified probabilistic framework to recommend additional tags to label the images. The HPM framework makes use of the tag-image association matrix (TIAM). However, since the number of images is usually very large and user-provided tags are diverse, TIAM is very sparse, thus making it difficult to reliably estimate tag-to-tag co-occurrence probabilities. We developed a collaborative filtering method based on nonnegative matrix factorization (NMF) for tackling this data sparsity issue. Also, an L1 norm kernel method is used to estimate the correlations between image features and semantic concepts. The effectiveness of the proposed approach has been evaluated using three databases containing 5,000 images with 371 tags, 31,695 images with 5,587 tags, and 269,648 images with 5,018 tags, respectively.

  1. Discovering perturbation of modular structure in HIV progression by integrating multiple data sources through non-negative matrix factorization.

    PubMed

    Ray, Sumanta; Maulik, Ujjwal

    2016-12-20

    Detecting perturbation in modular structure during HIV-1 disease progression is an important step to understand stage specific infection pattern of HIV-1 virus in human cell. In this article, we proposed a novel methodology on integration of multiple biological information to identify such disruption in human gene module during different stages of HIV-1 infection. We integrate three different biological information: gene expression information, protein-protein interaction information and gene ontology information in single gene meta-module, through non negative matrix factorization (NMF). As the identified metamodules inherit those information so, detecting perturbation of these, reflects the changes in expression pattern, in PPI structure and in functional similarity of genes during the infection progression. To integrate modules of different data sources into strong meta-modules, NMF based clustering is utilized here. Perturbation in meta-modular structure is identified by investigating the topological and intramodular properties and putting rank to those meta-modules using a rank aggregation algorithm. We have also analyzed the preservation structure of significant GO terms in which the human proteins of the meta-modules participate. Moreover, we have performed an analysis to show the change of coregulation pattern of identified transcription factors (TFs) over the HIV progression stages.

  2. A PET reconstruction formulation that enforces non-negativity in projection space for bias reduction in Y-90 imaging

    NASA Astrophysics Data System (ADS)

    Lim, Hongki; Dewaraja, Yuni K.; Fessler, Jeffrey A.

    2018-02-01

    Most existing PET image reconstruction methods impose a nonnegativity constraint in the image domain that is natural physically, but can lead to biased reconstructions. This bias is particularly problematic for Y-90 PET because of the low probability positron production and high random coincidence fraction. This paper investigates a new PET reconstruction formulation that enforces nonnegativity of the projections instead of the voxel values. This formulation allows some negative voxel values, thereby potentially reducing bias. Unlike the previously reported NEG-ML approach that modifies the Poisson log-likelihood to allow negative values, the new formulation retains the classical Poisson statistical model. To relax the non-negativity constraint embedded in the standard methods for PET reconstruction, we used an alternating direction method of multipliers (ADMM). Because choice of ADMM parameters can greatly influence convergence rate, we applied an automatic parameter selection method to improve the convergence speed. We investigated the methods using lung to liver slices of XCAT phantom. We simulated low true coincidence count-rates with high random fractions corresponding to the typical values from patient imaging in Y-90 microsphere radioembolization. We compared our new methods with standard reconstruction algorithms and NEG-ML and a regularized version thereof. Both our new method and NEG-ML allow more accurate quantification in all volumes of interest while yielding lower noise than the standard method. The performance of NEG-ML can degrade when its user-defined parameter is tuned poorly, while the proposed algorithm is robust to any count level without requiring parameter tuning.

  3. Usefulness of FC-TRIPLEX Chagas/Leish IgG1 as confirmatory assay for non-negative results in blood bank screening of Chagas disease.

    PubMed

    Campos, Fernanda Magalhães Freire; Repoles, Laura Cotta; de Araújo, Fernanda Fortes; Peruhype-Magalhães, Vanessa; Xavier, Marcelo Antônio Pascoal; Sabino, Ester Cerdeira; de Freitas Carneiro Proietti, Anna Bárbara; Andrade, Mariléia Chaves; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis; Gontijo, Célia Maria Ferreira

    2018-04-01

    A relevant issue in Chagas disease serological diagnosis regards the requirement of using several confirmatory methods to elucidate the status of non-negative results from blood bank screening. The development of a single reliable method may potentially contribute to distinguish true and false positive results. Our aim was to evaluate the performance of the multiplexed flow-cytometry anti-T. cruzi/Leishmania IgG1 serology/(FC-TRIPLEX Chagas/Leish IgG1) with three conventional confirmatory criteria (ELISA-EIA, Immunofluorescence assay-IIF and EIA/IIF consensus criterion) to define the final status of samples with actual/previous non-negative results during anti-T. cruzi ELISA-screening in blood banks. Apart from inconclusive results, the FC-TRIPLEX presented a weak agreement index with EIA, while a strong agreement was observed when either IIF or EIA/IIF consensus criteria were applied. Discriminant analysis and Spearman's correlation further corroborates the agreement scores. ROC curve analysis showed that FC-TRIPLEX performance indexes were higher when IIF and EIA/IIF consensus were used as a confirmatory criterion. Logistic regression analysis further demonstrated that the probability of FC-TRIPLEX to yield positive results was higher for inconclusive results from IIF and EIA/IIF consensus. Machine learning tools illustrated the high level of categorical agreement between FC-TRIPLEX versus IIF or EIA/IIF consensus. Together, these findings demonstrated the usefulness of FC-TRIPLEX as a tool to elucidate the status of non-negative results in blood bank screening of Chagas disease. Copyright © 2018. Published by Elsevier B.V.

  4. Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis

    PubMed Central

    Dordek, Yedidyah; Soudry, Daniel; Meir, Ron; Derdikman, Dori

    2016-01-01

    Many recent models study the downstream projection from grid cells to place cells, while recent data have pointed out the importance of the feedback projection. We thus asked how grid cells are affected by the nature of the input from the place cells. We propose a single-layer neural network with feedforward weights connecting place-like input cells to grid cell outputs. Place-to-grid weights are learned via a generalized Hebbian rule. The architecture of this network highly resembles neural networks used to perform Principal Component Analysis (PCA). Both numerical results and analytic considerations indicate that if the components of the feedforward neural network are non-negative, the output converges to a hexagonal lattice. Without the non-negativity constraint, the output converges to a square lattice. Consistent with experiments, grid spacing ratio between the first two consecutive modules is −1.4. Our results express a possible linkage between place cell to grid cell interactions and PCA. DOI: http://dx.doi.org/10.7554/eLife.10094.001 PMID:26952211

  5. Evaluation of the validity of job exposure matrix for psychosocial factors at work.

    PubMed

    Solovieva, Svetlana; Pensola, Tiina; Kausto, Johanna; Shiri, Rahman; Heliövaara, Markku; Burdorf, Alex; Husgafvel-Pursiainen, Kirsti; Viikari-Juntura, Eira

    2014-01-01

    To study the performance of a developed job exposure matrix (JEM) for the assessment of psychosocial factors at work in terms of accuracy, possible misclassification bias and predictive ability to detect known associations with depression and low back pain (LBP). We utilized two large population surveys (the Health 2000 Study and the Finnish Work and Health Surveys), one to construct the JEM and another to test matrix performance. In the first study, information on job demands, job control, monotonous work and social support at work was collected via face-to-face interviews. Job strain was operationalized based on job demands and job control using quadrant approach. In the second study, the sensitivity and specificity were estimated applying a Bayesian approach. The magnitude of misclassification error was examined by calculating the biased odds ratios as a function of the sensitivity and specificity of the JEM and fixed true prevalence and odds ratios. Finally, we adjusted for misclassification error the observed associations between JEM measures and selected health outcomes. The matrix showed a good accuracy for job control and job strain, while its performance for other exposures was relatively low. Without correction for exposure misclassification, the JEM was able to detect the association between job strain and depression in men and between monotonous work and LBP in both genders. Our results suggest that JEM more accurately identifies occupations with low control and high strain than those with high demands or low social support. Overall, the present JEM is a useful source of job-level psychosocial exposures in epidemiological studies lacking individual-level exposure information. Furthermore, we showed the applicability of a Bayesian approach in the evaluation of the performance of the JEM in a situation where, in practice, no gold standard of exposure assessment exists.

  6. Bayesian Recurrent Neural Network for Language Modeling.

    PubMed

    Chien, Jen-Tzung; Ku, Yuan-Chu

    2016-02-01

    A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.

  7. Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse Bayesian learning.

    PubMed

    Zhang, Zhilin; Jung, Tzyy-Ping; Makeig, Scott; Rao, Bhaskar D

    2013-02-01

    Fetal ECG (FECG) telemonitoring is an important branch in telemedicine. The design of a telemonitoring system via a wireless body area network with low energy consumption for ambulatory use is highly desirable. As an emerging technique, compressed sensing (CS) shows great promise in compressing/reconstructing data with low energy consumption. However, due to some specific characteristics of raw FECG recordings such as nonsparsity and strong noise contamination, current CS algorithms generally fail in this application. This paper proposes to use the block sparse Bayesian learning framework to compress/reconstruct nonsparse raw FECG recordings. Experimental results show that the framework can reconstruct the raw recordings with high quality. Especially, the reconstruction does not destroy the interdependence relation among the multichannel recordings. This ensures that the independent component analysis decomposition of the reconstructed recordings has high fidelity. Furthermore, the framework allows the use of a sparse binary sensing matrix with much fewer nonzero entries to compress recordings. Particularly, each column of the matrix can contain only two nonzero entries. This shows that the framework, compared to other algorithms such as current CS algorithms and wavelet algorithms, can greatly reduce code execution in CPU in the data compression stage.

  8. The choice of prior distribution for a covariance matrix in multivariate meta-analysis: a simulation study.

    PubMed

    Hurtado Rúa, Sandra M; Mazumdar, Madhu; Strawderman, Robert L

    2015-12-30

    Bayesian meta-analysis is an increasingly important component of clinical research, with multivariate meta-analysis a promising tool for studies with multiple endpoints. Model assumptions, including the choice of priors, are crucial aspects of multivariate Bayesian meta-analysis (MBMA) models. In a given model, two different prior distributions can lead to different inferences about a particular parameter. A simulation study was performed in which the impact of families of prior distributions for the covariance matrix of a multivariate normal random effects MBMA model was analyzed. Inferences about effect sizes were not particularly sensitive to prior choice, but the related covariance estimates were. A few families of prior distributions with small relative biases, tight mean squared errors, and close to nominal coverage for the effect size estimates were identified. Our results demonstrate the need for sensitivity analysis and suggest some guidelines for choosing prior distributions in this class of problems. The MBMA models proposed here are illustrated in a small meta-analysis example from the periodontal field and a medium meta-analysis from the study of stroke. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Supplementary material for the paper Scheduling Constrained-Deadline Sporadic Parallel

    DTIC Science & Technology

    2014-10-18

    is feasible. It can be seen in Fig. 5, that changing the domain of mbi,j,g,b from non-negative integer to non-negative real does not change the...h ′′ ∈ [0, H − 1])∧ (i ′ < i ′′ ) ∧ (h′ ≥ h′′) : xi′,j′,g′,h′ + xi′′,j′′,g′′,h′′ ≤ 1 Method 2 is like Method 1 but with the constraint above. Method...9, trp = 9,trcd = 9,twr = 10 Fig. 6: One of the systems used in our evaluation. 13

  10. Method for making 2-electron response reduced density matrices approximately N-representable

    NASA Astrophysics Data System (ADS)

    Lanssens, Caitlin; Ayers, Paul W.; Van Neck, Dimitri; De Baerdemacker, Stijn; Gunst, Klaas; Bultinck, Patrick

    2018-02-01

    In methods like geminal-based approaches or coupled cluster that are solved using the projected Schrödinger equation, direct computation of the 2-electron reduced density matrix (2-RDM) is impractical and one falls back to a 2-RDM based on response theory. However, the 2-RDMs from response theory are not N-representable. That is, the response 2-RDM does not correspond to an actual physical N-electron wave function. We present a new algorithm for making these non-N-representable 2-RDMs approximately N-representable, i.e., it has the right symmetry and normalization and it fulfills the P-, Q-, and G-conditions. Next to an algorithm which can be applied to any 2-RDM, we have also developed a 2-RDM optimization procedure specifically for seniority-zero 2-RDMs. We aim to find the 2-RDM with the right properties which is the closest (in the sense of the Frobenius norm) to the non-N-representable 2-RDM by minimizing the square norm of the difference between this initial response 2-RDM and the targeted 2-RDM under the constraint that the trace is normalized and the 2-RDM, Q-matrix, and G-matrix are positive semidefinite, i.e., their eigenvalues are non-negative. Our method is suitable for fixing non-N-representable 2-RDMs which are close to being N-representable. Through the N-representability optimization algorithm we add a small correction to the initial 2-RDM such that it fulfills the most important N-representability conditions.

  11. Fast sparse Raman spectral unmixing for chemical fingerprinting and quantification

    NASA Astrophysics Data System (ADS)

    Yaghoobi, Mehrdad; Wu, Di; Clewes, Rhea J.; Davies, Mike E.

    2016-10-01

    Raman spectroscopy is a well-established spectroscopic method for the detection of condensed phase chemicals. It is based on scattered light from exposure of a target material to a narrowband laser beam. The information generated enables presumptive identification from measuring correlation with library spectra. Whilst this approach is successful in identification of chemical information of samples with one component, it is more difficult to apply to spectral mixtures. The capability of handling spectral mixtures is crucial for defence and security applications as hazardous materials may be present as mixtures due to the presence of degradation, interferents or precursors. A novel method for spectral unmixing is proposed here. Most modern decomposition techniques are based on the sparse decomposition of mixture and the application of extra constraints to preserve the sum of concentrations. These methods have often been proposed for passive spectroscopy, where spectral baseline correction is not required. Most successful methods are computationally expensive, e.g. convex optimisation and Bayesian approaches. We present a novel low complexity sparsity based method to decompose the spectra using a reference library of spectra. It can be implemented on a hand-held spectrometer in near to real-time. The algorithm is based on iteratively subtracting the contribution of selected spectra and updating the contribution of each spectrum. The core algorithm is called fast non-negative orthogonal matching pursuit, which has been proposed by the authors in the context of nonnegative sparse representations. The iteration terminates when the maximum number of expected chemicals has been found or the residual spectrum has a negligible energy, i.e. in the order of the noise level. A backtracking step removes the least contributing spectrum from the list of detected chemicals and reports it as an alternative component. This feature is particularly useful in detection of chemicals with small contributions, which are normally not detected. The proposed algorithm is easily reconfigurable to include new library entries and optional preferential threat searches in the presence of predetermined threat indicators. Under Ministry of Defence funding, we have demonstrated the algorithm for fingerprinting and rough quantification of the concentration of chemical mixtures using a set of reference spectral mixtures. In our experiments, the algorithm successfully managed to detect the chemicals with concentrations below 10 percent. The running time of the algorithm is in the order of one second, using a single core of a desktop computer.

  12. An efficient method for model refinement in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Zirak, A. R.; Khademi, M.

    2007-11-01

    Diffuse optical tomography (DOT) is a non-linear, ill-posed, boundary value and optimization problem which necessitates regularization. Also, Bayesian methods are suitable owing to measurements data are sparse and correlated. In such problems which are solved with iterative methods, for stabilization and better convergence, the solution space must be small. These constraints subject to extensive and overdetermined system of equations which model retrieving criteria specially total least squares (TLS) must to refine model error. Using TLS is limited to linear systems which is not achievable when applying traditional Bayesian methods. This paper presents an efficient method for model refinement using regularized total least squares (RTLS) for treating on linearized DOT problem, having maximum a posteriori (MAP) estimator and Tikhonov regulator. This is done with combination Bayesian and regularization tools as preconditioner matrices, applying them to equations and then using RTLS to the resulting linear equations. The preconditioning matrixes are guided by patient specific information as well as a priori knowledge gained from the training set. Simulation results illustrate that proposed method improves the image reconstruction performance and localize the abnormally well.

  13. Recursive Bayesian recurrent neural networks for time-series modeling.

    PubMed

    Mirikitani, Derrick T; Nikolaev, Nikolay

    2010-02-01

    This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.

  14. A semiparametric Bayesian proportional hazards model for interval censored data with frailty effects.

    PubMed

    Henschel, Volkmar; Engel, Jutta; Hölzel, Dieter; Mansmann, Ulrich

    2009-02-10

    Multivariate analysis of interval censored event data based on classical likelihood methods is notoriously cumbersome. Likelihood inference for models which additionally include random effects are not available at all. Developed algorithms bear problems for practical users like: matrix inversion, slow convergence, no assessment of statistical uncertainty. MCMC procedures combined with imputation are used to implement hierarchical models for interval censored data within a Bayesian framework. Two examples from clinical practice demonstrate the handling of clustered interval censored event times as well as multilayer random effects for inter-institutional quality assessment. The software developed is called survBayes and is freely available at CRAN. The proposed software supports the solution of complex analyses in many fields of clinical epidemiology as well as health services research.

  15. Bell-polynomial approach and Wronskian determinant solutions for three sets of differential-difference nonlinear evolution equations with symbolic computation

    NASA Astrophysics Data System (ADS)

    Qin, Bo; Tian, Bo; Wang, Yu-Feng; Shen, Yu-Jia; Wang, Ming

    2017-10-01

    Under investigation in this paper are the Belov-Chaltikian (BC), Leznov and Blaszak-Marciniak (BM) lattice equations, which are associated with the conformal field theory, UToda(m_1,m_2) system and r-matrix, respectively. With symbolic computation, the Bell-polynomial approach is developed to directly bilinearize those three sets of differential-difference nonlinear evolution equations (NLEEs). This Bell-polynomial approach does not rely on any dependent variable transformation, which constitutes the key step and main difficulty of the Hirota bilinear method, and thus has the advantage in the bilinearization of the differential-difference NLEEs. Based on the bilinear forms obtained, the N-soliton solutions are constructed in terms of the N × N Wronskian determinant. Graphic illustrations demonstrate that those solutions, more general than the existing results, permit some new properties, such as the solitonic propagation and interactions for the BC lattice equations, and the nonnegative dark solitons for the BM lattice equations.

  16. Seismic signature analysis for discrimination of people from animals

    NASA Astrophysics Data System (ADS)

    Damarla, Thyagaraju; Mehmood, Asif; Sabatier, James M.

    2013-05-01

    Cadence analysis has been the main focus for discriminating between the seismic signatures of people and animals. However, cadence analysis fails when multiple targets are generating the signatures. We analyze the mechanism of human walking and the signature generated by a human walker, and compare it with the signature generated by a quadruped. We develop Fourier-based analysis to differentiate the human signatures from the animal signatures. We extract a set of basis vectors to represent the human and animal signatures using non-negative matrix factorization, and use them to separate and classify both the targets. Grazing animals such as deer, cows, etc., often produce sporadic signals as they move around from patch to patch of grass and one must characterize them so as to differentiate their signatures from signatures generated by a horse steadily walking along a path. These differences in the signatures are used in developing a robust algorithm to distinguish the signatures of animals from humans. The algorithm is tested on real data collected in a remote area.

  17. Inter- and Intrasubject Similarity of Muscle Synergies During Bench Press With Slow and Fast Velocity.

    PubMed

    Samani, Afshin; Kristiansen, Mathias

    2018-01-01

    We investigated the effect of low and high bar velocity on inter- and intrasubject similarity of muscle synergies during bench press. A total of 13 trained male subjects underwent two exercise conditions: a slow- and a fast-velocity bench press. Surface electromyography was recorded from 13 muscles, and muscle synergies were extracted using a nonnegative matrix factorization algorithm. The intrasubject similarity across conditions and intersubject similarity within conditions were computed for muscle synergy vectors and activation coefficients. Two muscle synergies were sufficient to describe the dataset variability. For the second synergy activation coefficient, the intersubject similarity within the fast-velocity condition was greater than the intrasubject similarity of the activation coefficient across the conditions. An opposite pattern was observed for the first muscle synergy vector. We concluded that the activation coefficients are robust within conditions, indicating a robust temporal pattern of muscular activity across individuals, but the muscle synergy vector seemed to be individually assigned.

  18. Improving performances of suboptimal greedy iterative biclustering heuristics via localization.

    PubMed

    Erten, Cesim; Sözdinler, Melih

    2010-10-15

    Biclustering gene expression data is the problem of extracting submatrices of genes and conditions exhibiting significant correlation across both the rows and the columns of a data matrix of expression values. Even the simplest versions of the problem are computationally hard. Most of the proposed solutions therefore employ greedy iterative heuristics that locally optimize a suitably assigned scoring function. We provide a fast and simple pre-processing algorithm called localization that reorders the rows and columns of the input data matrix in such a way as to group correlated entries in small local neighborhoods within the matrix. The proposed localization algorithm takes its roots from effective use of graph-theoretical methods applied to problems exhibiting a similar structure to that of biclustering. In order to evaluate the effectivenesss of the localization pre-processing algorithm, we focus on three representative greedy iterative heuristic methods. We show how the localization pre-processing can be incorporated into each representative algorithm to improve biclustering performance. Furthermore, we propose a simple biclustering algorithm, Random Extraction After Localization (REAL) that randomly extracts submatrices from the localization pre-processed data matrix, eliminates those with low similarity scores, and provides the rest as correlated structures representing biclusters. We compare the proposed localization pre-processing with another pre-processing alternative, non-negative matrix factorization. We show that our fast and simple localization procedure provides similar or even better results than the computationally heavy matrix factorization pre-processing with regards to H-value tests. We next demonstrate that the performances of the three representative greedy iterative heuristic methods improve with localization pre-processing when biological correlations in the form of functional enrichment and PPI verification constitute the main performance criteria. The fact that the random extraction method based on localization REAL performs better than the representative greedy heuristic methods under same criteria also confirms the effectiveness of the suggested pre-processing method. Supplementary material including code implementations in LEDA C++ library, experimental data, and the results are available at http://code.google.com/p/biclustering/ cesim@khas.edu.tr; melihsozdinler@boun.edu.tr Supplementary data are available at Bioinformatics online.

  19. KPII: Cauchy-Jost function, Darboux transformations and totally nonnegative matrices

    NASA Astrophysics Data System (ADS)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.

    2017-07-01

    Direct definition of the Cauchy-Jost (known also as Cauchy-Baker-Akhiezer) function is given in the case of a pure solitonic solution. Properties of this function are discussed in detail using the Kadomtsev-Petviashvili II equation as an example. This enables formulation of the Darboux transformations in terms of the Cauchy-Jost function and classification of these transformations. Action of Darboux transformations on Grassmanians—i.e. on the space of soliton parameters—is derived and the relation of the Darboux transformations with the property of total nonnegativity of elements of corresponding Grassmanians is discussed. To the memory of our friend and colleague Peter P Kulish

  20. Diffusion Processes Satisfying a Conservation Law Constraint

    DOE PAGES

    Bakosi, J.; Ristorcelli, J. R.

    2014-03-04

    We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less

  1. Diffusion Processes Satisfying a Conservation Law Constraint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakosi, J.; Ristorcelli, J. R.

    We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less

  2. A Cross-Lingual Similarity Measure for Detecting Biomedical Term Translations

    PubMed Central

    Bollegala, Danushka; Kontonatsios, Georgios; Ananiadou, Sophia

    2015-01-01

    Bilingual dictionaries for technical terms such as biomedical terms are an important resource for machine translation systems as well as for humans who would like to understand a concept described in a foreign language. Often a biomedical term is first proposed in English and later it is manually translated to other languages. Despite the fact that there are large monolingual lexicons of biomedical terms, only a fraction of those term lexicons are translated to other languages. Manually compiling large-scale bilingual dictionaries for technical domains is a challenging task because it is difficult to find a sufficiently large number of bilingual experts. We propose a cross-lingual similarity measure for detecting most similar translation candidates for a biomedical term specified in one language (source) from another language (target). Specifically, a biomedical term in a language is represented using two types of features: (a) intrinsic features that consist of character n-grams extracted from the term under consideration, and (b) extrinsic features that consist of unigrams and bigrams extracted from the contextual windows surrounding the term under consideration. We propose a cross-lingual similarity measure using each of those feature types. First, to reduce the dimensionality of the feature space in each language, we propose prototype vector projection (PVP)—a non-negative lower-dimensional vector projection method. Second, we propose a method to learn a mapping between the feature spaces in the source and target language using partial least squares regression (PLSR). The proposed method requires only a small number of training instances to learn a cross-lingual similarity measure. The proposed PVP method outperforms popular dimensionality reduction methods such as the singular value decomposition (SVD) and non-negative matrix factorization (NMF) in a nearest neighbor prediction task. Moreover, our experimental results covering several language pairs such as English–French, English–Spanish, English–Greek, and English–Japanese show that the proposed method outperforms several other feature projection methods in biomedical term translation prediction tasks. PMID:26030738

  3. Multiview alignment hashing for efficient image search.

    PubMed

    Liu, Li; Yu, Mengyang; Shao, Ling

    2015-03-01

    Hashing is a popular and efficient method for nearest neighbor search in large-scale data spaces by embedding high-dimensional feature descriptors into a similarity preserving Hamming space with a low dimension. For most hashing methods, the performance of retrieval heavily depends on the choice of the high-dimensional feature descriptor. Furthermore, a single type of feature cannot be descriptive enough for different images when it is used for hashing. Thus, how to combine multiple representations for learning effective hashing functions is an imminent task. In this paper, we present a novel unsupervised multiview alignment hashing approach based on regularized kernel nonnegative matrix factorization, which can find a compact representation uncovering the hidden semantics and simultaneously respecting the joint probability distribution of data. In particular, we aim to seek a matrix factorization to effectively fuse the multiple information sources meanwhile discarding the feature redundancy. Since the raised problem is regarded as nonconvex and discrete, our objective function is then optimized via an alternate way with relaxation and converges to a locally optimal solution. After finding the low-dimensional representation, the hashing functions are finally obtained through multivariable logistic regression. The proposed method is systematically evaluated on three data sets: 1) Caltech-256; 2) CIFAR-10; and 3) CIFAR-20, and the results show that our method significantly outperforms the state-of-the-art multiview hashing techniques.

  4. Co-clustering phenome–genome for phenotype classification and disease gene discovery

    PubMed Central

    Hwang, TaeHyun; Atluri, Gowtham; Xie, MaoQiang; Dey, Sanjoy; Hong, Changjin; Kumar, Vipin; Kuang, Rui

    2012-01-01

    Understanding the categorization of human diseases is critical for reliably identifying disease causal genes. Recently, genome-wide studies of abnormal chromosomal locations related to diseases have mapped >2000 phenotype–gene relations, which provide valuable information for classifying diseases and identifying candidate genes as drug targets. In this article, a regularized non-negative matrix tri-factorization (R-NMTF) algorithm is introduced to co-cluster phenotypes and genes, and simultaneously detect associations between the detected phenotype clusters and gene clusters. The R-NMTF algorithm factorizes the phenotype–gene association matrix under the prior knowledge from phenotype similarity network and protein–protein interaction network, supervised by the label information from known disease classes and biological pathways. In the experiments on disease phenotype–gene associations in OMIM and KEGG disease pathways, R-NMTF significantly improved the classification of disease phenotypes and disease pathway genes compared with support vector machines and Label Propagation in cross-validation on the annotated phenotypes and genes. The newly predicted phenotypes in each disease class are highly consistent with human phenotype ontology annotations. The roles of the new member genes in the disease pathways are examined and validated in the protein–protein interaction subnetworks. Extensive literature review also confirmed many new members of the disease classes and pathways as well as the predicted associations between disease phenotype classes and pathways. PMID:22735708

  5. Unsupervised Learning for Monaural Source Separation Using Maximization–Minimization Algorithm with Time–Frequency Deconvolution †

    PubMed Central

    Bouridane, Ahmed; Ling, Bingo Wing-Kuen

    2018-01-01

    This paper presents an unsupervised learning algorithm for sparse nonnegative matrix factor time–frequency deconvolution with optimized fractional β-divergence. The β-divergence is a group of cost functions parametrized by a single parameter β. The Itakura–Saito divergence, Kullback–Leibler divergence and Least Square distance are special cases that correspond to β=0, 1, 2, respectively. This paper presents a generalized algorithm that uses a flexible range of β that includes fractional values. It describes a maximization–minimization (MM) algorithm leading to the development of a fast convergence multiplicative update algorithm with guaranteed convergence. The proposed model operates in the time–frequency domain and decomposes an information-bearing matrix into two-dimensional deconvolution of factor matrices that represent the spectral dictionary and temporal codes. The deconvolution process has been optimized to yield sparse temporal codes through maximizing the likelihood of the observations. The paper also presents a method to estimate the fractional β value. The method is demonstrated on separating audio mixtures recorded from a single channel. The paper shows that the extraction of the spectral dictionary and temporal codes is significantly more efficient by using the proposed algorithm and subsequently leads to better source separation performance. Experimental tests and comparisons with other factorization methods have been conducted to verify its efficacy. PMID:29702629

  6. Circular Mixture Modeling of Color Distribution for Blind Stain Separation in Pathology Images.

    PubMed

    Li, Xingyu; Plataniotis, Konstantinos N

    2017-01-01

    In digital pathology, to address color variation and histological component colocalization in pathology images, stain decomposition is usually performed preceding spectral normalization and tissue component segmentation. This paper examines the problem of stain decomposition, which is a naturally nonnegative matrix factorization (NMF) problem in algebra, and introduces a systematical and analytical solution consisting of a circular color analysis module and an NMF-based computation module. Unlike the paradigm of existing stain decomposition algorithms where stain proportions are computed from estimated stain spectra using a matrix inverse operation directly, the introduced solution estimates stain spectra and stain depths via probabilistic reasoning individually. Since the proposed method pays extra attentions to achromatic pixels in color analysis and stain co-occurrence in pixel clustering, it achieves consistent and reliable stain decomposition with minimum decomposition residue. Particularly, aware of the periodic and angular nature of hue, we propose the use of a circular von Mises mixture model to analyze the hue distribution, and provide a complete color-based pixel soft-clustering solution to address color mixing introduced by stain overlap. This innovation combined with saturation-weighted computation makes our study effective for weak stains and broad-spectrum stains. Extensive experimentation on multiple public pathology datasets suggests that our approach outperforms state-of-the-art blind stain separation methods in terms of decomposition effectiveness.

  7. Learning Microbial Community Structures with Supervised and Unsupervised Non-negative Matrix Factorization.

    PubMed

    Cai, Yun; Gu, Hong; Kenney, Toby

    2017-08-31

    Learning the structure of microbial communities is critical in understanding the different community structures and functions of microbes in distinct individuals. We view microbial communities as consisting of many subcommunities which are formed by certain groups of microbes functionally dependent on each other. The focus of this paper is on methods for extracting the subcommunities from the data, in particular Non-Negative Matrix Factorization (NMF). Our methods can be applied to both OTU data and functional metagenomic data. We apply the existing unsupervised NMF method and also develop a new supervised NMF method for extracting interpretable information from classification problems. The relevance of the subcommunities identified by NMF is demonstrated by their excellent performance for classification. Through three data examples, we demonstrate how to interpret the features identified by NMF to draw meaningful biological conclusions and discover hitherto unidentified patterns in the data. Comparing whole metagenomes of various mammals, (Muegge et al., Science 332:970-974, 2011), the biosynthesis of macrolides pathway is found in hindgut-fermenting herbivores, but not carnivores. This is consistent with results in veterinary science that macrolides should not be given to non-ruminant herbivores. For time series microbiome data from various body sites (Caporaso et al., Genome Biol 12:50, 2011), a shift in the microbial communities is identified for one individual. The shift occurs at around the same time in the tongue and gut microbiomes, indicating that the shift is a genuine biological trait, rather than an artefact of the method. For whole metagenome data from IBD patients and healthy controls (Qin et al., Nature 464:59-65, 2010), we identify differences in a number of pathways (some known, others new). NMF is a powerful tool for identifying the key features of microbial communities. These identified features can not only be used to perform difficult classification problems with a high degree of accuracy, they are also very interpretable and can lead to important biological insights into the structure of the communities. In addition, NMF is a dimension-reduction method (similar to PCA) in that it reduces the extremely complex microbial data into a low-dimensional representation, allowing a number of analyses to be performed more easily-for example, searching for temporal patterns in the microbiome. When we are interested in the differences between the structures of two groups of communities, supervised NMF provides a better way to do this, while retaining all the advantages of NMF-e.g. interpretability and a simple biological intuition.

  8. A Fast Numerical Method for Max-Convolution and the Application to Efficient Max-Product Inference in Bayesian Networks.

    PubMed

    Serang, Oliver

    2015-08-01

    Observations depending on sums of random variables are common throughout many fields; however, no efficient solution is currently known for performing max-product inference on these sums of general discrete distributions (max-product inference can be used to obtain maximum a posteriori estimates). The limiting step to max-product inference is the max-convolution problem (sometimes presented in log-transformed form and denoted as "infimal convolution," "min-convolution," or "convolution on the tropical semiring"), for which no O(k log(k)) method is currently known. Presented here is an O(k log(k)) numerical method for estimating the max-convolution of two nonnegative vectors (e.g., two probability mass functions), where k is the length of the larger vector. This numerical max-convolution method is then demonstrated by performing fast max-product inference on a convolution tree, a data structure for performing fast inference given information on the sum of n discrete random variables in O(nk log(nk)log(n)) steps (where each random variable has an arbitrary prior distribution on k contiguous possible states). The numerical max-convolution method can be applied to specialized classes of hidden Markov models to reduce the runtime of computing the Viterbi path from nk(2) to nk log(k), and has potential application to the all-pairs shortest paths problem.

  9. CTPPL: A Continuous Time Probabilistic Programming Language

    DTIC Science & Technology

    2009-07-01

    recent years there has been a flurry of interest in continuous time models, mostly focused on continuous time Bayesian networks ( CTBNs ) [Nodelman, 2007... CTBNs are built on homogenous Markov processes. A homogenous Markov pro- cess is a finite state, continuous time process, consisting of an initial...q1 : xn()] ... Some state transitions can produce emissions. In a CTBN , each variable has a conditional inten- sity matrix Qu for every combination of

  10. Bayesian network meta-analysis of root coverage procedures: ranking efficacy and identification of best treatment.

    PubMed

    Buti, Jacopo; Baccini, Michela; Nieri, Michele; La Marca, Michele; Pini-Prato, Giovan P

    2013-04-01

    The aim of this work was to conduct a Bayesian network meta-analysis (NM) of randomized controlled trials (RCTs) to establish a ranking in efficacy and the best technique for coronally advanced flap (CAF)-based root coverage procedures. A literature search on PubMed, Cochrane libraries, EMBASE, and hand-searched journals until June 2012 was conducted to identify RCTs on treatments of Miller Class I and II gingival recessions with at least 6 months of follow-up. The treatment outcomes were recession reduction (RecRed), clinical attachment gain (CALgain), keratinized tissue gain (KTgain), and complete root coverage (CRC). Twenty-nine studies met the inclusion criteria, 20 of which were classified as at high risk of bias. The CAF+connective tissue graft (CTG) combination ranked highest in effectiveness for RecRed (Probability of being the best = 40%) and CALgain (Pr = 33%); CAF+enamel matrix derivative (EMD) was slightly better for CRC; CAF+Collagen Matrix (CM) appeared effective for KTgain (Pr = 69%). Network inconsistency was low for all outcomes excluding CALgain. CAF+CTG might be considered the gold standard in root coverage procedures. The low amount of inconsistency gives support to the reliability of the present findings. © 2012 John Wiley & Sons A/S.

  11. Discriminative Relational Topic Models.

    PubMed

    Chen, Ning; Zhu, Jun; Xia, Fei; Zhang, Bo

    2015-05-01

    Relational topic models (RTMs) provide a probabilistic generative process to describe both the link structure and document contents for document networks, and they have shown promise on predicting network structures and discovering latent topic representations. However, existing RTMs have limitations in both the restricted model expressiveness and incapability of dealing with imbalanced network data. To expand the scope and improve the inference accuracy of RTMs, this paper presents three extensions: 1) unlike the common link likelihood with a diagonal weight matrix that allows the-same-topic interactions only, we generalize it to use a full weight matrix that captures all pairwise topic interactions and is applicable to asymmetric networks; 2) instead of doing standard Bayesian inference, we perform regularized Bayesian inference (RegBayes) with a regularization parameter to deal with the imbalanced link structure issue in real networks and improve the discriminative ability of learned latent representations; and 3) instead of doing variational approximation with strict mean-field assumptions, we present collapsed Gibbs sampling algorithms for the generalized relational topic models by exploring data augmentation without making restricting assumptions. Under the generic RegBayes framework, we carefully investigate two popular discriminative loss functions, namely, the logistic log-loss and the max-margin hinge loss. Experimental results on several real network datasets demonstrate the significance of these extensions on improving prediction performance.

  12. Is a matrix exponential specification suitable for the modeling of spatial correlation structures?

    PubMed Central

    Strauß, Magdalena E.; Mezzetti, Maura; Leorato, Samantha

    2018-01-01

    This paper investigates the adequacy of the matrix exponential spatial specifications (MESS) as an alternative to the widely used spatial autoregressive models (SAR). To provide as complete a picture as possible, we extend the analysis to all the main spatial models governed by matrix exponentials comparing them with their spatial autoregressive counterparts. We propose a new implementation of Bayesian parameter estimation for the MESS model with vague prior distributions, which is shown to be precise and computationally efficient. Our implementations also account for spatially lagged regressors. We further allow for location-specific heterogeneity, which we model by including spatial splines. We conclude by comparing the performances of the different model specifications in applications to a real data set and by running simulations. Both the applications and the simulations suggest that the spatial splines are a flexible and efficient way to account for spatial heterogeneities governed by unknown mechanisms. PMID:29492375

  13. Bayesian inference of the number of factors in gene-expression analysis: application to human virus challenge studies.

    PubMed

    Chen, Bo; Chen, Minhua; Paisley, John; Zaas, Aimee; Woods, Christopher; Ginsburg, Geoffrey S; Hero, Alfred; Lucas, Joseph; Dunson, David; Carin, Lawrence

    2010-11-09

    Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis. Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches. Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.

  14. Evaluation of the Validity of Job Exposure Matrix for Psychosocial Factors at Work

    PubMed Central

    Solovieva, Svetlana; Pensola, Tiina; Kausto, Johanna; Shiri, Rahman; Heliövaara, Markku; Burdorf, Alex; Husgafvel-Pursiainen, Kirsti; Viikari-Juntura, Eira

    2014-01-01

    Objective To study the performance of a developed job exposure matrix (JEM) for the assessment of psychosocial factors at work in terms of accuracy, possible misclassification bias and predictive ability to detect known associations with depression and low back pain (LBP). Materials and Methods We utilized two large population surveys (the Health 2000 Study and the Finnish Work and Health Surveys), one to construct the JEM and another to test matrix performance. In the first study, information on job demands, job control, monotonous work and social support at work was collected via face-to-face interviews. Job strain was operationalized based on job demands and job control using quadrant approach. In the second study, the sensitivity and specificity were estimated applying a Bayesian approach. The magnitude of misclassification error was examined by calculating the biased odds ratios as a function of the sensitivity and specificity of the JEM and fixed true prevalence and odds ratios. Finally, we adjusted for misclassification error the observed associations between JEM measures and selected health outcomes. Results The matrix showed a good accuracy for job control and job strain, while its performance for other exposures was relatively low. Without correction for exposure misclassification, the JEM was able to detect the association between job strain and depression in men and between monotonous work and LBP in both genders. Conclusions Our results suggest that JEM more accurately identifies occupations with low control and high strain than those with high demands or low social support. Overall, the present JEM is a useful source of job-level psychosocial exposures in epidemiological studies lacking individual-level exposure information. Furthermore, we showed the applicability of a Bayesian approach in the evaluation of the performance of the JEM in a situation where, in practice, no gold standard of exposure assessment exists. PMID:25268276

  15. How quantum are non-negative wavefunctions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastings, M. B.

    2016-01-15

    We consider wavefunctions which are non-negative in some tensor product basis. We study what possible teleportation can occur in such wavefunctions, giving a complete answer in some cases (when one system is a qubit) and partial answers elsewhere. We use this to show that a one-dimensional wavefunction which is non-negative and has zero correlation length can be written in a “coherent Gibbs state” form, as explained later. We conjecture that such holds in higher dimensions. Additionally, some results are provided on possible teleportation in general wavefunctions, explaining how Schmidt coefficients before measurement limit the possible Schmidt coefficients after measurement, andmore » on the absence of a “generalized area law” [D. Aharonov et al., in Proceedings of Foundations of Computer Science (FOCS) (IEEE, 2014), p. 246; e-print arXiv.org:1410.0951] even for Hamiltonians with no sign problem. One of the motivations for this work is an attempt to prove a conjecture about ground state wavefunctions which have an “intrinsic” sign problem that cannot be removed by any quantum circuit. We show a weaker version of this, showing that the sign problem is intrinsic for commuting Hamiltonians in the same phase as the double semion model under the technical assumption that TQO-2 holds [S. Bravyi et al., J. Math. Phys. 51, 093512 (2010)].« less

  16. Online Multi-Modal Robust Non-Negative Dictionary Learning for Visual Tracking

    PubMed Central

    Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang

    2015-01-01

    Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality. PMID:25961715

  17. Online multi-modal robust non-negative dictionary learning for visual tracking.

    PubMed

    Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang

    2015-01-01

    Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality.

  18. A locally conservative non-negative finite element formulation for anisotropic advective-diffusive-reactive systems

    NASA Astrophysics Data System (ADS)

    Mudunuru, M. K.; Shabouei, M.; Nakshatrala, K.

    2015-12-01

    Advection-diffusion-reaction (ADR) equations appear in various areas of life sciences, hydrogeological systems, and contaminant transport. Obtaining stable and accurate numerical solutions can be challenging as the underlying equations are coupled, nonlinear, and non-self-adjoint. Currently, there is neither a robust computational framework available nor a reliable commercial package known that can handle various complex situations. Herein, the objective of this poster presentation is to present a novel locally conservative non-negative finite element formulation that preserves the underlying physical and mathematical properties of a general linear transient anisotropic ADR equation. In continuous setting, governing equations for ADR systems possess various important properties. In general, all these properties are not inherited during finite difference, finite volume, and finite element discretizations. The objective of this poster presentation is two fold: First, we analyze whether the existing numerical formulations (such as SUPG and GLS) and commercial packages provide physically meaningful values for the concentration of the chemical species for various realistic benchmark problems. Furthermore, we also quantify the errors incurred in satisfying the local and global species balance for two popular chemical kinetics schemes: CDIMA (chlorine dioxide-iodine-malonic acid) and BZ (Belousov--Zhabotinsky). Based on these numerical simulations, we show that SUPG and GLS produce unphysical values for concentration of chemical species due to the violation of the non-negative constraint, contain spurious node-to-node oscillations, and have large errors in local and global species balance. Second, we proposed a novel finite element formulation to overcome the above difficulties. The proposed locally conservative non-negative computational framework based on low-order least-squares finite elements is able to preserve these underlying physical and mathematical properties. Several representative numerical examples are discussed to illustrate the importance of the proposed numerical formulations to accurately describe various aspects of mixing process in chaotic flows and to simulate transport in highly heterogeneous anisotropic media.

  19. Long term economic relationships from cointegration maps

    NASA Astrophysics Data System (ADS)

    Vicente, Renato; Pereira, Carlos de B.; Leite, Vitor B. P.; Caticha, Nestor

    2007-07-01

    We employ the Bayesian framework to define a cointegration measure aimed to represent long term relationships between time series. For visualization of these relationships we introduce a dissimilarity matrix and a map based on the sorting points into neighborhoods (SPIN) technique, which has been previously used to analyze large data sets from DNA arrays. We exemplify the technique in three data sets: US interest rates (USIR), monthly inflation rates and gross domestic product (GDP) growth rates.

  20. Authorship Discovery in Blogs Using Bayesian Classification with Corrective Scaling

    DTIC Science & Technology

    2008-06-01

    4 2.3 W. Fucks ’ Diagram of n-Syllable Word Frequencies . . . . . . . . . . . . . . 5 3.1 Confusion Matrix for All Test Documents of 500...of the books which scholars believed he had. • Wilhelm Fucks discriminated between authors using the average number of syllables per word and average...distance between equal-syllabled words [8]. Fucks , too, concluded that a study such as his reveals a “possibility of a quantitative classification

  1. Bayesian Analysis of Biogeography when the Number of Areas is Large

    PubMed Central

    Landis, Michael J.; Matzke, Nicholas J.; Moore, Brian R.; Huelsenbeck, John P.

    2013-01-01

    Historical biogeography is increasingly studied from an explicitly statistical perspective, using stochastic models to describe the evolution of species range as a continuous-time Markov process of dispersal between and extinction within a set of discrete geographic areas. The main constraint of these methods is the computational limit on the number of areas that can be specified. We propose a Bayesian approach for inferring biogeographic history that extends the application of biogeographic models to the analysis of more realistic problems that involve a large number of areas. Our solution is based on a “data-augmentation” approach, in which we first populate the tree with a history of biogeographic events that is consistent with the observed species ranges at the tips of the tree. We then calculate the likelihood of a given history by adopting a mechanistic interpretation of the instantaneous-rate matrix, which specifies both the exponential waiting times between biogeographic events and the relative probabilities of each biogeographic change. We develop this approach in a Bayesian framework, marginalizing over all possible biogeographic histories using Markov chain Monte Carlo (MCMC). Besides dramatically increasing the number of areas that can be accommodated in a biogeographic analysis, our method allows the parameters of a given biogeographic model to be estimated and different biogeographic models to be objectively compared. Our approach is implemented in the program, BayArea. [ancestral area analysis; Bayesian biogeographic inference; data augmentation; historical biogeography; Markov chain Monte Carlo.] PMID:23736102

  2. Unlocking the spatial inversion of large scanning magnetic microscopy datasets

    NASA Astrophysics Data System (ADS)

    Myre, J. M.; Lascu, I.; Andrade Lima, E.; Feinberg, J. M.; Saar, M. O.; Weiss, B. P.

    2013-12-01

    Modern scanning magnetic microscopy provides the ability to perform high-resolution, ultra-high sensitivity moment magnetometry, with spatial resolutions better than 10^-4 m and magnetic moments as weak as 10^-16 Am^2. These microscopy capabilities have enhanced numerous magnetic studies, including investigations of the paleointensity of the Earth's magnetic field, shock magnetization and demagnetization of impacts, magnetostratigraphy, the magnetic record in speleothems, and the records of ancient core dynamos of planetary bodies. A common component among many studies utilizing scanning magnetic microscopy is solving an inverse problem to determine the non-negative magnitude of the magnetic moments that produce the measured component of the magnetic field. The two most frequently used methods to solve this inverse problem are classic fast Fourier techniques in the frequency domain and non-negative least squares (NNLS) methods in the spatial domain. Although Fourier techniques are extremely fast, they typically violate non-negativity and it is difficult to implement constraints associated with the space domain. NNLS methods do not violate non-negativity, but have typically been computation time prohibitive for samples of practical size or resolution. Existing NNLS methods use multiple techniques to attain tractable computation. To reduce computation time in the past, typically sample size or scan resolution would have to be reduced. Similarly, multiple inversions of smaller sample subdivisions can be performed, although this frequently results in undesirable artifacts at subdivision boundaries. Dipole interactions can also be filtered to only compute interactions above a threshold which enables the use of sparse methods through artificial sparsity. To improve upon existing spatial domain techniques, we present the application of the TNT algorithm, named TNT as it is a "dynamite" non-negative least squares algorithm which enhances the performance and accuracy of spatial domain inversions. We show that the TNT algorithm reduces the execution time of spatial domain inversions from months to hours and that inverse solution accuracy is improved as the TNT algorithm naturally produces solutions with small norms. Using sIRM and NRM measures of multiple synthetic and natural samples we show that the capabilities of the TNT algorithm allow very large samples to be inverted without the need for alternative techniques to make the problems tractable. Ultimately, the TNT algorithm enables accurate spatial domain analysis of scanning magnetic microscopy data on an accelerated time scale that renders spatial domain analyses tractable for numerous studies, including searches for the best fit of unidirectional magnetization direction and high-resolution step-wise magnetization and demagnetization.

  3. Unsupervised Unmixing of Hyperspectral Images Accounting for Endmember Variability.

    PubMed

    Halimi, Abderrahim; Dobigeon, Nicolas; Tourneret, Jean-Yves

    2015-12-01

    This paper presents an unsupervised Bayesian algorithm for hyperspectral image unmixing, accounting for endmember variability. The pixels are modeled by a linear combination of endmembers weighted by their corresponding abundances. However, the endmembers are assumed random to consider their variability in the image. An additive noise is also considered in the proposed model, generalizing the normal compositional model. The proposed algorithm exploits the whole image to benefit from both spectral and spatial information. It estimates both the mean and the covariance matrix of each endmember in the image. This allows the behavior of each material to be analyzed and its variability to be quantified in the scene. A spatial segmentation is also obtained based on the estimated abundances. In order to estimate the parameters associated with the proposed Bayesian model, we propose to use a Hamiltonian Monte Carlo algorithm. The performance of the resulting unmixing strategy is evaluated through simulations conducted on both synthetic and real data.

  4. Imprints of spherical nontrivial topologies on the cosmic microwave background.

    PubMed

    Niarchou, Anastasia; Jaffe, Andrew

    2007-08-24

    The apparent low power in the cosmic microwave background (CMB) temperature anisotropy power spectrum derived from the Wilkinson Microwave Anisotropy Probe motivated us to consider the possibility of a nontrivial topology. We focus on simple spherical multiconnected manifolds and discuss their implications for the CMB in terms of the power spectrum, maps, and the correlation matrix. We perform a Bayesian model comparison against the fiducial best-fit cold dark matter model with a cosmological constant based both on the power spectrum and the correlation matrix to assess their statistical significance. We find that the first-year power spectrum shows a slight preference for the truncated cube space, but the three-year data show no evidence for any of these spaces.

  5. Intelligent Decisions Need Intelligent Choice of Models and Data - a Bayesian Justifiability Analysis for Models with Vastly Different Complexity

    NASA Astrophysics Data System (ADS)

    Nowak, W.; Schöniger, A.; Wöhling, T.; Illman, W. A.

    2016-12-01

    Model-based decision support requires justifiable models with good predictive capabilities. This, in turn, calls for a fine adjustment between predictive accuracy (small systematic model bias that can be achieved with rather complex models), and predictive precision (small predictive uncertainties that can be achieved with simpler models with fewer parameters). The implied complexity/simplicity trade-off depends on the availability of informative data for calibration. If not available, additional data collection can be planned through optimal experimental design. We present a model justifiability analysis that can compare models of vastly different complexity. It rests on Bayesian model averaging (BMA) to investigate the complexity/performance trade-off dependent on data availability. Then, we disentangle the complexity component from the performance component. We achieve this by replacing actually observed data by realizations of synthetic data predicted by the models. This results in a "model confusion matrix". Based on this matrix, the modeler can identify the maximum model complexity that can be justified by the available (or planned) amount and type of data. As a side product, the matrix quantifies model (dis-)similarity. We apply this analysis to aquifer characterization via hydraulic tomography, comparing four models with a vastly different number of parameters (from a homogeneous model to geostatistical random fields). As a testing scenario, we consider hydraulic tomography data. Using subsets of these data, we determine model justifiability as a function of data set size. The test case shows that geostatistical parameterization requires a substantial amount of hydraulic tomography data to be justified, while a zonation-based model can be justified with more limited data set sizes. The actual model performance (as opposed to model justifiability), however, depends strongly on the quality of prior geological information.

  6. Towards a formal genealogical classification of the Lezgian languages (North Caucasus): testing various phylogenetic methods on lexical data.

    PubMed

    Kassian, Alexei

    2015-01-01

    A lexicostatistical classification is proposed for 20 languages and dialects of the Lezgian group of the North Caucasian family, based on meticulously compiled 110-item wordlists, published as part of the Global Lexicostatistical Database project. The lexical data have been subsequently analyzed with the aid of the principal phylogenetic methods, both distance-based and character-based: Starling neighbor joining (StarlingNJ), Neighbor joining (NJ), Unweighted pair group method with arithmetic mean (UPGMA), Bayesian Markov chain Monte Carlo (MCMC), Unweighted maximum parsimony (UMP). Cognation indexes within the input matrix were marked by two different algorithms: traditional etymological approach and phonetic similarity, i.e., the automatic method of consonant classes (Levenshtein distances). Due to certain reasons (first of all, high lexicographic quality of the wordlists and a consensus about the Lezgian phylogeny among Caucasologists), the Lezgian database is a perfect testing area for appraisal of phylogenetic methods. For the etymology-based input matrix, all the phylogenetic methods, with the possible exception of UMP, have yielded trees that are sufficiently compatible with each other to generate a consensus phylogenetic tree of the Lezgian lects. The obtained consensus tree agrees with the traditional expert classification as well as some of the previously proposed formal classifications of this linguistic group. Contrary to theoretical expectations, the UMP method has suggested the least plausible tree of all. In the case of the phonetic similarity-based input matrix, the distance-based methods (StarlingNJ, NJ, UPGMA) have produced the trees that are rather close to the consensus etymology-based tree and the traditional expert classification, whereas the character-based methods (Bayesian MCMC, UMP) have yielded less likely topologies.

  7. Towards a Formal Genealogical Classification of the Lezgian Languages (North Caucasus): Testing Various Phylogenetic Methods on Lexical Data

    PubMed Central

    Kassian, Alexei

    2015-01-01

    A lexicostatistical classification is proposed for 20 languages and dialects of the Lezgian group of the North Caucasian family, based on meticulously compiled 110-item wordlists, published as part of the Global Lexicostatistical Database project. The lexical data have been subsequently analyzed with the aid of the principal phylogenetic methods, both distance-based and character-based: Starling neighbor joining (StarlingNJ), Neighbor joining (NJ), Unweighted pair group method with arithmetic mean (UPGMA), Bayesian Markov chain Monte Carlo (MCMC), Unweighted maximum parsimony (UMP). Cognation indexes within the input matrix were marked by two different algorithms: traditional etymological approach and phonetic similarity, i.e., the automatic method of consonant classes (Levenshtein distances). Due to certain reasons (first of all, high lexicographic quality of the wordlists and a consensus about the Lezgian phylogeny among Caucasologists), the Lezgian database is a perfect testing area for appraisal of phylogenetic methods. For the etymology-based input matrix, all the phylogenetic methods, with the possible exception of UMP, have yielded trees that are sufficiently compatible with each other to generate a consensus phylogenetic tree of the Lezgian lects. The obtained consensus tree agrees with the traditional expert classification as well as some of the previously proposed formal classifications of this linguistic group. Contrary to theoretical expectations, the UMP method has suggested the least plausible tree of all. In the case of the phonetic similarity-based input matrix, the distance-based methods (StarlingNJ, NJ, UPGMA) have produced the trees that are rather close to the consensus etymology-based tree and the traditional expert classification, whereas the character-based methods (Bayesian MCMC, UMP) have yielded less likely topologies. PMID:25719456

  8. Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water flows in open channels

    NASA Astrophysics Data System (ADS)

    Qian, Shouguo; Li, Gang; Shao, Fengjing; Xing, Yulong

    2018-05-01

    We construct and study efficient high order discontinuous Galerkin methods for the shallow water flows in open channels with irregular geometry and a non-flat bottom topography in this paper. The proposed methods are well-balanced for the still water steady state solution, and can preserve the non-negativity of wet cross section numerically. The well-balanced property is obtained via a novel source term separation and discretization. A simple positivity-preserving limiter is employed to provide efficient and robust simulations near the wetting and drying fronts. Numerical examples are performed to verify the well-balanced property, the non-negativity of the wet cross section, and good performance for both continuous and discontinuous solutions.

  9. MCA-NMF: Multimodal Concept Acquisition with Non-Negative Matrix Factorization

    PubMed Central

    Mangin, Olivier; Filliat, David; ten Bosch, Louis; Oudeyer, Pierre-Yves

    2015-01-01

    In this paper we introduce MCA-NMF, a computational model of the acquisition of multimodal concepts by an agent grounded in its environment. More precisely our model finds patterns in multimodal sensor input that characterize associations across modalities (speech utterances, images and motion). We propose this computational model as an answer to the question of how some class of concepts can be learnt. In addition, the model provides a way of defining such a class of plausibly learnable concepts. We detail why the multimodal nature of perception is essential to reduce the ambiguity of learnt concepts as well as to communicate about them through speech. We then present a set of experiments that demonstrate the learning of such concepts from real non-symbolic data consisting of speech sounds, images, and motions. Finally we consider structure in perceptual signals and demonstrate that a detailed knowledge of this structure, named compositional understanding can emerge from, instead of being a prerequisite of, global understanding. An open-source implementation of the MCA-NMF learner as well as scripts and associated experimental data to reproduce the experiments are publicly available. PMID:26489021

  10. FISSA: A neuropil decontamination toolbox for calcium imaging signals.

    PubMed

    Keemink, Sander W; Lowe, Scott C; Pakan, Janelle M P; Dylda, Evelyn; van Rossum, Mark C W; Rochefort, Nathalie L

    2018-02-22

    In vivo calcium imaging has become a method of choice to image neuronal population activity throughout the nervous system. These experiments generate large sequences of images. Their analysis is computationally intensive and typically involves motion correction, image segmentation into regions of interest (ROIs), and extraction of fluorescence traces from each ROI. Out of focus fluorescence from surrounding neuropil and other cells can strongly contaminate the signal assigned to a given ROI. In this study, we introduce the FISSA toolbox (Fast Image Signal Separation Analysis) for neuropil decontamination. Given pre-defined ROIs, the FISSA toolbox automatically extracts the surrounding local neuropil and performs blind-source separation with non-negative matrix factorization. Using both simulated and in vivo data, we show that this toolbox performs similarly or better than existing published methods. FISSA requires only little RAM, and allows for fast processing of large datasets even on a standard laptop. The FISSA toolbox is available in Python, with an option for MATLAB format outputs, and can easily be integrated into existing workflows. It is available from Github and the standard Python repositories.

  11. Children With and Without Dystonia Share Common Muscle Synergies While Performing Writing Tasks.

    PubMed

    Lunardini, Francesca; Casellato, Claudia; Bertucco, Matteo; Sanger, Terence D; Pedrocchi, Alessandra

    2017-08-01

    Childhood dystonia is a movement disorder characterized by muscle overflow and variability. This is the first study that investigates upper limb muscle synergies in childhood dystonia with the twofold aim of deepening the understanding of neuromotor dysfunctions and paving the way to possible synergy-based myocontrol interfaces suitable for this neurological population. Nonnegative matrix factorization was applied to the activity of upper-limb muscles recorded during the execution of writing tasks in children with dystonia and age-matched controls. Despite children with dystonia presented compromised kinematics of the writing outcome, a strikingly similarity emerged in the number and structure of the synergy vectors extracted from children in the two groups. The analysis also revealed that the timing of activation of the synergy coefficients did not significantly differ, while the amplitude of the peaks presented a slight reduction. These results suggest that the synergy analysis has the ability of capturing the uncorrupted part of the electromyographic signal in dystonia. Such an ability supports a possible future use of muscle synergies in the design of myocontrol interfaces for children with dystonia.

  12. Multispectral analysis tools can increase utility of RGB color images in histology

    NASA Astrophysics Data System (ADS)

    Fereidouni, Farzad; Griffin, Croix; Todd, Austin; Levenson, Richard

    2018-04-01

    Multispectral imaging (MSI) is increasingly finding application in the study and characterization of biological specimens. However, the methods typically used come with challenges on both the acquisition and the analysis front. MSI can be slow and photon-inefficient, leading to long imaging times and possible phototoxicity and photobleaching. The resulting datasets can be large and complex, prompting the development of a number of mathematical approaches for segmentation and signal unmixing. We show that under certain circumstances, just three spectral channels provided by standard color cameras, coupled with multispectral analysis tools, including a more recent spectral phasor approach, can efficiently provide useful insights. These findings are supported with a mathematical model relating spectral bandwidth and spectral channel number to achievable spectral accuracy. The utility of 3-band RGB and MSI analysis tools are demonstrated on images acquired using brightfield and fluorescence techniques, as well as a novel microscopy approach employing UV-surface excitation. Supervised linear unmixing, automated non-negative matrix factorization and phasor analysis tools all provide useful results, with phasors generating particularly helpful spectral display plots for sample exploration.

  13. Methods for biological data integration: perspectives and challenges

    PubMed Central

    Gligorijević, Vladimir; Pržulj, Nataša

    2015-01-01

    Rapid technological advances have led to the production of different types of biological data and enabled construction of complex networks with various types of interactions between diverse biological entities. Standard network data analysis methods were shown to be limited in dealing with such heterogeneous networked data and consequently, new methods for integrative data analyses have been proposed. The integrative methods can collectively mine multiple types of biological data and produce more holistic, systems-level biological insights. We survey recent methods for collective mining (integration) of various types of networked biological data. We compare different state-of-the-art methods for data integration and highlight their advantages and disadvantages in addressing important biological problems. We identify the important computational challenges of these methods and provide a general guideline for which methods are suited for specific biological problems, or specific data types. Moreover, we propose that recent non-negative matrix factorization-based approaches may become the integration methodology of choice, as they are well suited and accurate in dealing with heterogeneous data and have many opportunities for further development. PMID:26490630

  14. Endmember extraction from hyperspectral image based on discrete firefly algorithm (EE-DFA)

    NASA Astrophysics Data System (ADS)

    Zhang, Chengye; Qin, Qiming; Zhang, Tianyuan; Sun, Yuanheng; Chen, Chao

    2017-04-01

    This study proposed a novel method to extract endmembers from hyperspectral image based on discrete firefly algorithm (EE-DFA). Endmembers are the input of many spectral unmixing algorithms. Hence, in this paper, endmember extraction from hyperspectral image is regarded as a combinational optimization problem to get best spectral unmixing results, which can be solved by the discrete firefly algorithm. Two series of experiments were conducted on the synthetic hyperspectral datasets with different SNR and the AVIRIS Cuprite dataset, respectively. The experimental results were compared with the endmembers extracted by four popular methods: the sequential maximum angle convex cone (SMACC), N-FINDR, Vertex Component Analysis (VCA), and Minimum Volume Constrained Nonnegative Matrix Factorization (MVC-NMF). What's more, the effect of the parameters in the proposed method was tested on both synthetic hyperspectral datasets and AVIRIS Cuprite dataset, and the recommended parameters setting was proposed. The results in this study demonstrated that the proposed EE-DFA method showed better performance than the existing popular methods. Moreover, EE-DFA is robust under different SNR conditions.

  15. Stoichiometric network theory for nonequilibrium biochemical systems.

    PubMed

    Qian, Hong; Beard, Daniel A; Liang, Shou-dan

    2003-02-01

    We introduce the basic concepts and develop a theory for nonequilibrium steady-state biochemical systems applicable to analyzing large-scale complex isothermal reaction networks. In terms of the stoichiometric matrix, we demonstrate both Kirchhoff's flux law sigma(l)J(l)=0 over a biochemical species, and potential law sigma(l) mu(l)=0 over a reaction loop. They reflect mass and energy conservation, respectively. For each reaction, its steady-state flux J can be decomposed into forward and backward one-way fluxes J = J+ - J-, with chemical potential difference deltamu = RT ln(J-/J+). The product -Jdeltamu gives the isothermal heat dissipation rate, which is necessarily non-negative according to the second law of thermodynamics. The stoichiometric network theory (SNT) embodies all of the relevant fundamental physics. Knowing J and deltamu of a biochemical reaction, a conductance can be computed which directly reflects the level of gene expression for the particular enzyme. For sufficiently small flux a linear relationship between J and deltamu can be established as the linear flux-force relation in irreversible thermodynamics, analogous to Ohm's law in electrical circuits.

  16. Wavelet-based unsupervised learning method for electrocardiogram suppression in surface electromyograms.

    PubMed

    Niegowski, Maciej; Zivanovic, Miroslav

    2016-03-01

    We present a novel approach aimed at removing electrocardiogram (ECG) perturbation from single-channel surface electromyogram (EMG) recordings by means of unsupervised learning of wavelet-based intensity images. The general idea is to combine the suitability of certain wavelet decomposition bases which provide sparse electrocardiogram time-frequency representations, with the capacity of non-negative matrix factorization (NMF) for extracting patterns from images. In order to overcome convergence problems which often arise in NMF-related applications, we design a novel robust initialization strategy which ensures proper signal decomposition in a wide range of ECG contamination levels. Moreover, the method can be readily used because no a priori knowledge or parameter adjustment is needed. The proposed method was evaluated on real surface EMG signals against two state-of-the-art unsupervised learning algorithms and a singular spectrum analysis based method. The results, expressed in terms of high-to-low energy ratio, normalized median frequency, spectral power difference and normalized average rectified value, suggest that the proposed method enables better ECG-EMG separation quality than the reference methods. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Robust demarcation of basal cell carcinoma by dependent component analysis-based segmentation of multi-spectral fluorescence images.

    PubMed

    Kopriva, Ivica; Persin, Antun; Puizina-Ivić, Neira; Mirić, Lina

    2010-07-02

    This study was designed to demonstrate robust performance of the novel dependent component analysis (DCA)-based approach to demarcation of the basal cell carcinoma (BCC) through unsupervised decomposition of the red-green-blue (RGB) fluorescent image of the BCC. Robustness to intensity fluctuation is due to the scale invariance property of DCA algorithms, which exploit spectral and spatial diversities between the BCC and the surrounding tissue. Used filtering-based DCA approach represents an extension of the independent component analysis (ICA) and is necessary in order to account for statistical dependence that is induced by spectral similarity between the BCC and surrounding tissue. This generates weak edges what represents a challenge for other segmentation methods as well. By comparative performance analysis with state-of-the-art image segmentation methods such as active contours (level set), K-means clustering, non-negative matrix factorization, ICA and ratio imaging we experimentally demonstrate good performance of DCA-based BCC demarcation in two demanding scenarios where intensity of the fluorescent image has been varied almost two orders of magnitude. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Distributed Unmixing of Hyperspectral Datawith Sparsity Constraint

    NASA Astrophysics Data System (ADS)

    Khoshsokhan, S.; Rajabi, R.; Zayyani, H.

    2017-09-01

    Spectral unmixing (SU) is a data processing problem in hyperspectral remote sensing. The significant challenge in the SU problem is how to identify endmembers and their weights, accurately. For estimation of signature and fractional abundance matrices in a blind problem, nonnegative matrix factorization (NMF) and its developments are used widely in the SU problem. One of the constraints which was added to NMF is sparsity constraint that was regularized by L1/2 norm. In this paper, a new algorithm based on distributed optimization has been used for spectral unmixing. In the proposed algorithm, a network including single-node clusters has been employed. Each pixel in hyperspectral images considered as a node in this network. The distributed unmixing with sparsity constraint has been optimized with diffusion LMS strategy, and then the update equations for fractional abundance and signature matrices are obtained. Simulation results based on defined performance metrics, illustrate advantage of the proposed algorithm in spectral unmixing of hyperspectral data compared with other methods. The results show that the AAD and SAD of the proposed approach are improved respectively about 6 and 27 percent toward distributed unmixing in SNR=25dB.

  19. PFIM 4.0, an extended R program for design evaluation and optimization in nonlinear mixed-effect models.

    PubMed

    Dumont, Cyrielle; Lestini, Giulia; Le Nagard, Hervé; Mentré, France; Comets, Emmanuelle; Nguyen, Thu Thuy; Group, For The Pfim

    2018-03-01

    Nonlinear mixed-effect models (NLMEMs) are increasingly used for the analysis of longitudinal studies during drug development. When designing these studies, the expected Fisher information matrix (FIM) can be used instead of performing time-consuming clinical trial simulations. The function PFIM is the first tool for design evaluation and optimization that has been developed in R. In this article, we present an extended version, PFIM 4.0, which includes several new features. Compared with version 3.0, PFIM 4.0 includes a more complete pharmacokinetic/pharmacodynamic library of models and accommodates models including additional random effects for inter-occasion variability as well as discrete covariates. A new input method has been added to specify user-defined models through an R function. Optimization can be performed assuming some fixed parameters or some fixed sampling times. New outputs have been added regarding the FIM such as eigenvalues, conditional numbers, and the option of saving the matrix obtained after evaluation or optimization. Previously obtained results, which are summarized in a FIM, can be taken into account in evaluation or optimization of one-group protocols. This feature enables the use of PFIM for adaptive designs. The Bayesian individual FIM has been implemented, taking into account a priori distribution of random effects. Designs for maximum a posteriori Bayesian estimation of individual parameters can now be evaluated or optimized and the predicted shrinkage is also reported. It is also possible to visualize the graphs of the model and the sensitivity functions without performing evaluation or optimization. The usefulness of these approaches and the simplicity of use of PFIM 4.0 are illustrated by two examples: (i) an example of designing a population pharmacokinetic study accounting for previous results, which highlights the advantage of adaptive designs; (ii) an example of Bayesian individual design optimization for a pharmacodynamic study, showing that the Bayesian individual FIM can be a useful tool in therapeutic drug monitoring, allowing efficient prediction of estimation precision and shrinkage for individual parameters. PFIM 4.0 is a useful tool for design evaluation and optimization of longitudinal studies in pharmacometrics and is freely available at http://www.pfim.biostat.fr. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moietymore » with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. Finally, we also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.« less

  1. Robustness of muscle synergies underlying three-dimensional force generation at the hand in healthy humans

    PubMed Central

    Rymer, William Z.; Beer, Randall F.

    2012-01-01

    Previous studies using advanced matrix factorization techniques have shown that the coordination of human voluntary limb movements may be accomplished using combinations of a small number of intermuscular coordination patterns, or muscle synergies. However, the potential use of muscle synergies for isometric force generation has been evaluated mostly using correlational methods. The results of such studies suggest that fixed relationships between the activations of pairs of muscles are relatively rare. There is also emerging evidence that the nervous system uses independent strategies to control movement and force generation, which suggests that one cannot conclude a priori that isometric force generation is accomplished by combining muscle synergies, as shown in movement control. In this study, we used non-negative matrix factorization to evaluate the ability of a few muscle synergies to reconstruct the activation patterns of human arm muscles underlying the generation of three-dimensional (3-D) isometric forces at the hand. Surface electromyographic (EMG) data were recorded from eight key elbow and shoulder muscles during 3-D force target-matching protocols performed across a range of load levels and hand positions. Four synergies were sufficient to explain, on average, 95% of the variance in EMG datasets. Furthermore, we found that muscle synergy composition was conserved across biomechanical task conditions, experimental protocols, and subjects. Our findings are consistent with the view that the nervous system can generate isometric forces by assembling a combination of a small number of muscle synergies, differentially weighted according to task constraints. PMID:22279190

  2. Variance of the Quantum Dwell Time for a Nonrelativistic Particle

    NASA Technical Reports Server (NTRS)

    Hahne, Gerhard

    2012-01-01

    Munoz, Seidel, and Muga [Phys. Rev. A 79, 012108 (2009)], following an earlier proposal by Pollak and Miller [Phys. Rev. Lett. 53, 115 (1984)] in the context of a theory of a collinear chemical reaction, showed that suitable moments of a two-flux correlation function could be manipulated to yield expressions for the mean quantum dwell time and mean square quantum dwell time for a structureless particle scattering from a time-independent potential energy field between two parallel lines in a two-dimensional spacetime. The present work proposes a generalization to a charged, nonrelativistic particle scattering from a transient, spatially confined electromagnetic vector potential in four-dimensional spacetime. The geometry of the spacetime domain is that of the slab between a pair of parallel planes, in particular those defined by constant values of the third (z) spatial coordinate. The mean Nth power, N = 1, 2, 3, . . ., of the quantum dwell time in the slab is given by an expression involving an N-flux-correlation function. All these means are shown to be nonnegative. The N = 1 formula reduces to an S-matrix result published previously [G. E. Hahne, J. Phys. A 36, 7149 (2003)]; an explicit formula for N = 2, and of the variance of the dwell time in terms of the S-matrix, is worked out. A formula representing an incommensurability principle between variances of the output-minus-input flux of a pair of dynamical variables (such as the particle s time flux and others) is derived.

  3. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    PubMed Central

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-01-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties. PMID:27870845

  4. VIP: Vortex Image Processing Package for High-contrast Direct Imaging

    NASA Astrophysics Data System (ADS)

    Gomez Gonzalez, Carlos Alberto; Wertz, Olivier; Absil, Olivier; Christiaens, Valentin; Defrère, Denis; Mawet, Dimitri; Milli, Julien; Absil, Pierre-Antoine; Van Droogenbroeck, Marc; Cantalloube, Faustine; Hinz, Philip M.; Skemer, Andrew J.; Karlsson, Mikael; Surdej, Jean

    2017-07-01

    We present the Vortex Image Processing (VIP) library, a python package dedicated to astronomical high-contrast imaging. Our package relies on the extensive python stack of scientific libraries and aims to provide a flexible framework for high-contrast data and image processing. In this paper, we describe the capabilities of VIP related to processing image sequences acquired using the angular differential imaging (ADI) observing technique. VIP implements functionalities for building high-contrast data processing pipelines, encompassing pre- and post-processing algorithms, potential source position and flux estimation, and sensitivity curve generation. Among the reference point-spread function subtraction techniques for ADI post-processing, VIP includes several flavors of principal component analysis (PCA) based algorithms, such as annular PCA and incremental PCA algorithms capable of processing big datacubes (of several gigabytes) on a computer with limited memory. Also, we present a novel ADI algorithm based on non-negative matrix factorization, which comes from the same family of low-rank matrix approximations as PCA and provides fairly similar results. We showcase the ADI capabilities of the VIP library using a deep sequence on HR 8799 taken with the LBTI/LMIRCam and its recently commissioned L-band vortex coronagraph. Using VIP, we investigated the presence of additional companions around HR 8799 and did not find any significant additional point source beyond the four known planets. VIP is available at http://github.com/vortex-exoplanet/VIP and is accompanied with Jupyter notebook tutorials illustrating the main functionalities of the library.

  5. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    DOE PAGES

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-11-21

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moietymore » with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. Finally, we also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.« less

  6. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks.

    PubMed

    Haraldsdóttir, Hulda S; Fleming, Ronan M T

    2016-11-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.

  7. Non-negative infrared patch-image model: Robust target-background separation via partial sum minimization of singular values

    NASA Astrophysics Data System (ADS)

    Dai, Yimian; Wu, Yiquan; Song, Yu; Guo, Jun

    2017-03-01

    To further enhance the small targets and suppress the heavy clutters simultaneously, a robust non-negative infrared patch-image model via partial sum minimization of singular values is proposed. First, the intrinsic reason behind the undesirable performance of the state-of-the-art infrared patch-image (IPI) model when facing extremely complex backgrounds is analyzed. We point out that it lies in the mismatching of IPI model's implicit assumption of a large number of observations with the reality of deficient observations of strong edges. To fix this problem, instead of the nuclear norm, we adopt the partial sum of singular values to constrain the low-rank background patch-image, which could provide a more accurate background estimation and almost eliminate all the salient residuals in the decomposed target image. In addition, considering the fact that the infrared small target is always brighter than its adjacent background, we propose an additional non-negative constraint to the sparse target patch-image, which could not only wipe off more undesirable components ulteriorly but also accelerate the convergence rate. Finally, an algorithm based on inexact augmented Lagrange multiplier method is developed to solve the proposed model. A large number of experiments are conducted demonstrating that the proposed model has a significant improvement over the other nine competitive methods in terms of both clutter suppressing performance and convergence rate.

  8. Bayesian automated cortical segmentation for neonatal MRI

    NASA Astrophysics Data System (ADS)

    Chou, Zane; Paquette, Natacha; Ganesh, Bhavana; Wang, Yalin; Ceschin, Rafael; Nelson, Marvin D.; Macyszyn, Luke; Gaonkar, Bilwaj; Panigrahy, Ashok; Lepore, Natasha

    2017-11-01

    Several attempts have been made in the past few years to develop and implement an automated segmentation of neonatal brain structural MRI. However, accurate automated MRI segmentation remains challenging in this population because of the low signal-to-noise ratio, large partial volume effects and inter-individual anatomical variability of the neonatal brain. In this paper, we propose a learning method for segmenting the whole brain cortical grey matter on neonatal T2-weighted images. We trained our algorithm using a neonatal dataset composed of 3 fullterm and 4 preterm infants scanned at term equivalent age. Our segmentation pipeline combines the FAST algorithm from the FSL library software and a Bayesian segmentation approach to create a threshold matrix that minimizes the error of mislabeling brain tissue types. Our method shows promising results with our pilot training set. In both preterm and full-term neonates, automated Bayesian segmentation generates a smoother and more consistent parcellation compared to FAST, while successfully removing the subcortical structure and cleaning the edges of the cortical grey matter. This method show promising refinement of the FAST segmentation by considerably reducing manual input and editing required from the user, and further improving reliability and processing time of neonatal MR images. Further improvement will include a larger dataset of training images acquired from different manufacturers.

  9. a Novel Discrete Optimal Transport Method for Bayesian Inverse Problems

    NASA Astrophysics Data System (ADS)

    Bui-Thanh, T.; Myers, A.; Wang, K.; Thiery, A.

    2017-12-01

    We present the Augmented Ensemble Transform (AET) method for generating approximate samples from a high-dimensional posterior distribution as a solution to Bayesian inverse problems. Solving large-scale inverse problems is critical for some of the most relevant and impactful scientific endeavors of our time. Therefore, constructing novel methods for solving the Bayesian inverse problem in more computationally efficient ways can have a profound impact on the science community. This research derives the novel AET method for exploring a posterior by solving a sequence of linear programming problems, resulting in a series of transport maps which map prior samples to posterior samples, allowing for the computation of moments of the posterior. We show both theoretical and numerical results, indicating this method can offer superior computational efficiency when compared to other SMC methods. Most of this efficiency is derived from matrix scaling methods to solve the linear programming problem and derivative-free optimization for particle movement. We use this method to determine inter-well connectivity in a reservoir and the associated uncertainty related to certain parameters. The attached file shows the difference between the true parameter and the AET parameter in an example 3D reservoir problem. The error is within the Morozov discrepancy allowance with lower computational cost than other particle methods.

  10. Assessment of CT image quality using a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Reginatto, M.; Anton, M.; Elster, C.

    2017-08-01

    One of the most promising approaches for evaluating CT image quality is task-specific quality assessment. This involves a simplified version of a clinical task, e.g. deciding whether an image belongs to the class of images that contain the signature of a lesion or not. Task-specific quality assessment can be done by model observers, which are mathematical procedures that carry out the classification task. The most widely used figure of merit for CT image quality is the area under the ROC curve (AUC), a quantity which characterizes the performance of a given model observer. In order to estimate AUC from a finite sample of images, different approaches from classical statistics have been suggested. The goal of this paper is to introduce task-specific quality assessment of CT images to metrology and to propose a novel Bayesian estimation of AUC for the channelized Hotelling observer (CHO) applied to the task of detecting a lesion at a known image location. It is assumed that signal-present and signal-absent images follow multivariate normal distributions with the same covariance matrix. The Bayesian approach results in a posterior distribution for the AUC of the CHO which provides in addition a complete characterization of the uncertainty of this figure of merit. The approach is illustrated by its application to both simulated and experimental data.

  11. Bose-Einstein condensation on a manifold with non-negative Ricci curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akant, Levent, E-mail: levent.akant@boun.edu.tr; Ertuğrul, Emine, E-mail: emine.ertugrul@boun.edu.tr; Tapramaz, Ferzan, E-mail: waskhez@gmail.com

    The Bose-Einstein condensation for an ideal Bose gas and for a dilute weakly interacting Bose gas in a manifold with non-negative Ricci curvature is investigated using the heat kernel and eigenvalue estimates of the Laplace operator. The main focus is on the nonrelativistic gas. However, special relativistic ideal gas is also discussed. The thermodynamic limit of the heat kernel and eigenvalue estimates is taken and the results are used to derive bounds for the depletion coefficient. In the case of a weakly interacting gas, Bogoliubov approximation is employed. The ground state is analyzed using heat kernel methods and finite sizemore » effects on the ground state energy are proposed. The justification of the c-number substitution on a manifold is given.« less

  12. On τ-Compactness of Products of τ-Measurable Operators

    NASA Astrophysics Data System (ADS)

    Bikchentaev, Airat M.

    2017-12-01

    Let M be a von Neumann algebra of operators on a Hilbert space H, τ be a faithful normal semifinite trace on M. We obtain some new inequalities for rearrangements of τ-measurable operators products. We also establish some sufficient τ-compactness conditions for products of selfadjoint τ-measurable operators. Next we obtain a τ-compactness criterion for product of a nonnegative τ-measurable operator with an arbitrary τ-measurable operator. We construct an example that shows importance of nonnegativity for one of the factors. The similar results are obtained also for elementary operators from M. We apply our results to symmetric spaces on (M, τ ). The results are new even for the *-algebra B(H) of all linear bounded operators on H endowed with the canonical trace τ = tr.

  13. Newton-based optimization for Kullback-Leibler nonnegative tensor factorizations

    DOE PAGES

    Plantenga, Todd; Kolda, Tamara G.; Hansen, Samantha

    2015-04-30

    Tensor factorizations with nonnegativity constraints have found application in analysing data from cyber traffic, social networks, and other areas. We consider application data best described as being generated by a Poisson process (e.g. count data), which leads to sparse tensors that can be modelled by sparse factor matrices. In this paper, we investigate efficient techniques for computing an appropriate canonical polyadic tensor factorization based on the Kullback–Leibler divergence function. We propose novel subproblem solvers within the standard alternating block variable approach. Our new methods exploit structure and reformulate the optimization problem as small independent subproblems. We employ bound-constrained Newton andmore » quasi-Newton methods. Finally, we compare our algorithms against other codes, demonstrating superior speed for high accuracy results and the ability to quickly find sparse solutions.« less

  14. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2013-01-01

    Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213

  15. Representation of Muscle Synergies in the Primate Brain.

    PubMed

    Overduin, Simon A; d'Avella, Andrea; Roh, Jinsook; Carmena, Jose M; Bizzi, Emilio

    2015-09-16

    Evidence suggests that the CNS uses motor primitives to simplify movement control, but whether it actually stores primitives instead of computing solutions on the fly to satisfy task demands is a controversial and still-unanswered possibility. Also in contention is whether these primitives take the form of time-invariant muscle coactivations ("spatial" synergies) or time-varying muscle commands ("spatiotemporal" synergies). Here, we examined forelimb muscle patterns and motor cortical spiking data in rhesus macaques (Macaca mulatta) handling objects of variable shape and size. From these data, we extracted both spatiotemporal and spatial synergies using non-negative decomposition. Each spatiotemporal synergy represents a sequence of muscular or neural activations that appeared to recur frequently during the animals' behavior. Key features of the spatiotemporal synergies (including their dimensionality, timing, and amplitude modulation) were independently observed in the muscular and neural data. In addition, both at the muscular and neural levels, these spatiotemporal synergies could be readily reconstructed as sequential activations of spatial synergies (a subset of those extracted independently from the task data), suggestive of a hierarchical relationship between the two levels of synergies. The possibility that motor cortex may execute even complex skill using spatiotemporal synergies has novel implications for the design of neuroprosthetic devices, which could gain computational efficiency by adopting the discrete and low-dimensional control that these primitives imply. We studied the motor cortical and forearm muscular activity of rhesus macaques (Macaca mulatta) as they reached, grasped, and carried objects of varied shape and size. We applied non-negative matrix factorization separately to the cortical and muscular data to reduce their dimensionality to a smaller set of time-varying "spatiotemporal" synergies. Each synergy represents a sequence of cortical or muscular activity that recurred frequently during the animals' behavior. Salient features of the synergies (including their dimensionality, timing, and amplitude modulation) were observed at both the cortical and muscular levels. The possibility that the brain may execute even complex behaviors using spatiotemporal synergies has implications for neuroprosthetic algorithm design, which could become more computationally efficient by adopting the discrete and low-dimensional control that they afford. Copyright © 2015 the authors 0270-6474/15/3512615-10$15.00/0.

  16. Bayesian ionospheric multi-instrument 3D tomography

    NASA Astrophysics Data System (ADS)

    Norberg, Johannes; Vierinen, Juha; Roininen, Lassi

    2017-04-01

    The tomographic reconstruction of ionospheric electron densities is an inverse problem that cannot be solved without relatively strong regularising additional information. % Especially the vertical electron density profile is determined predominantly by the regularisation. % %Often utilised regularisations in ionospheric tomography include smoothness constraints and iterative methods with initial ionospheric models. % Despite its crucial role, the regularisation is often hidden in the algorithm as a numerical procedure without physical understanding. % % The Bayesian methodology provides an interpretative approach for the problem, as the regularisation can be given in a physically meaningful and quantifiable prior probability distribution. % The prior distribution can be based on ionospheric physics, other available ionospheric measurements and their statistics. % Updating the prior with measurements results as the posterior distribution that carries all the available information combined. % From the posterior distribution, the most probable state of the ionosphere can then be solved with the corresponding probability intervals. % Altogether, the Bayesian methodology provides understanding on how strong the given regularisation is, what is the information gained with the measurements and how reliable the final result is. % In addition, the combination of different measurements and temporal development can be taken into account in a very intuitive way. However, a direct implementation of the Bayesian approach requires inversion of large covariance matrices resulting in computational infeasibility. % In the presented method, Gaussian Markov random fields are used to form a sparse matrix approximations for the covariances. % The approach makes the problem computationally feasible while retaining the probabilistic and physical interpretation. Here, the Bayesian method with Gaussian Markov random fields is applied for ionospheric 3D tomography over Northern Europe. % Multi-instrument measurements are utilised from TomoScand receiver network for Low Earth orbit beacon satellite signals, GNSS receiver networks, as well as from EISCAT ionosondes and incoherent scatter radars. % %The performance is demonstrated in three-dimensional spatial domain with temporal development also taken into account.

  17. Spatio Temporal EEG Source Imaging with the Hierarchical Bayesian Elastic Net and Elitist Lasso Models

    PubMed Central

    Paz-Linares, Deirel; Vega-Hernández, Mayrim; Rojas-López, Pedro A.; Valdés-Hernández, Pedro A.; Martínez-Montes, Eduardo; Valdés-Sosa, Pedro A.

    2017-01-01

    The estimation of EEG generating sources constitutes an Inverse Problem (IP) in Neuroscience. This is an ill-posed problem due to the non-uniqueness of the solution and regularization or prior information is needed to undertake Electrophysiology Source Imaging. Structured Sparsity priors can be attained through combinations of (L1 norm-based) and (L2 norm-based) constraints such as the Elastic Net (ENET) and Elitist Lasso (ELASSO) models. The former model is used to find solutions with a small number of smooth nonzero patches, while the latter imposes different degrees of sparsity simultaneously along different dimensions of the spatio-temporal matrix solutions. Both models have been addressed within the penalized regression approach, where the regularization parameters are selected heuristically, leading usually to non-optimal and computationally expensive solutions. The existing Bayesian formulation of ENET allows hyperparameter learning, but using the computationally intensive Monte Carlo/Expectation Maximization methods, which makes impractical its application to the EEG IP. While the ELASSO have not been considered before into the Bayesian context. In this work, we attempt to solve the EEG IP using a Bayesian framework for ENET and ELASSO models. We propose a Structured Sparse Bayesian Learning algorithm based on combining the Empirical Bayes and the iterative coordinate descent procedures to estimate both the parameters and hyperparameters. Using realistic simulations and avoiding the inverse crime we illustrate that our methods are able to recover complicated source setups more accurately and with a more robust estimation of the hyperparameters and behavior under different sparsity scenarios than classical LORETA, ENET and LASSO Fusion solutions. We also solve the EEG IP using data from a visual attention experiment, finding more interpretable neurophysiological patterns with our methods. The Matlab codes used in this work, including Simulations, Methods, Quality Measures and Visualization Routines are freely available in a public website. PMID:29200994

  18. Spatio Temporal EEG Source Imaging with the Hierarchical Bayesian Elastic Net and Elitist Lasso Models.

    PubMed

    Paz-Linares, Deirel; Vega-Hernández, Mayrim; Rojas-López, Pedro A; Valdés-Hernández, Pedro A; Martínez-Montes, Eduardo; Valdés-Sosa, Pedro A

    2017-01-01

    The estimation of EEG generating sources constitutes an Inverse Problem (IP) in Neuroscience. This is an ill-posed problem due to the non-uniqueness of the solution and regularization or prior information is needed to undertake Electrophysiology Source Imaging. Structured Sparsity priors can be attained through combinations of (L1 norm-based) and (L2 norm-based) constraints such as the Elastic Net (ENET) and Elitist Lasso (ELASSO) models. The former model is used to find solutions with a small number of smooth nonzero patches, while the latter imposes different degrees of sparsity simultaneously along different dimensions of the spatio-temporal matrix solutions. Both models have been addressed within the penalized regression approach, where the regularization parameters are selected heuristically, leading usually to non-optimal and computationally expensive solutions. The existing Bayesian formulation of ENET allows hyperparameter learning, but using the computationally intensive Monte Carlo/Expectation Maximization methods, which makes impractical its application to the EEG IP. While the ELASSO have not been considered before into the Bayesian context. In this work, we attempt to solve the EEG IP using a Bayesian framework for ENET and ELASSO models. We propose a Structured Sparse Bayesian Learning algorithm based on combining the Empirical Bayes and the iterative coordinate descent procedures to estimate both the parameters and hyperparameters. Using realistic simulations and avoiding the inverse crime we illustrate that our methods are able to recover complicated source setups more accurately and with a more robust estimation of the hyperparameters and behavior under different sparsity scenarios than classical LORETA, ENET and LASSO Fusion solutions. We also solve the EEG IP using data from a visual attention experiment, finding more interpretable neurophysiological patterns with our methods. The Matlab codes used in this work, including Simulations, Methods, Quality Measures and Visualization Routines are freely available in a public website.

  19. Bayesian inference of the number of factors in gene-expression analysis: application to human virus challenge studies

    PubMed Central

    2010-01-01

    Background Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis. Results Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches. Conclusions Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data. PMID:21062443

  20. Estimating the extent and distribution of new-onset adult asthma in British Columbia using frequentist and Bayesian approaches.

    PubMed

    Beach, Jeremy; Burstyn, Igor; Cherry, Nicola

    2012-07-01

    We previously described a method to identify the incidence of new-onset adult asthma (NOAA) in Alberta by industry and occupation, utilizing Workers' Compensation Board (WCB) and physician billing data. The aim of this study was to extend this method to data from British Columbia (BC) so as to compare the two provinces and to incorporate Bayesian methodology into estimates of risk. WCB claims for any reason 1995-2004 were linked to physician billing data. NOAA was defined as a billing for asthma (ICD-9 493) in the 12 months before a WCB claim without asthma in the previous 3 years. Incidence was calculated by occupation and industry. In a matched case-referent analysis, associations with exposures were examined using an asthma-specific job exposure matrix (JEM). Posterior distributions from the Alberta analysis and estimated misclassification parameters were used as priors in the Bayesian analysis of the BC data. Among 1 118 239 eligible WCB claims the incidence of NOAA was 1.4%. Sixteen occupations and 44 industries had a significantly increased risk; six industries had a decreased risk. The JEM identified wood dust [odds ratio (OR) 1.55, 95% confidence interval (CI) 1.08-2.24] and animal antigens (OR 1.66, 95% CI 1.17-2.36) as related to an increased risk of NOAA. Exposure to isocyanates was associated with decreased risk (OR 0.57, 95% CI 0.39-0.85). Bayesian analyses taking account of exposure misclassification and informative priors resulted in posterior distributions of ORs with lower boundary of 95% credible intervals >1.00 for almost all exposures. The distribution of NOAA in BC appeared somewhat similar to that in Alberta, except for isocyanates. Bayesian analyses allowed incorporation of prior evidence into risk estimates, permitting reconsideration of the apparently protective effect of isocyanate exposure.

  1. Top quark produced through the electroweak force: Discovery using the matrix element analysis and search for heavy gauge bosons using boosted decision trees

    NASA Astrophysics Data System (ADS)

    Pangilinan, Monica

    The top quark produced through the electroweak channel provides a direct measurement of the Vtb element in the CKM matrix which can be viewed as a transition rate of a top quark to a bottom quark. This production channel of top quark is also sensitive to different theories beyond the Standard Model such as heavy charged gauged bosons termed W'. This thesis measures the cross section of the electroweak produced top quark using a technique based on using the matrix elements of the processes under consideration. The technique is applied to 2.3 fb--1 of data from the DO detector. From a comparison of the matrix element discriminants between data and the signal and background model using Bayesian statistics, we measure the cross section of the top quark produced through the electroweak mechanism spp¯→ tb+X,tqb+X=4.30+0.98-1.2 0pb The measured result corresponds to a 4.9sigma Gaussian-equivalent significance. By combining this analysis with other analyses based on the Bayesian Neural Network (BNN) and Boosted Decision Tree (BDT) method, the measured cross section is 3.94 +/- 0.88 pb with a significance of 5.0sigma, resulting in the discovery of electroweak produced top quarks. Using this measured cross section and constraining |Vtb| < 1, the 95% confidence level (C.L.) lower limit is |Vtb| > 0.78. Additionally, a search is made for the production of W' using the same samples from the electroweak produced top quark. An analysis based on the BDT method is used to separate the signal from expected backgrounds. No significant excess is found and 95% C.L. upper limits on the production cross section are set for W' with masses within 600--950 GeV. For four general models of W' boson production using decay channel W' → tb¯, the lower mass limits are the following: M( W'L with SM couplings) > 840 GeV; M( W'R ) > 880 GeV or 890 GeV if the right-handed neutrino is lighter or heavier than W'R ; and M( W'L+R ) > 915 GeV.

  2. Immortal solution of the Ricci flow

    NASA Astrophysics Data System (ADS)

    Ruan, Qihua; Chen, Zhihua

    2005-12-01

    For any complete noncompact K$\\ddot{a}$hler manifold with nonnegative and bounded holomorphic bisectional curvature,we provide the necessary and sufficient condition for non-ancient solution to the Ricci flow in this paper.

  3. Nonredundant sparse feature extraction using autoencoders with receptive fields clustering.

    PubMed

    Ayinde, Babajide O; Zurada, Jacek M

    2017-09-01

    This paper proposes new techniques for data representation in the context of deep learning using agglomerative clustering. Existing autoencoder-based data representation techniques tend to produce a number of encoding and decoding receptive fields of layered autoencoders that are duplicative, thereby leading to extraction of similar features, thus resulting in filtering redundancy. We propose a way to address this problem and show that such redundancy can be eliminated. This yields smaller networks and produces unique receptive fields that extract distinct features. It is also shown that autoencoders with nonnegativity constraints on weights are capable of extracting fewer redundant features than conventional sparse autoencoders. The concept is illustrated using conventional sparse autoencoder and nonnegativity-constrained autoencoders with MNIST digits recognition, NORB normalized-uniform object data and Yale face dataset. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Classification of solutions of elliptic equations arising from a gravitational O(3) gauge field model

    NASA Astrophysics Data System (ADS)

    Choi, Nari; Han, Jongmin

    2018-04-01

    In this paper, we study an elliptic equation arising from the self-dual Maxwell gauged O (3) sigma model coupled with gravity. When the parameter τ equals 1 and there is only one singular source, we consider radially symmetric solutions. There appear three important constants: a positive parameter a representing a scaled gravitational constant, a nonnegative integer N1 representing the total string number, and a nonnegative integer N2 representing the total anti-string number. The values of the products aN1 , aN2 ∈ [ 0 , ∞) play a crucial role in classifying radial solutions. By using the decay rates of solutions at infinity, we provide a complete classification of solutions for all possible values of aN1 and aN2. This improves previously known results.

  5. Global Solutions for the zero-energy Novikov–Veselov equation by inverse scattering

    NASA Astrophysics Data System (ADS)

    Music, Michael; Perry, Peter

    2018-07-01

    Using the inverse scattering method, we construct global solutions to the Novikov–Veselov equation for real-valued decaying initial data q 0 with the property that the associated Schrödinger operator is nonnegative. Such initial data are either critical (an arbitrarily small perturbation of the potential makes the operator nonpositive) or subcritical (sufficiently small perturbations of the potential preserve non-negativity of the operator). Previously, Lassas, Mueller, Siltanen and Stahel proved global existence for critical potentials, also called potentials of conductivity type. We extend their results to include the much larger class of subcritical potentials. We show that the subcritical potentials form an open set and that the critical potentials form the nowhere dense boundary of this open set. Our analysis draws on previous work of the first author and on ideas of Grinevich and Manakov.

  6. A nanomaterial release model for waste shredding using a Bayesian belief network

    NASA Astrophysics Data System (ADS)

    Shandilya, Neeraj; Ligthart, Tom; van Voorde, Imelda; Stahlmecke, Burkhard; Clavaguera, Simon; Philippot, Cecile; Ding, Yaobo; Goede, Henk

    2018-02-01

    The shredding of waste of electrical and electronic equipment (WEEE) and other products, incorporated with nanomaterials, can lead to a substantial release of nanomaterials. Considering the uncertainty, complexity, and scarcity of experimental data on release, we present the development of a Bayesian belief network (BBN) model. This baseline model aims to give a first prediction of the release of nanomaterials (excluding nanofibers) during their mechanical shredding. With a focus on the description of the model development methodology, we characterize nanomaterial release in terms of number, size, mass, and composition of released particles. Through a sensitivity analysis of the model, we find the material-specific parameters like affinity of nanomaterials to the matrix of the composite and their state of dispersion inside the matrix to reduce the nanomaterial release up to 50%. The shredder-specific parameters like number of shafts in a shredder and input and output size of the material for shredding could minimize it up to 98%. The comparison with two experimental test cases shows promising outcome on the prediction capacity of the model. As additional experimental data on nanomaterial release becomes available, the model is able to further adapt and update risk forecasts. When adapting the model with additional expert beliefs, experts should be selected using criteria, e.g., substantial contribution to nanomaterial and/or particulate matter release-related scientific literature, the capacity and willingness to contribute to further development of the BBN model, and openness to accepting deviating opinions. [Figure not available: see fulltext.

  7. Nonlinear, discrete flood event models, 1. Bayesian estimation of parameters

    NASA Astrophysics Data System (ADS)

    Bates, Bryson C.; Townley, Lloyd R.

    1988-05-01

    In this paper (Part 1), a Bayesian procedure for parameter estimation is applied to discrete flood event models. The essence of the procedure is the minimisation of a sum of squares function for models in which the computed peak discharge is nonlinear in terms of the parameters. This objective function is dependent on the observed and computed peak discharges for several storms on the catchment, information on the structure of observation error, and prior information on parameter values. The posterior covariance matrix gives a measure of the precision of the estimated parameters. The procedure is demonstrated using rainfall and runoff data from seven Australian catchments. It is concluded that the procedure is a powerful alternative to conventional parameter estimation techniques in situations where a number of floods are available for parameter estimation. Parts 2 and 3 will discuss the application of statistical nonlinearity measures and prediction uncertainty analysis to calibrated flood models. Bates (this volume) and Bates and Townley (this volume).

  8. Isotropy of low redshift type Ia supernovae: A Bayesian analysis

    NASA Astrophysics Data System (ADS)

    Andrade, U.; Bengaly, C. A. P.; Alcaniz, J. S.; Santos, B.

    2018-04-01

    The standard cosmology strongly relies upon the cosmological principle, which consists on the hypotheses of large scale isotropy and homogeneity of the Universe. Testing these assumptions is, therefore, crucial to determining if there are deviations from the standard cosmological paradigm. In this paper, we use the latest type Ia supernova compilations, namely JLA and Union2.1 to test the cosmological isotropy at low redshift ranges (z <0.1 ). This is performed through a Bayesian selection analysis, in which we compare the standard, isotropic model, with another one including a dipole correction due to peculiar velocities. The full covariance matrix of SN distance uncertainties are taken into account. We find that the JLA sample favors the standard model, whilst the Union2.1 results are inconclusive, yet the constraints from both compilations are in agreement with previous analyses. We conclude that there is no evidence for a dipole anisotropy from nearby supernova compilations, albeit this test should be greatly improved with the much-improved data sets from upcoming cosmological surveys.

  9. Bayesian ISOLA: new tool for automated centroid moment tensor inversion

    NASA Astrophysics Data System (ADS)

    Vackář, Jiří; Burjánek, Jan; Gallovič, František; Zahradník, Jiří; Clinton, John

    2017-08-01

    We have developed a new, fully automated tool for the centroid moment tensor (CMT) inversion in a Bayesian framework. It includes automated data retrieval, data selection where station components with various instrumental disturbances are rejected and full-waveform inversion in a space-time grid around a provided hypocentre. A data covariance matrix calculated from pre-event noise yields an automated weighting of the station recordings according to their noise levels and also serves as an automated frequency filter suppressing noisy frequency ranges. The method is tested on synthetic and observed data. It is applied on a data set from the Swiss seismic network and the results are compared with the existing high-quality MT catalogue. The software package programmed in Python is designed to be as versatile as possible in order to be applicable in various networks ranging from local to regional. The method can be applied either to the everyday network data flow, or to process large pre-existing earthquake catalogues and data sets.

  10. Probabilistic sensitivity analysis for decision trees with multiple branches: use of the Dirichlet distribution in a Bayesian framework.

    PubMed

    Briggs, Andrew H; Ades, A E; Price, Martin J

    2003-01-01

    In structuring decision models of medical interventions, it is commonly recommended that only 2 branches be used for each chance node to avoid logical inconsistencies that can arise during sensitivity analyses if the branching probabilities do not sum to 1. However, information may be naturally available in an unconditional form, and structuring a tree in conditional form may complicate rather than simplify the sensitivity analysis of the unconditional probabilities. Current guidance emphasizes using probabilistic sensitivity analysis, and a method is required to provide probabilistic probabilities over multiple branches that appropriately represents uncertainty while satisfying the requirement that mutually exclusive event probabilities should sum to 1. The authors argue that the Dirichlet distribution, the multivariate equivalent of the beta distribution, is appropriate for this purpose and illustrate its use for generating a fully probabilistic transition matrix for a Markov model. Furthermore, they demonstrate that by adopting a Bayesian approach, the problem of observing zero counts for transitions of interest can be overcome.

  11. Problems in the fingerprints based polycyclic aromatic hydrocarbons source apportionment analysis and a practical solution.

    PubMed

    Zou, Yonghong; Wang, Lixia; Christensen, Erik R

    2015-10-01

    This work intended to explain the challenges of the fingerprints based source apportionment method for polycyclic aromatic hydrocarbons (PAH) in the aquatic environment, and to illustrate a practical and robust solution. The PAH data detected in the sediment cores from the Illinois River provide the basis of this study. Principal component analysis (PCA) separates PAH compounds into two groups reflecting their possible airborne transport patterns; but it is not able to suggest specific sources. Not all positive matrix factorization (PMF) determined sources are distinguishable due to the variability of source fingerprints. However, they constitute useful suggestions for inputs for a Bayesian chemical mass balance (CMB) analysis. The Bayesian CMB analysis takes into account the measurement errors as well as the variations of source fingerprints, and provides a credible source apportionment. Major PAH sources for Illinois River sediments are traffic (35%), coke oven (24%), coal combustion (18%), and wood combustion (14%). Copyright © 2015. Published by Elsevier Ltd.

  12. Multivariate Analysis of Mixed Lipid Aggregate Phase Transitions Monitored Using Raman Spectroscopy.

    PubMed

    Neal, Sharon L

    2018-01-01

    The phase behavior of aqueous 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC)/1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) mixtures between 8.0 ℃ and 41.0 ℃ were monitored using Raman spectroscopy. Temperature-dependent Raman matrices were assembled from series of spectra and subjected to multivariate analysis. The consensus of pseudo-rank estimation results is that seven to eight components account for the temperature-dependent changes observed in the spectra. The spectra and temperature response profiles of the mixture components were resolved by applying a variant of the non-negative matrix factorization (NMF) algorithm described by Lee and Seung (1999). The rotational ambiguity of the data matrix was reduced by augmenting the original temperature-dependent spectral matrix with its cumulative counterpart, i.e., the matrix formed by successive integration of the spectra across the temperature index (columns). Successive rounds of constrained NMF were used to isolate component spectra from a significant fluorescence background. Five major components exhibiting varying degrees of gel and liquid crystalline lipid character were resolved. Hydrogen-bonded water networks exhibiting varying degrees of organization are associated with the lipid components. Spectral parameters were computed to compare the chain conformation, packing, and hydration indicated by the resolved spectra. Based on spectral features and relative amounts of the components observed, four components reflect long chain lipid response. The fifth component could reflect the response of the short chain lipid, DHPC, but there were no definitive spectral features confirming this assignment. A minor component of uncertain assignment that exhibits a striking response to the DMPC pre-transition and chain melting transition also was recovered. While none of the spectra resolved exhibit features unequivocally attributable to a specific aggregate morphology or step in the gelation process, the results are consistent with the evolution of mixed phase bicelles (nanodisks) and small amounts of worm-like DMPC/DHPC aggregates, and perhaps DHPC micelles, at low temperature to suspensions of branched and entangled worm-like aggregates above the DMPC gel phase transition and perforated multi-lamellar aggregates at high temperature.

  13. Covariance Matrix Evaluations for Independent Mass Fission Yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terranova, N., E-mail: nicholas.terranova@unibo.it; Serot, O.; Archier, P.

    2015-01-15

    Recent needs for more accurate fission product yields include covariance information to allow improved uncertainty estimations of the parameters used by design codes. The aim of this work is to investigate the possibility to generate more reliable and complete uncertainty information on independent mass fission yields. Mass yields covariances are estimated through a convolution between the multi-Gaussian empirical model based on Brosa's fission modes, which describe the pre-neutron mass yields, and the average prompt neutron multiplicity curve. The covariance generation task has been approached using the Bayesian generalized least squared method through the CONRAD code. Preliminary results on mass yieldsmore » variance-covariance matrix will be presented and discussed from physical grounds in the case of {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f) reactions.« less

  14. Characterization and discrimination of human breast cancer and normal breast tissues using resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Smith, Jason; Zhang, Lin; Gao, Xin; Alfano, Robert R.

    2018-02-01

    Worldwide breast cancer incidence has increased by more than twenty percent in the past decade. It is also known that in that time, mortality due to the affliction has increased by fourteen percent. Using optical-based diagnostic techniques, such as Raman spectroscopy, has been explored in order to increase diagnostic accuracy in a more objective way along with significantly decreasing diagnostic wait-times. In this study, Raman spectroscopy with 532-nm excitation was used in order to incite resonance effects to enhance Stokes Raman scattering from unique biomolecular vibrational modes. Seventy-two Raman spectra (41 cancerous, 31 normal) were collected from nine breast tissue samples by performing a ten-spectra average using a 500-ms acquisition time at each acquisition location. The raw spectral data was subsequently prepared for analysis with background correction and normalization. The spectral data in the Raman Shift range of 750- 2000 cm-1 was used for analysis since the detector has highest sensitivity around in this range. The matrix decomposition technique nonnegative matrix factorization (NMF) was then performed on this processed data. The resulting leave-oneout cross-validation using two selective feature components resulted in sensitivity, specificity and accuracy of 92.6%, 100% and 96.0% respectively. The performance of NMF was also compared to that using principal component analysis (PCA), and NMF was shown be to be superior to PCA in this study. This study shows that coupling the resonance Raman spectroscopy technique with subsequent NMF decomposition method shows potential for high characterization accuracy in breast cancer detection.

  15. Pure endmember extraction using robust kernel archetypoid analysis for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Yang, Gang; Wu, Ke; Li, Weiyue; Zhang, Dianfa

    2017-09-01

    A robust kernel archetypoid analysis (RKADA) method is proposed to extract pure endmembers from hyperspectral imagery (HSI). The RKADA assumes that each pixel is a sparse linear mixture of all endmembers and each endmember corresponds to a real pixel in the image scene. First, it improves the re8gular archetypal analysis with a new binary sparse constraint, and the adoption of the kernel function constructs the principal convex hull in an infinite Hilbert space and enlarges the divergences between pairwise pixels. Second, the RKADA transfers the pure endmember extraction problem into an optimization problem by minimizing residual errors with the Huber loss function. The Huber loss function reduces the effects from big noises and outliers in the convergence procedure of RKADA and enhances the robustness of the optimization function. Third, the random kernel sinks for fast kernel matrix approximation and the two-stage algorithm for optimizing initial pure endmembers are utilized to improve its computational efficiency in realistic implementations of RKADA, respectively. The optimization equation of RKADA is solved by using the block coordinate descend scheme and the desired pure endmembers are finally obtained. Six state-of-the-art pure endmember extraction methods are employed to make comparisons with the RKADA on both synthetic and real Cuprite HSI datasets, including three geometrical algorithms vertex component analysis (VCA), alternative volume maximization (AVMAX) and orthogonal subspace projection (OSP), and three matrix factorization algorithms the preconditioning for successive projection algorithm (PreSPA), hierarchical clustering based on rank-two nonnegative matrix factorization (H2NMF) and self-dictionary multiple measurement vector (SDMMV). Experimental results show that the RKADA outperforms all the six methods in terms of spectral angle distance (SAD) and root-mean-square-error (RMSE). Moreover, the RKADA has short computational times in offline operations and shows significant improvement in identifying pure endmembers for ground objects with smaller spectrum differences. Therefore, the RKADA could be an alternative for pure endmember extraction from hyperspectral images.

  16. Bayesian analysis of biogeography when the number of areas is large.

    PubMed

    Landis, Michael J; Matzke, Nicholas J; Moore, Brian R; Huelsenbeck, John P

    2013-11-01

    Historical biogeography is increasingly studied from an explicitly statistical perspective, using stochastic models to describe the evolution of species range as a continuous-time Markov process of dispersal between and extinction within a set of discrete geographic areas. The main constraint of these methods is the computational limit on the number of areas that can be specified. We propose a Bayesian approach for inferring biogeographic history that extends the application of biogeographic models to the analysis of more realistic problems that involve a large number of areas. Our solution is based on a "data-augmentation" approach, in which we first populate the tree with a history of biogeographic events that is consistent with the observed species ranges at the tips of the tree. We then calculate the likelihood of a given history by adopting a mechanistic interpretation of the instantaneous-rate matrix, which specifies both the exponential waiting times between biogeographic events and the relative probabilities of each biogeographic change. We develop this approach in a Bayesian framework, marginalizing over all possible biogeographic histories using Markov chain Monte Carlo (MCMC). Besides dramatically increasing the number of areas that can be accommodated in a biogeographic analysis, our method allows the parameters of a given biogeographic model to be estimated and different biogeographic models to be objectively compared. Our approach is implemented in the program, BayArea.

  17. Bayesian estimation of a source term of radiation release with approximately known nuclide ratios

    NASA Astrophysics Data System (ADS)

    Tichý, Ondřej; Šmídl, Václav; Hofman, Radek

    2016-04-01

    We are concerned with estimation of a source term in case of an accidental release from a known location, e.g. a power plant. Usually, the source term of an accidental release of radiation comprises of a mixture of nuclide. The gamma dose rate measurements do not provide a direct information on the source term composition. However, physical properties of respective nuclide (deposition properties, decay half-life) can be used when uncertain information on nuclide ratios is available, e.g. from known reactor inventory. The proposed method is based on linear inverse model where the observation vector y arise as a linear combination y = Mx of a source-receptor-sensitivity (SRS) matrix M and the source term x. The task is to estimate the unknown source term x. The problem is ill-conditioned and further regularization is needed to obtain a reasonable solution. In this contribution, we assume that nuclide ratios of the release is known with some degree of uncertainty. This knowledge is used to form the prior covariance matrix of the source term x. Due to uncertainty in the ratios the diagonal elements of the covariance matrix are considered to be unknown. Positivity of the source term estimate is guaranteed by using multivariate truncated Gaussian distribution. Following Bayesian approach, we estimate all parameters of the model from the data so that y, M, and known ratios are the only inputs of the method. Since the inference of the model is intractable, we follow the Variational Bayes method yielding an iterative algorithm for estimation of all model parameters. Performance of the method is studied on simulated 6 hour power plant release where 3 nuclide are released and 2 nuclide ratios are approximately known. The comparison with method with unknown nuclide ratios will be given to prove the usefulness of the proposed approach. This research is supported by EEA/Norwegian Financial Mechanism under project MSMT-28477/2014 Source-Term Determination of Radionuclide Releases by Inverse Atmospheric Dispersion Modelling (STRADI).

  18. An algebraic aspect of Pareto mixture parameter estimation using censored sample: A Bayesian approach.

    PubMed

    Saleem, Muhammad; Sharif, Kashif; Fahmi, Aliya

    2018-04-27

    Applications of Pareto distribution are common in reliability, survival and financial studies. In this paper, A Pareto mixture distribution is considered to model a heterogeneous population comprising of two subgroups. Each of two subgroups is characterized by the same functional form with unknown distinct shape and scale parameters. Bayes estimators have been derived using flat and conjugate priors using squared error loss function. Standard errors have also been derived for the Bayes estimators. An interesting feature of this study is the preparation of components of Fisher Information matrix.

  19. Corrected Implicit Monte Carlo

    DOE PAGES

    Cleveland, Mathew Allen; Wollaber, Allan Benton

    2018-01-02

    Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less

  20. Locality preserving non-negative basis learning with graph embedding.

    PubMed

    Ghanbari, Yasser; Herrington, John; Gur, Ruben C; Schultz, Robert T; Verma, Ragini

    2013-01-01

    The high dimensionality of connectivity networks necessitates the development of methods identifying the connectivity building blocks that not only characterize the patterns of brain pathology but also reveal representative population patterns. In this paper, we present a non-negative component analysis framework for learning localized and sparse sub-network patterns of connectivity matrices by decomposing them into two sets of discriminative and reconstructive bases. In order to obtain components that are designed towards extracting population differences, we exploit the geometry of the population by using a graphtheoretical scheme that imposes locality-preserving properties as well as maintaining the underlying distance between distant nodes in the original and the projected space. The effectiveness of the proposed framework is demonstrated by applying it to two clinical studies using connectivity matrices derived from DTI to study a population of subjects with ASD, as well as a developmental study of structural brain connectivity that extracts gender differences.

  1. Compression of hyper-spectral images using an accelerated nonnegative tensor decomposition

    NASA Astrophysics Data System (ADS)

    Li, Jin; Liu, Zilong

    2017-12-01

    Nonnegative tensor Tucker decomposition (NTD) in a transform domain (e.g., 2D-DWT, etc) has been used in the compression of hyper-spectral images because it can remove redundancies between spectrum bands and also exploit spatial correlations of each band. However, the use of a NTD has a very high computational cost. In this paper, we propose a low complexity NTD-based compression method of hyper-spectral images. This method is based on a pair-wise multilevel grouping approach for the NTD to overcome its high computational cost. The proposed method has a low complexity under a slight decrease of the coding performance compared to conventional NTD. We experimentally confirm this method, which indicates that this method has the less processing time and keeps a better coding performance than the case that the NTD is not used. The proposed approach has a potential application in the loss compression of hyper-spectral or multi-spectral images

  2. Corrected implicit Monte Carlo

    NASA Astrophysics Data System (ADS)

    Cleveland, M. A.; Wollaber, A. B.

    2018-04-01

    In this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle for frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. We present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.

  3. Multiparty quantum mutual information: An alternative definition

    NASA Astrophysics Data System (ADS)

    Kumar, Asutosh

    2017-07-01

    Mutual information is the reciprocal information that is common to or shared by two or more parties. Quantum mutual information for bipartite quantum systems is non-negative, and bears the interpretation of total correlation between the two subsystems. This may, however, no longer be true for three or more party quantum systems. In this paper, we propose an alternative definition of multipartite information, taking into account the shared information between two and more parties. It is non-negative, observes monotonicity under partial trace as well as completely positive maps, and equals the multipartite information measure in literature for pure states. We then define multiparty quantum discord, and give some examples. Interestingly, we observe that quantum discord increases when a measurement is performed on a large number of subsystems. Consequently, the symmetric quantum discord, which involves a measurement on all parties, reveals the maximal quantumness. This raises a question on the interpretation of measured mutual information as a classical correlation.

  4. Brand Suicide? Memory and Liking of Negative Brand Names

    PubMed Central

    Guest, Duncan; Estes, Zachary; Gibbert, Michael; Mazursky, David

    2016-01-01

    Negative brand names are surprisingly common in the marketplace (e.g., Poison perfume; Hell pizza, and Monster energy drink), yet their effects on consumer behavior are currently unknown. Three studies investigated the effects of negative brand name valence on brand name memory and liking of a branded product. Study 1 demonstrates that relative to non-negative brand names, negative brand names and their associated logos are better recognised. Studies 2 and 3 demonstrate that negative valence of a brand name tends to have a detrimental influence on product evaluation with evaluations worsening as negative valence increases. However, evaluation is also dependent on brand name arousal, with high arousal brand names resulting in more positive evaluations, such that moderately negative brand names are equally as attractive as some non-negative brand names. Study 3 shows evidence for affective habituation, whereby the effects of negative valence reduce with repeated exposures to some classes of negative brand name. PMID:27023872

  5. Iterative algorithms for a non-linear inverse problem in atmospheric lidar

    NASA Astrophysics Data System (ADS)

    Denevi, Giulia; Garbarino, Sara; Sorrentino, Alberto

    2017-08-01

    We consider the inverse problem of retrieving aerosol extinction coefficients from Raman lidar measurements. In this problem the unknown and the data are related through the exponential of a linear operator, the unknown is non-negative and the data follow the Poisson distribution. Standard methods work on the log-transformed data and solve the resulting linear inverse problem, but neglect to take into account the noise statistics. In this study we show that proper modelling of the noise distribution can improve substantially the quality of the reconstructed extinction profiles. To achieve this goal, we consider the non-linear inverse problem with non-negativity constraint, and propose two iterative algorithms derived using the Karush-Kuhn-Tucker conditions. We validate the algorithms with synthetic and experimental data. As expected, the proposed algorithms out-perform standard methods in terms of sensitivity to noise and reliability of the estimated profile.

  6. Brand Suicide? Memory and Liking of Negative Brand Names.

    PubMed

    Guest, Duncan; Estes, Zachary; Gibbert, Michael; Mazursky, David

    2016-01-01

    Negative brand names are surprisingly common in the marketplace (e.g., Poison perfume; Hell pizza, and Monster energy drink), yet their effects on consumer behavior are currently unknown. Three studies investigated the effects of negative brand name valence on brand name memory and liking of a branded product. Study 1 demonstrates that relative to non-negative brand names, negative brand names and their associated logos are better recognised. Studies 2 and 3 demonstrate that negative valence of a brand name tends to have a detrimental influence on product evaluation with evaluations worsening as negative valence increases. However, evaluation is also dependent on brand name arousal, with high arousal brand names resulting in more positive evaluations, such that moderately negative brand names are equally as attractive as some non-negative brand names. Study 3 shows evidence for affective habituation, whereby the effects of negative valence reduce with repeated exposures to some classes of negative brand name.

  7. Method for coding low entrophy data

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu (Inventor)

    1995-01-01

    A method of lossless data compression for efficient coding of an electronic signal of information sources of very low information rate is disclosed. In this method, S represents a non-negative source symbol set, (s(sub 0), s(sub 1), s(sub 2), ..., s(sub N-1)) of N symbols with s(sub i) = i. The difference between binary digital data is mapped into symbol set S. Consecutive symbols in symbol set S are then paired into a new symbol set Gamma which defines a non-negative symbol set containing the symbols (gamma(sub m)) obtained as the extension of the original symbol set S. These pairs are then mapped into a comma code which is defined as a coding scheme in which every codeword is terminated with the same comma pattern, such as a 1. This allows a direct coding and decoding of the n-bit positive integer digital data differences without the use of codebooks.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleveland, Mathew Allen; Wollaber, Allan Benton

    Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less

  9. Collective Human Mobility Pattern from Taxi Trips in Urban Area

    PubMed Central

    Peng, Chengbin; Jin, Xiaogang; Wong, Ka-Chun; Shi, Meixia; Liò, Pietro

    2012-01-01

    We analyze the passengers' traffic pattern for 1.58 million taxi trips of Shanghai, China. By employing the non-negative matrix factorization and optimization methods, we find that, people travel on workdays mainly for three purposes: commuting between home and workplace, traveling from workplace to workplace, and others such as leisure activities. Therefore, traffic flow in one area or between any pair of locations can be approximated by a linear combination of three basis flows, corresponding to the three purposes respectively. We name the coefficients in the linear combination as traffic powers, each of which indicates the strength of each basis flow. The traffic powers on different days are typically different even for the same location, due to the uncertainty of the human motion. Therefore, we provide a probability distribution function for the relative deviation of the traffic power. This distribution function is in terms of a series of functions for normalized binomial distributions. It can be well explained by statistical theories and is verified by empirical data. These findings are applicable in predicting the road traffic, tracing the traffic pattern and diagnosing the traffic related abnormal events. These results can also be used to infer land uses of urban area quite parsimoniously. PMID:22529917

  10. Unsupervised Learning of Overlapping Image Components Using Divisive Input Modulation

    PubMed Central

    Spratling, M. W.; De Meyer, K.; Kompass, R.

    2009-01-01

    This paper demonstrates that nonnegative matrix factorisation is mathematically related to a class of neural networks that employ negative feedback as a mechanism of competition. This observation inspires a novel learning algorithm which we call Divisive Input Modulation (DIM). The proposed algorithm provides a mathematically simple and computationally efficient method for the unsupervised learning of image components, even in conditions where these elementary features overlap considerably. To test the proposed algorithm, a novel artificial task is introduced which is similar to the frequently-used bars problem but employs squares rather than bars to increase the degree of overlap between components. Using this task, we investigate how the proposed method performs on the parsing of artificial images composed of overlapping features, given the correct representation of the individual components; and secondly, we investigate how well it can learn the elementary components from artificial training images. We compare the performance of the proposed algorithm with its predecessors including variations on these algorithms that have produced state-of-the-art performance on the bars problem. The proposed algorithm is more successful than its predecessors in dealing with overlap and occlusion in the artificial task that has been used to assess performance. PMID:19424442

  11. Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI.

    PubMed

    Sauwen, N; Acou, M; Van Cauter, S; Sima, D M; Veraart, J; Maes, F; Himmelreich, U; Achten, E; Van Huffel, S

    2016-01-01

    Tumor segmentation is a particularly challenging task in high-grade gliomas (HGGs), as they are among the most heterogeneous tumors in oncology. An accurate delineation of the lesion and its main subcomponents contributes to optimal treatment planning, prognosis and follow-up. Conventional MRI (cMRI) is the imaging modality of choice for manual segmentation, and is also considered in the vast majority of automated segmentation studies. Advanced MRI modalities such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have already shown their added value in tumor tissue characterization, hence there have been recent suggestions of combining different MRI modalities into a multi-parametric MRI (MP-MRI) approach for brain tumor segmentation. In this paper, we compare the performance of several unsupervised classification methods for HGG segmentation based on MP-MRI data including cMRI, DWI, MRSI and PWI. Two independent MP-MRI datasets with a different acquisition protocol were available from different hospitals. We demonstrate that a hierarchical non-negative matrix factorization variant which was previously introduced for MP-MRI tumor segmentation gives the best performance in terms of mean Dice-scores for the pathologic tissue classes on both datasets.

  12. Multiple-algorithm parallel fusion of infrared polarization and intensity images based on algorithmic complementarity and synergy

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yang, Fengbao; Ji, Linna; Lv, Sheng

    2018-01-01

    Diverse image fusion methods perform differently. Each method has advantages and disadvantages compared with others. One notion is that the advantages of different image methods can be effectively combined. A multiple-algorithm parallel fusion method based on algorithmic complementarity and synergy is proposed. First, in view of the characteristics of the different algorithms and difference-features among images, an index vector-based feature-similarity is proposed to define the degree of complementarity and synergy. This proposed index vector is a reliable evidence indicator for algorithm selection. Second, the algorithms with a high degree of complementarity and synergy are selected. Then, the different degrees of various features and infrared intensity images are used as the initial weights for the nonnegative matrix factorization (NMF). This avoids randomness of the NMF initialization parameter. Finally, the fused images of different algorithms are integrated using the NMF because of its excellent data fusing performance on independent features. Experimental results demonstrate that the visual effect and objective evaluation index of the fused images obtained using the proposed method are better than those obtained using traditional methods. The proposed method retains all the advantages that individual fusion algorithms have.

  13. Graphical Methods for Quantifying Macromolecules through Bright Field Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Hang; DeFilippis, Rosa Anna; Tlsty, Thea D.

    Bright ?eld imaging of biological samples stained with antibodies and/or special stains provides a rapid protocol for visualizing various macromolecules. However, this method of sample staining and imaging is rarely employed for direct quantitative analysis due to variations in sample fixations, ambiguities introduced by color composition, and the limited dynamic range of imaging instruments. We demonstrate that, through the decomposition of color signals, staining can be scored on a cell-by-cell basis. We have applied our method to Flbroblasts grown from histologically normal breast tissue biopsies obtained from two distinct populations. Initially, nuclear regions are segmented through conversion of color imagesmore » into gray scale, and detection of dark elliptic features. Subsequently, the strength of staining is quanti?ed by a color decomposition model that is optimized by a graph cut algorithm. In rare cases where nuclear signal is significantly altered as a result of samplepreparation, nuclear segmentation can be validated and corrected. Finally, segmented stained patterns are associated with each nuclear region following region-based tessellation. Compared to classical non-negative matrix factorization, proposed method (i) improves color decomposition, (ii) has a better noise immunity, (iii) is more invariant to initial conditions, and (iv) has a superior computing performance« less

  14. TopicLens: Efficient Multi-Level Visual Topic Exploration of Large-Scale Document Collections.

    PubMed

    Kim, Minjeong; Kang, Kyeongpil; Park, Deokgun; Choo, Jaegul; Elmqvist, Niklas

    2017-01-01

    Topic modeling, which reveals underlying topics of a document corpus, has been actively adopted in visual analytics for large-scale document collections. However, due to its significant processing time and non-interactive nature, topic modeling has so far not been tightly integrated into a visual analytics workflow. Instead, most such systems are limited to utilizing a fixed, initial set of topics. Motivated by this gap in the literature, we propose a novel interaction technique called TopicLens that allows a user to dynamically explore data through a lens interface where topic modeling and the corresponding 2D embedding are efficiently computed on the fly. To support this interaction in real time while maintaining view consistency, we propose a novel efficient topic modeling method and a semi-supervised 2D embedding algorithm. Our work is based on improving state-of-the-art methods such as nonnegative matrix factorization and t-distributed stochastic neighbor embedding. Furthermore, we have built a web-based visual analytics system integrated with TopicLens. We use this system to measure the performance and the visualization quality of our proposed methods. We provide several scenarios showcasing the capability of TopicLens using real-world datasets.

  15. COMPUTING THERAPY FOR PRECISION MEDICINE: COLLABORATIVE FILTERING INTEGRATES AND PREDICTS MULTI-ENTITY INTERACTIONS.

    PubMed

    Regenbogen, Sam; Wilkins, Angela D; Lichtarge, Olivier

    2016-01-01

    Biomedicine produces copious information it cannot fully exploit. Specifically, there is considerable need to integrate knowledge from disparate studies to discover connections across domains. Here, we used a Collaborative Filtering approach, inspired by online recommendation algorithms, in which non-negative matrix factorization (NMF) predicts interactions among chemicals, genes, and diseases only from pairwise information about their interactions. Our approach, applied to matrices derived from the Comparative Toxicogenomics Database, successfully recovered Chemical-Disease, Chemical-Gene, and Disease-Gene networks in 10-fold cross-validation experiments. Additionally, we could predict each of these interaction matrices from the other two. Integrating all three CTD interaction matrices with NMF led to good predictions of STRING, an independent, external network of protein-protein interactions. Finally, this approach could integrate the CTD and STRING interaction data to improve Chemical-Gene cross-validation performance significantly, and, in a time-stamped study, it predicted information added to CTD after a given date, using only data prior to that date. We conclude that collaborative filtering can integrate information across multiple types of biological entities, and that as a first step towards precision medicine it can compute drug repurposing hypotheses.

  16. COMPUTING THERAPY FOR PRECISION MEDICINE: COLLABORATIVE FILTERING INTEGRATES AND PREDICTS MULTI-ENTITY INTERACTIONS

    PubMed Central

    REGENBOGEN, SAM; WILKINS, ANGELA D.; LICHTARGE, OLIVIER

    2015-01-01

    Biomedicine produces copious information it cannot fully exploit. Specifically, there is considerable need to integrate knowledge from disparate studies to discover connections across domains. Here, we used a Collaborative Filtering approach, inspired by online recommendation algorithms, in which non-negative matrix factorization (NMF) predicts interactions among chemicals, genes, and diseases only from pairwise information about their interactions. Our approach, applied to matrices derived from the Comparative Toxicogenomics Database, successfully recovered Chemical-Disease, Chemical-Gene, and Disease-Gene networks in 10-fold cross-validation experiments. Additionally, we could predict each of these interaction matrices from the other two. Integrating all three CTD interaction matrices with NMF led to good predictions of STRING, an independent, external network of protein-protein interactions. Finally, this approach could integrate the CTD and STRING interaction data to improve Chemical-Gene cross-validation performance significantly, and, in a time-stamped study, it predicted information added to CTD after a given date, using only data prior to that date. We conclude that collaborative filtering can integrate information across multiple types of biological entities, and that as a first step towards precision medicine it can compute drug repurposing hypotheses. PMID:26776170

  17. Characterization and Mitigation of Radio Frequency Interference in PolSAR Data

    NASA Astrophysics Data System (ADS)

    Tao, Mingliang; Zhou, Feng; Zhang, Zijing

    2017-11-01

    Polarimetric synthetic aperture radar (PolSAR) is a very important instrument for active remote sensing. However, it is common to find that PolSAR echoes are often contaminated by incoherent electromagnetic interference, which is referred to as radio frequency interference (RFI). The analysis of RFI signatures and its influence on PolSAR data seems to be lacking in existing literatures, especially for PolSAR post products, such as the polarimetric decomposition parameters and clustering result. The goal of this paper is to reveal the link between RFI and polarization, as well as to analyze the impact of interference on PolSAR image and its post products. Qualitative and quantitative analyses of the adverse impact of RFI on the real measured NASA/Jet Propulsion Laboratory (JPL) Uninhabited Aerial Vehicle Synthetic Aperture Radar data set are illustrated from two perspectives, that is, evaluation of imaging quality and interpretation of scattering mechanisms. The point target response and effective number of looks are evaluated for assessing the distortion to focusing quality. Further, we discussed the characteristics of ultra wideband RFI and proposed a mitigation method using nonnegative matrix factorization along azimuth direction. The experimental results indicate the effectiveness of the proposed method.

  18. Duality based direct resolution of unique profiles using zero concentration region information.

    PubMed

    Tavakkoli, Elnaz; Rajkó, Róbert; Abdollahi, Hamid

    2018-07-01

    Self Modeling Curve Resolution (SMCR) is a class of techniques concerned with estimating pure profiles underlying a set of measurements on chemical systems. In general, the estimated profiles are ambiguous (non-unique) except if some special conditions fulfilled. Implementing the adequate information can reduce the so-called rotational ambiguity effectively, and in the most desirable cases lead to the unique solution. Therefore, studies on circumstances resulting in unique solution are of particular importance. The conditions of unique solution can particularly be studied based on duality principle. In bilinear chemical (e.g., spectroscopic) data matrix, there is a natural duality between its row and column vector spaces using minimal constraints (non-negativity of concentrations and absorbances). In this article, the conditions of the unique solution according to duality concept and using zero concentration region information is intended to show. A simulated dataset of three components and an experimental system with synthetic mixtures containing three amino acids tyrosine, phenylalanine and tryptophan are analyzed. It is shown that in the presence of sufficient information, the reliable unique solution is obtained that is valuable in analytical qualification and for quantitative verification analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. EVIDENCE OF SPREADING LAYER EMISSION IN A THERMONUCLEAR SUPERBURST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koljonen, K. I. I.; Kajava, J. J. E.; Kuulkers, E., E-mail: karri.koljonen@nyu.edu

    2016-10-01

    When a neutron star (NS) accretes matter from a companion star in a low-mass X-ray binary, the accreted gas settles onto the stellar surface through a boundary/spreading layer. On rare occasions the accumulated gas undergoes a powerful thermonuclear superburst powered by carbon burning deep below the NS atmosphere. In this paper, we apply the non-negative matrix factorization spectral decomposition technique to show that the spectral variations during a superburst from 4U 1636–536 can be explained by two distinct components: (1) the superburst emission characterized by a variable temperature blackbody radiation component and (2) a quasi-Planckian component with a constant, ∼2.5more » keV, temperature varying by a factor of ∼15 in flux. The spectrum of the quasi-Planckian component is identical in shape and characteristics to the frequency-resolved spectra observed in the accretion/persistent spectrum of NS low-mass X-ray binaries and agrees well with the predictions of the spreading layer model by Inogamov and Sunyaev. Our results provide yet more observational evidence that superbursts—and possibly also normal X-ray bursts—induce changes in the disc–star boundary.« less

  20. Hyperspectral cytometry.

    PubMed

    Grégori, Gérald; Rajwa, Bartek; Patsekin, Valery; Jones, James; Furuki, Motohiro; Yamamoto, Masanobu; Paul Robinson, J

    2014-01-01

    Hyperspectral cytometry is an emerging technology for single-cell analysis that combines ultrafast optical spectroscopy and flow cytometry. Spectral cytometry systems utilize diffraction gratings or prism-based monochromators to disperse fluorescence signals from multiple labels (organic dyes, nanoparticles, or fluorescent proteins) present in each analyzed bioparticle onto linear detector arrays such as multianode photomultipliers or charge-coupled device sensors. The resultant data, consisting of a series of characterizing every analyzed cell, are not compensated by employing the traditional cytometry approach, but rather are spectrally unmixed utilizing algorithms such as constrained Poisson regression or non-negative matrix factorization. Although implementations of spectral cytometry were envisioned as early as the 1980s, only recently has the development of highly sensitive photomultiplier tube arrays led to design and construction of functional prototypes and subsequently to introduction of commercially available systems. This chapter summarizes the historical efforts and work in the field of spectral cytometry performed at Purdue University Cytometry Laboratories and describes the technology developed by Sony Corporation that resulted in release of the first commercial spectral cytometry system-the Sony SP6800. A brief introduction to spectral data analysis is also provided, with emphasis on the differences between traditional polychromatic and spectral cytometry approaches.

  1. NMF-Based Image Quality Assessment Using Extreme Learning Machine.

    PubMed

    Wang, Shuigen; Deng, Chenwei; Lin, Weisi; Huang, Guang-Bin; Zhao, Baojun

    2017-01-01

    Numerous state-of-the-art perceptual image quality assessment (IQA) algorithms share a common two-stage process: distortion description followed by distortion effects pooling. As for the first stage, the distortion descriptors or measurements are expected to be effective representatives of human visual variations, while the second stage should well express the relationship among quality descriptors and the perceptual visual quality. However, most of the existing quality descriptors (e.g., luminance, contrast, and gradient) do not seem to be consistent with human perception, and the effects pooling is often done in ad-hoc ways. In this paper, we propose a novel full-reference IQA metric. It applies non-negative matrix factorization (NMF) to measure image degradations by making use of the parts-based representation of NMF. On the other hand, a new machine learning technique [extreme learning machine (ELM)] is employed to address the limitations of the existing pooling techniques. Compared with neural networks and support vector regression, ELM can achieve higher learning accuracy with faster learning speed. Extensive experimental results demonstrate that the proposed metric has better performance and lower computational complexity in comparison with the relevant state-of-the-art approaches.

  2. Muscle synergies and complexity of neuromuscular control during gait in cerebral palsy.

    PubMed

    Steele, Katherine M; Rozumalski, Adam; Schwartz, Michael H

    2015-12-01

    Individuals with cerebral palsy (CP) have impaired movement due to a brain injury near birth. Understanding how neuromuscular control is altered in CP can provide insight into pathological movement. We sought to determine if individuals with CP demonstrate reduced complexity of neuromuscular control during gait compared with unimpaired individuals and if changes in control are related to functional ability. Muscle synergies during gait were retrospectively analyzed for 633 individuals (age range 3.9-70y): 549 with CP (hemiplegia, n=122; diplegia, n=266; triplegia, n=73; quadriplegia, n=88) and 84 unimpaired individuals. Synergies were calculated using non-negative matrix factorization from surface electromyography collected during previous clinical gait analyses. Synergy complexity during gait was compared with diagnosis subtype, functional ability, and clinical examination measures. Fewer synergies were required to describe muscle activity during gait in individuals with CP compared with unimpaired individuals. Changes in synergies were related to functional impairment and clinical examination measures including selective motor control, strength, and spasticity. Individuals with CP use a simplified control strategy during gait compared with unimpaired individuals. These results were similar to synergies during walking among adult stroke survivors, suggesting similar neuromuscular control strategies between these clinical populations. © 2015 Mac Keith Press.

  3. Sensitivity of mRNA Translation

    PubMed Central

    Poker, Gilad; Margaliot, Michael; Tuller, Tamir

    2015-01-01

    Using the dynamic mean-field approximation of the totally asymmetric simple exclusion process (TASEP), we investigate the effect of small changes in the initiation, elongation, and termination rates along the mRNA strand on the steady-state protein translation rate. We show that the sensitivity of mRNA translation is equal to the sensitivity of the maximal eigenvalue of a symmetric, nonnegative, tridiagonal, and irreducible matrix. This leads to new analytical results as well as efficient numerical schemes that are applicable for large-scale models. Our results show that in the usual endogenous case, when initiation is more rate-limiting than elongation, the sensitivity of the translation rate to small mutations rapidly increases towards the 5′ end of the ORF. When the initiation rate is high, as may be the case for highly expressed and/or heterologous optimized genes, the maximal sensitivity is with respect to the elongation rates at the middle of the mRNA strand. We also show that the maximal possible effect of a small increase/decrease in any of the rates along the mRNA is an increase/decrease of the same magnitude in the translation rate. These results are in agreement with previous molecular evolutionary and synthetic biology experimental studies. PMID:26238363

  4. Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahimpour, Alireza; Qi, Hairong; Fugate, David L

    Heating, Ventilating and Air Conditioning units (HVAC) are a major electrical energy consumer in buildings. Monitoring of the operation and energy consumption of HVAC would increase the awareness of building owners and maintenance service providers of the condition and quality of performance of these units, enabling conditioned-based maintenance which would help achieving higher energy efficiency. In this paper, a novel non-intrusive load monitoring method based on group constrained non-negative matrix factorization is proposed for monitoring the different components of HVAC unit by only measuring the whole building aggregated power signal. At the first level of this hierarchical approach, power consumptionmore » of the building is decomposed to energy consumption of the HVAC unit and all the other electrical devices operating in the building such as lighting and plug loads. Then, the estimated power signal of the HVAC is used for estimating the power consumption profile of the HVAC major electrical loads such as compressors, condenser fans and indoor blower. Experiments conducted on real data collected from a building testbed maintained at the Oak Ridge National Laboratory (ORNL) demonstrate high accuracy on the disaggregation task.« less

  5. A diffusion model-free framework with echo time dependence for free-water elimination and brain tissue microstructure characterization.

    PubMed

    Molina-Romero, Miguel; Gómez, Pedro A; Sperl, Jonathan I; Czisch, Michael; Sämann, Philipp G; Jones, Derek K; Menzel, Marion I; Menze, Bjoern H

    2018-03-23

    The compartmental nature of brain tissue microstructure is typically studied by diffusion MRI, MR relaxometry or their correlation. Diffusion MRI relies on signal representations or biophysical models, while MR relaxometry and correlation studies are based on regularized inverse Laplace transforms (ILTs). Here we introduce a general framework for characterizing microstructure that does not depend on diffusion modeling and replaces ill-posed ILTs with blind source separation (BSS). This framework yields proton density, relaxation times, volume fractions, and signal disentanglement, allowing for separation of the free-water component. Diffusion experiments repeated for several different echo times, contain entangled diffusion and relaxation compartmental information. These can be disentangled by BSS using a physically constrained nonnegative matrix factorization. Computer simulations, phantom studies, together with repeatability and reproducibility experiments demonstrated that BSS is capable of estimating proton density, compartmental volume fractions and transversal relaxations. In vivo results proved its potential to correct for free-water contamination and to estimate tissue parameters. Formulation of the diffusion-relaxation dependence as a BSS problem introduces a new framework for studying microstructure compartmentalization, and a novel tool for free-water elimination. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Fault detection, isolation, and diagnosis of self-validating multifunctional sensors.

    PubMed

    Yang, Jing-Li; Chen, Yin-Sheng; Zhang, Li-Li; Sun, Zhen

    2016-06-01

    A novel fault detection, isolation, and diagnosis (FDID) strategy for self-validating multifunctional sensors is presented in this paper. The sparse non-negative matrix factorization-based method can effectively detect faults by using the squared prediction error (SPE) statistic, and the variables contribution plots based on SPE statistic can help to locate and isolate the faulty sensitive units. The complete ensemble empirical mode decomposition is employed to decompose the fault signals to a series of intrinsic mode functions (IMFs) and a residual. The sample entropy (SampEn)-weighted energy values of each IMFs and the residual are estimated to represent the characteristics of the fault signals. Multi-class support vector machine is introduced to identify the fault mode with the purpose of diagnosing status of the faulty sensitive units. The performance of the proposed strategy is compared with other fault detection strategies such as principal component analysis, independent component analysis, and fault diagnosis strategies such as empirical mode decomposition coupled with support vector machine. The proposed strategy is fully evaluated in a real self-validating multifunctional sensors experimental system, and the experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID research topic of self-validating multifunctional sensors.

  7. Equilibrium problems for Raney densities

    NASA Astrophysics Data System (ADS)

    Forrester, Peter J.; Liu, Dang-Zheng; Zinn-Justin, Paul

    2015-07-01

    The Raney numbers are a class of combinatorial numbers generalising the Fuss-Catalan numbers. They are indexed by a pair of positive real numbers (p, r) with p > 1 and 0 < r ⩽ p, and form the moments of a probability density function. For certain (p, r) the latter has the interpretation as the density of squared singular values for certain random matrix ensembles, and in this context equilibrium problems characterising the Raney densities for (p, r) = (θ + 1, 1) and (θ/2 + 1, 1/2) have recently been proposed. Using two different techniques—one based on the Wiener-Hopf method for the solution of integral equations and the other on an analysis of the algebraic equation satisfied by the Green's function—we establish the validity of the equilibrium problems for general θ > 0 and similarly use both methods to identify the equilibrium problem for (p, r) = (θ/q + 1, 1/q), θ > 0 and q \\in Z+ . The Wiener-Hopf method is used to extend the latter to parameters (p, r) = (θ/q + 1, m + 1/q) for m a non-negative integer, and also to identify the equilibrium problem for a family of densities with moments given by certain binomial coefficients.

  8. Age-related differences in muscle control of the lower extremity for support and propulsion during walking

    PubMed Central

    Toda, Haruki; Nagano, Akinori; Luo, Zhiwei

    2016-01-01

    [Purpose] This study examined age-related differences in muscle control for support and propulsion during walking in both males and females in order to develop optimal exercise regimens for muscle control. [Subjects and Methods] Twenty elderly people and 20 young people participated in this study. Coordinates of anatomical landmarks and ground reaction force during walking were obtained using a 3D motion analysis system and force plates. Muscle forces during walking were estimated using OpenSim. Muscle modules were obtained by using non-negative matrix factorization analysis. A two-way analysis of covariance was performed to examine the difference between the elderly and the young in muscle weightings using walking speed as a covariate. The similarities in activation timing profiles between the elderly and the young were analyzed by cross-correlation analysis in males and females. [Results] In the elderly, there was a change in the coordination of muscles around the ankle, and muscles of the lower extremity exhibited co-contraction in late stance. Timing and shape of these modules were similar between elderly and young people. [Conclusion] Our results suggested that age-related alteration of muscle control was associated with support and propulsion during walking. PMID:27134360

  9. View subspaces for indexing and retrieval of 3D models

    NASA Astrophysics Data System (ADS)

    Dutagaci, Helin; Godil, Afzal; Sankur, Bülent; Yemez, Yücel

    2010-02-01

    View-based indexing schemes for 3D object retrieval are gaining popularity since they provide good retrieval results. These schemes are coherent with the theory that humans recognize objects based on their 2D appearances. The viewbased techniques also allow users to search with various queries such as binary images, range images and even 2D sketches. The previous view-based techniques use classical 2D shape descriptors such as Fourier invariants, Zernike moments, Scale Invariant Feature Transform-based local features and 2D Digital Fourier Transform coefficients. These methods describe each object independent of others. In this work, we explore data driven subspace models, such as Principal Component Analysis, Independent Component Analysis and Nonnegative Matrix Factorization to describe the shape information of the views. We treat the depth images obtained from various points of the view sphere as 2D intensity images and train a subspace to extract the inherent structure of the views within a database. We also show the benefit of categorizing shapes according to their eigenvalue spread. Both the shape categorization and data-driven feature set conjectures are tested on the PSB database and compared with the competitor view-based 3D shape retrieval algorithms.

  10. Topic Modeling Reveals Distinct Interests within an Online Conspiracy Forum

    PubMed Central

    Klein, Colin; Clutton, Peter; Polito, Vince

    2018-01-01

    Conspiracy theories play a troubling role in political discourse. Online forums provide a valuable window into everyday conspiracy theorizing, and can give a clue to the motivations and interests of those who post in such forums. Yet this online activity can be difficult to quantify and study. We describe a unique approach to studying online conspiracy theorists which used non-negative matrix factorization to create a topic model of authors' contributions to the main conspiracy forum on Reddit.com. This subreddit provides a large corpus of comments which spans many years and numerous authors. We show that within the forum, there are multiple sub-populations distinguishable by their loadings on different topics in the model. Further, we argue, these differences are interpretable as differences in background beliefs and motivations. The diversity of the distinct subgroups places constraints on theories of what generates conspiracy theorizing. We argue that traditional “monological” believers are only the tip of an iceberg of commenters. Neither simple irrationality nor common preoccupations can account for the observed diversity. Instead, we suggest, those who endorse conspiracies seem to be primarily brought together by epistemological concerns, and that these central concerns link an otherwise heterogenous group of individuals. PMID:29515501

  11. A multivariate multilevel Gaussian model with a mixed effects structure in the mean and covariance part.

    PubMed

    Li, Baoyue; Bruyneel, Luk; Lesaffre, Emmanuel

    2014-05-20

    A traditional Gaussian hierarchical model assumes a nested multilevel structure for the mean and a constant variance at each level. We propose a Bayesian multivariate multilevel factor model that assumes a multilevel structure for both the mean and the covariance matrix. That is, in addition to a multilevel structure for the mean we also assume that the covariance matrix depends on covariates and random effects. This allows to explore whether the covariance structure depends on the values of the higher levels and as such models heterogeneity in the variances and correlation structure of the multivariate outcome across the higher level values. The approach is applied to the three-dimensional vector of burnout measurements collected on nurses in a large European study to answer the research question whether the covariance matrix of the outcomes depends on recorded system-level features in the organization of nursing care, but also on not-recorded factors that vary with countries, hospitals, and nursing units. Simulations illustrate the performance of our modeling approach. Copyright © 2013 John Wiley & Sons, Ltd.

  12. BONNSAI: correlated stellar observables in Bayesian methods

    NASA Astrophysics Data System (ADS)

    Schneider, F. R. N.; Castro, N.; Fossati, L.; Langer, N.; de Koter, A.

    2017-02-01

    In an era of large spectroscopic surveys of stars and big data, sophisticated statistical methods become more and more important in order to infer fundamental stellar parameters such as mass and age. Bayesian techniques are powerful methods because they can match all available observables simultaneously to stellar models while taking prior knowledge properly into account. However, in most cases it is assumed that observables are uncorrelated which is generally not the case. Here, we include correlations in the Bayesian code Bonnsai by incorporating the covariance matrix in the likelihood function. We derive a parametrisation of the covariance matrix that, in addition to classical uncertainties, only requires the specification of a correlation parameter that describes how observables co-vary. Our correlation parameter depends purely on the method with which observables have been determined and can be analytically derived in some cases. This approach therefore has the advantage that correlations can be accounted for even if information for them are not available in specific cases but are known in general. Because the new likelihood model is a better approximation of the data, the reliability and robustness of the inferred parameters are improved. We find that neglecting correlations biases the most likely values of inferred stellar parameters and affects the precision with which these parameters can be determined. The importance of these biases depends on the strength of the correlations and the uncertainties. For example, we apply our technique to massive OB stars, but emphasise that it is valid for any type of stars. For effective temperatures and surface gravities determined from atmosphere modelling, we find that masses can be underestimated on average by 0.5σ and mass uncertainties overestimated by a factor of about 2 when neglecting correlations. At the same time, the age precisions are underestimated over a wide range of stellar parameters. We conclude that accounting for correlations is essential in order to derive reliable stellar parameters including robust uncertainties and will be vital when entering an era of precision stellar astrophysics thanks to the Gaia satellite.

  13. Covariance specification and estimation to improve top-down Green House Gas emission estimates

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Lopez-Coto, I.; Prasad, K.; Whetstone, J. R.

    2015-12-01

    The National Institute of Standards and Technology (NIST) operates the North-East Corridor (NEC) project and the Indianapolis Flux Experiment (INFLUX) in order to develop measurement methods to quantify sources of Greenhouse Gas (GHG) emissions as well as their uncertainties in urban domains using a top down inversion method. Top down inversion updates prior knowledge using observations in a Bayesian way. One primary consideration in a Bayesian inversion framework is the covariance structure of (1) the emission prior residuals and (2) the observation residuals (i.e. the difference between observations and model predicted observations). These covariance matrices are respectively referred to as the prior covariance matrix and the model-data mismatch covariance matrix. It is known that the choice of these covariances can have large effect on estimates. The main objective of this work is to determine the impact of different covariance models on inversion estimates and their associated uncertainties in urban domains. We use a pseudo-data Bayesian inversion framework using footprints (i.e. sensitivities of tower measurements of GHGs to surface emissions) and emission priors (based on Hestia project to quantify fossil-fuel emissions) to estimate posterior emissions using different covariance schemes. The posterior emission estimates and uncertainties are compared to the hypothetical truth. We find that, if we correctly specify spatial variability and spatio-temporal variability in prior and model-data mismatch covariances respectively, then we can compute more accurate posterior estimates. We discuss few covariance models to introduce space-time interacting mismatches along with estimation of the involved parameters. We then compare several candidate prior spatial covariance models from the Matern covariance class and estimate their parameters with specified mismatches. We find that best-fitted prior covariances are not always best in recovering the truth. To achieve accuracy, we perform a sensitivity study to further tune covariance parameters. Finally, we introduce a shrinkage based sample covariance estimation technique for both prior and mismatch covariances. This technique allows us to achieve similar accuracy nonparametrically in a more efficient and automated way.

  14. Fast Bayesian approach for modal identification using free vibration data, Part I - Most probable value

    NASA Astrophysics Data System (ADS)

    Zhang, Feng-Liang; Ni, Yan-Chun; Au, Siu-Kui; Lam, Heung-Fai

    2016-03-01

    The identification of modal properties from field testing of civil engineering structures is becoming economically viable, thanks to the advent of modern sensor and data acquisition technology. Its demand is driven by innovative structural designs and increased performance requirements of dynamic-prone structures that call for a close cross-checking or monitoring of their dynamic properties and responses. Existing instrumentation capabilities and modal identification techniques allow structures to be tested under free vibration, forced vibration (known input) or ambient vibration (unknown broadband loading). These tests can be considered complementary rather than competing as they are based on different modeling assumptions in the identification model and have different implications on costs and benefits. Uncertainty arises naturally in the dynamic testing of structures due to measurement noise, sensor alignment error, modeling error, etc. This is especially relevant in field vibration tests because the test condition in the field environment can hardly be controlled. In this work, a Bayesian statistical approach is developed for modal identification using the free vibration response of structures. A frequency domain formulation is proposed that makes statistical inference based on the Fast Fourier Transform (FFT) of the data in a selected frequency band. This significantly simplifies the identification model because only the modes dominating the frequency band need to be included. It also legitimately ignores the information in the excluded frequency bands that are either irrelevant or difficult to model, thereby significantly reducing modeling error risk. The posterior probability density function (PDF) of the modal parameters is derived rigorously from modeling assumptions and Bayesian probability logic. Computational difficulties associated with calculating the posterior statistics, including the most probable value (MPV) and the posterior covariance matrix, are addressed. Fast computational algorithms for determining the MPV are proposed so that the method can be practically implemented. In the companion paper (Part II), analytical formulae are derived for the posterior covariance matrix so that it can be evaluated without resorting to finite difference method. The proposed method is verified using synthetic data. It is also applied to modal identification of full-scale field structures.

  15. Nonnegative least-squares image deblurring: improved gradient projection approaches

    NASA Astrophysics Data System (ADS)

    Benvenuto, F.; Zanella, R.; Zanni, L.; Bertero, M.

    2010-02-01

    The least-squares approach to image deblurring leads to an ill-posed problem. The addition of the nonnegativity constraint, when appropriate, does not provide regularization, even if, as far as we know, a thorough investigation of the ill-posedness of the resulting constrained least-squares problem has still to be done. Iterative methods, converging to nonnegative least-squares solutions, have been proposed. Some of them have the 'semi-convergence' property, i.e. early stopping of the iteration provides 'regularized' solutions. In this paper we consider two of these methods: the projected Landweber (PL) method and the iterative image space reconstruction algorithm (ISRA). Even if they work well in many instances, they are not frequently used in practice because, in general, they require a large number of iterations before providing a sensible solution. Therefore, the main purpose of this paper is to refresh these methods by increasing their efficiency. Starting from the remark that PL and ISRA require only the computation of the gradient of the functional, we propose the application to these algorithms of special acceleration techniques that have been recently developed in the area of the gradient methods. In particular, we propose the application of efficient step-length selection rules and line-search strategies. Moreover, remarking that ISRA is a scaled gradient algorithm, we evaluate its behaviour in comparison with a recent scaled gradient projection (SGP) method for image deblurring. Numerical experiments demonstrate that the accelerated methods still exhibit the semi-convergence property, with a considerable gain both in the number of iterations and in the computational time; in particular, SGP appears definitely the most efficient one.

  16. A sparse reconstruction method for the estimation of multiresolution emission fields via atmospheric inversion

    DOE PAGES

    Ray, J.; Lee, J.; Yadav, V.; ...

    2014-08-20

    We present a sparse reconstruction scheme that can also be used to ensure non-negativity when fitting wavelet-based random field models to limited observations in non-rectangular geometries. The method is relevant when multiresolution fields are estimated using linear inverse problems. Examples include the estimation of emission fields for many anthropogenic pollutants using atmospheric inversion or hydraulic conductivity in aquifers from flow measurements. The scheme is based on three new developments. Firstly, we extend an existing sparse reconstruction method, Stagewise Orthogonal Matching Pursuit (StOMP), to incorporate prior information on the target field. Secondly, we develop an iterative method that uses StOMP tomore » impose non-negativity on the estimated field. Finally, we devise a method, based on compressive sensing, to limit the estimated field within an irregularly shaped domain. We demonstrate the method on the estimation of fossil-fuel CO 2 (ffCO 2) emissions in the lower 48 states of the US. The application uses a recently developed multiresolution random field model and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of two. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  17. Graph Partitioning by Eigenvectors,

    DTIC Science & Technology

    1987-01-01

    the extremal nature of eigenvalues of symmetric matrices, the interlacing theorem, monotonicity of spectral radius of nonnegative matrices, Perron ... Frobenius theory, etc. (See Varga (1962) and Lancaster and Tismenetsky (1985).) Most of the results of this paper depend on the following lemma. ABSTRACT

  18. 77 FR 2935 - Revision to Chemical Testing Regulations for Mariners and Marine Employers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... balloon shape in the ``Actions'' column. If you submit your comments by mail or hand delivery, submit them.... Medical Review Officers (MROs) Reporting Non-Negative Test Results Directly to the Coast Guard A non...

  19. Bayesian Abel Inversion in Quantitative X-Ray Radiography

    DOE PAGES

    Howard, Marylesa; Fowler, Michael; Luttman, Aaron; ...

    2016-05-19

    A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type andmore » scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.« less

  20. 49 CFR 40.129 - What are the MRO's functions in reviewing laboratory confirmed non-negative drug test results?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... scientist signed the form. You are not required to review any other documentation generated by the... of the CCF, containing the certifying scientist's signature. (c) With respect to verified positive...

  1. 49 CFR 40.129 - What are the MRO's functions in reviewing laboratory confirmed non-negative drug test results?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... scientist signed the form. You are not required to review any other documentation generated by the... of the CCF, containing the certifying scientist's signature. (c) With respect to verified positive...

  2. Bayesian Modeling of Prion Disease Dynamics in Mule Deer Using Population Monitoring and Capture-Recapture Data

    PubMed Central

    Geremia, Chris; Miller, Michael W.; Hoeting, Jennifer A.; Antolin, Michael F.; Hobbs, N. Thompson

    2015-01-01

    Epidemics of chronic wasting disease (CWD) of North American Cervidae have potential to harm ecosystems and economies. We studied a migratory population of mule deer (Odocoileus hemionus) affected by CWD for at least three decades using a Bayesian framework to integrate matrix population and disease models with long-term monitoring data and detailed process-level studies. We hypothesized CWD prevalence would be stable or increase between two observation periods during the late 1990s and after 2010, with higher CWD prevalence making deer population decline more likely. The weight of evidence suggested a reduction in the CWD outbreak over time, perhaps in response to intervening harvest-mediated population reductions. Disease effects on deer population growth under current conditions were subtle with a 72% chance that CWD depressed population growth. With CWD, we forecasted a growth rate near one and largely stable deer population. Disease effects appear to be moderated by timing of infection, prolonged disease course, and locally variable infection. Long-term outcomes will depend heavily on whether current conditions hold and high prevalence remains a localized phenomenon. PMID:26509806

  3. Online Bayesian Learning with Natural Sequential Prior Distribution Used for Wind Speed Prediction

    NASA Astrophysics Data System (ADS)

    Cheggaga, Nawal

    2017-11-01

    Predicting wind speed is one of the most important and critic tasks in a wind farm. All approaches, which directly describe the stochastic dynamics of the meteorological data are facing problems related to the nature of its non-Gaussian statistics and the presence of seasonal effects .In this paper, Online Bayesian learning has been successfully applied to online learning for three-layer perceptron's used for wind speed prediction. First a conventional transition model based on the squared norm of the difference between the current parameter vector and the previous parameter vector has been used. We noticed that the transition model does not adequately consider the difference between the current and the previous wind speed measurement. To adequately consider this difference, we use a natural sequential prior. The proposed transition model uses a Fisher information matrix to consider the difference between the observation models more naturally. The obtained results showed a good agreement between both series, measured and predicted. The mean relative error over the whole data set is not exceeding 5 %.

  4. Superresolution radar imaging based on fast inverse-free sparse Bayesian learning for multiple measurement vectors

    NASA Astrophysics Data System (ADS)

    He, Xingyu; Tong, Ningning; Hu, Xiaowei

    2018-01-01

    Compressive sensing has been successfully applied to inverse synthetic aperture radar (ISAR) imaging of moving targets. By exploiting the block sparse structure of the target image, sparse solution for multiple measurement vectors (MMV) can be applied in ISAR imaging and a substantial performance improvement can be achieved. As an effective sparse recovery method, sparse Bayesian learning (SBL) for MMV involves a matrix inverse at each iteration. Its associated computational complexity grows significantly with the problem size. To address this problem, we develop a fast inverse-free (IF) SBL method for MMV. A relaxed evidence lower bound (ELBO), which is computationally more amiable than the traditional ELBO used by SBL, is obtained by invoking fundamental property for smooth functions. A variational expectation-maximization scheme is then employed to maximize the relaxed ELBO, and a computationally efficient IF-MSBL algorithm is proposed. Numerical results based on simulated and real data show that the proposed method can reconstruct row sparse signal accurately and obtain clear superresolution ISAR images. Moreover, the running time and computational complexity are reduced to a great extent compared with traditional SBL methods.

  5. Bayesian bivariate meta-analysis of diagnostic test studies with interpretable priors.

    PubMed

    Guo, Jingyi; Riebler, Andrea; Rue, Håvard

    2017-08-30

    In a bivariate meta-analysis, the number of diagnostic studies involved is often very low so that frequentist methods may result in problems. Using Bayesian inference is particularly attractive as informative priors that add a small amount of information can stabilise the analysis without overwhelming the data. However, Bayesian analysis is often computationally demanding and the selection of the prior for the covariance matrix of the bivariate structure is crucial with little data. The integrated nested Laplace approximations method provides an efficient solution to the computational issues by avoiding any sampling, but the important question of priors remain. We explore the penalised complexity (PC) prior framework for specifying informative priors for the variance parameters and the correlation parameter. PC priors facilitate model interpretation and hyperparameter specification as expert knowledge can be incorporated intuitively. We conduct a simulation study to compare the properties and behaviour of differently defined PC priors to currently used priors in the field. The simulation study shows that the PC prior seems beneficial for the variance parameters. The use of PC priors for the correlation parameter results in more precise estimates when specified in a sensible neighbourhood around the truth. To investigate the usage of PC priors in practice, we reanalyse a meta-analysis using the telomerase marker for the diagnosis of bladder cancer and compare the results with those obtained by other commonly used modelling approaches. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Inference of reactive transport model parameters using a Bayesian multivariate approach

    NASA Astrophysics Data System (ADS)

    Carniato, Luca; Schoups, Gerrit; van de Giesen, Nick

    2014-08-01

    Parameter estimation of subsurface transport models from multispecies data requires the definition of an objective function that includes different types of measurements. Common approaches are weighted least squares (WLS), where weights are specified a priori for each measurement, and weighted least squares with weight estimation (WLS(we)) where weights are estimated from the data together with the parameters. In this study, we formulate the parameter estimation task as a multivariate Bayesian inference problem. The WLS and WLS(we) methods are special cases in this framework, corresponding to specific prior assumptions about the residual covariance matrix. The Bayesian perspective allows for generalizations to cases where residual correlation is important and for efficient inference by analytically integrating out the variances (weights) and selected covariances from the joint posterior. Specifically, the WLS and WLS(we) methods are compared to a multivariate (MV) approach that accounts for specific residual correlations without the need for explicit estimation of the error parameters. When applied to inference of reactive transport model parameters from column-scale data on dissolved species concentrations, the following results were obtained: (1) accounting for residual correlation between species provides more accurate parameter estimation for high residual correlation levels whereas its influence for predictive uncertainty is negligible, (2) integrating out the (co)variances leads to an efficient estimation of the full joint posterior with a reduced computational effort compared to the WLS(we) method, and (3) in the presence of model structural errors, none of the methods is able to identify the correct parameter values.

  7. Multisystem Temperature Equilibration and the Second Law

    ERIC Educational Resources Information Center

    Leff, Harvey S.

    1977-01-01

    Shows that the entropy change during the temperature equilibration of an isolated collection of systems which may exchange heat (but not work) energy is positive when the constant-volume heat capacity of each system is a non-negative function of the temperature. (MLH)

  8. PM2.5 source apportionment in a French urban coastal site under steelworks emission influences using constrained non-negative matrix factorization receptor model.

    PubMed

    Kfoury, Adib; Ledoux, Frédéric; Roche, Cloé; Delmaire, Gilles; Roussel, Gilles; Courcot, Dominique

    2016-02-01

    The constrained weighted-non-negative matrix factorization (CW-NMF) hybrid receptor model was applied to study the influence of steelmaking activities on PM2.5 (particulate matter with equivalent aerodynamic diameter less than 2.5 μm) composition in Dunkerque, Northern France. Semi-diurnal PM2.5 samples were collected using a high volume sampler in winter 2010 and spring 2011 and were analyzed for trace metals, water-soluble ions, and total carbon using inductively coupled plasma--atomic emission spectrometry (ICP-AES), ICP--mass spectrometry (ICP-MS), ionic chromatography and micro elemental carbon analyzer. The elemental composition shows that NO3(-), SO4(2-), NH4(+) and total carbon are the main PM2.5 constituents. Trace metals data were interpreted using concentration roses and both influences of integrated steelworks and electric steel plant were evidenced. The distinction between the two sources is made possible by the use Zn/Fe and Zn/Mn diagnostic ratios. Moreover Rb/Cr, Pb/Cr and Cu/Cd combination ratio are proposed to distinguish the ISW-sintering stack from the ISW-fugitive emissions. The a priori knowledge on the influencing source was introduced in the CW-NMF to guide the calculation. Eleven source profiles with various contributions were identified: 8 are characteristics of coastal urban background site profiles and 3 are related to the steelmaking activities. Between them, secondary nitrates, secondary sulfates and combustion profiles give the highest contributions and account for 93% of the PM2.5 concentration. The steelwork facilities contribute in about 2% of the total PM2.5 concentration and appear to be the main source of Cr, Cu, Fe, Mn, Zn. Copyright © 2015. Published by Elsevier B.V.

  9. Navigating the Functional Landscape of Transcription Factors via Non-Negative Tensor Factorization Analysis of MEDLINE Abstracts

    PubMed Central

    Roy, Sujoy; Yun, Daqing; Madahian, Behrouz; Berry, Michael W.; Deng, Lih-Yuan; Goldowitz, Daniel; Homayouni, Ramin

    2017-01-01

    In this study, we developed and evaluated a novel text-mining approach, using non-negative tensor factorization (NTF), to simultaneously extract and functionally annotate transcriptional modules consisting of sets of genes, transcription factors (TFs), and terms from MEDLINE abstracts. A sparse 3-mode term × gene × TF tensor was constructed that contained weighted frequencies of 106,895 terms in 26,781 abstracts shared among 7,695 genes and 994 TFs. The tensor was decomposed into sub-tensors using non-negative tensor factorization (NTF) across 16 different approximation ranks. Dominant entries of each of 2,861 sub-tensors were extracted to form term–gene–TF annotated transcriptional modules (ATMs). More than 94% of the ATMs were found to be enriched in at least one KEGG pathway or GO category, suggesting that the ATMs are functionally relevant. One advantage of this method is that it can discover potentially new gene–TF associations from the literature. Using a set of microarray and ChIP-Seq datasets as gold standard, we show that the precision of our method for predicting gene–TF associations is significantly higher than chance. In addition, we demonstrate that the terms in each ATM can be used to suggest new GO classifications to genes and TFs. Taken together, our results indicate that NTF is useful for simultaneous extraction and functional annotation of transcriptional regulatory networks from unstructured text, as well as for literature based discovery. A web tool called Transcriptional Regulatory Modules Extracted from Literature (TREMEL), available at http://binf1.memphis.edu/tremel, was built to enable browsing and searching of ATMs. PMID:28894735

  10. Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source

    NASA Astrophysics Data System (ADS)

    Liu, Ji; Zheng, Jiashan; Wang, Yifu

    2016-04-01

    In this paper, we consider the quasilinear chemotaxis-haptotaxis system u_t=nabla\\cdot(D(u)nabla u)-nabla\\cdot(S_1(u)nabla v)-nabla\\cdot(S_2(u)nabla w)+uf(u,w),quad xinΩ, t > 0,v_t=Δ v-v+u,quad xinΩ, t > 0,w_t=-vw,quad xinΩ, t > 0 in a bounded smooth domain {Ωsubset R^n (n≥1)} under zero-flux boundary conditions, where the nonlinearities {D, S_1} and {S_2} are assumed to generalize the prototypes D(u)=CD(u+1)^{m-1}, S_1(u)=C_{S_1}u(u+1)^{q_1-1} quad {and} quad S_2(u)=C_{S_2}u(u+1)^{q_2-1} with {C_D,C_{S_1},C_{S_2} > 0, m,q_1,q_2in R} and {f(u,w)in C^1([0,+infty)×[0,+∞))} fulfills f(u,w)≤ r-buquad {for all} ~u≥ 0quad {and} quad w≥ 0, where {r > 0, b > 0.} Assuming nonnegative initial data {u_0(x)in W^{1,∞}(Ω),v_0(x)in W^{1,∞}(Ω)} and {w_0(x)in C^{2,α}(barΩ)} for some {αin(0,1),} we prove that (i) for {n≤2,} if q_1,q_2\\ < m+2/n-1,} then {(star)} has a unique nonnegative classical solution which is globally bounded, (ii) for {n > 2,} if {max{q_1,q_2} < m+2/n-1} and {m > 2-2/n} or {max{q_1,q_2} < m+2/n-1} and {m≤ 1,} then {(star)} has a unique nonnegative classical solution which is globally bounded.

  11. Bounding Averages Rigorously Using Semidefinite Programming: Mean Moments of the Lorenz System

    NASA Astrophysics Data System (ADS)

    Goluskin, David

    2018-04-01

    We describe methods for proving bounds on infinite-time averages in differential dynamical systems. The methods rely on the construction of nonnegative polynomials with certain properties, similarly to the way nonlinear stability can be proved using Lyapunov functions. Nonnegativity is enforced by requiring the polynomials to be sums of squares, a condition which is then formulated as a semidefinite program (SDP) that can be solved computationally. Although such computations are subject to numerical error, we demonstrate two ways to obtain rigorous results: using interval arithmetic to control the error of an approximate SDP solution, and finding exact analytical solutions to relatively small SDPs. Previous formulations are extended to allow for bounds depending analytically on parametric variables. These methods are illustrated using the Lorenz equations, a system with three state variables ( x, y, z) and three parameters (β ,σ ,r). Bounds are reported for infinite-time averages of all eighteen moments x^ly^mz^n up to quartic degree that are symmetric under (x,y)\\mapsto (-x,-y). These bounds apply to all solutions regardless of stability, including chaotic trajectories, periodic orbits, and equilibrium points. The analytical approach yields two novel bounds that are sharp: the mean of z^3 can be no larger than its value of (r-1)^3 at the nonzero equilibria, and the mean of xy^3 must be nonnegative. The interval arithmetic approach is applied at the standard chaotic parameters to bound eleven average moments that all appear to be maximized on the shortest periodic orbit. Our best upper bound on each such average exceeds its value on the maximizing orbit by less than 1%. Many bounds reported here are much tighter than would be possible without computer assistance.

  12. Discrete Wigner formalism for qubits and noncontextuality of Clifford gates on qubit stabilizer states

    NASA Astrophysics Data System (ADS)

    Kocia, Lucas; Love, Peter

    2017-12-01

    We show that qubit stabilizer states can be represented by non-negative quasiprobability distributions associated with a Wigner-Weyl-Moyal formalism where Clifford gates are positive state-independent maps. This is accomplished by generalizing the Wigner-Weyl-Moyal formalism to three generators instead of two—producing an exterior, or Grassmann, algebra—which results in Clifford group gates for qubits that act as a permutation on the finite Weyl phase space points naturally associated with stabilizer states. As a result, a non-negative probability distribution can be associated with each stabilizer state's three-generator Wigner function, and these distributions evolve deterministically to one another under Clifford gates. This corresponds to a hidden variable theory that is noncontextual and local for qubit Clifford gates while Clifford (Pauli) measurements have a context-dependent representation. Equivalently, we show that qubit Clifford gates can be expressed as propagators within the three-generator Wigner-Weyl-Moyal formalism whose semiclassical expansion is truncated at order ℏ0 with a finite number of terms. The T gate, which extends the Clifford gate set to one capable of universal quantum computation, requires a semiclassical expansion of the propagator to order ℏ1. We compare this approach to previous quasiprobability descriptions of qubits that relied on the two-generator Wigner-Weyl-Moyal formalism and find that the two-generator Weyl symbols of stabilizer states result in a description of evolution under Clifford gates that is state-dependent, in contrast to the three-generator formalism. We have thus extended Wigner non-negative quasiprobability distributions from the odd d -dimensional case to d =2 qubits, which describe the noncontextuality of Clifford gates and contextuality of Pauli measurements on qubit stabilizer states.

  13. Regular Gleason Measures and Generalized Effect Algebras

    NASA Astrophysics Data System (ADS)

    Dvurečenskij, Anatolij; Janda, Jiří

    2015-12-01

    We study measures, finitely additive measures, regular measures, and σ-additive measures that can attain even infinite values on the quantum logic of a Hilbert space. We show when particular classes of non-negative measures can be studied in the frame of generalized effect algebras.

  14. Some identities of generalized Fibonacci sequence

    NASA Astrophysics Data System (ADS)

    Chong, Chin-Yoon; Cheah, C. L.; Ho, C. K.

    2014-07-01

    We introduced the generalized Fibonacci sequence {Un} defined by U0 = 0, U1 = 1, and Un+2 = pUn+1+qUn for all p, q∈Z+ and for all non-negative integers n. In this paper, we obtained some recursive formulas of the sequence.

  15. This is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction ALgorithms--theory and practice.

    PubMed

    Harmany, Zachary T; Marcia, Roummel F; Willett, Rebecca M

    2012-03-01

    Observations in many applications consist of counts of discrete events, such as photons hitting a detector, which cannot be effectively modeled using an additive bounded or Gaussian noise model, and instead require a Poisson noise model. As a result, accurate reconstruction of a spatially or temporally distributed phenomenon (f*) from Poisson data (y) cannot be effectively accomplished by minimizing a conventional penalized least-squares objective function. The problem addressed in this paper is the estimation of f* from y in an inverse problem setting, where the number of unknowns may potentially be larger than the number of observations and f* admits sparse approximation. The optimization formulation considered in this paper uses a penalized negative Poisson log-likelihood objective function with nonnegativity constraints (since Poisson intensities are naturally nonnegative). In particular, the proposed approach incorporates key ideas of using separable quadratic approximations to the objective function at each iteration and penalization terms related to l1 norms of coefficient vectors, total variation seminorms, and partition-based multiscale estimation methods.

  16. Reconstruction of electrical impedance tomography (EIT) images based on the expectation maximum (EM) method.

    PubMed

    Wang, Qi; Wang, Huaxiang; Cui, Ziqiang; Yang, Chengyi

    2012-11-01

    Electrical impedance tomography (EIT) calculates the internal conductivity distribution within a body using electrical contact measurements. The image reconstruction for EIT is an inverse problem, which is both non-linear and ill-posed. The traditional regularization method cannot avoid introducing negative values in the solution. The negativity of the solution produces artifacts in reconstructed images in presence of noise. A statistical method, namely, the expectation maximization (EM) method, is used to solve the inverse problem for EIT in this paper. The mathematical model of EIT is transformed to the non-negatively constrained likelihood minimization problem. The solution is obtained by the gradient projection-reduced Newton (GPRN) iteration method. This paper also discusses the strategies of choosing parameters. Simulation and experimental results indicate that the reconstructed images with higher quality can be obtained by the EM method, compared with the traditional Tikhonov and conjugate gradient (CG) methods, even with non-negative processing. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Causal Inference and Explaining Away in a Spiking Network

    PubMed Central

    Moreno-Bote, Rubén; Drugowitsch, Jan

    2015-01-01

    While the brain uses spiking neurons for communication, theoretical research on brain computations has mostly focused on non-spiking networks. The nature of spike-based algorithms that achieve complex computations, such as object probabilistic inference, is largely unknown. Here we demonstrate that a family of high-dimensional quadratic optimization problems with non-negativity constraints can be solved exactly and efficiently by a network of spiking neurons. The network naturally imposes the non-negativity of causal contributions that is fundamental to causal inference, and uses simple operations, such as linear synapses with realistic time constants, and neural spike generation and reset non-linearities. The network infers the set of most likely causes from an observation using explaining away, which is dynamically implemented by spike-based, tuned inhibition. The algorithm performs remarkably well even when the network intrinsically generates variable spike trains, the timing of spikes is scrambled by external sources of noise, or the network is mistuned. This type of network might underlie tasks such as odor identification and classification. PMID:26621426

  18. Causal Inference and Explaining Away in a Spiking Network.

    PubMed

    Moreno-Bote, Rubén; Drugowitsch, Jan

    2015-12-01

    While the brain uses spiking neurons for communication, theoretical research on brain computations has mostly focused on non-spiking networks. The nature of spike-based algorithms that achieve complex computations, such as object probabilistic inference, is largely unknown. Here we demonstrate that a family of high-dimensional quadratic optimization problems with non-negativity constraints can be solved exactly and efficiently by a network of spiking neurons. The network naturally imposes the non-negativity of causal contributions that is fundamental to causal inference, and uses simple operations, such as linear synapses with realistic time constants, and neural spike generation and reset non-linearities. The network infers the set of most likely causes from an observation using explaining away, which is dynamically implemented by spike-based, tuned inhibition. The algorithm performs remarkably well even when the network intrinsically generates variable spike trains, the timing of spikes is scrambled by external sources of noise, or the network is mistuned. This type of network might underlie tasks such as odor identification and classification.

  19. A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials

    NASA Astrophysics Data System (ADS)

    Sun, Zheng; Carrillo, José A.; Shu, Chi-Wang

    2018-01-01

    We consider a class of time-dependent second order partial differential equations governed by a decaying entropy. The solution usually corresponds to a density distribution, hence positivity (non-negativity) is expected. This class of problems covers important cases such as Fokker-Planck type equations and aggregation models, which have been studied intensively in the past decades. In this paper, we design a high order discontinuous Galerkin method for such problems. If the interaction potential is not involved, or the interaction is defined by a smooth kernel, our semi-discrete scheme admits an entropy inequality on the discrete level. Furthermore, by applying the positivity-preserving limiter, our fully discretized scheme produces non-negative solutions for all cases under a time step constraint. Our method also applies to two dimensional problems on Cartesian meshes. Numerical examples are given to confirm the high order accuracy for smooth test cases and to demonstrate the effectiveness for preserving long time asymptotics.

  20. Tryptophan as key biomarker to detect gastrointestinal tract cancer using non-negative biochemical analysis of native fluorescence and Stokes Shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Leana; Zhou, Yan; Liu, Cheng-hui; Zhou, Lixin; He, Yong; Pu, Yang; Nguyen, Thien An; Alfano, Robert R.

    2015-03-01

    The objective of this study was to find out the emission spectral fingerprints for discrimination of human colorectal and gastric cancer from normal tissue in vitro by applying native fluorescence. The native fluorescence (NFL) and Stokes shift spectra of seventy-two human cancerous and normal colorectal (colon, rectum) and gastric tissues were analyzed using three selected excitation wavelengths (e.g. 300 nm, 320 nm and 340 nm). Three distinct biomarkers, tryptophan, collagen and reduced nicotinamide adenine dinucleotide hydrate (NADH), were found in the samples of cancerous and normal tissues from eighteen subjects. The spectral profiles of tryptophan exhibited a sharp peak in cancerous colon tissues under a 300 nm excitation when compared with normal tissues. The changes in compositions of tryptophan, collagen, and NADH were found between colon cancer and normal tissues under an excitation of 300 nm by the non-negative basic biochemical component analysis (BBCA) model.

  1. Speeding up the Consensus Clustering methodology for microarray data analysis

    PubMed Central

    2011-01-01

    Background The inference of the number of clusters in a dataset, a fundamental problem in Statistics, Data Analysis and Classification, is usually addressed via internal validation measures. The stated problem is quite difficult, in particular for microarrays, since the inferred prediction must be sensible enough to capture the inherent biological structure in a dataset, e.g., functionally related genes. Despite the rich literature present in that area, the identification of an internal validation measure that is both fast and precise has proved to be elusive. In order to partially fill this gap, we propose a speed-up of Consensus (Consensus Clustering), a methodology whose purpose is the provision of a prediction of the number of clusters in a dataset, together with a dissimilarity matrix (the consensus matrix) that can be used by clustering algorithms. As detailed in the remainder of the paper, Consensus is a natural candidate for a speed-up. Results Since the time-precision performance of Consensus depends on two parameters, our first task is to show that a simple adjustment of the parameters is not enough to obtain a good precision-time trade-off. Our second task is to provide a fast approximation algorithm for Consensus. That is, the closely related algorithm FC (Fast Consensus) that would have the same precision as Consensus with a substantially better time performance. The performance of FC has been assessed via extensive experiments on twelve benchmark datasets that summarize key features of microarray applications, such as cancer studies, gene expression with up and down patterns, and a full spectrum of dimensionality up to over a thousand. Based on their outcome, compared with previous benchmarking results available in the literature, FC turns out to be among the fastest internal validation methods, while retaining the same outstanding precision of Consensus. Moreover, it also provides a consensus matrix that can be used as a dissimilarity matrix, guaranteeing the same performance as the corresponding matrix produced by Consensus. We have also experimented with the use of Consensus and FC in conjunction with NMF (Nonnegative Matrix Factorization), in order to identify the correct number of clusters in a dataset. Although NMF is an increasingly popular technique for biological data mining, our results are somewhat disappointing and complement quite well the state of the art about NMF, shedding further light on its merits and limitations. Conclusions In summary, FC with a parameter setting that makes it robust with respect to small and medium-sized datasets, i.e, number of items to cluster in the hundreds and number of conditions up to a thousand, seems to be the internal validation measure of choice. Moreover, the technique we have developed here can be used in other contexts, in particular for the speed-up of stability-based validation measures. PMID:21235792

  2. TIME SHARING WITH AN EXPLICIT PRIORITY QUEUING DISCIPLINE.

    DTIC Science & Technology

    exponentially distributed service times and an ordered priority queue. Each new arrival buys a position in this queue by offering a non-negative bribe to the...parameters is investigated through numerical examples. Finally, to maximize the expected revenue per unit time accruing from bribes , an optimization

  3. Bayesian meta-analytical methods to incorporate multiple surrogate endpoints in drug development process.

    PubMed

    Bujkiewicz, Sylwia; Thompson, John R; Riley, Richard D; Abrams, Keith R

    2016-03-30

    A number of meta-analytical methods have been proposed that aim to evaluate surrogate endpoints. Bivariate meta-analytical methods can be used to predict the treatment effect for the final outcome from the treatment effect estimate measured on the surrogate endpoint while taking into account the uncertainty around the effect estimate for the surrogate endpoint. In this paper, extensions to multivariate models are developed aiming to include multiple surrogate endpoints with the potential benefit of reducing the uncertainty when making predictions. In this Bayesian multivariate meta-analytic framework, the between-study variability is modelled in a formulation of a product of normal univariate distributions. This formulation is particularly convenient for including multiple surrogate endpoints and flexible for modelling the outcomes which can be surrogate endpoints to the final outcome and potentially to one another. Two models are proposed, first, using an unstructured between-study covariance matrix by assuming the treatment effects on all outcomes are correlated and second, using a structured between-study covariance matrix by assuming treatment effects on some of the outcomes are conditionally independent. While the two models are developed for the summary data on a study level, the individual-level association is taken into account by the use of the Prentice's criteria (obtained from individual patient data) to inform the within study correlations in the models. The modelling techniques are investigated using an example in relapsing remitting multiple sclerosis where the disability worsening is the final outcome, while relapse rate and MRI lesions are potential surrogates to the disability progression. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  4. Zero-state Markov switching count-data models: an empirical assessment.

    PubMed

    Malyshkina, Nataliya V; Mannering, Fred L

    2010-01-01

    In this study, a two-state Markov switching count-data model is proposed as an alternative to zero-inflated models to account for the preponderance of zeros sometimes observed in transportation count data, such as the number of accidents occurring on a roadway segment over some period of time. For this accident-frequency case, zero-inflated models assume the existence of two states: one of the states is a zero-accident count state, which has accident probabilities that are so low that they cannot be statistically distinguished from zero, and the other state is a normal-count state, in which counts can be non-negative integers that are generated by some counting process, for example, a Poisson or negative binomial. While zero-inflated models have come under some criticism with regard to accident-frequency applications - one fact is undeniable - in many applications they provide a statistically superior fit to the data. The Markov switching approach we propose seeks to overcome some of the criticism associated with the zero-accident state of the zero-inflated model by allowing individual roadway segments to switch between zero and normal-count states over time. An important advantage of this Markov switching approach is that it allows for the direct statistical estimation of the specific roadway-segment state (i.e., zero-accident or normal-count state) whereas traditional zero-inflated models do not. To demonstrate the applicability of this approach, a two-state Markov switching negative binomial model (estimated with Bayesian inference) and standard zero-inflated negative binomial models are estimated using five-year accident frequencies on Indiana interstate highway segments. It is shown that the Markov switching model is a viable alternative and results in a superior statistical fit relative to the zero-inflated models.

  5. Sea Ice Concentration Estimation Using Active and Passive Remote Sensing Data Fusion

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, F.; Zhang, S.; Zhu, T.

    2017-12-01

    In this abstract, a decision-level fusion method by utilizing SAR and passive microwave remote sensing data for sea ice concentration estimation is investigated. Sea ice concentration product from passive microwave concentration retrieval methods has large uncertainty within thin ice zone. Passive microwave data including SSM/I, AMSR-E, and AMSR-2 provide daily and long time series observations covering whole polar sea ice scene, and SAR images provide rich sea ice details with high spatial resolution including deformation and polarimetric features. In the proposed method, the merits from passive microwave data and SAR data are considered. Sea ice concentration products from ASI and sea ice category label derived from CRF framework in SAR imagery are calibrated under least distance protocol. For SAR imagery, incident angle and azimuth angle were used to correct backscattering values from slant range to ground range in order to improve geocoding accuracy. The posterior probability distribution between category label from SAR imagery and passive microwave sea ice concentration product is modeled and integrated under Bayesian network, where Gaussian statistical distribution from ASI sea ice concentration products serves as the prior term, which represented as an uncertainty of sea ice concentration. Empirical model based likelihood term is constructed under Bernoulli theory, which meets the non-negative and monotonically increasing conditions. In the posterior probability estimation procedure, final sea ice concentration is obtained using MAP criterion, which equals to minimize the cost function and it can be calculated with nonlinear iteration method. The proposed algorithm is tested on multiple satellite SAR data sets including GF-3, Sentinel-1A, RADARSAT-2 and Envisat ASAR. Results show that the proposed algorithm can improve the accuracy of ASI sea ice concentration products and reduce the uncertainty along the ice edge.

  6. Combined node and link partitions method for finding overlapping communities in complex networks

    PubMed Central

    Jin, Di; Gabrys, Bogdan; Dang, Jianwu

    2015-01-01

    Community detection in complex networks is a fundamental data analysis task in various domains, and how to effectively find overlapping communities in real applications is still a challenge. In this work, we propose a new unified model and method for finding the best overlapping communities on the basis of the associated node and link partitions derived from the same framework. Specifically, we first describe a unified model that accommodates node and link communities (partitions) together, and then present a nonnegative matrix factorization method to learn the parameters of the model. Thereafter, we infer the overlapping communities based on the derived node and link communities, i.e., determine each overlapped community between the corresponding node and link community with a greedy optimization of a local community function conductance. Finally, we introduce a model selection method based on consensus clustering to determine the number of communities. We have evaluated our method on both synthetic and real-world networks with ground-truths, and compared it with seven state-of-the-art methods. The experimental results demonstrate the superior performance of our method over the competing ones in detecting overlapping communities for all analysed data sets. Improved performance is particularly pronounced in cases of more complicated networked community structures. PMID:25715829

  7. Detection of goal events in soccer videos

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung-Gook; Roeber, Steffen; Samour, Amjad; Sikora, Thomas

    2005-01-01

    In this paper, we present an automatic extraction of goal events in soccer videos by using audio track features alone without relying on expensive-to-compute video track features. The extracted goal events can be used for high-level indexing and selective browsing of soccer videos. The detection of soccer video highlights using audio contents comprises three steps: 1) extraction of audio features from a video sequence, 2) event candidate detection of highlight events based on the information provided by the feature extraction Methods and the Hidden Markov Model (HMM), 3) goal event selection to finally determine the video intervals to be included in the summary. For this purpose we compared the performance of the well known Mel-scale Frequency Cepstral Coefficients (MFCC) feature extraction method vs. MPEG-7 Audio Spectrum Projection feature (ASP) extraction method based on three different decomposition methods namely Principal Component Analysis( PCA), Independent Component Analysis (ICA) and Non-Negative Matrix Factorization (NMF). To evaluate our system we collected five soccer game videos from various sources. In total we have seven hours of soccer games consisting of eight gigabytes of data. One of five soccer games is used as the training data (e.g., announcers' excited speech, audience ambient speech noise, audience clapping, environmental sounds). Our goal event detection results are encouraging.

  8. The neural basis of emotions varies over time: different regions go with onset- and offset-bound processes underlying emotion intensity.

    PubMed

    Résibois, Maxime; Verduyn, Philippe; Delaveau, Pauline; Rotgé, Jean-Yves; Kuppens, Peter; Van Mechelen, Iven; Fossati, Philippe

    2017-08-01

    According to theories of emotion dynamics, emotions unfold across two phases in which different types of processes come to the fore: emotion onset and emotion offset. Differences in onset-bound processes are reflected by the degree of explosiveness or steepness of the response at onset, and differences in offset-bound processes by the degree of accumulation or intensification of the subsequent response. Whether onset- and offset-bound processes have distinctive neural correlates and, hence, whether the neural basis of emotions varies over time, still remains unknown. In the present fMRI study, we address this question using a recently developed paradigm that allows to disentangle explosiveness and accumulation. Thirty-one participants were exposed to neutral and negative social feedback, and asked to reflect on its contents. Emotional intensity while reading and thinking about the feedback was measured with an intensity profile tracking approach. Using non-negative matrix factorization, the resulting profile data were decomposed in explosiveness and accumulation components, which were subsequently entered as continuous regressors of the BOLD response. It was found that the neural basis of emotion intensity shifts as emotions unfold over time with emotion explosiveness and accumulation having distinctive neural correlates. © The Author (2017). Published by Oxford University Press.

  9. Natural approach to quantum dissipation

    NASA Astrophysics Data System (ADS)

    Taj, David; Öttinger, Hans Christian

    2015-12-01

    The dissipative dynamics of a quantum system weakly coupled to one or several reservoirs is usually described in terms of a Lindblad generator. The popularity of this approach is certainly due to the linear character of the latter. However, while such linearity finds justification from an underlying Hamiltonian evolution in some scaling limit, it does not rely on solid physical motivations at small but finite values of the coupling constants, where the generator is typically used for applications. The Markovian quantum master equations we propose are instead supported by very natural thermodynamic arguments. They themselves arise from Markovian master equations for the system and the environment which preserve factorized states and mean energy and generate entropy at a non-negative rate. The dissipative structure is driven by an entropic map, called modular, which introduces nonlinearity. The generated modular dynamical semigroup (MDS) guarantees for the positivity of the time evolved state the correct steady state properties, the positivity of the entropy production, and a positive Onsager matrix with symmetry relations arising from Green-Kubo formulas. We show that the celebrated Davies Lindblad generator, obtained through the Born and the secular approximations, generates a MDS. In doing so we also provide a nonlinear MDS which is supported by a weak coupling argument and is free from the limitations of the Davies generator.

  10. Neuro-Mechanics of Recumbent Leg Cycling in Post-Acute Stroke Patients.

    PubMed

    Ambrosini, Emilia; De Marchis, Cristiano; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Monticone, Marco; Schmid, Maurizio; D'Alessio, Tommaso; Conforto, Silvia; Ferrante, Simona

    2016-11-01

    Cycling training is strongly applied in post-stroke rehabilitation, but how its modular control is altered soon after stroke has been not analyzed yet. EMG signals from 9 leg muscles and pedal forces were measured bilaterally during recumbent pedaling in 16 post-acute stroke patients and 12 age-matched healthy controls. Patients were asked to walk over a GaitRite mat and standard gait parameters were computed. Four muscle synergies were extracted through nonnegative matrix factorization in healthy subjects and patients unaffected legs. Two to four synergies were identified in the affected sides and the number of synergies significantly correlated with the Motricity Index (Spearman's coefficient = 0.521). The reduced coordination complexity resulted in a reduced biomechanical performance, with the two-module sub-group showing the lowest work production and mechanical effectiveness in the affected side. These patients also exhibited locomotor impairments (reduced gait speed, asymmetrical stance time, prolonged double support time). Significant correlations were found between cycling-based metrics and gait parameters, suggesting that neuro-mechanical quantities of pedaling can inform on walking dysfunctions. Our findings support the use of pedaling as a rehabilitation method and an assessment tool after stroke, mainly in the early phase, when patients can be unable to perform a safe and active gait training.

  11. Gestational Age is Dimensionally Associated with Structural Brain Network Abnormalities Across Development.

    PubMed

    Nassar, Rula; Kaczkurkin, Antonia N; Xia, Cedric Huchuan; Sotiras, Aristeidis; Pehlivanova, Marieta; Moore, Tyler M; Garcia de La Garza, Angel; Roalf, David R; Rosen, Adon F G; Lorch, Scott A; Ruparel, Kosha; Shinohara, Russell T; Davatzikos, Christos; Gur, Ruben C; Gur, Raquel E; Satterthwaite, Theodore D

    2018-04-21

    Prematurity is associated with diverse developmental abnormalities, yet few studies relate cognitive and neurostructural deficits to a dimensional measure of prematurity. Leveraging a large sample of children, adolescents, and young adults (age 8-22 years) studied as part of the Philadelphia Neurodevelopmental Cohort, we examined how variation in gestational age impacted cognition and brain structure later in development. Participants included 72 preterm youth born before 37 weeks' gestation and 206 youth who were born at term (37 weeks or later). Using a previously-validated factor analysis, cognitive performance was assessed in three domains: (1) executive function and complex reasoning, (2) social cognition, and (3) episodic memory. All participants completed T1-weighted neuroimaging at 3 T to measure brain volume. Structural covariance networks were delineated using non-negative matrix factorization, an advanced multivariate analysis technique. Lower gestational age was associated with both deficits in executive function and reduced volume within 11 of 26 structural covariance networks, which included orbitofrontal, temporal, and parietal cortices as well as subcortical regions including the hippocampus. Notably, the relationship between lower gestational age and executive dysfunction was accounted for in part by structural network deficits. Together, these findings emphasize the durable impact of prematurity on cognition and brain structure, which persists across development.

  12. High-Resolution, Non-Invasive Imaging of Upper Vocal Tract Articulators Compatible with Human Brain Recordings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouchard, Kristofer E.; Conant, David F.; Anumanchipalli, Gopala K.

    A complete neurobiological understanding of speech motor control requires determination of the relationship between simultaneously recorded neural activity and the kinematics of the lips, jaw, tongue, and larynx. Many speech articulators are internal to the vocal tract, and therefore simultaneously tracking the kinematics of all articulators is nontrivial-especially in the context of human electrophysiology recordings. Here, we describe a noninvasive, multi-modal imaging system to monitor vocal tract kinematics, demonstrate this system in six speakers during production of nine American English vowels, and provide new analysis of such data. Classification and regression analysis revealed considerable variability in the articulator-to-acoustic relationship acrossmore » speakers. Non-negative matrix factorization extracted basis sets capturing vocal tract shapes allowing for higher vowel classification accuracy than traditional methods. Statistical speech synthesis generated speech from vocal tract measurements, and we demonstrate perceptual identification. We demonstrate the capacity to predict lip kinematics from ventral sensorimotor cortical activity. These results demonstrate a multi-modal system to non-invasively monitor articulator kinematics during speech production, describe novel analytic methods for relating kinematic data to speech acoustics, and provide the first decoding of speech kinematics from electrocorticography. These advances will be critical for understanding the cortical basis of speech production and the creation of vocal prosthetics.« less

  13. Efficient source separation algorithms for acoustic fall detection using a microsoft kinect.

    PubMed

    Li, Yun; Ho, K C; Popescu, Mihail

    2014-03-01

    Falls have become a common health problem among older adults. In previous study, we proposed an acoustic fall detection system (acoustic FADE) that employed a microphone array and beamforming to provide automatic fall detection. However, the previous acoustic FADE had difficulties in detecting the fall signal in environments where interference comes from the fall direction, the number of interferences exceeds FADE's ability to handle or a fall is occluded. To address these issues, in this paper, we propose two blind source separation (BSS) methods for extracting the fall signal out of the interferences to improve the fall classification task. We first propose the single-channel BSS by using nonnegative matrix factorization (NMF) to automatically decompose the mixture into a linear combination of several basis components. Based on the distinct patterns of the bases of falls, we identify them efficiently and then construct the interference free fall signal. Next, we extend the single-channel BSS to the multichannel case through a joint NMF over all channels followed by a delay-and-sum beamformer for additional ambient noise reduction. In our experiments, we used the Microsoft Kinect to collect the acoustic data in real-home environments. The results show that in environments with high interference and background noise levels, the fall detection performance is significantly improved using the proposed BSS approaches.

  14. Use of muscle synergies and wavelet transforms to identify fatigue during squatting.

    PubMed

    Smale, Kenneth B; Shourijeh, Mohammad S; Benoit, Daniel L

    2016-06-01

    The objective of this study was to supplement continuous wavelet transforms with muscle synergies in a fatigue analysis to better describe the combination of decreased firing frequency and altered activation profiles during dynamic muscle contractions. Nine healthy young individuals completed the dynamic tasks before and after they squatted with a standard Olympic bar until complete exhaustion. Electromyography (EMG) profiles were analyzed with a novel concatenated non-negative matrix factorization method that decomposed EMG signals into muscle synergies. Muscle synergy analysis provides the activation pattern of the muscles while continuous wavelet transforms output the temporal frequency content of the EMG signals. Synergy analysis revealed subtle changes in two-legged squatting after fatigue while differences in one-legged squatting were more pronounced and included the shift from a general co-activation of muscles in the pre-fatigue state to a knee extensor dominant weighting post-fatigue. Continuous wavelet transforms showed major frequency content decreases in two-legged squatting after fatigue while very few frequency changes occurred in one-legged squatting. It was observed that the combination of methods is an effective way of describing muscle fatigue and that muscle activation patterns play a very important role in maintaining the overall joint kinetics after fatigue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. High-Resolution, Non-Invasive Imaging of Upper Vocal Tract Articulators Compatible with Human Brain Recordings

    PubMed Central

    Anumanchipalli, Gopala K.; Dichter, Benjamin; Chaisanguanthum, Kris S.; Johnson, Keith; Chang, Edward F.

    2016-01-01

    A complete neurobiological understanding of speech motor control requires determination of the relationship between simultaneously recorded neural activity and the kinematics of the lips, jaw, tongue, and larynx. Many speech articulators are internal to the vocal tract, and therefore simultaneously tracking the kinematics of all articulators is nontrivial—especially in the context of human electrophysiology recordings. Here, we describe a noninvasive, multi-modal imaging system to monitor vocal tract kinematics, demonstrate this system in six speakers during production of nine American English vowels, and provide new analysis of such data. Classification and regression analysis revealed considerable variability in the articulator-to-acoustic relationship across speakers. Non-negative matrix factorization extracted basis sets capturing vocal tract shapes allowing for higher vowel classification accuracy than traditional methods. Statistical speech synthesis generated speech from vocal tract measurements, and we demonstrate perceptual identification. We demonstrate the capacity to predict lip kinematics from ventral sensorimotor cortical activity. These results demonstrate a multi-modal system to non-invasively monitor articulator kinematics during speech production, describe novel analytic methods for relating kinematic data to speech acoustics, and provide the first decoding of speech kinematics from electrocorticography. These advances will be critical for understanding the cortical basis of speech production and the creation of vocal prosthetics. PMID:27019106

  16. Identification of Reliable Components in Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS): a Data-Driven Approach across Metabolic Processes.

    PubMed

    Motegi, Hiromi; Tsuboi, Yuuri; Saga, Ayako; Kagami, Tomoko; Inoue, Maki; Toki, Hideaki; Minowa, Osamu; Noda, Tetsuo; Kikuchi, Jun

    2015-11-04

    There is an increasing need to use multivariate statistical methods for understanding biological functions, identifying the mechanisms of diseases, and exploring biomarkers. In addition to classical analyses such as hierarchical cluster analysis, principal component analysis, and partial least squares discriminant analysis, various multivariate strategies, including independent component analysis, non-negative matrix factorization, and multivariate curve resolution, have recently been proposed. However, determining the number of components is problematic. Despite the proposal of several different methods, no satisfactory approach has yet been reported. To resolve this problem, we implemented a new idea: classifying a component as "reliable" or "unreliable" based on the reproducibility of its appearance, regardless of the number of components in the calculation. Using the clustering method for classification, we applied this idea to multivariate curve resolution-alternating least squares (MCR-ALS). Comparisons between conventional and modified methods applied to proton nuclear magnetic resonance ((1)H-NMR) spectral datasets derived from known standard mixtures and biological mixtures (urine and feces of mice) revealed that more plausible results are obtained by the modified method. In particular, clusters containing little information were detected with reliability. This strategy, named "cluster-aided MCR-ALS," will facilitate the attainment of more reliable results in the metabolomics datasets.

  17. High-Resolution, Non-Invasive Imaging of Upper Vocal Tract Articulators Compatible with Human Brain Recordings

    DOE PAGES

    Bouchard, Kristofer E.; Conant, David F.; Anumanchipalli, Gopala K.; ...

    2016-03-28

    A complete neurobiological understanding of speech motor control requires determination of the relationship between simultaneously recorded neural activity and the kinematics of the lips, jaw, tongue, and larynx. Many speech articulators are internal to the vocal tract, and therefore simultaneously tracking the kinematics of all articulators is nontrivial-especially in the context of human electrophysiology recordings. Here, we describe a noninvasive, multi-modal imaging system to monitor vocal tract kinematics, demonstrate this system in six speakers during production of nine American English vowels, and provide new analysis of such data. Classification and regression analysis revealed considerable variability in the articulator-to-acoustic relationship acrossmore » speakers. Non-negative matrix factorization extracted basis sets capturing vocal tract shapes allowing for higher vowel classification accuracy than traditional methods. Statistical speech synthesis generated speech from vocal tract measurements, and we demonstrate perceptual identification. We demonstrate the capacity to predict lip kinematics from ventral sensorimotor cortical activity. These results demonstrate a multi-modal system to non-invasively monitor articulator kinematics during speech production, describe novel analytic methods for relating kinematic data to speech acoustics, and provide the first decoding of speech kinematics from electrocorticography. These advances will be critical for understanding the cortical basis of speech production and the creation of vocal prosthetics.« less

  18. Parts-based stereoscopic image assessment by learning binocular manifold color visual properties

    NASA Astrophysics Data System (ADS)

    Xu, Haiyong; Yu, Mei; Luo, Ting; Zhang, Yun; Jiang, Gangyi

    2016-11-01

    Existing stereoscopic image quality assessment (SIQA) methods are mostly based on the luminance information, in which color information is not sufficiently considered. Actually, color is part of the important factors that affect human visual perception, and nonnegative matrix factorization (NMF) and manifold learning are in line with human visual perception. We propose an SIQA method based on learning binocular manifold color visual properties. To be more specific, in the training phase, a feature detector is created based on NMF with manifold regularization by considering color information, which not only allows parts-based manifold representation of an image, but also manifests localized color visual properties. In the quality estimation phase, visually important regions are selected by considering different human visual attention, and feature vectors are extracted by using the feature detector. Then the feature similarity index is calculated and the parts-based manifold color feature energy (PMCFE) for each view is defined based on the color feature vectors. The final quality score is obtained by considering a binocular combination based on PMCFE. The experimental results on LIVE I and LIVE Π 3-D IQA databases demonstrate that the proposed method can achieve much higher consistency with subjective evaluations than the state-of-the-art SIQA methods.

  19. Pretreatment and integrated analysis of spectral data reveal seaweed similarities based on chemical diversity.

    PubMed

    Wei, Feifei; Ito, Kengo; Sakata, Kenji; Date, Yasuhiro; Kikuchi, Jun

    2015-03-03

    Extracting useful information from high dimensionality and large data sets is a major challenge for data-driven approaches. The present study was aimed at developing novel integrated analytical strategies for comprehensively characterizing seaweed similarities based on chemical diversity. The chemical compositions of 107 seaweed and 2 seagrass samples were analyzed using multiple techniques, including Fourier transform infrared (FT-IR) and solid- and solution-state nuclear magnetic resonance (NMR) spectroscopy, thermogravimetry-differential thermal analysis (TG-DTA), inductively coupled plasma-optical emission spectrometry (ICP-OES), CHNS/O total elemental analysis, and isotope ratio mass spectrometry (IR-MS). The spectral data were preprocessed using non-negative matrix factorization (NMF) and NMF combined with multivariate curve resolution-alternating least-squares (MCR-ALS) methods in order to separate individual component information from the overlapping and/or broad spectral peaks. Integrated analysis of the preprocessed chemical data demonstrated distinct discrimination of differential seaweed species. Further network analysis revealed a close correlation between the heavy metal elements and characteristic components of brown algae, such as cellulose, alginic acid, and sulfated mucopolysaccharides, providing a componential basis for its metal-sorbing potential. These results suggest that this integrated analytical strategy is useful for extracting and identifying the chemical characteristics of diverse seaweeds based on large chemical data sets, particularly complicated overlapping spectral data.

  20. Blind colour separation of H&E stained histological images by linearly transforming the colour space.

    PubMed

    Celis, R; Romo, D; Romero, E

    2015-12-01

    Blind source separation methods aim to split information into the original sources. In histology, each dye component attempts to specifically characterize different microscopic structures. In the case of the hematoxylin-eosin stain, universally used for routine examination, quantitative analysis may often require the inspection of different morphological signatures related mainly to nuclei patterns, but also to stroma distribution. Stain separation is usually a preprocessing operation that is transversal to different applications. This paper presents a novel colour separation method that finds the hematoxylin and eosin clusters by projecting the whole (r,g,b) space to a folded surface connecting the distributions of a series of [(r-b),g] planes that divide the cloud of H&E tones. The proposed method produces density maps closer to those obtained with the colour mixing matrices set by an expert, when comparing with the density maps obtained using nonnegative matrix factorization (NMF), independent component analysis (ICA) and a state-of-the-art method. The method has outperformed three baseline methods, NMF, Macenko and ICA, in about 8%, 12% and 52% for the eosin component, whereas this was about 4%, 8% and 26% for the hematoxylin component. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  1. The neural basis of emotions varies over time: different regions go with onset- and offset-bound processes underlying emotion intensity

    PubMed Central

    Verduyn, Philippe; Delaveau, Pauline; Rotgé, Jean-Yves; Kuppens, Peter; Van Mechelen, Iven; Fossati, Philippe

    2017-01-01

    Abstract According to theories of emotion dynamics, emotions unfold across two phases in which different types of processes come to the fore: emotion onset and emotion offset. Differences in onset-bound processes are reflected by the degree of explosiveness or steepness of the response at onset, and differences in offset-bound processes by the degree of accumulation or intensification of the subsequent response. Whether onset- and offset-bound processes have distinctive neural correlates and, hence, whether the neural basis of emotions varies over time, still remains unknown. In the present fMRI study, we address this question using a recently developed paradigm that allows to disentangle explosiveness and accumulation. Thirty-one participants were exposed to neutral and negative social feedback, and asked to reflect on its contents. Emotional intensity while reading and thinking about the feedback was measured with an intensity profile tracking approach. Using non-negative matrix factorization, the resulting profile data were decomposed in explosiveness and accumulation components, which were subsequently entered as continuous regressors of the BOLD response. It was found that the neural basis of emotion intensity shifts as emotions unfold over time with emotion explosiveness and accumulation having distinctive neural correlates. PMID:28402478

  2. Geometric quadratic stochastic operator on countable infinite set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar

    2015-02-03

    In this paper we construct the family of Geometric quadratic stochastic operators defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. Such operators can be reinterpreted in terms of of evolutionary operator of free population. We show that Geometric quadratic stochastic operators are regular transformations.

  3. Uncovering Mental Representations with Markov Chain Monte Carlo

    ERIC Educational Resources Information Center

    Sanborn, Adam N.; Griffiths, Thomas L.; Shiffrin, Richard M.

    2010-01-01

    A key challenge for cognitive psychology is the investigation of mental representations, such as object categories, subjective probabilities, choice utilities, and memory traces. In many cases, these representations can be expressed as a non-negative function defined over a set of objects. We present a behavioral method for estimating these…

  4. On Nth roots of positive operators

    NASA Technical Reports Server (NTRS)

    Brown, D. R.; Omalley, M. J.

    1978-01-01

    A bounded operator A on a Hilbert space H was positive. These operators were symmetric, and as such constitute a natural generalization of nonnegative real diagonal matrices. The following result is thus both well known and not surprising: A positive operator has a unique positive square root (under operator composition).

  5. Aphis (Hemiptera: Aphididae) species groups found in the Midwestern United States and their contribution to the phylogenetic knowledge of the genus.

    PubMed

    Lagos, Doris M; Voegtlin, David J; Coeur d'acier, Armelle; Giordano, Rosanna

    2014-06-01

    A phylogeny of the genus Aphis Linnaeus, 1 758 was built primarily from specimens collected in the Midwest of the United States. A data matrix was constructed with 68 species and 41 morphological characters with respective character states of alate and apterous viviparous females. Dendrogram topologies of analyses performed using UPGMA (Unweighted Pair Group Method with Arithmetic Mean), Maximum Parsimony and Bayesian analysis of Cytochrome Oxidase I, Elongation Factor 1-α and primary endosymbiont Buchnera aphidicola 16S sequences were not congruent. Bayesian analysis strongly supported most terminal nodes of the phylogenetic trees. The phylogeny was strongly supported by EF1-α, and analysis of COI and EF1-α molecular data combined with morphological characters. It was not supported by single analysis of COI or Buchnera aphidicola 16S. Results from the Bayesian phylogeny show 4 main species groups: asclepiadis, fabae, gossypii, and middletonii. Results place Aphis and species of the genera Protaphis Börner, 1952, Toxoptera Koch, and Xerobion Nevsky, 1928 in a monophyletic clade. Morphological characters support this monophyly as well. The phylogeny shows that the monophyletic clade of the North American middletonii species group belong to the genus Protaphis: P. debilicornis (Gillette & Palmer, 1929), comb. nov., P. echinaceae (Lagos and Voegtlin, 2009), comb. nov., and P. middletonii (Thomas, 1879). The genus Toxoptera should be considered a subgenus of Aphis (stat. nov.). The analysis also indicates that the current genus Iowana Frison, 1954 should be considered a subgenus of Aphis (stat. nov.). © 2013 Institute of Zoology, Chinese Academy of Sciences.

  6. Generic reclassification and species boundaries in the rediscovered freshwater mussel ‘Quadrula’ mitchelli (Simpson in Dall, 1896)

    USGS Publications Warehouse

    Pfeiffer, John M.; Johnson, Nathan A.; Randklev, Charles R.; Howells, Robert G.; Williams, James D.

    2016-01-01

    The Central Texas endemic freshwater mussel, Quadrula mitchelli (Simpson in Dall, 1896), had been presumed extinct until relict populations were recently rediscovered. To help guide ongoing and future conservation efforts focused on Q. mitchelli we set out to resolve several uncertainties regarding its evolutionary history, specifically its unknown generic position and untested species boundaries. We designed a molecular matrix consisting of two loci (cytochrome c oxidase subunit I and internal transcribed spacer I) and 57 terminal taxa to test the generic position of Q. mitchelli using Bayesian inference and maximum likelihood phylogenetic reconstruction. We also employed two Bayesian species validation methods to test five a priori species models (i.e. hypotheses of species delimitation). Our study is the first to test the generic position of Q.mitchelli and we found robust support for its inclusion in the genusFusconaia. Accordingly, we introduce the binomial, Fusconaia mitchelli comb. nov., to accurately represent the systematic position of the species. We resolved F. mitchelli individuals in two well supported and divergent clades that were generally distinguished as distinct species using Bayesian species validation methods, although alternative hypotheses of species delineation were also supported. Despite strong evidence of genetic isolation within F. mitchelli, we do not advocate for species-level status of the two clades as they are allopatrically distributed and no morphological, behavioral, or ecological characters are known to distinguish them. These results are discussed in the context of the systematics, distribution, and conservation ofF. mitchelli.

  7. Refining mortality estimates in shark demographic analyses: a Bayesian inverse matrix approach.

    PubMed

    Smart, Jonathan J; Punt, André E; White, William T; Simpfendorfer, Colin A

    2018-01-18

    Leslie matrix models are an important analysis tool in conservation biology that are applied to a diversity of taxa. The standard approach estimates the finite rate of population growth (λ) from a set of vital rates. In some instances, an estimate of λ is available, but the vital rates are poorly understood and can be solved for using an inverse matrix approach. However, these approaches are rarely attempted due to prerequisites of information on the structure of age or stage classes. This study addressed this issue by using a combination of Monte Carlo simulations and the sample-importance-resampling (SIR) algorithm to solve the inverse matrix problem without data on population structure. This approach was applied to the grey reef shark (Carcharhinus amblyrhynchos) from the Great Barrier Reef (GBR) in Australia to determine the demography of this population. Additionally, these outputs were applied to another heavily fished population from Papua New Guinea (PNG) that requires estimates of λ for fisheries management. The SIR analysis determined that natural mortality (M) and total mortality (Z) based on indirect methods have previously been overestimated for C. amblyrhynchos, leading to an underestimated λ. The updated Z distributions determined using SIR provided λ estimates that matched an empirical λ for the GBR population and corrected obvious error in the demographic parameters for the PNG population. This approach provides opportunity for the inverse matrix approach to be applied more broadly to situations where information on population structure is lacking. © 2018 by the Ecological Society of America.

  8. A support vector machine classifier reduces interscanner variation in the HRCT classification of regional disease pattern in diffuse lung disease: Comparison to a Bayesian classifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yongjun; Lim, Jonghyuck; Kim, Namkug

    2013-05-15

    Purpose: To investigate the effect of using different computed tomography (CT) scanners on the accuracy of high-resolution CT (HRCT) images in classifying regional disease patterns in patients with diffuse lung disease, support vector machine (SVM) and Bayesian classifiers were applied to multicenter data. Methods: Two experienced radiologists marked sets of 600 rectangular 20 Multiplication-Sign 20 pixel regions of interest (ROIs) on HRCT images obtained from two scanners (GE and Siemens), including 100 ROIs for each of local patterns of lungs-normal lung and five of regional pulmonary disease patterns (ground-glass opacity, reticular opacity, honeycombing, emphysema, and consolidation). Each ROI was assessedmore » using 22 quantitative features belonging to one of the following descriptors: histogram, gradient, run-length, gray level co-occurrence matrix, low-attenuation area cluster, and top-hat transform. For automatic classification, a Bayesian classifier and a SVM classifier were compared under three different conditions. First, classification accuracies were estimated using data from each scanner. Next, data from the GE and Siemens scanners were used for training and testing, respectively, and vice versa. Finally, all ROI data were integrated regardless of the scanner type and were then trained and tested together. All experiments were performed based on forward feature selection and fivefold cross-validation with 20 repetitions. Results: For each scanner, better classification accuracies were achieved with the SVM classifier than the Bayesian classifier (92% and 82%, respectively, for the GE scanner; and 92% and 86%, respectively, for the Siemens scanner). The classification accuracies were 82%/72% for training with GE data and testing with Siemens data, and 79%/72% for the reverse. The use of training and test data obtained from the HRCT images of different scanners lowered the classification accuracy compared to the use of HRCT images from the same scanner. For integrated ROI data obtained from both scanners, the classification accuracies with the SVM and Bayesian classifiers were 92% and 77%, respectively. The selected features resulting from the classification process differed by scanner, with more features included for the classification of the integrated HRCT data than for the classification of the HRCT data from each scanner. For the integrated data, consisting of HRCT images of both scanners, the classification accuracy based on the SVM was statistically similar to the accuracy of the data obtained from each scanner. However, the classification accuracy of the integrated data using the Bayesian classifier was significantly lower than the classification accuracy of the ROI data of each scanner. Conclusions: The use of an integrated dataset along with a SVM classifier rather than a Bayesian classifier has benefits in terms of the classification accuracy of HRCT images acquired with more than one scanner. This finding is of relevance in studies involving large number of images, as is the case in a multicenter trial with different scanners.« less

  9. Bayesian statistical ionospheric tomography improved by incorporating ionosonde measurements

    NASA Astrophysics Data System (ADS)

    Norberg, Johannes; Virtanen, Ilkka I.; Roininen, Lassi; Vierinen, Juha; Orispää, Mikko; Kauristie, Kirsti; Lehtinen, Markku S.

    2016-04-01

    We validate two-dimensional ionospheric tomography reconstructions against EISCAT incoherent scatter radar measurements. Our tomography method is based on Bayesian statistical inversion with prior distribution given by its mean and covariance. We employ ionosonde measurements for the choice of the prior mean and covariance parameters and use the Gaussian Markov random fields as a sparse matrix approximation for the numerical computations. This results in a computationally efficient tomographic inversion algorithm with clear probabilistic interpretation. We demonstrate how this method works with simultaneous beacon satellite and ionosonde measurements obtained in northern Scandinavia. The performance is compared with results obtained with a zero-mean prior and with the prior mean taken from the International Reference Ionosphere 2007 model. In validating the results, we use EISCAT ultra-high-frequency incoherent scatter radar measurements as the ground truth for the ionization profile shape. We find that in comparison to the alternative prior information sources, ionosonde measurements improve the reconstruction by adding accurate information about the absolute value and the altitude distribution of electron density. With an ionosonde at continuous disposal, the presented method enhances stand-alone near-real-time ionospheric tomography for the given conditions significantly.

  10. Hierarchical Bayesian Markov switching models with application to predicting spawning success of shovelnose sturgeon

    USGS Publications Warehouse

    Holan, S.H.; Davis, G.M.; Wildhaber, M.L.; DeLonay, A.J.; Papoulias, D.M.

    2009-01-01

    The timing of spawning in fish is tightly linked to environmental factors; however, these factors are not very well understood for many species. Specifically, little information is available to guide recruitment efforts for endangered species such as the sturgeon. Therefore, we propose a Bayesian hierarchical model for predicting the success of spawning of the shovelnose sturgeon which uses both biological and behavioural (longitudinal) data. In particular, we use data that were produced from a tracking study that was conducted in the Lower Missouri River. The data that were produced from this study consist of biological variables associated with readiness to spawn along with longitudinal behavioural data collected by using telemetry and archival data storage tags. These high frequency data are complex both biologically and in the underlying behavioural process. To accommodate such complexity we developed a hierarchical linear regression model that uses an eigenvalue predictor, derived from the transition probability matrix of a two-state Markov switching model with generalized auto-regressive conditional heteroscedastic dynamics. Finally, to minimize the computational burden that is associated with estimation of this model, a parallel computing approach is proposed. ?? Journal compilation 2009 Royal Statistical Society.

  11. The relationships of the Euparkeriidae and the rise of Archosauria

    NASA Astrophysics Data System (ADS)

    Sookias, Roland B.

    2016-03-01

    For the first time, a phylogenetic analysis including all putative euparkeriid taxa is conducted, using a large data matrix analysed with maximum parsimony and Bayesian analysis. Using parsimony, the putative euparkeriid Dorosuchus neoetus from Russia is the sister taxon to Archosauria + Phytosauria. Euparkeria capensis is placed one node further from the crown, and forms a euparkeriid clade with the Chinese taxa Halazhaisuchus qiaoensis and `Turfanosuchus shageduensis' and the Polish taxon Osmolskina czatkowicensis. Using Bayesian methods, Osmolskina and Halazhaisuchus are sister taxa within Euparkeriidae, in turn sister to `Turfanosuchus shageduensis' and then Euparkeria capensis. Dorosuchus is placed in a polytomy with Euparkeriidae and Archosauria + Phytosauria. Although conclusions remain tentative owing to low node support and incompleteness, a broad phylogenetic position close to the base of Archosauria is confirmed for all putative euparkeriids, and the ancestor of Archosauria +Phytosauria is optimized as similar to euparkeriids in its morphology. Ecomorphological characters and traits are optimized onto the maximum parsimony strict consensus phylogeny presented using squared change parsimony. This optimization indicates that the ancestral archosaur was probably similar in many respects to euparkeriids, being relatively small, terrestrial, carnivorous and showing relatively cursorial limb morphology; this Bauplan may have underlain the exceptional radiaton and success of crown Archosauria.

  12. Quantitative methods for structural characterization of proteins based on deep UV resonance Raman spectroscopy.

    PubMed

    Shashilov, Victor A; Sikirzhytski, Vitali; Popova, Ludmila A; Lednev, Igor K

    2010-09-01

    Here we report on novel quantitative approaches for protein structural characterization using deep UV resonance Raman (DUVRR) spectroscopy. Specifically, we propose a new method combining hydrogen-deuterium (HD) exchange and Bayesian source separation for extracting the DUVRR signatures of various structural elements of aggregated proteins including the cross-beta core and unordered parts of amyloid fibrils. The proposed method is demonstrated using the set of DUVRR spectra of hen egg white lysozyme acquired at various stages of HD exchange. Prior information about the concentration matrix and the spectral features of the individual components was incorporated into the Bayesian equation to eliminate the ill-conditioning of the problem caused by 100% correlation of the concentration profiles of protonated and deuterated species. Secondary structure fractions obtained by partial least squares (PLS) and least squares support vector machines (LS-SVMs) were used as the initial guess for the Bayessian source separation. Advantages of the PLS and LS-SVMs methods over the classical least squares calibration (CLSC) are discussed and illustrated using the DUVRR data of the prion protein in its native and aggregated forms. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  13. A Zero Property for Integrals

    ERIC Educational Resources Information Center

    Abu-Saris, Raghib M.

    2009-01-01

    In this note, we show that if the integral of a continuous function, h, vanishes over an interval [a, b], then so does the integral of w(x)h(x) over [a, c] for some c in (a, b), where w is a monotonic increasing (decreasing) function on [a, b] with w(a) is non-negative (non-positive).

  14. A triangular property of the associated Legendre functions

    NASA Technical Reports Server (NTRS)

    Fineschi, S.; Landi Degl'innocenti, E.

    1990-01-01

    A mathematical formula is introduced and proved which relates the associated Legendre functions with given nonnegative integral indices. The application of this formula in simplifying the calculation of collisional electron-atom cross sections higher than the dipole is mentioned. A proof of the stated identity using the Gegenbauer polynomials and their generating function is given.

  15. Some Preliminary Results on an SEIARD Epidemic Model with Vaccination and Antiviral Treatment Controls and Dead-Infective Culling Action

    NASA Astrophysics Data System (ADS)

    De la Sen, M.; Nistal, R.; Alonso-Quesada, S.; Garrido, A. J.

    2016-08-01

    This paper studies the non-negativity and stability properties of the solutions of a newly proposed SEIADR model which incorporates asymptomatic and dead-infective subpopulations to those defining the standard SEIR model and, in parallel, it incorporates feedback vaccination and antiviral treatment controls.

  16. Statistical Methodology for the Analysis of Repeated Duration Data in Behavioral Studies

    ERIC Educational Resources Information Center

    Letué, Frédérique; Martinez, Marie-José; Samson, Adeline; Vilain, Anne; Vilain, Coriandre

    2018-01-01

    Purpose: Repeated duration data are frequently used in behavioral studies. Classical linear or log-linear mixed models are often inadequate to analyze such data, because they usually consist of nonnegative and skew-distributed variables. Therefore, we recommend use of a statistical methodology specific to duration data. Method: We propose a…

  17. Dissipative Work in Thermodynamics

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Pereira, Mario G.; Ferreira, J. M.

    2011-01-01

    This work explores the concept of dissipative work and shows that such a kind of work is an invariant non-negative quantity. This feature is then used to get a new insight into adiabatic irreversible processes; for instance, why the final temperature in any adiabatic irreversible process is always higher than that attained in a reversible process…

  18. Efficient and Accurate Computation of Non-Negative Anisotropic Group Scattering Cross Sections for Discrete Ordinates and Monte Carlo Radiation Transport

    DTIC Science & Technology

    2002-07-01

    Date Kirk A. Mathews (Advisor) James T. Moore (Dean’s Representative) Charles J. Bridgman (Member...Adler-Adler, and Kalbach -Mann representations of the scatter cross sections that are used for some isotopes in ENDF/B-VI are not included. They are not

  19. Fitting a circular distribution based on nonnegative trigonometric sums for wind direction in Malaysia

    NASA Astrophysics Data System (ADS)

    Masseran, Nurulkamal; Razali, Ahmad Mahir; Ibrahim, Kamarulzaman; Zaharim, Azami; Sopian, Kamaruzzaman

    2015-02-01

    Wind direction has a substantial effect on the environment and human lives. As examples, the wind direction influences the dispersion of particulate matter in the air and affects the construction of engineering structures, such as towers, bridges, and tall buildings. Therefore, a statistical analysis of the wind direction provides important information about the wind regime at a particular location. In addition, knowledge of the wind direction and wind speed can be used to derive information about the energy potential. This study investigated the characteristics of the wind regime of Mersing, Malaysia. A circular distribution based on Nonnegative Trigonometric Sums (NNTS) was fitted to a histogram of the average hourly wind direction data. The Newton-like manifold algorithm was used to estimate the parameter of each component of the NNTS model. Next, the suitability of each NNTS model was judged based on a graphical representation and Akaike's Information Criteria. The study found that the NNTS model with six or more components was able to fit the wind directional data for the Mersing station.

  20. Dynamics of a Nonlocal Dispersal Model with a Nonlocal Reaction Term

    NASA Astrophysics Data System (ADS)

    Ma, Li; Guo, Shangjiang; Chen, Ting

    In this paper, we study a class of nonlocal dispersal problem with a nonlocal term arising in population dynamics: ut = 𝒟u + u λ ‑ f(u) ‑∫ΩK(x,y)g(u(y))dy,in Ω × (0, +∞), u(x, 0) = u0(x) ≥ 0, in Ω,u = 0, in ℝN\\Ω × (0, +∞), where Ω ⊂ ℝN (N ≥ 1) is a bounded domain, λ ∈ ℝ, 𝒟u(x,t) =∫ΩJ(x ‑ y)[u(y,t) ‑ u(x,t)]dy represents the nonlocal dispersal operator with continuous and non-negative dispersal kernel. The kernel K ∈ C(Ω¯ ×Ω¯) is assumed to be non-negative and is allowed to have a degeneracy in a smooth subdomain Ω0 of Ω. When K is either positive or vanishes in a subdomain, we respectively investigate the existence, multiplicity and asymptotical stability of positive steady states under the local/global variation of parameter by means of sub-supersolution method, Lyapunov-Schmidt reduction, and bifurcation theory.

Top