Sample records for bayesian random-effects model

  1. Modeling of Academic Achievement of Primary School Students in Ethiopia Using Bayesian Multilevel Approach

    ERIC Educational Resources Information Center

    Sebro, Negusse Yohannes; Goshu, Ayele Taye

    2017-01-01

    This study aims to explore Bayesian multilevel modeling to investigate variations of average academic achievement of grade eight school students. A sample of 636 students is randomly selected from 26 private and government schools by a two-stage stratified sampling design. Bayesian method is used to estimate the fixed and random effects. Input and…

  2. Application of Poisson random effect models for highway network screening.

    PubMed

    Jiang, Ximiao; Abdel-Aty, Mohamed; Alamili, Samer

    2014-02-01

    In recent years, Bayesian random effect models that account for the temporal and spatial correlations of crash data became popular in traffic safety research. This study employs random effect Poisson Log-Normal models for crash risk hotspot identification. Both the temporal and spatial correlations of crash data were considered. Potential for Safety Improvement (PSI) were adopted as a measure of the crash risk. Using the fatal and injury crashes that occurred on urban 4-lane divided arterials from 2006 to 2009 in the Central Florida area, the random effect approaches were compared to the traditional Empirical Bayesian (EB) method and the conventional Bayesian Poisson Log-Normal model. A series of method examination tests were conducted to evaluate the performance of different approaches. These tests include the previously developed site consistence test, method consistence test, total rank difference test, and the modified total score test, as well as the newly proposed total safety performance measure difference test. Results show that the Bayesian Poisson model accounting for both temporal and spatial random effects (PTSRE) outperforms the model that with only temporal random effect, and both are superior to the conventional Poisson Log-Normal model (PLN) and the EB model in the fitting of crash data. Additionally, the method evaluation tests indicate that the PTSRE model is significantly superior to the PLN model and the EB model in consistently identifying hotspots during successive time periods. The results suggest that the PTSRE model is a superior alternative for road site crash risk hotspot identification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Bayesian random-effect model for predicting outcome fraught with heterogeneity--an illustration with episodes of 44 patients with intractable epilepsy.

    PubMed

    Yen, A M-F; Liou, H-H; Lin, H-L; Chen, T H-H

    2006-01-01

    The study aimed to develop a predictive model to deal with data fraught with heterogeneity that cannot be explained by sampling variation or measured covariates. The random-effect Poisson regression model was first proposed to deal with over-dispersion for data fraught with heterogeneity after making allowance for measured covariates. Bayesian acyclic graphic model in conjunction with Markov Chain Monte Carlo (MCMC) technique was then applied to estimate the parameters of both relevant covariates and random effect. Predictive distribution was then generated to compare the predicted with the observed for the Bayesian model with and without random effect. Data from repeated measurement of episodes among 44 patients with intractable epilepsy were used as an illustration. The application of Poisson regression without taking heterogeneity into account to epilepsy data yielded a large value of heterogeneity (heterogeneity factor = 17.90, deviance = 1485, degree of freedom (df) = 83). After taking the random effect into account, the value of heterogeneity factor was greatly reduced (heterogeneity factor = 0.52, deviance = 42.5, df = 81). The Pearson chi2 for the comparison between the expected seizure frequencies and the observed ones at two and three months of the model with and without random effect were 34.27 (p = 1.00) and 1799.90 (p < 0.0001), respectively. The Bayesian acyclic model using the MCMC method was demonstrated to have great potential for disease prediction while data show over-dispersion attributed either to correlated property or to subject-to-subject variability.

  4. Logistic random effects regression models: a comparison of statistical packages for binary and ordinal outcomes.

    PubMed

    Li, Baoyue; Lingsma, Hester F; Steyerberg, Ewout W; Lesaffre, Emmanuel

    2011-05-23

    Logistic random effects models are a popular tool to analyze multilevel also called hierarchical data with a binary or ordinal outcome. Here, we aim to compare different statistical software implementations of these models. We used individual patient data from 8509 patients in 231 centers with moderate and severe Traumatic Brain Injury (TBI) enrolled in eight Randomized Controlled Trials (RCTs) and three observational studies. We fitted logistic random effects regression models with the 5-point Glasgow Outcome Scale (GOS) as outcome, both dichotomized as well as ordinal, with center and/or trial as random effects, and as covariates age, motor score, pupil reactivity or trial. We then compared the implementations of frequentist and Bayesian methods to estimate the fixed and random effects. Frequentist approaches included R (lme4), Stata (GLLAMM), SAS (GLIMMIX and NLMIXED), MLwiN ([R]IGLS) and MIXOR, Bayesian approaches included WinBUGS, MLwiN (MCMC), R package MCMCglmm and SAS experimental procedure MCMC.Three data sets (the full data set and two sub-datasets) were analysed using basically two logistic random effects models with either one random effect for the center or two random effects for center and trial. For the ordinal outcome in the full data set also a proportional odds model with a random center effect was fitted. The packages gave similar parameter estimates for both the fixed and random effects and for the binary (and ordinal) models for the main study and when based on a relatively large number of level-1 (patient level) data compared to the number of level-2 (hospital level) data. However, when based on relatively sparse data set, i.e. when the numbers of level-1 and level-2 data units were about the same, the frequentist and Bayesian approaches showed somewhat different results. The software implementations differ considerably in flexibility, computation time, and usability. There are also differences in the availability of additional tools for model evaluation, such as diagnostic plots. The experimental SAS (version 9.2) procedure MCMC appeared to be inefficient. On relatively large data sets, the different software implementations of logistic random effects regression models produced similar results. Thus, for a large data set there seems to be no explicit preference (of course if there is no preference from a philosophical point of view) for either a frequentist or Bayesian approach (if based on vague priors). The choice for a particular implementation may largely depend on the desired flexibility, and the usability of the package. For small data sets the random effects variances are difficult to estimate. In the frequentist approaches the MLE of this variance was often estimated zero with a standard error that is either zero or could not be determined, while for Bayesian methods the estimates could depend on the chosen "non-informative" prior of the variance parameter. The starting value for the variance parameter may be also critical for the convergence of the Markov chain.

  5. Bayesian model reduction and empirical Bayes for group (DCM) studies

    PubMed Central

    Friston, Karl J.; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E.; van Wijk, Bernadette C.M.; Ziegler, Gabriel; Zeidman, Peter

    2016-01-01

    This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level – e.g., dynamic causal models – and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These applications of Bayesian model reduction allow one to consider parametric random effects and make inferences about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical background to these procedures and illustrate their application using a worked example. This example uses a simulated mismatch negativity study of schizophrenia. We illustrate the robustness of Bayesian model reduction to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we consider the application of these empirical Bayesian procedures to classification and prediction. PMID:26569570

  6. Analyzing degradation data with a random effects spline regression model

    DOE PAGES

    Fugate, Michael Lynn; Hamada, Michael Scott; Weaver, Brian Phillip

    2017-03-17

    This study proposes using a random effects spline regression model to analyze degradation data. Spline regression avoids having to specify a parametric function for the true degradation of an item. A distribution for the spline regression coefficients captures the variation of the true degradation curves from item to item. We illustrate the proposed methodology with a real example using a Bayesian approach. The Bayesian approach allows prediction of degradation of a population over time and estimation of reliability is easy to perform.

  7. Analyzing degradation data with a random effects spline regression model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fugate, Michael Lynn; Hamada, Michael Scott; Weaver, Brian Phillip

    This study proposes using a random effects spline regression model to analyze degradation data. Spline regression avoids having to specify a parametric function for the true degradation of an item. A distribution for the spline regression coefficients captures the variation of the true degradation curves from item to item. We illustrate the proposed methodology with a real example using a Bayesian approach. The Bayesian approach allows prediction of degradation of a population over time and estimation of reliability is easy to perform.

  8. Logistic random effects regression models: a comparison of statistical packages for binary and ordinal outcomes

    PubMed Central

    2011-01-01

    Background Logistic random effects models are a popular tool to analyze multilevel also called hierarchical data with a binary or ordinal outcome. Here, we aim to compare different statistical software implementations of these models. Methods We used individual patient data from 8509 patients in 231 centers with moderate and severe Traumatic Brain Injury (TBI) enrolled in eight Randomized Controlled Trials (RCTs) and three observational studies. We fitted logistic random effects regression models with the 5-point Glasgow Outcome Scale (GOS) as outcome, both dichotomized as well as ordinal, with center and/or trial as random effects, and as covariates age, motor score, pupil reactivity or trial. We then compared the implementations of frequentist and Bayesian methods to estimate the fixed and random effects. Frequentist approaches included R (lme4), Stata (GLLAMM), SAS (GLIMMIX and NLMIXED), MLwiN ([R]IGLS) and MIXOR, Bayesian approaches included WinBUGS, MLwiN (MCMC), R package MCMCglmm and SAS experimental procedure MCMC. Three data sets (the full data set and two sub-datasets) were analysed using basically two logistic random effects models with either one random effect for the center or two random effects for center and trial. For the ordinal outcome in the full data set also a proportional odds model with a random center effect was fitted. Results The packages gave similar parameter estimates for both the fixed and random effects and for the binary (and ordinal) models for the main study and when based on a relatively large number of level-1 (patient level) data compared to the number of level-2 (hospital level) data. However, when based on relatively sparse data set, i.e. when the numbers of level-1 and level-2 data units were about the same, the frequentist and Bayesian approaches showed somewhat different results. The software implementations differ considerably in flexibility, computation time, and usability. There are also differences in the availability of additional tools for model evaluation, such as diagnostic plots. The experimental SAS (version 9.2) procedure MCMC appeared to be inefficient. Conclusions On relatively large data sets, the different software implementations of logistic random effects regression models produced similar results. Thus, for a large data set there seems to be no explicit preference (of course if there is no preference from a philosophical point of view) for either a frequentist or Bayesian approach (if based on vague priors). The choice for a particular implementation may largely depend on the desired flexibility, and the usability of the package. For small data sets the random effects variances are difficult to estimate. In the frequentist approaches the MLE of this variance was often estimated zero with a standard error that is either zero or could not be determined, while for Bayesian methods the estimates could depend on the chosen "non-informative" prior of the variance parameter. The starting value for the variance parameter may be also critical for the convergence of the Markov chain. PMID:21605357

  9. Bayesian model reduction and empirical Bayes for group (DCM) studies.

    PubMed

    Friston, Karl J; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E; van Wijk, Bernadette C M; Ziegler, Gabriel; Zeidman, Peter

    2016-03-01

    This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level - e.g., dynamic causal models - and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These applications of Bayesian model reduction allow one to consider parametric random effects and make inferences about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical background to these procedures and illustrate their application using a worked example. This example uses a simulated mismatch negativity study of schizophrenia. We illustrate the robustness of Bayesian model reduction to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we consider the application of these empirical Bayesian procedures to classification and prediction. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. A Bayesian comparative effectiveness trial in action: developing a platform for multisite study adaptive randomization.

    PubMed

    Brown, Alexandra R; Gajewski, Byron J; Aaronson, Lauren S; Mudaranthakam, Dinesh Pal; Hunt, Suzanne L; Berry, Scott M; Quintana, Melanie; Pasnoor, Mamatha; Dimachkie, Mazen M; Jawdat, Omar; Herbelin, Laura; Barohn, Richard J

    2016-08-31

    In the last few decades, the number of trials using Bayesian methods has grown rapidly. Publications prior to 1990 included only three clinical trials that used Bayesian methods, but that number quickly jumped to 19 in the 1990s and to 99 from 2000 to 2012. While this literature provides many examples of Bayesian Adaptive Designs (BAD), none of the papers that are available walks the reader through the detailed process of conducting a BAD. This paper fills that gap by describing the BAD process used for one comparative effectiveness trial (Patient Assisted Intervention for Neuropathy: Comparison of Treatment in Real Life Situations) that can be generalized for use by others. A BAD was chosen with efficiency in mind. Response-adaptive randomization allows the potential for substantially smaller sample sizes, and can provide faster conclusions about which treatment or treatments are most effective. An Internet-based electronic data capture tool, which features a randomization module, facilitated data capture across study sites and an in-house computation software program was developed to implement the response-adaptive randomization. A process for adapting randomization with minimal interruption to study sites was developed. A new randomization table can be generated quickly and can be seamlessly integrated in the data capture tool with minimal interruption to study sites. This manuscript is the first to detail the technical process used to evaluate a multisite comparative effectiveness trial using adaptive randomization. An important opportunity for the application of Bayesian trials is in comparative effectiveness trials. The specific case study presented in this paper can be used as a model for conducting future clinical trials using a combination of statistical software and a web-based application. ClinicalTrials.gov Identifier: NCT02260388 , registered on 6 October 2014.

  11. An Evaluation of Information Criteria Use for Correct Cross-Classified Random Effects Model Selection

    ERIC Educational Resources Information Center

    Beretvas, S. Natasha; Murphy, Daniel L.

    2013-01-01

    The authors assessed correct model identification rates of Akaike's information criterion (AIC), corrected criterion (AICC), consistent AIC (CAIC), Hannon and Quinn's information criterion (HQIC), and Bayesian information criterion (BIC) for selecting among cross-classified random effects models. Performance of default values for the 5…

  12. Bayesian hierarchical models for cost-effectiveness analyses that use data from cluster randomized trials.

    PubMed

    Grieve, Richard; Nixon, Richard; Thompson, Simon G

    2010-01-01

    Cost-effectiveness analyses (CEA) may be undertaken alongside cluster randomized trials (CRTs) where randomization is at the level of the cluster (for example, the hospital or primary care provider) rather than the individual. Costs (and outcomes) within clusters may be correlated so that the assumption made by standard bivariate regression models, that observations are independent, is incorrect. This study develops a flexible modeling framework to acknowledge the clustering in CEA that use CRTs. The authors extend previous Bayesian bivariate models for CEA of multicenter trials to recognize the specific form of clustering in CRTs. They develop new Bayesian hierarchical models (BHMs) that allow mean costs and outcomes, and also variances, to differ across clusters. They illustrate how each model can be applied using data from a large (1732 cases, 70 primary care providers) CRT evaluating alternative interventions for reducing postnatal depression. The analyses compare cost-effectiveness estimates from BHMs with standard bivariate regression models that ignore the data hierarchy. The BHMs show high levels of cost heterogeneity across clusters (intracluster correlation coefficient, 0.17). Compared with standard regression models, the BHMs yield substantially increased uncertainty surrounding the cost-effectiveness estimates, and altered point estimates. The authors conclude that ignoring clustering can lead to incorrect inferences. The BHMs that they present offer a flexible modeling framework that can be applied more generally to CEA that use CRTs.

  13. Bayesian Regression with Network Prior: Optimal Bayesian Filtering Perspective

    PubMed Central

    Qian, Xiaoning; Dougherty, Edward R.

    2017-01-01

    The recently introduced intrinsically Bayesian robust filter (IBRF) provides fully optimal filtering relative to a prior distribution over an uncertainty class ofjoint random process models, whereas formerly the theory was limited to model-constrained Bayesian robust filters, for which optimization was limited to the filters that are optimal for models in the uncertainty class. This paper extends the IBRF theory to the situation where there are both a prior on the uncertainty class and sample data. The result is optimal Bayesian filtering (OBF), where optimality is relative to the posterior distribution derived from the prior and the data. The IBRF theories for effective characteristics and canonical expansions extend to the OBF setting. A salient focus of the present work is to demonstrate the advantages of Bayesian regression within the OBF setting over the classical Bayesian approach in the context otlinear Gaussian models. PMID:28824268

  14. Learning Bayesian Networks from Correlated Data

    NASA Astrophysics Data System (ADS)

    Bae, Harold; Monti, Stefano; Montano, Monty; Steinberg, Martin H.; Perls, Thomas T.; Sebastiani, Paola

    2016-05-01

    Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between observations within the same cluster and ignoring this correlation typically inflates the rate of false positive associations. We describe a novel parameterization of Bayesian networks that uses random effects to model the correlation within sample units and can be used for structure and parameter learning from correlated data without inflating the Type I error rate. We compare different learning metrics using simulations and illustrate the method in two real examples: an analysis of genetic and non-genetic factors associated with human longevity from a family-based study, and an example of risk factors for complications of sickle cell anemia from a longitudinal study with repeated measures.

  15. Bayesian Sensitivity Analysis of Statistical Models with Missing Data

    PubMed Central

    ZHU, HONGTU; IBRAHIM, JOSEPH G.; TANG, NIANSHENG

    2013-01-01

    Methods for handling missing data depend strongly on the mechanism that generated the missing values, such as missing completely at random (MCAR) or missing at random (MAR), as well as other distributional and modeling assumptions at various stages. It is well known that the resulting estimates and tests may be sensitive to these assumptions as well as to outlying observations. In this paper, we introduce various perturbations to modeling assumptions and individual observations, and then develop a formal sensitivity analysis to assess these perturbations in the Bayesian analysis of statistical models with missing data. We develop a geometric framework, called the Bayesian perturbation manifold, to characterize the intrinsic structure of these perturbations. We propose several intrinsic influence measures to perform sensitivity analysis and quantify the effect of various perturbations to statistical models. We use the proposed sensitivity analysis procedure to systematically investigate the tenability of the non-ignorable missing at random (NMAR) assumption. Simulation studies are conducted to evaluate our methods, and a dataset is analyzed to illustrate the use of our diagnostic measures. PMID:24753718

  16. Bayesian informative dropout model for longitudinal binary data with random effects using conditional and joint modeling approaches.

    PubMed

    Chan, Jennifer S K

    2016-05-01

    Dropouts are common in longitudinal study. If the dropout probability depends on the missing observations at or after dropout, this type of dropout is called informative (or nonignorable) dropout (ID). Failure to accommodate such dropout mechanism into the model will bias the parameter estimates. We propose a conditional autoregressive model for longitudinal binary data with an ID model such that the probabilities of positive outcomes as well as the drop-out indicator in each occasion are logit linear in some covariates and outcomes. This model adopting a marginal model for outcomes and a conditional model for dropouts is called a selection model. To allow for the heterogeneity and clustering effects, the outcome model is extended to incorporate mixture and random effects. Lastly, the model is further extended to a novel model that models the outcome and dropout jointly such that their dependency is formulated through an odds ratio function. Parameters are estimated by a Bayesian approach implemented using the user-friendly Bayesian software WinBUGS. A methadone clinic dataset is analyzed to illustrate the proposed models. Result shows that the treatment time effect is still significant but weaker after allowing for an ID process in the data. Finally the effect of drop-out on parameter estimates is evaluated through simulation studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A semiparametric Bayesian proportional hazards model for interval censored data with frailty effects.

    PubMed

    Henschel, Volkmar; Engel, Jutta; Hölzel, Dieter; Mansmann, Ulrich

    2009-02-10

    Multivariate analysis of interval censored event data based on classical likelihood methods is notoriously cumbersome. Likelihood inference for models which additionally include random effects are not available at all. Developed algorithms bear problems for practical users like: matrix inversion, slow convergence, no assessment of statistical uncertainty. MCMC procedures combined with imputation are used to implement hierarchical models for interval censored data within a Bayesian framework. Two examples from clinical practice demonstrate the handling of clustered interval censored event times as well as multilayer random effects for inter-institutional quality assessment. The software developed is called survBayes and is freely available at CRAN. The proposed software supports the solution of complex analyses in many fields of clinical epidemiology as well as health services research.

  18. Bayesian Nonparametric Inference – Why and How

    PubMed Central

    Müller, Peter; Mitra, Riten

    2013-01-01

    We review inference under models with nonparametric Bayesian (BNP) priors. The discussion follows a set of examples for some common inference problems. The examples are chosen to highlight problems that are challenging for standard parametric inference. We discuss inference for density estimation, clustering, regression and for mixed effects models with random effects distributions. While we focus on arguing for the need for the flexibility of BNP models, we also review some of the more commonly used BNP models, thus hopefully answering a bit of both questions, why and how to use BNP. PMID:24368932

  19. Traffic Video Image Segmentation Model Based on Bayesian and Spatio-Temporal Markov Random Field

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Bao, Xu; Li, Dawei; Yin, Yongwen

    2017-10-01

    Traffic video image is a kind of dynamic image and its background and foreground is changed at any time, which results in the occlusion. In this case, using the general method is more difficult to get accurate image segmentation. A segmentation algorithm based on Bayesian and Spatio-Temporal Markov Random Field is put forward, which respectively build the energy function model of observation field and label field to motion sequence image with Markov property, then according to Bayesian' rule, use the interaction of label field and observation field, that is the relationship of label field’s prior probability and observation field’s likelihood probability, get the maximum posterior probability of label field’s estimation parameter, use the ICM model to extract the motion object, consequently the process of segmentation is finished. Finally, the segmentation methods of ST - MRF and the Bayesian combined with ST - MRF were analyzed. Experimental results: the segmentation time in Bayesian combined with ST-MRF algorithm is shorter than in ST-MRF, and the computing workload is small, especially in the heavy traffic dynamic scenes the method also can achieve better segmentation effect.

  20. A Bayesian Nonparametric Meta-Analysis Model

    ERIC Educational Resources Information Center

    Karabatsos, George; Talbott, Elizabeth; Walker, Stephen G.

    2015-01-01

    In a meta-analysis, it is important to specify a model that adequately describes the effect-size distribution of the underlying population of studies. The conventional normal fixed-effect and normal random-effects models assume a normal effect-size population distribution, conditionally on parameters and covariates. For estimating the mean overall…

  1. Multilevel modeling of single-case data: A comparison of maximum likelihood and Bayesian estimation.

    PubMed

    Moeyaert, Mariola; Rindskopf, David; Onghena, Patrick; Van den Noortgate, Wim

    2017-12-01

    The focus of this article is to describe Bayesian estimation, including construction of prior distributions, and to compare parameter recovery under the Bayesian framework (using weakly informative priors) and the maximum likelihood (ML) framework in the context of multilevel modeling of single-case experimental data. Bayesian estimation results were found similar to ML estimation results in terms of the treatment effect estimates, regardless of the functional form and degree of information included in the prior specification in the Bayesian framework. In terms of the variance component estimates, both the ML and Bayesian estimation procedures result in biased and less precise variance estimates when the number of participants is small (i.e., 3). By increasing the number of participants to 5 or 7, the relative bias is close to 5% and more precise estimates are obtained for all approaches, except for the inverse-Wishart prior using the identity matrix. When a more informative prior was added, more precise estimates for the fixed effects and random effects were obtained, even when only 3 participants were included. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Bayesian Modeling for Identification and Estimation of the Learning Effects of Pointing Tasks

    NASA Astrophysics Data System (ADS)

    Kyo, Koki

    Recently, in the field of human-computer interaction, a model containing the systematic factor and human factor has been proposed to evaluate the performance of the input devices of a computer. This is called the SH-model. In this paper, in order to extend the range of application of the SH-model, we propose some new models based on the Box-Cox transformation and apply a Bayesian modeling method for identification and estimation of the learning effects of pointing tasks. We consider the parameters describing the learning effect as random variables and introduce smoothness priors for them. Illustrative results show that the newly-proposed models work well.

  3. Bayesian inference for two-part mixed-effects model using skew distributions, with application to longitudinal semicontinuous alcohol data.

    PubMed

    Xing, Dongyuan; Huang, Yangxin; Chen, Henian; Zhu, Yiliang; Dagne, Getachew A; Baldwin, Julie

    2017-08-01

    Semicontinuous data featured with an excessive proportion of zeros and right-skewed continuous positive values arise frequently in practice. One example would be the substance abuse/dependence symptoms data for which a substantial proportion of subjects investigated may report zero. Two-part mixed-effects models have been developed to analyze repeated measures of semicontinuous data from longitudinal studies. In this paper, we propose a flexible two-part mixed-effects model with skew distributions for correlated semicontinuous alcohol data under the framework of a Bayesian approach. The proposed model specification consists of two mixed-effects models linked by the correlated random effects: (i) a model on the occurrence of positive values using a generalized logistic mixed-effects model (Part I); and (ii) a model on the intensity of positive values using a linear mixed-effects model where the model errors follow skew distributions including skew- t and skew-normal distributions (Part II). The proposed method is illustrated with an alcohol abuse/dependence symptoms data from a longitudinal observational study, and the analytic results are reported by comparing potential models under different random-effects structures. Simulation studies are conducted to assess the performance of the proposed models and method.

  4. Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting.

    PubMed

    Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun

    2017-08-01

    Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2  = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.

  5. Hierarchical Bayesian spatial models for alcohol availability, drug "hot spots" and violent crime.

    PubMed

    Zhu, Li; Gorman, Dennis M; Horel, Scott

    2006-12-07

    Ecologic studies have shown a relationship between alcohol outlet densities, illicit drug use and violence. The present study examined this relationship in the City of Houston, Texas, using a sample of 439 census tracts. Neighborhood sociostructural covariates, alcohol outlet density, drug crime density and violent crime data were collected for the year 2000, and analyzed using hierarchical Bayesian models. Model selection was accomplished by applying the Deviance Information Criterion. The counts of violent crime in each census tract were modelled as having a conditional Poisson distribution. Four neighbourhood explanatory variables were identified using principal component analysis. The best fitted model was selected as the one considering both unstructured and spatial dependence random effects. The results showed that drug-law violation explained a greater amount of variance in violent crime rates than alcohol outlet densities. The relative risk for drug-law violation was 2.49 and that for alcohol outlet density was 1.16. Of the neighbourhood sociostructural covariates, males of age 15 to 24 showed an effect on violence, with a 16% decrease in relative risk for each increase the size of its standard deviation. Both unstructured heterogeneity random effect and spatial dependence need to be included in the model. The analysis presented suggests that activity around illicit drug markets is more strongly associated with violent crime than is alcohol outlet density. Unique among the ecological studies in this field, the present study not only shows the direction and magnitude of impact of neighbourhood sociostructural covariates as well as alcohol and illicit drug activities in a neighbourhood, it also reveals the importance of applying hierarchical Bayesian models in this research field as both spatial dependence and heterogeneity random effects need to be considered simultaneously.

  6. Bayesian exponential random graph modelling of interhospital patient referral networks.

    PubMed

    Caimo, Alberto; Pallotti, Francesca; Lomi, Alessandro

    2017-08-15

    Using original data that we have collected on referral relations between 110 hospitals serving a large regional community, we show how recently derived Bayesian exponential random graph models may be adopted to illuminate core empirical issues in research on relational coordination among healthcare organisations. We show how a rigorous Bayesian computation approach supports a fully probabilistic analytical framework that alleviates well-known problems in the estimation of model parameters of exponential random graph models. We also show how the main structural features of interhospital patient referral networks that prior studies have described can be reproduced with accuracy by specifying the system of local dependencies that produce - but at the same time are induced by - decentralised collaborative arrangements between hospitals. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. A bayesian hierarchical model for classification with selection of functional predictors.

    PubMed

    Zhu, Hongxiao; Vannucci, Marina; Cox, Dennis D

    2010-06-01

    In functional data classification, functional observations are often contaminated by various systematic effects, such as random batch effects caused by device artifacts, or fixed effects caused by sample-related factors. These effects may lead to classification bias and thus should not be neglected. Another issue of concern is the selection of functions when predictors consist of multiple functions, some of which may be redundant. The above issues arise in a real data application where we use fluorescence spectroscopy to detect cervical precancer. In this article, we propose a Bayesian hierarchical model that takes into account random batch effects and selects effective functions among multiple functional predictors. Fixed effects or predictors in nonfunctional form are also included in the model. The dimension of the functional data is reduced through orthonormal basis expansion or functional principal components. For posterior sampling, we use a hybrid Metropolis-Hastings/Gibbs sampler, which suffers slow mixing. An evolutionary Monte Carlo algorithm is applied to improve the mixing. Simulation and real data application show that the proposed model provides accurate selection of functional predictors as well as good classification.

  8. Detection of mastitis in dairy cattle by use of mixture models for repeated somatic cell scores: a Bayesian approach via Gibbs sampling.

    PubMed

    Odegård, J; Jensen, J; Madsen, P; Gianola, D; Klemetsdal, G; Heringstad, B

    2003-11-01

    The distribution of somatic cell scores could be regarded as a mixture of at least two components depending on a cow's udder health status. A heteroscedastic two-component Bayesian normal mixture model with random effects was developed and implemented via Gibbs sampling. The model was evaluated using datasets consisting of simulated somatic cell score records. Somatic cell score was simulated as a mixture representing two alternative udder health statuses ("healthy" or "diseased"). Animals were assigned randomly to the two components according to the probability of group membership (Pm). Random effects (additive genetic and permanent environment), when included, had identical distributions across mixture components. Posterior probabilities of putative mastitis were estimated for all observations, and model adequacy was evaluated using measures of sensitivity, specificity, and posterior probability of misclassification. Fitting different residual variances in the two mixture components caused some bias in estimation of parameters. When the components were difficult to disentangle, so were their residual variances, causing bias in estimation of Pm and of location parameters of the two underlying distributions. When all variance components were identical across mixture components, the mixture model analyses returned parameter estimates essentially without bias and with a high degree of precision. Including random effects in the model increased the probability of correct classification substantially. No sizable differences in probability of correct classification were found between models in which a single cow effect (ignoring relationships) was fitted and models where this effect was split into genetic and permanent environmental components, utilizing relationship information. When genetic and permanent environmental effects were fitted, the between-replicate variance of estimates of posterior means was smaller because the model accounted for random genetic drift.

  9. Bayesian randomized clinical trials: From fixed to adaptive design.

    PubMed

    Yin, Guosheng; Lam, Chi Kin; Shi, Haolun

    2017-08-01

    Randomized controlled studies are the gold standard for phase III clinical trials. Using α-spending functions to control the overall type I error rate, group sequential methods are well established and have been dominating phase III studies. Bayesian randomized design, on the other hand, can be viewed as a complement instead of competitive approach to the frequentist methods. For the fixed Bayesian design, the hypothesis testing can be cast in the posterior probability or Bayes factor framework, which has a direct link to the frequentist type I error rate. Bayesian group sequential design relies upon Bayesian decision-theoretic approaches based on backward induction, which is often computationally intensive. Compared with the frequentist approaches, Bayesian methods have several advantages. The posterior predictive probability serves as a useful and convenient tool for trial monitoring, and can be updated at any time as the data accrue during the trial. The Bayesian decision-theoretic framework possesses a direct link to the decision making in the practical setting, and can be modeled more realistically to reflect the actual cost-benefit analysis during the drug development process. Other merits include the possibility of hierarchical modeling and the use of informative priors, which would lead to a more comprehensive utilization of information from both historical and longitudinal data. From fixed to adaptive design, we focus on Bayesian randomized controlled clinical trials and make extensive comparisons with frequentist counterparts through numerical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Bayesian statistical inference enhances the interpretation of contemporary randomized controlled trials.

    PubMed

    Wijeysundera, Duminda N; Austin, Peter C; Hux, Janet E; Beattie, W Scott; Laupacis, Andreas

    2009-01-01

    Randomized trials generally use "frequentist" statistics based on P-values and 95% confidence intervals. Frequentist methods have limitations that might be overcome, in part, by Bayesian inference. To illustrate these advantages, we re-analyzed randomized trials published in four general medical journals during 2004. We used Medline to identify randomized superiority trials with two parallel arms, individual-level randomization and dichotomous or time-to-event primary outcomes. Studies with P<0.05 in favor of the intervention were deemed "positive"; otherwise, they were "negative." We used several prior distributions and exact conjugate analyses to calculate Bayesian posterior probabilities for clinically relevant effects. Of 88 included studies, 39 were positive using a frequentist analysis. Although the Bayesian posterior probabilities of any benefit (relative risk or hazard ratio<1) were high in positive studies, these probabilities were lower and variable for larger benefits. The positive studies had only moderate probabilities for exceeding the effects that were assumed for calculating the sample size. By comparison, there were moderate probabilities of any benefit in negative studies. Bayesian and frequentist analyses complement each other when interpreting the results of randomized trials. Future reports of randomized trials should include both.

  11. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models

    PubMed Central

    Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A.; Burgueño, Juan; Pérez-Rodríguez, Paulino; de los Campos, Gustavo

    2016-01-01

    The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects (u) that can be assessed by the Kronecker product of variance–covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model (u) plus an extra component, f, that captures random effects between environments that were not captured by the random effects u. We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with u and f over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect u. PMID:27793970

  12. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.

    PubMed

    Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A; Burgueño, Juan; Pérez-Rodríguez, Paulino; de Los Campos, Gustavo

    2017-01-05

    The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects [Formula: see text] that can be assessed by the Kronecker product of variance-covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model [Formula: see text] plus an extra component, F: , that captures random effects between environments that were not captured by the random effects [Formula: see text] We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with [Formula: see text] over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect [Formula: see text]. Copyright © 2017 Cuevas et al.

  13. Methods for calculating confidence and credible intervals for the residual between-study variance in random effects meta-regression models

    PubMed Central

    2014-01-01

    Background Meta-regression is becoming increasingly used to model study level covariate effects. However this type of statistical analysis presents many difficulties and challenges. Here two methods for calculating confidence intervals for the magnitude of the residual between-study variance in random effects meta-regression models are developed. A further suggestion for calculating credible intervals using informative prior distributions for the residual between-study variance is presented. Methods Two recently proposed and, under the assumptions of the random effects model, exact methods for constructing confidence intervals for the between-study variance in random effects meta-analyses are extended to the meta-regression setting. The use of Generalised Cochran heterogeneity statistics is extended to the meta-regression setting and a Newton-Raphson procedure is developed to implement the Q profile method for meta-analysis and meta-regression. WinBUGS is used to implement informative priors for the residual between-study variance in the context of Bayesian meta-regressions. Results Results are obtained for two contrasting examples, where the first example involves a binary covariate and the second involves a continuous covariate. Intervals for the residual between-study variance are wide for both examples. Conclusions Statistical methods, and R computer software, are available to compute exact confidence intervals for the residual between-study variance under the random effects model for meta-regression. These frequentist methods are almost as easily implemented as their established counterparts for meta-analysis. Bayesian meta-regressions are also easily performed by analysts who are comfortable using WinBUGS. Estimates of the residual between-study variance in random effects meta-regressions should be routinely reported and accompanied by some measure of their uncertainty. Confidence and/or credible intervals are well-suited to this purpose. PMID:25196829

  14. Meta-analysis of two studies in the presence of heterogeneity with applications in rare diseases.

    PubMed

    Friede, Tim; Röver, Christian; Wandel, Simon; Neuenschwander, Beat

    2017-07-01

    Random-effects meta-analyses are used to combine evidence of treatment effects from multiple studies. Since treatment effects may vary across trials due to differences in study characteristics, heterogeneity in treatment effects between studies must be accounted for to achieve valid inference. The standard model for random-effects meta-analysis assumes approximately normal effect estimates and a normal random-effects model. However, standard methods based on this model ignore the uncertainty in estimating the between-trial heterogeneity. In the special setting of only two studies and in the presence of heterogeneity, we investigate here alternatives such as the Hartung-Knapp-Sidik-Jonkman method (HKSJ), the modified Knapp-Hartung method (mKH, a variation of the HKSJ method) and Bayesian random-effects meta-analyses with priors covering plausible heterogeneity values; R code to reproduce the examples is presented in an appendix. The properties of these methods are assessed by applying them to five examples from various rare diseases and by a simulation study. Whereas the standard method based on normal quantiles has poor coverage, the HKSJ and mKH generally lead to very long, and therefore inconclusive, confidence intervals. The Bayesian intervals on the whole show satisfying properties and offer a reasonable compromise between these two extremes. © 2016 The Authors. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A Dynamic Bayesian Network Model for the Production and Inventory Control

    NASA Astrophysics Data System (ADS)

    Shin, Ji-Sun; Takazaki, Noriyuki; Lee, Tae-Hong; Kim, Jin-Il; Lee, Hee-Hyol

    In general, the production quantities and delivered goods are changed randomly and then the total stock is also changed randomly. This paper deals with the production and inventory control using the Dynamic Bayesian Network. Bayesian Network is a probabilistic model which represents the qualitative dependence between two or more random variables by the graph structure, and indicates the quantitative relations between individual variables by the conditional probability. The probabilistic distribution of the total stock is calculated through the propagation of the probability on the network. Moreover, an adjusting rule of the production quantities to maintain the probability of a lower limit and a ceiling of the total stock to certain values is shown.

  16. A tutorial on Bayesian bivariate meta-analysis of mixed binary-continuous outcomes with missing treatment effects.

    PubMed

    Gajic-Veljanoski, Olga; Cheung, Angela M; Bayoumi, Ahmed M; Tomlinson, George

    2016-05-30

    Bivariate random-effects meta-analysis (BVMA) is a method of data synthesis that accounts for treatment effects measured on two outcomes. BVMA gives more precise estimates of the population mean and predicted values than two univariate random-effects meta-analyses (UVMAs). BVMA also addresses bias from incomplete reporting of outcomes. A few tutorials have covered technical details of BVMA of categorical or continuous outcomes. Limited guidance is available on how to analyze datasets that include trials with mixed continuous-binary outcomes where treatment effects on one outcome or the other are not reported. Given the advantages of Bayesian BVMA for handling missing outcomes, we present a tutorial for Bayesian BVMA of incompletely reported treatment effects on mixed bivariate outcomes. This step-by-step approach can serve as a model for our intended audience, the methodologist familiar with Bayesian meta-analysis, looking for practical advice on fitting bivariate models. To facilitate application of the proposed methods, we include our WinBUGS code. As an example, we use aggregate-level data from published trials to demonstrate the estimation of the effects of vitamin K and bisphosphonates on two correlated bone outcomes, fracture, and bone mineral density. We present datasets where reporting of the pairs of treatment effects on both outcomes was 'partially' complete (i.e., pairs completely reported in some trials), and we outline steps for modeling the incompletely reported data. To assess what is gained from the additional work required by BVMA, we compare the resulting estimates to those from separate UVMAs. We discuss methodological findings and make four recommendations. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Confidence Intervals for the Between-Study Variance in Random Effects Meta-Analysis Using Generalised Cochran Heterogeneity Statistics

    ERIC Educational Resources Information Center

    Jackson, Dan

    2013-01-01

    Statistical inference is problematic in the common situation in meta-analysis where the random effects model is fitted to just a handful of studies. In particular, the asymptotic theory of maximum likelihood provides a poor approximation, and Bayesian methods are sensitive to the prior specification. Hence, less efficient, but easily computed and…

  18. A Bayesian approach to meta-analysis of plant pathology studies.

    PubMed

    Mila, A L; Ngugi, H K

    2011-01-01

    Bayesian statistical methods are used for meta-analysis in many disciplines, including medicine, molecular biology, and engineering, but have not yet been applied for quantitative synthesis of plant pathology studies. In this paper, we illustrate the key concepts of Bayesian statistics and outline the differences between Bayesian and classical (frequentist) methods in the way parameters describing population attributes are considered. We then describe a Bayesian approach to meta-analysis and present a plant pathological example based on studies evaluating the efficacy of plant protection products that induce systemic acquired resistance for the management of fire blight of apple. In a simple random-effects model assuming a normal distribution of effect sizes and no prior information (i.e., a noninformative prior), the results of the Bayesian meta-analysis are similar to those obtained with classical methods. Implementing the same model with a Student's t distribution and a noninformative prior for the effect sizes, instead of a normal distribution, yields similar results for all but acibenzolar-S-methyl (Actigard) which was evaluated only in seven studies in this example. Whereas both the classical (P = 0.28) and the Bayesian analysis with a noninformative prior (95% credibility interval [CRI] for the log response ratio: -0.63 to 0.08) indicate a nonsignificant effect for Actigard, specifying a t distribution resulted in a significant, albeit variable, effect for this product (CRI: -0.73 to -0.10). These results confirm the sensitivity of the analytical outcome (i.e., the posterior distribution) to the choice of prior in Bayesian meta-analyses involving a limited number of studies. We review some pertinent literature on more advanced topics, including modeling of among-study heterogeneity, publication bias, analyses involving a limited number of studies, and methods for dealing with missing data, and show how these issues can be approached in a Bayesian framework. Bayesian meta-analysis can readily include information not easily incorporated in classical methods, and allow for a full evaluation of competing models. Given the power and flexibility of Bayesian methods, we expect them to become widely adopted for meta-analysis of plant pathology studies.

  19. Evaluation of uncertainty in the adjustment of fundamental constants

    NASA Astrophysics Data System (ADS)

    Bodnar, Olha; Elster, Clemens; Fischer, Joachim; Possolo, Antonio; Toman, Blaza

    2016-02-01

    Combining multiple measurement results for the same quantity is an important task in metrology and in many other areas. Examples include the determination of fundamental constants, the calculation of reference values in interlaboratory comparisons, or the meta-analysis of clinical studies. However, neither the GUM nor its supplements give any guidance for this task. Various approaches are applied such as weighted least-squares in conjunction with the Birge ratio or random effects models. While the former approach, which is based on a location-scale model, is particularly popular in metrology, the latter represents a standard tool used in statistics for meta-analysis. We investigate the reliability and robustness of the location-scale model and the random effects model with particular focus on resulting coverage or credible intervals. The interval estimates are obtained by adopting a Bayesian point of view in conjunction with a non-informative prior that is determined by a currently favored principle for selecting non-informative priors. Both approaches are compared by applying them to simulated data as well as to data for the Planck constant and the Newtonian constant of gravitation. Our results suggest that the proposed Bayesian inference based on the random effects model is more reliable and less sensitive to model misspecifications than the approach based on the location-scale model.

  20. Robust, Adaptive Functional Regression in Functional Mixed Model Framework.

    PubMed

    Zhu, Hongxiao; Brown, Philip J; Morris, Jeffrey S

    2011-09-01

    Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets.

  1. Robust, Adaptive Functional Regression in Functional Mixed Model Framework

    PubMed Central

    Zhu, Hongxiao; Brown, Philip J.; Morris, Jeffrey S.

    2012-01-01

    Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets. PMID:22308015

  2. A Bayesian, generalized frailty model for comet assays.

    PubMed

    Ghebretinsae, Aklilu Habteab; Faes, Christel; Molenberghs, Geert; De Boeck, Marlies; Geys, Helena

    2013-05-01

    This paper proposes a flexible modeling approach for so-called comet assay data regularly encountered in preclinical research. While such data consist of non-Gaussian outcomes in a multilevel hierarchical structure, traditional analyses typically completely or partly ignore this hierarchical nature by summarizing measurements within a cluster. Non-Gaussian outcomes are often modeled using exponential family models. This is true not only for binary and count data, but also for, example, time-to-event outcomes. Two important reasons for extending this family are for (1) the possible occurrence of overdispersion, meaning that the variability in the data may not be adequately described by the models, which often exhibit a prescribed mean-variance link, and (2) the accommodation of a hierarchical structure in the data, owing to clustering in the data. The first issue is dealt with through so-called overdispersion models. Clustering is often accommodated through the inclusion of random subject-specific effects. Though not always, one conventionally assumes such random effects to be normally distributed. In the case of time-to-event data, one encounters, for example, the gamma frailty model (Duchateau and Janssen, 2007 ). While both of these issues may occur simultaneously, models combining both are uncommon. Molenberghs et al. ( 2010 ) proposed a broad class of generalized linear models accommodating overdispersion and clustering through two separate sets of random effects. Here, we use this method to model data from a comet assay with a three-level hierarchical structure. Although a conjugate gamma random effect is used for the overdispersion random effect, both gamma and normal random effects are considered for the hierarchical random effect. Apart from model formulation, we place emphasis on Bayesian estimation. Our proposed method has an upper hand over the traditional analysis in that it (1) uses the appropriate distribution stipulated in the literature; (2) deals with the complete hierarchical nature; and (3) uses all information instead of summary measures. The fit of the model to the comet assay is compared against the background of more conventional model fits. Results indicate the toxicity of 1,2-dimethylhydrazine dihydrochloride at different dose levels (low, medium, and high).

  3. Theory-based Bayesian Models of Inductive Inference

    DTIC Science & Technology

    2010-07-19

    Subjective randomness and natural scene statistics. Psychonomic Bulletin & Review . http://cocosci.berkeley.edu/tom/papers/randscenes.pdf Page 1...in press). Exemplar models as a mechanism for performing Bayesian inference. Psychonomic Bulletin & Review . http://cocosci.berkeley.edu/tom

  4. Bayesian logistic regression approaches to predict incorrect DRG assignment.

    PubMed

    Suleiman, Mani; Demirhan, Haydar; Boyd, Leanne; Girosi, Federico; Aksakalli, Vural

    2018-05-07

    Episodes of care involving similar diagnoses and treatments and requiring similar levels of resource utilisation are grouped to the same Diagnosis-Related Group (DRG). In jurisdictions which implement DRG based payment systems, DRGs are a major determinant of funding for inpatient care. Hence, service providers often dedicate auditing staff to the task of checking that episodes have been coded to the correct DRG. The use of statistical models to estimate an episode's probability of DRG error can significantly improve the efficiency of clinical coding audits. This study implements Bayesian logistic regression models with weakly informative prior distributions to estimate the likelihood that episodes require a DRG revision, comparing these models with each other and to classical maximum likelihood estimates. All Bayesian approaches had more stable model parameters than maximum likelihood. The best performing Bayesian model improved overall classification per- formance by 6% compared to maximum likelihood, with a 34% gain compared to random classification, respectively. We found that the original DRG, coder and the day of coding all have a significant effect on the likelihood of DRG error. Use of Bayesian approaches has improved model parameter stability and classification accuracy. This method has already lead to improved audit efficiency in an operational capacity.

  5. Efficient Bayesian hierarchical functional data analysis with basis function approximations using Gaussian-Wishart processes.

    PubMed

    Yang, Jingjing; Cox, Dennis D; Lee, Jong Soo; Ren, Peng; Choi, Taeryon

    2017-12-01

    Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum, which are usually collected on discretized grids with measurement errors. In order to accurately smooth noisy functional observations and deal with the issue of high-dimensional observation grids, we propose a novel Bayesian method based on the Bayesian hierarchical model with a Gaussian-Wishart process prior and basis function representations. We first derive an induced model for the basis-function coefficients of the functional data, and then use this model to conduct posterior inference through Markov chain Monte Carlo methods. Compared to the standard Bayesian inference that suffers serious computational burden and instability in analyzing high-dimensional functional data, our method greatly improves the computational scalability and stability, while inheriting the advantage of simultaneously smoothing raw observations and estimating the mean-covariance functions in a nonparametric way. In addition, our method can naturally handle functional data observed on random or uncommon grids. Simulation and real studies demonstrate that our method produces similar results to those obtainable by the standard Bayesian inference with low-dimensional common grids, while efficiently smoothing and estimating functional data with random and high-dimensional observation grids when the standard Bayesian inference fails. In conclusion, our method can efficiently smooth and estimate high-dimensional functional data, providing one way to resolve the curse of dimensionality for Bayesian functional data analysis with Gaussian-Wishart processes. © 2017, The International Biometric Society.

  6. Bayesian adaptive trials offer advantages in comparative effectiveness trials: an example in status epilepticus.

    PubMed

    Connor, Jason T; Elm, Jordan J; Broglio, Kristine R

    2013-08-01

    We present a novel Bayesian adaptive comparative effectiveness trial comparing three treatments for status epilepticus that uses adaptive randomization with potential early stopping. The trial will enroll 720 unique patients in emergency departments and uses a Bayesian adaptive design. The trial design is compared to a trial without adaptive randomization and produces an efficient trial in which a higher proportion of patients are likely to be randomized to the most effective treatment arm while generally using fewer total patients and offers higher power than an analogous trial with fixed randomization when identifying a superior treatment. When one treatment is superior to the other two, the trial design provides better patient care, higher power, and a lower expected sample size. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. A Bayesian Approach for Summarizing and Modeling Time-Series Exposure Data with Left Censoring.

    PubMed

    Houseman, E Andres; Virji, M Abbas

    2017-08-01

    Direct reading instruments are valuable tools for measuring exposure as they provide real-time measurements for rapid decision making. However, their use is limited to general survey applications in part due to issues related to their performance. Moreover, statistical analysis of real-time data is complicated by autocorrelation among successive measurements, non-stationary time series, and the presence of left-censoring due to limit-of-detection (LOD). A Bayesian framework is proposed that accounts for non-stationary autocorrelation and LOD issues in exposure time-series data in order to model workplace factors that affect exposure and estimate summary statistics for tasks or other covariates of interest. A spline-based approach is used to model non-stationary autocorrelation with relatively few assumptions about autocorrelation structure. Left-censoring is addressed by integrating over the left tail of the distribution. The model is fit using Markov-Chain Monte Carlo within a Bayesian paradigm. The method can flexibly account for hierarchical relationships, random effects and fixed effects of covariates. The method is implemented using the rjags package in R, and is illustrated by applying it to real-time exposure data. Estimates for task means and covariates from the Bayesian model are compared to those from conventional frequentist models including linear regression, mixed-effects, and time-series models with different autocorrelation structures. Simulations studies are also conducted to evaluate method performance. Simulation studies with percent of measurements below the LOD ranging from 0 to 50% showed lowest root mean squared errors for task means and the least biased standard deviations from the Bayesian model compared to the frequentist models across all levels of LOD. In the application, task means from the Bayesian model were similar to means from the frequentist models, while the standard deviations were different. Parameter estimates for covariates were significant in some frequentist models, but in the Bayesian model their credible intervals contained zero; such discrepancies were observed in multiple datasets. Variance components from the Bayesian model reflected substantial autocorrelation, consistent with the frequentist models, except for the auto-regressive moving average model. Plots of means from the Bayesian model showed good fit to the observed data. The proposed Bayesian model provides an approach for modeling non-stationary autocorrelation in a hierarchical modeling framework to estimate task means, standard deviations, quantiles, and parameter estimates for covariates that are less biased and have better performance characteristics than some of the contemporary methods. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2017.

  8. Network meta-analysis of disconnected networks: How dangerous are random baseline treatment effects?

    PubMed

    Béliveau, Audrey; Goring, Sarah; Platt, Robert W; Gustafson, Paul

    2017-12-01

    In network meta-analysis, the use of fixed baseline treatment effects (a priori independent) in a contrast-based approach is regularly preferred to the use of random baseline treatment effects (a priori dependent). That is because, often, there is not a need to model baseline treatment effects, which carry the risk of model misspecification. However, in disconnected networks, fixed baseline treatment effects do not work (unless extra assumptions are made), as there is not enough information in the data to update the prior distribution on the contrasts between disconnected treatments. In this paper, we investigate to what extent the use of random baseline treatment effects is dangerous in disconnected networks. We take 2 publicly available datasets of connected networks and disconnect them in multiple ways. We then compare the results of treatment comparisons obtained from a Bayesian contrast-based analysis of each disconnected network using random normally distributed and exchangeable baseline treatment effects to those obtained from a Bayesian contrast-based analysis of their initial connected network using fixed baseline treatment effects. For the 2 datasets considered, we found that the use of random baseline treatment effects in disconnected networks was appropriate. Because those datasets were not cherry-picked, there should be other disconnected networks that would benefit from being analyzed using random baseline treatment effects. However, there is also a risk for the normality and exchangeability assumption to be inappropriate in other datasets even though we have not observed this situation in our case study. We provide code, so other datasets can be investigated. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Meta-analysis of diagnostic test data: a bivariate Bayesian modeling approach.

    PubMed

    Verde, Pablo E

    2010-12-30

    In the last decades, the amount of published results on clinical diagnostic tests has expanded very rapidly. The counterpart to this development has been the formal evaluation and synthesis of diagnostic results. However, published results present substantial heterogeneity and they can be regarded as so far removed from the classical domain of meta-analysis, that they can provide a rather severe test of classical statistical methods. Recently, bivariate random effects meta-analytic methods, which model the pairs of sensitivities and specificities, have been presented from the classical point of view. In this work a bivariate Bayesian modeling approach is presented. This approach substantially extends the scope of classical bivariate methods by allowing the structural distribution of the random effects to depend on multiple sources of variability. Meta-analysis is summarized by the predictive posterior distributions for sensitivity and specificity. This new approach allows, also, to perform substantial model checking, model diagnostic and model selection. Statistical computations are implemented in the public domain statistical software (WinBUGS and R) and illustrated with real data examples. Copyright © 2010 John Wiley & Sons, Ltd.

  10. Evaluating Bayesian spatial methods for modelling species distributions with clumped and restricted occurrence data.

    PubMed

    Redding, David W; Lucas, Tim C D; Blackburn, Tim M; Jones, Kate E

    2017-01-01

    Statistical approaches for inferring the spatial distribution of taxa (Species Distribution Models, SDMs) commonly rely on available occurrence data, which is often clumped and geographically restricted. Although available SDM methods address some of these factors, they could be more directly and accurately modelled using a spatially-explicit approach. Software to fit models with spatial autocorrelation parameters in SDMs are now widely available, but whether such approaches for inferring SDMs aid predictions compared to other methodologies is unknown. Here, within a simulated environment using 1000 generated species' ranges, we compared the performance of two commonly used non-spatial SDM methods (Maximum Entropy Modelling, MAXENT and boosted regression trees, BRT), to a spatial Bayesian SDM method (fitted using R-INLA), when the underlying data exhibit varying combinations of clumping and geographic restriction. Finally, we tested how any recommended methodological settings designed to account for spatially non-random patterns in the data impact inference. Spatial Bayesian SDM method was the most consistently accurate method, being in the top 2 most accurate methods in 7 out of 8 data sampling scenarios. Within high-coverage sample datasets, all methods performed fairly similarly. When sampling points were randomly spread, BRT had a 1-3% greater accuracy over the other methods and when samples were clumped, the spatial Bayesian SDM method had a 4%-8% better AUC score. Alternatively, when sampling points were restricted to a small section of the true range all methods were on average 10-12% less accurate, with greater variation among the methods. Model inference under the recommended settings to account for autocorrelation was not impacted by clumping or restriction of data, except for the complexity of the spatial regression term in the spatial Bayesian model. Methods, such as those made available by R-INLA, can be successfully used to account for spatial autocorrelation in an SDM context and, by taking account of random effects, produce outputs that can better elucidate the role of covariates in predicting species occurrence. Given that it is often unclear what the drivers are behind data clumping in an empirical occurrence dataset, or indeed how geographically restricted these data are, spatially-explicit Bayesian SDMs may be the better choice when modelling the spatial distribution of target species.

  11. Inhaled Cannabis for Chronic Neuropathic Pain: A Meta-analysis of Individual Patient Data.

    PubMed

    Andreae, Michael H; Carter, George M; Shaparin, Naum; Suslov, Kathryn; Ellis, Ronald J; Ware, Mark A; Abrams, Donald I; Prasad, Hannah; Wilsey, Barth; Indyk, Debbie; Johnson, Matthew; Sacks, Henry S

    2015-12-01

    Chronic neuropathic pain, the most frequent condition affecting the peripheral nervous system, remains underdiagnosed and difficult to treat. Inhaled cannabis may alleviate chronic neuropathic pain. Our objective was to synthesize the evidence on the use of inhaled cannabis for chronic neuropathic pain. We performed a systematic review and a meta-analysis of individual patient data. We registered our protocol with PROSPERO CRD42011001182. We searched in Cochrane Central, PubMed, EMBASE, and AMED. We considered all randomized controlled trials investigating chronic painful neuropathy and comparing inhaled cannabis with placebo. We pooled treatment effects following a hierarchical random-effects Bayesian responder model for the population-averaged subject-specific effect. Our evidence synthesis of individual patient data from 178 participants with 405 observed responses in 5 randomized controlled trials following patients for days to weeks provides evidence that inhaled cannabis results in short-term reductions in chronic neuropathic pain for 1 in every 5 to 6 patients treated (number needed to treat = 5.6 with a Bayesian 95% credible interval ranging between 3.4 and 14). Our inferences were insensitive to model assumptions, priors, and parameter choices. We caution that the small number of studies and participants, the short follow-up, shortcomings in allocation concealment, and considerable attrition limit the conclusions that can be drawn from the review. The Bayes factor is 332, corresponding to a posterior probability of effect of 99.7%. This novel Bayesian meta-analysis of individual patient data from 5 randomized trials suggests that inhaled cannabis may provide short-term relief for 1 in 5 to 6 patients with neuropathic pain. Pragmatic trials are needed to evaluate the long-term benefits and risks of this treatment. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  12. The Bayesian group lasso for confounded spatial data

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin E.; Walsh, Daniel P.

    2017-01-01

    Generalized linear mixed models for spatial processes are widely used in applied statistics. In many applications of the spatial generalized linear mixed model (SGLMM), the goal is to obtain inference about regression coefficients while achieving optimal predictive ability. When implementing the SGLMM, multicollinearity among covariates and the spatial random effects can make computation challenging and influence inference. We present a Bayesian group lasso prior with a single tuning parameter that can be chosen to optimize predictive ability of the SGLMM and jointly regularize the regression coefficients and spatial random effect. We implement the group lasso SGLMM using efficient Markov chain Monte Carlo (MCMC) algorithms and demonstrate how multicollinearity among covariates and the spatial random effect can be monitored as a derived quantity. To test our method, we compared several parameterizations of the SGLMM using simulated data and two examples from plant ecology and disease ecology. In all examples, problematic levels multicollinearity occurred and influenced sampling efficiency and inference. We found that the group lasso prior resulted in roughly twice the effective sample size for MCMC samples of regression coefficients and can have higher and less variable predictive accuracy based on out-of-sample data when compared to the standard SGLMM.

  13. LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients

    USGS Publications Warehouse

    Babcock, Chad; Finley, Andrew O.; Bradford, John B.; Kolka, Randall K.; Birdsey, Richard A.; Ryan, Michael G.

    2015-01-01

    Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both residual spatial dependence and non-stationarity of model covariates through the introduction of spatial random effects. We explored this objective using four forest inventory datasets that are part of the North American Carbon Program, each comprising point-referenced measures of above-ground forest biomass and discrete LiDAR. For each dataset, we considered at least five regression model specifications of varying complexity. Models were assessed based on goodness of fit criteria and predictive performance using a 10-fold cross-validation procedure. Results showed that the addition of spatial random effects to the regression model intercept improved fit and predictive performance in the presence of substantial residual spatial dependence. Additionally, in some cases, allowing either some or all regression slope parameters to vary spatially, via the addition of spatial random effects, further improved model fit and predictive performance. In other instances, models showed improved fit but decreased predictive performance—indicating over-fitting and underscoring the need for cross-validation to assess predictive ability. The proposed Bayesian modeling framework provided access to pixel-level posterior predictive distributions that were useful for uncertainty mapping, diagnosing spatial extrapolation issues, revealing missing model covariates, and discovering locally significant parameters.

  14. A Bayesian ridge regression analysis of congestion's impact on urban expressway safety.

    PubMed

    Shi, Qi; Abdel-Aty, Mohamed; Lee, Jaeyoung

    2016-03-01

    With the rapid growth of traffic in urban areas, concerns about congestion and traffic safety have been heightened. This study leveraged both Automatic Vehicle Identification (AVI) system and Microwave Vehicle Detection System (MVDS) installed on an expressway in Central Florida to explore how congestion impacts the crash occurrence in urban areas. Multiple congestion measures from the two systems were developed. To ensure more precise estimates of the congestion's effects, the traffic data were aggregated into peak and non-peak hours. Multicollinearity among traffic parameters was examined. The results showed the presence of multicollinearity especially during peak hours. As a response, ridge regression was introduced to cope with this issue. Poisson models with uncorrelated random effects, correlated random effects, and both correlated random effects and random parameters were constructed within the Bayesian framework. It was proven that correlated random effects could significantly enhance model performance. The random parameters model has similar goodness-of-fit compared with the model with only correlated random effects. However, by accounting for the unobserved heterogeneity, more variables were found to be significantly related to crash frequency. The models indicated that congestion increased crash frequency during peak hours while during non-peak hours it was not a major crash contributing factor. Using the random parameter model, the three congestion measures were compared. It was found that all congestion indicators had similar effects while Congestion Index (CI) derived from MVDS data was a better congestion indicator for safety analysis. Also, analyses showed that the segments with higher congestion intensity could not only increase property damage only (PDO) crashes, but also more severe crashes. In addition, the issues regarding the necessity to incorporate specific congestion indicator for congestion's effects on safety and to take care of the multicollinearity between explanatory variables were also discussed. By including a specific congestion indicator, the model performance significantly improved. When comparing models with and without ridge regression, the magnitude of the coefficients was altered in the existence of multicollinearity. These conclusions suggest that the use of appropriate congestion measure and consideration of multicolilnearity among the variables would improve the models and our understanding about the effects of congestion on traffic safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A comparison of machine learning and Bayesian modelling for molecular serotyping.

    PubMed

    Newton, Richard; Wernisch, Lorenz

    2017-08-11

    Streptococcus pneumoniae is a human pathogen that is a major cause of infant mortality. Identifying the pneumococcal serotype is an important step in monitoring the impact of vaccines used to protect against disease. Genomic microarrays provide an effective method for molecular serotyping. Previously we developed an empirical Bayesian model for the classification of serotypes from a molecular serotyping array. With only few samples available, a model driven approach was the only option. In the meanwhile, several thousand samples have been made available to us, providing an opportunity to investigate serotype classification by machine learning methods, which could complement the Bayesian model. We compare the performance of the original Bayesian model with two machine learning algorithms: Gradient Boosting Machines and Random Forests. We present our results as an example of a generic strategy whereby a preliminary probabilistic model is complemented or replaced by a machine learning classifier once enough data are available. Despite the availability of thousands of serotyping arrays, a problem encountered when applying machine learning methods is the lack of training data containing mixtures of serotypes; due to the large number of possible combinations. Most of the available training data comprises samples with only a single serotype. To overcome the lack of training data we implemented an iterative analysis, creating artificial training data of serotype mixtures by combining raw data from single serotype arrays. With the enhanced training set the machine learning algorithms out perform the original Bayesian model. However, for serotypes currently lacking sufficient training data the best performing implementation was a combination of the results of the Bayesian Model and the Gradient Boosting Machine. As well as being an effective method for classifying biological data, machine learning can also be used as an efficient method for revealing subtle biological insights, which we illustrate with an example.

  16. Hierarchical Bayesian Modeling of Fluid-Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.

    2017-11-01

    In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.

  17. Fully Bayesian Estimation of Data from Single Case Designs

    ERIC Educational Resources Information Center

    Rindskopf, David

    2013-01-01

    Single case designs (SCDs) generally consist of a small number of short time series in two or more phases. The analysis of SCDs statistically fits in the framework of a multilevel model, or hierarchical model. The usual analysis does not take into account the uncertainty in the estimation of the random effects. This not only has an effect on the…

  18. Systemic antibiotics in the treatment of aggressive periodontitis. A systematic review and a Bayesian Network meta-analysis.

    PubMed

    Rabelo, Cleverton Correa; Feres, Magda; Gonçalves, Cristiane; Figueiredo, Luciene C; Faveri, Marcelo; Tu, Yu-Kang; Chambrone, Leandro

    2015-07-01

    The aim of this study was to assess the effect of systemic antibiotic therapy on the treatment of aggressive periodontitis (AgP). This study was conducted and reported in accordance with the PRISMA statement. The MEDLINE, EMBASE and CENTRAL databases were searched up to June 2014 for randomized clinical trials comparing the treatment of subjects with AgP with either scaling and root planing (SRP) alone or associated with systemic antibiotics. Bayesian network meta-analysis was prepared using the Bayesian random-effects hierarchical models and the outcomes reported at 6-month post-treatment. Out of 350 papers identified, 14 studies were eligible. Greater gain in clinical attachment (CA) (mean difference [MD]: 1.08 mm; p < 0.0001) and reduction in probing depth (PD) (MD: 1.05 mm; p < 0.00001) were observed for SRP + metronidazole (Mtz), and for SRP + Mtz + amoxicillin (Amx) (MD: 0.45 mm, MD: 0.53 mm, respectively; p < 0.00001) than SRP alone/placebo. Bayesian network meta-analysis showed additional benefits in CA gain and PD reduction when SRP was associated with systemic antibiotics. SRP plus systemic antibiotics led to an additional clinical effect compared with SRP alone in the treatment of AgP. Of the antibiotic protocols available for inclusion into the Bayesian network meta-analysis, Mtz and Mtz/Amx provided to the most beneficial outcomes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Revisiting crash spatial heterogeneity: A Bayesian spatially varying coefficients approach.

    PubMed

    Xu, Pengpeng; Huang, Helai; Dong, Ni; Wong, S C

    2017-01-01

    This study was performed to investigate the spatially varying relationships between crash frequency and related risk factors. A Bayesian spatially varying coefficients model was elaborately introduced as a methodological alternative to simultaneously account for the unstructured and spatially structured heterogeneity of the regression coefficients in predicting crash frequencies. The proposed method was appealing in that the parameters were modeled via a conditional autoregressive prior distribution, which involved a single set of random effects and a spatial correlation parameter with extreme values corresponding to pure unstructured or pure spatially correlated random effects. A case study using a three-year crash dataset from the Hillsborough County, Florida, was conducted to illustrate the proposed model. Empirical analysis confirmed the presence of both unstructured and spatially correlated variations in the effects of contributory factors on severe crash occurrences. The findings also suggested that ignoring spatially structured heterogeneity may result in biased parameter estimates and incorrect inferences, while assuming the regression coefficients to be spatially clustered only is probably subject to the issue of over-smoothness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Spatiotemporal hurdle models for zero-inflated count data: Exploring trends in emergency department visits.

    PubMed

    Neelon, Brian; Chang, Howard H; Ling, Qiang; Hastings, Nicole S

    2016-12-01

    Motivated by a study exploring spatiotemporal trends in emergency department use, we develop a class of two-part hurdle models for the analysis of zero-inflated areal count data. The models consist of two components-one for the probability of any emergency department use and one for the number of emergency department visits given use. Through a hierarchical structure, the models incorporate both patient- and region-level predictors, as well as spatially and temporally correlated random effects for each model component. The random effects are assigned multivariate conditionally autoregressive priors, which induce dependence between the components and provide spatial and temporal smoothing across adjacent spatial units and time periods, resulting in improved inferences. To accommodate potential overdispersion, we consider a range of parametric specifications for the positive counts, including truncated negative binomial and generalized Poisson distributions. We adopt a Bayesian inferential approach, and posterior computation is handled conveniently within standard Bayesian software. Our results indicate that the negative binomial and generalized Poisson hurdle models vastly outperform the Poisson hurdle model, demonstrating that overdispersed hurdle models provide a useful approach to analyzing zero-inflated spatiotemporal data. © The Author(s) 2014.

  1. Extensively Parameterized Mutation-Selection Models Reliably Capture Site-Specific Selective Constraint.

    PubMed

    Spielman, Stephanie J; Wilke, Claus O

    2016-11-01

    The mutation-selection model of coding sequence evolution has received renewed attention for its use in estimating site-specific amino acid propensities and selection coefficient distributions. Two computationally tractable mutation-selection inference frameworks have been introduced: One framework employs a fixed-effects, highly parameterized maximum likelihood approach, whereas the other employs a random-effects Bayesian Dirichlet Process approach. While both implementations follow the same model, they appear to make distinct predictions about the distribution of selection coefficients. The fixed-effects framework estimates a large proportion of highly deleterious substitutions, whereas the random-effects framework estimates that all substitutions are either nearly neutral or weakly deleterious. It remains unknown, however, how accurately each method infers evolutionary constraints at individual sites. Indeed, selection coefficient distributions pool all site-specific inferences, thereby obscuring a precise assessment of site-specific estimates. Therefore, in this study, we use a simulation-based strategy to determine how accurately each approach recapitulates the selective constraint at individual sites. We find that the fixed-effects approach, despite its extensive parameterization, consistently and accurately estimates site-specific evolutionary constraint. By contrast, the random-effects Bayesian approach systematically underestimates the strength of natural selection, particularly for slowly evolving sites. We also find that, despite the strong differences between their inferred selection coefficient distributions, the fixed- and random-effects approaches yield surprisingly similar inferences of site-specific selective constraint. We conclude that the fixed-effects mutation-selection framework provides the more reliable software platform for model application and future development. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Univariate and bivariate likelihood-based meta-analysis methods performed comparably when marginal sensitivity and specificity were the targets of inference.

    PubMed

    Dahabreh, Issa J; Trikalinos, Thomas A; Lau, Joseph; Schmid, Christopher H

    2017-03-01

    To compare statistical methods for meta-analysis of sensitivity and specificity of medical tests (e.g., diagnostic or screening tests). We constructed a database of PubMed-indexed meta-analyses of test performance from which 2 × 2 tables for each included study could be extracted. We reanalyzed the data using univariate and bivariate random effects models fit with inverse variance and maximum likelihood methods. Analyses were performed using both normal and binomial likelihoods to describe within-study variability. The bivariate model using the binomial likelihood was also fit using a fully Bayesian approach. We use two worked examples-thoracic computerized tomography to detect aortic injury and rapid prescreening of Papanicolaou smears to detect cytological abnormalities-to highlight that different meta-analysis approaches can produce different results. We also present results from reanalysis of 308 meta-analyses of sensitivity and specificity. Models using the normal approximation produced sensitivity and specificity estimates closer to 50% and smaller standard errors compared to models using the binomial likelihood; absolute differences of 5% or greater were observed in 12% and 5% of meta-analyses for sensitivity and specificity, respectively. Results from univariate and bivariate random effects models were similar, regardless of estimation method. Maximum likelihood and Bayesian methods produced almost identical summary estimates under the bivariate model; however, Bayesian analyses indicated greater uncertainty around those estimates. Bivariate models produced imprecise estimates of the between-study correlation of sensitivity and specificity. Differences between methods were larger with increasing proportion of studies that were small or required a continuity correction. The binomial likelihood should be used to model within-study variability. Univariate and bivariate models give similar estimates of the marginal distributions for sensitivity and specificity. Bayesian methods fully quantify uncertainty and their ability to incorporate external evidence may be useful for imprecisely estimated parameters. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A Bayesian random effects discrete-choice model for resource selection: Population-level selection inference

    USGS Publications Warehouse

    Thomas, D.L.; Johnson, D.; Griffith, B.

    2006-01-01

    Modeling the probability of use of land units characterized by discrete and continuous measures, we present a Bayesian random-effects model to assess resource selection. This model provides simultaneous estimation of both individual- and population-level selection. Deviance information criterion (DIC), a Bayesian alternative to AIC that is sample-size specific, is used for model selection. Aerial radiolocation data from 76 adult female caribou (Rangifer tarandus) and calf pairs during 1 year on an Arctic coastal plain calving ground were used to illustrate models and assess population-level selection of landscape attributes, as well as individual heterogeneity of selection. Landscape attributes included elevation, NDVI (a measure of forage greenness), and land cover-type classification. Results from the first of a 2-stage model-selection procedure indicated that there is substantial heterogeneity among cow-calf pairs with respect to selection of the landscape attributes. In the second stage, selection of models with heterogeneity included indicated that at the population-level, NDVI and land cover class were significant attributes for selection of different landscapes by pairs on the calving ground. Population-level selection coefficients indicate that the pairs generally select landscapes with higher levels of NDVI, but the relationship is quadratic. The highest rate of selection occurs at values of NDVI less than the maximum observed. Results for land cover-class selections coefficients indicate that wet sedge, moist sedge, herbaceous tussock tundra, and shrub tussock tundra are selected at approximately the same rate, while alpine and sparsely vegetated landscapes are selected at a lower rate. Furthermore, the variability in selection by individual caribou for moist sedge and sparsely vegetated landscapes is large relative to the variability in selection of other land cover types. The example analysis illustrates that, while sometimes computationally intense, a Bayesian hierarchical discrete-choice model for resource selection can provide managers with 2 components of population-level inference: average population selection and variability of selection. Both components are necessary to make sound management decisions based on animal selection.

  4. Application of Multiple Imputation for Missing Values in Three-Way Three-Mode Multi-Environment Trial Data

    PubMed Central

    Tian, Ting; McLachlan, Geoffrey J.; Dieters, Mark J.; Basford, Kaye E.

    2015-01-01

    It is a common occurrence in plant breeding programs to observe missing values in three-way three-mode multi-environment trial (MET) data. We proposed modifications of models for estimating missing observations for these data arrays, and developed a novel approach in terms of hierarchical clustering. Multiple imputation (MI) was used in four ways, multiple agglomerative hierarchical clustering, normal distribution model, normal regression model, and predictive mean match. The later three models used both Bayesian analysis and non-Bayesian analysis, while the first approach used a clustering procedure with randomly selected attributes and assigned real values from the nearest neighbour to the one with missing observations. Different proportions of data entries in six complete datasets were randomly selected to be missing and the MI methods were compared based on the efficiency and accuracy of estimating those values. The results indicated that the models using Bayesian analysis had slightly higher accuracy of estimation performance than those using non-Bayesian analysis but they were more time-consuming. However, the novel approach of multiple agglomerative hierarchical clustering demonstrated the overall best performances. PMID:26689369

  5. Application of Multiple Imputation for Missing Values in Three-Way Three-Mode Multi-Environment Trial Data.

    PubMed

    Tian, Ting; McLachlan, Geoffrey J; Dieters, Mark J; Basford, Kaye E

    2015-01-01

    It is a common occurrence in plant breeding programs to observe missing values in three-way three-mode multi-environment trial (MET) data. We proposed modifications of models for estimating missing observations for these data arrays, and developed a novel approach in terms of hierarchical clustering. Multiple imputation (MI) was used in four ways, multiple agglomerative hierarchical clustering, normal distribution model, normal regression model, and predictive mean match. The later three models used both Bayesian analysis and non-Bayesian analysis, while the first approach used a clustering procedure with randomly selected attributes and assigned real values from the nearest neighbour to the one with missing observations. Different proportions of data entries in six complete datasets were randomly selected to be missing and the MI methods were compared based on the efficiency and accuracy of estimating those values. The results indicated that the models using Bayesian analysis had slightly higher accuracy of estimation performance than those using non-Bayesian analysis but they were more time-consuming. However, the novel approach of multiple agglomerative hierarchical clustering demonstrated the overall best performances.

  6. Bayesian approach to non-Gaussian field statistics for diffusive broadband terahertz pulses.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2005-11-01

    We develop a closed-form expression for the probability distribution function for the field components of a diffusive broadband wave propagating through a random medium. We consider each spectral component to provide an individual observation of a random variable, the configurationally averaged spectral intensity. Since the intensity determines the variance of the field distribution at each frequency, this random variable serves as the Bayesian prior that determines the form of the non-Gaussian field statistics. This model agrees well with experimental results.

  7. Uncertainty analysis for effluent trading planning using a Bayesian estimation-based simulation-optimization modeling approach.

    PubMed

    Zhang, J L; Li, Y P; Huang, G H; Baetz, B W; Liu, J

    2017-06-01

    In this study, a Bayesian estimation-based simulation-optimization modeling approach (BESMA) is developed for identifying effluent trading strategies. BESMA incorporates nutrient fate modeling with soil and water assessment tool (SWAT), Bayesian estimation, and probabilistic-possibilistic interval programming with fuzzy random coefficients (PPI-FRC) within a general framework. Based on the water quality protocols provided by SWAT, posterior distributions of parameters can be analyzed through Bayesian estimation; stochastic characteristic of nutrient loading can be investigated which provides the inputs for the decision making. PPI-FRC can address multiple uncertainties in the form of intervals with fuzzy random boundaries and the associated system risk through incorporating the concept of possibility and necessity measures. The possibility and necessity measures are suitable for optimistic and pessimistic decision making, respectively. BESMA is applied to a real case of effluent trading planning in the Xiangxihe watershed, China. A number of decision alternatives can be obtained under different trading ratios and treatment rates. The results can not only facilitate identification of optimal effluent-trading schemes, but also gain insight into the effects of trading ratio and treatment rate on decision making. The results also reveal that decision maker's preference towards risk would affect decision alternatives on trading scheme as well as system benefit. Compared with the conventional optimization methods, it is proved that BESMA is advantageous in (i) dealing with multiple uncertainties associated with randomness and fuzziness in effluent-trading planning within a multi-source, multi-reach and multi-period context; (ii) reflecting uncertainties existing in nutrient transport behaviors to improve the accuracy in water quality prediction; and (iii) supporting pessimistic and optimistic decision making for effluent trading as well as promoting diversity of decision alternatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bayesian Analysis of the Association between Family-Level Factors and Siblings' Dental Caries.

    PubMed

    Wen, A; Weyant, R J; McNeil, D W; Crout, R J; Neiswanger, K; Marazita, M L; Foxman, B

    2017-07-01

    We conducted a Bayesian analysis of the association between family-level socioeconomic status and smoking and the prevalence of dental caries among siblings (children from infant to 14 y) among children living in rural and urban Northern Appalachia using data from the Center for Oral Health Research in Appalachia (COHRA). The observed proportion of siblings sharing caries was significantly different from predicted assuming siblings' caries status was independent. Using a Bayesian hierarchical model, we found the inclusion of a household factor significantly improved the goodness of fit. Other findings showed an inverse association between parental education and siblings' caries and a positive association between households with smokers and siblings' caries. Our study strengthens existing evidence suggesting that increased parental education and decreased parental cigarette smoking are associated with reduced childhood caries in the household. Our results also demonstrate the value of a Bayesian approach, which allows us to include household as a random effect, thereby providing more accurate estimates than obtained using generalized linear mixed models.

  9. Encoding dependence in Bayesian causal networks

    USDA-ARS?s Scientific Manuscript database

    Bayesian networks (BNs) represent complex, uncertain spatio-temporal dynamics by propagation of conditional probabilities between identifiable states with a testable causal interaction model. Typically, they assume random variables are discrete in time and space with a static network structure that ...

  10. Bayesian spatio-temporal discard model in a demersal trawl fishery

    NASA Astrophysics Data System (ADS)

    Grazia Pennino, M.; Muñoz, Facundo; Conesa, David; López-Quílez, Antonio; Bellido, José M.

    2014-07-01

    Spatial management of discards has recently been proposed as a useful tool for the protection of juveniles, by reducing discard rates and can be used as a buffer against management errors and recruitment failure. In this study Bayesian hierarchical spatial models have been used to analyze about 440 trawl fishing operations of two different metiers, sampled between 2009 and 2012, in order to improve our understanding of factors that influence the quantity of discards and to identify their spatio-temporal distribution in the study area. Our analysis showed that the relative importance of each variable was different for each metier, with a few similarities. In particular, the random vessel effect and seasonal variability were identified as main driving variables for both metiers. Predictive maps of the abundance of discards and maps of the posterior mean of the spatial component show several hot spots with high discard concentration for each metier. We argue how the seasonal/spatial effects, and the knowledge about the factors influential to discarding, could potentially be exploited as potential mitigation measures for future fisheries management strategies. However, misidentification of hotspots and uncertain predictions can culminate in inappropriate mitigation practices which can sometimes be irreversible. The proposed Bayesian spatial method overcomes these issues, since it offers a unified approach which allows the incorporation of spatial random-effect terms, spatial correlation of the variables and the uncertainty of the parameters in the modeling process, resulting in a better quantification of the uncertainty and accurate predictions.

  11. Bayesian dynamic modeling of time series of dengue disease case counts.

    PubMed

    Martínez-Bello, Daniel Adyro; López-Quílez, Antonio; Torres-Prieto, Alexander

    2017-07-01

    The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model's short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health.

  12. Using Bayesian Adaptive Trial Designs for Comparative Effectiveness Research: A Virtual Trial Execution.

    PubMed

    Luce, Bryan R; Connor, Jason T; Broglio, Kristine R; Mullins, C Daniel; Ishak, K Jack; Saunders, Elijah; Davis, Barry R

    2016-09-20

    Bayesian and adaptive clinical trial designs offer the potential for more efficient processes that result in lower sample sizes and shorter trial durations than traditional designs. To explore the use and potential benefits of Bayesian adaptive clinical trial designs in comparative effectiveness research. Virtual execution of ALLHAT (Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial) as if it had been done according to a Bayesian adaptive trial design. Comparative effectiveness trial of antihypertensive medications. Patient data sampled from the more than 42 000 patients enrolled in ALLHAT with publicly available data. Number of patients randomly assigned between groups, trial duration, observed numbers of events, and overall trial results and conclusions. The Bayesian adaptive approach and original design yielded similar overall trial conclusions. The Bayesian adaptive trial randomly assigned more patients to the better-performing group and would probably have ended slightly earlier. This virtual trial execution required limited resampling of ALLHAT patients for inclusion in RE-ADAPT (REsearch in ADAptive methods for Pragmatic Trials). Involvement of a data monitoring committee and other trial logistics were not considered. In a comparative effectiveness research trial, Bayesian adaptive trial designs are a feasible approach and potentially generate earlier results and allocate more patients to better-performing groups. National Heart, Lung, and Blood Institute.

  13. Bayesian network learning for natural hazard assessments

    NASA Astrophysics Data System (ADS)

    Vogel, Kristin

    2016-04-01

    Even though quite different in occurrence and consequences, from a modelling perspective many natural hazards share similar properties and challenges. Their complex nature as well as lacking knowledge about their driving forces and potential effects make their analysis demanding. On top of the uncertainty about the modelling framework, inaccurate or incomplete event observations and the intrinsic randomness of the natural phenomenon add up to different interacting layers of uncertainty, which require a careful handling. Thus, for reliable natural hazard assessments it is crucial not only to capture and quantify involved uncertainties, but also to express and communicate uncertainties in an intuitive way. Decision-makers, who often find it difficult to deal with uncertainties, might otherwise return to familiar (mostly deterministic) proceedings. In the scope of the DFG research training group „NatRiskChange" we apply the probabilistic framework of Bayesian networks for diverse natural hazard and vulnerability studies. The great potential of Bayesian networks was already shown in previous natural hazard assessments. Treating each model component as random variable, Bayesian networks aim at capturing the joint distribution of all considered variables. Hence, each conditional distribution of interest (e.g. the effect of precautionary measures on damage reduction) can be inferred. The (in-)dependencies between the considered variables can be learned purely data driven or be given by experts. Even a combination of both is possible. By translating the (in-)dependences into a graph structure, Bayesian networks provide direct insights into the workings of the system and allow to learn about the underlying processes. Besides numerous studies on the topic, learning Bayesian networks from real-world data remains challenging. In previous studies, e.g. on earthquake induced ground motion and flood damage assessments, we tackled the problems arising with continuous variables and incomplete observations. Further studies rise the challenge of relying on very small data sets. Since parameter estimates for complex models based on few observations are unreliable, it is necessary to focus on simplified, yet still meaningful models. A so called Markov Blanket approach is developed to identify the most relevant model components and to construct a simple Bayesian network based on those findings. Since the proceeding is completely data driven, it can easily be transferred to various applications in natural hazard domains. This study is funded by the Deutsche Forschungsgemeinschaft (DFG) within the research training programme GRK 2043/1 "NatRiskChange - Natural hazards and risks in a changing world" at Potsdam University.

  14. A Spatial Poisson Hurdle Model for Exploring Geographic Variation in Emergency Department Visits

    PubMed Central

    Neelon, Brian; Ghosh, Pulak; Loebs, Patrick F.

    2012-01-01

    Summary We develop a spatial Poisson hurdle model to explore geographic variation in emergency department (ED) visits while accounting for zero inflation. The model consists of two components: a Bernoulli component that models the probability of any ED use (i.e., at least one ED visit per year), and a truncated Poisson component that models the number of ED visits given use. Together, these components address both the abundance of zeros and the right-skewed nature of the nonzero counts. The model has a hierarchical structure that incorporates patient- and area-level covariates, as well as spatially correlated random effects for each areal unit. Because regions with high rates of ED use are likely to have high expected counts among users, we model the spatial random effects via a bivariate conditionally autoregressive (CAR) prior, which introduces dependence between the components and provides spatial smoothing and sharing of information across neighboring regions. Using a simulation study, we show that modeling the between-component correlation reduces bias in parameter estimates. We adopt a Bayesian estimation approach, and the model can be fit using standard Bayesian software. We apply the model to a study of patient and neighborhood factors influencing emergency department use in Durham County, North Carolina. PMID:23543242

  15. Trending in Probability of Collision Measurements via a Bayesian Zero-Inflated Beta Mixed Model

    NASA Technical Reports Server (NTRS)

    Vallejo, Jonathon; Hejduk, Matt; Stamey, James

    2015-01-01

    We investigate the performance of a generalized linear mixed model in predicting the Probabilities of Collision (Pc) for conjunction events. Specifically, we apply this model to the log(sub 10) transformation of these probabilities and argue that this transformation yields values that can be considered bounded in practice. Additionally, this bounded random variable, after scaling, is zero-inflated. Consequently, we model these values using the zero-inflated Beta distribution, and utilize the Bayesian paradigm and the mixed model framework to borrow information from past and current events. This provides a natural way to model the data and provides a basis for answering questions of interest, such as what is the likelihood of observing a probability of collision equal to the effective value of zero on a subsequent observation.

  16. Understanding Past Population Dynamics: Bayesian Coalescent-Based Modeling with Covariates

    PubMed Central

    Gill, Mandev S.; Lemey, Philippe; Bennett, Shannon N.; Biek, Roman; Suchard, Marc A.

    2016-01-01

    Effective population size characterizes the genetic variability in a population and is a parameter of paramount importance in population genetics and evolutionary biology. Kingman’s coalescent process enables inference of past population dynamics directly from molecular sequence data, and researchers have developed a number of flexible coalescent-based models for Bayesian nonparametric estimation of the effective population size as a function of time. Major goals of demographic reconstruction include identifying driving factors of effective population size, and understanding the association between the effective population size and such factors. Building upon Bayesian nonparametric coalescent-based approaches, we introduce a flexible framework that incorporates time-varying covariates that exploit Gaussian Markov random fields to achieve temporal smoothing of effective population size trajectories. To approximate the posterior distribution, we adapt efficient Markov chain Monte Carlo algorithms designed for highly structured Gaussian models. Incorporating covariates into the demographic inference framework enables the modeling of associations between the effective population size and covariates while accounting for uncertainty in population histories. Furthermore, it can lead to more precise estimates of population dynamics. We apply our model to four examples. We reconstruct the demographic history of raccoon rabies in North America and find a significant association with the spatiotemporal spread of the outbreak. Next, we examine the effective population size trajectory of the DENV-4 virus in Puerto Rico along with viral isolate count data and find similar cyclic patterns. We compare the population history of the HIV-1 CRF02_AG clade in Cameroon with HIV incidence and prevalence data and find that the effective population size is more reflective of incidence rate. Finally, we explore the hypothesis that the population dynamics of musk ox during the Late Quaternary period were related to climate change. [Coalescent; effective population size; Gaussian Markov random fields; phylodynamics; phylogenetics; population genetics. PMID:27368344

  17. Bayesian model selection techniques as decision support for shaping a statistical analysis plan of a clinical trial: An example from a vertigo phase III study with longitudinal count data as primary endpoint

    PubMed Central

    2012-01-01

    Background A statistical analysis plan (SAP) is a critical link between how a clinical trial is conducted and the clinical study report. To secure objective study results, regulatory bodies expect that the SAP will meet requirements in pre-specifying inferential analyses and other important statistical techniques. To write a good SAP for model-based sensitivity and ancillary analyses involves non-trivial decisions on and justification of many aspects of the chosen setting. In particular, trials with longitudinal count data as primary endpoints pose challenges for model choice and model validation. In the random effects setting, frequentist strategies for model assessment and model diagnosis are complex and not easily implemented and have several limitations. Therefore, it is of interest to explore Bayesian alternatives which provide the needed decision support to finalize a SAP. Methods We focus on generalized linear mixed models (GLMMs) for the analysis of longitudinal count data. A series of distributions with over- and under-dispersion is considered. Additionally, the structure of the variance components is modified. We perform a simulation study to investigate the discriminatory power of Bayesian tools for model criticism in different scenarios derived from the model setting. We apply the findings to the data from an open clinical trial on vertigo attacks. These data are seen as pilot data for an ongoing phase III trial. To fit GLMMs we use a novel Bayesian computational approach based on integrated nested Laplace approximations (INLAs). The INLA methodology enables the direct computation of leave-one-out predictive distributions. These distributions are crucial for Bayesian model assessment. We evaluate competing GLMMs for longitudinal count data according to the deviance information criterion (DIC) or probability integral transform (PIT), and by using proper scoring rules (e.g. the logarithmic score). Results The instruments under study provide excellent tools for preparing decisions within the SAP in a transparent way when structuring the primary analysis, sensitivity or ancillary analyses, and specific analyses for secondary endpoints. The mean logarithmic score and DIC discriminate well between different model scenarios. It becomes obvious that the naive choice of a conventional random effects Poisson model is often inappropriate for real-life count data. The findings are used to specify an appropriate mixed model employed in the sensitivity analyses of an ongoing phase III trial. Conclusions The proposed Bayesian methods are not only appealing for inference but notably provide a sophisticated insight into different aspects of model performance, such as forecast verification or calibration checks, and can be applied within the model selection process. The mean of the logarithmic score is a robust tool for model ranking and is not sensitive to sample size. Therefore, these Bayesian model selection techniques offer helpful decision support for shaping sensitivity and ancillary analyses in a statistical analysis plan of a clinical trial with longitudinal count data as the primary endpoint. PMID:22962944

  18. Bayesian model selection techniques as decision support for shaping a statistical analysis plan of a clinical trial: an example from a vertigo phase III study with longitudinal count data as primary endpoint.

    PubMed

    Adrion, Christine; Mansmann, Ulrich

    2012-09-10

    A statistical analysis plan (SAP) is a critical link between how a clinical trial is conducted and the clinical study report. To secure objective study results, regulatory bodies expect that the SAP will meet requirements in pre-specifying inferential analyses and other important statistical techniques. To write a good SAP for model-based sensitivity and ancillary analyses involves non-trivial decisions on and justification of many aspects of the chosen setting. In particular, trials with longitudinal count data as primary endpoints pose challenges for model choice and model validation. In the random effects setting, frequentist strategies for model assessment and model diagnosis are complex and not easily implemented and have several limitations. Therefore, it is of interest to explore Bayesian alternatives which provide the needed decision support to finalize a SAP. We focus on generalized linear mixed models (GLMMs) for the analysis of longitudinal count data. A series of distributions with over- and under-dispersion is considered. Additionally, the structure of the variance components is modified. We perform a simulation study to investigate the discriminatory power of Bayesian tools for model criticism in different scenarios derived from the model setting. We apply the findings to the data from an open clinical trial on vertigo attacks. These data are seen as pilot data for an ongoing phase III trial. To fit GLMMs we use a novel Bayesian computational approach based on integrated nested Laplace approximations (INLAs). The INLA methodology enables the direct computation of leave-one-out predictive distributions. These distributions are crucial for Bayesian model assessment. We evaluate competing GLMMs for longitudinal count data according to the deviance information criterion (DIC) or probability integral transform (PIT), and by using proper scoring rules (e.g. the logarithmic score). The instruments under study provide excellent tools for preparing decisions within the SAP in a transparent way when structuring the primary analysis, sensitivity or ancillary analyses, and specific analyses for secondary endpoints. The mean logarithmic score and DIC discriminate well between different model scenarios. It becomes obvious that the naive choice of a conventional random effects Poisson model is often inappropriate for real-life count data. The findings are used to specify an appropriate mixed model employed in the sensitivity analyses of an ongoing phase III trial. The proposed Bayesian methods are not only appealing for inference but notably provide a sophisticated insight into different aspects of model performance, such as forecast verification or calibration checks, and can be applied within the model selection process. The mean of the logarithmic score is a robust tool for model ranking and is not sensitive to sample size. Therefore, these Bayesian model selection techniques offer helpful decision support for shaping sensitivity and ancillary analyses in a statistical analysis plan of a clinical trial with longitudinal count data as the primary endpoint.

  19. A flexible Bayesian hierarchical model of preterm birth risk among US Hispanic subgroups in relation to maternal nativity and education

    PubMed Central

    2011-01-01

    Background Previous research has documented heterogeneity in the effects of maternal education on adverse birth outcomes by nativity and Hispanic subgroup in the United States. In this article, we considered the risk of preterm birth (PTB) using 9 years of vital statistics birth data from New York City. We employed finer categorizations of exposure than used previously and estimated the risk dose-response across the range of education by nativity and ethnicity. Methods Using Bayesian random effects logistic regression models with restricted quadratic spline terms for years of completed maternal education, we calculated and plotted the estimated posterior probabilities of PTB (gestational age < 37 weeks) for each year of education by ethnic and nativity subgroups adjusted for only maternal age, as well as with more extensive covariate adjustments. We then estimated the posterior risk difference between native and foreign born mothers by ethnicity over the continuous range of education exposures. Results The risk of PTB varied substantially by education, nativity and ethnicity. Native born groups showed higher absolute risk of PTB and declining risk associated with higher levels of education beyond about 10 years, as did foreign-born Puerto Ricans. For most other foreign born groups, however, risk of PTB was flatter across the education range. For Mexicans, Central Americans, Dominicans, South Americans and "Others", the protective effect of foreign birth diminished progressively across the educational range. Only for Puerto Ricans was there no nativity advantage for the foreign born, although small numbers of foreign born Cubans limited precision of estimates for that group. Conclusions Using flexible Bayesian regression models with random effects allowed us to estimate absolute risks without strong modeling assumptions. Risk comparisons for any sub-groups at any exposure level were simple to calculate. Shrinkage of posterior estimates through the use of random effects allowed for finer categorization of exposures without restricting joint effects to follow a fixed parametric scale. Although foreign born Hispanic women with the least education appeared to generally have low risk, this seems likely to be a marker for unmeasured environmental and behavioral factors, rather than a causally protective effect of low education itself. PMID:21504612

  20. A flexible Bayesian hierarchical model of preterm birth risk among US Hispanic subgroups in relation to maternal nativity and education.

    PubMed

    Kaufman, Jay S; MacLehose, Richard F; Torrone, Elizabeth A; Savitz, David A

    2011-04-19

    Previous research has documented heterogeneity in the effects of maternal education on adverse birth outcomes by nativity and Hispanic subgroup in the United States. In this article, we considered the risk of preterm birth (PTB) using 9 years of vital statistics birth data from New York City. We employed finer categorizations of exposure than used previously and estimated the risk dose-response across the range of education by nativity and ethnicity. Using Bayesian random effects logistic regression models with restricted quadratic spline terms for years of completed maternal education, we calculated and plotted the estimated posterior probabilities of PTB (gestational age < 37 weeks) for each year of education by ethnic and nativity subgroups adjusted for only maternal age, as well as with more extensive covariate adjustments. We then estimated the posterior risk difference between native and foreign born mothers by ethnicity over the continuous range of education exposures. The risk of PTB varied substantially by education, nativity and ethnicity. Native born groups showed higher absolute risk of PTB and declining risk associated with higher levels of education beyond about 10 years, as did foreign-born Puerto Ricans. For most other foreign born groups, however, risk of PTB was flatter across the education range. For Mexicans, Central Americans, Dominicans, South Americans and "Others", the protective effect of foreign birth diminished progressively across the educational range. Only for Puerto Ricans was there no nativity advantage for the foreign born, although small numbers of foreign born Cubans limited precision of estimates for that group. Using flexible Bayesian regression models with random effects allowed us to estimate absolute risks without strong modeling assumptions. Risk comparisons for any sub-groups at any exposure level were simple to calculate. Shrinkage of posterior estimates through the use of random effects allowed for finer categorization of exposures without restricting joint effects to follow a fixed parametric scale. Although foreign born Hispanic women with the least education appeared to generally have low risk, this seems likely to be a marker for unmeasured environmental and behavioral factors, rather than a causally protective effect of low education itself.

  1. Fully Bayesian inference for structural MRI: application to segmentation and statistical analysis of T2-hypointensities.

    PubMed

    Schmidt, Paul; Schmid, Volker J; Gaser, Christian; Buck, Dorothea; Bührlen, Susanne; Förschler, Annette; Mühlau, Mark

    2013-01-01

    Aiming at iron-related T2-hypointensity, which is related to normal aging and neurodegenerative processes, we here present two practicable approaches, based on Bayesian inference, for preprocessing and statistical analysis of a complex set of structural MRI data. In particular, Markov Chain Monte Carlo methods were used to simulate posterior distributions. First, we rendered a segmentation algorithm that uses outlier detection based on model checking techniques within a Bayesian mixture model. Second, we rendered an analytical tool comprising a Bayesian regression model with smoothness priors (in the form of Gaussian Markov random fields) mitigating the necessity to smooth data prior to statistical analysis. For validation, we used simulated data and MRI data of 27 healthy controls (age: [Formula: see text]; range, [Formula: see text]). We first observed robust segmentation of both simulated T2-hypointensities and gray-matter regions known to be T2-hypointense. Second, simulated data and images of segmented T2-hypointensity were analyzed. We found not only robust identification of simulated effects but also a biologically plausible age-related increase of T2-hypointensity primarily within the dentate nucleus but also within the globus pallidus, substantia nigra, and red nucleus. Our results indicate that fully Bayesian inference can successfully be applied for preprocessing and statistical analysis of structural MRI data.

  2. Bayesian B-spline mapping for dynamic quantitative traits.

    PubMed

    Xing, Jun; Li, Jiahan; Yang, Runqing; Zhou, Xiaojing; Xu, Shizhong

    2012-04-01

    Owing to their ability and flexibility to describe individual gene expression at different time points, random regression (RR) analyses have become a popular procedure for the genetic analysis of dynamic traits whose phenotypes are collected over time. Specifically, when modelling the dynamic patterns of gene expressions in the RR framework, B-splines have been proved successful as an alternative to orthogonal polynomials. In the so-called Bayesian B-spline quantitative trait locus (QTL) mapping, B-splines are used to characterize the patterns of QTL effects and individual-specific time-dependent environmental errors over time, and the Bayesian shrinkage estimation method is employed to estimate model parameters. Extensive simulations demonstrate that (1) in terms of statistical power, Bayesian B-spline mapping outperforms the interval mapping based on the maximum likelihood; (2) for the simulated dataset with complicated growth curve simulated by B-splines, Legendre polynomial-based Bayesian mapping is not capable of identifying the designed QTLs accurately, even when higher-order Legendre polynomials are considered and (3) for the simulated dataset using Legendre polynomials, the Bayesian B-spline mapping can find the same QTLs as those identified by Legendre polynomial analysis. All simulation results support the necessity and flexibility of B-spline in Bayesian mapping of dynamic traits. The proposed method is also applied to a real dataset, where QTLs controlling the growth trajectory of stem diameters in Populus are located.

  3. Bayesian analysis of zero inflated spatiotemporal HIV/TB child mortality data through the INLA and SPDE approaches: Applied to data observed between 1992 and 2010 in rural North East South Africa

    NASA Astrophysics Data System (ADS)

    Musenge, Eustasius; Chirwa, Tobias Freeman; Kahn, Kathleen; Vounatsou, Penelope

    2013-06-01

    Longitudinal mortality data with few deaths usually have problems of zero-inflation. This paper presents and applies two Bayesian models which cater for zero-inflation, spatial and temporal random effects. To reduce the computational burden experienced when a large number of geo-locations are treated as a Gaussian field (GF) we transformed the field to a Gaussian Markov Random Fields (GMRF) by triangulation. We then modelled the spatial random effects using the Stochastic Partial Differential Equations (SPDEs). Inference was done using a computationally efficient alternative to Markov chain Monte Carlo (MCMC) called Integrated Nested Laplace Approximation (INLA) suited for GMRF. The models were applied to data from 71,057 children aged 0 to under 10 years from rural north-east South Africa living in 15,703 households over the years 1992-2010. We found protective effects on HIV/TB mortality due to greater birth weight, older age and more antenatal clinic visits during pregnancy (adjusted RR (95% CI)): 0.73(0.53;0.99), 0.18(0.14;0.22) and 0.96(0.94;0.97) respectively. Therefore childhood HIV/TB mortality could be reduced if mothers are better catered for during pregnancy as this can reduce mother-to-child transmissions and contribute to improved birth weights. The INLA and SPDE approaches are computationally good alternatives in modelling large multilevel spatiotemporal GMRF data structures.

  4. Bayesian methods for characterizing unknown parameters of material models

    DOE PAGES

    Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.

    2016-02-04

    A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less

  5. Bayesian methods for characterizing unknown parameters of material models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.

    A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less

  6. A Gaussian random field model for similarity-based smoothing in Bayesian disease mapping.

    PubMed

    Baptista, Helena; Mendes, Jorge M; MacNab, Ying C; Xavier, Miguel; Caldas-de-Almeida, José

    2016-08-01

    Conditionally specified Gaussian Markov random field (GMRF) models with adjacency-based neighbourhood weight matrix, commonly known as neighbourhood-based GMRF models, have been the mainstream approach to spatial smoothing in Bayesian disease mapping. In the present paper, we propose a conditionally specified Gaussian random field (GRF) model with a similarity-based non-spatial weight matrix to facilitate non-spatial smoothing in Bayesian disease mapping. The model, named similarity-based GRF, is motivated for modelling disease mapping data in situations where the underlying small area relative risks and the associated determinant factors do not vary systematically in space, and the similarity is defined by "similarity" with respect to the associated disease determinant factors. The neighbourhood-based GMRF and the similarity-based GRF are compared and accessed via a simulation study and by two case studies, using new data on alcohol abuse in Portugal collected by the World Mental Health Survey Initiative and the well-known lip cancer data in Scotland. In the presence of disease data with no evidence of positive spatial correlation, the simulation study showed a consistent gain in efficiency from the similarity-based GRF, compared with the adjacency-based GMRF with the determinant risk factors as covariate. This new approach broadens the scope of the existing conditional autocorrelation models. © The Author(s) 2016.

  7. Modeling SF-6D Hong Kong standard gamble health state preference data using a nonparametric Bayesian method.

    PubMed

    Kharroubi, Samer A; Brazier, John E; McGhee, Sarah

    2013-01-01

    This article reports on the findings from applying a recently described approach to modeling health state valuation data and the impact of the respondent characteristics on health state valuations. The approach applies a nonparametric model to estimate a Bayesian six-dimensional health state short form (derived from short-form 36 health survey) health state valuation algorithm. A sample of 197 states defined by the six-dimensional health state short form (derived from short-form 36 health survey)has been valued by a representative sample of the Hong Kong general population by using standard gamble. The article reports the application of the nonparametric model and compares it to the original model estimated by using a conventional parametric random effects model. The two models are compared theoretically and in terms of empirical performance. Advantages of the nonparametric model are that it can be used to predict scores in populations with different distributions of characteristics than observed in the survey sample and that it allows for the impact of respondent characteristics to vary by health state (while ensuring that full health passes through unity). The results suggest an important age effect with sex, having some effect, but the remaining covariates having no discernible effect. The nonparametric Bayesian model is argued to be more theoretically appropriate than previously used parametric models. Furthermore, it is more flexible to take into account the impact of covariates. Copyright © 2013, International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc.

  8. Bayesian Nonparametric Prediction and Statistical Inference

    DTIC Science & Technology

    1989-09-07

    Kadane, J. (1980), "Bayesian decision theory and the sim- plification of models," in Evaluation of Econometric Models, J. Kmenta and J. Ramsey , eds...the random model and weighted least squares regression," in Evaluation of Econometric Models, ed. by J. Kmenta and J. Ramsey , Academic Press, 197-217...likelihood function. On the other hand, H. Jeffreys’s theory of hypothesis testing covers the most important situations in which the prior is not diffuse. See

  9. Cure fraction model with random effects for regional variation in cancer survival.

    PubMed

    Seppä, Karri; Hakulinen, Timo; Kim, Hyon-Jung; Läärä, Esa

    2010-11-30

    Assessing regional differences in the survival of cancer patients is important but difficult when separate regions are small or sparsely populated. In this paper, we apply a mixture cure fraction model with random effects to cause-specific survival data of female breast cancer patients collected by the population-based Finnish Cancer Registry. Two sets of random effects were used to capture the regional variation in the cure fraction and in the survival of the non-cured patients, respectively. This hierarchical model was implemented in a Bayesian framework using a Metropolis-within-Gibbs algorithm. To avoid poor mixing of the Markov chain, when the variance of either set of random effects was close to zero, posterior simulations were based on a parameter-expanded model with tailor-made proposal distributions in Metropolis steps. The random effects allowed the fitting of the cure fraction model to the sparse regional data and the estimation of the regional variation in 10-year cause-specific breast cancer survival with a parsimonious number of parameters. Before 1986, the capital of Finland clearly stood out from the rest, but since then all the 21 hospital districts have achieved approximately the same level of survival. Copyright © 2010 John Wiley & Sons, Ltd.

  10. Ensemble Bayesian forecasting system Part I: Theory and algorithms

    NASA Astrophysics Data System (ADS)

    Herr, Henry D.; Krzysztofowicz, Roman

    2015-05-01

    The ensemble Bayesian forecasting system (EBFS), whose theory was published in 2001, is developed for the purpose of quantifying the total uncertainty about a discrete-time, continuous-state, non-stationary stochastic process such as a time series of stages, discharges, or volumes at a river gauge. The EBFS is built of three components: an input ensemble forecaster (IEF), which simulates the uncertainty associated with random inputs; a deterministic hydrologic model (of any complexity), which simulates physical processes within a river basin; and a hydrologic uncertainty processor (HUP), which simulates the hydrologic uncertainty (an aggregate of all uncertainties except input). It works as a Monte Carlo simulator: an ensemble of time series of inputs (e.g., precipitation amounts) generated by the IEF is transformed deterministically through a hydrologic model into an ensemble of time series of outputs, which is next transformed stochastically by the HUP into an ensemble of time series of predictands (e.g., river stages). Previous research indicated that in order to attain an acceptable sampling error, the ensemble size must be on the order of hundreds (for probabilistic river stage forecasts and probabilistic flood forecasts) or even thousands (for probabilistic stage transition forecasts). The computing time needed to run the hydrologic model this many times renders the straightforward simulations operationally infeasible. This motivates the development of the ensemble Bayesian forecasting system with randomization (EBFSR), which takes full advantage of the analytic meta-Gaussian HUP and generates multiple ensemble members after each run of the hydrologic model; this auxiliary randomization reduces the required size of the meteorological input ensemble and makes it operationally feasible to generate a Bayesian ensemble forecast of large size. Such a forecast quantifies the total uncertainty, is well calibrated against the prior (climatic) distribution of predictand, possesses a Bayesian coherence property, constitutes a random sample of the predictand, and has an acceptable sampling error-which makes it suitable for rational decision making under uncertainty.

  11. Model selection for logistic regression models

    NASA Astrophysics Data System (ADS)

    Duller, Christine

    2012-09-01

    Model selection for logistic regression models decides which of some given potential regressors have an effect and hence should be included in the final model. The second interesting question is whether a certain factor is heterogeneous among some subsets, i.e. whether the model should include a random intercept or not. In this paper these questions will be answered with classical as well as with Bayesian methods. The application show some results of recent research projects in medicine and business administration.

  12. A Bayesian pick-the-winner design in a randomized phase II clinical trial.

    PubMed

    Chen, Dung-Tsa; Huang, Po-Yu; Lin, Hui-Yi; Chiappori, Alberto A; Gabrilovich, Dmitry I; Haura, Eric B; Antonia, Scott J; Gray, Jhanelle E

    2017-10-24

    Many phase II clinical trials evaluate unique experimental drugs/combinations through multi-arm design to expedite the screening process (early termination of ineffective drugs) and to identify the most effective drug (pick the winner) to warrant a phase III trial. Various statistical approaches have been developed for the pick-the-winner design but have been criticized for lack of objective comparison among the drug agents. We developed a Bayesian pick-the-winner design by integrating a Bayesian posterior probability with Simon two-stage design in a randomized two-arm clinical trial. The Bayesian posterior probability, as the rule to pick the winner, is defined as probability of the response rate in one arm higher than in the other arm. The posterior probability aims to determine the winner when both arms pass the second stage of the Simon two-stage design. When both arms are competitive (i.e., both passing the second stage), the Bayesian posterior probability performs better to correctly identify the winner compared with the Fisher exact test in the simulation study. In comparison to a standard two-arm randomized design, the Bayesian pick-the-winner design has a higher power to determine a clear winner. In application to two studies, the approach is able to perform statistical comparison of two treatment arms and provides a winner probability (Bayesian posterior probability) to statistically justify the winning arm. We developed an integrated design that utilizes Bayesian posterior probability, Simon two-stage design, and randomization into a unique setting. It gives objective comparisons between the arms to determine the winner.

  13. A Bayesian Nonparametric Causal Model for Regression Discontinuity Designs

    ERIC Educational Resources Information Center

    Karabatsos, George; Walker, Stephen G.

    2013-01-01

    The regression discontinuity (RD) design (Thistlewaite & Campbell, 1960; Cook, 2008) provides a framework to identify and estimate causal effects from a non-randomized design. Each subject of a RD design is assigned to the treatment (versus assignment to a non-treatment) whenever her/his observed value of the assignment variable equals or…

  14. Methods for identifying SNP interactions: a review on variations of Logic Regression, Random Forest and Bayesian logistic regression.

    PubMed

    Chen, Carla Chia-Ming; Schwender, Holger; Keith, Jonathan; Nunkesser, Robin; Mengersen, Kerrie; Macrossan, Paula

    2011-01-01

    Due to advancements in computational ability, enhanced technology and a reduction in the price of genotyping, more data are being generated for understanding genetic associations with diseases and disorders. However, with the availability of large data sets comes the inherent challenges of new methods of statistical analysis and modeling. Considering a complex phenotype may be the effect of a combination of multiple loci, various statistical methods have been developed for identifying genetic epistasis effects. Among these methods, logic regression (LR) is an intriguing approach incorporating tree-like structures. Various methods have built on the original LR to improve different aspects of the model. In this study, we review four variations of LR, namely Logic Feature Selection, Monte Carlo Logic Regression, Genetic Programming for Association Studies, and Modified Logic Regression-Gene Expression Programming, and investigate the performance of each method using simulated and real genotype data. We contrast these with another tree-like approach, namely Random Forests, and a Bayesian logistic regression with stochastic search variable selection.

  15. A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation.

    PubMed

    Karabatsos, George

    2017-02-01

    Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected functionals and values of covariates. The software is illustrated through the BNP regression analysis of real data.

  16. Estimating Tree Height-Diameter Models with the Bayesian Method

    PubMed Central

    Duan, Aiguo; Zhang, Jianguo; Xiang, Congwei

    2014-01-01

    Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the “best” model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2. PMID:24711733

  17. Estimating tree height-diameter models with the Bayesian method.

    PubMed

    Zhang, Xiongqing; Duan, Aiguo; Zhang, Jianguo; Xiang, Congwei

    2014-01-01

    Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the "best" model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2.

  18. Socio-ecological factors and hand, foot and mouth disease in dry climate regions: a Bayesian spatial approach in Gansu, China

    NASA Astrophysics Data System (ADS)

    Gou, Faxiang; Liu, Xinfeng; Ren, Xiaowei; Liu, Dongpeng; Liu, Haixia; Wei, Kongfu; Yang, Xiaoting; Cheng, Yao; Zheng, Yunhe; Jiang, Xiaojuan; Li, Juansheng; Meng, Lei; Hu, Wenbiao

    2017-01-01

    The influence of socio-ecological factors on hand, foot and mouth disease (HFMD) were explored in this study using Bayesian spatial modeling and spatial patterns identified in dry regions of Gansu, China. Notified HFMD cases and socio-ecological data were obtained from the China Information System for Disease Control and Prevention, Gansu Yearbook and Gansu Meteorological Bureau. A Bayesian spatial conditional autoregressive model was used to quantify the effects of socio-ecological factors on the HFMD and explore spatial patterns, with the consideration of its socio-ecological effects. Our non-spatial model suggests temperature (relative risk (RR) 1.15, 95 % CI 1.01-1.31), GDP per capita (RR 1.19, 95 % CI 1.01-1.39) and population density (RR 1.98, 95 % CI 1.19-3.17) to have a significant effect on HFMD transmission. However, after controlling for spatial random effects, only temperature (RR 1.25, 95 % CI 1.04-1.53) showed significant association with HFMD. The spatial model demonstrates temperature to play a major role in the transmission of HFMD in dry regions. Estimated residual variation after taking into account the socio-ecological variables indicated that high incidences of HFMD were mainly clustered in the northwest of Gansu. And, spatial structure showed a unique distribution after taking account of socio-ecological effects.

  19. Multi-level Bayesian safety analysis with unprocessed Automatic Vehicle Identification data for an urban expressway.

    PubMed

    Shi, Qi; Abdel-Aty, Mohamed; Yu, Rongjie

    2016-03-01

    In traffic safety studies, crash frequency modeling of total crashes is the cornerstone before proceeding to more detailed safety evaluation. The relationship between crash occurrence and factors such as traffic flow and roadway geometric characteristics has been extensively explored for a better understanding of crash mechanisms. In this study, a multi-level Bayesian framework has been developed in an effort to identify the crash contributing factors on an urban expressway in the Central Florida area. Two types of traffic data from the Automatic Vehicle Identification system, which are the processed data capped at speed limit and the unprocessed data retaining the original speed were incorporated in the analysis along with road geometric information. The model framework was proposed to account for the hierarchical data structure and the heterogeneity among the traffic and roadway geometric data. Multi-level and random parameters models were constructed and compared with the Negative Binomial model under the Bayesian inference framework. Results showed that the unprocessed traffic data was superior. Both multi-level models and random parameters models outperformed the Negative Binomial model and the models with random parameters achieved the best model fitting. The contributing factors identified imply that on the urban expressway lower speed and higher speed variation could significantly increase the crash likelihood. Other geometric factors were significant including auxiliary lanes and horizontal curvature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A random effects meta-analysis model with Box-Cox transformation.

    PubMed

    Yamaguchi, Yusuke; Maruo, Kazushi; Partlett, Christopher; Riley, Richard D

    2017-07-19

    In a random effects meta-analysis model, true treatment effects for each study are routinely assumed to follow a normal distribution. However, normality is a restrictive assumption and the misspecification of the random effects distribution may result in a misleading estimate of overall mean for the treatment effect, an inappropriate quantification of heterogeneity across studies and a wrongly symmetric prediction interval. We focus on problems caused by an inappropriate normality assumption of the random effects distribution, and propose a novel random effects meta-analysis model where a Box-Cox transformation is applied to the observed treatment effect estimates. The proposed model aims to normalise an overall distribution of observed treatment effect estimates, which is sum of the within-study sampling distributions and the random effects distribution. When sampling distributions are approximately normal, non-normality in the overall distribution will be mainly due to the random effects distribution, especially when the between-study variation is large relative to the within-study variation. The Box-Cox transformation addresses this flexibly according to the observed departure from normality. We use a Bayesian approach for estimating parameters in the proposed model, and suggest summarising the meta-analysis results by an overall median, an interquartile range and a prediction interval. The model can be applied for any kind of variables once the treatment effect estimate is defined from the variable. A simulation study suggested that when the overall distribution of treatment effect estimates are skewed, the overall mean and conventional I 2 from the normal random effects model could be inappropriate summaries, and the proposed model helped reduce this issue. We illustrated the proposed model using two examples, which revealed some important differences on summary results, heterogeneity measures and prediction intervals from the normal random effects model. The random effects meta-analysis with the Box-Cox transformation may be an important tool for examining robustness of traditional meta-analysis results against skewness on the observed treatment effect estimates. Further critical evaluation of the method is needed.

  1. Parameter estimation of multivariate multiple regression model using bayesian with non-informative Jeffreys’ prior distribution

    NASA Astrophysics Data System (ADS)

    Saputro, D. R. S.; Amalia, F.; Widyaningsih, P.; Affan, R. C.

    2018-05-01

    Bayesian method is a method that can be used to estimate the parameters of multivariate multiple regression model. Bayesian method has two distributions, there are prior and posterior distributions. Posterior distribution is influenced by the selection of prior distribution. Jeffreys’ prior distribution is a kind of Non-informative prior distribution. This prior is used when the information about parameter not available. Non-informative Jeffreys’ prior distribution is combined with the sample information resulting the posterior distribution. Posterior distribution is used to estimate the parameter. The purposes of this research is to estimate the parameters of multivariate regression model using Bayesian method with Non-informative Jeffreys’ prior distribution. Based on the results and discussion, parameter estimation of β and Σ which were obtained from expected value of random variable of marginal posterior distribution function. The marginal posterior distributions for β and Σ are multivariate normal and inverse Wishart. However, in calculation of the expected value involving integral of a function which difficult to determine the value. Therefore, approach is needed by generating of random samples according to the posterior distribution characteristics of each parameter using Markov chain Monte Carlo (MCMC) Gibbs sampling algorithm.

  2. PFIM 4.0, an extended R program for design evaluation and optimization in nonlinear mixed-effect models.

    PubMed

    Dumont, Cyrielle; Lestini, Giulia; Le Nagard, Hervé; Mentré, France; Comets, Emmanuelle; Nguyen, Thu Thuy; Group, For The Pfim

    2018-03-01

    Nonlinear mixed-effect models (NLMEMs) are increasingly used for the analysis of longitudinal studies during drug development. When designing these studies, the expected Fisher information matrix (FIM) can be used instead of performing time-consuming clinical trial simulations. The function PFIM is the first tool for design evaluation and optimization that has been developed in R. In this article, we present an extended version, PFIM 4.0, which includes several new features. Compared with version 3.0, PFIM 4.0 includes a more complete pharmacokinetic/pharmacodynamic library of models and accommodates models including additional random effects for inter-occasion variability as well as discrete covariates. A new input method has been added to specify user-defined models through an R function. Optimization can be performed assuming some fixed parameters or some fixed sampling times. New outputs have been added regarding the FIM such as eigenvalues, conditional numbers, and the option of saving the matrix obtained after evaluation or optimization. Previously obtained results, which are summarized in a FIM, can be taken into account in evaluation or optimization of one-group protocols. This feature enables the use of PFIM for adaptive designs. The Bayesian individual FIM has been implemented, taking into account a priori distribution of random effects. Designs for maximum a posteriori Bayesian estimation of individual parameters can now be evaluated or optimized and the predicted shrinkage is also reported. It is also possible to visualize the graphs of the model and the sensitivity functions without performing evaluation or optimization. The usefulness of these approaches and the simplicity of use of PFIM 4.0 are illustrated by two examples: (i) an example of designing a population pharmacokinetic study accounting for previous results, which highlights the advantage of adaptive designs; (ii) an example of Bayesian individual design optimization for a pharmacodynamic study, showing that the Bayesian individual FIM can be a useful tool in therapeutic drug monitoring, allowing efficient prediction of estimation precision and shrinkage for individual parameters. PFIM 4.0 is a useful tool for design evaluation and optimization of longitudinal studies in pharmacometrics and is freely available at http://www.pfim.biostat.fr. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Bayesian dynamic modeling of time series of dengue disease case counts

    PubMed Central

    López-Quílez, Antonio; Torres-Prieto, Alexander

    2017-01-01

    The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model’s short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health. PMID:28671941

  4. A BAYESIAN SPATIAL AND TEMPORAL MODELING APPROACH TO MAPPING GEOGRAPHIC VARIATION IN MORTALITY RATES FOR SUBNATIONAL AREAS WITH R-INLA.

    PubMed

    Khana, Diba; Rossen, Lauren M; Hedegaard, Holly; Warner, Margaret

    2018-01-01

    Hierarchical Bayes models have been used in disease mapping to examine small scale geographic variation. State level geographic variation for less common causes of mortality outcomes have been reported however county level variation is rarely examined. Due to concerns about statistical reliability and confidentiality, county-level mortality rates based on fewer than 20 deaths are suppressed based on Division of Vital Statistics, National Center for Health Statistics (NCHS) statistical reliability criteria, precluding an examination of spatio-temporal variation in less common causes of mortality outcomes such as suicide rates (SRs) at the county level using direct estimates. Existing Bayesian spatio-temporal modeling strategies can be applied via Integrated Nested Laplace Approximation (INLA) in R to a large number of rare causes of mortality outcomes to enable examination of spatio-temporal variations on smaller geographic scales such as counties. This method allows examination of spatiotemporal variation across the entire U.S., even where the data are sparse. We used mortality data from 2005-2015 to explore spatiotemporal variation in SRs, as one particular application of the Bayesian spatio-temporal modeling strategy in R-INLA to predict year and county-specific SRs. Specifically, hierarchical Bayesian spatio-temporal models were implemented with spatially structured and unstructured random effects, correlated time effects, time varying confounders and space-time interaction terms in the software R-INLA, borrowing strength across both counties and years to produce smoothed county level SRs. Model-based estimates of SRs were mapped to explore geographic variation.

  5. Hamiltonian Monte Carlo acceleration using surrogate functions with random bases.

    PubMed

    Zhang, Cheng; Shahbaba, Babak; Zhao, Hongkai

    2017-11-01

    For big data analysis, high computational cost for Bayesian methods often limits their applications in practice. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov chain Monte Carlo methods, namely, Hamiltonian Monte Carlo. The key idea is to explore and exploit the structure and regularity in parameter space for the underlying probabilistic model to construct an effective approximation of its geometric properties. To this end, we build a surrogate function to approximate the target distribution using properly chosen random bases and an efficient optimization process. The resulting method provides a flexible, scalable, and efficient sampling algorithm, which converges to the correct target distribution. We show that by choosing the basis functions and optimization process differently, our method can be related to other approaches for the construction of surrogate functions such as generalized additive models or Gaussian process models. Experiments based on simulated and real data show that our approach leads to substantially more efficient sampling algorithms compared to existing state-of-the-art methods.

  6. Bayesian Analysis for Exponential Random Graph Models Using the Adaptive Exchange Sampler.

    PubMed

    Jin, Ick Hoon; Yuan, Ying; Liang, Faming

    2013-10-01

    Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the intractable normalizing constant and model degeneracy. In this paper, we consider a fully Bayesian analysis for exponential random graph models using the adaptive exchange sampler, which solves the intractable normalizing constant and model degeneracy issues encountered in Markov chain Monte Carlo (MCMC) simulations. The adaptive exchange sampler can be viewed as a MCMC extension of the exchange algorithm, and it generates auxiliary networks via an importance sampling procedure from an auxiliary Markov chain running in parallel. The convergence of this algorithm is established under mild conditions. The adaptive exchange sampler is illustrated using a few social networks, including the Florentine business network, molecule synthetic network, and dolphins network. The results indicate that the adaptive exchange algorithm can produce more accurate estimates than approximate exchange algorithms, while maintaining the same computational efficiency.

  7. Bayesian adjustment for measurement error in continuous exposures in an individually matched case-control study.

    PubMed

    Espino-Hernandez, Gabriela; Gustafson, Paul; Burstyn, Igor

    2011-05-14

    In epidemiological studies explanatory variables are frequently subject to measurement error. The aim of this paper is to develop a Bayesian method to correct for measurement error in multiple continuous exposures in individually matched case-control studies. This is a topic that has not been widely investigated. The new method is illustrated using data from an individually matched case-control study of the association between thyroid hormone levels during pregnancy and exposure to perfluorinated acids. The objective of the motivating study was to examine the risk of maternal hypothyroxinemia due to exposure to three perfluorinated acids measured on a continuous scale. Results from the proposed method are compared with those obtained from a naive analysis. Using a Bayesian approach, the developed method considers a classical measurement error model for the exposures, as well as the conditional logistic regression likelihood as the disease model, together with a random-effect exposure model. Proper and diffuse prior distributions are assigned, and results from a quality control experiment are used to estimate the perfluorinated acids' measurement error variability. As a result, posterior distributions and 95% credible intervals of the odds ratios are computed. A sensitivity analysis of method's performance in this particular application with different measurement error variability was performed. The proposed Bayesian method to correct for measurement error is feasible and can be implemented using statistical software. For the study on perfluorinated acids, a comparison of the inferences which are corrected for measurement error to those which ignore it indicates that little adjustment is manifested for the level of measurement error actually exhibited in the exposures. Nevertheless, a sensitivity analysis shows that more substantial adjustments arise if larger measurement errors are assumed. In individually matched case-control studies, the use of conditional logistic regression likelihood as a disease model in the presence of measurement error in multiple continuous exposures can be justified by having a random-effect exposure model. The proposed method can be successfully implemented in WinBUGS to correct individually matched case-control studies for several mismeasured continuous exposures under a classical measurement error model.

  8. Estimating safety effects of pavement management factors utilizing Bayesian random effect models.

    PubMed

    Jiang, Ximiao; Huang, Baoshan; Zaretzki, Russell L; Richards, Stephen; Yan, Xuedong

    2013-01-01

    Previous studies of pavement management factors that relate to the occurrence of traffic-related crashes are rare. Traditional research has mostly employed summary statistics of bidirectional pavement quality measurements in extended longitudinal road segments over a long time period, which may cause a loss of important information and result in biased parameter estimates. The research presented in this article focuses on crash risk of roadways with overall fair to good pavement quality. Real-time and location-specific data were employed to estimate the effects of pavement management factors on the occurrence of crashes. This research is based on the crash data and corresponding pavement quality data for the Tennessee state route highways from 2004 to 2009. The potential temporal and spatial correlations among observations caused by unobserved factors were considered. Overall 6 models were built accounting for no correlation, temporal correlation only, and both the temporal and spatial correlations. These models included Poisson, negative binomial (NB), one random effect Poisson and negative binomial (OREP, ORENB), and two random effect Poisson and negative binomial (TREP, TRENB) models. The Bayesian method was employed to construct these models. The inference is based on the posterior distribution from the Markov chain Monte Carlo (MCMC) simulation. These models were compared using the deviance information criterion. Analysis of the posterior distribution of parameter coefficients indicates that the pavement management factors indexed by Present Serviceability Index (PSI) and Pavement Distress Index (PDI) had significant impacts on the occurrence of crashes, whereas the variable rutting depth was not significant. Among other factors, lane width, median width, type of terrain, and posted speed limit were significant in affecting crash frequency. The findings of this study indicate that a reduction in pavement roughness would reduce the likelihood of traffic-related crashes. Hence, maintaining a low level of pavement roughness is strongly suggested. In addition, the results suggested that the temporal correlation among observations was significant and that the ORENB model outperformed all other models.

  9. Comparing vector-based and Bayesian memory models using large-scale datasets: User-generated hashtag and tag prediction on Twitter and Stack Overflow.

    PubMed

    Stanley, Clayton; Byrne, Michael D

    2016-12-01

    The growth of social media and user-created content on online sites provides unique opportunities to study models of human declarative memory. By framing the task of choosing a hashtag for a tweet and tagging a post on Stack Overflow as a declarative memory retrieval problem, 2 cognitively plausible declarative memory models were applied to millions of posts and tweets and evaluated on how accurately they predict a user's chosen tags. An ACT-R based Bayesian model and a random permutation vector-based model were tested on the large data sets. The results show that past user behavior of tag use is a strong predictor of future behavior. Furthermore, past behavior was successfully incorporated into the random permutation model that previously used only context. Also, ACT-R's attentional weight term was linked to an entropy-weighting natural language processing method used to attenuate high-frequency words (e.g., articles and prepositions). Word order was not found to be a strong predictor of tag use, and the random permutation model performed comparably to the Bayesian model without including word order. This shows that the strength of the random permutation model is not in the ability to represent word order, but rather in the way in which context information is successfully compressed. The results of the large-scale exploration show how the architecture of the 2 memory models can be modified to significantly improve accuracy, and may suggest task-independent general modifications that can help improve model fit to human data in a much wider range of domains. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Mixed effect Poisson log-linear models for clinical and epidemiological sleep hypnogram data

    PubMed Central

    Swihart, Bruce J.; Caffo, Brian S.; Crainiceanu, Ciprian; Punjabi, Naresh M.

    2013-01-01

    Bayesian Poisson log-linear multilevel models scalable to epidemiological studies are proposed to investigate population variability in sleep state transition rates. Hierarchical random effects are used to account for pairings of subjects and repeated measures within those subjects, as comparing diseased to non-diseased subjects while minimizing bias is of importance. Essentially, non-parametric piecewise constant hazards are estimated and smoothed, allowing for time-varying covariates and segment of the night comparisons. The Bayesian Poisson regression is justified through a re-derivation of a classical algebraic likelihood equivalence of Poisson regression with a log(time) offset and survival regression assuming exponentially distributed survival times. Such re-derivation allows synthesis of two methods currently used to analyze sleep transition phenomena: stratified multi-state proportional hazards models and log-linear models with GEE for transition counts. An example data set from the Sleep Heart Health Study is analyzed. Supplementary material includes the analyzed data set as well as the code for a reproducible analysis. PMID:22241689

  11. Estimation of genetic parameters for milk yield in Murrah buffaloes by Bayesian inference.

    PubMed

    Breda, F C; Albuquerque, L G; Euclydes, R F; Bignardi, A B; Baldi, F; Torres, R A; Barbosa, L; Tonhati, H

    2010-02-01

    Random regression models were used to estimate genetic parameters for test-day milk yield in Murrah buffaloes using Bayesian inference. Data comprised 17,935 test-day milk records from 1,433 buffaloes. Twelve models were tested using different combinations of third-, fourth-, fifth-, sixth-, and seventh-order orthogonal polynomials of weeks of lactation for additive genetic and permanent environmental effects. All models included the fixed effects of contemporary group, number of daily milkings and age of cow at calving as covariate (linear and quadratic effect). In addition, residual variances were considered to be heterogeneous with 6 classes of variance. Models were selected based on the residual mean square error, weighted average of residual variance estimates, and estimates of variance components, heritabilities, correlations, eigenvalues, and eigenfunctions. Results indicated that changes in the order of fit for additive genetic and permanent environmental random effects influenced the estimation of genetic parameters. Heritability estimates ranged from 0.19 to 0.31. Genetic correlation estimates were close to unity between adjacent test-day records, but decreased gradually as the interval between test-days increased. Results from mean squared error and weighted averages of residual variance estimates suggested that a model considering sixth- and seventh-order Legendre polynomials for additive and permanent environmental effects, respectively, and 6 classes for residual variances, provided the best fit. Nevertheless, this model presented the largest degree of complexity. A more parsimonious model, with fourth- and sixth-order polynomials, respectively, for these same effects, yielded very similar genetic parameter estimates. Therefore, this last model is recommended for routine applications. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Bayesian structural inference for hidden processes.

    PubMed

    Strelioff, Christopher C; Crutchfield, James P

    2014-04-01

    We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian structural inference (BSI) relies on a set of candidate unifilar hidden Markov model (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological ε-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be ε-machines, irrespective of estimated transition probabilities. Properties of ε-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSI's effectiveness in estimating a process's randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.

  13. Bayesian structural inference for hidden processes

    NASA Astrophysics Data System (ADS)

    Strelioff, Christopher C.; Crutchfield, James P.

    2014-04-01

    We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian structural inference (BSI) relies on a set of candidate unifilar hidden Markov model (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological ɛ-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be ɛ-machines, irrespective of estimated transition probabilities. Properties of ɛ-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSI's effectiveness in estimating a process's randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.

  14. Nonparametric Bayesian models through probit stick-breaking processes

    PubMed Central

    Rodríguez, Abel; Dunson, David B.

    2013-01-01

    We describe a novel class of Bayesian nonparametric priors based on stick-breaking constructions where the weights of the process are constructed as probit transformations of normal random variables. We show that these priors are extremely flexible, allowing us to generate a great variety of models while preserving computational simplicity. Particular emphasis is placed on the construction of rich temporal and spatial processes, which are applied to two problems in finance and ecology. PMID:24358072

  15. Nonparametric Bayesian models through probit stick-breaking processes.

    PubMed

    Rodríguez, Abel; Dunson, David B

    2011-03-01

    We describe a novel class of Bayesian nonparametric priors based on stick-breaking constructions where the weights of the process are constructed as probit transformations of normal random variables. We show that these priors are extremely flexible, allowing us to generate a great variety of models while preserving computational simplicity. Particular emphasis is placed on the construction of rich temporal and spatial processes, which are applied to two problems in finance and ecology.

  16. Model selection with multiple regression on distance matrices leads to incorrect inferences.

    PubMed

    Franckowiak, Ryan P; Panasci, Michael; Jarvis, Karl J; Acuña-Rodriguez, Ian S; Landguth, Erin L; Fortin, Marie-Josée; Wagner, Helene H

    2017-01-01

    In landscape genetics, model selection procedures based on Information Theoretic and Bayesian principles have been used with multiple regression on distance matrices (MRM) to test the relationship between multiple vectors of pairwise genetic, geographic, and environmental distance. Using Monte Carlo simulations, we examined the ability of model selection criteria based on Akaike's information criterion (AIC), its small-sample correction (AICc), and the Bayesian information criterion (BIC) to reliably rank candidate models when applied with MRM while varying the sample size. The results showed a serious problem: all three criteria exhibit a systematic bias toward selecting unnecessarily complex models containing spurious random variables and erroneously suggest a high level of support for the incorrectly ranked best model. These problems effectively increased with increasing sample size. The failure of AIC, AICc, and BIC was likely driven by the inflated sample size and different sum-of-squares partitioned by MRM, and the resulting effect on delta values. Based on these findings, we strongly discourage the continued application of AIC, AICc, and BIC for model selection with MRM.

  17. Bayesian hierarchical models for smoothing in two-phase studies, with application to small area estimation.

    PubMed

    Ross, Michelle; Wakefield, Jon

    2015-10-01

    Two-phase study designs are appealing since they allow for the oversampling of rare sub-populations which improves efficiency. In this paper we describe a Bayesian hierarchical model for the analysis of two-phase data. Such a model is particularly appealing in a spatial setting in which random effects are introduced to model between-area variability. In such a situation, one may be interested in estimating regression coefficients or, in the context of small area estimation, in reconstructing the population totals by strata. The efficiency gains of the two-phase sampling scheme are compared to standard approaches using 2011 birth data from the research triangle area of North Carolina. We show that the proposed method can overcome small sample difficulties and improve on existing techniques. We conclude that the two-phase design is an attractive approach for small area estimation.

  18. A hybrid Bayesian hierarchical model combining cohort and case-control studies for meta-analysis of diagnostic tests: Accounting for partial verification bias.

    PubMed

    Ma, Xiaoye; Chen, Yong; Cole, Stephen R; Chu, Haitao

    2016-12-01

    To account for between-study heterogeneity in meta-analysis of diagnostic accuracy studies, bivariate random effects models have been recommended to jointly model the sensitivities and specificities. As study design and population vary, the definition of disease status or severity could differ across studies. Consequently, sensitivity and specificity may be correlated with disease prevalence. To account for this dependence, a trivariate random effects model had been proposed. However, the proposed approach can only include cohort studies with information estimating study-specific disease prevalence. In addition, some diagnostic accuracy studies only select a subset of samples to be verified by the reference test. It is known that ignoring unverified subjects may lead to partial verification bias in the estimation of prevalence, sensitivities, and specificities in a single study. However, the impact of this bias on a meta-analysis has not been investigated. In this paper, we propose a novel hybrid Bayesian hierarchical model combining cohort and case-control studies and correcting partial verification bias at the same time. We investigate the performance of the proposed methods through a set of simulation studies. Two case studies on assessing the diagnostic accuracy of gadolinium-enhanced magnetic resonance imaging in detecting lymph node metastases and of adrenal fluorine-18 fluorodeoxyglucose positron emission tomography in characterizing adrenal masses are presented. © The Author(s) 2014.

  19. A Hybrid Bayesian Hierarchical Model Combining Cohort and Case-control Studies for Meta-analysis of Diagnostic Tests: Accounting for Partial Verification Bias

    PubMed Central

    Ma, Xiaoye; Chen, Yong; Cole, Stephen R.; Chu, Haitao

    2014-01-01

    To account for between-study heterogeneity in meta-analysis of diagnostic accuracy studies, bivariate random effects models have been recommended to jointly model the sensitivities and specificities. As study design and population vary, the definition of disease status or severity could differ across studies. Consequently, sensitivity and specificity may be correlated with disease prevalence. To account for this dependence, a trivariate random effects model had been proposed. However, the proposed approach can only include cohort studies with information estimating study-specific disease prevalence. In addition, some diagnostic accuracy studies only select a subset of samples to be verified by the reference test. It is known that ignoring unverified subjects may lead to partial verification bias in the estimation of prevalence, sensitivities and specificities in a single study. However, the impact of this bias on a meta-analysis has not been investigated. In this paper, we propose a novel hybrid Bayesian hierarchical model combining cohort and case-control studies and correcting partial verification bias at the same time. We investigate the performance of the proposed methods through a set of simulation studies. Two case studies on assessing the diagnostic accuracy of gadolinium-enhanced magnetic resonance imaging in detecting lymph node metastases and of adrenal fluorine-18 fluorodeoxyglucose positron emission tomography in characterizing adrenal masses are presented. PMID:24862512

  20. Bayesian Hierarchical Random Effects Models in Forensic Science.

    PubMed

    Aitken, Colin G G

    2018-01-01

    Statistical modeling of the evaluation of evidence with the use of the likelihood ratio has a long history. It dates from the Dreyfus case at the end of the nineteenth century through the work at Bletchley Park in the Second World War to the present day. The development received a significant boost in 1977 with a seminal work by Dennis Lindley which introduced a Bayesian hierarchical random effects model for the evaluation of evidence with an example of refractive index measurements on fragments of glass. Many models have been developed since then. The methods have now been sufficiently well-developed and have become so widespread that it is timely to try and provide a software package to assist in their implementation. With that in mind, a project (SAILR: Software for the Analysis and Implementation of Likelihood Ratios) was funded by the European Network of Forensic Science Institutes through their Monopoly programme to develop a software package for use by forensic scientists world-wide that would assist in the statistical analysis and implementation of the approach based on likelihood ratios. It is the purpose of this document to provide a short review of a small part of this history. The review also provides a background, or landscape, for the development of some of the models within the SAILR package and references to SAILR as made as appropriate.

  1. Bayesian State-Space Modelling of Conventional Acoustic Tracking Provides Accurate Descriptors of Home Range Behavior in a Small-Bodied Coastal Fish Species

    PubMed Central

    Alós, Josep; Palmer, Miquel; Balle, Salvador; Arlinghaus, Robert

    2016-01-01

    State-space models (SSM) are increasingly applied in studies involving biotelemetry-generated positional data because they are able to estimate movement parameters from positions that are unobserved or have been observed with non-negligible observational error. Popular telemetry systems in marine coastal fish consist of arrays of omnidirectional acoustic receivers, which generate a multivariate time-series of detection events across the tracking period. Here we report a novel Bayesian fitting of a SSM application that couples mechanistic movement properties within a home range (a specific case of random walk weighted by an Ornstein-Uhlenbeck process) with a model of observational error typical for data obtained from acoustic receiver arrays. We explored the performance and accuracy of the approach through simulation modelling and extensive sensitivity analyses of the effects of various configurations of movement properties and time-steps among positions. Model results show an accurate and unbiased estimation of the movement parameters, and in most cases the simulated movement parameters were properly retrieved. Only in extreme situations (when fast swimming speeds are combined with pooling the number of detections over long time-steps) the model produced some bias that needs to be accounted for in field applications. Our method was subsequently applied to real acoustic tracking data collected from a small marine coastal fish species, the pearly razorfish, Xyrichtys novacula. The Bayesian SSM we present here constitutes an alternative for those used to the Bayesian way of reasoning. Our Bayesian SSM can be easily adapted and generalized to any species, thereby allowing studies in freely roaming animals on the ecological and evolutionary consequences of home ranges and territory establishment, both in fishes and in other taxa. PMID:27119718

  2. Random regression analyses using B-splines functions to model growth from birth to adult age in Canchim cattle.

    PubMed

    Baldi, F; Alencar, M M; Albuquerque, L G

    2010-12-01

    The objective of this work was to estimate covariance functions using random regression models on B-splines functions of animal age, for weights from birth to adult age in Canchim cattle. Data comprised 49,011 records on 2435 females. The model of analysis included fixed effects of contemporary groups, age of dam as quadratic covariable and the population mean trend taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were modelled through a step function with four classes. The direct and maternal additive genetic effects, and animal and maternal permanent environmental effects were included as random effects in the model. A total of seventeen analyses, considering linear, quadratic and cubic B-splines functions and up to seven knots, were carried out. B-spline functions of the same order were considered for all random effects. Random regression models on B-splines functions were compared to a random regression model on Legendre polynomials and with a multitrait model. Results from different models of analyses were compared using the REML form of the Akaike Information criterion and Schwarz' Bayesian Information criterion. In addition, the variance components and genetic parameters estimated for each random regression model were also used as criteria to choose the most adequate model to describe the covariance structure of the data. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most adequate to describe the covariance structure of the data. Random regression models using B-spline functions as base functions fitted the data better than Legendre polynomials, especially at mature ages, but higher number of parameters need to be estimated with B-splines functions. © 2010 Blackwell Verlag GmbH.

  3. Effects of Uncertainties in Hydrological Modelling. A Case Study of a Mountainous Catchment in Southern Norway

    NASA Astrophysics Data System (ADS)

    Engeland, Kolbjorn; Steinsland, Ingelin

    2016-04-01

    The aim of this study is to investigate how the inclusion of uncertainties in inputs and observed streamflow influence the parameter estimation, streamflow predictions and model evaluation. In particular we wanted to answer the following research questions: • What is the effect of including a random error in the precipitation and temperature inputs? • What is the effect of decreased information about precipitation by excluding the nearest precipitation station? • What is the effect of the uncertainty in streamflow observations? • What is the effect of reduced information about the true streamflow by using a rating curve where the measurement of the highest and lowest streamflow is excluded when estimating the rating curve? To answer these questions, we designed a set of calibration experiments and evaluation strategies. We used the elevation distributed HBV model operating on daily time steps combined with a Bayesian formulation and the MCMC routine Dream for parameter inference. The uncertainties in inputs was represented by creating ensembles of precipitation and temperature. The precipitation ensemble were created using a meta-gaussian random field approach. The temperature ensembles were created using a 3D Bayesian kriging with random sampling of the temperature laps rate. The streamflow ensembles were generated by a Bayesian multi-segment rating curve model. Precipitation and temperatures were randomly sampled for every day, whereas the streamflow ensembles were generated from rating curve ensembles, and the same rating curve was always used for the whole time series in a calibration or evaluation run. We chose a catchment with a meteorological station measuring precipitation and temperature, and a rating curve of relatively high quality. This allowed us to investigate and further test the effect of having less information on precipitation and streamflow during model calibration, predictions and evaluation. The results showed that including uncertainty in the precipitation and temperature input has a negligible effect on the posterior distribution of parameters and for the Nash-Sutcliffe (NS) efficiency for the predicted flows, while the reliability and the continuous rank probability score (CRPS) improves. Reduced information in precipitation input resulted in a and a shift in the water balance parameter Pcorr, a model producing smoother streamflow predictions giving poorer NS and CRPS, but higher reliability. The effect of calibrating the hydrological model using wrong rating curves is mainly seen as variability in the water balance parameter Pcorr. When evaluating predictions obtained using a wrong rating curve, the evaluation scores varies depending on the true rating curve. Generally, the best evaluation scores were not achieved for the rating curve used for calibration, but for a rating curves giving low variance in streamflow observations. Reduced information in streamflow influenced the water balance parameter Pcorr, and increased the spread in evaluation scores giving both better and worse scores. This case study shows that estimating the water balance is challenging since both precipitation inputs and streamflow observations have pronounced systematic component in their uncertainties.

  4. Stochastic Modeling of the Environmental Impacts of the Mingtang Tunneling Project

    NASA Astrophysics Data System (ADS)

    Li, Xiaojun; Li, Yandong; Chang, Ching-Fu; Chen, Ziyang; Tan, Benjamin Zhi Wen; Sege, Jon; Wang, Changhong; Rubin, Yoram

    2017-04-01

    This paper investigates the environmental impacts of a major tunneling project in China. Of particular interest is the drawdown of the water table, due to its potential impacts on ecosystem health and on agricultural activity. Due to scarcity of data, the study pursues a Bayesian stochastic approach, which is built around a numerical model. We adopted the Bayesian approach with the goal of deriving the posterior distributions of the dependent variables conditional on local data. The choice of the Bayesian approach for this study is somewhat non-trivial because of the scarcity of in-situ measurements. The thought guiding this selection is that prior distributions for the model input variables are valuable tools even if that all inputs are available, the Bayesian approach could provide a good starting point for further updates as and if additional data becomes available. To construct effective priors, a systematic approach was developed and implemented for constructing informative priors based on other, well-documented sites which bear geological and hydrological similarity to the target site (the Mingtang tunneling project). The approach is built around two classes of similarity criteria: a physically-based set of criteria and an additional set covering epistemic criteria. The prior construction strategy was implemented for the hydraulic conductivity of various types of rocks at the site (Granite and Gneiss) and for modeling the geometry and conductivity of the fault zones. Additional elements of our strategy include (1) modeling the water table through bounding surfaces representing upper and lower limits, and (2) modeling the effective conductivity as a random variable (varying between realizations, not in space). The approach was tested successfully against its ability to predict the tunnel infiltration fluxes and against observations of drying soils.

  5. A Bayesian hierarchical model for discrete choice data in health care.

    PubMed

    Antonio, Anna Liza M; Weiss, Robert E; Saigal, Christopher S; Dahan, Ely; Crespi, Catherine M

    2017-01-01

    In discrete choice experiments, patients are presented with sets of health states described by various attributes and asked to make choices from among them. Discrete choice experiments allow health care researchers to study the preferences of individual patients by eliciting trade-offs between different aspects of health-related quality of life. However, many discrete choice experiments yield data with incomplete ranking information and sparsity due to the limited number of choice sets presented to each patient, making it challenging to estimate patient preferences. Moreover, methods to identify outliers in discrete choice data are lacking. We develop a Bayesian hierarchical random effects rank-ordered multinomial logit model for discrete choice data. Missing ranks are accounted for by marginalizing over all possible permutations of unranked alternatives to estimate individual patient preferences, which are modeled as a function of patient covariates. We provide a Bayesian version of relative attribute importance, and adapt the use of the conditional predictive ordinate to identify outlying choice sets and outlying individuals with unusual preferences compared to the population. The model is applied to data from a study using a discrete choice experiment to estimate individual patient preferences for health states related to prostate cancer treatment.

  6. A Multilevel AR(1) Model: Allowing for Inter-Individual Differences in Trait-Scores, Inertia, and Innovation Variance.

    PubMed

    Jongerling, Joran; Laurenceau, Jean-Philippe; Hamaker, Ellen L

    2015-01-01

    In this article we consider a multilevel first-order autoregressive [AR(1)] model with random intercepts, random autoregression, and random innovation variance (i.e., the level 1 residual variance). Including random innovation variance is an important extension of the multilevel AR(1) model for two reasons. First, between-person differences in innovation variance are important from a substantive point of view, in that they capture differences in sensitivity and/or exposure to unmeasured internal and external factors that influence the process. Second, using simulation methods we show that modeling the innovation variance as fixed across individuals, when it should be modeled as a random effect, leads to biased parameter estimates. Additionally, we use simulation methods to compare maximum likelihood estimation to Bayesian estimation of the multilevel AR(1) model and investigate the trade-off between the number of individuals and the number of time points. We provide an empirical illustration by applying the extended multilevel AR(1) model to daily positive affect ratings from 89 married women over the course of 42 consecutive days.

  7. Bayesian Probability Theory

    NASA Astrophysics Data System (ADS)

    von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo

    2014-06-01

    Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.

  8. A Bayesian Model of the Memory Colour Effect.

    PubMed

    Witzel, Christoph; Olkkonen, Maria; Gegenfurtner, Karl R

    2018-01-01

    According to the memory colour effect, the colour of a colour-diagnostic object is not perceived independently of the object itself. Instead, it has been shown through an achromatic adjustment method that colour-diagnostic objects still appear slightly in their typical colour, even when they are colourimetrically grey. Bayesian models provide a promising approach to capture the effect of prior knowledge on colour perception and to link these effects to more general effects of cue integration. Here, we model memory colour effects using prior knowledge about typical colours as priors for the grey adjustments in a Bayesian model. This simple model does not involve any fitting of free parameters. The Bayesian model roughly captured the magnitude of the measured memory colour effect for photographs of objects. To some extent, the model predicted observed differences in memory colour effects across objects. The model could not account for the differences in memory colour effects across different levels of realism in the object images. The Bayesian model provides a particularly simple account of memory colour effects, capturing some of the multiple sources of variation of these effects.

  9. A Bayesian Model of the Memory Colour Effect

    PubMed Central

    Olkkonen, Maria; Gegenfurtner, Karl R.

    2018-01-01

    According to the memory colour effect, the colour of a colour-diagnostic object is not perceived independently of the object itself. Instead, it has been shown through an achromatic adjustment method that colour-diagnostic objects still appear slightly in their typical colour, even when they are colourimetrically grey. Bayesian models provide a promising approach to capture the effect of prior knowledge on colour perception and to link these effects to more general effects of cue integration. Here, we model memory colour effects using prior knowledge about typical colours as priors for the grey adjustments in a Bayesian model. This simple model does not involve any fitting of free parameters. The Bayesian model roughly captured the magnitude of the measured memory colour effect for photographs of objects. To some extent, the model predicted observed differences in memory colour effects across objects. The model could not account for the differences in memory colour effects across different levels of realism in the object images. The Bayesian model provides a particularly simple account of memory colour effects, capturing some of the multiple sources of variation of these effects. PMID:29760874

  10. Uncertainty Analysis and Parameter Estimation For Nearshore Hydrodynamic Models

    NASA Astrophysics Data System (ADS)

    Ardani, S.; Kaihatu, J. M.

    2012-12-01

    Numerical models represent deterministic approaches used for the relevant physical processes in the nearshore. Complexity of the physics of the model and uncertainty involved in the model inputs compel us to apply a stochastic approach to analyze the robustness of the model. The Bayesian inverse problem is one powerful way to estimate the important input model parameters (determined by apriori sensitivity analysis) and can be used for uncertainty analysis of the outputs. Bayesian techniques can be used to find the range of most probable parameters based on the probability of the observed data and the residual errors. In this study, the effect of input data involving lateral (Neumann) boundary conditions, bathymetry and off-shore wave conditions on nearshore numerical models are considered. Monte Carlo simulation is applied to a deterministic numerical model (the Delft3D modeling suite for coupled waves and flow) for the resulting uncertainty analysis of the outputs (wave height, flow velocity, mean sea level and etc.). Uncertainty analysis of outputs is performed by random sampling from the input probability distribution functions and running the model as required until convergence to the consistent results is achieved. The case study used in this analysis is the Duck94 experiment, which was conducted at the U.S. Army Field Research Facility at Duck, North Carolina, USA in the fall of 1994. The joint probability of model parameters relevant for the Duck94 experiments will be found using the Bayesian approach. We will further show that, by using Bayesian techniques to estimate the optimized model parameters as inputs and applying them for uncertainty analysis, we can obtain more consistent results than using the prior information for input data which means that the variation of the uncertain parameter will be decreased and the probability of the observed data will improve as well. Keywords: Monte Carlo Simulation, Delft3D, uncertainty analysis, Bayesian techniques, MCMC

  11. A conceptual model for site-level ecology of the giant gartersnake (Thamnophis gigas) in the Sacramento Valley, California

    USGS Publications Warehouse

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.; Hansen, Eric C.; Scherer, Rick D.; Patterson, Laura C.

    2015-08-14

    Bayesian networks further provide a clear visual display of the model that facilitates understanding among various stakeholders (Marcot and others, 2001; Uusitalo , 2007). Empirical data and expert judgment can be combined, as continuous or categorical variables, to update knowledge about the system (Marcot and others, 2001; Uusitalo , 2007). Importantly, Bayesian network models allow inference from causes to consequences, but also from consequences to causes, so that data can inform the states of nodes (values of different random variables) in either direction (Marcot and others, 2001; Uusitalo , 2007). Because they can incorporate both decision nodes that represent management actions and utility nodes that quantify the costs and benefits of outcomes, Bayesian networks are ideally suited to risk analysis and adaptive management (Nyberg and others, 2006; Howes and others, 2010). Thus, Bayesian network models are useful in situations where empirical data are not available, such as questions concerning the responses of giant gartersnakes to management.

  12. Bayesian Estimation and Inference Using Stochastic Electronics

    PubMed Central

    Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan; van Schaik, André

    2016-01-01

    In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream. PMID:27047326

  13. Bayesian Estimation and Inference Using Stochastic Electronics.

    PubMed

    Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan; van Schaik, André

    2016-01-01

    In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream.

  14. Exploiting Data Missingness in Bayesian Network Modeling

    NASA Astrophysics Data System (ADS)

    Rodrigues de Morais, Sérgio; Aussem, Alex

    This paper proposes a framework built on the use of Bayesian networks (BN) for representing statistical dependencies between the existing random variables and additional dummy boolean variables, which represent the presence/absence of the respective random variable value. We show how augmenting the BN with these additional variables helps pinpoint the mechanism through which missing data contributes to the classification task. The missing data mechanism is thus explicitly taken into account to predict the class variable using the data at hand. Extensive experiments on synthetic and real-world incomplete data sets reveals that the missingness information improves classification accuracy.

  15. Bayesian data analysis in observational comparative effectiveness research: rationale and examples.

    PubMed

    Olson, William H; Crivera, Concetta; Ma, Yi-Wen; Panish, Jessica; Mao, Lian; Lynch, Scott M

    2013-11-01

    Many comparative effectiveness research and patient-centered outcomes research studies will need to be observational for one or both of two reasons: first, randomized trials are expensive and time-consuming; and second, only observational studies can answer some research questions. It is generally recognized that there is a need to increase the scientific validity and efficiency of observational studies. Bayesian methods for the design and analysis of observational studies are scientifically valid and offer many advantages over frequentist methods, including, importantly, the ability to conduct comparative effectiveness research/patient-centered outcomes research more efficiently. Bayesian data analysis is being introduced into outcomes studies that we are conducting. Our purpose here is to describe our view of some of the advantages of Bayesian methods for observational studies and to illustrate both realized and potential advantages by describing studies we are conducting in which various Bayesian methods have been or could be implemented.

  16. A Tutorial in Bayesian Potential Outcomes Mediation Analysis.

    PubMed

    Miočević, Milica; Gonzalez, Oscar; Valente, Matthew J; MacKinnon, David P

    2018-01-01

    Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation of mediation analyses is challenging because randomization of subjects to levels of the independent variable does not rule out the possibility of unmeasured confounders of the mediator to outcome relation. Furthermore, commonly used frequentist methods for mediation analysis compute the probability of the data given the null hypothesis, which is not the probability of a hypothesis given the data as in Bayesian analysis. Under certain assumptions, applying the potential outcomes framework to mediation analysis allows for the computation of causal effects, and statistical mediation in the Bayesian framework gives indirect effects probabilistic interpretations. This tutorial combines causal inference and Bayesian methods for mediation analysis so the indirect and direct effects have both causal and probabilistic interpretations. Steps in Bayesian causal mediation analysis are shown in the application to an empirical example.

  17. Bayesian Approach for Flexible Modeling of Semicompeting Risks Data

    PubMed Central

    Han, Baoguang; Yu, Menggang; Dignam, James J.; Rathouz, Paul J.

    2016-01-01

    Summary Semicompeting risks data arise when two types of events, non-terminal and terminal, are observed. When the terminal event occurs first, it censors the non-terminal event, but not vice versa. To account for possible dependent censoring of the non-terminal event by the terminal event and to improve prediction of the terminal event using the non-terminal event information, it is crucial to model their association properly. Motivated by a breast cancer clinical trial data analysis, we extend the well-known illness-death models to allow flexible random effects to capture heterogeneous association structures in the data. Our extension also represents a generalization of the popular shared frailty models that usually assume that the non-terminal event does not affect the hazards of the terminal event beyond a frailty term. We propose a unified Bayesian modeling approach that can utilize existing software packages for both model fitting and individual specific event prediction. The approach is demonstrated via both simulation studies and a breast cancer data set analysis. PMID:25274445

  18. Bayesian analysis of longitudinal dyadic data with informative missing data using a dyadic shared-parameter model.

    PubMed

    Ahn, Jaeil; Morita, Satoshi; Wang, Wenyi; Yuan, Ying

    2017-01-01

    Analyzing longitudinal dyadic data is a challenging task due to the complicated correlations from repeated measurements and within-dyad interdependence, as well as potentially informative (or non-ignorable) missing data. We propose a dyadic shared-parameter model to analyze longitudinal dyadic data with ordinal outcomes and informative intermittent missing data and dropouts. We model the longitudinal measurement process using a proportional odds model, which accommodates the within-dyad interdependence using the concept of the actor-partner interdependence effects, as well as dyad-specific random effects. We model informative dropouts and intermittent missing data using a transition model, which shares the same set of random effects as the longitudinal measurement model. We evaluate the performance of the proposed method through extensive simulation studies. As our approach relies on some untestable assumptions on the missing data mechanism, we perform sensitivity analyses to evaluate how the analysis results change when the missing data mechanism is misspecified. We demonstrate our method using a longitudinal dyadic study of metastatic breast cancer.

  19. Should Perioperative Supplemental Oxygen Be Routinely Recommended for Surgical Patients? A Bayesian Meta-analysis

    PubMed Central

    Kao, Lillian S.; Millas, Stefanos G.; Pedroza, Claudia; Tyson, Jon E.; Lally, Kevin P.

    2012-01-01

    Objective The purpose of this study is to use updated data and Bayesian methods to evaluate the effectiveness of hyperoxia to reduce surgical site infections (SSIs) and/or mortality in both colorectal and all surgical patients. Because few trials assessed potential harms of hyperoxia, hazards were not included. Background Use of hyperoxia to reduce SSIs is controversial. Three recent meta-analyses have had conflicting conclusions. Methods A systematic literature search and review were performed. Traditional fixed-effect and random-effects meta-analyses and Bayesian meta-analysis were performed to evaluate SSIs and mortality. Results Traditional meta-analysis yielded a relative risk of an SSI with hyperoxia among all surgery patients of 0.84 (95% confidence interval, CI, 0.73–0.97) and 0.84 (95% CI 0.61–1.16) for the fixed-effect and random effects models respectively. The probabilities of any risk reduction in SSIs among all surgery patients were 77%, 81%, and 83% for skeptical, neutral, and enthusiastic priors. Subset analysis of colorectal surgery patients increased the probabilities to 86%, 89%, and 92%. The probabilities of at least a 10% reduction were 57%, 62%, and 68% for all surgical patients and 71%, 75%, and 80% among the colorectal surgery subset. Conclusions There is a moderately high probability of a benefit to hyperoxia in reducing SSIs in colorectal surgery patients; however, the magnitude of benefit is relatively small and might not exceed treatment hazards. Further studies should focus on generalizability to other patient populations or on treatment hazards and other outcomes. PMID:23160100

  20. The choice of prior distribution for a covariance matrix in multivariate meta-analysis: a simulation study.

    PubMed

    Hurtado Rúa, Sandra M; Mazumdar, Madhu; Strawderman, Robert L

    2015-12-30

    Bayesian meta-analysis is an increasingly important component of clinical research, with multivariate meta-analysis a promising tool for studies with multiple endpoints. Model assumptions, including the choice of priors, are crucial aspects of multivariate Bayesian meta-analysis (MBMA) models. In a given model, two different prior distributions can lead to different inferences about a particular parameter. A simulation study was performed in which the impact of families of prior distributions for the covariance matrix of a multivariate normal random effects MBMA model was analyzed. Inferences about effect sizes were not particularly sensitive to prior choice, but the related covariance estimates were. A few families of prior distributions with small relative biases, tight mean squared errors, and close to nominal coverage for the effect size estimates were identified. Our results demonstrate the need for sensitivity analysis and suggest some guidelines for choosing prior distributions in this class of problems. The MBMA models proposed here are illustrated in a small meta-analysis example from the periodontal field and a medium meta-analysis from the study of stroke. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Commensurate Priors for Incorporating Historical Information in Clinical Trials Using General and Generalized Linear Models

    PubMed Central

    Hobbs, Brian P.; Sargent, Daniel J.; Carlin, Bradley P.

    2014-01-01

    Assessing between-study variability in the context of conventional random-effects meta-analysis is notoriously difficult when incorporating data from only a small number of historical studies. In order to borrow strength, historical and current data are often assumed to be fully homogeneous, but this can have drastic consequences for power and Type I error if the historical information is biased. In this paper, we propose empirical and fully Bayesian modifications of the commensurate prior model (Hobbs et al., 2011) extending Pocock (1976), and evaluate their frequentist and Bayesian properties for incorporating patient-level historical data using general and generalized linear mixed regression models. Our proposed commensurate prior models lead to preposterior admissible estimators that facilitate alternative bias-variance trade-offs than those offered by pre-existing methodologies for incorporating historical data from a small number of historical studies. We also provide a sample analysis of a colon cancer trial comparing time-to-disease progression using a Weibull regression model. PMID:24795786

  2. Semiparametric Bayesian classification with longitudinal markers

    PubMed Central

    De la Cruz-Mesía, Rolando; Quintana, Fernando A.; Müller, Peter

    2013-01-01

    Summary We analyse data from a study involving 173 pregnant women. The data are observed values of the β human chorionic gonadotropin hormone measured during the first 80 days of gestational age, including from one up to six longitudinal responses for each woman. The main objective in this study is to predict normal versus abnormal pregnancy outcomes from data that are available at the early stages of pregnancy. We achieve the desired classification with a semiparametric hierarchical model. Specifically, we consider a Dirichlet process mixture prior for the distribution of the random effects in each group. The unknown random-effects distributions are allowed to vary across groups but are made dependent by using a design vector to select different features of a single underlying random probability measure. The resulting model is an extension of the dependent Dirichlet process model, with an additional probability model for group classification. The model is shown to perform better than an alternative model which is based on independent Dirichlet processes for the groups. Relevant posterior distributions are summarized by using Markov chain Monte Carlo methods. PMID:24368871

  3. Robust Bayesian clustering.

    PubMed

    Archambeau, Cédric; Verleysen, Michel

    2007-01-01

    A new variational Bayesian learning algorithm for Student-t mixture models is introduced. This algorithm leads to (i) robust density estimation, (ii) robust clustering and (iii) robust automatic model selection. Gaussian mixture models are learning machines which are based on a divide-and-conquer approach. They are commonly used for density estimation and clustering tasks, but are sensitive to outliers. The Student-t distribution has heavier tails than the Gaussian distribution and is therefore less sensitive to any departure of the empirical distribution from Gaussianity. As a consequence, the Student-t distribution is suitable for constructing robust mixture models. In this work, we formalize the Bayesian Student-t mixture model as a latent variable model in a different way from Svensén and Bishop [Svensén, M., & Bishop, C. M. (2005). Robust Bayesian mixture modelling. Neurocomputing, 64, 235-252]. The main difference resides in the fact that it is not necessary to assume a factorized approximation of the posterior distribution on the latent indicator variables and the latent scale variables in order to obtain a tractable solution. Not neglecting the correlations between these unobserved random variables leads to a Bayesian model having an increased robustness. Furthermore, it is expected that the lower bound on the log-evidence is tighter. Based on this bound, the model complexity, i.e. the number of components in the mixture, can be inferred with a higher confidence.

  4. The risk assessment of sudden water pollution for river network system under multi-source random emission

    NASA Astrophysics Data System (ADS)

    Li, D.

    2016-12-01

    Sudden water pollution accidents are unavoidable risk events that we must learn to co-exist with. In China's Taihu River Basin, the river flow conditions are complicated with frequently artificial interference. Sudden water pollution accident occurs mainly in the form of a large number of abnormal discharge of wastewater, and has the characteristics with the sudden occurrence, the uncontrollable scope, the uncertainty object and the concentrated distribution of many risk sources. Effective prevention of pollution accidents that may occur is of great significance for the water quality safety management. Bayesian networks can be applied to represent the relationship between pollution sources and river water quality intuitively. Using the time sequential Monte Carlo algorithm, the pollution sources state switching model, water quality model for river network and Bayesian reasoning is integrated together, and the sudden water pollution risk assessment model for river network is developed to quantify the water quality risk under the collective influence of multiple pollution sources. Based on the isotope water transport mechanism, a dynamic tracing model of multiple pollution sources is established, which can describe the relationship between the excessive risk of the system and the multiple risk sources. Finally, the diagnostic reasoning algorithm based on Bayesian network is coupled with the multi-source tracing model, which can identify the contribution of each risk source to the system risk under the complex flow conditions. Taking Taihu Lake water system as the research object, the model is applied to obtain the reasonable results under the three typical years. Studies have shown that the water quality risk at critical sections are influenced by the pollution risk source, the boundary water quality, the hydrological conditions and self -purification capacity, and the multiple pollution sources have obvious effect on water quality risk of the receiving water body. The water quality risk assessment approach developed in this study offers a effective tool for systematically quantifying the random uncertainty in plain river network system, and it also provides the technical support for the decision-making of controlling the sudden water pollution through identification of critical pollution sources.

  5. Model-based Bayesian inference for ROC data analysis

    NASA Astrophysics Data System (ADS)

    Lei, Tianhu; Bae, K. Ty

    2013-03-01

    This paper presents a study of model-based Bayesian inference to Receiver Operating Characteristics (ROC) data. The model is a simple version of general non-linear regression model. Different from Dorfman model, it uses a probit link function with a covariate variable having zero-one two values to express binormal distributions in a single formula. Model also includes a scale parameter. Bayesian inference is implemented by Markov Chain Monte Carlo (MCMC) method carried out by Bayesian analysis Using Gibbs Sampling (BUGS). Contrast to the classical statistical theory, Bayesian approach considers model parameters as random variables characterized by prior distributions. With substantial amount of simulated samples generated by sampling algorithm, posterior distributions of parameters as well as parameters themselves can be accurately estimated. MCMC-based BUGS adopts Adaptive Rejection Sampling (ARS) protocol which requires the probability density function (pdf) which samples are drawing from be log concave with respect to the targeted parameters. Our study corrects a common misconception and proves that pdf of this regression model is log concave with respect to its scale parameter. Therefore, ARS's requirement is satisfied and a Gaussian prior which is conjugate and possesses many analytic and computational advantages is assigned to the scale parameter. A cohort of 20 simulated data sets and 20 simulations from each data set are used in our study. Output analysis and convergence diagnostics for MCMC method are assessed by CODA package. Models and methods by using continuous Gaussian prior and discrete categorical prior are compared. Intensive simulations and performance measures are given to illustrate our practice in the framework of model-based Bayesian inference using MCMC method.

  6. Investigation of hit-and-run crash occurrence and severity using real-time loop detector data and hierarchical Bayesian binary logit model with random effects.

    PubMed

    Xie, Meiquan; Cheng, Wen; Gill, Gurdiljot Singh; Zhou, Jiao; Jia, Xudong; Choi, Simon

    2018-02-17

    Most of the extensive research dedicated to identifying the influential factors of hit-and-run (HR) crashes has utilized typical maximum likelihood estimation binary logit models, and none have employed real-time traffic data. To fill this gap, this study focused on investigating factors contributing to HR crashes, as well as the severity levels of HR. This study analyzed 4-year crash and real-time loop detector data by employing hierarchical Bayesian models with random effects within a sequential logit structure. In addition to evaluation of the impact of random effects on model fitness and complexity, the prediction capability of the models was examined. Stepwise incremental sensitivity and specificity were calculated and receiver operating characteristic (ROC) curves were utilized to graphically illustrate the predictive performance of the model. Among the real-time flow variables, the average occupancy and speed from the upstream detector were observed to be positively correlated with HR crash possibility. The average upstream speed and speed difference between upstream and downstream speeds were correlated with the occurrence of severe HR crashes. In addition to real-time factors, other variables found influential for HR and severe HR crashes were length of segment, adverse weather conditions, dark lighting conditions with malfunctioning street lights, driving under the influence of alcohol, width of inner shoulder, and nighttime. This study suggests the potential traffic conditions of HR and severe HR occurrence, which refer to relatively congested upstream traffic conditions with high upstream speed and significant speed deviations on long segments. The above findings suggest that traffic enforcement should be directed toward mitigating risky driving under the aforementioned traffic conditions. Moreover, enforcement agencies may employ alcohol checkpoints to counter driving under the influence (DUI) at night. With regard to engineering improvements, wider inner shoulders may be constructed to potentially reduce HR cases and street lights should be installed and maintained in working condition to make roads less prone to such crashes.

  7. Hierarchical Bayesian spatial models for predicting multiple forest variables using waveform LiDAR, hyperspectral imagery, and large inventory datasets

    USGS Publications Warehouse

    Finley, Andrew O.; Banerjee, Sudipto; Cook, Bruce D.; Bradford, John B.

    2013-01-01

    In this paper we detail a multivariate spatial regression model that couples LiDAR, hyperspectral and forest inventory data to predict forest outcome variables at a high spatial resolution. The proposed model is used to analyze forest inventory data collected on the US Forest Service Penobscot Experimental Forest (PEF), ME, USA. In addition to helping meet the regression model's assumptions, results from the PEF analysis suggest that the addition of multivariate spatial random effects improves model fit and predictive ability, compared with two commonly applied modeling approaches. This improvement results from explicitly modeling the covariation among forest outcome variables and spatial dependence among observations through the random effects. Direct application of such multivariate models to even moderately large datasets is often computationally infeasible because of cubic order matrix algorithms involved in estimation. We apply a spatial dimension reduction technique to help overcome this computational hurdle without sacrificing richness in modeling.

  8. Generalizability Assessment of Autocorrelated Direct Observation Data: The Applicability of the Tiao-Tan Method and Alternative.

    ERIC Educational Resources Information Center

    Suen, Hoi K.; And Others

    The applicability is explored of the Bayesian random-effect analysis of variance (ANOVA) model developed by G. C. Tiao and W. Y. Tan (1966) and a method suggested by H. K. Suen and P. S. Lee (1987) for the generalizability analysis of autocorrelated data. According to Tiao and Tan, if time series data could be described as a first-order…

  9. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2013-01-01

    Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213

  10. Selection of polynomial chaos bases via Bayesian model uncertainty methods with applications to sparse approximation of PDEs with stochastic inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karagiannis, Georgios, E-mail: georgios.karagiannis@pnnl.gov; Lin, Guang, E-mail: guang.lin@pnnl.gov

    2014-02-15

    Generalized polynomial chaos (gPC) expansions allow us to represent the solution of a stochastic system using a series of polynomial chaos basis functions. The number of gPC terms increases dramatically as the dimension of the random input variables increases. When the number of the gPC terms is larger than that of the available samples, a scenario that often occurs when the corresponding deterministic solver is computationally expensive, evaluation of the gPC expansion can be inaccurate due to over-fitting. We propose a fully Bayesian approach that allows for global recovery of the stochastic solutions, in both spatial and random domains, bymore » coupling Bayesian model uncertainty and regularization regression methods. It allows the evaluation of the PC coefficients on a grid of spatial points, via (1) the Bayesian model average (BMA) or (2) the median probability model, and their construction as spatial functions on the spatial domain via spline interpolation. The former accounts for the model uncertainty and provides Bayes-optimal predictions; while the latter provides a sparse representation of the stochastic solutions by evaluating the expansion on a subset of dominating gPC bases. Moreover, the proposed methods quantify the importance of the gPC bases in the probabilistic sense through inclusion probabilities. We design a Markov chain Monte Carlo (MCMC) sampler that evaluates all the unknown quantities without the need of ad-hoc techniques. The proposed methods are suitable for, but not restricted to, problems whose stochastic solutions are sparse in the stochastic space with respect to the gPC bases while the deterministic solver involved is expensive. We demonstrate the accuracy and performance of the proposed methods and make comparisons with other approaches on solving elliptic SPDEs with 1-, 14- and 40-random dimensions.« less

  11. Smooth random change point models.

    PubMed

    van den Hout, Ardo; Muniz-Terrera, Graciela; Matthews, Fiona E

    2011-03-15

    Change point models are used to describe processes over time that show a change in direction. An example of such a process is cognitive ability, where a decline a few years before death is sometimes observed. A broken-stick model consists of two linear parts and a breakpoint where the two lines intersect. Alternatively, models can be formulated that imply a smooth change between the two linear parts. Change point models can be extended by adding random effects to account for variability between subjects. A new smooth change point model is introduced and examples are presented that show how change point models can be estimated using functions in R for mixed-effects models. The Bayesian inference using WinBUGS is also discussed. The methods are illustrated using data from a population-based longitudinal study of ageing, the Cambridge City over 75 Cohort Study. The aim is to identify how many years before death individuals experience a change in the rate of decline of their cognitive ability. Copyright © 2010 John Wiley & Sons, Ltd.

  12. Bayesian methods including nonrandomized study data increased the efficiency of postlaunch RCTs.

    PubMed

    Schmidt, Amand F; Klugkist, Irene; Klungel, Olaf H; Nielen, Mirjam; de Boer, Anthonius; Hoes, Arno W; Groenwold, Rolf H H

    2015-04-01

    Findings from nonrandomized studies on safety or efficacy of treatment in patient subgroups may trigger postlaunch randomized clinical trials (RCTs). In the analysis of such RCTs, results from nonrandomized studies are typically ignored. This study explores the trade-off between bias and power of Bayesian RCT analysis incorporating information from nonrandomized studies. A simulation study was conducted to compare frequentist with Bayesian analyses using noninformative and informative priors in their ability to detect interaction effects. In simulated subgroups, the effect of a hypothetical treatment differed between subgroups (odds ratio 1.00 vs. 2.33). Simulations varied in sample size, proportions of the subgroups, and specification of the priors. As expected, the results for the informative Bayesian analyses were more biased than those from the noninformative Bayesian analysis or frequentist analysis. However, because of a reduction in posterior variance, informative Bayesian analyses were generally more powerful to detect an effect. In scenarios where the informative priors were in the opposite direction of the RCT data, type 1 error rates could be 100% and power 0%. Bayesian methods incorporating data from nonrandomized studies can meaningfully increase power of interaction tests in postlaunch RCTs. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Bayesian LASSO, scale space and decision making in association genetics.

    PubMed

    Pasanen, Leena; Holmström, Lasse; Sillanpää, Mikko J

    2015-01-01

    LASSO is a penalized regression method that facilitates model fitting in situations where there are as many, or even more explanatory variables than observations, and only a few variables are relevant in explaining the data. We focus on the Bayesian version of LASSO and consider four problems that need special attention: (i) controlling false positives, (ii) multiple comparisons, (iii) collinearity among explanatory variables, and (iv) the choice of the tuning parameter that controls the amount of shrinkage and the sparsity of the estimates. The particular application considered is association genetics, where LASSO regression can be used to find links between chromosome locations and phenotypic traits in a biological organism. However, the proposed techniques are relevant also in other contexts where LASSO is used for variable selection. We separate the true associations from false positives using the posterior distribution of the effects (regression coefficients) provided by Bayesian LASSO. We propose to solve the multiple comparisons problem by using simultaneous inference based on the joint posterior distribution of the effects. Bayesian LASSO also tends to distribute an effect among collinear variables, making detection of an association difficult. We propose to solve this problem by considering not only individual effects but also their functionals (i.e. sums and differences). Finally, whereas in Bayesian LASSO the tuning parameter is often regarded as a random variable, we adopt a scale space view and consider a whole range of fixed tuning parameters, instead. The effect estimates and the associated inference are considered for all tuning parameters in the selected range and the results are visualized with color maps that provide useful insights into data and the association problem considered. The methods are illustrated using two sets of artificial data and one real data set, all representing typical settings in association genetics.

  14. Estimating relative risks in multicenter studies with a small number of centers - which methods to use? A simulation study.

    PubMed

    Pedroza, Claudia; Truong, Van Thi Thanh

    2017-11-02

    Analyses of multicenter studies often need to account for center clustering to ensure valid inference. For binary outcomes, it is particularly challenging to properly adjust for center when the number of centers or total sample size is small, or when there are few events per center. Our objective was to evaluate the performance of generalized estimating equation (GEE) log-binomial and Poisson models, generalized linear mixed models (GLMMs) assuming binomial and Poisson distributions, and a Bayesian binomial GLMM to account for center effect in these scenarios. We conducted a simulation study with few centers (≤30) and 50 or fewer subjects per center, using both a randomized controlled trial and an observational study design to estimate relative risk. We compared the GEE and GLMM models with a log-binomial model without adjustment for clustering in terms of bias, root mean square error (RMSE), and coverage. For the Bayesian GLMM, we used informative neutral priors that are skeptical of large treatment effects that are almost never observed in studies of medical interventions. All frequentist methods exhibited little bias, and the RMSE was very similar across the models. The binomial GLMM had poor convergence rates, ranging from 27% to 85%, but performed well otherwise. The results show that both GEE models need to use small sample corrections for robust SEs to achieve proper coverage of 95% CIs. The Bayesian GLMM had similar convergence rates but resulted in slightly more biased estimates for the smallest sample sizes. However, it had the smallest RMSE and good coverage across all scenarios. These results were very similar for both study designs. For the analyses of multicenter studies with a binary outcome and few centers, we recommend adjustment for center with either a GEE log-binomial or Poisson model with appropriate small sample corrections or a Bayesian binomial GLMM with informative priors.

  15. A Bayesian sequential design with adaptive randomization for 2-sided hypothesis test.

    PubMed

    Yu, Qingzhao; Zhu, Lin; Zhu, Han

    2017-11-01

    Bayesian sequential and adaptive randomization designs are gaining popularity in clinical trials thanks to their potentials to reduce the number of required participants and save resources. We propose a Bayesian sequential design with adaptive randomization rates so as to more efficiently attribute newly recruited patients to different treatment arms. In this paper, we consider 2-arm clinical trials. Patients are allocated to the 2 arms with a randomization rate to achieve minimum variance for the test statistic. Algorithms are presented to calculate the optimal randomization rate, critical values, and power for the proposed design. Sensitivity analysis is implemented to check the influence on design by changing the prior distributions. Simulation studies are applied to compare the proposed method and traditional methods in terms of power and actual sample sizes. Simulations show that, when total sample size is fixed, the proposed design can obtain greater power and/or cost smaller actual sample size than the traditional Bayesian sequential design. Finally, we apply the proposed method to a real data set and compare the results with the Bayesian sequential design without adaptive randomization in terms of sample sizes. The proposed method can further reduce required sample size. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Spatial distribution of psychotic disorders in an urban area of France: an ecological study.

    PubMed

    Pignon, Baptiste; Schürhoff, Franck; Baudin, Grégoire; Ferchiou, Aziz; Richard, Jean-Romain; Saba, Ghassen; Leboyer, Marion; Kirkbride, James B; Szöke, Andrei

    2016-05-18

    Previous analyses of neighbourhood variations of non-affective psychotic disorders (NAPD) have focused mainly on incidence. However, prevalence studies provide important insights on factors associated with disease evolution as well as for healthcare resource allocation. This study aimed to investigate the distribution of prevalent NAPD cases in an urban area in France. The number of cases in each neighbourhood was modelled as a function of potential confounders and ecological variables, namely: migrant density, economic deprivation and social fragmentation. This was modelled using statistical models of increasing complexity: frequentist models (using Poisson and negative binomial regressions), and several Bayesian models. For each model, assumptions validity were checked and compared as to how this fitted to the data, in order to test for possible spatial variation in prevalence. Data showed significant overdispersion (invalidating the Poisson regression model) and residual autocorrelation (suggesting the need to use Bayesian models). The best Bayesian model was Leroux's model (i.e. a model with both strong correlation between neighbouring areas and weaker correlation between areas further apart), with economic deprivation as an explanatory variable (OR = 1.13, 95% CI [1.02-1.25]). In comparison with frequentist methods, the Bayesian model showed a better fit. The number of cases showed non-random spatial distribution and was linked to economic deprivation.

  17. Bayesian estimation of dynamic matching function for U-V analysis in Japan

    NASA Astrophysics Data System (ADS)

    Kyo, Koki; Noda, Hideo; Kitagawa, Genshiro

    2012-05-01

    In this paper we propose a Bayesian method for analyzing unemployment dynamics. We derive a Beveridge curve for unemployment and vacancy (U-V) analysis from a Bayesian model based on a labor market matching function. In our framework, the efficiency of matching and the elasticities of new hiring with respect to unemployment and vacancy are regarded as time varying parameters. To construct a flexible model and obtain reasonable estimates in an underdetermined estimation problem, we treat the time varying parameters as random variables and introduce smoothness priors. The model is then described in a state space representation, enabling the parameter estimation to be carried out using Kalman filter and fixed interval smoothing. In such a representation, dynamic features of the cyclic unemployment rate and the structural-frictional unemployment rate can be accurately captured.

  18. Disease Mapping of Zero-excessive Mesothelioma Data in Flanders

    PubMed Central

    Neyens, Thomas; Lawson, Andrew B.; Kirby, Russell S.; Nuyts, Valerie; Watjou, Kevin; Aregay, Mehreteab; Carroll, Rachel; Nawrot, Tim S.; Faes, Christel

    2016-01-01

    Purpose To investigate the distribution of mesothelioma in Flanders using Bayesian disease mapping models that account for both an excess of zeros and overdispersion. Methods The numbers of newly diagnosed mesothelioma cases within all Flemish municipalities between 1999 and 2008 were obtained from the Belgian Cancer Registry. To deal with overdispersion, zero-inflation and geographical association, the hurdle combined model was proposed, which has three components: a Bernoulli zero-inflation mixture component to account for excess zeros, a gamma random effect to adjust for overdispersion and a normal conditional autoregressive random effect to attribute spatial association. This model was compared with other existing methods in literature. Results The results indicate that hurdle models with a random effects term accounting for extra-variance in the Bernoulli zero-inflation component fit the data better than hurdle models that do not take overdispersion in the occurrence of zeros into account. Furthermore, traditional models that do not take into account excessive zeros but contain at least one random effects term that models extra-variance in the counts have better fits compared to their hurdle counterparts. In other words, the extra-variability, due to an excess of zeros, can be accommodated by spatially structured and/or unstructured random effects in a Poisson model such that the hurdle mixture model is not necessary. Conclusions Models taking into account zero-inflation do not always provide better fits to data with excessive zeros than less complex models. In this study, a simple conditional autoregressive model identified a cluster in mesothelioma cases near a former asbestos processing plant (Kapelle-op-den-Bos). This observation is likely linked with historical local asbestos exposures. Future research will clarify this. PMID:27908590

  19. Disease mapping of zero-excessive mesothelioma data in Flanders.

    PubMed

    Neyens, Thomas; Lawson, Andrew B; Kirby, Russell S; Nuyts, Valerie; Watjou, Kevin; Aregay, Mehreteab; Carroll, Rachel; Nawrot, Tim S; Faes, Christel

    2017-01-01

    To investigate the distribution of mesothelioma in Flanders using Bayesian disease mapping models that account for both an excess of zeros and overdispersion. The numbers of newly diagnosed mesothelioma cases within all Flemish municipalities between 1999 and 2008 were obtained from the Belgian Cancer Registry. To deal with overdispersion, zero inflation, and geographical association, the hurdle combined model was proposed, which has three components: a Bernoulli zero-inflation mixture component to account for excess zeros, a gamma random effect to adjust for overdispersion, and a normal conditional autoregressive random effect to attribute spatial association. This model was compared with other existing methods in literature. The results indicate that hurdle models with a random effects term accounting for extra variance in the Bernoulli zero-inflation component fit the data better than hurdle models that do not take overdispersion in the occurrence of zeros into account. Furthermore, traditional models that do not take into account excessive zeros but contain at least one random effects term that models extra variance in the counts have better fits compared to their hurdle counterparts. In other words, the extra variability, due to an excess of zeros, can be accommodated by spatially structured and/or unstructured random effects in a Poisson model such that the hurdle mixture model is not necessary. Models taking into account zero inflation do not always provide better fits to data with excessive zeros than less complex models. In this study, a simple conditional autoregressive model identified a cluster in mesothelioma cases near a former asbestos processing plant (Kapelle-op-den-Bos). This observation is likely linked with historical local asbestos exposures. Future research will clarify this. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Multiscale hidden Markov models for photon-limited imaging

    NASA Astrophysics Data System (ADS)

    Nowak, Robert D.

    1999-06-01

    Photon-limited image analysis is often hindered by low signal-to-noise ratios. A novel Bayesian multiscale modeling and analysis method is developed in this paper to assist in these challenging situations. In addition to providing a very natural and useful framework for modeling an d processing images, Bayesian multiscale analysis is often much less computationally demanding compared to classical Markov random field models. This paper focuses on a probabilistic graph model called the multiscale hidden Markov model (MHMM), which captures the key inter-scale dependencies present in natural image intensities. The MHMM framework presented here is specifically designed for photon-limited imagin applications involving Poisson statistics, and applications to image intensity analysis are examined.

  1. Restricted spatial regression in practice: Geostatistical models, confounding, and robustness under model misspecification

    USGS Publications Warehouse

    Hanks, Ephraim M.; Schliep, Erin M.; Hooten, Mevin B.; Hoeting, Jennifer A.

    2015-01-01

    In spatial generalized linear mixed models (SGLMMs), covariates that are spatially smooth are often collinear with spatially smooth random effects. This phenomenon is known as spatial confounding and has been studied primarily in the case where the spatial support of the process being studied is discrete (e.g., areal spatial data). In this case, the most common approach suggested is restricted spatial regression (RSR) in which the spatial random effects are constrained to be orthogonal to the fixed effects. We consider spatial confounding and RSR in the geostatistical (continuous spatial support) setting. We show that RSR provides computational benefits relative to the confounded SGLMM, but that Bayesian credible intervals under RSR can be inappropriately narrow under model misspecification. We propose a posterior predictive approach to alleviating this potential problem and discuss the appropriateness of RSR in a variety of situations. We illustrate RSR and SGLMM approaches through simulation studies and an analysis of malaria frequencies in The Gambia, Africa.

  2. Evaluating impacts using a BACI design, ratios, and a Bayesian approach with a focus on restoration.

    PubMed

    Conner, Mary M; Saunders, W Carl; Bouwes, Nicolaas; Jordan, Chris

    2015-10-01

    Before-after-control-impact (BACI) designs are an effective method to evaluate natural and human-induced perturbations on ecological variables when treatment sites cannot be randomly chosen. While effect sizes of interest can be tested with frequentist methods, using Bayesian Markov chain Monte Carlo (MCMC) sampling methods, probabilities of effect sizes, such as a ≥20 % increase in density after restoration, can be directly estimated. Although BACI and Bayesian methods are used widely for assessing natural and human-induced impacts for field experiments, the application of hierarchal Bayesian modeling with MCMC sampling to BACI designs is less common. Here, we combine these approaches and extend the typical presentation of results with an easy to interpret ratio, which provides an answer to the main study question-"How much impact did a management action or natural perturbation have?" As an example of this approach, we evaluate the impact of a restoration project, which implemented beaver dam analogs, on survival and density of juvenile steelhead. Results indicated the probabilities of a ≥30 % increase were high for survival and density after the dams were installed, 0.88 and 0.99, respectively, while probabilities for a higher increase of ≥50 % were variable, 0.17 and 0.82, respectively. This approach demonstrates a useful extension of Bayesian methods that can easily be generalized to other study designs from simple (e.g., single factor ANOVA, paired t test) to more complicated block designs (e.g., crossover, split-plot). This approach is valuable for estimating the probabilities of restoration impacts or other management actions.

  3. Bayesian estimation of Karhunen–Loève expansions; A random subspace approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhary, Kenny; Najm, Habib N.

    One of the most widely-used statistical procedures for dimensionality reduction of high dimensional random fields is Principal Component Analysis (PCA), which is based on the Karhunen-Lo eve expansion (KLE) of a stochastic process with finite variance. The KLE is analogous to a Fourier series expansion for a random process, where the goal is to find an orthogonal transformation for the data such that the projection of the data onto this orthogonal subspace is optimal in the L 2 sense, i.e, which minimizes the mean square error. In practice, this orthogonal transformation is determined by performing an SVD (Singular Value Decomposition)more » on the sample covariance matrix or on the data matrix itself. Sampling error is typically ignored when quantifying the principal components, or, equivalently, basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE procedure, allowing one to obtain a probabilistic model on the principal components, which can account for inaccuracies due to limited sample size. The probabilistic model is built via Bayesian inference, from which the posterior becomes the matrix Bingham density over the space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on this space and then build a probabilistic Karhunen-Lo eve expansions over random subspaces to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this probabilistic procedure with a finite dimensional stochastic process inspired by Brownian motion.« less

  4. Bayesian estimation of Karhunen–Loève expansions; A random subspace approach

    DOE PAGES

    Chowdhary, Kenny; Najm, Habib N.

    2016-04-13

    One of the most widely-used statistical procedures for dimensionality reduction of high dimensional random fields is Principal Component Analysis (PCA), which is based on the Karhunen-Lo eve expansion (KLE) of a stochastic process with finite variance. The KLE is analogous to a Fourier series expansion for a random process, where the goal is to find an orthogonal transformation for the data such that the projection of the data onto this orthogonal subspace is optimal in the L 2 sense, i.e, which minimizes the mean square error. In practice, this orthogonal transformation is determined by performing an SVD (Singular Value Decomposition)more » on the sample covariance matrix or on the data matrix itself. Sampling error is typically ignored when quantifying the principal components, or, equivalently, basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE procedure, allowing one to obtain a probabilistic model on the principal components, which can account for inaccuracies due to limited sample size. The probabilistic model is built via Bayesian inference, from which the posterior becomes the matrix Bingham density over the space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on this space and then build a probabilistic Karhunen-Lo eve expansions over random subspaces to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this probabilistic procedure with a finite dimensional stochastic process inspired by Brownian motion.« less

  5. A novel super-resolution camera model

    NASA Astrophysics Data System (ADS)

    Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli

    2015-05-01

    Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.

  6. A Bayesian Framework of Uncertainties Integration in 3D Geological Model

    NASA Astrophysics Data System (ADS)

    Liang, D.; Liu, X.

    2017-12-01

    3D geological model can describe complicated geological phenomena in an intuitive way while its application may be limited by uncertain factors. Great progress has been made over the years, lots of studies decompose the uncertainties of geological model to analyze separately, while ignored the comprehensive impacts of multi-source uncertainties. Great progress has been made over the years, while lots of studies ignored the comprehensive impacts of multi-source uncertainties when analyzed them item by item from each source. To evaluate the synthetical uncertainty, we choose probability distribution to quantify uncertainty, and propose a bayesian framework of uncertainties integration. With this framework, we integrated data errors, spatial randomness, and cognitive information into posterior distribution to evaluate synthetical uncertainty of geological model. Uncertainties propagate and cumulate in modeling process, the gradual integration of multi-source uncertainty is a kind of simulation of the uncertainty propagation. Bayesian inference accomplishes uncertainty updating in modeling process. Maximum entropy principle makes a good effect on estimating prior probability distribution, which ensures the prior probability distribution subjecting to constraints supplied by the given information with minimum prejudice. In the end, we obtained a posterior distribution to evaluate synthetical uncertainty of geological model. This posterior distribution represents the synthetical impact of all the uncertain factors on the spatial structure of geological model. The framework provides a solution to evaluate synthetical impact on geological model of multi-source uncertainties and a thought to study uncertainty propagation mechanism in geological modeling.

  7. Markov Random Fields, Stochastic Quantization and Image Analysis

    DTIC Science & Technology

    1990-01-01

    Markov random fields based on the lattice Z2 have been extensively used in image analysis in a Bayesian framework as a-priori models for the...of Image Analysis can be given some fundamental justification then there is a remarkable connection between Probabilistic Image Analysis , Statistical Mechanics and Lattice-based Euclidean Quantum Field Theory.

  8. Comparing spatially varying coefficient models: a case study examining violent crime rates and their relationships to alcohol outlets and illegal drug arrests

    NASA Astrophysics Data System (ADS)

    Wheeler, David C.; Waller, Lance A.

    2009-03-01

    In this paper, we compare and contrast a Bayesian spatially varying coefficient process (SVCP) model with a geographically weighted regression (GWR) model for the estimation of the potentially spatially varying regression effects of alcohol outlets and illegal drug activity on violent crime in Houston, Texas. In addition, we focus on the inherent coefficient shrinkage properties of the Bayesian SVCP model as a way to address increased coefficient variance that follows from collinearity in GWR models. We outline the advantages of the Bayesian model in terms of reducing inflated coefficient variance, enhanced model flexibility, and more formal measuring of model uncertainty for prediction. We find spatially varying effects for alcohol outlets and drug violations, but the amount of variation depends on the type of model used. For the Bayesian model, this variation is controllable through the amount of prior influence placed on the variance of the coefficients. For example, the spatial pattern of coefficients is similar for the GWR and Bayesian models when a relatively large prior variance is used in the Bayesian model.

  9. On Models for Binomial Data with Random Numbers of Trials

    PubMed Central

    Comulada, W. Scott; Weiss, Robert E.

    2010-01-01

    Summary A binomial outcome is a count s of the number of successes out of the total number of independent trials n = s + f, where f is a count of the failures. The n are random variables not fixed by design in many studies. Joint modeling of (s, f) can provide additional insight into the science and into the probability π of success that cannot be directly incorporated by the logistic regression model. Observations where n = 0 are excluded from the binomial analysis yet may be important to understanding how π is influenced by covariates. Correlation between s and f may exist and be of direct interest. We propose Bayesian multivariate Poisson models for the bivariate response (s, f), correlated through random effects. We extend our models to the analysis of longitudinal and multivariate longitudinal binomial outcomes. Our methodology was motivated by two disparate examples, one from teratology and one from an HIV tertiary intervention study. PMID:17688514

  10. Bayesian calibration for forensic age estimation.

    PubMed

    Ferrante, Luigi; Skrami, Edlira; Gesuita, Rosaria; Cameriere, Roberto

    2015-05-10

    Forensic medicine is increasingly called upon to assess the age of individuals. Forensic age estimation is mostly required in relation to illegal immigration and identification of bodies or skeletal remains. A variety of age estimation methods are based on dental samples and use of regression models, where the age of an individual is predicted by morphological tooth changes that take place over time. From the medico-legal point of view, regression models, with age as the dependent random variable entail that age tends to be overestimated in the young and underestimated in the old. To overcome this bias, we describe a new full Bayesian calibration method (asymmetric Laplace Bayesian calibration) for forensic age estimation that uses asymmetric Laplace distribution as the probability model. The method was compared with three existing approaches (two Bayesian and a classical method) using simulated data. Although its accuracy was comparable with that of the other methods, the asymmetric Laplace Bayesian calibration appears to be significantly more reliable and robust in case of misspecification of the probability model. The proposed method was also applied to a real dataset of values of the pulp chamber of the right lower premolar measured on x-ray scans of individuals of known age. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Bayesian analysis of multi-state data with individual covariates for estimating genetic effects on demography

    USGS Publications Warehouse

    Converse, Sarah J.; Royle, J. Andrew; Urbanek, Richard P.

    2012-01-01

    Inbreeding depression is frequently a concern of managers interested in restoring endangered species. Decisions to reduce the potential for inbreeding depression by balancing genotypic contributions to reintroduced populations may exact a cost on long-term demographic performance of the population if those decisions result in reduced numbers of animals released and/or restriction of particularly successful genotypes (i.e., heritable traits of particular family lines). As part of an effort to restore a migratory flock of Whooping Cranes (Grus americana) to eastern North America using the offspring of captive breeders, we obtained a unique dataset which includes post-release mark-recapture data, as well as the pedigree of each released individual. We developed a Bayesian formulation of a multi-state model to analyze radio-telemetry, band-resight, and dead recovery data on reintroduced individuals, in order to track survival and breeding state transitions. We used studbook-based individual covariates to examine the comparative evidence for and degree of effects of inbreeding, genotype, and genotype quality on post-release survival of reintroduced individuals. We demonstrate implementation of the Bayesian multi-state model, which allows for the integration of imperfect detection, multiple data types, random effects, and individual- and time-dependent covariates. Our results provide only weak evidence for an effect of the quality of an individual's genotype in captivity on post-release survival as well as for an effect of inbreeding on post-release survival. We plan to integrate our results into a decision-analytic modeling framework that can explicitly examine tradeoffs between the effects of inbreeding and the effects of genotype and demographic stochasticity on population establishment.

  12. How People Use Social Information to Find out What to Want in the Paradigmatic Case of Inter-temporal Preferences

    PubMed Central

    Dolan, Raymond J.

    2016-01-01

    The weight with which a specific outcome feature contributes to preference quantifies a person’s ‘taste’ for that feature. However, far from being fixed personality characteristics, tastes are plastic. They tend to align, for example, with those of others even if such conformity is not rewarded. We hypothesised that people can be uncertain about their tastes. Personal tastes are therefore uncertain beliefs. People can thus learn about them by considering evidence, such as the preferences of relevant others, and then performing Bayesian updating. If a person’s choice variability reflects uncertainty, as in random-preference models, then a signature of Bayesian updating is that the degree of taste change should correlate with that person’s choice variability. Temporal discounting coefficients are an important example of taste–for patience. These coefficients quantify impulsivity, have good psychometric properties and can change upon observing others’ choices. We examined discounting preferences in a novel, large community study of 14–24 year olds. We assessed discounting behaviour, including decision variability, before and after participants observed another person’s choices. We found good evidence for taste uncertainty and for Bayesian taste updating. First, participants displayed decision variability which was better accounted for by a random-taste than by a response-noise model. Second, apparent taste shifts were well described by a Bayesian model taking into account taste uncertainty and the relevance of social information. Our findings have important neuroscientific, clinical and developmental significance. PMID:27447491

  13. Unsupervised Bayesian linear unmixing of gene expression microarrays.

    PubMed

    Bazot, Cécile; Dobigeon, Nicolas; Tourneret, Jean-Yves; Zaas, Aimee K; Ginsburg, Geoffrey S; Hero, Alfred O

    2013-03-19

    This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores collected during the study. Using a constrained model allows recovery of all the inflammatory genes in a single factor.

  14. A Bayesian Analysis of a Randomized Clinical Trial Comparing Antimetabolite Therapies for Non-Infectious Uveitis.

    PubMed

    Browne, Erica N; Rathinam, Sivakumar R; Kanakath, Anuradha; Thundikandy, Radhika; Babu, Manohar; Lietman, Thomas M; Acharya, Nisha R

    2017-02-01

    To conduct a Bayesian analysis of a randomized clinical trial (RCT) for non-infectious uveitis using expert opinion as a subjective prior belief. A RCT was conducted to determine which antimetabolite, methotrexate or mycophenolate mofetil, is more effective as an initial corticosteroid-sparing agent for the treatment of intermediate, posterior, and pan-uveitis. Before the release of trial results, expert opinion on the relative effectiveness of these two medications was collected via online survey. Members of the American Uveitis Society executive committee were invited to provide an estimate for the relative decrease in efficacy with a 95% credible interval (CrI). A prior probability distribution was created from experts' estimates. A Bayesian analysis was performed using the constructed expert prior probability distribution and the trial's primary outcome. A total of 11 of the 12 invited uveitis specialists provided estimates. Eight of 11 experts (73%) believed mycophenolate mofetil is more effective. The group prior belief was that the odds of treatment success for patients taking mycophenolate mofetil were 1.4-fold the odds of those taking methotrexate (95% CrI 0.03-45.0). The odds of treatment success with mycophenolate mofetil compared to methotrexate was 0.4 from the RCT (95% confidence interval 0.1-1.2) and 0.7 (95% CrI 0.2-1.7) from the Bayesian analysis. A Bayesian analysis combining expert belief with the trial's result did not indicate preference for one drug. However, the wide credible interval leaves open the possibility of a substantial treatment effect. This suggests clinical equipoise necessary to allow a larger, more definitive RCT.

  15. Bayesian modelling of household solid fuel use: insights towards designing effective interventions to promote fuel switching in Africa.

    PubMed

    Rehfuess, Eva A; Briggs, David J; Joffe, Mike; Best, Nicky

    2010-10-01

    Indoor air pollution from solid fuel use is a significant risk factor for acute lower respiratory infections among children in sub-Saharan Africa. Interventions that promote a switch to modern fuels hold a large health promise, but their effective design and implementation require an understanding of the web of upstream and proximal determinants of household fuel use. Using Demographic and Health Survey data for Benin, Kenya and Ethiopia together with Bayesian hierarchical and spatial modelling, this paper quantifies the impact of household-level factors on cooking fuel choice, assesses variation between communities and districts and discusses the likely nature of contextual effects. Household- and area-level characteristics appear to interact as determinants of cooking fuel choice. In all three countries, wealth and the educational attainment of women and men emerge as important; the nature of area-level factors varies between countries. In Benin, a two-level model with spatial community random effects best explains the data, pointing to an environmental explanation. In Ethiopia and Kenya, a three-level model with unstructured community and district random effects is selected, implying relatively autonomous economic and social areas. Area-level heterogeneity, indicated by large median odds ratios, appears to be responsible for a greater share of variation in the data than household-level factors. This may be an indication that fuel choice is to a considerable extent supply-driven rather than demand-driven. Consequently, interventions to promote fuel switching will carefully need to assess supply-side limitations and devise appropriate policy and programmatic approaches to overcome them. To our knowledge, this paper represents the first attempt to model the determinants of solid fuel use, highlighting socio-economic differences between households and, notably, the dramatic influence of contextual effects. It illustrates the potential that multilevel and spatial modelling approaches hold for understanding determinants of major public health problems in the developing world. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Rethinking human visual attention: spatial cueing effects and optimality of decisions by honeybees, monkeys and humans.

    PubMed

    Eckstein, Miguel P; Mack, Stephen C; Liston, Dorion B; Bogush, Lisa; Menzel, Randolf; Krauzlis, Richard J

    2013-06-07

    Visual attention is commonly studied by using visuo-spatial cues indicating probable locations of a target and assessing the effect of the validity of the cue on perceptual performance and its neural correlates. Here, we adapt a cueing task to measure spatial cueing effects on the decisions of honeybees and compare their behavior to that of humans and monkeys in a similarly structured two-alternative forced-choice perceptual task. Unlike the typical cueing paradigm in which the stimulus strength remains unchanged within a block of trials, for the monkey and human studies we randomized the contrast of the signal to simulate more real world conditions in which the organism is uncertain about the strength of the signal. A Bayesian ideal observer that weights sensory evidence from cued and uncued locations based on the cue validity to maximize overall performance is used as a benchmark of comparison against the three animals and other suboptimal models: probability matching, ignore the cue, always follow the cue, and an additive bias/single decision threshold model. We find that the cueing effect is pervasive across all three species but is smaller in size than that shown by the Bayesian ideal observer. Humans show a larger cueing effect than monkeys and bees show the smallest effect. The cueing effect and overall performance of the honeybees allows rejection of the models in which the bees are ignoring the cue, following the cue and disregarding stimuli to be discriminated, or adopting a probability matching strategy. Stimulus strength uncertainty also reduces the theoretically predicted variation in cueing effect with stimulus strength of an optimal Bayesian observer and diminishes the size of the cueing effect when stimulus strength is low. A more biologically plausible model that includes an additive bias to the sensory response from the cued location, although not mathematically equivalent to the optimal observer for the case stimulus strength uncertainty, can approximate the benefits of the more computationally complex optimal Bayesian model. We discuss the implications of our findings on the field's common conceptualization of covert visual attention in the cueing task and what aspects, if any, might be unique to humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Capturing changes in flood risk with Bayesian approaches for flood damage assessment

    NASA Astrophysics Data System (ADS)

    Vogel, Kristin; Schröter, Kai; Kreibich, Heidi; Thieken, Annegret; Müller, Meike; Sieg, Tobias; Laudan, Jonas; Kienzler, Sarah; Weise, Laura; Merz, Bruno; Scherbaum, Frank

    2016-04-01

    Flood risk is a function of hazard as well as of exposure and vulnerability. All three components are under change over space and time and have to be considered for reliable damage estimations and risk analyses, since this is the basis for an efficient, adaptable risk management. Hitherto, models for estimating flood damage are comparatively simple and cannot sufficiently account for changing conditions. The Bayesian network approach allows for a multivariate modeling of complex systems without relying on expert knowledge about physical constraints. In a Bayesian network each model component is considered to be a random variable. The way of interactions between those variables can be learned from observations or be defined by expert knowledge. Even a combination of both is possible. Moreover, the probabilistic framework captures uncertainties related to the prediction and provides a probability distribution for the damage instead of a point estimate. The graphical representation of Bayesian networks helps to study the change of probabilities for changing circumstances and may thus simplify the communication between scientists and public authorities. In the framework of the DFG-Research Training Group "NatRiskChange" we aim to develop Bayesian networks for flood damage and vulnerability assessments of residential buildings and companies under changing conditions. A Bayesian network learned from data, collected over the last 15 years in flooded regions in the Elbe and Danube catchments (Germany), reveals the impact of many variables like building characteristics, precaution and warning situation on flood damage to residential buildings. While the handling of incomplete and hybrid (discrete mixed with continuous) data are the most challenging issues in the study on residential buildings, a similar study, that focuses on the vulnerability of small to medium sized companies, bears new challenges. Relying on a much smaller data set for the determination of the model parameters, overly complex models should be avoided. A so called Markov Blanket approach aims at the identification of the most relevant factors and constructs a Bayesian network based on those findings. With our approach we want to exploit a major advantage of Bayesian networks which is their ability to consider dependencies not only pairwise, but to capture the joint effects and interactions of driving forces. Hence, the flood damage network does not only show the impact of precaution on the building damage separately, but also reveals the mutual effects of precaution and the quality of warning for a variety of flood settings. Thus, it allows for a consideration of changing conditions and different courses of action and forms a novel and valuable tool for decision support. This study is funded by the Deutsche Forschungsgemeinschaft (DFG) within the research training program GRK 2043/1 "NatRiskChange - Natural hazards and risks in a changing world" at the University of Potsdam.

  18. The Bayesian reader: explaining word recognition as an optimal Bayesian decision process.

    PubMed

    Norris, Dennis

    2006-04-01

    This article presents a theory of visual word recognition that assumes that, in the tasks of word identification, lexical decision, and semantic categorization, human readers behave as optimal Bayesian decision makers. This leads to the development of a computational model of word recognition, the Bayesian reader. The Bayesian reader successfully simulates some of the most significant data on human reading. The model accounts for the nature of the function relating word frequency to reaction time and identification threshold, the effects of neighborhood density and its interaction with frequency, and the variation in the pattern of neighborhood density effects seen in different experimental tasks. Both the general behavior of the model and the way the model predicts different patterns of results in different tasks follow entirely from the assumption that human readers approximate optimal Bayesian decision makers. ((c) 2006 APA, all rights reserved).

  19. Role of Statistical Random-Effects Linear Models in Personalized Medicine.

    PubMed

    Diaz, Francisco J; Yeh, Hung-Wen; de Leon, Jose

    2012-03-01

    Some empirical studies and recent developments in pharmacokinetic theory suggest that statistical random-effects linear models are valuable tools that allow describing simultaneously patient populations as a whole and patients as individuals. This remarkable characteristic indicates that these models may be useful in the development of personalized medicine, which aims at finding treatment regimes that are appropriate for particular patients, not just appropriate for the average patient. In fact, published developments show that random-effects linear models may provide a solid theoretical framework for drug dosage individualization in chronic diseases. In particular, individualized dosages computed with these models by means of an empirical Bayesian approach may produce better results than dosages computed with some methods routinely used in therapeutic drug monitoring. This is further supported by published empirical and theoretical findings that show that random effects linear models may provide accurate representations of phase III and IV steady-state pharmacokinetic data, and may be useful for dosage computations. These models have applications in the design of clinical algorithms for drug dosage individualization in chronic diseases; in the computation of dose correction factors; computation of the minimum number of blood samples from a patient that are necessary for calculating an optimal individualized drug dosage in therapeutic drug monitoring; measure of the clinical importance of clinical, demographic, environmental or genetic covariates; study of drug-drug interactions in clinical settings; the implementation of computational tools for web-site-based evidence farming; design of pharmacogenomic studies; and in the development of a pharmacological theory of dosage individualization.

  20. Development and comparison of Bayesian modularization method in uncertainty assessment of hydrological models

    NASA Astrophysics Data System (ADS)

    Li, L.; Xu, C.-Y.; Engeland, K.

    2012-04-01

    With respect to model calibration, parameter estimation and analysis of uncertainty sources, different approaches have been used in hydrological models. Bayesian method is one of the most widely used methods for uncertainty assessment of hydrological models, which incorporates different sources of information into a single analysis through Bayesian theorem. However, none of these applications can well treat the uncertainty in extreme flows of hydrological models' simulations. This study proposes a Bayesian modularization method approach in uncertainty assessment of conceptual hydrological models by considering the extreme flows. It includes a comprehensive comparison and evaluation of uncertainty assessments by a new Bayesian modularization method approach and traditional Bayesian models using the Metropolis Hasting (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions are used in combination with traditional Bayesian: the AR (1) plus Normal and time period independent model (Model 1), the AR (1) plus Normal and time period dependent model (Model 2) and the AR (1) plus multi-normal model (Model 3). The results reveal that (1) the simulations derived from Bayesian modularization method are more accurate with the highest Nash-Sutcliffe efficiency value, and (2) the Bayesian modularization method performs best in uncertainty estimates of entire flows and in terms of the application and computational efficiency. The study thus introduces a new approach for reducing the extreme flow's effect on the discharge uncertainty assessment of hydrological models via Bayesian. Keywords: extreme flow, uncertainty assessment, Bayesian modularization, hydrological model, WASMOD

  1. Bayesian Inference for Functional Dynamics Exploring in fMRI Data.

    PubMed

    Guo, Xuan; Liu, Bing; Chen, Le; Chen, Guantao; Pan, Yi; Zhang, Jing

    2016-01-01

    This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM), Bayesian Connectivity Change Point Model (BCCPM), and Dynamic Bayesian Variable Partition Model (DBVPM), and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.

  2. Bayesian inference in camera trapping studies for a class of spatial capture-recapture models

    USGS Publications Warehouse

    Royle, J. Andrew; Karanth, K. Ullas; Gopalaswamy, Arjun M.; Kumar, N. Samba

    2009-01-01

    We develop a class of models for inference about abundance or density using spatial capture-recapture data from studies based on camera trapping and related methods. The model is a hierarchical model composed of two components: a point process model describing the distribution of individuals in space (or their home range centers) and a model describing the observation of individuals in traps. We suppose that trap- and individual-specific capture probabilities are a function of distance between individual home range centers and trap locations. We show that the models can be regarded as generalized linear mixed models, where the individual home range centers are random effects. We adopt a Bayesian framework for inference under these models using a formulation based on data augmentation. We apply the models to camera trapping data on tigers from the Nagarahole Reserve, India, collected over 48 nights in 2006. For this study, 120 camera locations were used, but cameras were only operational at 30 locations during any given sample occasion. Movement of traps is common in many camera-trapping studies and represents an important feature of the observation model that we address explicitly in our application.

  3. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 1; Method and Uncertainties

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.

    2004-01-01

    A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating/drying profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and non-convective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud resolving model simulations, and from the Bayesian formulation itself. Synthetic rain rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in instantaneous rain rate estimates at 0.5 deg resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. These errors represent about 70-90% of the mean random deviation between collocated passive microwave and spaceborne radar rain rate estimates. The cumulative algorithm error in TMI estimates at monthly, 2.5 deg resolution is relatively small (less than 6% at 5 mm/day) compared to the random error due to infrequent satellite temporal sampling (8-35% at the same rain rate).

  4. Preferential sampling and Bayesian geostatistics: Statistical modeling and examples.

    PubMed

    Cecconi, Lorenzo; Grisotto, Laura; Catelan, Dolores; Lagazio, Corrado; Berrocal, Veronica; Biggeri, Annibale

    2016-08-01

    Preferential sampling refers to any situation in which the spatial process and the sampling locations are not stochastically independent. In this paper, we present two examples of geostatistical analysis in which the usual assumption of stochastic independence between the point process and the measurement process is violated. To account for preferential sampling, we specify a flexible and general Bayesian geostatistical model that includes a shared spatial random component. We apply the proposed model to two different case studies that allow us to highlight three different modeling and inferential aspects of geostatistical modeling under preferential sampling: (1) continuous or finite spatial sampling frame; (2) underlying causal model and relevant covariates; and (3) inferential goals related to mean prediction surface or prediction uncertainty. © The Author(s) 2016.

  5. Relationship between haemagglutination-inhibiting antibody titres and clinical protection against influenza: development and application of a bayesian random-effects model.

    PubMed

    Coudeville, Laurent; Bailleux, Fabrice; Riche, Benjamin; Megas, Françoise; Andre, Philippe; Ecochard, René

    2010-03-08

    Antibodies directed against haemagglutinin, measured by the haemagglutination inhibition (HI) assay are essential to protective immunity against influenza infection. An HI titre of 1:40 is generally accepted to correspond to a 50% reduction in the risk of contracting influenza in a susceptible population, but limited attempts have been made to further quantify the association between HI titre and protective efficacy. We present a model, using a meta-analytical approach, that estimates the level of clinical protection against influenza at any HI titre level. Source data were derived from a systematic literature review that identified 15 studies, representing a total of 5899 adult subjects and 1304 influenza cases with interval-censored information on HI titre. The parameters of the relationship between HI titre and clinical protection were estimated using Bayesian inference with a consideration of random effects and censorship in the available information. A significant and positive relationship between HI titre and clinical protection against influenza was observed in all tested models. This relationship was found to be similar irrespective of the type of viral strain (A or B) and the vaccination status of the individuals. Although limitations in the data used should not be overlooked, the relationship derived in this analysis provides a means to predict the efficacy of inactivated influenza vaccines when only immunogenicity data are available. This relationship can also be useful for comparing the efficacy of different influenza vaccines based on their immunological profile.

  6. A Bayesian Approach to the Paleomagnetic Conglomerate Test

    NASA Astrophysics Data System (ADS)

    Heslop, David; Roberts, Andrew P.

    2018-02-01

    The conglomerate test has served the paleomagnetic community for over 60 years as a means to detect remagnetizations. The test states that if a suite of clasts within a bed have uniformly random paleomagnetic directions, then the conglomerate cannot have experienced a pervasive event that remagnetized the clasts in the same direction. The current form of the conglomerate test is based on null hypothesis testing, which results in a binary "pass" (uniformly random directions) or "fail" (nonrandom directions) outcome. We have recast the conglomerate test in a Bayesian framework with the aim of providing more information concerning the level of support a given data set provides for a hypothesis of uniformly random paleomagnetic directions. Using this approach, we place the conglomerate test in a fully probabilistic framework that allows for inconclusive results when insufficient information is available to draw firm conclusions concerning the randomness or nonrandomness of directions. With our method, sample sets larger than those typically employed in paleomagnetism may be required to achieve strong support for a hypothesis of random directions. Given the potentially detrimental effect of unrecognized remagnetizations on paleomagnetic reconstructions, it is important to provide a means to draw statistically robust data-driven inferences. Our Bayesian analysis provides a means to do this for the conglomerate test.

  7. Bayesian spatiotemporal model of fMRI data using transfer functions.

    PubMed

    Quirós, Alicia; Diez, Raquel Montes; Wilson, Simon P

    2010-09-01

    This research describes a new Bayesian spatiotemporal model to analyse BOLD fMRI studies. In the temporal dimension, we describe the shape of the hemodynamic response function (HRF) with a transfer function model. The spatial continuity and local homogeneity of the evoked responses are modelled by a Gaussian Markov random field prior on the parameter indicating activations. The proposal constitutes an extension of the spatiotemporal model presented in a previous approach [Quirós, A., Montes Diez, R. and Gamerman, D., 2010. Bayesian spatiotemporal model of fMRI data, Neuroimage, 49: 442-456], offering more flexibility in the estimation of the HRF and computational advantages in the resulting MCMC algorithm. Simulations from the model are performed in order to ascertain the performance of the sampling scheme and the ability of the posterior to estimate model parameters, as well as to check the model sensitivity to signal to noise ratio. Results are shown on synthetic data and on a real data set from a block-design fMRI experiment. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  8. Selection of Polynomial Chaos Bases via Bayesian Model Uncertainty Methods with Applications to Sparse Approximation of PDEs with Stochastic Inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karagiannis, Georgios; Lin, Guang

    2014-02-15

    Generalized polynomial chaos (gPC) expansions allow the representation of the solution of a stochastic system as a series of polynomial terms. The number of gPC terms increases dramatically with the dimension of the random input variables. When the number of the gPC terms is larger than that of the available samples, a scenario that often occurs if the evaluations of the system are expensive, the evaluation of the gPC expansion can be inaccurate due to over-fitting. We propose a fully Bayesian approach that allows for global recovery of the stochastic solution, both in spacial and random domains, by coupling Bayesianmore » model uncertainty and regularization regression methods. It allows the evaluation of the PC coefficients on a grid of spacial points via (1) Bayesian model average or (2) medial probability model, and their construction as functions on the spacial domain via spline interpolation. The former accounts the model uncertainty and provides Bayes-optimal predictions; while the latter, additionally, provides a sparse representation of the solution by evaluating the expansion on a subset of dominating gPC bases when represented as a gPC expansion. Moreover, the method quantifies the importance of the gPC bases through inclusion probabilities. We design an MCMC sampler that evaluates all the unknown quantities without the need of ad-hoc techniques. The proposed method is suitable for, but not restricted to, problems whose stochastic solution is sparse at the stochastic level with respect to the gPC bases while the deterministic solver involved is expensive. We demonstrate the good performance of the proposed method and make comparisons with others on 1D, 14D and 40D in random space elliptic stochastic partial differential equations.« less

  9. Quantifying model-structure- and parameter-driven uncertainties in spring wheat phenology prediction with Bayesian analysis

    DOE PAGES

    Alderman, Phillip D.; Stanfill, Bryan

    2016-10-06

    Recent international efforts have brought renewed emphasis on the comparison of different agricultural systems models. Thus far, analysis of model-ensemble simulated results has not clearly differentiated between ensemble prediction uncertainties due to model structural differences per se and those due to parameter value uncertainties. Additionally, despite increasing use of Bayesian parameter estimation approaches with field-scale crop models, inadequate attention has been given to the full posterior distributions for estimated parameters. The objectives of this study were to quantify the impact of parameter value uncertainty on prediction uncertainty for modeling spring wheat phenology using Bayesian analysis and to assess the relativemore » contributions of model-structure-driven and parameter-value-driven uncertainty to overall prediction uncertainty. This study used a random walk Metropolis algorithm to estimate parameters for 30 spring wheat genotypes using nine phenology models based on multi-location trial data for days to heading and days to maturity. Across all cases, parameter-driven uncertainty accounted for between 19 and 52% of predictive uncertainty, while model-structure-driven uncertainty accounted for between 12 and 64%. Here, this study demonstrated the importance of quantifying both model-structure- and parameter-value-driven uncertainty when assessing overall prediction uncertainty in modeling spring wheat phenology. More generally, Bayesian parameter estimation provided a useful framework for quantifying and analyzing sources of prediction uncertainty.« less

  10. Comparison of random regression models with Legendre polynomials and linear splines for production traits and somatic cell score of Canadian Holstein cows.

    PubMed

    Bohmanova, J; Miglior, F; Jamrozik, J; Misztal, I; Sullivan, P G

    2008-09-01

    A random regression model with both random and fixed regressions fitted by Legendre polynomials of order 4 was compared with 3 alternative models fitting linear splines with 4, 5, or 6 knots. The effects common for all models were a herd-test-date effect, fixed regressions on days in milk (DIM) nested within region-age-season of calving class, and random regressions for additive genetic and permanent environmental effects. Data were test-day milk, fat and protein yields, and SCS recorded from 5 to 365 DIM during the first 3 lactations of Canadian Holstein cows. A random sample of 50 herds consisting of 96,756 test-day records was generated to estimate variance components within a Bayesian framework via Gibbs sampling. Two sets of genetic evaluations were subsequently carried out to investigate performance of the 4 models. Models were compared by graphical inspection of variance functions, goodness of fit, error of prediction of breeding values, and stability of estimated breeding values. Models with splines gave lower estimates of variances at extremes of lactations than the model with Legendre polynomials. Differences among models in goodness of fit measured by percentages of squared bias, correlations between predicted and observed records, and residual variances were small. The deviance information criterion favored the spline model with 6 knots. Smaller error of prediction and higher stability of estimated breeding values were achieved by using spline models with 5 and 6 knots compared with the model with Legendre polynomials. In general, the spline model with 6 knots had the best overall performance based upon the considered model comparison criteria.

  11. A Bayesian Analysis of a Randomized Clinical Trial Comparing Antimetabolite Therapies for Non-Infectious Uveitis

    PubMed Central

    Browne, Erica N; Rathinam, Sivakumar R; Kanakath, Anuradha; Thundikandy, Radhika; Babu, Manohar; Lietman, Thomas M; Acharya, Nisha R

    2017-01-01

    Purpose To conduct a Bayesian analysis of a randomized clinical trial (RCT) for non-infectious uveitis using expert opinion as a subjective prior belief. Methods A RCT was conducted to determine which antimetabolite, methotrexate or mycophenolate mofetil, is more effective as an initial corticosteroid-sparing agent for the treatment of intermediate, posterior, and pan- uveitis. Before the release of trial results, expert opinion on the relative effectiveness of these two medications was collected via online survey. Members of the American Uveitis Society executive committee were invited to provide an estimate for the relative decrease in efficacy with a 95% credible interval (CrI). A prior probability distribution was created from experts’ estimates. A Bayesian analysis was performed using the constructed expert prior probability distribution and the trial’s primary outcome. Results 11 of 12 invited uveitis specialists provided estimates. Eight of 11 experts (73%) believed mycophenolate mofetil is more effective. The group prior belief was that the odds of treatment success for patients taking mycophenolate mofetil were 1.4-fold the odds of those taking methotrexate (95% CrI 0.03 – 45.0). The odds of treatment success with mycophenolate mofetil compared to methotrexate was 0.4 from the RCT (95% confidence interval 0.1–1.2) and 0.7 (95% CrI 0.2–1.7) from the Bayesian analysis. Conclusions A Bayesian analysis combining expert belief with the trial’s result did not indicate preference for one drug. However, the wide credible interval leaves open the possibility of a substantial treatment effect. This suggests clinical equipoise necessary to allow a larger, more definitive RCT. PMID:27982726

  12. Optimizing the recovery efficiency of Finnish oil combating vessels in the Gulf of Finland using Bayesian Networks.

    PubMed

    Lehikoinen, Annukka; Luoma, Emilia; Mäntyniemi, Samu; Kuikka, Sakari

    2013-02-19

    Oil transport has greatly increased in the Gulf of Finland over the years, and risks of an oil accident occurring have risen. Thus, an effective oil combating strategy is needed. We developed a Bayesian Network (BN) to examine the recovery efficiency and optimal disposition of the Finnish oil combating vessels in the Gulf of Finland (GoF), Eastern Baltic Sea. Four alternative home harbors, five accident points, and ten oil combating vessels were included in the model to find the optimal disposition policy that would maximize the recovery efficiency. With this composition, the placement of the oil combating vessels seems not to have a significant effect on the recovery efficiency. The process seems to be strongly controlled by certain random factors independent of human action, e.g. wave height and stranding time of the oil. Therefore, the success of oil combating is rather uncertain, so it is also important to develop activities that aim for preventing accidents. We found that the model developed is suitable for this type of multidecision optimization. The methodology, results, and practices are further discussed.

  13. A study of finite mixture model: Bayesian approach on financial time series data

    NASA Astrophysics Data System (ADS)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir

    2014-07-01

    Recently, statistician have emphasized on the fitting finite mixture model by using Bayesian method. Finite mixture model is a mixture of distributions in modeling a statistical distribution meanwhile Bayesian method is a statistical method that use to fit the mixture model. Bayesian method is being used widely because it has asymptotic properties which provide remarkable result. In addition, Bayesian method also shows consistency characteristic which means the parameter estimates are close to the predictive distributions. In the present paper, the number of components for mixture model is studied by using Bayesian Information Criterion. Identify the number of component is important because it may lead to an invalid result. Later, the Bayesian method is utilized to fit the k-component mixture model in order to explore the relationship between rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia. Lastly, the results showed that there is a negative effect among rubber price and stock market price for all selected countries.

  14. Do Bayesian adaptive trials offer advantages for comparative effectiveness research? Protocol for the RE-ADAPT study

    PubMed Central

    Luce, Bryan R; Broglio, Kristine R; Ishak, K Jack; Mullins, C Daniel; Vanness, David J; Fleurence, Rachael; Saunders, Elijah; Davis, Barry R

    2013-01-01

    Background Randomized clinical trials, particularly for comparative effectiveness research (CER), are frequently criticized for being overly restrictive or untimely for health-care decision making. Purpose Our prospectively designed REsearch in ADAptive methods for Pragmatic Trials (RE-ADAPT) study is a ‘proof of concept’ to stimulate investment in Bayesian adaptive designs for future CER trials. Methods We will assess whether Bayesian adaptive designs offer potential efficiencies in CER by simulating a re-execution of the Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) study using actual data from ALLHAT. Results We prospectively define seven alternate designs consisting of various combinations of arm dropping, adaptive randomization, and early stopping and describe how these designs will be compared to the original ALLHAT design. We identify the one particular design that would have been executed, which incorporates early stopping and information-based adaptive randomization. Limitations While the simulation realistically emulates patient enrollment, interim analyses, and adaptive changes to design, it cannot incorporate key features like the involvement of data monitoring committee in making decisions about adaptive changes. Conclusion This article describes our analytic approach for RE-ADAPT. The next stage of the project is to conduct the re-execution analyses using the seven prespecified designs and the original ALLHAT data. PMID:23983160

  15. Modeling and Bayesian parameter estimation for shape memory alloy bending actuators

    NASA Astrophysics Data System (ADS)

    Crews, John H.; Smith, Ralph C.

    2012-04-01

    In this paper, we employ a homogenized energy model (HEM) for shape memory alloy (SMA) bending actuators. Additionally, we utilize a Bayesian method for quantifying parameter uncertainty. The system consists of a SMA wire attached to a flexible beam. As the actuator is heated, the beam bends, providing endoscopic motion. The model parameters are fit to experimental data using an ordinary least-squares approach. The uncertainty in the fit model parameters is then quantified using Markov Chain Monte Carlo (MCMC) methods. The MCMC algorithm provides bounds on the parameters, which will ultimately be used in robust control algorithms. One purpose of the paper is to test the feasibility of the Random Walk Metropolis algorithm, the MCMC method used here.

  16. Role of Statistical Random-Effects Linear Models in Personalized Medicine

    PubMed Central

    Diaz, Francisco J; Yeh, Hung-Wen; de Leon, Jose

    2012-01-01

    Some empirical studies and recent developments in pharmacokinetic theory suggest that statistical random-effects linear models are valuable tools that allow describing simultaneously patient populations as a whole and patients as individuals. This remarkable characteristic indicates that these models may be useful in the development of personalized medicine, which aims at finding treatment regimes that are appropriate for particular patients, not just appropriate for the average patient. In fact, published developments show that random-effects linear models may provide a solid theoretical framework for drug dosage individualization in chronic diseases. In particular, individualized dosages computed with these models by means of an empirical Bayesian approach may produce better results than dosages computed with some methods routinely used in therapeutic drug monitoring. This is further supported by published empirical and theoretical findings that show that random effects linear models may provide accurate representations of phase III and IV steady-state pharmacokinetic data, and may be useful for dosage computations. These models have applications in the design of clinical algorithms for drug dosage individualization in chronic diseases; in the computation of dose correction factors; computation of the minimum number of blood samples from a patient that are necessary for calculating an optimal individualized drug dosage in therapeutic drug monitoring; measure of the clinical importance of clinical, demographic, environmental or genetic covariates; study of drug-drug interactions in clinical settings; the implementation of computational tools for web-site-based evidence farming; design of pharmacogenomic studies; and in the development of a pharmacological theory of dosage individualization. PMID:23467392

  17. IMAGINE: Interstellar MAGnetic field INference Engine

    NASA Astrophysics Data System (ADS)

    Steininger, Theo

    2018-03-01

    IMAGINE (Interstellar MAGnetic field INference Engine) performs inference on generic parametric models of the Galaxy. The modular open source framework uses highly optimized tools and technology such as the MultiNest sampler (ascl:1109.006) and the information field theory framework NIFTy (ascl:1302.013) to create an instance of the Milky Way based on a set of parameters for physical observables, using Bayesian statistics to judge the mismatch between measured data and model prediction. The flexibility of the IMAGINE framework allows for simple refitting for newly available data sets and makes state-of-the-art Bayesian methods easily accessible particularly for random components of the Galactic magnetic field.

  18. Prediction of road accidents: A Bayesian hierarchical approach.

    PubMed

    Deublein, Markus; Schubert, Matthias; Adey, Bryan T; Köhler, Jochen; Faber, Michael H

    2013-03-01

    In this paper a novel methodology for the prediction of the occurrence of road accidents is presented. The methodology utilizes a combination of three statistical methods: (1) gamma-updating of the occurrence rates of injury accidents and injured road users, (2) hierarchical multivariate Poisson-lognormal regression analysis taking into account correlations amongst multiple dependent model response variables and effects of discrete accident count data e.g. over-dispersion, and (3) Bayesian inference algorithms, which are applied by means of data mining techniques supported by Bayesian Probabilistic Networks in order to represent non-linearity between risk indicating and model response variables, as well as different types of uncertainties which might be present in the development of the specific models. Prior Bayesian Probabilistic Networks are first established by means of multivariate regression analysis of the observed frequencies of the model response variables, e.g. the occurrence of an accident, and observed values of the risk indicating variables, e.g. degree of road curvature. Subsequently, parameter learning is done using updating algorithms, to determine the posterior predictive probability distributions of the model response variables, conditional on the values of the risk indicating variables. The methodology is illustrated through a case study using data of the Austrian rural motorway network. In the case study, on randomly selected road segments the methodology is used to produce a model to predict the expected number of accidents in which an injury has occurred and the expected number of light, severe and fatally injured road users. Additionally, the methodology is used for geo-referenced identification of road sections with increased occurrence probabilities of injury accident events on a road link between two Austrian cities. It is shown that the proposed methodology can be used to develop models to estimate the occurrence of road accidents for any road network provided that the required data are available. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. bnstruct: an R package for Bayesian Network structure learning in the presence of missing data.

    PubMed

    Franzin, Alberto; Sambo, Francesco; Di Camillo, Barbara

    2017-04-15

    A Bayesian Network is a probabilistic graphical model that encodes probabilistic dependencies between a set of random variables. We introduce bnstruct, an open source R package to (i) learn the structure and the parameters of a Bayesian Network from data in the presence of missing values and (ii) perform reasoning and inference on the learned Bayesian Networks. To the best of our knowledge, there is no other open source software that provides methods for all of these tasks, particularly the manipulation of missing data, which is a common situation in practice. The software is implemented in R and C and is available on CRAN under a GPL licence. francesco.sambo@unipd.it. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  20. Exploring unobserved heterogeneity in bicyclists' red-light running behaviors at different crossing facilities.

    PubMed

    Guo, Yanyong; Li, Zhibin; Wu, Yao; Xu, Chengcheng

    2018-06-01

    Bicyclists running the red light at crossing facilities increase the potential of colliding with motor vehicles. Exploring the contributing factors could improve the prediction of running red-light probability and develop countermeasures to reduce such behaviors. However, individuals could have unobserved heterogeneities in running a red light, which make the accurate prediction more challenging. Traditional models assume that factor parameters are fixed and cannot capture the varying impacts on red-light running behaviors. In this study, we employed the full Bayesian random parameters logistic regression approach to account for the unobserved heterogeneous effects. Two types of crossing facilities were considered which were the signalized intersection crosswalks and the road segment crosswalks. Electric and conventional bikes were distinguished in the modeling. Data were collected from 16 crosswalks in urban area of Nanjing, China. Factors such as individual characteristics, road geometric design, environmental features, and traffic variables were examined. Model comparison indicates that the full Bayesian random parameters logistic regression approach is statistically superior to the standard logistic regression model. More red-light runners are predicted at signalized intersection crosswalks than at road segment crosswalks. Factors affecting red-light running behaviors are gender, age, bike type, road width, presence of raised median, separation width, signal type, green ratio, bike and vehicle volume, and average vehicle speed. Factors associated with the unobserved heterogeneity are gender, bike type, signal type, separation width, and bike volume. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Incorporating external evidence in trial-based cost-effectiveness analyses: the use of resampling methods

    PubMed Central

    2014-01-01

    Background Cost-effectiveness analyses (CEAs) that use patient-specific data from a randomized controlled trial (RCT) are popular, yet such CEAs are criticized because they neglect to incorporate evidence external to the trial. A popular method for quantifying uncertainty in a RCT-based CEA is the bootstrap. The objective of the present study was to further expand the bootstrap method of RCT-based CEA for the incorporation of external evidence. Methods We utilize the Bayesian interpretation of the bootstrap and derive the distribution for the cost and effectiveness outcomes after observing the current RCT data and the external evidence. We propose simple modifications of the bootstrap for sampling from such posterior distributions. Results In a proof-of-concept case study, we use data from a clinical trial and incorporate external evidence on the effect size of treatments to illustrate the method in action. Compared to the parametric models of evidence synthesis, the proposed approach requires fewer distributional assumptions, does not require explicit modeling of the relation between external evidence and outcomes of interest, and is generally easier to implement. A drawback of this approach is potential computational inefficiency compared to the parametric Bayesian methods. Conclusions The bootstrap method of RCT-based CEA can be extended to incorporate external evidence, while preserving its appealing features such as no requirement for parametric modeling of cost and effectiveness outcomes. PMID:24888356

  2. Incorporating external evidence in trial-based cost-effectiveness analyses: the use of resampling methods.

    PubMed

    Sadatsafavi, Mohsen; Marra, Carlo; Aaron, Shawn; Bryan, Stirling

    2014-06-03

    Cost-effectiveness analyses (CEAs) that use patient-specific data from a randomized controlled trial (RCT) are popular, yet such CEAs are criticized because they neglect to incorporate evidence external to the trial. A popular method for quantifying uncertainty in a RCT-based CEA is the bootstrap. The objective of the present study was to further expand the bootstrap method of RCT-based CEA for the incorporation of external evidence. We utilize the Bayesian interpretation of the bootstrap and derive the distribution for the cost and effectiveness outcomes after observing the current RCT data and the external evidence. We propose simple modifications of the bootstrap for sampling from such posterior distributions. In a proof-of-concept case study, we use data from a clinical trial and incorporate external evidence on the effect size of treatments to illustrate the method in action. Compared to the parametric models of evidence synthesis, the proposed approach requires fewer distributional assumptions, does not require explicit modeling of the relation between external evidence and outcomes of interest, and is generally easier to implement. A drawback of this approach is potential computational inefficiency compared to the parametric Bayesian methods. The bootstrap method of RCT-based CEA can be extended to incorporate external evidence, while preserving its appealing features such as no requirement for parametric modeling of cost and effectiveness outcomes.

  3. Bayesian Estimation of Random Coefficient Dynamic Factor Models

    ERIC Educational Resources Information Center

    Song, Hairong; Ferrer, Emilio

    2012-01-01

    Dynamic factor models (DFMs) have typically been applied to multivariate time series data collected from a single unit of study, such as a single individual or dyad. The goal of DFMs application is to capture dynamics of multivariate systems. When multiple units are available, however, DFMs are not suited to capture variations in dynamics across…

  4. Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism

    PubMed Central

    Johnston, Iain G; Burgstaller, Joerg P; Havlicek, Vitezslav; Kolbe, Thomas; Rülicke, Thomas; Brem, Gottfried; Poulton, Jo; Jones, Nick S

    2015-01-01

    Dangerous damage to mitochondrial DNA (mtDNA) can be ameliorated during mammalian development through a highly debated mechanism called the mtDNA bottleneck. Uncertainty surrounding this process limits our ability to address inherited mtDNA diseases. We produce a new, physically motivated, generalisable theoretical model for mtDNA populations during development, allowing the first statistical comparison of proposed bottleneck mechanisms. Using approximate Bayesian computation and mouse data, we find most statistical support for a combination of binomial partitioning of mtDNAs at cell divisions and random mtDNA turnover, meaning that the debated exact magnitude of mtDNA copy number depletion is flexible. New experimental measurements from a wild-derived mtDNA pairing in mice confirm the theoretical predictions of this model. We analytically solve a mathematical description of this mechanism, computing probabilities of mtDNA disease onset, efficacy of clinical sampling strategies, and effects of potential dynamic interventions, thus developing a quantitative and experimentally-supported stochastic theory of the bottleneck. DOI: http://dx.doi.org/10.7554/eLife.07464.001 PMID:26035426

  5. Underestimation of Variance of Predicted Health Utilities Derived from Multiattribute Utility Instruments.

    PubMed

    Chan, Kelvin K W; Xie, Feng; Willan, Andrew R; Pullenayegum, Eleanor M

    2017-04-01

    Parameter uncertainty in value sets of multiattribute utility-based instruments (MAUIs) has received little attention previously. This false precision leads to underestimation of the uncertainty of the results of cost-effectiveness analyses. The aim of this study is to examine the use of multiple imputation as a method to account for this uncertainty of MAUI scoring algorithms. We fitted a Bayesian model with random effects for respondents and health states to the data from the original US EQ-5D-3L valuation study, thereby estimating the uncertainty in the EQ-5D-3L scoring algorithm. We applied these results to EQ-5D-3L data from the Commonwealth Fund (CWF) Survey for Sick Adults ( n = 3958), comparing the standard error of the estimated mean utility in the CWF population using the predictive distribution from the Bayesian mixed-effect model (i.e., incorporating parameter uncertainty in the value set) with the standard error of the estimated mean utilities based on multiple imputation and the standard error using the conventional approach of using MAUI (i.e., ignoring uncertainty in the value set). The mean utility in the CWF population based on the predictive distribution of the Bayesian model was 0.827 with a standard error (SE) of 0.011. When utilities were derived using the conventional approach, the estimated mean utility was 0.827 with an SE of 0.003, which is only 25% of the SE based on the full predictive distribution of the mixed-effect model. Using multiple imputation with 20 imputed sets, the mean utility was 0.828 with an SE of 0.011, which is similar to the SE based on the full predictive distribution. Ignoring uncertainty of the predicted health utilities derived from MAUIs could lead to substantial underestimation of the variance of mean utilities. Multiple imputation corrects for this underestimation so that the results of cost-effectiveness analyses using MAUIs can report the correct degree of uncertainty.

  6. Relationship between haemagglutination-inhibiting antibody titres and clinical protection against influenza: development and application of a bayesian random-effects model

    PubMed Central

    2010-01-01

    Background Antibodies directed against haemagglutinin, measured by the haemagglutination inhibition (HI) assay are essential to protective immunity against influenza infection. An HI titre of 1:40 is generally accepted to correspond to a 50% reduction in the risk of contracting influenza in a susceptible population, but limited attempts have been made to further quantify the association between HI titre and protective efficacy. Methods We present a model, using a meta-analytical approach, that estimates the level of clinical protection against influenza at any HI titre level. Source data were derived from a systematic literature review that identified 15 studies, representing a total of 5899 adult subjects and 1304 influenza cases with interval-censored information on HI titre. The parameters of the relationship between HI titre and clinical protection were estimated using Bayesian inference with a consideration of random effects and censorship in the available information. Results A significant and positive relationship between HI titre and clinical protection against influenza was observed in all tested models. This relationship was found to be similar irrespective of the type of viral strain (A or B) and the vaccination status of the individuals. Conclusion Although limitations in the data used should not be overlooked, the relationship derived in this analysis provides a means to predict the efficacy of inactivated influenza vaccines when only immunogenicity data are available. This relationship can also be useful for comparing the efficacy of different influenza vaccines based on their immunological profile. PMID:20210985

  7. Probabilistic inference using linear Gaussian importance sampling for hybrid Bayesian networks

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Chang, K. C.

    2005-05-01

    Probabilistic inference for Bayesian networks is in general NP-hard using either exact algorithms or approximate methods. However, for very complex networks, only the approximate methods such as stochastic sampling could be used to provide a solution given any time constraint. There are several simulation methods currently available. They include logic sampling (the first proposed stochastic method for Bayesian networks, the likelihood weighting algorithm) the most commonly used simulation method because of its simplicity and efficiency, the Markov blanket scoring method, and the importance sampling algorithm. In this paper, we first briefly review and compare these available simulation methods, then we propose an improved importance sampling algorithm called linear Gaussian importance sampling algorithm for general hybrid model (LGIS). LGIS is aimed for hybrid Bayesian networks consisting of both discrete and continuous random variables with arbitrary distributions. It uses linear function and Gaussian additive noise to approximate the true conditional probability distribution for continuous variable given both its parents and evidence in a Bayesian network. One of the most important features of the newly developed method is that it can adaptively learn the optimal important function from the previous samples. We test the inference performance of LGIS using a 16-node linear Gaussian model and a 6-node general hybrid model. The performance comparison with other well-known methods such as Junction tree (JT) and likelihood weighting (LW) shows that LGIS-GHM is very promising.

  8. Bayesian hierarchical modeling for subject-level response classification in peptide microarray immunoassays

    PubMed Central

    Imholte, Gregory; Gottardo, Raphael

    2017-01-01

    Summary The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g. envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay’s many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects’ immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial datasets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses. PMID:27061097

  9. Iterative updating of model error for Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Calvetti, Daniela; Dunlop, Matthew; Somersalo, Erkki; Stuart, Andrew

    2018-02-01

    In computational inverse problems, it is common that a detailed and accurate forward model is approximated by a computationally less challenging substitute. The model reduction may be necessary to meet constraints in computing time when optimization algorithms are used to find a single estimate, or to speed up Markov chain Monte Carlo (MCMC) calculations in the Bayesian framework. The use of an approximate model introduces a discrepancy, or modeling error, that may have a detrimental effect on the solution of the ill-posed inverse problem, or it may severely distort the estimate of the posterior distribution. In the Bayesian paradigm, the modeling error can be considered as a random variable, and by using an estimate of the probability distribution of the unknown, one may estimate the probability distribution of the modeling error and incorporate it into the inversion. We introduce an algorithm which iterates this idea to update the distribution of the model error, leading to a sequence of posterior distributions that are demonstrated empirically to capture the underlying truth with increasing accuracy. Since the algorithm is not based on rejections, it requires only limited full model evaluations. We show analytically that, in the linear Gaussian case, the algorithm converges geometrically fast with respect to the number of iterations when the data is finite dimensional. For more general models, we introduce particle approximations of the iteratively generated sequence of distributions; we also prove that each element of the sequence converges in the large particle limit under a simplifying assumption. We show numerically that, as in the linear case, rapid convergence occurs with respect to the number of iterations. Additionally, we show through computed examples that point estimates obtained from this iterative algorithm are superior to those obtained by neglecting the model error.

  10. Uncertainty aggregation and reduction in structure-material performance prediction

    NASA Astrophysics Data System (ADS)

    Hu, Zhen; Mahadevan, Sankaran; Ao, Dan

    2018-02-01

    An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.

  11. A Bayesian mixture model for missing data in marine mammal growth analysis

    PubMed Central

    Shotwell, Mary E.; McFee, Wayne E.; Slate, Elizabeth H.

    2016-01-01

    Much of what is known about bottle nose dolphin (Tursiops truncatus) anatomy and physiology is based on necropsies from stranding events. Measurements of total body length, total body mass, and age are used to estimate growth. It is more feasible to retrieve and transport smaller animals for total body mass measurement than larger animals, introducing a systematic bias in sampling. Adverse weather events, volunteer availability, and other unforeseen circumstances also contribute to incomplete measurement. We have developed a Bayesian mixture model to describe growth in detected stranded animals using data from both those that are fully measured and those not fully measured. Our approach uses a shared random effect to link the missingness mechanism (i.e. full/partial measurement) to distinct growth curves in the fully and partially measured populations, thereby enabling drawing of strength for estimation. We use simulation to compare our model to complete case analysis and two common multiple imputation methods according to model mean square error. Results indicate that our mixture model provides better fit both when the two populations are present and when they are not. The feasibility and utility of our new method is demonstrated by application to South Carolina strandings data. PMID:28503080

  12. Random regression models using Legendre polynomials or linear splines for test-day milk yield of dairy Gyr (Bos indicus) cattle.

    PubMed

    Pereira, R J; Bignardi, A B; El Faro, L; Verneque, R S; Vercesi Filho, A E; Albuquerque, L G

    2013-01-01

    Studies investigating the use of random regression models for genetic evaluation of milk production in Zebu cattle are scarce. In this study, 59,744 test-day milk yield records from 7,810 first lactations of purebred dairy Gyr (Bos indicus) and crossbred (dairy Gyr × Holstein) cows were used to compare random regression models in which additive genetic and permanent environmental effects were modeled using orthogonal Legendre polynomials or linear spline functions. Residual variances were modeled considering 1, 5, or 10 classes of days in milk. Five classes fitted the changes in residual variances over the lactation adequately and were used for model comparison. The model that fitted linear spline functions with 6 knots provided the lowest sum of residual variances across lactation. On the other hand, according to the deviance information criterion (DIC) and bayesian information criterion (BIC), a model using third-order and fourth-order Legendre polynomials for additive genetic and permanent environmental effects, respectively, provided the best fit. However, the high rank correlation (0.998) between this model and that applying third-order Legendre polynomials for additive genetic and permanent environmental effects, indicates that, in practice, the same bulls would be selected by both models. The last model, which is less parameterized, is a parsimonious option for fitting dairy Gyr breed test-day milk yield records. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. A two-stage model in a Bayesian framework to estimate a survival endpoint in the presence of confounding by indication.

    PubMed

    Bellera, Carine; Proust-Lima, Cécile; Joseph, Lawrence; Richaud, Pierre; Taylor, Jeremy; Sandler, Howard; Hanley, James; Mathoulin-Pélissier, Simone

    2018-04-01

    Background Biomarker series can indicate disease progression and predict clinical endpoints. When a treatment is prescribed depending on the biomarker, confounding by indication might be introduced if the treatment modifies the marker profile and risk of failure. Objective Our aim was to highlight the flexibility of a two-stage model fitted within a Bayesian Markov Chain Monte Carlo framework. For this purpose, we monitored the prostate-specific antigens in prostate cancer patients treated with external beam radiation therapy. In the presence of rising prostate-specific antigens after external beam radiation therapy, salvage hormone therapy can be prescribed to reduce both the prostate-specific antigens concentration and the risk of clinical failure, an illustration of confounding by indication. We focused on the assessment of the prognostic value of hormone therapy and prostate-specific antigens trajectory on the risk of failure. Methods We used a two-stage model within a Bayesian framework to assess the role of the prostate-specific antigens profile on clinical failure while accounting for a secondary treatment prescribed by indication. We modeled prostate-specific antigens using a hierarchical piecewise linear trajectory with a random changepoint. Residual prostate-specific antigens variability was expressed as a function of prostate-specific antigens concentration. Covariates in the survival model included hormone therapy, baseline characteristics, and individual predictions of the prostate-specific antigens nadir and timing and prostate-specific antigens slopes before and after the nadir as provided by the longitudinal process. Results We showed positive associations between an increased prostate-specific antigens nadir, an earlier changepoint and a steeper post-nadir slope with an increased risk of failure. Importantly, we highlighted a significant benefit of hormone therapy, an effect that was not observed when the prostate-specific antigens trajectory was not accounted for in the survival model. Conclusion Our modeling strategy was particularly flexible and accounted for multiple complex features of longitudinal and survival data, including the presence of a random changepoint and a time-dependent covariate.

  14. Response-Order Effects in Survey Methods: A Randomized Controlled Crossover Study in the Context of Sport Injury Prevention.

    PubMed

    Chan, Derwin K; Ivarsson, Andreas; Stenling, Andreas; Yang, Sophie X; Chatzisarantis, Nikos L; Hagger, Martin S

    2015-12-01

    Consistency tendency is characterized by the propensity for participants responding to subsequent items in a survey consistent with their responses to previous items. This method effect might contaminate the results of sport psychology surveys using cross-sectional design. We present a randomized controlled crossover study examining the effect of consistency tendency on the motivational pathway (i.e., autonomy support → autonomous motivation → intention) of self-determination theory in the context of sport injury prevention. Athletes from Sweden (N = 341) responded to the survey printed in either low interitem distance (IID; consistency tendency likely) or high IID (consistency tendency suppressed) on two separate occasions, with a one-week interim period. Participants were randomly allocated into two groups, and they received the survey of different IID at each occasion. Bayesian structural equation modeling showed that low IID condition had stronger parameter estimates than high IID condition, but the differences were not statistically significant.

  15. Conducting indirect-treatment-comparison and network-meta-analysis studies: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 2.

    PubMed

    Hoaglin, David C; Hawkins, Neil; Jansen, Jeroen P; Scott, David A; Itzler, Robbin; Cappelleri, Joseph C; Boersma, Cornelis; Thompson, David; Larholt, Kay M; Diaz, Mireya; Barrett, Annabel

    2011-06-01

    Evidence-based health care decision making requires comparison of all relevant competing interventions. In the absence of randomized controlled trials involving a direct comparison of all treatments of interest, indirect treatment comparisons and network meta-analysis provide useful evidence for judiciously selecting the best treatment(s). Mixed treatment comparisons, a special case of network meta-analysis, combine direct evidence and indirect evidence for particular pairwise comparisons, thereby synthesizing a greater share of the available evidence than traditional meta-analysis. This report from the International Society for Pharmacoeconomics and Outcomes Research Indirect Treatment Comparisons Good Research Practices Task Force provides guidance on technical aspects of conducting network meta-analyses (our use of this term includes most methods that involve meta-analysis in the context of a network of evidence). We start with a discussion of strategies for developing networks of evidence. Next we briefly review assumptions of network meta-analysis. Then we focus on the statistical analysis of the data: objectives, models (fixed-effects and random-effects), frequentist versus Bayesian approaches, and model validation. A checklist highlights key components of network meta-analysis, and substantial examples illustrate indirect treatment comparisons (both frequentist and Bayesian approaches) and network meta-analysis. A further section discusses eight key areas for future research. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  16. Polynomial order selection in random regression models via penalizing adaptively the likelihood.

    PubMed

    Corrales, J D; Munilla, S; Cantet, R J C

    2015-08-01

    Orthogonal Legendre polynomials (LP) are used to model the shape of additive genetic and permanent environmental effects in random regression models (RRM). Frequently, the Akaike (AIC) and the Bayesian (BIC) information criteria are employed to select LP order. However, it has been theoretically shown that neither AIC nor BIC is simultaneously optimal in terms of consistency and efficiency. Thus, the goal was to introduce a method, 'penalizing adaptively the likelihood' (PAL), as a criterion to select LP order in RRM. Four simulated data sets and real data (60,513 records, 6675 Colombian Holstein cows) were employed. Nested models were fitted to the data, and AIC, BIC and PAL were calculated for all of them. Results showed that PAL and BIC identified with probability of one the true LP order for the additive genetic and permanent environmental effects, but AIC tended to favour over parameterized models. Conversely, when the true model was unknown, PAL selected the best model with higher probability than AIC. In the latter case, BIC never favoured the best model. To summarize, PAL selected a correct model order regardless of whether the 'true' model was within the set of candidates. © 2015 Blackwell Verlag GmbH.

  17. Bayesian flood forecasting methods: A review

    NASA Astrophysics Data System (ADS)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been developed and widely applied, but there is still room for improvements. Future research in the context of Bayesian flood forecasting should be on assimilation of various sources of newly available information and improvement of predictive performance assessment methods.

  18. Modelling changes in small area disability free life expectancy: trends in London wards between 2001 and 2011.

    PubMed

    Congdon, Peter

    2014-12-20

    Existing analyses of trends in disability free life expectancy (DFLE) are mainly at aggregate level (national or broad regional). However, major differences in DFLE, and trends in these expectancies, exist between different neighbourhoods within regions, so supporting a small area perspective. However, this raises issues regarding the stability of conventional life table estimation methods at small area scales. This paper advocates a Bayesian borrowing strength technique to model trends in mortality and disability differences across 625 small areas in London, using illness data from the 2001 and 2011 population Censuses, and deaths data for two periods centred on the Census years. From this analysis, estimates of total life expectancy and DFLE are obtained. The spatio-temporal modelling perspective allows assessment of whether significant compression or expansion of morbidity has occurred in each small area. Appropriate models involve random effects that recognise correlation and interaction effects over relevant dimensions of the observed deaths and illness data (areas, ages), as well as major spatial trends (e.g. gradients in health and mortality according to area deprivation category). Whilst borrowing strength is a primary consideration (and demonstrated by raised precision for estimated life expectancies), so also is model parsimony. Therefore, pure borrowing strength models are compared with models allowing selection of random age-area interaction effects using a spike-slab prior, and in fact borrowing strength combined with random effects selection provides better fit. Copyright © 2014 John Wiley & Sons, Ltd.

  19. NIMROD: a program for inference via a normal approximation of the posterior in models with random effects based on ordinary differential equations.

    PubMed

    Prague, Mélanie; Commenges, Daniel; Guedj, Jérémie; Drylewicz, Julia; Thiébaut, Rodolphe

    2013-08-01

    Models based on ordinary differential equations (ODE) are widespread tools for describing dynamical systems. In biomedical sciences, data from each subject can be sparse making difficult to precisely estimate individual parameters by standard non-linear regression but information can often be gained from between-subjects variability. This makes natural the use of mixed-effects models to estimate population parameters. Although the maximum likelihood approach is a valuable option, identifiability issues favour Bayesian approaches which can incorporate prior knowledge in a flexible way. However, the combination of difficulties coming from the ODE system and from the presence of random effects raises a major numerical challenge. Computations can be simplified by making a normal approximation of the posterior to find the maximum of the posterior distribution (MAP). Here we present the NIMROD program (normal approximation inference in models with random effects based on ordinary differential equations) devoted to the MAP estimation in ODE models. We describe the specific implemented features such as convergence criteria and an approximation of the leave-one-out cross-validation to assess the model quality of fit. In pharmacokinetics models, first, we evaluate the properties of this algorithm and compare it with FOCE and MCMC algorithms in simulations. Then, we illustrate NIMROD use on Amprenavir pharmacokinetics data from the PUZZLE clinical trial in HIV infected patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Comparing models for quantitative risk assessment: an application to the European Registry of foreign body injuries in children.

    PubMed

    Berchialla, Paola; Scarinzi, Cecilia; Snidero, Silvia; Gregori, Dario

    2016-08-01

    Risk Assessment is the systematic study of decisions subject to uncertain consequences. An increasing interest has been focused on modeling techniques like Bayesian Networks since their capability of (1) combining in the probabilistic framework different type of evidence including both expert judgments and objective data; (2) overturning previous beliefs in the light of the new information being received and (3) making predictions even with incomplete data. In this work, we proposed a comparison among Bayesian Networks and other classical Quantitative Risk Assessment techniques such as Neural Networks, Classification Trees, Random Forests and Logistic Regression models. Hybrid approaches, combining both Classification Trees and Bayesian Networks, were also considered. Among Bayesian Networks, a clear distinction between purely data-driven approach and combination of expert knowledge with objective data is made. The aim of this paper consists in evaluating among this models which best can be applied, in the framework of Quantitative Risk Assessment, to assess the safety of children who are exposed to the risk of inhalation/insertion/aspiration of consumer products. The issue of preventing injuries in children is of paramount importance, in particular where product design is involved: quantifying the risk associated to product characteristics can be of great usefulness in addressing the product safety design regulation. Data of the European Registry of Foreign Bodies Injuries formed the starting evidence for risk assessment. Results showed that Bayesian Networks appeared to have both the ease of interpretability and accuracy in making prediction, even if simpler models like logistic regression still performed well. © The Author(s) 2013.

  1. Online Variational Bayesian Filtering-Based Mobile Target Tracking in Wireless Sensor Networks

    PubMed Central

    Zhou, Bingpeng; Chen, Qingchun; Li, Tiffany Jing; Xiao, Pei

    2014-01-01

    The received signal strength (RSS)-based online tracking for a mobile node in wireless sensor networks (WSNs) is investigated in this paper. Firstly, a multi-layer dynamic Bayesian network (MDBN) is introduced to characterize the target mobility with either directional or undirected movement. In particular, it is proposed to employ the Wishart distribution to approximate the time-varying RSS measurement precision's randomness due to the target movement. It is shown that the proposed MDBN offers a more general analysis model via incorporating the underlying statistical information of both the target movement and observations, which can be utilized to improve the online tracking capability by exploiting the Bayesian statistics. Secondly, based on the MDBN model, a mean-field variational Bayesian filtering (VBF) algorithm is developed to realize the online tracking of a mobile target in the presence of nonlinear observations and time-varying RSS precision, wherein the traditional Bayesian filtering scheme cannot be directly employed. Thirdly, a joint optimization between the real-time velocity and its prior expectation is proposed to enable online velocity tracking in the proposed online tacking scheme. Finally, the associated Bayesian Cramer–Rao Lower Bound (BCRLB) analysis and numerical simulations are conducted. Our analysis unveils that, by exploiting the potential state information via the general MDBN model, the proposed VBF algorithm provides a promising solution to the online tracking of a mobile node in WSNs. In addition, it is shown that the final tracking accuracy linearly scales with its expectation when the RSS measurement precision is time-varying. PMID:25393784

  2. Construction of monitoring model and algorithm design on passenger security during shipping based on improved Bayesian network.

    PubMed

    Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng

    2014-01-01

    A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping.

  3. Construction of Monitoring Model and Algorithm Design on Passenger Security during Shipping Based on Improved Bayesian Network

    PubMed Central

    Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng

    2014-01-01

    A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping. PMID:25254227

  4. Combined N-of-1 trials to investigate mexiletine in non-dystrophic myotonia using a Bayesian approach; study rationale and protocol.

    PubMed

    Stunnenberg, Bas C; Woertman, Willem; Raaphorst, Joost; Statland, Jeffrey M; Griggs, Robert C; Timmermans, Janneke; Saris, Christiaan G; Schouwenberg, Bas J; Groenewoud, Hans M; Stegeman, Dick F; van Engelen, Baziel G M; Drost, Gea; van der Wilt, Gert Jan

    2015-03-25

    To obtain evidence for the clinical and cost-effectiveness of treatments for patients with rare diseases is a challenge. Non-dystrophic myotonia (NDM) is a group of inherited, rare muscle diseases characterized by muscle stiffness. The reimbursement of mexiletine, the expert opinion drug for NDM, has been discontinued in some countries due to a lack of independent randomized controlled trials (RCTs). It remains unclear however, which concessions can be accepted towards the level 1 evidence needed for coverage decisions, in rare diseases. Considering the large number of rare diseases with a lack of treatment evidence, more experience with innovative trial designs is needed. Both NDM and mexiletine are well suited for an N-of-1 trial design. A Bayesian approach allows for the combination of N-of-1 trials, which enables the assessment of outcomes on the patient and group level simultaneously. We will combine 30 individual, double-blind, randomized, placebo-controlled N-of-1 trials of mexiletine (600 mg daily) vs. placebo in genetically confirmed NDM patients using hierarchical Bayesian modeling. Our results will be compared and combined with the main results of an international cross-over RCT (mexiletine vs. placebo in NDM) published in 2012 that will be used as an informative prior. Similar criteria of eligibility, treatment regimen, end-points and measurement instruments are employed as used in the international cross-over RCT. The treatment of patients with NDM with mexiletine offers a unique opportunity to compare outcomes and efficiency of novel N-of-1 trial-based designs and conventional approaches in producing evidence of clinical and cost-effectiveness of treatments for patients with rare diseases. ClinicalTrials.gov Identifier: NCT02045667.

  5. A Bayesian Model for the Estimation of Latent Interaction and Quadratic Effects When Latent Variables Are Non-Normally Distributed

    ERIC Educational Resources Information Center

    Kelava, Augustin; Nagengast, Benjamin

    2012-01-01

    Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we present a Bayesian model for the estimation of latent nonlinear effects when the latent…

  6. Application of hierarchical Bayesian unmixing models in river sediment source apportionment

    NASA Astrophysics Data System (ADS)

    Blake, Will; Smith, Hugh; Navas, Ana; Bodé, Samuel; Goddard, Rupert; Zou Kuzyk, Zou; Lennard, Amy; Lobb, David; Owens, Phil; Palazon, Leticia; Petticrew, Ellen; Gaspar, Leticia; Stock, Brian; Boeckx, Pacsal; Semmens, Brice

    2016-04-01

    Fingerprinting and unmixing concepts are used widely across environmental disciplines for forensic evaluation of pollutant sources. In aquatic and marine systems, this includes tracking the source of organic and inorganic pollutants in water and linking problem sediment to soil erosion and land use sources. It is, however, the particular complexity of ecological systems that has driven creation of the most sophisticated mixing models, primarily to (i) evaluate diet composition in complex ecological food webs, (ii) inform population structure and (iii) explore animal movement. In the context of the new hierarchical Bayesian unmixing model, MIXSIAR, developed to characterise intra-population niche variation in ecological systems, we evaluate the linkage between ecological 'prey' and 'consumer' concepts and river basin sediment 'source' and sediment 'mixtures' to exemplify the value of ecological modelling tools to river basin science. Recent studies have outlined advantages presented by Bayesian unmixing approaches in handling complex source and mixture datasets while dealing appropriately with uncertainty in parameter probability distributions. MixSIAR is unique in that it allows individual fixed and random effects associated with mixture hierarchy, i.e. factors that might exert an influence on model outcome for mixture groups, to be explored within the source-receptor framework. This offers new and powerful ways of interpreting river basin apportionment data. In this contribution, key components of the model are evaluated in the context of common experimental designs for sediment fingerprinting studies namely simple, nested and distributed catchment sampling programmes. Illustrative examples using geochemical and compound specific stable isotope datasets are presented and used to discuss best practice with specific attention to (1) the tracer selection process, (2) incorporation of fixed effects relating to sample timeframe and sediment type in the modelling process, (3) deriving and using informative priors in sediment fingerprinting context and (4) transparency of the process and replication of model results by other users.

  7. Improving phylogenetic analyses by incorporating additional information from genetic sequence databases.

    PubMed

    Liang, Li-Jung; Weiss, Robert E; Redelings, Benjamin; Suchard, Marc A

    2009-10-01

    Statistical analyses of phylogenetic data culminate in uncertain estimates of underlying model parameters. Lack of additional data hinders the ability to reduce this uncertainty, as the original phylogenetic dataset is often complete, containing the entire gene or genome information available for the given set of taxa. Informative priors in a Bayesian analysis can reduce posterior uncertainty; however, publicly available phylogenetic software specifies vague priors for model parameters by default. We build objective and informative priors using hierarchical random effect models that combine additional datasets whose parameters are not of direct interest but are similar to the analysis of interest. We propose principled statistical methods that permit more precise parameter estimates in phylogenetic analyses by creating informative priors for parameters of interest. Using additional sequence datasets from our lab or public databases, we construct a fully Bayesian semiparametric hierarchical model to combine datasets. A dynamic iteratively reweighted Markov chain Monte Carlo algorithm conveniently recycles posterior samples from the individual analyses. We demonstrate the value of our approach by examining the insertion-deletion (indel) process in the enolase gene across the Tree of Life using the phylogenetic software BALI-PHY; we incorporate prior information about indels from 82 curated alignments downloaded from the BAliBASE database.

  8. A Bayesian Multilevel Model for Microcystin Prediction in ...

    EPA Pesticide Factsheets

    The frequency of cyanobacteria blooms in North American lakes is increasing. A major concernwith rising cyanobacteria blooms is microcystin, a common cyanobacterial hepatotoxin. Toexplore the conditions that promote high microcystin concentrations, we analyzed the US EPANational Lake Assessment (NLA) dataset collected in the summer of 2007. The NLA datasetis reported for nine eco-regions. We used the results of random forest modeling as a means ofvariable selection from which we developed a Bayesian multilevel model of microcystin concentrations.Model parameters under a multilevel modeling framework are eco-region specific, butthey are also assumed to be exchangeable across eco-regions for broad continental scaling. Theexchangeability assumption ensures that both the common patterns and eco-region specific featureswill be reflected in the model. Furthermore, the method incorporates appropriate estimatesof uncertainty. Our preliminary results show associations between microcystin and turbidity, totalnutrients, and N:P ratios. The NLA 2012 will be used for Bayesian updating. The results willhelp develop management strategies to alleviate microcystin impacts and improve lake quality. This work provides a probabilistic framework for predicting microcystin presences in lakes. It would allow for insights to be made about how changes in nutrient concentrations could potentially change toxin levels.

  9. Three-Dimensional Bayesian Geostatistical Aquifer Characterization at the Hanford 300 Area using Tracer Test Data

    NASA Astrophysics Data System (ADS)

    Chen, X.; Murakami, H.; Hahn, M. S.; Hammond, G. E.; Rockhold, M. L.; Rubin, Y.

    2010-12-01

    Tracer testing under natural or forced gradient flow provides useful information for characterizing subsurface properties, by monitoring and modeling the tracer plume migration in a heterogeneous aquifer. At the Hanford 300 Area, non-reactive tracer experiments, in addition to constant-rate injection tests and electromagnetic borehole flowmeter (EBF) profiling, were conducted to characterize the heterogeneous hydraulic conductivity field. A Bayesian data assimilation technique, method of anchored distributions (MAD), is applied to assimilate the experimental tracer test data and to infer the three-dimensional heterogeneous structure of the hydraulic conductivity in the saturated zone of the Hanford formation. In this study, the prior information of the underlying random hydraulic conductivity field was obtained from previous field characterization efforts using the constant-rate injection tests and the EBF data. The posterior distribution of the random field is obtained by further conditioning the field on the temporal moments of tracer breakthrough curves at various observation wells. The parallel three-dimensional flow and transport code PFLOTRAN is implemented to cope with the highly transient flow boundary conditions at the site and to meet the computational demand of the proposed method. The validation results show that the field conditioned on the tracer test data better reproduces the tracer transport behavior compared to the field characterized previously without the tracer test data. A synthetic study proves that the proposed method can effectively assimilate tracer test data to capture the essential spatial heterogeneity of the three-dimensional hydraulic conductivity field. These characterization results will improve conceptual models developed for the site, including reactive transport models. The study successfully demonstrates the capability of MAD to assimilate multi-scale multi-type field data within a consistent Bayesian framework. The MAD framework can potentially be applied to combine geophysical data with other types of data in site characterization.

  10. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization.

    PubMed

    Nishio, Mizuho; Nishizawa, Mitsuo; Sugiyama, Osamu; Kojima, Ryosuke; Yakami, Masahiro; Kuroda, Tomohiro; Togashi, Kaori

    2018-01-01

    We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoost) as machine learning algorithms, and (iii) effectiveness of parameter optimization using Bayesian optimization and random search. Data on 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of the local binary pattern was used for calculating a feature vector. SVM or XGBoost was trained using the feature vector and its corresponding label. Tree Parzen Estimator (TPE) was used as Bayesian optimization for parameters of SVM and XGBoost. Random search was done for comparison with TPE. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost was 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. Bayesian optimization of SVM and XGBoost parameters was more efficient than random search. Based on observer study, AUC values of two board-certified radiologists were 0.898 and 0.822. The results show that diagnostic accuracy of our CADx system was comparable to that of radiologists with respect to classifying lung nodules.

  11. Genetic parameters for carcass traits and body weight using a Bayesian approach in the Canchim cattle.

    PubMed

    Meirelles, S L C; Mokry, F B; Espasandín, A C; Dias, M A D; Baena, M M; de A Regitano, L C

    2016-06-10

    Correlation between genetic parameters and factors such as backfat thickness (BFT), rib eye area (REA), and body weight (BW) were estimated for Canchim beef cattle raised in natural pastures of Brazil. Data from 1648 animals were analyzed using multi-trait (BFT, REA, and BW) animal models by the Bayesian approach. This model included the effects of contemporary group, age, and individual heterozygosity as covariates. In addition, direct additive genetic and random residual effects were also analyzed. Heritability estimated for BFT (0.16), REA (0.50), and BW (0.44) indicated their potential for genetic improvements and response to selection processes. Furthermore, genetic correlations between BW and the remaining traits were high (P > 0.50), suggesting that selection for BW could improve REA and BFT. On the other hand, genetic correlation between BFT and REA was low (P = 0.39 ± 0.17), and included considerable variations, suggesting that these traits can be jointly included as selection criteria without influencing each other. We found that REA and BFT responded to the selection processes, as measured by ultrasound. Therefore, selection for yearling weight results in changes in REA and BFT.

  12. Bayesian truncation errors in chiral effective field theory: model checking and accounting for correlations

    NASA Astrophysics Data System (ADS)

    Melendez, Jordan; Wesolowski, Sarah; Furnstahl, Dick

    2017-09-01

    Chiral effective field theory (EFT) predictions are necessarily truncated at some order in the EFT expansion, which induces an error that must be quantified for robust statistical comparisons to experiment. A Bayesian model yields posterior probability distribution functions for these errors based on expectations of naturalness encoded in Bayesian priors and the observed order-by-order convergence pattern of the EFT. As a general example of a statistical approach to truncation errors, the model was applied to chiral EFT for neutron-proton scattering using various semi-local potentials of Epelbaum, Krebs, and Meißner (EKM). Here we discuss how our model can learn correlation information from the data and how to perform Bayesian model checking to validate that the EFT is working as advertised. Supported in part by NSF PHY-1614460 and DOE NUCLEI SciDAC DE-SC0008533.

  13. A general framework for the use of logistic regression models in meta-analysis.

    PubMed

    Simmonds, Mark C; Higgins, Julian Pt

    2016-12-01

    Where individual participant data are available for every randomised trial in a meta-analysis of dichotomous event outcomes, "one-stage" random-effects logistic regression models have been proposed as a way to analyse these data. Such models can also be used even when individual participant data are not available and we have only summary contingency table data. One benefit of this one-stage regression model over conventional meta-analysis methods is that it maximises the correct binomial likelihood for the data and so does not require the common assumption that effect estimates are normally distributed. A second benefit of using this model is that it may be applied, with only minor modification, in a range of meta-analytic scenarios, including meta-regression, network meta-analyses and meta-analyses of diagnostic test accuracy. This single model can potentially replace the variety of often complex methods used in these areas. This paper considers, with a range of meta-analysis examples, how random-effects logistic regression models may be used in a number of different types of meta-analyses. This one-stage approach is compared with widely used meta-analysis methods including Bayesian network meta-analysis and the bivariate and hierarchical summary receiver operating characteristic (ROC) models for meta-analyses of diagnostic test accuracy. © The Author(s) 2014.

  14. Clarifying the debate on population-based screening for breast cancer with mammography

    PubMed Central

    Chen, Tony Hsiu-Hsi; Yen, Amy Ming-Fang; Fann, Jean Ching-Yuan; Gordon, Paula; Chen, Sam Li-Sheng; Chiu, Sherry Yueh-Hsia; Hsu, Chen-Yang; Chang, King-Jen; Lee, Won-Chul; Yeoh, Khay Guan; Saito, Hiroshi; Promthet, Supannee; Hamashima, Chisato; Maidin, Alimin; Robinson, Fredie; Zhao, Li-Zhong

    2017-01-01

    Abstract Background: The recent controversy about using mammography to screen for breast cancer based on randomized controlled trials over 3 decades in Western countries has not only eclipsed the paradigm of evidence-based medicine, but also puts health decision-makers in countries where breast cancer screening is still being considered in a dilemma to adopt or abandon such a well-established screening modality. Methods: We reanalyzed the empirical data from the Health Insurance Plan trial in 1963 to the UK age trial in 1991 and their follow-up data published until 2015. We first performed Bayesian conjugated meta-analyses on the heterogeneity of attendance rate, sensitivity, and over-detection and their impacts on advanced stage breast cancer and death from breast cancer across trials using Bayesian Poisson fixed- and random-effect regression model. Bayesian meta-analysis of causal model was then developed to assess a cascade of causal relationships regarding the impact of both attendance and sensitivity on 2 main outcomes. Results: The causes of heterogeneity responsible for the disparities across the trials were clearly manifested in 3 components. The attendance rate ranged from 61.3% to 90.4%. The sensitivity estimates show substantial variation from 57.26% to 87.97% but improved with time from 64% in 1963 to 82% in 1980 when Bayesian conjugated meta-analysis was conducted in chronological order. The percentage of over-detection shows a wide range from 0% to 28%, adjusting for long lead-time. The impacts of the attendance rate and sensitivity on the 2 main outcomes were statistically significant. Causal inference made by linking these causal relationships with emphasis on the heterogeneity of the attendance rate and sensitivity accounted for the variation in the reduction of advanced breast cancer (none-30%) and of mortality (none-31%). We estimated a 33% (95% CI: 24–42%) and 13% (95% CI: 6–20%) breast cancer mortality reduction for the best scenario (90% attendance rate and 95% sensitivity) and the poor scenario (30% attendance rate and 55% sensitivity), respectively. Conclusion: Elucidating the scenarios from high to low performance and learning from the experiences of these trials helps screening policy-makers contemplate on how to avoid errors made in ineffective studies and emulate the effective studies to save women lives. PMID:28099330

  15. Bayesian Hierarchical Random Intercept Model Based on Three Parameter Gamma Distribution

    NASA Astrophysics Data System (ADS)

    Wirawati, Ika; Iriawan, Nur; Irhamah

    2017-06-01

    Hierarchical data structures are common throughout many areas of research. Beforehand, the existence of this type of data was less noticed in the analysis. The appropriate statistical analysis to handle this type of data is the hierarchical linear model (HLM). This article will focus only on random intercept model (RIM), as a subclass of HLM. This model assumes that the intercept of models in the lowest level are varied among those models, and their slopes are fixed. The differences of intercepts were suspected affected by some variables in the upper level. These intercepts, therefore, are regressed against those upper level variables as predictors. The purpose of this paper would demonstrate a proven work of the proposed two level RIM of the modeling on per capita household expenditure in Maluku Utara, which has five characteristics in the first level and three characteristics of districts/cities in the second level. The per capita household expenditure data in the first level were captured by the three parameters Gamma distribution. The model, therefore, would be more complex due to interaction of many parameters for representing the hierarchical structure and distribution pattern of the data. To simplify the estimation processes of parameters, the computational Bayesian method couple with Markov Chain Monte Carlo (MCMC) algorithm and its Gibbs Sampling are employed.

  16. Hybrid ICA-Bayesian network approach reveals distinct effective connectivity differences in schizophrenia.

    PubMed

    Kim, D; Burge, J; Lane, T; Pearlson, G D; Kiehl, K A; Calhoun, V D

    2008-10-01

    We utilized a discrete dynamic Bayesian network (dDBN) approach (Burge, J., Lane, T., Link, H., Qiu, S., Clark, V.P., 2007. Discrete dynamic Bayesian network analysis of fMRI data. Hum Brain Mapp.) to determine differences in brain regions between patients with schizophrenia and healthy controls on a measure of effective connectivity, termed the approximate conditional likelihood score (ACL) (Burge, J., Lane, T., 2005. Learning Class-Discriminative Dynamic Bayesian Networks. Proceedings of the International Conference on Machine Learning, Bonn, Germany, pp. 97-104.). The ACL score represents a class-discriminative measure of effective connectivity by measuring the relative likelihood of the correlation between brain regions in one group versus another. The algorithm is capable of finding non-linear relationships between brain regions because it uses discrete rather than continuous values and attempts to model temporal relationships with a first-order Markov and stationary assumption constraint (Papoulis, A., 1991. Probability, random variables, and stochastic processes. McGraw-Hill, New York.). Since Bayesian networks are overly sensitive to noisy data, we introduced an independent component analysis (ICA) filtering approach that attempted to reduce the noise found in fMRI data by unmixing the raw datasets into a set of independent spatial component maps. Components that represented noise were removed and the remaining components reconstructed into the dimensions of the original fMRI datasets. We applied the dDBN algorithm to a group of 35 patients with schizophrenia and 35 matched healthy controls using an ICA filtered and unfiltered approach. We determined that filtering the data significantly improved the magnitude of the ACL score. Patients showed the greatest ACL scores in several regions, most markedly the cerebellar vermis and hemispheres. Our findings suggest that schizophrenia patients exhibit weaker connectivity than healthy controls in multiple regions, including bilateral temporal, frontal, and cerebellar regions during an auditory paradigm.

  17. Using structural equation modeling for network meta-analysis.

    PubMed

    Tu, Yu-Kang; Wu, Yun-Chun

    2017-07-14

    Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison. SEM provides a very flexible framework for univariate and multivariate meta-analysis, and its potential as a powerful tool for advanced meta-analysis is still to be explored.

  18. Joint genome-wide prediction in several populations accounting for randomness of genotypes: A hierarchical Bayes approach. I: Multivariate Gaussian priors for marker effects and derivation of the joint probability mass function of genotypes.

    PubMed

    Martínez, Carlos Alberto; Khare, Kshitij; Banerjee, Arunava; Elzo, Mauricio A

    2017-03-21

    It is important to consider heterogeneity of marker effects and allelic frequencies in across population genome-wide prediction studies. Moreover, all regression models used in genome-wide prediction overlook randomness of genotypes. In this study, a family of hierarchical Bayesian models to perform across population genome-wide prediction modeling genotypes as random variables and allowing population-specific effects for each marker was developed. Models shared a common structure and differed in the priors used and the assumption about residual variances (homogeneous or heterogeneous). Randomness of genotypes was accounted for by deriving the joint probability mass function of marker genotypes conditional on allelic frequencies and pedigree information. As a consequence, these models incorporated kinship and genotypic information that not only permitted to account for heterogeneity of allelic frequencies, but also to include individuals with missing genotypes at some or all loci without the need for previous imputation. This was possible because the non-observed fraction of the design matrix was treated as an unknown model parameter. For each model, a simpler version ignoring population structure, but still accounting for randomness of genotypes was proposed. Implementation of these models and computation of some criteria for model comparison were illustrated using two simulated datasets. Theoretical and computational issues along with possible applications, extensions and refinements were discussed. Some features of the models developed in this study make them promising for genome-wide prediction, the use of information contained in the probability distribution of genotypes is perhaps the most appealing. Further studies to assess the performance of the models proposed here and also to compare them with conventional models used in genome-wide prediction are needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Blind Bayesian restoration of adaptive optics telescope images using generalized Gaussian Markov random field models

    NASA Astrophysics Data System (ADS)

    Jeffs, Brian D.; Christou, Julian C.

    1998-09-01

    This paper addresses post processing for resolution enhancement of sequences of short exposure adaptive optics (AO) images of space objects. The unknown residual blur is removed using Bayesian maximum a posteriori blind image restoration techniques. In the problem formulation, both the true image and the unknown blur psf's are represented by the flexible generalized Gaussian Markov random field (GGMRF) model. The GGMRF probability density function provides a natural mechanism for expressing available prior information about the image and blur. Incorporating such prior knowledge in the deconvolution optimization is crucial for the success of blind restoration algorithms. For example, space objects often contain sharp edge boundaries and geometric structures, while the residual blur psf in the corresponding partially corrected AO image is spectrally band limited, and exhibits while the residual blur psf in the corresponding partially corrected AO image is spectrally band limited, and exhibits smoothed, random , texture-like features on a peaked central core. By properly choosing parameters, GGMRF models can accurately represent both the blur psf and the object, and serve to regularize the deconvolution problem. These two GGMRF models also serve as discriminator functions to separate blur and object in the solution. Algorithm performance is demonstrated with examples from synthetic AO images. Results indicate significant resolution enhancement when applied to partially corrected AO images. An efficient computational algorithm is described.

  20. A Bayesian model for time-to-event data with informative censoring

    PubMed Central

    Kaciroti, Niko A.; Raghunathan, Trivellore E.; Taylor, Jeremy M. G.; Julius, Stevo

    2012-01-01

    Randomized trials with dropouts or censored data and discrete time-to-event type outcomes are frequently analyzed using the Kaplan–Meier or product limit (PL) estimation method. However, the PL method assumes that the censoring mechanism is noninformative and when this assumption is violated, the inferences may not be valid. We propose an expanded PL method using a Bayesian framework to incorporate informative censoring mechanism and perform sensitivity analysis on estimates of the cumulative incidence curves. The expanded method uses a model, which can be viewed as a pattern mixture model, where odds for having an event during the follow-up interval (tk−1,tk], conditional on being at risk at tk−1, differ across the patterns of missing data. The sensitivity parameters relate the odds of an event, between subjects from a missing-data pattern with the observed subjects for each interval. The large number of the sensitivity parameters is reduced by considering them as random and assumed to follow a log-normal distribution with prespecified mean and variance. Then we vary the mean and variance to explore sensitivity of inferences. The missing at random (MAR) mechanism is a special case of the expanded model, thus allowing exploration of the sensitivity to inferences as departures from the inferences under the MAR assumption. The proposed approach is applied to data from the TRial Of Preventing HYpertension. PMID:22223746

  1. A multivariate spatial mixture model for areal data: examining regional differences in standardized test scores

    PubMed Central

    Neelon, Brian; Gelfand, Alan E.; Miranda, Marie Lynn

    2013-01-01

    Summary Researchers in the health and social sciences often wish to examine joint spatial patterns for two or more related outcomes. Examples include infant birth weight and gestational length, psychosocial and behavioral indices, and educational test scores from different cognitive domains. We propose a multivariate spatial mixture model for the joint analysis of continuous individual-level outcomes that are referenced to areal units. The responses are modeled as a finite mixture of multivariate normals, which accommodates a wide range of marginal response distributions and allows investigators to examine covariate effects within subpopulations of interest. The model has a hierarchical structure built at the individual level (i.e., individuals are nested within areal units), and thus incorporates both individual- and areal-level predictors as well as spatial random effects for each mixture component. Conditional autoregressive (CAR) priors on the random effects provide spatial smoothing and allow the shape of the multivariate distribution to vary flexibly across geographic regions. We adopt a Bayesian modeling approach and develop an efficient Markov chain Monte Carlo model fitting algorithm that relies primarily on closed-form full conditionals. We use the model to explore geographic patterns in end-of-grade math and reading test scores among school-age children in North Carolina. PMID:26401059

  2. A Measure of Systems Engineering Effectiveness in Government Acquisition of Complex Information Systems: A Bayesian Belief Network-Based Approach

    ERIC Educational Resources Information Center

    Doskey, Steven Craig

    2014-01-01

    This research presents an innovative means of gauging Systems Engineering effectiveness through a Systems Engineering Relative Effectiveness Index (SE REI) model. The SE REI model uses a Bayesian Belief Network to map causal relationships in government acquisitions of Complex Information Systems (CIS), enabling practitioners to identify and…

  3. Multivariate longitudinal data analysis with mixed effects hidden Markov models.

    PubMed

    Raffa, Jesse D; Dubin, Joel A

    2015-09-01

    Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random effects between multiple longitudinal responses. This approach was motivated by a smoking cessation clinical trial, where a bivariate longitudinal response involving both a continuous and a binomial response was collected for each participant to monitor smoking behavior. A Bayesian method using Markov chain Monte Carlo is used. Comparison of separate univariate response models to the bivariate response models was undertaken. Our methods are demonstrated on the smoking cessation clinical trial dataset, and properties of our approach are examined through extensive simulation studies. © 2015, The International Biometric Society.

  4. Comparison Between Linear and Non-parametric Regression Models for Genome-Enabled Prediction in Wheat

    PubMed Central

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-01-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882

  5. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.

    PubMed

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-12-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.

  6. Development of a clinical decision model for thyroid nodules.

    PubMed

    Stojadinovic, Alexander; Peoples, George E; Libutti, Steven K; Henry, Leonard R; Eberhardt, John; Howard, Robin S; Gur, David; Elster, Eric A; Nissan, Aviram

    2009-08-10

    Thyroid nodules represent a common problem brought to medical attention. Four to seven percent of the United States adult population (10-18 million people) has a palpable thyroid nodule, however the majority (>95%) of thyroid nodules are benign. While, fine needle aspiration remains the most cost effective and accurate diagnostic tool for thyroid nodules in current practice, over 20% of patients undergoing FNA of a thyroid nodule have indeterminate cytology (follicular neoplasm) with associated malignancy risk prevalence of 20-30%. These patients require thyroid lobectomy/isthmusectomy purely for the purpose of attaining a definitive diagnosis. Given that the majority (70-80%) of these patients have benign surgical pathology, thyroidectomy in these patients is conducted principally with diagnostic intent. Clinical models predictive of malignancy risk are needed to support treatment decisions in patients with thyroid nodules in order to reduce morbidity associated with unnecessary diagnostic surgery. Data were analyzed from a completed prospective cohort trial conducted over a 4-year period involving 216 patients with thyroid nodules undergoing ultrasound (US), electrical impedance scanning (EIS) and fine needle aspiration cytology (FNA) prior to thyroidectomy. A Bayesian model was designed to predict malignancy in thyroid nodules based on multivariate dependence relationships between independent covariates. Ten-fold cross-validation was performed to estimate classifier error wherein the data set was randomized into ten separate and unique train and test sets consisting of a training set (90% of records) and a test set (10% of records). A receiver-operating-characteristics (ROC) curve of these predictions and area under the curve (AUC) were calculated to determine model robustness for predicting malignancy in thyroid nodules. Thyroid nodule size, FNA cytology, US and EIS characteristics were highly predictive of malignancy. Cross validation of the model created with Bayesian Network Analysis effectively predicted malignancy [AUC = 0.88 (95%CI: 0.82-0.94)] in thyroid nodules. The positive and negative predictive values of the model are 83% (95%CI: 76%-91%) and 79% (95%CI: 72%-86%), respectively. An integrated predictive decision model using Bayesian inference incorporating readily obtainable thyroid nodule measures is clinically relevant, as it effectively predicts malignancy in thyroid nodules. This model warrants further validation testing in prospective clinical trials.

  7. Hierarchical Bayesian modeling of heterogeneous variances in average daily weight gain of commercial feedlot cattle.

    PubMed

    Cernicchiaro, N; Renter, D G; Xiang, S; White, B J; Bello, N M

    2013-06-01

    Variability in ADG of feedlot cattle can affect profits, thus making overall returns more unstable. Hence, knowledge of the factors that contribute to heterogeneity of variances in animal performance can help feedlot managers evaluate risks and minimize profit volatility when making managerial and economic decisions in commercial feedlots. The objectives of the present study were to evaluate heteroskedasticity, defined as heterogeneity of variances, in ADG of cohorts of commercial feedlot cattle, and to identify cattle demographic factors at feedlot arrival as potential sources of variance heterogeneity, accounting for cohort- and feedlot-level information in the data structure. An operational dataset compiled from 24,050 cohorts from 25 U. S. commercial feedlots in 2005 and 2006 was used for this study. Inference was based on a hierarchical Bayesian model implemented with Markov chain Monte Carlo, whereby cohorts were modeled at the residual level and feedlot-year clusters were modeled as random effects. Forward model selection based on deviance information criteria was used to screen potentially important explanatory variables for heteroskedasticity at cohort- and feedlot-year levels. The Bayesian modeling framework was preferred as it naturally accommodates the inherently hierarchical structure of feedlot data whereby cohorts are nested within feedlot-year clusters. Evidence for heterogeneity of variance components of ADG was substantial and primarily concentrated at the cohort level. Feedlot-year specific effects were, by far, the greatest contributors to ADG heteroskedasticity among cohorts, with an estimated ∼12-fold change in dispersion between most and least extreme feedlot-year clusters. In addition, identifiable demographic factors associated with greater heterogeneity of cohort-level variance included smaller cohort sizes, fewer days on feed, and greater arrival BW, as well as feedlot arrival during summer months. These results support that heterogeneity of variances in ADG is prevalent in feedlot performance and indicate potential sources of heteroskedasticity. Further investigation of factors associated with heteroskedasticity in feedlot performance is warranted to increase consistency and uniformity in commercial beef cattle production and subsequent profitability.

  8. Impact of censoring on learning Bayesian networks in survival modelling.

    PubMed

    Stajduhar, Ivan; Dalbelo-Basić, Bojana; Bogunović, Nikola

    2009-11-01

    Bayesian networks are commonly used for presenting uncertainty and covariate interactions in an easily interpretable way. Because of their efficient inference and ability to represent causal relationships, they are an excellent choice for medical decision support systems in diagnosis, treatment, and prognosis. Although good procedures for learning Bayesian networks from data have been defined, their performance in learning from censored survival data has not been widely studied. In this paper, we explore how to use these procedures to learn about possible interactions between prognostic factors and their influence on the variate of interest. We study how censoring affects the probability of learning correct Bayesian network structures. Additionally, we analyse the potential usefulness of the learnt models for predicting the time-independent probability of an event of interest. We analysed the influence of censoring with a simulation on synthetic data sampled from randomly generated Bayesian networks. We used two well-known methods for learning Bayesian networks from data: a constraint-based method and a score-based method. We compared the performance of each method under different levels of censoring to those of the naive Bayes classifier and the proportional hazards model. We did additional experiments on several datasets from real-world medical domains. The machine-learning methods treated censored cases in the data as event-free. We report and compare results for several commonly used model evaluation metrics. On average, the proportional hazards method outperformed other methods in most censoring setups. As part of the simulation study, we also analysed structural similarities of the learnt networks. Heavy censoring, as opposed to no censoring, produces up to a 5% surplus and up to 10% missing total arcs. It also produces up to 50% missing arcs that should originally be connected to the variate of interest. Presented methods for learning Bayesian networks from data can be used to learn from censored survival data in the presence of light censoring (up to 20%) by treating censored cases as event-free. Given intermediate or heavy censoring, the learnt models become tuned to the majority class and would thus require a different approach.

  9. Power in Bayesian Mediation Analysis for Small Sample Research

    PubMed Central

    Miočević, Milica; MacKinnon, David P.; Levy, Roy

    2018-01-01

    It was suggested that Bayesian methods have potential for increasing power in mediation analysis (Koopman, Howe, Hollenbeck, & Sin, 2015; Yuan & MacKinnon, 2009). This paper compares the power of Bayesian credibility intervals for the mediated effect to the power of normal theory, distribution of the product, percentile, and bias-corrected bootstrap confidence intervals at N≤ 200. Bayesian methods with diffuse priors have power comparable to the distribution of the product and bootstrap methods, and Bayesian methods with informative priors had the most power. Varying degrees of precision of prior distributions were also examined. Increased precision led to greater power only when N≥ 100 and the effects were small, N < 60 and the effects were large, and N < 200 and the effects were medium. An empirical example from psychology illustrated a Bayesian analysis of the single mediator model from prior selection to interpreting results. PMID:29662296

  10. Power in Bayesian Mediation Analysis for Small Sample Research.

    PubMed

    Miočević, Milica; MacKinnon, David P; Levy, Roy

    2017-01-01

    It was suggested that Bayesian methods have potential for increasing power in mediation analysis (Koopman, Howe, Hollenbeck, & Sin, 2015; Yuan & MacKinnon, 2009). This paper compares the power of Bayesian credibility intervals for the mediated effect to the power of normal theory, distribution of the product, percentile, and bias-corrected bootstrap confidence intervals at N≤ 200. Bayesian methods with diffuse priors have power comparable to the distribution of the product and bootstrap methods, and Bayesian methods with informative priors had the most power. Varying degrees of precision of prior distributions were also examined. Increased precision led to greater power only when N≥ 100 and the effects were small, N < 60 and the effects were large, and N < 200 and the effects were medium. An empirical example from psychology illustrated a Bayesian analysis of the single mediator model from prior selection to interpreting results.

  11. Using Bayesian analysis in repeated preclinical in vivo studies for a more effective use of animals.

    PubMed

    Walley, Rosalind; Sherington, John; Rastrick, Joe; Detrait, Eric; Hanon, Etienne; Watt, Gillian

    2016-05-01

    Whilst innovative Bayesian approaches are increasingly used in clinical studies, in the preclinical area Bayesian methods appear to be rarely used in the reporting of pharmacology data. This is particularly surprising in the context of regularly repeated in vivo studies where there is a considerable amount of data from historical control groups, which has potential value. This paper describes our experience with introducing Bayesian analysis for such studies using a Bayesian meta-analytic predictive approach. This leads naturally either to an informative prior for a control group as part of a full Bayesian analysis of the next study or using a predictive distribution to replace a control group entirely. We use quality control charts to illustrate study-to-study variation to the scientists and describe informative priors in terms of their approximate effective numbers of animals. We describe two case studies of animal models: the lipopolysaccharide-induced cytokine release model used in inflammation and the novel object recognition model used to screen cognitive enhancers, both of which show the advantage of a Bayesian approach over the standard frequentist analysis. We conclude that using Bayesian methods in stable repeated in vivo studies can result in a more effective use of animals, either by reducing the total number of animals used or by increasing the precision of key treatment differences. This will lead to clearer results and supports the "3Rs initiative" to Refine, Reduce and Replace animals in research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Bayesian Statistical Inference in Ion-Channel Models with Exact Missed Event Correction.

    PubMed

    Epstein, Michael; Calderhead, Ben; Girolami, Mark A; Sivilotti, Lucia G

    2016-07-26

    The stochastic behavior of single ion channels is most often described as an aggregated continuous-time Markov process with discrete states. For ligand-gated channels each state can represent a different conformation of the channel protein or a different number of bound ligands. Single-channel recordings show only whether the channel is open or shut: states of equal conductance are aggregated, so transitions between them have to be inferred indirectly. The requirement to filter noise from the raw signal further complicates the modeling process, as it limits the time resolution of the data. The consequence of the reduced bandwidth is that openings or shuttings that are shorter than the resolution cannot be observed; these are known as missed events. Postulated models fitted using filtered data must therefore explicitly account for missed events to avoid bias in the estimation of rate parameters and therefore assess parameter identifiability accurately. In this article, we present the first, to our knowledge, Bayesian modeling of ion-channels with exact missed events correction. Bayesian analysis represents uncertain knowledge of the true value of model parameters by considering these parameters as random variables. This allows us to gain a full appreciation of parameter identifiability and uncertainty when estimating values for model parameters. However, Bayesian inference is particularly challenging in this context as the correction for missed events increases the computational complexity of the model likelihood. Nonetheless, we successfully implemented a two-step Markov chain Monte Carlo method that we called "BICME", which performs Bayesian inference in models of realistic complexity. The method is demonstrated on synthetic and real single-channel data from muscle nicotinic acetylcholine channels. We show that parameter uncertainty can be characterized more accurately than with maximum-likelihood methods. Our code for performing inference in these ion channel models is publicly available. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Order priors for Bayesian network discovery with an application to malware phylogeny

    DOE PAGES

    Oyen, Diane; Anderson, Blake; Sentz, Kari; ...

    2017-09-15

    Here, Bayesian networks have been used extensively to model and discover dependency relationships among sets of random variables. We learn Bayesian network structure with a combination of human knowledge about the partial ordering of variables and statistical inference of conditional dependencies from observed data. Our approach leverages complementary information from human knowledge and inference from observed data to produce networks that reflect human beliefs about the system as well as to fit the observed data. Applying prior beliefs about partial orderings of variables is an approach distinctly different from existing methods that incorporate prior beliefs about direct dependencies (or edges)more » in a Bayesian network. We provide an efficient implementation of the partial-order prior in a Bayesian structure discovery learning algorithm, as well as an edge prior, showing that both priors meet the local modularity requirement necessary for an efficient Bayesian discovery algorithm. In benchmark studies, the partial-order prior improves the accuracy of Bayesian network structure learning as well as the edge prior, even though order priors are more general. Our primary motivation is in characterizing the evolution of families of malware to aid cyber security analysts. For the problem of malware phylogeny discovery, we find that our algorithm, compared to existing malware phylogeny algorithms, more accurately discovers true dependencies that are missed by other algorithms.« less

  14. Order priors for Bayesian network discovery with an application to malware phylogeny

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyen, Diane; Anderson, Blake; Sentz, Kari

    Here, Bayesian networks have been used extensively to model and discover dependency relationships among sets of random variables. We learn Bayesian network structure with a combination of human knowledge about the partial ordering of variables and statistical inference of conditional dependencies from observed data. Our approach leverages complementary information from human knowledge and inference from observed data to produce networks that reflect human beliefs about the system as well as to fit the observed data. Applying prior beliefs about partial orderings of variables is an approach distinctly different from existing methods that incorporate prior beliefs about direct dependencies (or edges)more » in a Bayesian network. We provide an efficient implementation of the partial-order prior in a Bayesian structure discovery learning algorithm, as well as an edge prior, showing that both priors meet the local modularity requirement necessary for an efficient Bayesian discovery algorithm. In benchmark studies, the partial-order prior improves the accuracy of Bayesian network structure learning as well as the edge prior, even though order priors are more general. Our primary motivation is in characterizing the evolution of families of malware to aid cyber security analysts. For the problem of malware phylogeny discovery, we find that our algorithm, compared to existing malware phylogeny algorithms, more accurately discovers true dependencies that are missed by other algorithms.« less

  15. Numerical Demons in Monte Carlo Estimation of Bayesian Model Evidence with Application to Soil Respiration Models

    NASA Astrophysics Data System (ADS)

    Elshall, A. S.; Ye, M.; Niu, G. Y.; Barron-Gafford, G.

    2016-12-01

    Bayesian multimodel inference is increasingly being used in hydrology. Estimating Bayesian model evidence (BME) is of central importance in many Bayesian multimodel analysis such as Bayesian model averaging and model selection. BME is the overall probability of the model in reproducing the data, accounting for the trade-off between the goodness-of-fit and the model complexity. Yet estimating BME is challenging, especially for high dimensional problems with complex sampling space. Estimating BME using the Monte Carlo numerical methods is preferred, as the methods yield higher accuracy than semi-analytical solutions (e.g. Laplace approximations, BIC, KIC, etc.). However, numerical methods are prone the numerical demons arising from underflow of round off errors. Although few studies alluded to this issue, to our knowledge this is the first study that illustrates these numerical demons. We show that the precision arithmetic can become a threshold on likelihood values and Metropolis acceptance ratio, which results in trimming parameter regions (when likelihood function is less than the smallest floating point number that a computer can represent) and corrupting of the empirical measures of the random states of the MCMC sampler (when using log-likelihood function). We consider two of the most powerful numerical estimators of BME that are the path sampling method of thermodynamic integration (TI) and the importance sampling method of steppingstone sampling (SS). We also consider the two most widely used numerical estimators, which are the prior sampling arithmetic mean (AS) and posterior sampling harmonic mean (HM). We investigate the vulnerability of these four estimators to the numerical demons. Interesting, the most biased estimator, namely the HM, turned out to be the least vulnerable. While it is generally assumed that AM is a bias-free estimator that will always approximate the true BME by investing in computational effort, we show that arithmetic underflow can hamper AM resulting in severe underestimation of BME. TI turned out to be the most vulnerable, resulting in BME overestimation. Finally, we show how SS can be largely invariant to rounding errors, yielding the most accurate and computational efficient results. These research results are useful for MC simulations to estimate Bayesian model evidence.

  16. Lateralization is predicted by reduced coupling from the left to right prefrontal cortex during semantic decisions on written words.

    PubMed

    Seghier, Mohamed L; Josse, Goulven; Leff, Alexander P; Price, Cathy J

    2011-07-01

    Over 90% of people activate the left hemisphere more than the right hemisphere for language processing. Here, we show that the degree to which language is left lateralized is inversely related to the degree to which left frontal regions drive activity in homotopic right frontal regions. Lateralization was assessed in 60 subjects using functional magnetic resonance imaging (fMRI) activation for semantic decisions on verbal (written words) and nonverbal (pictures of objects) stimuli. Regional interactions between left and right ventral and dorsal frontal regions were assessed using dynamic causal modeling (DCM), random-effects Bayesian model selection at the family level, and Bayesian model averaging at the connection level. We found that 1) semantic decisions on words and pictures modulated interhemispheric coupling between the left and right dorsal frontal regions, 2) activation was more left lateralized for words than pictures, and 3) for words only, left lateralization was greater when the coupling from the left to right dorsal frontal cortex was reduced. These results have theoretical implications for understanding how left and right hemispheres communicate with one another during the processing of lateralized functions.

  17. A mixture model for bovine abortion and foetal survival.

    PubMed

    Hanson, Timothy; Bedrick, Edward J; Johnson, Wesley O; Thurmond, Mark C

    2003-05-30

    The effect of spontaneous abortion on the dairy industry is substantial, costing the industry on the order of US dollars 200 million per year in California alone. We analyse data from a cohort study of nine dairy herds in Central California. A key feature of the analysis is the observation that only a relatively small proportion of cows will abort (around 10;15 per cent), so that it is inappropriate to analyse the time-to-abortion (TTA) data as if it were standard censored survival data, with cows that fail to abort by the end of the study treated as censored observations. We thus broaden the scope to consider the analysis of foetal lifetime distribution (FLD) data for the cows, with the dual goals of characterizing the effects of various risk factors on (i). the likelihood of abortion and, conditional on abortion status, on (ii). the risk of early versus late abortion. A single model is developed to accomplish both goals with two sets of specific herd effects modelled as random effects. Because multimodal foetal hazard functions are expected for the TTA data, both a parametric mixture model and a non-parametric model are developed. Furthermore, the two sets of analyses are linked because of anticipated dependence between the random herd effects. All modelling and inferences are accomplished using modern Bayesian methods. Copyright 2003 John Wiley & Sons, Ltd.

  18. Geographical mapping and Bayesian spatial modeling of malaria incidence in Sistan and Baluchistan province, Iran.

    PubMed

    Zayeri, Farid; Salehi, Masoud; Pirhosseini, Hasan

    2011-12-01

    To present the geographical map of malaria and identify some of the important environmental factors of this disease in Sistan and Baluchistan province, Iran. We used the registered malaria data to compute the standard incidence rates (SIRs) of malaria in different areas of Sistan and Baluchistan province for a nine-year period (from 2001 to 2009). Statistical analyses consisted of two different parts: geographical mapping of malaria incidence rates, and modeling the environmental factors. The empirical Bayesian estimates of malaria SIRs were utilized for geographical mapping of malaria and a Poisson random effects model was used for assessing the effect of environmental factors on malaria SIRs. In general, 64,926 new cases of malaria were registered in Sistan and Baluchistan Province from 2001 to 2009. Among them, 42,695 patients (65.8%) were male and 22,231 patients (34.2%) were female. Modeling the environmental factors showed that malaria incidence rates had positive relationship with humidity, elevation, average minimum temperature and average maximum temperature, while rainfall had negative effect on malaria SIRs in this province. The results of the present study reveals that malaria is still a serious health problem in Sistan and Baluchistan province, Iran. Geographical map and related environmental factors of malaria can help the health policy makers to intervene in high risk areas more efficiently and allocate the resources in a proper manner. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  19. Genetic parameters for growth characteristics of free-range chickens under univariate random regression models.

    PubMed

    Rovadoscki, Gregori A; Petrini, Juliana; Ramirez-Diaz, Johanna; Pertile, Simone F N; Pertille, Fábio; Salvian, Mayara; Iung, Laiza H S; Rodriguez, Mary Ana P; Zampar, Aline; Gaya, Leila G; Carvalho, Rachel S B; Coelho, Antonio A D; Savino, Vicente J M; Coutinho, Luiz L; Mourão, Gerson B

    2016-09-01

    Repeated measures from the same individual have been analyzed by using repeatability and finite dimension models under univariate or multivariate analyses. However, in the last decade, the use of random regression models for genetic studies with longitudinal data have become more common. Thus, the aim of this research was to estimate genetic parameters for body weight of four experimental chicken lines by using univariate random regression models. Body weight data from hatching to 84 days of age (n = 34,730) from four experimental free-range chicken lines (7P, Caipirão da ESALQ, Caipirinha da ESALQ and Carijó Barbado) were used. The analysis model included the fixed effects of contemporary group (gender and rearing system), fixed regression coefficients for age at measurement, and random regression coefficients for permanent environmental effects and additive genetic effects. Heterogeneous variances for residual effects were considered, and one residual variance was assigned for each of six subclasses of age at measurement. Random regression curves were modeled by using Legendre polynomials of the second and third orders, with the best model chosen based on the Akaike Information Criterion, Bayesian Information Criterion, and restricted maximum likelihood. Multivariate analyses under the same animal mixed model were also performed for the validation of the random regression models. The Legendre polynomials of second order were better for describing the growth curves of the lines studied. Moderate to high heritabilities (h(2) = 0.15 to 0.98) were estimated for body weight between one and 84 days of age, suggesting that selection for body weight at all ages can be used as a selection criteria. Genetic correlations among body weight records obtained through multivariate analyses ranged from 0.18 to 0.96, 0.12 to 0.89, 0.06 to 0.96, and 0.28 to 0.96 in 7P, Caipirão da ESALQ, Caipirinha da ESALQ, and Carijó Barbado chicken lines, respectively. Results indicate that genetic gain for body weight can be achieved by selection. Also, selection for body weight at 42 days of age can be maintained as a selection criterion. © 2016 Poultry Science Association Inc.

  20. Almost but not quite 2D, Non-linear Bayesian Inversion of CSEM Data

    NASA Astrophysics Data System (ADS)

    Ray, A.; Key, K.; Bodin, T.

    2013-12-01

    The geophysical inverse problem can be elegantly stated in a Bayesian framework where a probability distribution can be viewed as a statement of information regarding a random variable. After all, the goal of geophysical inversion is to provide information on the random variables of interest - physical properties of the earth's subsurface. However, though it may be simple to postulate, a practical difficulty of fully non-linear Bayesian inversion is the computer time required to adequately sample the model space and extract the information we seek. As a consequence, in geophysical problems where evaluation of a full 2D/3D forward model is computationally expensive, such as marine controlled source electromagnetic (CSEM) mapping of the resistivity of seafloor oil and gas reservoirs, Bayesian studies have largely been conducted with 1D forward models. While the 1D approximation is indeed appropriate for exploration targets with planar geometry and geological stratification, it only provides a limited, site-specific idea of uncertainty in resistivity with depth. In this work, we extend our fully non-linear 1D Bayesian inversion to a 2D model framework, without requiring the usual regularization of model resistivities in the horizontal or vertical directions used to stabilize quasi-2D inversions. In our approach, we use the reversible jump Markov-chain Monte-Carlo (RJ-MCMC) or trans-dimensional method and parameterize the subsurface in a 2D plane with Voronoi cells. The method is trans-dimensional in that the number of cells required to parameterize the subsurface is variable, and the cells dynamically move around and multiply or combine as demanded by the data being inverted. This approach allows us to expand our uncertainty analysis of resistivity at depth to more than a single site location, allowing for interactions between model resistivities at different horizontal locations along a traverse over an exploration target. While the model is parameterized in 2D, we efficiently evaluate the forward response using 1D profiles extracted from the model at the common-midpoints of the EM source-receiver pairs. Since the 1D approximation is locally valid at different midpoint locations, the computation time is far lower than is required by a full 2D or 3D simulation. We have applied this method to both synthetic and real CSEM survey data from the Scarborough gas field on the Northwest shelf of Australia, resulting in a spatially variable quantification of resistivity and its uncertainty in 2D. This Bayesian approach results in a large database of 2D models that comprise a posterior probability distribution, which we can subset to test various hypotheses about the range of model structures compatible with the data. For example, we can subset the model distributions to examine the hypothesis that a resistive reservoir extends overs a certain spatial extent. Depending on how this conditions other parts of the model space, light can be shed on the geological viability of the hypothesis. Since tackling spatially variable uncertainty and trade-offs in 2D and 3D is a challenging research problem, the insights gained from this work may prove valuable for subsequent full 2D and 3D Bayesian inversions.

  1. Mixed-effects varying-coefficient model with skewed distribution coupled with cause-specific varying-coefficient hazard model with random-effects for longitudinal-competing risks data analysis.

    PubMed

    Lu, Tao; Wang, Min; Liu, Guangying; Dong, Guang-Hui; Qian, Feng

    2016-01-01

    It is well known that there is strong relationship between HIV viral load and CD4 cell counts in AIDS studies. However, the relationship between them changes during the course of treatment and may vary among individuals. During treatments, some individuals may experience terminal events such as death. Because the terminal event may be related to the individual's viral load measurements, the terminal mechanism is non-ignorable. Furthermore, there exists competing risks from multiple types of events, such as AIDS-related death and other death. Most joint models for the analysis of longitudinal-survival data developed in literatures have focused on constant coefficients and assume symmetric distribution for the endpoints, which does not meet the needs for investigating the nature of varying relationship between HIV viral load and CD4 cell counts in practice. We develop a mixed-effects varying-coefficient model with skewed distribution coupled with cause-specific varying-coefficient hazard model with random-effects to deal with varying relationship between the two endpoints for longitudinal-competing risks survival data. A fully Bayesian inference procedure is established to estimate parameters in the joint model. The proposed method is applied to a multicenter AIDS cohort study. Various scenarios-based potential models that account for partial data features are compared. Some interesting findings are presented.

  2. Transmission parameters estimated for Salmonella typhimurium in swine using susceptible-infectious-resistant models and a Bayesian approach

    PubMed Central

    2014-01-01

    Background Transmission models can aid understanding of disease dynamics and are useful in testing the efficiency of control measures. The aim of this study was to formulate an appropriate stochastic Susceptible-Infectious-Resistant/Carrier (SIR) model for Salmonella Typhimurium in pigs and thus estimate the transmission parameters between states. Results The transmission parameters were estimated using data from a longitudinal study of three Danish farrow-to-finish pig herds known to be infected. A Bayesian model framework was proposed, which comprised Binomial components for the transition from susceptible to infectious and from infectious to carrier; and a Poisson component for carrier to infectious. Cohort random effects were incorporated into these models to allow for unobserved cohort-specific variables as well as unobserved sources of transmission, thus enabling a more realistic estimation of the transmission parameters. In the case of the transition from susceptible to infectious, the cohort random effects were also time varying. The number of infectious pigs not detected by the parallel testing was treated as unknown, and the probability of non-detection was estimated using information about the sensitivity and specificity of the bacteriological and serological tests. The estimate of the transmission rate from susceptible to infectious was 0.33 [0.06, 1.52], from infectious to carrier was 0.18 [0.14, 0.23] and from carrier to infectious was 0.01 [0.0001, 0.04]. The estimate for the basic reproduction ration (R 0 ) was 1.91 [0.78, 5.24]. The probability of non-detection was estimated to be 0.18 [0.12, 0.25]. Conclusions The proposed framework for stochastic SIR models was successfully implemented to estimate transmission rate parameters for Salmonella Typhimurium in swine field data. R 0 was 1.91, implying that there was dissemination of the infection within pigs of the same cohort. There was significant temporal-cohort variability, especially at the susceptible to infectious stage. The model adequately fitted the data, allowing for both observed and unobserved sources of uncertainty (cohort effects, diagnostic test sensitivity), so leading to more reliable estimates of transmission parameters. PMID:24774444

  3. Multiple-trait random regression models for the estimation of genetic parameters for milk, fat, and protein yield in buffaloes.

    PubMed

    Borquis, Rusbel Raul Aspilcueta; Neto, Francisco Ribeiro de Araujo; Baldi, Fernando; Hurtado-Lugo, Naudin; de Camargo, Gregório M F; Muñoz-Berrocal, Milthon; Tonhati, Humberto

    2013-09-01

    In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21-0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Exposure to isoflavone-containing soy products and endothelial function: a Bayesian meta-analysis of randomized controlled trials.

    PubMed

    Beavers, D P; Beavers, K M; Miller, M; Stamey, J; Messina, M J

    2012-03-01

    To determine whether and to what degree exposure to isoflavone-containing soy products affects EF. Endothelial dysfunction has been identified as an independent coronary heart disease risk factor and a strong predictor of long-term cardiovascular morbidity and mortality. Data on the effects of exposure to isoflavone-containing soy products on EF are conflicting. A comprehensive literature search was conducted using the PUBMED database (National Library of Medicine, Bethesda, MD) inclusively through August 21, 2009 on RCTs using the keywords: soy, isoflavone, phytoestrogen, EF, flow mediated vasodilation, and FMD. A Bayesian meta-analysis was conducted to provide a comprehensive account of the effect of isoflavone-containing soy products on EF, as measured by FMD. A total of 17 RCTs were selected as having sufficient data for study inclusion. The overall mean absolute change in FMD (95% Bayesian CI) for isoflavone-containing soy product interventions was 1.15% (-0.52, 2.75). When the effects of separate interventions were considered, the treatment effect for isolated isoflavones was 1.98% (0.07, 3.97) compared to 0.72% (-1.39, 2.90) for isoflavone-containing soy protein. The models were not improved when considering study-specific effects such as cuff measurement location, prescribed dietary modification, and impaired baseline FMD. Cumulative evidence from the RCTs included in this meta-analysis indicates that exposure to soy isoflavones can modestly, but significantly, improve EF as measured by FMD. Therefore, exposure to isoflavone supplements may beneficially influence vascular health. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Bayesian approach to the assessment of the population-specific risk of inhibitors in hemophilia A patients: a case study

    PubMed Central

    Cheng, Ji; Iorio, Alfonso; Marcucci, Maura; Romanov, Vadim; Pullenayegum, Eleanor M; Marshall, John K; Thabane, Lehana

    2016-01-01

    Background Developing inhibitors is a rare event during the treatment of hemophilia A. The multifacets and uncertainty surrounding the development of inhibitors further complicate the process of estimating inhibitor rate from the limited data. Bayesian statistical modeling provides a useful tool in generating, enhancing, and exploring the evidence through incorporating all the available information. Methods We built our Bayesian analysis using three study cases to estimate the inhibitor rates of patients with hemophilia A in three different scenarios: Case 1, a single cohort of previously treated patients (PTPs) or previously untreated patients; Case 2, a meta-analysis of PTP cohorts; and Case 3, a previously unexplored patient population – patients with baseline low-titer inhibitor or history of inhibitor development. The data used in this study were extracted from three published ADVATE (antihemophilic factor [recombinant] is a product of Baxter for treating hemophilia A) post-authorization surveillance studies. Noninformative and informative priors were applied to Bayesian standard (Case 1) or random-effects (Case 2 and Case 3) logistic models. Bayesian probabilities of satisfying three meaningful thresholds of the risk of developing a clinical significant inhibitor (10/100, 5/100 [high rates], and 1/86 [the Food and Drug Administration mandated cutoff rate in PTPs]) were calculated. The effect of discounting prior information or scaling up the study data was evaluated. Results Results based on noninformative priors were similar to the classical approach. Using priors from PTPs lowered the point estimate and narrowed the 95% credible intervals (Case 1: from 1.3 [0.5, 2.7] to 0.8 [0.5, 1.1]; Case 2: from 1.9 [0.6, 6.0] to 0.8 [0.5, 1.1]; Case 3: 2.3 [0.5, 6.8] to 0.7 [0.5, 1.1]). All probabilities of satisfying a threshold of 1/86 were above 0.65. Increasing the number of patients by two and ten times substantially narrowed the credible intervals for the single cohort study (1.4 [0.7, 2.3] and 1.4 [1.1, 1.8], respectively). Increasing the number of studies by two and ten times for the multiple study scenarios (Case 2: 1.9 [0.6, 4.0] and 1.9 [1.5, 2.6]; Case 3: 2.4 [0.9, 5.0] and 2.6 [1.9, 3.5], respectively) had a similar effect. Conclusion Bayesian approach as a robust, transparent, and reproducible analytic method can be efficiently used to estimate the inhibitor rate of hemophilia A in complex clinical settings. PMID:27822129

  6. Bayesian approach to the assessment of the population-specific risk of inhibitors in hemophilia A patients: a case study.

    PubMed

    Cheng, Ji; Iorio, Alfonso; Marcucci, Maura; Romanov, Vadim; Pullenayegum, Eleanor M; Marshall, John K; Thabane, Lehana

    2016-01-01

    Developing inhibitors is a rare event during the treatment of hemophilia A. The multifacets and uncertainty surrounding the development of inhibitors further complicate the process of estimating inhibitor rate from the limited data. Bayesian statistical modeling provides a useful tool in generating, enhancing, and exploring the evidence through incorporating all the available information. We built our Bayesian analysis using three study cases to estimate the inhibitor rates of patients with hemophilia A in three different scenarios: Case 1, a single cohort of previously treated patients (PTPs) or previously untreated patients; Case 2, a meta-analysis of PTP cohorts; and Case 3, a previously unexplored patient population - patients with baseline low-titer inhibitor or history of inhibitor development. The data used in this study were extracted from three published ADVATE (antihemophilic factor [recombinant] is a product of Baxter for treating hemophilia A) post-authorization surveillance studies. Noninformative and informative priors were applied to Bayesian standard (Case 1) or random-effects (Case 2 and Case 3) logistic models. Bayesian probabilities of satisfying three meaningful thresholds of the risk of developing a clinical significant inhibitor (10/100, 5/100 [high rates], and 1/86 [the Food and Drug Administration mandated cutoff rate in PTPs]) were calculated. The effect of discounting prior information or scaling up the study data was evaluated. Results based on noninformative priors were similar to the classical approach. Using priors from PTPs lowered the point estimate and narrowed the 95% credible intervals (Case 1: from 1.3 [0.5, 2.7] to 0.8 [0.5, 1.1]; Case 2: from 1.9 [0.6, 6.0] to 0.8 [0.5, 1.1]; Case 3: 2.3 [0.5, 6.8] to 0.7 [0.5, 1.1]). All probabilities of satisfying a threshold of 1/86 were above 0.65. Increasing the number of patients by two and ten times substantially narrowed the credible intervals for the single cohort study (1.4 [0.7, 2.3] and 1.4 [1.1, 1.8], respectively). Increasing the number of studies by two and ten times for the multiple study scenarios (Case 2: 1.9 [0.6, 4.0] and 1.9 [1.5, 2.6]; Case 3: 2.4 [0.9, 5.0] and 2.6 [1.9, 3.5], respectively) had a similar effect. Bayesian approach as a robust, transparent, and reproducible analytic method can be efficiently used to estimate the inhibitor rate of hemophilia A in complex clinical settings.

  7. Three-Dimensional Bayesian Geostatistical Aquifer Characterization at the Hanford 300 Area using Tracer Test Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xingyuan; Murakami, Haruko; Hahn, Melanie S.

    2012-06-01

    Tracer testing under natural or forced gradient flow holds the potential to provide useful information for characterizing subsurface properties, through monitoring, modeling and interpretation of the tracer plume migration in an aquifer. Non-reactive tracer experiments were conducted at the Hanford 300 Area, along with constant-rate injection tests and electromagnetic borehole flowmeter (EBF) profiling. A Bayesian data assimilation technique, the method of anchored distributions (MAD) [Rubin et al., 2010], was applied to assimilate the experimental tracer test data with the other types of data and to infer the three-dimensional heterogeneous structure of the hydraulic conductivity in the saturated zone of themore » Hanford formation. In this study, the Bayesian prior information on the underlying random hydraulic conductivity field was obtained from previous field characterization efforts using the constant-rate injection tests and the EBF data. The posterior distribution of the conductivity field was obtained by further conditioning the field on the temporal moments of tracer breakthrough curves at various observation wells. MAD was implemented with the massively-parallel three-dimensional flow and transport code PFLOTRAN to cope with the highly transient flow boundary conditions at the site and to meet the computational demands of MAD. A synthetic study proved that the proposed method could effectively invert tracer test data to capture the essential spatial heterogeneity of the three-dimensional hydraulic conductivity field. Application of MAD to actual field data shows that the hydrogeological model, when conditioned on the tracer test data, can reproduce the tracer transport behavior better than the field characterized without the tracer test data. This study successfully demonstrates that MAD can sequentially assimilate multi-scale multi-type field data through a consistent Bayesian framework.« less

  8. Bayesian additive decision trees of biomarker by treatment interactions for predictive biomarker detection and subgroup identification.

    PubMed

    Zhao, Yang; Zheng, Wei; Zhuo, Daisy Y; Lu, Yuefeng; Ma, Xiwen; Liu, Hengchang; Zeng, Zhen; Laird, Glen

    2017-10-11

    Personalized medicine, or tailored therapy, has been an active and important topic in recent medical research. Many methods have been proposed in the literature for predictive biomarker detection and subgroup identification. In this article, we propose a novel decision tree-based approach applicable in randomized clinical trials. We model the prognostic effects of the biomarkers using additive regression trees and the biomarker-by-treatment effect using a single regression tree. Bayesian approach is utilized to periodically revise the split variables and the split rules of the decision trees, which provides a better overall fitting. Gibbs sampler is implemented in the MCMC procedure, which updates the prognostic trees and the interaction tree separately. We use the posterior distribution of the interaction tree to construct the predictive scores of the biomarkers and to identify the subgroup where the treatment is superior to the control. Numerical simulations show that our proposed method performs well under various settings comparing to existing methods. We also demonstrate an application of our method in a real clinical trial.

  9. Linear mixed-effects models to describe individual tree crown width for China-fir in Fujian Province, southeast China.

    PubMed

    Hao, Xu; Yujun, Sun; Xinjie, Wang; Jin, Wang; Yao, Fu

    2015-01-01

    A multiple linear model was developed for individual tree crown width of Cunninghamia lanceolata (Lamb.) Hook in Fujian province, southeast China. Data were obtained from 55 sample plots of pure China-fir plantation stands. An Ordinary Linear Least Squares (OLS) regression was used to establish the crown width model. To adjust for correlations between observations from the same sample plots, we developed one level linear mixed-effects (LME) models based on the multiple linear model, which take into account the random effects of plots. The best random effects combinations for the LME models were determined by the Akaike's information criterion, the Bayesian information criterion and the -2logarithm likelihood. Heteroscedasticity was reduced by three residual variance functions: the power function, the exponential function and the constant plus power function. The spatial correlation was modeled by three correlation structures: the first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)], and the compound symmetry structure (CS). Then, the LME model was compared to the multiple linear model using the absolute mean residual (AMR), the root mean square error (RMSE), and the adjusted coefficient of determination (adj-R2). For individual tree crown width models, the one level LME model showed the best performance. An independent dataset was used to test the performance of the models and to demonstrate the advantage of calibrating LME models.

  10. Multi-fidelity Gaussian process regression for prediction of random fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parussini, L.; Venturi, D., E-mail: venturi@ucsc.edu; Perdikaris, P.

    We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgersmore » equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.« less

  11. A Bayesian Multilevel Model for Microcystin Prediction in ...

    EPA Pesticide Factsheets

    The frequency of cyanobacteria blooms in North American lakes is increasing. A major concern with rising cyanobacteria blooms is microcystin, a common cyanobacterial hepatotoxin. To explore the conditions that promote high microcystin concentrations, we analyzed the US EPA National Lake Assessment (NLA) dataset collected in the summer of 2007. The NLA dataset is reported for nine eco-regions. We used the results of random forest modeling as a means ofvariable selection from which we developed a Bayesian multilevel model of microcystin concentrations. Model parameters under a multilevel modeling framework are eco-region specific, butthey are also assumed to be exchangeable across eco-regions for broad continental scaling. The exchangeability assumption ensures that both the common patterns and eco-region specific features will be reflected in the model. Furthermore, the method incorporates appropriate estimates of uncertainty. Our preliminary results show associations between microcystin and turbidity, total nutrients, and N:P ratios. Upon release of a comparable 2012 NLA dataset, we will apply Bayesian updating. The results will help develop management strategies to alleviate microcystin impacts and improve lake quality. This work provides a probabilistic framework for predicting microcystin presences in lakes. It would allow for insights to be made about how changes in nutrient concentrations could potentially change toxin levels.

  12. Climatic Models Ensemble-based Mid-21st Century Runoff Projections: A Bayesian Framework

    NASA Astrophysics Data System (ADS)

    Achieng, K. O.; Zhu, J.

    2017-12-01

    There are a number of North American Regional Climate Change Assessment Program (NARCCAP) climatic models that have been used to project surface runoff in the mid-21st century. Statistical model selection techniques are often used to select the model that best fits data. However, model selection techniques often lead to different conclusions. In this study, ten models are averaged in Bayesian paradigm to project runoff. Bayesian Model Averaging (BMA) is used to project and identify effect of model uncertainty on future runoff projections. Baseflow separation - a two-digital filter which is also called Eckhardt filter - is used to separate USGS streamflow (total runoff) into two components: baseflow and surface runoff. We use this surface runoff as the a priori runoff when conducting BMA of runoff simulated from the ten RCM models. The primary objective of this study is to evaluate how well RCM multi-model ensembles simulate surface runoff, in a Bayesian framework. Specifically, we investigate and discuss the following questions: How well do ten RCM models ensemble jointly simulate surface runoff by averaging over all the models using BMA, given a priori surface runoff? What are the effects of model uncertainty on surface runoff simulation?

  13. Robust cue integration: a Bayesian model and evidence from cue-conflict studies with stereoscopic and figure cues to slant.

    PubMed

    Knill, David C

    2007-05-23

    Most research on depth cue integration has focused on stimulus regimes in which stimuli contain the small cue conflicts that one might expect to normally arise from sensory noise. In these regimes, linear models for cue integration provide a good approximation to system performance. This article focuses on situations in which large cue conflicts can naturally occur in stimuli. We describe a Bayesian model for nonlinear cue integration that makes rational inferences about scenes across the entire range of possible cue conflicts. The model derives from the simple intuition that multiple properties of scenes or causal factors give rise to the image information associated with most cues. To make perceptual inferences about one property of a scene, an ideal observer must necessarily take into account the possible contribution of these other factors to the information provided by a cue. In the context of classical depth cues, large cue conflicts most commonly arise when one or another cue is generated by an object or scene that violates the strongest form of constraint that makes the cue informative. For example, when binocularly viewing a slanted trapezoid, the slant interpretation of the figure derived by assuming that the figure is rectangular may conflict greatly with the slant suggested by stereoscopic disparities. An optimal Bayesian estimator incorporates the possibility that different constraints might apply to objects in the world and robustly integrates cues with large conflicts by effectively switching between different internal models of the prior constraints underlying one or both cues. We performed two experiments to test the predictions of the model when applied to estimating surface slant from binocular disparities and the compression cue (the aspect ratio of figures in an image). The apparent weight that subjects gave to the compression cue decreased smoothly as a function of the conflict between the cues but did not shrink to zero; that is, subjects did not fully veto the compression cue at large cue conflicts. A Bayesian model that assumes a mixed prior distribution of figure shapes in the world, with a large proportion being very regular and a smaller proportion having random shapes, provides a good quantitative fit for subjects' performance. The best fitting model parameters are consistent with the sensory noise to be expected in measurements of figure shape, further supporting the Bayesian model as an account of robust cue integration.

  14. Unsupervised Unmixing of Hyperspectral Images Accounting for Endmember Variability.

    PubMed

    Halimi, Abderrahim; Dobigeon, Nicolas; Tourneret, Jean-Yves

    2015-12-01

    This paper presents an unsupervised Bayesian algorithm for hyperspectral image unmixing, accounting for endmember variability. The pixels are modeled by a linear combination of endmembers weighted by their corresponding abundances. However, the endmembers are assumed random to consider their variability in the image. An additive noise is also considered in the proposed model, generalizing the normal compositional model. The proposed algorithm exploits the whole image to benefit from both spectral and spatial information. It estimates both the mean and the covariance matrix of each endmember in the image. This allows the behavior of each material to be analyzed and its variability to be quantified in the scene. A spatial segmentation is also obtained based on the estimated abundances. In order to estimate the parameters associated with the proposed Bayesian model, we propose to use a Hamiltonian Monte Carlo algorithm. The performance of the resulting unmixing strategy is evaluated through simulations conducted on both synthetic and real data.

  15. Low-rank separated representation surrogates of high-dimensional stochastic functions: Application in Bayesian inference

    NASA Astrophysics Data System (ADS)

    Validi, AbdoulAhad

    2014-03-01

    This study introduces a non-intrusive approach in the context of low-rank separated representation to construct a surrogate of high-dimensional stochastic functions, e.g., PDEs/ODEs, in order to decrease the computational cost of Markov Chain Monte Carlo simulations in Bayesian inference. The surrogate model is constructed via a regularized alternative least-square regression with Tikhonov regularization using a roughening matrix computing the gradient of the solution, in conjunction with a perturbation-based error indicator to detect optimal model complexities. The model approximates a vector of a continuous solution at discrete values of a physical variable. The required number of random realizations to achieve a successful approximation linearly depends on the function dimensionality. The computational cost of the model construction is quadratic in the number of random inputs, which potentially tackles the curse of dimensionality in high-dimensional stochastic functions. Furthermore, this vector-valued separated representation-based model, in comparison to the available scalar-valued case, leads to a significant reduction in the cost of approximation by an order of magnitude equal to the vector size. The performance of the method is studied through its application to three numerical examples including a 41-dimensional elliptic PDE and a 21-dimensional cavity flow.

  16. Inverse problems and computational cell metabolic models: a statistical approach

    NASA Astrophysics Data System (ADS)

    Calvetti, D.; Somersalo, E.

    2008-07-01

    In this article, we give an overview of the Bayesian modelling of metabolic systems at the cellular and subcellular level. The models are based on detailed description of key biochemical reactions occurring in tissue, which may in turn be compartmentalized into cytosol and mitochondria, and of transports between the compartments. The classical deterministic approach which models metabolic systems as dynamical systems with Michaelis-Menten kinetics, is replaced by a stochastic extension where the model parameters are interpreted as random variables with an appropriate probability density. The inverse problem of cell metabolism in this setting consists of estimating the density of the model parameters. After discussing some possible approaches to solving the problem, we address the issue of how to assess the reliability of the predictions of a stochastic model by proposing an output analysis in terms of model uncertainties. Visualization modalities for organizing the large amount of information provided by the Bayesian dynamic sensitivity analysis are also illustrated.

  17. Functional form and risk adjustment of hospital costs: Bayesian analysis of a Box-Cox random coefficients model.

    PubMed

    Hollenbeak, Christopher S

    2005-10-15

    While risk-adjusted outcomes are often used to compare the performance of hospitals and physicians, the most appropriate functional form for the risk adjustment process is not always obvious for continuous outcomes such as costs. Semi-log models are used most often to correct skewness in cost data, but there has been limited research to determine whether the log transformation is sufficient or whether another transformation is more appropriate. This study explores the most appropriate functional form for risk-adjusting the cost of coronary artery bypass graft (CABG) surgery. Data included patients undergoing CABG surgery at four hospitals in the midwest and were fit to a Box-Cox model with random coefficients (BCRC) using Markov chain Monte Carlo methods. Marginal likelihoods and Bayes factors were computed to perform model comparison of alternative model specifications. Rankings of hospital performance were created from the simulation output and the rankings produced by Bayesian estimates were compared to rankings produced by standard models fit using classical methods. Results suggest that, for these data, the most appropriate functional form is not logarithmic, but corresponds to a Box-Cox transformation of -1. Furthermore, Bayes factors overwhelmingly rejected the natural log transformation. However, the hospital ranking induced by the BCRC model was not different from the ranking produced by maximum likelihood estimates of either the linear or semi-log model. Copyright (c) 2005 John Wiley & Sons, Ltd.

  18. Modeling Heterogeneity in Relationships between Initial Status and Rates of Change: Treating Latent Variable Regression Coefficients as Random Coefficients in a Three-Level Hierarchical Model

    ERIC Educational Resources Information Center

    Choi, Kilchan; Seltzer, Michael

    2010-01-01

    In studies of change in education and numerous other fields, interest often centers on how differences in the status of individuals at the start of a period of substantive interest relate to differences in subsequent change. In this article, the authors present a fully Bayesian approach to estimating three-level Hierarchical Models in which latent…

  19. Additive Genetic Variability and the Bayesian Alphabet

    PubMed Central

    Gianola, Daniel; de los Campos, Gustavo; Hill, William G.; Manfredi, Eduardo; Fernando, Rohan

    2009-01-01

    The use of all available molecular markers in statistical models for prediction of quantitative traits has led to what could be termed a genomic-assisted selection paradigm in animal and plant breeding. This article provides a critical review of some theoretical and statistical concepts in the context of genomic-assisted genetic evaluation of animals and crops. First, relationships between the (Bayesian) variance of marker effects in some regression models and additive genetic variance are examined under standard assumptions. Second, the connection between marker genotypes and resemblance between relatives is explored, and linkages between a marker-based model and the infinitesimal model are reviewed. Third, issues associated with the use of Bayesian models for marker-assisted selection, with a focus on the role of the priors, are examined from a theoretical angle. The sensitivity of a Bayesian specification that has been proposed (called “Bayes A”) with respect to priors is illustrated with a simulation. Methods that can solve potential shortcomings of some of these Bayesian regression procedures are discussed briefly. PMID:19620397

  20. An evaluation of behavior inferences from Bayesian state-space models: A case study with the Pacific walrus

    USGS Publications Warehouse

    Beatty, William; Jay, Chadwick V.; Fischbach, Anthony S.

    2016-01-01

    State-space models offer researchers an objective approach to modeling complex animal location data sets, and state-space model behavior classifications are often assumed to have a link to animal behavior. In this study, we evaluated the behavioral classification accuracy of a Bayesian state-space model in Pacific walruses using Argos satellite tags with sensors to detect animal behavior in real time. We fit a two-state discrete-time continuous-space Bayesian state-space model to data from 306 Pacific walruses tagged in the Chukchi Sea. We matched predicted locations and behaviors from the state-space model (resident, transient behavior) to true animal behavior (foraging, swimming, hauled out) and evaluated classification accuracy with kappa statistics (κ) and root mean square error (RMSE). In addition, we compared biased random bridge utilization distributions generated with resident behavior locations to true foraging behavior locations to evaluate differences in space use patterns. Results indicated that the two-state model fairly classified true animal behavior (0.06 ≤ κ ≤ 0.26, 0.49 ≤ RMSE ≤ 0.59). Kernel overlap metrics indicated utilization distributions generated with resident behavior locations were generally smaller than utilization distributions generated with true foraging behavior locations. Consequently, we encourage researchers to carefully examine parameters and priors associated with behaviors in state-space models, and reconcile these parameters with the study species and its expected behaviors.

  1. Effect of Bayesian Student Modeling on Academic Achievement in Foreign Language Teaching (University Level English Preparatory School Example)

    ERIC Educational Resources Information Center

    Aslan, Burak Galip; Öztürk, Özlem; Inceoglu, Mustafa Murat

    2014-01-01

    Considering the increasing importance of adaptive approaches in CALL systems, this study implemented a machine learning based student modeling middleware with Bayesian networks. The profiling approach of the student modeling system is based on Felder and Silverman's Learning Styles Model and Felder and Soloman's Index of Learning Styles…

  2. Two new methods to fit models for network meta-analysis with random inconsistency effects.

    PubMed

    Law, Martin; Jackson, Dan; Turner, Rebecca; Rhodes, Kirsty; Viechtbauer, Wolfgang

    2016-07-28

    Meta-analysis is a valuable tool for combining evidence from multiple studies. Network meta-analysis is becoming more widely used as a means to compare multiple treatments in the same analysis. However, a network meta-analysis may exhibit inconsistency, whereby the treatment effect estimates do not agree across all trial designs, even after taking between-study heterogeneity into account. We propose two new estimation methods for network meta-analysis models with random inconsistency effects. The model we consider is an extension of the conventional random-effects model for meta-analysis to the network meta-analysis setting and allows for potential inconsistency using random inconsistency effects. Our first new estimation method uses a Bayesian framework with empirically-based prior distributions for both the heterogeneity and the inconsistency variances. We fit the model using importance sampling and thereby avoid some of the difficulties that might be associated with using Markov Chain Monte Carlo (MCMC). However, we confirm the accuracy of our importance sampling method by comparing the results to those obtained using MCMC as the gold standard. The second new estimation method we describe uses a likelihood-based approach, implemented in the metafor package, which can be used to obtain (restricted) maximum-likelihood estimates of the model parameters and profile likelihood confidence intervals of the variance components. We illustrate the application of the methods using two contrasting examples. The first uses all-cause mortality as an outcome, and shows little evidence of between-study heterogeneity or inconsistency. The second uses "ear discharge" as an outcome, and exhibits substantial between-study heterogeneity and inconsistency. Both new estimation methods give results similar to those obtained using MCMC. The extent of heterogeneity and inconsistency should be assessed and reported in any network meta-analysis. Our two new methods can be used to fit models for network meta-analysis with random inconsistency effects. They are easily implemented using the accompanying R code in the Additional file 1. Using these estimation methods, the extent of inconsistency can be assessed and reported.

  3. Bayesian estimation inherent in a Mexican-hat-type neural network

    NASA Astrophysics Data System (ADS)

    Takiyama, Ken

    2016-05-01

    Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.

  4. A practical Bayesian stepped wedge design for community-based cluster-randomized clinical trials: The British Columbia Telehealth Trial.

    PubMed

    Cunanan, Kristen M; Carlin, Bradley P; Peterson, Kevin A

    2016-12-01

    Many clinical trial designs are impractical for community-based clinical intervention trials. Stepped wedge trial designs provide practical advantages, but few descriptions exist of their clinical implementational features, statistical design efficiencies, and limitations. Enhance efficiency of stepped wedge trial designs by evaluating the impact of design characteristics on statistical power for the British Columbia Telehealth Trial. The British Columbia Telehealth Trial is a community-based, cluster-randomized, controlled clinical trial in rural and urban British Columbia. To determine the effect of an Internet-based telehealth intervention on healthcare utilization, 1000 subjects with an existing diagnosis of congestive heart failure or type 2 diabetes will be enrolled from 50 clinical practices. Hospital utilization is measured using a composite of disease-specific hospital admissions and emergency visits. The intervention comprises online telehealth data collection and counseling provided to support a disease-specific action plan developed by the primary care provider. The planned intervention is sequentially introduced across all participating practices. We adopt a fully Bayesian, Markov chain Monte Carlo-driven statistical approach, wherein we use simulation to determine the effect of cluster size, sample size, and crossover interval choice on type I error and power to evaluate differences in hospital utilization. For our Bayesian stepped wedge trial design, simulations suggest moderate decreases in power when crossover intervals from control to intervention are reduced from every 3 to 2 weeks, and dramatic decreases in power as the numbers of clusters decrease. Power and type I error performance were not notably affected by the addition of nonzero cluster effects or a temporal trend in hospitalization intensity. Stepped wedge trial designs that intervene in small clusters across longer periods can provide enhanced power to evaluate comparative effectiveness, while offering practical implementation advantages in geographic stratification, temporal change, use of existing data, and resource distribution. Current population estimates were used; however, models may not reflect actual event rates during the trial. In addition, temporal or spatial heterogeneity can bias treatment effect estimates. © The Author(s) 2016.

  5. A hierarchical model for regional analysis of population change using Christmas Bird Count data, with application to the American Black Duck

    USGS Publications Warehouse

    Link, W.A.; Sauer, J.R.; Niven, D.K.

    2006-01-01

    Analysis of Christmas Bird Count (CBC) data is complicated by the need to account for variation in effort on counts and to provide summaries over large geographic regions. We describe a hierarchical model for analysis of population change using CBC data that addresses these needs. The effect of effort is modeled parametrically, with parameter values varying among strata as identically distributed random effects. Year and site effects are modeled hierarchically, accommodating large regional variation in number of samples and precision of estimates. The resulting model is complex, but a Bayesian analysis can be conducted using Markov chain Monte Carlo techniques. We analyze CBC data for American Black Ducks (Anas rubripes), a species of considerable management interest that has historically been monitored using winter surveys. Over the interval 1966-2003, Black Duck populations showed distinct regional patterns of population change. The patterns shown by CBC data are similar to those shown by the Midwinter Waterfowl Inventory for the United States.

  6. An approach based on Hierarchical Bayesian Graphical Models for measurement interpretation under uncertainty

    NASA Astrophysics Data System (ADS)

    Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter

    2017-02-01

    It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.

  7. From individual to population level effects of toxicants in the tubicifid Branchiura sowerbyi using threshold effect models in a Bayesian framework.

    PubMed

    Ducrot, Virginie; Billoir, Elise; Péry, Alexandre R R; Garric, Jeanne; Charles, Sandrine

    2010-05-01

    Effects of zinc were studied in the freshwater worm Branchiura sowerbyi using partial and full life-cycle tests. Only newborn and juveniles were sensitive to zinc, displaying effects on survival, growth, and age at first brood at environmentally relevant concentrations. Threshold effect models were proposed to assess toxic effects on individuals. They were fitted to life-cycle test data using Bayesian inference and adequately described life-history trait data in exposed organisms. The daily asymptotic growth rate of theoretical populations was then simulated with a matrix population model, based upon individual-level outputs. Population-level outputs were in accordance with existing literature for controls. Working in a Bayesian framework allowed incorporating parameter uncertainty in the simulation of the population-level response to zinc exposure, thus increasing the relevance of test results in the context of ecological risk assessment.

  8. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 1; Improved Method and Uncertainties

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.; hide

    2006-01-01

    A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5 -resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%-80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5deg resolution is relatively small (less than 6% at 5 mm day.1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%-35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%-15% at 5 mm day.1, with proportionate reductions in latent heating sampling errors.

  9. Bayesian methods to determine performance differences and to quantify variability among centers in multi-center trials: the IHAST trial.

    PubMed

    Bayman, Emine O; Chaloner, Kathryn M; Hindman, Bradley J; Todd, Michael M

    2013-01-16

    To quantify the variability among centers and to identify centers whose performance are potentially outside of normal variability in the primary outcome and to propose a guideline that they are outliers. Novel statistical methodology using a Bayesian hierarchical model is used. Bayesian methods for estimation and outlier detection are applied assuming an additive random center effect on the log odds of response: centers are similar but different (exchangeable). The Intraoperative Hypothermia for Aneurysm Surgery Trial (IHAST) is used as an example. Analyses were adjusted for treatment, age, gender, aneurysm location, World Federation of Neurological Surgeons scale, Fisher score and baseline NIH stroke scale scores. Adjustments for differences in center characteristics were also examined. Graphical and numerical summaries of the between-center standard deviation (sd) and variability, as well as the identification of potential outliers are implemented. In the IHAST, the center-to-center variation in the log odds of favorable outcome at each center is consistent with a normal distribution with posterior sd of 0.538 (95% credible interval: 0.397 to 0.726) after adjusting for the effects of important covariates. Outcome differences among centers show no outlying centers. Four potential outlying centers were identified but did not meet the proposed guideline for declaring them as outlying. Center characteristics (number of subjects enrolled from the center, geographical location, learning over time, nitrous oxide, and temporary clipping use) did not predict outcome, but subject and disease characteristics did. Bayesian hierarchical methods allow for determination of whether outcomes from a specific center differ from others and whether specific clinical practices predict outcome, even when some centers/subgroups have relatively small sample sizes. In the IHAST no outlying centers were found. The estimated variability between centers was moderately large.

  10. A Bayesian Performance Prediction Model for Mathematics Education: A Prototypical Approach for Effective Group Composition

    ERIC Educational Resources Information Center

    Bekele, Rahel; McPherson, Maggie

    2011-01-01

    This research work presents a Bayesian Performance Prediction Model that was created in order to determine the strength of personality traits in predicting the level of mathematics performance of high school students in Addis Ababa. It is an automated tool that can be used to collect information from students for the purpose of effective group…

  11. A 3-level Bayesian mixed effects location scale model with an application to ecological momentary assessment data.

    PubMed

    Lin, Xiaolei; Mermelstein, Robin J; Hedeker, Donald

    2018-06-15

    Ecological momentary assessment studies usually produce intensively measured longitudinal data with large numbers of observations per unit, and research interest is often centered around understanding the changes in variation of people's thoughts, emotions and behaviors. Hedeker et al developed a 2-level mixed effects location scale model that allows observed covariates as well as unobserved variables to influence both the mean and the within-subjects variance, for a 2-level data structure where observations are nested within subjects. In some ecological momentary assessment studies, subjects are measured at multiple waves, and within each wave, subjects are measured over time. Li and Hedeker extended the original 2-level model to a 3-level data structure where observations are nested within days and days are then nested within subjects, by including a random location and scale intercept at the intermediate wave level. However, the 3-level random intercept model assumes constant response change rate for both the mean and variance. To account for changes in variance across waves, as well as clustering attributable to waves, we propose a more comprehensive location scale model that allows subject heterogeneity at baseline as well as across different waves, for a 3-level data structure where observations are nested within waves and waves are then further nested within subjects. The model parameters are estimated using Markov chain Monte Carlo methods. We provide details on the Bayesian estimation approach and demonstrate how the Stan statistical software can be used to sample from the desired distributions and achieve consistent estimates. The proposed model is validated via a series of simulation studies. Data from an adolescent smoking study are analyzed to demonstrate this approach. The analyses clearly favor the proposed model and show significant subject heterogeneity at baseline as well as change over time, for both mood mean and variance. The proposed 3-level location scale model can be widely applied to areas of research where the interest lies in the consistency in addition to the mean level of the responses. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Classifying emotion in Twitter using Bayesian network

    NASA Astrophysics Data System (ADS)

    Surya Asriadie, Muhammad; Syahrul Mubarok, Mohamad; Adiwijaya

    2018-03-01

    Language is used to express not only facts, but also emotions. Emotions are noticeable from behavior up to the social media statuses written by a person. Analysis of emotions in a text is done in a variety of media such as Twitter. This paper studies classification of emotions on twitter using Bayesian network because of its ability to model uncertainty and relationships between features. The result is two models based on Bayesian network which are Full Bayesian Network (FBN) and Bayesian Network with Mood Indicator (BNM). FBN is a massive Bayesian network where each word is treated as a node. The study shows the method used to train FBN is not very effective to create the best model and performs worse compared to Naive Bayes. F1-score for FBN is 53.71%, while for Naive Bayes is 54.07%. BNM is proposed as an alternative method which is based on the improvement of Multinomial Naive Bayes and has much lower computational complexity compared to FBN. Even though it’s not better compared to FBN, the resulting model successfully improves the performance of Multinomial Naive Bayes. F1-Score for Multinomial Naive Bayes model is 51.49%, while for BNM is 52.14%.

  13. A Bayesian Markov-chain-based heteroscedastic regression model for the analysis of 18O-labeled mass spectra.

    PubMed

    Zhu, Qi; Burzykowski, Tomasz

    2011-03-01

    To reduce the influence of the between-spectra variability on the results of peptide quantification, one can consider the (18)O-labeling approach. Ideally, with such labeling technique, a mass shift of 4 Da of the isotopic distributions of peptides from the labeled sample is induced, which allows one to distinguish the two samples and to quantify the relative abundance of the peptides. It is worth noting, however, that the presence of small quantities of (16)O and (17)O atoms during the labeling step can cause incomplete labeling. In practice, ignoring incomplete labeling may result in the biased estimation of the relative abundance of the peptide in the compared samples. A Markov model was developed to address this issue (Zhu, Valkenborg, Burzykowski. J. Proteome Res. 9, 2669-2677, 2010). The model assumed that the peak intensities were normally distributed with heteroscedasticity using a power-of-the-mean variance funtion. Such a dependence has been observed in practice. Alternatively, we formulate the model within the Bayesian framework. This opens the possibility to further extend the model by the inclusion of random effects that can be used to capture the biological/technical variability of the peptide abundance. The operational characteristics of the model were investigated by applications to real-life mass-spectrometry data sets and a simulation study. © American Society for Mass Spectrometry, 2011

  14. Data-driven Modeling of Metal-oxide Sensors with Dynamic Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Gosangi, Rakesh; Gutierrez-Osuna, Ricardo

    2011-09-01

    We present a data-driven probabilistic framework to model the transient response of MOX sensors modulated with a sequence of voltage steps. Analytical models of MOX sensors are usually built based on the physico-chemical properties of the sensing materials. Although building these models provides an insight into the sensor behavior, they also require a thorough understanding of the underlying operating principles. Here we propose a data-driven approach to characterize the dynamical relationship between sensor inputs and outputs. Namely, we use dynamic Bayesian networks (DBNs), probabilistic models that represent temporal relations between a set of random variables. We identify a set of control variables that influence the sensor responses, create a graphical representation that captures the causal relations between these variables, and finally train the model with experimental data. We validated the approach on experimental data in terms of predictive accuracy and classification performance. Our results show that DBNs can accurately predict the dynamic response of MOX sensors, as well as capture the discriminatory information present in the sensor transients.

  15. Bayesian networks and information theory for audio-visual perception modeling.

    PubMed

    Besson, Patricia; Richiardi, Jonas; Bourdin, Christophe; Bringoux, Lionel; Mestre, Daniel R; Vercher, Jean-Louis

    2010-09-01

    Thanks to their different senses, human observers acquire multiple information coming from their environment. Complex cross-modal interactions occur during this perceptual process. This article proposes a framework to analyze and model these interactions through a rigorous and systematic data-driven process. This requires considering the general relationships between the physical events or factors involved in the process, not only in quantitative terms, but also in term of the influence of one factor on another. We use tools from information theory and probabilistic reasoning to derive relationships between the random variables of interest, where the central notion is that of conditional independence. Using mutual information analysis to guide the model elicitation process, a probabilistic causal model encoded as a Bayesian network is obtained. We exemplify the method by using data collected in an audio-visual localization task for human subjects, and we show that it yields a well-motivated model with good predictive ability. The model elicitation process offers new prospects for the investigation of the cognitive mechanisms of multisensory perception.

  16. A Bayesian Hierarchical Model for Large-Scale Educational Surveys: An Application to the National Assessment of Educational Progress. Research Report. ETS RR-04-38

    ERIC Educational Resources Information Center

    Johnson, Matthew S.; Jenkins, Frank

    2005-01-01

    Large-scale educational assessments such as the National Assessment of Educational Progress (NAEP) sample examinees to whom an exam will be administered. In most situations the sampling design is not a simple random sample and must be accounted for in the estimating model. After reviewing the current operational estimation procedure for NAEP, this…

  17. Bayesian Lagrangian Data Assimilation and Drifter Deployment Strategies

    NASA Astrophysics Data System (ADS)

    Dutt, A.; Lermusiaux, P. F. J.

    2017-12-01

    Ocean currents transport a variety of natural (e.g. water masses, phytoplankton, zooplankton, sediments, etc.) and man-made materials and other objects (e.g. pollutants, floating debris, search and rescue, etc.). Lagrangian Coherent Structures (LCSs) or the most influential/persistent material lines in a flow, provide a robust approach to characterize such Lagrangian transports and organize classic trajectories. Using the flow-map stochastic advection and a dynamically-orthogonal decomposition, we develop uncertainty prediction schemes for both Eulerian and Lagrangian variables. We then extend our Bayesian Gaussian Mixture Model (GMM)-DO filter to a joint Eulerian-Lagrangian Bayesian data assimilation scheme. The resulting nonlinear filter allows the simultaneous non-Gaussian estimation of Eulerian variables (e.g. velocity, temperature, salinity, etc.) and Lagrangian variables (e.g. drifter/float positions, trajectories, LCSs, etc.). Its results are showcased using a double-gyre flow with a random frequency, a stochastic flow past a cylinder, and realistic ocean examples. We further show how our Bayesian mutual information and adaptive sampling equations provide a rigorous efficient methodology to plan optimal drifter deployment strategies and predict the optimal times, locations, and types of measurements to be collected.

  18. Bayesian Methods for the Physical Sciences. Learning from Examples in Astronomy and Physics.

    NASA Astrophysics Data System (ADS)

    Andreon, Stefano; Weaver, Brian

    2015-05-01

    Chapter 1: This chapter presents some basic steps for performing a good statistical analysis, all summarized in about one page. Chapter 2: This short chapter introduces the basics of probability theory inan intuitive fashion using simple examples. It also illustrates, again with examples, how to propagate errors and the difference between marginal and profile likelihoods. Chapter 3: This chapter introduces the computational tools and methods that we use for sampling from the posterior distribution. Since all numerical computations, and Bayesian ones are no exception, may end in errors, we also provide a few tips to check that the numerical computation is sampling from the posterior distribution. Chapter 4: Many of the concepts of building, running, and summarizing the resultsof a Bayesian analysis are described with this step-by-step guide using a basic (Gaussian) model. The chapter also introduces examples using Poisson and Binomial likelihoods, and how to combine repeated independent measurements. Chapter 5: All statistical analyses make assumptions, and Bayesian analyses are no exception. This chapter emphasizes that results depend on data and priors (assumptions). We illustrate this concept with examples where the prior plays greatly different roles, from major to negligible. We also provide some advice on how to look for information useful for sculpting the prior. Chapter 6: In this chapter we consider examples for which we want to estimate more than a single parameter. These common problems include estimating location and spread. We also consider examples that require the modeling of two populations (one we are interested in and a nuisance population) or averaging incompatible measurements. We also introduce quite complex examples dealing with upper limits and with a larger-than-expected scatter. Chapter 7: Rarely is a sample randomly selected from the population we wish to study. Often, samples are affected by selection effects, e.g., easier-to-collect events or objects are over-represented in samples and difficult-to-collect are under-represented if not missing altogether. In this chapter we show how to account for non-random data collection to infer the properties of the population from the studied sample. Chapter 8: In this chapter we introduce regression models, i.e., how to fit (regress) one, or more quantities, against each other through a functional relationship and estimate any unknown parameters that dictate this relationship. Questions of interest include: how to deal with samples affected by selection effects? How does a rich data structure influence the fitted parameters? And what about non-linear multiple-predictor fits, upper/lower limits, measurements errors of different amplitudes and an intrinsic variety in the studied populations or an extra source of variability? A number of examples illustrate how to answer these questions and how to predict the value of an unavailable quantity by exploiting the existence of a trend with another, available, quantity. Chapter 9: This chapter provides some advice on how the careful scientist should perform model checking and sensitivity analysis, i.e., how to answer the following questions: is the considered model at odds with the current available data (the fitted data), for example because it is over-simplified compared to some specific complexity pointed out by the data? Furthermore, are the data informative about the quantity being measured or are results sensibly dependent on details of the fitted model? And, finally, what about if assumptions are uncertain? A number of examples illustrate how to answer these questions. Chapter 10: This chapter compares the performance of Bayesian methods against simple, non-Bayesian alternatives, such as maximum likelihood, minimal chi square, ordinary and weighted least square, bivariate correlated errors and intrinsic scatter, and robust estimates of location and scale. Performances are evaluated in terms of quality of the prediction, accuracy of the estimates, and fairness and noisiness of the quoted errors. We also focus on three failures of maximum likelihood methods occurring with small samples, with mixtures, and with regressions with errors in the predictor quantity.

  19. Development of dynamic Bayesian models for web application test management

    NASA Astrophysics Data System (ADS)

    Azarnova, T. V.; Polukhin, P. V.; Bondarenko, Yu V.; Kashirina, I. L.

    2018-03-01

    The mathematical apparatus of dynamic Bayesian networks is an effective and technically proven tool that can be used to model complex stochastic dynamic processes. According to the results of the research, mathematical models and methods of dynamic Bayesian networks provide a high coverage of stochastic tasks associated with error testing in multiuser software products operated in a dynamically changing environment. Formalized representation of the discrete test process as a dynamic Bayesian model allows us to organize the logical connection between individual test assets for multiple time slices. This approach gives an opportunity to present testing as a discrete process with set structural components responsible for the generation of test assets. Dynamic Bayesian network-based models allow us to combine in one management area individual units and testing components with different functionalities and a direct influence on each other in the process of comprehensive testing of various groups of computer bugs. The application of the proposed models provides an opportunity to use a consistent approach to formalize test principles and procedures, methods used to treat situational error signs, and methods used to produce analytical conclusions based on test results.

  20. Data-driven confounder selection via Markov and Bayesian networks.

    PubMed

    Häggström, Jenny

    2018-06-01

    To unbiasedly estimate a causal effect on an outcome unconfoundedness is often assumed. If there is sufficient knowledge on the underlying causal structure then existing confounder selection criteria can be used to select subsets of the observed pretreatment covariates, X, sufficient for unconfoundedness, if such subsets exist. Here, estimation of these target subsets is considered when the underlying causal structure is unknown. The proposed method is to model the causal structure by a probabilistic graphical model, for example, a Markov or Bayesian network, estimate this graph from observed data and select the target subsets given the estimated graph. The approach is evaluated by simulation both in a high-dimensional setting where unconfoundedness holds given X and in a setting where unconfoundedness only holds given subsets of X. Several common target subsets are investigated and the selected subsets are compared with respect to accuracy in estimating the average causal effect. The proposed method is implemented with existing software that can easily handle high-dimensional data, in terms of large samples and large number of covariates. The results from the simulation study show that, if unconfoundedness holds given X, this approach is very successful in selecting the target subsets, outperforming alternative approaches based on random forests and LASSO, and that the subset estimating the target subset containing all causes of outcome yields smallest MSE in the average causal effect estimation. © 2017, The International Biometric Society.

  1. Spatial analysis of macro-level bicycle crashes using the class of conditional autoregressive models.

    PubMed

    Saha, Dibakar; Alluri, Priyanka; Gan, Albert; Wu, Wanyang

    2018-02-21

    The objective of this study was to investigate the relationship between bicycle crash frequency and their contributing factors at the census block group level in Florida, USA. Crashes aggregated over the census block groups tend to be clustered (i.e., spatially dependent) rather than randomly distributed. To account for the effect of spatial dependence across the census block groups, the class of conditional autoregressive (CAR) models were employed within the hierarchical Bayesian framework. Based on four years (2011-2014) of crash data, total and fatal-and-severe injury bicycle crash frequencies were modeled as a function of a large number of variables representing demographic and socio-economic characteristics, roadway infrastructure and traffic characteristics, and bicycle activity characteristics. This study explored and compared the performance of two CAR models, namely the Besag's model and the Leroux's model, in crash prediction. The Besag's models, which differ from the Leroux's models by the structure of how spatial autocorrelation are specified in the models, were found to fit the data better. A 95% Bayesian credible interval was selected to identify the variables that had credible impact on bicycle crashes. A total of 21 variables were found to be credible in the total crash model, while 18 variables were found to be credible in the fatal-and-severe injury crash model. Population, daily vehicle miles traveled, age cohorts, household automobile ownership, density of urban roads by functional class, bicycle trip miles, and bicycle trip intensity had positive effects in both the total and fatal-and-severe crash models. Educational attainment variables, truck percentage, and density of rural roads by functional class were found to be negatively associated with both total and fatal-and-severe bicycle crash frequencies. Published by Elsevier Ltd.

  2. Working memory training in older adults: Bayesian evidence supporting the absence of transfer.

    PubMed

    Guye, Sabrina; von Bastian, Claudia C

    2017-12-01

    The question of whether working memory training leads to generalized improvements in untrained cognitive abilities is a longstanding and heatedly debated one. Previous research provides mostly ambiguous evidence regarding the presence or absence of transfer effects in older adults. Thus, to draw decisive conclusions regarding the effectiveness of working memory training interventions, methodologically sound studies with larger sample sizes are needed. In this study, we investigated whether or not a computer-based working memory training intervention induced near and far transfer in a large sample of 142 healthy older adults (65 to 80 years). Therefore, we randomly assigned participants to either the experimental group, which completed 25 sessions of adaptive, process-based working memory training, or to the active, adaptive visual search control group. Bayesian linear mixed-effects models were used to estimate performance improvements on the level of abilities, using multiple indicator tasks for near (working memory) and far transfer (fluid intelligence, shifting, and inhibition). Our data provided consistent evidence supporting the absence of near transfer to untrained working memory tasks and the absence of far transfer effects to all of the assessed abilities. Our results suggest that working memory training is not an effective way to improve general cognitive functioning in old age. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Design of a Bayesian adaptive phase 2 proof-of-concept trial for BAN2401, a putative disease-modifying monoclonal antibody for the treatment of Alzheimer's disease.

    PubMed

    Satlin, Andrew; Wang, Jinping; Logovinsky, Veronika; Berry, Scott; Swanson, Chad; Dhadda, Shobha; Berry, Donald A

    2016-01-01

    Recent failures in phase 3 clinical trials in Alzheimer's disease (AD) suggest that novel approaches to drug development are urgently needed. Phase 3 risk can be mitigated by ensuring that clinical efficacy is established before initiating confirmatory trials, but traditional phase 2 trials in AD can be lengthy and costly. We designed a Bayesian adaptive phase 2, proof-of-concept trial with a clinical endpoint to evaluate BAN2401, a monoclonal antibody targeting amyloid protofibrils. The study design used dose response and longitudinal modeling. Simulations were used to refine study design features to achieve optimal operating characteristics. The study design includes five active treatment arms plus placebo, a clinical outcome, 12-month primary endpoint, and a maximum sample size of 800. The average overall probability of success is ≥80% when at least one dose shows a treatment effect that would be considered clinically meaningful. Using frequent interim analyses, the randomization ratios are adapted based on the clinical endpoint, and the trial can be stopped for success or futility before full enrollment. Bayesian statistics can enhance the efficiency of analyzing the study data. The adaptive randomization generates more data on doses that appear to be more efficacious, which can improve dose selection for phase 3. The interim analyses permit stopping as soon as a predefined signal is detected, which can accelerate decision making. Both features can reduce the size and duration of the trial. This study design can mitigate some of the risks associated with advancing to phase 3 in the absence of data demonstrating clinical efficacy. Limitations to the approach are discussed.

  4. The evolution of virulence in primate malaria parasites based on Bayesian reconstructions of ancestral states.

    PubMed

    Garamszegi, László Zsolt

    2011-02-01

    Plasmodium parasites, the causative agents of malaria, are generally considered as harmful parasites, but many of them cause mild symptoms. Little is known about the evolutionary history and phylogenetic constraints that generate this interspecific variation in virulence due to uncertainties about the phylogenetic associations of parasites. Here, to account for such phylogenetic uncertainty, phylogenetic methods based on Bayesian statistics were followed in combination with sequence data from five genes to estimate the ancestral state of virulence in primate Plasmodium parasites. When recent parasites were categorised according to the damage caused to the host, Bayesian estimates of ancestral states indicated that the acquisition of a harmful host exploitation strategy is more likely to be a recent evolutionary event than a result of an ancient change in a character state altering virulence. On the contrary, there was more evidence for moderate host exploitation having a deep origin along the phylogenetic tree. Moreover, the evolution of host severity is determined by the phylogenetic relationships of parasites, as severity gains did not appear randomly on the evolutionary tree. Such phylogenetic constraints can be mediated by the acquisition of virulence genes. As the impact of a parasite on a host is the result of both the parasite's investment in reproduction and host sensitivity, virulence was also estimated by calculating peak parasitemia after eliminating host effects. A directional random-walk evolutionary model showed that the ancestral primate malarias reproduced at very low parasitemia in their hosts. Consequently, the extreme variation in the outcome of malaria infection in different host species can be better understood in light of the phylogeny of parasites. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  5. Genetic analyses of partial egg production in Japanese quail using multi-trait random regression models.

    PubMed

    Karami, K; Zerehdaran, S; Barzanooni, B; Lotfi, E

    2017-12-01

    1. The aim of the present study was to estimate genetic parameters for average egg weight (EW) and egg number (EN) at different ages in Japanese quail using multi-trait random regression (MTRR) models. 2. A total of 8534 records from 900 quail, hatched between 2014 and 2015, were used in the study. Average weekly egg weights and egg numbers were measured from second until sixth week of egg production. 3. Nine random regression models were compared to identify the best order of the Legendre polynomials (LP). The most optimal model was identified by the Bayesian Information Criterion. A model with second order of LP for fixed effects, second order of LP for additive genetic effects and third order of LP for permanent environmental effects (MTRR23) was found to be the best. 4. According to the MTRR23 model, direct heritability for EW increased from 0.26 in the second week to 0.53 in the sixth week of egg production, whereas the ratio of permanent environment to phenotypic variance decreased from 0.48 to 0.1. Direct heritability for EN was low, whereas the ratio of permanent environment to phenotypic variance decreased from 0.57 to 0.15 during the production period. 5. For each trait, estimated genetic correlations among weeks of egg production were high (from 0.85 to 0.98). Genetic correlations between EW and EN were low and negative for the first two weeks, but they were low and positive for the rest of the egg production period. 6. In conclusion, random regression models can be used effectively for analysing egg production traits in Japanese quail. Response to selection for increased egg weight would be higher at older ages because of its higher heritability and such a breeding program would have no negative genetic impact on egg production.

  6. Sampling-free Bayesian inversion with adaptive hierarchical tensor representations

    NASA Astrophysics Data System (ADS)

    Eigel, Martin; Marschall, Manuel; Schneider, Reinhold

    2018-03-01

    A sampling-free approach to Bayesian inversion with an explicit polynomial representation of the parameter densities is developed, based on an affine-parametric representation of a linear forward model. This becomes feasible due to the complete treatment in function spaces, which requires an efficient model reduction technique for numerical computations. The advocated perspective yields the crucial benefit that error bounds can be derived for all occuring approximations, leading to provable convergence subject to the discretization parameters. Moreover, it enables a fully adaptive a posteriori control with automatic problem-dependent adjustments of the employed discretizations. The method is discussed in the context of modern hierarchical tensor representations, which are used for the evaluation of a random PDE (the forward model) and the subsequent high-dimensional quadrature of the log-likelihood, alleviating the ‘curse of dimensionality’. Numerical experiments demonstrate the performance and confirm the theoretical results.

  7. Bayesian Adaptive Lasso for Ordinal Regression with Latent Variables

    ERIC Educational Resources Information Center

    Feng, Xiang-Nan; Wu, Hao-Tian; Song, Xin-Yuan

    2017-01-01

    We consider an ordinal regression model with latent variables to investigate the effects of observable and latent explanatory variables on the ordinal responses of interest. Each latent variable is characterized by correlated observed variables through a confirmatory factor analysis model. We develop a Bayesian adaptive lasso procedure to conduct…

  8. The influence of ignoring secondary structure on divergence time estimates from ribosomal RNA genes.

    PubMed

    Dohrmann, Martin

    2014-02-01

    Genes coding for ribosomal RNA molecules (rDNA) are among the most popular markers in molecular phylogenetics and evolution. However, coevolution of sites that code for pairing regions (stems) in the RNA secondary structure can make it challenging to obtain accurate results from such loci. While the influence of ignoring secondary structure on multiple sequence alignment and tree topology has been investigated in numerous studies, its effect on molecular divergence time estimates is still poorly known. Here, I investigate this issue in Bayesian Markov Chain Monte Carlo (BMCMC) and penalized likelihood (PL) frameworks, using empirical datasets from dragonflies (Odonata: Anisoptera) and glass sponges (Porifera: Hexactinellida). My results indicate that highly biased inferences under substitution models that ignore secondary structure only occur if maximum-likelihood estimates of branch lengths are used as input to PL dating, whereas in a BMCMC framework and in PL dating based on Bayesian consensus branch lengths, the effect is far less severe. I conclude that accounting for coevolution of paired sites in molecular dating studies is not as important as previously suggested, as long as the estimates are based on Bayesian consensus branch lengths instead of ML point estimates. This finding is especially relevant for studies where computational limitations do not allow the use of secondary-structure specific substitution models, or where accurate consensus structures cannot be predicted. I also found that the magnitude and direction (over- vs. underestimating node ages) of bias in age estimates when secondary structure is ignored was not distributed randomly across the nodes of the phylogenies, a phenomenon that requires further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. A Bayesian Meta-Analysis of the Effect of Alcohol Use on HCV-Treatment Outcomes with a Comparison of Resampling Methods to Assess Uncertainty in Parameter Estimates.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauthen, Katherine Regina; Lambert, Gregory Joseph; Finley, Patrick D.

    There is mounting evidence that alcohol use is significantly linked to lower HCV treatment response rates in interferon-based therapies, though some of the evidence is conflicting. Furthermore, although health care providers recommend reducing or abstaining from alcohol use prior to treatment, many patients do not succeed in doing so. The goal of this meta-analysis was to systematically review and summarize the Englishlanguage literature up through January 30, 2015 regarding the relationship between alcohol use and HCV treatment outcomes, among patients who were not required to abstain from alcohol use in order to receive treatment. Seven pertinent articles studying 1,751 HCV-infectedmore » patients were identified. Log-ORs of HCV treatment response for heavy alcohol use and light alcohol use were calculated and compared. We employed a hierarchical Bayesian meta-analytic model to accommodate the small sample size. The summary estimate for the log-OR of HCV treatment response was -0.775 with a 95% credible interval of (-1.397, -0.236). The results of the Bayesian meta-analysis are slightly more conservative compared to those obtained from a boot-strapped, random effects model. We found evidence of heterogeneity (Q = 14.489, p = 0.025), accounting for 60.28% of the variation among log-ORs. Meta-regression to capture the sources of this heterogeneity did not identify any of the covariates investigated as significant. This meta-analysis confirms that heavy alcohol use is associated with decreased HCV treatment response compared to lighter levels of alcohol use. Further research is required to characterize the mechanism by which alcohol use affects HCV treatment response.« less

  10. Social deprivation, inequality, and the neighborhood-level incidence of psychotic syndromes in East London.

    PubMed

    Kirkbride, James B; Jones, Peter B; Ullrich, Simone; Coid, Jeremy W

    2014-01-01

    Although urban birth, upbringing, and living are associated with increased risk of nonaffective psychotic disorders, few studies have used appropriate multilevel techniques accounting for spatial dependency in risk to investigate social, economic, or physical determinants of psychosis incidence. We adopted Bayesian hierarchical modeling to investigate the sociospatial distribution of psychosis risk in East London for DSM-IV nonaffective and affective psychotic disorders, ascertained over a 2-year period in the East London first-episode psychosis study. We included individual and environmental data on 427 subjects experiencing first-episode psychosis to estimate the incidence of disorder across 56 neighborhoods, having standardized for age, sex, ethnicity, and socioeconomic status. A Bayesian model that included spatially structured neighborhood-level random effects identified substantial unexplained variation in nonaffective psychosis risk after controlling for individual-level factors. This variation was independently associated with greater levels of neighborhood income inequality (SD increase in inequality: Bayesian relative risks [RR]: 1.25; 95% CI: 1.04-1.49), absolute deprivation (RR: 1.28; 95% CI: 1.08-1.51) and population density (RR: 1.18; 95% CI: 1.00-1.41). Neighborhood ethnic composition effects were associated with incidence of nonaffective psychosis for people of black Caribbean and black African origin. No variation in the spatial distribution of the affective psychoses was identified, consistent with the possibility of differing etiological origins of affective and nonaffective psychoses. Our data suggest that both absolute and relative measures of neighborhood social composition are associated with the incidence of nonaffective psychosis. We suggest these associations are consistent with a role for social stressors in psychosis risk, particularly when people live in more unequal communities.

  11. Pathfinding to an optimal strategy of revascularization in primary coronary intervention in patients with multivessel disease: a network meta-analysis of randomized trials.

    PubMed

    Komócsi, András; Kehl, Dániel; d'Ascenso, Fabrizio; DiNicolantonio, James; Vorobcsuk, András

    2017-03-01

    In ST-segment elevation myocardial infarction (STEMI), current guidelines discourage treatment of the non-culprit lesions at the time of the primary intervention. Latest trials have challenged this strategy suggesting benefit of early complete revascularization. We performed a Bayesian multiple treatment network meta-analysis of randomized clinical trials (RCTs) in STEMI on culprit-only intervention (CO) versus different timing multivessel revascularization, including immediate (IM), same hospitalization (SH) or later staged (ST). Outcome parameters were pooled with a random-effects model. For multiple-treatment meta-analysis, a Bayesian Markov chain Monte Carlo method was used. Eight RCTs involving 2077 patients were identified. ST and IM revascularization was associated with a decrease in major adverse cardiac events (MACEs) compared to culprit-only approach (risk ratio [RR]: 0.43 credible interval [CrI]: 0.22-0.77 and RR: 0.36 CrI: 0.24-0.54, respectively). IM was superior to SH (RR: 0.49 CrI: 0.29-0.80). With regards to myocardial infarction IM was superior to SH (RR: 0.18 CrI: 0.02-0.99). The posterior probability of being the best choice of treatment regarding the frequency of MACEs was 71.2% for IM, 28.5% for ST, 0.3% for SH and 0.05% for culprit-only approach. Results from RCTs indicate that immediate or staged revascularization of non-culprit lesions reduces major adverse events in patients after primary percutaneous coronary intervention. Differences in MACEs suggest superiority of the immediate or staged intervention; however, further randomized trials are needed to determine the optimal timing of revascularization of the non-culprit lesions.

  12. Nonlinear and non-Gaussian Bayesian based handwriting beautification

    NASA Astrophysics Data System (ADS)

    Shi, Cao; Xiao, Jianguo; Xu, Canhui; Jia, Wenhua

    2013-03-01

    A framework is proposed in this paper to effectively and efficiently beautify handwriting by means of a novel nonlinear and non-Gaussian Bayesian algorithm. In the proposed framework, format and size of handwriting image are firstly normalized, and then typeface in computer system is applied to optimize vision effect of handwriting. The Bayesian statistics is exploited to characterize the handwriting beautification process as a Bayesian dynamic model. The model parameters to translate, rotate and scale typeface in computer system are controlled by state equation, and the matching optimization between handwriting and transformed typeface is employed by measurement equation. Finally, the new typeface, which is transformed from the original one and gains the best nonlinear and non-Gaussian optimization, is the beautification result of handwriting. Experimental results demonstrate the proposed framework provides a creative handwriting beautification methodology to improve visual acceptance.

  13. Investigating different approaches to develop informative priors in hierarchical Bayesian safety performance functions.

    PubMed

    Yu, Rongjie; Abdel-Aty, Mohamed

    2013-07-01

    The Bayesian inference method has been frequently adopted to develop safety performance functions. One advantage of the Bayesian inference is that prior information for the independent variables can be included in the inference procedures. However, there are few studies that discussed how to formulate informative priors for the independent variables and evaluated the effects of incorporating informative priors in developing safety performance functions. This paper addresses this deficiency by introducing four approaches of developing informative priors for the independent variables based on historical data and expert experience. Merits of these informative priors have been tested along with two types of Bayesian hierarchical models (Poisson-gamma and Poisson-lognormal models). Deviance information criterion (DIC), R-square values, and coefficients of variance for the estimations were utilized as evaluation measures to select the best model(s). Comparison across the models indicated that the Poisson-gamma model is superior with a better model fit and it is much more robust with the informative priors. Moreover, the two-stage Bayesian updating informative priors provided the best goodness-of-fit and coefficient estimation accuracies. Furthermore, informative priors for the inverse dispersion parameter have also been introduced and tested. Different types of informative priors' effects on the model estimations and goodness-of-fit have been compared and concluded. Finally, based on the results, recommendations for future research topics and study applications have been made. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Spatial Random Effects Survival Models to Assess Geographical Inequalities in Dengue Fever Using Bayesian Approach: a Case Study

    NASA Astrophysics Data System (ADS)

    Astuti Thamrin, Sri; Taufik, Irfan

    2018-03-01

    Dengue haemorrhagic fever (DHF) is an infectious disease caused by dengue virus. The increasing number of people with DHF disease correlates with the neighbourhood, for example sub-districts, and the characteristics of the sub-districts are formed from individuals who are domiciled in the sub-districts. Data containing individuals and sub-districts is a hierarchical data structure, called multilevel analysis. Frequently encountered response variable of the data is the time until an event occurs. Multilevel and spatial models are being increasingly used to obtain substantive information on area-level inequalities in DHF survival. Using a case study approach, we report on the implications of using multilevel with spatial survival models to study geographical inequalities in all cause survival.

  15. Evaluation of the procedure 1A component of the 1980 US/Canada wheat and barley exploratory experiment

    NASA Technical Reports Server (NTRS)

    Chapman, G. M. (Principal Investigator); Carnes, J. G.

    1981-01-01

    Several techniques which use clusters generated by a new clustering algorithm, CLASSY, are proposed as alternatives to random sampling to obtain greater precision in crop proportion estimation: (1) Proportional Allocation/relative count estimator (PA/RCE) uses proportional allocation of dots to clusters on the basis of cluster size and a relative count cluster level estimate; (2) Proportional Allocation/Bayes Estimator (PA/BE) uses proportional allocation of dots to clusters and a Bayesian cluster-level estimate; and (3) Bayes Sequential Allocation/Bayesian Estimator (BSA/BE) uses sequential allocation of dots to clusters and a Bayesian cluster level estimate. Clustering in an effective method in making proportion estimates. It is estimated that, to obtain the same precision with random sampling as obtained by the proportional sampling of 50 dots with an unbiased estimator, samples of 85 or 166 would need to be taken if dot sets with AI labels (integrated procedure) or ground truth labels, respectively were input. Dot reallocation provides dot sets that are unbiased. It is recommended that these proportion estimation techniques are maintained, particularly the PA/BE because it provides the greatest precision.

  16. Estimating mono- and bi-phasic regression parameters using a mixture piecewise linear Bayesian hierarchical model

    PubMed Central

    Zhao, Rui; Catalano, Paul; DeGruttola, Victor G.; Michor, Franziska

    2017-01-01

    The dynamics of tumor burden, secreted proteins or other biomarkers over time, is often used to evaluate the effectiveness of therapy and to predict outcomes for patients. Many methods have been proposed to investigate longitudinal trends to better characterize patients and to understand disease progression. However, most approaches assume a homogeneous patient population and a uniform response trajectory over time and across patients. Here, we present a mixture piecewise linear Bayesian hierarchical model, which takes into account both population heterogeneity and nonlinear relationships between biomarkers and time. Simulation results show that our method was able to classify subjects according to their patterns of treatment response with greater than 80% accuracy in the three scenarios tested. We then applied our model to a large randomized controlled phase III clinical trial of multiple myeloma patients. Analysis results suggest that the longitudinal tumor burden trajectories in multiple myeloma patients are heterogeneous and nonlinear, even among patients assigned to the same treatment cohort. In addition, between cohorts, there are distinct differences in terms of the regression parameters and the distributions among categories in the mixture. Those results imply that longitudinal data from clinical trials may harbor unobserved subgroups and nonlinear relationships; accounting for both may be important for analyzing longitudinal data. PMID:28723910

  17. Bayesian effect estimation accounting for adjustment uncertainty.

    PubMed

    Wang, Chi; Parmigiani, Giovanni; Dominici, Francesca

    2012-09-01

    Model-based estimation of the effect of an exposure on an outcome is generally sensitive to the choice of which confounding factors are included in the model. We propose a new approach, which we call Bayesian adjustment for confounding (BAC), to estimate the effect of an exposure of interest on the outcome, while accounting for the uncertainty in the choice of confounders. Our approach is based on specifying two models: (1) the outcome as a function of the exposure and the potential confounders (the outcome model); and (2) the exposure as a function of the potential confounders (the exposure model). We consider Bayesian variable selection on both models and link the two by introducing a dependence parameter, ω, denoting the prior odds of including a predictor in the outcome model, given that the same predictor is in the exposure model. In the absence of dependence (ω= 1), BAC reduces to traditional Bayesian model averaging (BMA). In simulation studies, we show that BAC, with ω > 1, estimates the exposure effect with smaller bias than traditional BMA, and improved coverage. We, then, compare BAC, a recent approach of Crainiceanu, Dominici, and Parmigiani (2008, Biometrika 95, 635-651), and traditional BMA in a time series data set of hospital admissions, air pollution levels, and weather variables in Nassau, NY for the period 1999-2005. Using each approach, we estimate the short-term effects of on emergency admissions for cardiovascular diseases, accounting for confounding. This application illustrates the potentially significant pitfalls of misusing variable selection methods in the context of adjustment uncertainty. © 2012, The International Biometric Society.

  18. Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.

    PubMed

    Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J

    2010-12-01

    Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies conservation planning. Journal compilation © 2010 Society for Conservation Biology. No claim to original US government works.

  19. Bayesian structured additive regression modeling of epidemic data: application to cholera

    PubMed Central

    2012-01-01

    Background A significant interest in spatial epidemiology lies in identifying associated risk factors which enhances the risk of infection. Most studies, however, make no, or limited use of the spatial structure of the data, as well as possible nonlinear effects of the risk factors. Methods We develop a Bayesian Structured Additive Regression model for cholera epidemic data. Model estimation and inference is based on fully Bayesian approach via Markov Chain Monte Carlo (MCMC) simulations. The model is applied to cholera epidemic data in the Kumasi Metropolis, Ghana. Proximity to refuse dumps, density of refuse dumps, and proximity to potential cholera reservoirs were modeled as continuous functions; presence of slum settlers and population density were modeled as fixed effects, whereas spatial references to the communities were modeled as structured and unstructured spatial effects. Results We observe that the risk of cholera is associated with slum settlements and high population density. The risk of cholera is equal and lower for communities with fewer refuse dumps, but variable and higher for communities with more refuse dumps. The risk is also lower for communities distant from refuse dumps and potential cholera reservoirs. The results also indicate distinct spatial variation in the risk of cholera infection. Conclusion The study highlights the usefulness of Bayesian semi-parametric regression model analyzing public health data. These findings could serve as novel information to help health planners and policy makers in making effective decisions to control or prevent cholera epidemics. PMID:22866662

  20. The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective.

    PubMed

    Kruschke, John K; Liddell, Torrin M

    2018-02-01

    In the practice of data analysis, there is a conceptual distinction between hypothesis testing, on the one hand, and estimation with quantified uncertainty on the other. Among frequentists in psychology, a shift of emphasis from hypothesis testing to estimation has been dubbed "the New Statistics" (Cumming 2014). A second conceptual distinction is between frequentist methods and Bayesian methods. Our main goal in this article is to explain how Bayesian methods achieve the goals of the New Statistics better than frequentist methods. The article reviews frequentist and Bayesian approaches to hypothesis testing and to estimation with confidence or credible intervals. The article also describes Bayesian approaches to meta-analysis, randomized controlled trials, and power analysis.

  1. A Bayesian network meta-analysis of whole brain radiotherapy and stereotactic radiotherapy for brain metastasis.

    PubMed

    Yuan, Xi; Liu, Wen-Jie; Li, Bing; Shen, Ze-Tian; Shen, Jun-Shu; Zhu, Xi-Xu

    2017-08-01

    This study was conducted to compare the effects of whole brain radiotherapy (WBRT) and stereotactic radiotherapy (SRS) in treatment of brain metastasis.A systematical retrieval in PubMed and Embase databases was performed for relative literatures on the effects of WBRT and SRS in treatment of brain metastasis. A Bayesian network meta-analysis was performed by using the ADDIS software. The effect sizes included odds ratio (OR) and 95% confidence interval (CI). A random effects model was used for the pooled analysis for all the outcome measures, including 1-year distant control rate, 1-year local control rate, 1-year survival rate, and complication. The consistency was tested by using node-splitting analysis and inconsistency standard deviation. The convergence was estimated according to the Brooks-Gelman-Rubin method.A total of 12 literatures were included in this meta-analysis. WBRT + SRS showed higher 1-year distant control rate than SRS. WBRT + SRS was better for the 1-year local control rate than WBRT. SRS and WBRT + SRS had higher 1-year survival rate than the WBRT. In addition, there was no difference in complication among the three therapies.Comprehensively, WBRT + SRS might be the choice of treatment for brain metastasis.

  2. Development of a clinical decision model for thyroid nodules

    PubMed Central

    Stojadinovic, Alexander; Peoples, George E; Libutti, Steven K; Henry, Leonard R; Eberhardt, John; Howard, Robin S; Gur, David; Elster, Eric A; Nissan, Aviram

    2009-01-01

    Background Thyroid nodules represent a common problem brought to medical attention. Four to seven percent of the United States adult population (10–18 million people) has a palpable thyroid nodule, however the majority (>95%) of thyroid nodules are benign. While, fine needle aspiration remains the most cost effective and accurate diagnostic tool for thyroid nodules in current practice, over 20% of patients undergoing FNA of a thyroid nodule have indeterminate cytology (follicular neoplasm) with associated malignancy risk prevalence of 20–30%. These patients require thyroid lobectomy/isthmusectomy purely for the purpose of attaining a definitive diagnosis. Given that the majority (70–80%) of these patients have benign surgical pathology, thyroidectomy in these patients is conducted principally with diagnostic intent. Clinical models predictive of malignancy risk are needed to support treatment decisions in patients with thyroid nodules in order to reduce morbidity associated with unnecessary diagnostic surgery. Methods Data were analyzed from a completed prospective cohort trial conducted over a 4-year period involving 216 patients with thyroid nodules undergoing ultrasound (US), electrical impedance scanning (EIS) and fine needle aspiration cytology (FNA) prior to thyroidectomy. A Bayesian model was designed to predict malignancy in thyroid nodules based on multivariate dependence relationships between independent covariates. Ten-fold cross-validation was performed to estimate classifier error wherein the data set was randomized into ten separate and unique train and test sets consisting of a training set (90% of records) and a test set (10% of records). A receiver-operating-characteristics (ROC) curve of these predictions and area under the curve (AUC) were calculated to determine model robustness for predicting malignancy in thyroid nodules. Results Thyroid nodule size, FNA cytology, US and EIS characteristics were highly predictive of malignancy. Cross validation of the model created with Bayesian Network Analysis effectively predicted malignancy [AUC = 0.88 (95%CI: 0.82–0.94)] in thyroid nodules. The positive and negative predictive values of the model are 83% (95%CI: 76%–91%) and 79% (95%CI: 72%–86%), respectively. Conclusion An integrated predictive decision model using Bayesian inference incorporating readily obtainable thyroid nodule measures is clinically relevant, as it effectively predicts malignancy in thyroid nodules. This model warrants further validation testing in prospective clinical trials. PMID:19664278

  3. Bayesian model selection: Evidence estimation based on DREAM simulation and bridge sampling

    NASA Astrophysics Data System (ADS)

    Volpi, Elena; Schoups, Gerrit; Firmani, Giovanni; Vrugt, Jasper A.

    2017-04-01

    Bayesian inference has found widespread application in Earth and Environmental Systems Modeling, providing an effective tool for prediction, data assimilation, parameter estimation, uncertainty analysis and hypothesis testing. Under multiple competing hypotheses, the Bayesian approach also provides an attractive alternative to traditional information criteria (e.g. AIC, BIC) for model selection. The key variable for Bayesian model selection is the evidence (or marginal likelihood) that is the normalizing constant in the denominator of Bayes theorem; while it is fundamental for model selection, the evidence is not required for Bayesian inference. It is computed for each hypothesis (model) by averaging the likelihood function over the prior parameter distribution, rather than maximizing it as by information criteria; the larger a model evidence the more support it receives among a collection of hypothesis as the simulated values assign relatively high probability density to the observed data. Hence, the evidence naturally acts as an Occam's razor, preferring simpler and more constrained models against the selection of over-fitted ones by information criteria that incorporate only the likelihood maximum. Since it is not particularly easy to estimate the evidence in practice, Bayesian model selection via the marginal likelihood has not yet found mainstream use. We illustrate here the properties of a new estimator of the Bayesian model evidence, which provides robust and unbiased estimates of the marginal likelihood; the method is coined Gaussian Mixture Importance Sampling (GMIS). GMIS uses multidimensional numerical integration of the posterior parameter distribution via bridge sampling (a generalization of importance sampling) of a mixture distribution fitted to samples of the posterior distribution derived from the DREAM algorithm (Vrugt et al., 2008; 2009). Some illustrative examples are presented to show the robustness and superiority of the GMIS estimator with respect to other commonly used approaches in the literature.

  4. Extracting a Whisper from the DIN: A Bayesian-Inductive Approach to Learning an Anticipatory Model of Cavitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kercel, S.W.

    1999-11-07

    For several reasons, Bayesian parameter estimation is superior to other methods for inductively learning a model for an anticipatory system. Since it exploits prior knowledge, the analysis begins from a more advantageous starting point than other methods. Also, since "nuisance parameters" can be removed from the Bayesian analysis, the description of the model need not be as complete as is necessary for such methods as matched filtering. In the limit of perfectly random noise and a perfect description of the model, the signal-to-noise ratio improves as the square root of the number of samples in the data. Even with themore » imperfections of real-world data, Bayesian methods approach this ideal limit of performance more closely than other methods. These capabilities provide a strategy for addressing a major unsolved problem in pump operation: the identification of precursors of cavitation. Cavitation causes immediate degradation of pump performance and ultimate destruction of the pump. However, the most efficient point to operate a pump is just below the threshold of cavitation. It might be hoped that a straightforward method to minimize pump cavitation damage would be to simply adjust the operating point until the inception of cavitation is detected and then to slightly readjust the operating point to let the cavitation vanish. However, due to the continuously evolving state of the fluid moving through the pump, the threshold of cavitation tends to wander. What is needed is to anticipate cavitation, and this requires the detection and identification of precursor features that occur just before cavitation starts.« less

  5. Non-Bayesian Noun Generalization in 3-to 5-Year-Old Children: Probing the Role of Prior Knowledge in the Suspicious Coincidence Effect

    ERIC Educational Resources Information Center

    Jenkins, Gavin W.; Samuelson, Larissa K.; Smith, Jodi R.; Spencer, John P.

    2015-01-01

    It is unclear how children learn labels for multiple overlapping categories such as "Labrador," "dog," and "animal." Xu and Tenenbaum (2007a) suggested that learners infer correct meanings with the help of Bayesian inference. They instantiated these claims in a Bayesian model, which they tested with preschoolers and…

  6. A Bayesian method for inferring transmission chains in a partially observed epidemic.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzouk, Youssef M.; Ray, Jaideep

    2008-10-01

    We present a Bayesian approach for estimating transmission chains and rates in the Abakaliki smallpox epidemic of 1967. The epidemic affected 30 individuals in a community of 74; only the dates of appearance of symptoms were recorded. Our model assumes stochastic transmission of the infections over a social network. Distinct binomial random graphs model intra- and inter-compound social connections, while disease transmission over each link is treated as a Poisson process. Link probabilities and rate parameters are objects of inference. Dates of infection and recovery comprise the remaining unknowns. Distributions for smallpox incubation and recovery periods are obtained from historicalmore » data. Using Markov chain Monte Carlo, we explore the joint posterior distribution of the scalar parameters and provide an expected connectivity pattern for the social graph and infection pathway.« less

  7. Uncertainty Quantification of Hypothesis Testing for the Integrated Knowledge Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuellar, Leticia

    2012-05-31

    The Integrated Knowledge Engine (IKE) is a tool of Bayesian analysis, based on Bayesian Belief Networks or Bayesian networks for short. A Bayesian network is a graphical model (directed acyclic graph) that allows representing the probabilistic structure of many variables assuming a localized type of dependency called the Markov property. The Markov property in this instance makes any node or random variable to be independent of any non-descendant node given information about its parent. A direct consequence of this property is that it is relatively easy to incorporate new evidence and derive the appropriate consequences, which in general is notmore » an easy or feasible task. Typically we use Bayesian networks as predictive models for a small subset of the variables, either the leave nodes or the root nodes. In IKE, since most applications deal with diagnostics, we are interested in predicting the likelihood of the root nodes given new observations on any of the children nodes. The root nodes represent the various possible outcomes of the analysis, and an important problem is to determine when we have gathered enough evidence to lean toward one of these particular outcomes. This document presents criteria to decide when the evidence gathered is sufficient to draw a particular conclusion or decide in favor of a particular outcome by quantifying the uncertainty in the conclusions that are drawn from the data. The material in this document is organized as follows: Section 2 presents briefly a forensics Bayesian network, and we explore evaluating the information provided by new evidence by looking first at the posterior distribution of the nodes of interest, and then at the corresponding posterior odds ratios. Section 3 presents a third alternative: Bayes Factors. In section 4 we finalize by showing the relation between the posterior odds ratios and Bayes factors and showing examples these cases, and in section 5 we conclude by providing clear guidelines of how to use these for the type of Bayesian networks used in IKE.« less

  8. Bayesian accounts of covert selective attention: A tutorial review.

    PubMed

    Vincent, Benjamin T

    2015-05-01

    Decision making and optimal observer models offer an important theoretical approach to the study of covert selective attention. While their probabilistic formulation allows quantitative comparison to human performance, the models can be complex and their insights are not always immediately apparent. Part 1 establishes the theoretical appeal of the Bayesian approach, and introduces the way in which probabilistic approaches can be applied to covert search paradigms. Part 2 presents novel formulations of Bayesian models of 4 important covert attention paradigms, illustrating optimal observer predictions over a range of experimental manipulations. Graphical model notation is used to present models in an accessible way and Supplementary Code is provided to help bridge the gap between model theory and practical implementation. Part 3 reviews a large body of empirical and modelling evidence showing that many experimental phenomena in the domain of covert selective attention are a set of by-products. These effects emerge as the result of observers conducting Bayesian inference with noisy sensory observations, prior expectations, and knowledge of the generative structure of the stimulus environment.

  9. Moving beyond qualitative evaluations of Bayesian models of cognition.

    PubMed

    Hemmer, Pernille; Tauber, Sean; Steyvers, Mark

    2015-06-01

    Bayesian models of cognition provide a powerful way to understand the behavior and goals of individuals from a computational point of view. Much of the focus in the Bayesian cognitive modeling approach has been on qualitative model evaluations, where predictions from the models are compared to data that is often averaged over individuals. In many cognitive tasks, however, there are pervasive individual differences. We introduce an approach to directly infer individual differences related to subjective mental representations within the framework of Bayesian models of cognition. In this approach, Bayesian data analysis methods are used to estimate cognitive parameters and motivate the inference process within a Bayesian cognitive model. We illustrate this integrative Bayesian approach on a model of memory. We apply the model to behavioral data from a memory experiment involving the recall of heights of people. A cross-validation analysis shows that the Bayesian memory model with inferred subjective priors predicts withheld data better than a Bayesian model where the priors are based on environmental statistics. In addition, the model with inferred priors at the individual subject level led to the best overall generalization performance, suggesting that individual differences are important to consider in Bayesian models of cognition.

  10. Minimally Invasive Extracorporeal Circulation Circuit Is Not Inferior to Off-Pump Coronary Artery Bypass Grafting: Meta-Analysis Using the Bayesian Method.

    PubMed

    Winkler, Bernhard; Heinisch, Paul P; Gahl, Brigitta; Aghlmandi, Soheila; Jenni, Hans Jörg; Carrel, Thierry P

    2017-01-01

    The pathophysiologic side effects of cardiopulmonary bypass have already been identified. Minimally invasive extracorporeal circulation technologies (MiECT) and off-pump coronary artery bypass graft surgery (OPCABG) aim to reduce these problems. This meta-analysis provides a comparison of MiECT and OPCABG in randomized and observational studies. A fully probabilistic, Bayesian approach of primary and secondary endpoints was conducted. MiECT does not give inferior results when compared with OPCABG. However, there is a trend to borderline significantly higher blood loss in this group in randomized controlled trials. The question whether MiECT is equivalent to OPCABG can be answered with the affirmative, but long-term follow-up data are needed to detect any advantage over time. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Joint-level energetics differentiate isoinertial from speed-power resistance training-a Bayesian analysis.

    PubMed

    Liew, Bernard X W; Drovandi, Christopher C; Clifford, Samuel; Keogh, Justin W L; Morris, Susan; Netto, Kevin

    2018-01-01

    There is convincing evidence for the benefits of resistance training on vertical jump improvements, but little evidence to guide optimal training prescription. The inability to detect small between modality effects may partially reflect the use of ANOVA statistics. This study represents the results of a sub-study from a larger project investigating the effects of two resistance training methods on load carriage running energetics. Bayesian statistics were used to compare the effectiveness of isoinertial resistance against speed-power training to change countermovement jump (CMJ) and squat jump (SJ) height, and joint energetics. Active adults were randomly allocated to either a six-week isoinertial ( n  = 16; calf raises, leg press, and lunge), or a speed-power training program ( n  = 14; countermovement jumps, hopping, with hip flexor training to target pre-swing running energetics). Primary outcome variables included jump height and joint power. Bayesian mixed modelling and Functional Data Analysis were used, where significance was determined by a non-zero crossing of the 95% Bayesian Credible Interval (CrI). The gain in CMJ height after isoinertial training was 1.95 cm (95% CrI [0.85-3.04] cm) greater than the gain after speed-power training, but the gain in SJ height was similar between groups. In the CMJ, isoinertial training produced a larger increase in power absorption at the hip by a mean 0.018% (equivalent to 35 W) (95% CrI [0.007-0.03]), knee by 0.014% (equivalent to 27 W) (95% CrI [0.006-0.02]) and foot by 0.011% (equivalent to 21 W) (95% CrI [0.005-0.02]) compared to speed-power training. Short-term isoinertial training improved CMJ height more than speed-power training. The principle adaptive difference between training modalities was at the level of hip, knee and foot power absorption.

  12. The impact of using informative priors in a Bayesian cost-effectiveness analysis: an application of endovascular versus open surgical repair for abdominal aortic aneurysms in high-risk patients.

    PubMed

    McCarron, C Elizabeth; Pullenayegum, Eleanor M; Thabane, Lehana; Goeree, Ron; Tarride, Jean-Eric

    2013-04-01

    Bayesian methods have been proposed as a way of synthesizing all available evidence to inform decision making. However, few practical applications of the use of Bayesian methods for combining patient-level data (i.e., trial) with additional evidence (e.g., literature) exist in the cost-effectiveness literature. The objective of this study was to compare a Bayesian cost-effectiveness analysis using informative priors to a standard non-Bayesian nonparametric method to assess the impact of incorporating additional information into a cost-effectiveness analysis. Patient-level data from a previously published nonrandomized study were analyzed using traditional nonparametric bootstrap techniques and bivariate normal Bayesian models with vague and informative priors. Two different types of informative priors were considered to reflect different valuations of the additional evidence relative to the patient-level data (i.e., "face value" and "skeptical"). The impact of using different distributions and valuations was assessed in a sensitivity analysis. Models were compared in terms of incremental net monetary benefit (INMB) and cost-effectiveness acceptability frontiers (CEAFs). The bootstrapping and Bayesian analyses using vague priors provided similar results. The most pronounced impact of incorporating the informative priors was the increase in estimated life years in the control arm relative to what was observed in the patient-level data alone. Consequently, the incremental difference in life years originally observed in the patient-level data was reduced, and the INMB and CEAF changed accordingly. The results of this study demonstrate the potential impact and importance of incorporating additional information into an analysis of patient-level data, suggesting this could alter decisions as to whether a treatment should be adopted and whether more information should be acquired.

  13. Randomized path optimization for thevMitigated counter detection of UAVS

    DTIC Science & Technology

    2017-06-01

    using Bayesian filtering . The KL divergence is used to compare the probability density of aircraft termination to a normal distribution around the...Bayesian filtering . The KL divergence is used to compare the probability density of aircraft termination to a normal distribution around the true terminal...algorithm’s success. A recursive Bayesian filtering scheme is used to assimilate noisy measurements of the UAVs position to predict its terminal location. We

  14. [Evaluation of estimation of prevalence ratio using bayesian log-binomial regression model].

    PubMed

    Gao, W L; Lin, H; Liu, X N; Ren, X W; Li, J S; Shen, X P; Zhu, S L

    2017-03-10

    To evaluate the estimation of prevalence ratio ( PR ) by using bayesian log-binomial regression model and its application, we estimated the PR of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea in their infants by using bayesian log-binomial regression model in Openbugs software. The results showed that caregivers' recognition of infant' s risk signs of diarrhea was associated significantly with a 13% increase of medical care-seeking. Meanwhile, we compared the differences in PR 's point estimation and its interval estimation of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea and convergence of three models (model 1: not adjusting for the covariates; model 2: adjusting for duration of caregivers' education, model 3: adjusting for distance between village and township and child month-age based on model 2) between bayesian log-binomial regression model and conventional log-binomial regression model. The results showed that all three bayesian log-binomial regression models were convergence and the estimated PRs were 1.130(95 %CI : 1.005-1.265), 1.128(95 %CI : 1.001-1.264) and 1.132(95 %CI : 1.004-1.267), respectively. Conventional log-binomial regression model 1 and model 2 were convergence and their PRs were 1.130(95 % CI : 1.055-1.206) and 1.126(95 % CI : 1.051-1.203), respectively, but the model 3 was misconvergence, so COPY method was used to estimate PR , which was 1.125 (95 %CI : 1.051-1.200). In addition, the point estimation and interval estimation of PRs from three bayesian log-binomial regression models differed slightly from those of PRs from conventional log-binomial regression model, but they had a good consistency in estimating PR . Therefore, bayesian log-binomial regression model can effectively estimate PR with less misconvergence and have more advantages in application compared with conventional log-binomial regression model.

  15. How Much Can We Learn from a Single Chromatographic Experiment? A Bayesian Perspective.

    PubMed

    Wiczling, Paweł; Kaliszan, Roman

    2016-01-05

    In this work, we proposed and investigated a Bayesian inference procedure to find the desired chromatographic conditions based on known analyte properties (lipophilicity, pKa, and polar surface area) using one preliminary experiment. A previously developed nonlinear mixed effect model was used to specify the prior information about a new analyte with known physicochemical properties. Further, the prior (no preliminary data) and posterior predictive distribution (prior + one experiment) were determined sequentially to search towards the desired separation. The following isocratic high-performance reversed-phase liquid chromatographic conditions were sought: (1) retention time of a single analyte within the range of 4-6 min and (2) baseline separation of two analytes with retention times within the range of 4-10 min. The empirical posterior Bayesian distribution of parameters was estimated using the "slice sampling" Markov Chain Monte Carlo (MCMC) algorithm implemented in Matlab. The simulations with artificial analytes and experimental data of ketoprofen and papaverine were used to test the proposed methodology. The simulation experiment showed that for a single and two randomly selected analytes, there is 97% and 74% probability of obtaining a successful chromatogram using none or one preliminary experiment. The desired separation for ketoprofen and papaverine was established based on a single experiment. It was confirmed that the search for a desired separation rarely requires a large number of chromatographic analyses at least for a simple optimization problem. The proposed Bayesian-based optimization scheme is a powerful method of finding a desired chromatographic separation based on a small number of preliminary experiments.

  16. Allowing for Correlations between Correlations in Random-Effects Meta-Analysis of Correlation Matrices

    ERIC Educational Resources Information Center

    Prevost, A. Toby; Mason, Dan; Griffin, Simon; Kinmonth, Ann-Louise; Sutton, Stephen; Spiegelhalter, David

    2007-01-01

    Practical meta-analysis of correlation matrices generally ignores covariances (and hence correlations) between correlation estimates. The authors consider various methods for allowing for covariances, including generalized least squares, maximum marginal likelihood, and Bayesian approaches, illustrated using a 6-dimensional response in a series of…

  17. Bayesian models for cost-effectiveness analysis in the presence of structural zero costs

    PubMed Central

    Baio, Gianluca

    2014-01-01

    Bayesian modelling for cost-effectiveness data has received much attention in both the health economics and the statistical literature, in recent years. Cost-effectiveness data are characterised by a relatively complex structure of relationships linking a suitable measure of clinical benefit (e.g. quality-adjusted life years) and the associated costs. Simplifying assumptions, such as (bivariate) normality of the underlying distributions, are usually not granted, particularly for the cost variable, which is characterised by markedly skewed distributions. In addition, individual-level data sets are often characterised by the presence of structural zeros in the cost variable. Hurdle models can be used to account for the presence of excess zeros in a distribution and have been applied in the context of cost data. We extend their application to cost-effectiveness data, defining a full Bayesian specification, which consists of a model for the individual probability of null costs, a marginal model for the costs and a conditional model for the measure of effectiveness (given the observed costs). We presented the model using a working example to describe its main features. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:24343868

  18. Bayesian models for cost-effectiveness analysis in the presence of structural zero costs.

    PubMed

    Baio, Gianluca

    2014-05-20

    Bayesian modelling for cost-effectiveness data has received much attention in both the health economics and the statistical literature, in recent years. Cost-effectiveness data are characterised by a relatively complex structure of relationships linking a suitable measure of clinical benefit (e.g. quality-adjusted life years) and the associated costs. Simplifying assumptions, such as (bivariate) normality of the underlying distributions, are usually not granted, particularly for the cost variable, which is characterised by markedly skewed distributions. In addition, individual-level data sets are often characterised by the presence of structural zeros in the cost variable. Hurdle models can be used to account for the presence of excess zeros in a distribution and have been applied in the context of cost data. We extend their application to cost-effectiveness data, defining a full Bayesian specification, which consists of a model for the individual probability of null costs, a marginal model for the costs and a conditional model for the measure of effectiveness (given the observed costs). We presented the model using a working example to describe its main features. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.

  19. A Study of Mexican Free-Tailed Bat Chirp Syllables: Bayesian Functional Mixed Models for Nonstationary Acoustic Time Series.

    PubMed

    Martinez, Josue G; Bohn, Kirsten M; Carroll, Raymond J; Morris, Jeffrey S

    2013-06-01

    We describe a new approach to analyze chirp syllables of free-tailed bats from two regions of Texas in which they are predominant: Austin and College Station. Our goal is to characterize any systematic regional differences in the mating chirps and assess whether individual bats have signature chirps. The data are analyzed by modeling spectrograms of the chirps as responses in a Bayesian functional mixed model. Given the variable chirp lengths, we compute the spectrograms on a relative time scale interpretable as the relative chirp position, using a variable window overlap based on chirp length. We use 2D wavelet transforms to capture correlation within the spectrogram in our modeling and obtain adaptive regularization of the estimates and inference for the regions-specific spectrograms. Our model includes random effect spectrograms at the bat level to account for correlation among chirps from the same bat, and to assess relative variability in chirp spectrograms within and between bats. The modeling of spectrograms using functional mixed models is a general approach for the analysis of replicated nonstationary time series, such as our acoustical signals, to relate aspects of the signals to various predictors, while accounting for between-signal structure. This can be done on raw spectrograms when all signals are of the same length, and can be done using spectrograms defined on a relative time scale for signals of variable length in settings where the idea of defining correspondence across signals based on relative position is sensible.

  20. Experimental design and Bayesian networks for enhancement of delta-endotoxin production by Bacillus thuringiensis.

    PubMed

    Ennouri, Karim; Ayed, Rayda Ben; Hassen, Hanen Ben; Mazzarello, Maura; Ottaviani, Ennio

    2015-12-01

    Bacillus thuringiensis (Bt) is a Gram-positive bacterium. The entomopathogenic activity of Bt is related to the existence of the crystal consisting of protoxins, also called delta-endotoxins. In order to optimize and explain the production of delta-endotoxins of Bacillus thuringiensis kurstaki, we studied seven medium components: soybean meal, starch, KH₂PO₄, K₂HPO₄, FeSO₄, MnSO₄, and MgSO₄and their relationships with the concentration of delta-endotoxins using an experimental design (Plackett-Burman design) and Bayesian networks modelling. The effects of the ingredients of the culture medium on delta-endotoxins production were estimated. The developed model showed that different medium components are important for the Bacillus thuringiensis fermentation. The most important factors influenced the production of delta-endotoxins are FeSO₄, K2HPO₄, starch and soybean meal. Indeed, it was found that soybean meal, K₂HPO₄, KH₂PO₄and starch also showed positive effect on the delta-endotoxins production. However, FeSO4 and MnSO4 expressed opposite effect. The developed model, based on Bayesian techniques, can automatically learn emerging models in data to serve in the prediction of delta-endotoxins concentrations. The constructed model in the present study implies that experimental design (Plackett-Burman design) joined with Bayesian networks method could be used for identification of effect variables on delta-endotoxins variation.

  1. Bayesian latent structure modeling of walking behavior in a physical activity intervention

    PubMed Central

    Lawson, Andrew B; Ellerbe, Caitlyn; Carroll, Rachel; Alia, Kassandra; Coulon, Sandra; Wilson, Dawn K; VanHorn, M Lee; St George, Sara M

    2017-01-01

    The analysis of walking behavior in a physical activity intervention is considered. A Bayesian latent structure modeling approach is proposed whereby the ability and willingness of participants is modeled via latent effects. The dropout process is jointly modeled via a linked survival model. Computational issues are addressed via posterior sampling and a simulated evaluation of the longitudinal model’s ability to recover latent structure and predictor effects is considered. We evaluate the effect of a variety of socio-psychological and spatial neighborhood predictors on the propensity to walk and the estimation of latent ability and willingness in the full study. PMID:24741000

  2. Bayesian spatiotemporal crash frequency models with mixture components for space-time interactions.

    PubMed

    Cheng, Wen; Gill, Gurdiljot Singh; Zhang, Yongping; Cao, Zhong

    2018-03-01

    The traffic safety research has developed spatiotemporal models to explore the variations in the spatial pattern of crash risk over time. Many studies observed notable benefits associated with the inclusion of spatial and temporal correlation and their interactions. However, the safety literature lacks sufficient research for the comparison of different temporal treatments and their interaction with spatial component. This study developed four spatiotemporal models with varying complexity due to the different temporal treatments such as (I) linear time trend; (II) quadratic time trend; (III) Autoregressive-1 (AR-1); and (IV) time adjacency. Moreover, the study introduced a flexible two-component mixture for the space-time interaction which allows greater flexibility compared to the traditional linear space-time interaction. The mixture component allows the accommodation of global space-time interaction as well as the departures from the overall spatial and temporal risk patterns. This study performed a comprehensive assessment of mixture models based on the diverse criteria pertaining to goodness-of-fit, cross-validation and evaluation based on in-sample data for predictive accuracy of crash estimates. The assessment of model performance in terms of goodness-of-fit clearly established the superiority of the time-adjacency specification which was evidently more complex due to the addition of information borrowed from neighboring years, but this addition of parameters allowed significant advantage at posterior deviance which subsequently benefited overall fit to crash data. The Base models were also developed to study the comparison between the proposed mixture and traditional space-time components for each temporal model. The mixture models consistently outperformed the corresponding Base models due to the advantages of much lower deviance. For cross-validation comparison of predictive accuracy, linear time trend model was adjudged the best as it recorded the highest value of log pseudo marginal likelihood (LPML). Four other evaluation criteria were considered for typical validation using the same data for model development. Under each criterion, observed crash counts were compared with three types of data containing Bayesian estimated, normal predicted, and model replicated ones. The linear model again performed the best in most scenarios except one case of using model replicated data and two cases involving prediction without including random effects. These phenomena indicated the mediocre performance of linear trend when random effects were excluded for evaluation. This might be due to the flexible mixture space-time interaction which can efficiently absorb the residual variability escaping from the predictable part of the model. The comparison of Base and mixture models in terms of prediction accuracy further bolstered the superiority of the mixture models as the mixture ones generated more precise estimated crash counts across all four models, suggesting that the advantages associated with mixture component at model fit were transferable to prediction accuracy. Finally, the residual analysis demonstrated the consistently superior performance of random effect models which validates the importance of incorporating the correlation structures to account for unobserved heterogeneity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Use of limited data to construct Bayesian networks for probabilistic risk assessment.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groth, Katrina M.; Swiler, Laura Painton

    2013-03-01

    Probabilistic Risk Assessment (PRA) is a fundamental part of safety/quality assurance for nuclear power and nuclear weapons. Traditional PRA very effectively models complex hardware system risks using binary probabilistic models. However, traditional PRA models are not flexible enough to accommodate non-binary soft-causal factors, such as digital instrumentation&control, passive components, aging, common cause failure, and human errors. Bayesian Networks offer the opportunity to incorporate these risks into the PRA framework. This report describes the results of an early career LDRD project titled %E2%80%9CUse of Limited Data to Construct Bayesian Networks for Probabilistic Risk Assessment%E2%80%9D. The goal of the work was tomore » establish the capability to develop Bayesian Networks from sparse data, and to demonstrate this capability by producing a data-informed Bayesian Network for use in Human Reliability Analysis (HRA) as part of nuclear power plant Probabilistic Risk Assessment (PRA). This report summarizes the research goal and major products of the research.« less

  4. A novel approach for pilot error detection using Dynamic Bayesian Networks.

    PubMed

    Saada, Mohamad; Meng, Qinggang; Huang, Tingwen

    2014-06-01

    In the last decade Dynamic Bayesian Networks (DBNs) have become one type of the most attractive probabilistic modelling framework extensions of Bayesian Networks (BNs) for working under uncertainties from a temporal perspective. Despite this popularity not many researchers have attempted to study the use of these networks in anomaly detection or the implications of data anomalies on the outcome of such models. An abnormal change in the modelled environment's data at a given time, will cause a trailing chain effect on data of all related environment variables in current and consecutive time slices. Albeit this effect fades with time, it still can have an ill effect on the outcome of such models. In this paper we propose an algorithm for pilot error detection, using DBNs as the modelling framework for learning and detecting anomalous data. We base our experiments on the actions of an aircraft pilot, and a flight simulator is created for running the experiments. The proposed anomaly detection algorithm has achieved good results in detecting pilot errors and effects on the whole system.

  5. A hierarchical Bayesian GEV model for improving local and regional flood quantile estimates

    NASA Astrophysics Data System (ADS)

    Lima, Carlos H. R.; Lall, Upmanu; Troy, Tara; Devineni, Naresh

    2016-10-01

    We estimate local and regional Generalized Extreme Value (GEV) distribution parameters for flood frequency analysis in a multilevel, hierarchical Bayesian framework, to explicitly model and reduce uncertainties. As prior information for the model, we assume that the GEV location and scale parameters for each site come from independent log-normal distributions, whose mean parameter scales with the drainage area. From empirical and theoretical arguments, the shape parameter for each site is shrunk towards a common mean. Non-informative prior distributions are assumed for the hyperparameters and the MCMC method is used to sample from the joint posterior distribution. The model is tested using annual maximum series from 20 streamflow gauges located in an 83,000 km2 flood prone basin in Southeast Brazil. The results show a significant reduction of uncertainty estimates of flood quantile estimates over the traditional GEV model, particularly for sites with shorter records. For return periods within the range of the data (around 50 years), the Bayesian credible intervals for the flood quantiles tend to be narrower than the classical confidence limits based on the delta method. As the return period increases beyond the range of the data, the confidence limits from the delta method become unreliable and the Bayesian credible intervals provide a way to estimate satisfactory confidence bands for the flood quantiles considering parameter uncertainties and regional information. In order to evaluate the applicability of the proposed hierarchical Bayesian model for regional flood frequency analysis, we estimate flood quantiles for three randomly chosen out-of-sample sites and compare with classical estimates using the index flood method. The posterior distributions of the scaling law coefficients are used to define the predictive distributions of the GEV location and scale parameters for the out-of-sample sites given only their drainage areas and the posterior distribution of the average shape parameter is taken as the regional predictive distribution for this parameter. While the index flood method does not provide a straightforward way to consider the uncertainties in the index flood and in the regional parameters, the results obtained here show that the proposed Bayesian method is able to produce adequate credible intervals for flood quantiles that are in accordance with empirical estimates.

  6. Smsynth: AN Imagery Synthesis System for Soil Moisture Retrieval

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Xu, L.; Peng, J.

    2018-04-01

    Soil moisture (SM) is a important variable in various research areas, such as weather and climate forecasting, agriculture, drought and flood monitoring and prediction, and human health. An ongoing challenge in estimating SM via synthetic aperture radar (SAR) is the development of the retrieval SM methods, especially the empirical models needs as training samples a lot of measurements of SM and soil roughness parameters which are very difficult to acquire. As such, it is difficult to develop empirical models using realistic SAR imagery and it is necessary to develop methods to synthesis SAR imagery. To tackle this issue, a SAR imagery synthesis system based on the SM named SMSynth is presented, which can simulate radar signals that are realistic as far as possible to the real SAR imagery. In SMSynth, SAR backscatter coefficients for each soil type are simulated via the Oh model under the Bayesian framework, where the spatial correlation is modeled by the Markov random field (MRF) model. The backscattering coefficients simulated based on the designed soil parameters and sensor parameters are added into the Bayesian framework through the data likelihood where the soil parameters and sensor parameters are set as realistic as possible to the circumstances on the ground and in the validity range of the Oh model. In this way, a complete and coherent Bayesian probabilistic framework is established. Experimental results show that SMSynth is capable of generating realistic SAR images that suit the needs of a large amount of training samples of empirical models.

  7. Safety performance of traffic phases and phase transitions in three phase traffic theory.

    PubMed

    Xu, Chengcheng; Liu, Pan; Wang, Wei; Li, Zhibin

    2015-12-01

    Crash risk prediction models were developed to link safety to various phases and phase transitions defined by the three phase traffic theory. Results of the Bayesian conditional logit analysis showed that different traffic states differed distinctly with respect to safety performance. The random-parameter logit approach was utilized to account for the heterogeneity caused by unobserved factors. The Bayesian inference approach based on the Markov Chain Monte Carlo (MCMC) method was used for the estimation of the random-parameter logit model. The proposed approach increased the prediction performance of the crash risk models as compared with the conventional logit model. The three phase traffic theory can help us better understand the mechanism of crash occurrences in various traffic states. The contributing factors to crash likelihood can be well explained by the mechanism of phase transitions. We further discovered that the free flow state can be divided into two sub-phases on the basis of safety performance, including a true free flow state in which the interactions between vehicles are minor, and a platooned traffic state in which bunched vehicles travel in successions. The results of this study suggest that a safety perspective can be added to the three phase traffic theory. The results also suggest that the heterogeneity between different traffic states should be considered when estimating the risks of crash occurrences on freeways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Maximum Entropy Discrimination Poisson Regression for Software Reliability Modeling.

    PubMed

    Chatzis, Sotirios P; Andreou, Andreas S

    2015-11-01

    Reliably predicting software defects is one of the most significant tasks in software engineering. Two of the major components of modern software reliability modeling approaches are: 1) extraction of salient features for software system representation, based on appropriately designed software metrics and 2) development of intricate regression models for count data, to allow effective software reliability data modeling and prediction. Surprisingly, research in the latter frontier of count data regression modeling has been rather limited. More specifically, a lack of simple and efficient algorithms for posterior computation has made the Bayesian approaches appear unattractive, and thus underdeveloped in the context of software reliability modeling. In this paper, we try to address these issues by introducing a novel Bayesian regression model for count data, based on the concept of max-margin data modeling, effected in the context of a fully Bayesian model treatment with simple and efficient posterior distribution updates. Our novel approach yields a more discriminative learning technique, making more effective use of our training data during model inference. In addition, it allows of better handling uncertainty in the modeled data, which can be a significant problem when the training data are limited. We derive elegant inference algorithms for our model under the mean-field paradigm and exhibit its effectiveness using the publicly available benchmark data sets.

  9. Cross-country transferability of multi-variable damage models

    NASA Astrophysics Data System (ADS)

    Wagenaar, Dennis; Lüdtke, Stefan; Kreibich, Heidi; Bouwer, Laurens

    2017-04-01

    Flood damage assessment is often done with simple damage curves based only on flood water depth. Additionally, damage models are often transferred in space and time, e.g. from region to region or from one flood event to another. Validation has shown that depth-damage curve estimates are associated with high uncertainties, particularly when applied in regions outside the area where the data for curve development was collected. Recently, progress has been made with multi-variable damage models created with data-mining techniques, i.e. Bayesian Networks and random forest. However, it is still unknown to what extent and under which conditions model transfers are possible and reliable. Model validations in different countries will provide valuable insights into the transferability of multi-variable damage models. In this study we compare multi-variable models developed on basis of flood damage datasets from Germany as well as from The Netherlands. Data from several German floods was collected using computer aided telephone interviews. Data from the 1993 Meuse flood in the Netherlands is available, based on compensations paid by the government. The Bayesian network and random forest based models are applied and validated in both countries on basis of the individual datasets. A major challenge was the harmonization of the variables between both datasets due to factors like differences in variable definitions, and regional and temporal differences in flood hazard and exposure characteristics. Results of model validations and comparisons in both countries are discussed, particularly in respect to encountered challenges and possible solutions for an improvement of model transferability.

  10. A Bayesian Retrieval of Greenland Ice Sheet Internal Temperature from Ultra-wideband Software-defined Microwave Radiometer (UWBRAD) Measurements

    NASA Astrophysics Data System (ADS)

    Duan, Y.; Durand, M. T.; Jezek, K. C.; Yardim, C.; Bringer, A.; Aksoy, M.; Johnson, J. T.

    2017-12-01

    The ultra-wideband software-defined microwave radiometer (UWBRAD) is designed to provide ice sheet internal temperature product via measuring low frequency microwave emission. Twelve channels ranging from 0.5 to 2.0 GHz are covered by the instrument. A Greenland air-borne demonstration was demonstrated in September 2016, provided first demonstration of Ultra-wideband radiometer observations of geophysical scenes, including ice sheets. Another flight is planned for September 2017 for acquiring measurements in central ice sheet. A Bayesian framework is designed to retrieve the ice sheet internal temperature from simulated UWBRAD brightness temperature (Tb) measurements over Greenland flight path with limited prior information of the ground. A 1-D heat-flow model, the Robin Model, was used to model the ice sheet internal temperature profile with ground information. Synthetic UWBRAD Tb observations was generated via the partially coherent radiation transfer model, which utilizes the Robin model temperature profile and an exponential fit of ice density from Borehole measurement as input, and corrupted with noise. The effective surface temperature, geothermal heat flux, the variance of upper layer ice density, and the variance of fine scale density variation at deeper ice sheet were treated as unknown variables within the retrieval framework. Each parameter is defined with its possible range and set to be uniformly distributed. The Markov Chain Monte Carlo (MCMC) approach is applied to make the unknown parameters randomly walk in the parameter space. We investigate whether the variables can be improved over priors using the MCMC approach and contribute to the temperature retrieval theoretically. UWBRAD measurements near camp century from 2016 was also treated with the MCMC to examine the framework with scattering effect. The fine scale density fluctuation is an important parameter. It is the most sensitive yet highly unknown parameter in the estimation framework. Including the fine scale density fluctuation greatly improved the retrieval results. The ice sheet vertical temperature profile, especially the 10m temperature, can be well retrieved via the MCMC process. Future retrieval work will apply the Bayesian approach to UWBRAD airborne measurements.

  11. A Bayesian Nonparametric Approach to Test Equating

    ERIC Educational Resources Information Center

    Karabatsos, George; Walker, Stephen G.

    2009-01-01

    A Bayesian nonparametric model is introduced for score equating. It is applicable to all major equating designs, and has advantages over previous equating models. Unlike the previous models, the Bayesian model accounts for positive dependence between distributions of scores from two tests. The Bayesian model and the previous equating models are…

  12. Extreme-Scale Bayesian Inference for Uncertainty Quantification of Complex Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biros, George

    Uncertainty quantification (UQ)—that is, quantifying uncertainties in complex mathematical models and their large-scale computational implementations—is widely viewed as one of the outstanding challenges facing the field of CS&E over the coming decade. The EUREKA project set to address the most difficult class of UQ problems: those for which both the underlying PDE model as well as the uncertain parameters are of extreme scale. In the project we worked on these extreme-scale challenges in the following four areas: 1. Scalable parallel algorithms for sampling and characterizing the posterior distribution that exploit the structure of the underlying PDEs and parameter-to-observable map. Thesemore » include structure-exploiting versions of the randomized maximum likelihood method, which aims to overcome the intractability of employing conventional MCMC methods for solving extreme-scale Bayesian inversion problems by appealing to and adapting ideas from large-scale PDE-constrained optimization, which have been very successful at exploring high-dimensional spaces. 2. Scalable parallel algorithms for construction of prior and likelihood functions based on learning methods and non-parametric density estimation. Constructing problem-specific priors remains a critical challenge in Bayesian inference, and more so in high dimensions. Another challenge is construction of likelihood functions that capture unmodeled couplings between observations and parameters. We will create parallel algorithms for non-parametric density estimation using high dimensional N-body methods and combine them with supervised learning techniques for the construction of priors and likelihood functions. 3. Bayesian inadequacy models, which augment physics models with stochastic models that represent their imperfections. The success of the Bayesian inference framework depends on the ability to represent the uncertainty due to imperfections of the mathematical model of the phenomena of interest. This is a central challenge in UQ, especially for large-scale models. We propose to develop the mathematical tools to address these challenges in the context of extreme-scale problems. 4. Parallel scalable algorithms for Bayesian optimal experimental design (OED). Bayesian inversion yields quantified uncertainties in the model parameters, which can be propagated forward through the model to yield uncertainty in outputs of interest. This opens the way for designing new experiments to reduce the uncertainties in the model parameters and model predictions. Such experimental design problems have been intractable for large-scale problems using conventional methods; we will create OED algorithms that exploit the structure of the PDE model and the parameter-to-output map to overcome these challenges. Parallel algorithms for these four problems were created, analyzed, prototyped, implemented, tuned, and scaled up for leading-edge supercomputers, including UT-Austin’s own 10 petaflops Stampede system, ANL’s Mira system, and ORNL’s Titan system. While our focus is on fundamental mathematical/computational methods and algorithms, we will assess our methods on model problems derived from several DOE mission applications, including multiscale mechanics and ice sheet dynamics.« less

  13. Bayesian survival analysis in clinical trials: What methods are used in practice?

    PubMed

    Brard, Caroline; Le Teuff, Gwénaël; Le Deley, Marie-Cécile; Hampson, Lisa V

    2017-02-01

    Background Bayesian statistics are an appealing alternative to the traditional frequentist approach to designing, analysing, and reporting of clinical trials, especially in rare diseases. Time-to-event endpoints are widely used in many medical fields. There are additional complexities to designing Bayesian survival trials which arise from the need to specify a model for the survival distribution. The objective of this article was to critically review the use and reporting of Bayesian methods in survival trials. Methods A systematic review of clinical trials using Bayesian survival analyses was performed through PubMed and Web of Science databases. This was complemented by a full text search of the online repositories of pre-selected journals. Cost-effectiveness, dose-finding studies, meta-analyses, and methodological papers using clinical trials were excluded. Results In total, 28 articles met the inclusion criteria, 25 were original reports of clinical trials and 3 were re-analyses of a clinical trial. Most trials were in oncology (n = 25), were randomised controlled (n = 21) phase III trials (n = 13), and half considered a rare disease (n = 13). Bayesian approaches were used for monitoring in 14 trials and for the final analysis only in 14 trials. In the latter case, Bayesian survival analyses were used for the primary analysis in four cases, for the secondary analysis in seven cases, and for the trial re-analysis in three cases. Overall, 12 articles reported fitting Bayesian regression models (semi-parametric, n = 3; parametric, n = 9). Prior distributions were often incompletely reported: 20 articles did not define the prior distribution used for the parameter of interest. Over half of the trials used only non-informative priors for monitoring and the final analysis (n = 12) when it was specified. Indeed, no articles fitting Bayesian regression models placed informative priors on the parameter of interest. The prior for the treatment effect was based on historical data in only four trials. Decision rules were pre-defined in eight cases when trials used Bayesian monitoring, and in only one case when trials adopted a Bayesian approach to the final analysis. Conclusion Few trials implemented a Bayesian survival analysis and few incorporated external data into priors. There is scope to improve the quality of reporting of Bayesian methods in survival trials. Extension of the Consolidated Standards of Reporting Trials statement for reporting Bayesian clinical trials is recommended.

  14. Model Diagnostics for Bayesian Networks

    ERIC Educational Resources Information Center

    Sinharay, Sandip

    2006-01-01

    Bayesian networks are frequently used in educational assessments primarily for learning about students' knowledge and skills. There is a lack of works on assessing fit of Bayesian networks. This article employs the posterior predictive model checking method, a popular Bayesian model checking tool, to assess fit of simple Bayesian networks. A…

  15. Bayesian ionospheric multi-instrument 3D tomography

    NASA Astrophysics Data System (ADS)

    Norberg, Johannes; Vierinen, Juha; Roininen, Lassi

    2017-04-01

    The tomographic reconstruction of ionospheric electron densities is an inverse problem that cannot be solved without relatively strong regularising additional information. % Especially the vertical electron density profile is determined predominantly by the regularisation. % %Often utilised regularisations in ionospheric tomography include smoothness constraints and iterative methods with initial ionospheric models. % Despite its crucial role, the regularisation is often hidden in the algorithm as a numerical procedure without physical understanding. % % The Bayesian methodology provides an interpretative approach for the problem, as the regularisation can be given in a physically meaningful and quantifiable prior probability distribution. % The prior distribution can be based on ionospheric physics, other available ionospheric measurements and their statistics. % Updating the prior with measurements results as the posterior distribution that carries all the available information combined. % From the posterior distribution, the most probable state of the ionosphere can then be solved with the corresponding probability intervals. % Altogether, the Bayesian methodology provides understanding on how strong the given regularisation is, what is the information gained with the measurements and how reliable the final result is. % In addition, the combination of different measurements and temporal development can be taken into account in a very intuitive way. However, a direct implementation of the Bayesian approach requires inversion of large covariance matrices resulting in computational infeasibility. % In the presented method, Gaussian Markov random fields are used to form a sparse matrix approximations for the covariances. % The approach makes the problem computationally feasible while retaining the probabilistic and physical interpretation. Here, the Bayesian method with Gaussian Markov random fields is applied for ionospheric 3D tomography over Northern Europe. % Multi-instrument measurements are utilised from TomoScand receiver network for Low Earth orbit beacon satellite signals, GNSS receiver networks, as well as from EISCAT ionosondes and incoherent scatter radars. % %The performance is demonstrated in three-dimensional spatial domain with temporal development also taken into account.

  16. Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation

    NASA Astrophysics Data System (ADS)

    Reis, D. S.; Stedinger, J. R.; Martins, E. S.

    2005-10-01

    This paper develops a Bayesian approach to analysis of a generalized least squares (GLS) regression model for regional analyses of hydrologic data. The new approach allows computation of the posterior distributions of the parameters and the model error variance using a quasi-analytic approach. Two regional skew estimation studies illustrate the value of the Bayesian GLS approach for regional statistical analysis of a shape parameter and demonstrate that regional skew models can be relatively precise with effective record lengths in excess of 60 years. With Bayesian GLS the marginal posterior distribution of the model error variance and the corresponding mean and variance of the parameters can be computed directly, thereby providing a simple but important extension of the regional GLS regression procedures popularized by Tasker and Stedinger (1989), which is sensitive to the likely values of the model error variance when it is small relative to the sampling error in the at-site estimator.

  17. A cross-comparison of different techniques for modeling macro-level cyclist crashes.

    PubMed

    Guo, Yanyong; Osama, Ahmed; Sayed, Tarek

    2018-04-01

    Despite the recognized benefits of cycling as a sustainable mode of transportation, cyclists are considered vulnerable road users and there are concerns about their safety. Therefore, it is essential to investigate the factors affecting cyclist safety. The goal of this study is to evaluate and compare different approaches of modeling macro-level cyclist safety as well as investigating factors that contribute to cyclist crashes using a comprehensive list of covariates. Data from 134 traffic analysis zones (TAZs) in the City of Vancouver were used to develop macro-level crash models (CM) incorporating variables related to actual traffic exposure, socio-economics, land use, built environment, and bike network. Four types of CMs were developed under a full Bayesian framework: Poisson lognormal model (PLN), random intercepts PLN model (RIPLN), random parameters PLN model (RPPLN), and spatial PLN model (SPLN). The SPLN model had the best goodness of fit, and the results highlighted the significant effects of spatial correlation. The models showed that the cyclist crashes were positively associated with bike and vehicle exposure measures, households, commercial area density, and signal density. On the other hand, negative associations were found between cyclist crashes and some bike network indicators such as average edge length, average zonal slope, and off-street bike links. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Dissecting the Genetic Architecture of Shoot Growth in Carrot (Daucus carota L.) Using a Diallel Mating Design

    PubMed Central

    Turner, Sarah D.; Maurizio, Paul L.; Valdar, William; Yandell, Brian S.; Simon, Philipp W.

    2017-01-01

    Crop establishment in carrot (Daucus carota L.) is limited by slow seedling growth and delayed canopy closure, resulting in high management costs for weed control. Varieties with improved growth habit (i.e., larger canopy and increased shoot biomass) may help mitigate weed control, but the underlying genetics of these traits in carrot is unknown. This project used a diallel mating design coupled with recent Bayesian analytical methods to determine the genetic basis of carrot shoot growth. Six diverse carrot inbred lines with variable shoot size were crossed in WI in 2014. F1 hybrids, reciprocal crosses, and parental selfs were grown in a randomized complete block design with two blocks in WI (2015) and CA (2015, 2016). Measurements included canopy height, canopy width, shoot biomass, and root biomass. General and specific combining abilities were estimated using Griffing’s Model I, which is a common analysis for plant breeding experiments. In parallel, additive, inbred, cross-specific, and maternal effects were estimated from a Bayesian mixed model, which is robust to dealing with data imbalance and outliers. Both additive and nonadditive effects significantly influenced shoot traits, with nonadditive effects playing a larger role early in the growing season, when weed control is most critical. Results suggest the presence of heritable variation and thus potential for improvement of these phenotypes in carrot. In addition, results present evidence of heterosis for root biomass, which is a major component of carrot yield. PMID:29187419

  19. Adaptability and phenotypic stability of common bean genotypes through Bayesian inference.

    PubMed

    Corrêa, A M; Teodoro, P E; Gonçalves, M C; Barroso, L M A; Nascimento, M; Santos, A; Torres, F E

    2016-04-27

    This study used Bayesian inference to investigate the genotype x environment interaction in common bean grown in Mato Grosso do Sul State, and it also evaluated the efficiency of using informative and minimally informative a priori distributions. Six trials were conducted in randomized blocks, and the grain yield of 13 common bean genotypes was assessed. To represent the minimally informative a priori distributions, a probability distribution with high variance was used, and a meta-analysis concept was adopted to represent the informative a priori distributions. Bayes factors were used to conduct comparisons between the a priori distributions. The Bayesian inference was effective for the selection of upright common bean genotypes with high adaptability and phenotypic stability using the Eberhart and Russell method. Bayes factors indicated that the use of informative a priori distributions provided more accurate results than minimally informative a priori distributions. According to Bayesian inference, the EMGOPA-201, BAMBUÍ, CNF 4999, CNF 4129 A 54, and CNFv 8025 genotypes had specific adaptability to favorable environments, while the IAPAR 14 and IAC CARIOCA ETE genotypes had specific adaptability to unfavorable environments.

  20. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?

    PubMed

    Veturi, Yogasudha; Ritchie, Marylyn D

    2018-01-01

    Transcriptome-wide association studies (TWAS) have recently been employed as an approach that can draw upon the advantages of genome-wide association studies (GWAS) and gene expression studies to identify genes associated with complex traits. Unlike standard GWAS, summary level data suffices for TWAS and offers improved statistical power. Two popular TWAS methods include either (a) imputing the cis genetic component of gene expression from smaller sized studies (using multi-SNP prediction or MP) into much larger effective sample sizes afforded by GWAS - TWAS-MP or (b) using summary-based Mendelian randomization - TWAS-SMR. Although these methods have been effective at detecting functional variants, it remains unclear how extensive variability in the genetic architecture of complex traits and diseases impacts TWAS results. Our goal was to investigate the different scenarios under which these methods yielded enough power to detect significant expression-trait associations. In this study, we conducted extensive simulations based on 6000 randomly chosen, unrelated Caucasian males from Geisinger's MyCode population to compare the power to detect cis expression-trait associations (within 500 kb of a gene) using the above-described approaches. To test TWAS across varying genetic backgrounds we simulated gene expression and phenotype using different quantitative trait loci per gene and cis-expression /trait heritability under genetic models that differentiate the effect of causality from that of pleiotropy. For each gene, on a training set ranging from 100 to 1000 individuals, we either (a) estimated regression coefficients with gene expression as the response using five different methods: LASSO, elastic net, Bayesian LASSO, Bayesian spike-slab, and Bayesian ridge regression or (b) performed eQTL analysis. We then sampled with replacement 50,000, 150,000, and 300,000 individuals respectively from the testing set of the remaining 5000 individuals and conducted GWAS on each set. Subsequently, we integrated the GWAS summary statistics derived from the testing set with the weights (or eQTLs) derived from the training set to identify expression-trait associations using (a) TWAS-MP (b) TWAS-SMR (c) eQTL-based GWAS, or (d) standalone GWAS. Finally, we examined the power to detect functionally relevant genes using the different approaches under the considered simulation scenarios. In general, we observed great similarities among TWAS-MP methods although the Bayesian methods resulted in improved power in comparison to LASSO and elastic net as the trait architecture grew more complex while training sample sizes and expression heritability remained small. Finally, we observed high power under causality but very low to moderate power under pleiotropy.

  1. A Bayesian framework to estimate diversification rates and their variation through time and space

    PubMed Central

    2011-01-01

    Background Patterns of species diversity are the result of speciation and extinction processes, and molecular phylogenetic data can provide valuable information to derive their variability through time and across clades. Bayesian Markov chain Monte Carlo methods offer a promising framework to incorporate phylogenetic uncertainty when estimating rates of diversification. Results We introduce a new approach to estimate diversification rates in a Bayesian framework over a distribution of trees under various constant and variable rate birth-death and pure-birth models, and test it on simulated phylogenies. Furthermore, speciation and extinction rates and their posterior credibility intervals can be estimated while accounting for non-random taxon sampling. The framework is particularly suitable for hypothesis testing using Bayes factors, as we demonstrate analyzing dated phylogenies of Chondrostoma (Cyprinidae) and Lupinus (Fabaceae). In addition, we develop a model that extends the rate estimation to a meta-analysis framework in which different data sets are combined in a single analysis to detect general temporal and spatial trends in diversification. Conclusions Our approach provides a flexible framework for the estimation of diversification parameters and hypothesis testing while simultaneously accounting for uncertainties in the divergence times and incomplete taxon sampling. PMID:22013891

  2. A Bayesian changepoint-threshold model to examine the effect of TMDL implementation on the flow-nitrogen concentration relationship in the Neuse River basin.

    PubMed

    Alameddine, Ibrahim; Qian, Song S; Reckhow, Kenneth H

    2011-01-01

    In-stream nutrient concentrations are well known to exhibit a strong relationship with river flow. The use of flow measurements to predict nutrient concentrations and subsequently nutrient loads is common in water quality modeling. Nevertheless, most adopted models assume that the relationship between flow and concentration is fixed across time as well as across different flow regimes. In this study, we developed a Bayesian changepoint-threshold model that relaxes these constraints and allows for the identification and quantification of any changes in the underlying flow-concentration relationship across time. The results from our study support the occurrence of a changepoint in time around the year 1999, which coincided with the period of implementing nitrogen control measures as part of the TMDL program developed for the Neuse Estuary in North Carolina. The occurrence of the changepoint challenges the underlying assumption of temporal invariance in the flow-concentrations relationship. The model results also point towards a transition in the river nitrogen delivery system from a point source dominated loading system towards a more complicated nonlinear system, where non-point source nutrient delivery plays a major role. Moreover, we use the developed model to assess the effectiveness of the nitrogen reduction measures in achieving a 30% drop in loading. The results indicate that while there is a strong evidence of a load reduction, there still remains a high level of uncertainty associated with the mean nitrogen load reduction. We show that the level of uncertainty around the estimated load reduction is not random but is flow related. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. A Bayesian network model for predicting pregnancy after in vitro fertilization.

    PubMed

    Corani, G; Magli, C; Giusti, A; Gianaroli, L; Gambardella, L M

    2013-11-01

    We present a Bayesian network model for predicting the outcome of in vitro fertilization (IVF). The problem is characterized by a particular missingness process; we propose a simple but effective averaging approach which improves parameter estimates compared to the traditional MAP estimation. We present results with generated data and the analysis of a real data set. Moreover, we assess by means of a simulation study the effectiveness of the model in supporting the selection of the embryos to be transferred. © 2013 Elsevier Ltd. All rights reserved.

  4. A Bayesian bird's eye view of ‘Replications of important results in social psychology’

    PubMed Central

    Schönbrodt, Felix D.; Yao, Yuling; Gelman, Andrew; Wagenmakers, Eric-Jan

    2017-01-01

    We applied three Bayesian methods to reanalyse the preregistered contributions to the Social Psychology special issue ‘Replications of Important Results in Social Psychology’ (Nosek & Lakens. 2014 Registered reports: a method to increase the credibility of published results. Soc. Psychol. 45, 137–141. (doi:10.1027/1864-9335/a000192)). First, individual-experiment Bayesian parameter estimation revealed that for directed effect size measures, only three out of 44 central 95% credible intervals did not overlap with zero and fell in the expected direction. For undirected effect size measures, only four out of 59 credible intervals contained values greater than 0.10 (10% of variance explained) and only 19 intervals contained values larger than 0.05. Second, a Bayesian random-effects meta-analysis for all 38 t-tests showed that only one out of the 38 hierarchically estimated credible intervals did not overlap with zero and fell in the expected direction. Third, a Bayes factor hypothesis test was used to quantify the evidence for the null hypothesis against a default one-sided alternative. Only seven out of 60 Bayes factors indicated non-anecdotal support in favour of the alternative hypothesis (BF10>3), whereas 51 Bayes factors indicated at least some support for the null hypothesis. We hope that future analyses of replication success will embrace a more inclusive statistical approach by adopting a wider range of complementary techniques. PMID:28280547

  5. A Bayesian Approach to Surrogacy Assessment Using Principal Stratification in Clinical Trials

    PubMed Central

    Li, Yun; Taylor, Jeremy M.G.; Elliott, Michael R.

    2011-01-01

    Summary A surrogate marker (S) is a variable that can be measured earlier and often easier than the true endpoint (T) in a clinical trial. Most previous research has been devoted to developing surrogacy measures to quantify how well S can replace T or examining the use of S in predicting the effect of a treatment (Z). However, the research often requires one to fit models for the distribution of T given S and Z. It is well known that such models do not have causal interpretations because the models condition on a post-randomization variable S. In this paper, we directly model the relationship among T, S and Z using a potential outcomes framework introduced by Frangakis and Rubin (2002). We propose a Bayesian estimation method to evaluate the causal probabilities associated with the cross-classification of the potential outcomes of S and T when S and T are both binary. We use a log-linear model to directly model the association between the potential outcomes of S and T through the odds ratios. The quantities derived from this approach always have causal interpretations. However, this causal model is not identifiable from the data without additional assumptions. To reduce the non-identifiability problem and increase the precision of statistical inferences, we assume monotonicity and incorporate prior belief that is plausible in the surrogate context by using prior distributions. We also explore the relationship among the surrogacy measures based on traditional models and this counterfactual model. The method is applied to the data from a glaucoma treatment study. PMID:19673864

  6. Bayesian Model Averaging for Propensity Score Analysis

    ERIC Educational Resources Information Center

    Kaplan, David; Chen, Jianshen

    2013-01-01

    The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…

  7. Human Inferences about Sequences: A Minimal Transition Probability Model

    PubMed Central

    2016-01-01

    The brain constantly infers the causes of the inputs it receives and uses these inferences to generate statistical expectations about future observations. Experimental evidence for these expectations and their violations include explicit reports, sequential effects on reaction times, and mismatch or surprise signals recorded in electrophysiology and functional MRI. Here, we explore the hypothesis that the brain acts as a near-optimal inference device that constantly attempts to infer the time-varying matrix of transition probabilities between the stimuli it receives, even when those stimuli are in fact fully unpredictable. This parsimonious Bayesian model, with a single free parameter, accounts for a broad range of findings on surprise signals, sequential effects and the perception of randomness. Notably, it explains the pervasive asymmetry between repetitions and alternations encountered in those studies. Our analysis suggests that a neural machinery for inferring transition probabilities lies at the core of human sequence knowledge. PMID:28030543

  8. Comparative Effectiveness of Mesalamine, Sulfasalazine, Corticosteroids, and Budesonide for the Induction of Remission in Crohn's Disease: A Bayesian Network Meta-analysis.

    PubMed

    Coward, Stephanie; Kuenzig, M Ellen; Hazlewood, Glen; Clement, Fiona; McBrien, Kerry; Holmes, Rebecca; Panaccione, Remo; Ghosh, Subrata; Seow, Cynthia H; Rezaie, Ali; Kaplan, Gilaad G

    2017-03-01

    Induction treatment of mild-to-moderate Crohn's disease is controversial. To compare the induction of remission between different doses of mesalamine, sulfasalazine, corticosteroids, and budesonide for active Crohn's disease. We identified randomized controlled trials from existing Cochrane reviews and an updated literature search in Medline, EMBASE, and CENTRAL to November 2015. We included randomized controlled trials (n = 22) in adult patients with Crohn's disease that compared budesonide, sulfasalazine, mesalamine, or corticosteroids with placebo or each other, for the induction of remission (8-17 wks). Mesalamine (above and below 2.4 g/d) and budesonide (above and below 6 mg/d) were stratified into low and high doses. Our primary outcome was remission, defined as a Crohn's Disease Activity Index score <150. A Bayesian random-effects network meta-analysis was performed on the proportion in remission. Corticosteroids (odds ratio [OR] = 3.80; 95% credible interval [CrI]: 2.48-5.66), high-dose budesonide (OR = 2.96; 95% CrI: 2.06-4.30), and high-dose mesalamine (OR = 2.29; 95% CrI: 1.58-3.33) were superior to placebo. Corticosteroids were similar to high-dose budesonide (OR = 1.21; 95% CrI: 0.84-1.76), but more effective than high-dose mesalamine (OR = 1.83; 95% CrI: 1.16-2.88). Sulfasalazine was not significantly superior to any therapy including placebo. Randomized controlled trials that use a strict definition of induction of remission and disease severity at enrollment to assess effectiveness in treating mild-to-moderate Crohn's disease are limited. Corticosteroids and high-dose budesonide were effective treatments for inducing remission in mild-to-moderate Crohn's disease. High-dose mesalamine is an option among patients preferring to avoid steroids.

  9. Bayesian analysis of heterogeneous treatment effects for patient-centered outcomes research.

    PubMed

    Henderson, Nicholas C; Louis, Thomas A; Wang, Chenguang; Varadhan, Ravi

    2016-01-01

    Evaluation of heterogeneity of treatment effect (HTE) is an essential aspect of personalized medicine and patient-centered outcomes research. Our goal in this article is to promote the use of Bayesian methods for subgroup analysis and to lower the barriers to their implementation by describing the ways in which the companion software beanz can facilitate these types of analyses. To advance this goal, we describe several key Bayesian models for investigating HTE and outline the ways in which they are well-suited to address many of the commonly cited challenges in the study of HTE. Topics highlighted include shrinkage estimation, model choice, sensitivity analysis, and posterior predictive checking. A case study is presented in which we demonstrate the use of the methods discussed.

  10. Bayesian model checking: A comparison of tests

    NASA Astrophysics Data System (ADS)

    Lucy, L. B.

    2018-06-01

    Two procedures for checking Bayesian models are compared using a simple test problem based on the local Hubble expansion. Over four orders of magnitude, p-values derived from a global goodness-of-fit criterion for posterior probability density functions agree closely with posterior predictive p-values. The former can therefore serve as an effective proxy for the difficult-to-calculate posterior predictive p-values.

  11. Capturing the Cumulative Effects of School Reform: An 11-Year Study of the Impacts of America's Choice on Student Achievement

    ERIC Educational Resources Information Center

    May, Henry; Supovitz, Jonathan A.

    2006-01-01

    This article presents the results of an 11-year longitudinal study of the impact of America's Choice comprehensive school reform (CSR) design on student learning gains in Rochester, New York. A quasi-experimental interrupted time-series approach using Bayesian hierarchical growth curve analysis with crossed random effects is used to compare the…

  12. Multivariate random regression analysis for body weight and main morphological traits in genetically improved farmed tilapia (Oreochromis niloticus).

    PubMed

    He, Jie; Zhao, Yunfeng; Zhao, Jingli; Gao, Jin; Han, Dandan; Xu, Pao; Yang, Runqing

    2017-11-02

    Because of their high economic importance, growth traits in fish are under continuous improvement. For growth traits that are recorded at multiple time-points in life, the use of univariate and multivariate animal models is limited because of the variable and irregular timing of these measures. Thus, the univariate random regression model (RRM) was introduced for the genetic analysis of dynamic growth traits in fish breeding. We used a multivariate random regression model (MRRM) to analyze genetic changes in growth traits recorded at multiple time-point of genetically-improved farmed tilapia. Legendre polynomials of different orders were applied to characterize the influences of fixed and random effects on growth trajectories. The final MRRM was determined by optimizing the univariate RRM for the analyzed traits separately via penalizing adaptively the likelihood statistical criterion, which is superior to both the Akaike information criterion and the Bayesian information criterion. In the selected MRRM, the additive genetic effects were modeled by Legendre polynomials of three orders for body weight (BWE) and body length (BL) and of two orders for body depth (BD). By using the covariance functions of the MRRM, estimated heritabilities were between 0.086 and 0.628 for BWE, 0.155 and 0.556 for BL, and 0.056 and 0.607 for BD. Only heritabilities for BD measured from 60 to 140 days of age were consistently higher than those estimated by the univariate RRM. All genetic correlations between growth time-points exceeded 0.5 for either single or pairwise time-points. Moreover, correlations between early and late growth time-points were lower. Thus, for phenotypes that are measured repeatedly in aquaculture, an MRRM can enhance the efficiency of the comprehensive selection for BWE and the main morphological traits.

  13. A Bayesian method for characterizing distributed micro-releases: II. inference under model uncertainty with short time-series data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzouk, Youssef; Fast P.; Kraus, M.

    2006-01-01

    Terrorist attacks using an aerosolized pathogen preparation have gained credibility as a national security concern after the anthrax attacks of 2001. The ability to characterize such attacks, i.e., to estimate the number of people infected, the time of infection, and the average dose received, is important when planning a medical response. We address this question of characterization by formulating a Bayesian inverse problem predicated on a short time-series of diagnosed patients exhibiting symptoms. To be of relevance to response planning, we limit ourselves to 3-5 days of data. In tests performed with anthrax as the pathogen, we find that thesemore » data are usually sufficient, especially if the model of the outbreak used in the inverse problem is an accurate one. In some cases the scarcity of data may initially support outbreak characterizations at odds with the true one, but with sufficient data the correct inferences are recovered; in other words, the inverse problem posed and its solution methodology are consistent. We also explore the effect of model error-situations for which the model used in the inverse problem is only a partially accurate representation of the outbreak; here, the model predictions and the observations differ by more than a random noise. We find that while there is a consistent discrepancy between the inferred and the true characterizations, they are also close enough to be of relevance when planning a response.« less

  14. A fully Bayesian method for jointly fitting instrumental calibration and X-ray spectral models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jin; Yu, Yaming; Van Dyk, David A.

    2014-10-20

    Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is 'pragmatic' in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use amore » principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.« less

  15. Effectiveness of a Parent Health Report in Increasing Fruit and Vegetable Consumption Among Preschoolers and Kindergarteners.

    PubMed

    Hunsaker, Sanita L; Jensen, Chad D

    2017-05-01

    To determine the effectiveness of a parent health report on fruit and vegetable consumption among preschoolers and kindergarteners. Pre-post open design trial and a randomized controlled trial. A university-sponsored preschool and kindergarten. A total of 63 parents of preschool and kindergarten students participated in the pre-post open design trial and 65 parents participated in the randomized controlled trial. Parents in intervention groups were given a parent health report providing information about their child's fruit and vegetable intake as well as recommendations for how to increase their child's fruit and vegetable consumption. Change in fruit and vegetable consumption. Latent growth curve modeling with Bayesian estimation. Vegetable consumption increased by 0.3 servings/d in the open trial and 0.65 servings/d in the randomized trial. Fruit consumption did not increase significantly in either study. Results from both an open trial and a randomized controlled trial suggested that the parent health report may be a beneficial tool to increase vegetable consumption in preschoolers and kindergarteners. Increases in vegetable consumption can lead to the establishment of lifelong habits of healthy vegetable intake and decrease risk for chronic diseases. Copyright © 2017 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  16. Outdoor fine particles and nonfatal strokes: systematic review and meta-analysis.

    PubMed

    Shin, Hwashin H; Fann, Neal; Burnett, Richard T; Cohen, Aaron; Hubbell, Bryan J

    2014-11-01

    Epidemiologic studies find that long- and short-term exposure to fine particles (PM2.5) is associated with adverse cardiovascular outcomes, including ischemic and hemorrhagic strokes. However, few systematic reviews or meta-analyses have synthesized these results. We reviewed epidemiologic studies that estimated the risks of nonfatal strokes attributable to ambient PM2.5. To pool risks among studies we used a random-effects model and 2 Bayesian approaches. The first Bayesian approach assumes a normal prior that allows risks to be zero, positive or negative. The second assumes a gamma prior, where risks can only be positive. This second approach is proposed when the number of studies pooled is small, and there is toxicological or clinical literature to support a causal relation. We identified 20 studies suitable for quantitative meta-analysis. Evidence for publication bias is limited. The frequentist meta-analysis produced pooled risk ratios of 1.06 (95% confidence interval = 1.00-1.13) and 1.007 (1.003-1.010) for long- and short-term effects, respectively. The Bayesian meta-analysis found a posterior mean risk ratio of 1.08 (95% posterior interval = 0.96-1.26) and 1.008 (1.003-1.013) from a normal prior, and of 1.05 (1.02-1.10) and 1.008 (1.004-1.013) from a gamma prior, for long- and short-term effects, respectively, per 10 μg/m PM2.5. Sufficient evidence exists to develop a concentration-response relation for short- and long-term exposures to PM2.5 and stroke incidence. Long-term exposures to PM2.5 result in a higher risk ratio than short-term exposures, regardless of the pooling method. The evidence for short-term PM2.5-related ischemic stroke is especially strong.

  17. A Bayesian Missing Data Framework for Generalized Multiple Outcome Mixed Treatment Comparisons

    ERIC Educational Resources Information Center

    Hong, Hwanhee; Chu, Haitao; Zhang, Jing; Carlin, Bradley P.

    2016-01-01

    Bayesian statistical approaches to mixed treatment comparisons (MTCs) are becoming more popular because of their flexibility and interpretability. Many randomized clinical trials report multiple outcomes with possible inherent correlations. Moreover, MTC data are typically sparse (although richer than standard meta-analysis, comparing only two…

  18. Local dependence in random graph models: characterization, properties and statistical inference

    PubMed Central

    Schweinberger, Michael; Handcock, Mark S.

    2015-01-01

    Summary Dependent phenomena, such as relational, spatial and temporal phenomena, tend to be characterized by local dependence in the sense that units which are close in a well-defined sense are dependent. In contrast with spatial and temporal phenomena, though, relational phenomena tend to lack a natural neighbourhood structure in the sense that it is unknown which units are close and thus dependent. Owing to the challenge of characterizing local dependence and constructing random graph models with local dependence, many conventional exponential family random graph models induce strong dependence and are not amenable to statistical inference. We take first steps to characterize local dependence in random graph models, inspired by the notion of finite neighbourhoods in spatial statistics and M-dependence in time series, and we show that local dependence endows random graph models with desirable properties which make them amenable to statistical inference. We show that random graph models with local dependence satisfy a natural domain consistency condition which every model should satisfy, but conventional exponential family random graph models do not satisfy. In addition, we establish a central limit theorem for random graph models with local dependence, which suggests that random graph models with local dependence are amenable to statistical inference. We discuss how random graph models with local dependence can be constructed by exploiting either observed or unobserved neighbourhood structure. In the absence of observed neighbourhood structure, we take a Bayesian view and express the uncertainty about the neighbourhood structure by specifying a prior on a set of suitable neighbourhood structures. We present simulation results and applications to two real world networks with ‘ground truth’. PMID:26560142

  19. A Bayesian Approach to Identifying Structural Nonlinearity using Free-Decay Response: Application to Damage Detection in Composites

    DTIC Science & Technology

    2010-03-03

    obtainable while for the free-decay problem we simply have to include the initial conditions as random variables to be predicted. A different approach that...important and useful properties of MLEs is that, under regularity conditions , they are asymptotically unbiased and possess the minimum possible...becomes pLðzjh;s2G;MiÞ (i.e. the likelihood is conditional on the specified model). However, in this work we will only consider a single model and drop the

  20. Prevalence and risk factors of Coxiella burnetii seropositivity in Danish beef and dairy cattle at slaughter adjusted for test uncertainty.

    PubMed

    Paul, Suman; Agger, Jens F; Agerholm, Jørgen S; Markussen, Bo

    2014-03-01

    Antibodies to Coxiella burnetii have been found in the Danish dairy cattle population with high levels of herd and within herd seroprevalences. However, the prevalence of antibodies to C. burnetii in Danish beef cattle remains unknown. The objectives of this study were to (1) estimate the prevalence and (2) identify risk factors associated with C. burnetii seropositivity in Danish beef and dairy cattle based on sampling at slaughter. Eight hundred blood samples from slaughtered cattle were collected from six Danish slaughter houses from August to October 2012 following a random sampling procedure. Blood samples were tested by a commercially available C. burnetii antibody ELISA kit. A sample was defined positive if the sample-to-positive ratio was greater than or equal to 40. Animal and herd information were extracted from the Danish Cattle Database. Apparent (AP) and true prevalences (TPs) specific for breed, breed groups, gender and herd type; and breed-specific true prevalences with a random effect of breed was estimated in a Bayesian framework. A Bayesian logistic regression model was used to identify risk factors of C. burnetii seropositivity. Test sensitivity and specificity estimates from a previous study involving Danish dairy cattle were used to generate prior information. The prevalence was significantly higher in dairy breeds (AP=9.11%; TP=9.45%) than in beef breeds (AP=4.32%; TP=3.54%), in females (AP=9.10%; TP=9.40%) than in males (AP=3.62%; TP=2.61%) and in dairy herds (AP=15.10%; TP=16.67%) compared to beef herds (AP=4.54%; TP=3.66%). The Bayesian logistic regression model identified breed group along with age, and number of movements as contributors for C. burnetii seropositivity. The risk of seropositivity increased with age and increasing number of movements between herds. Results indicate that seroprevalence of C. burnetii is lower in cattle sent for slaughter than in Danish dairy cows in production units. A greater proportion of this prevalence is attributed to slaughtered cattle of dairy breeds or cattle raised in dairy herds rather than beef breeds. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Bayesian inference for multivariate meta-analysis Box-Cox transformation models for individual patient data with applications to evaluation of cholesterol lowering drugs

    PubMed Central

    Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G.; Shah, Arvind K.; Lin, Jianxin

    2013-01-01

    In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data (IPD) in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the Deviance Information Criterion (DIC) is used to select the best transformation model. Since the model is quite complex, a novel Monte Carlo Markov chain (MCMC) sampling scheme is developed to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol lowering drugs where the goal is to jointly model the three dimensional response consisting of Low Density Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and Triglycerides (TG) (LDL-C, HDL-C, TG). Since the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately: however, a multivariate approach would be more appropriate since these variables are correlated with each other. A detailed analysis of these data is carried out using the proposed methodology. PMID:23580436

  2. Bayesian inference for multivariate meta-analysis Box-Cox transformation models for individual patient data with applications to evaluation of cholesterol-lowering drugs.

    PubMed

    Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G; Shah, Arvind K; Lin, Jianxin

    2013-10-15

    In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the deviance information criterion is used to select the best transformation model. Because the model is quite complex, we develop a novel Monte Carlo Markov chain sampling scheme to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol-lowering drugs where the goal is to jointly model the three-dimensional response consisting of low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and triglycerides (TG) (LDL-C, HDL-C, TG). Because the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately; however, a multivariate approach would be more appropriate because these variables are correlated with each other. We carry out a detailed analysis of these data by using the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.

  3. A Bayesian Approach for Image Segmentation with Shape Priors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Hang; Yang, Qing; Parvin, Bahram

    2008-06-20

    Color and texture have been widely used in image segmentation; however, their performance is often hindered by scene ambiguities, overlapping objects, or missingparts. In this paper, we propose an interactive image segmentation approach with shape prior models within a Bayesian framework. Interactive features, through mouse strokes, reduce ambiguities, and the incorporation of shape priors enhances quality of the segmentation where color and/or texture are not solely adequate. The novelties of our approach are in (i) formulating the segmentation problem in a well-de?ned Bayesian framework with multiple shape priors, (ii) ef?ciently estimating parameters of the Bayesian model, and (iii) multi-object segmentationmore » through user-speci?ed priors. We demonstrate the effectiveness of our method on a set of natural and synthetic images.« less

  4. Bayesian stock assessment of Pacific herring in Prince William Sound, Alaska.

    PubMed

    Muradian, Melissa L; Branch, Trevor A; Moffitt, Steven D; Hulson, Peter-John F

    2017-01-01

    The Pacific herring (Clupea pallasii) population in Prince William Sound, Alaska crashed in 1993 and has yet to recover, affecting food web dynamics in the Sound and impacting Alaskan communities. To help researchers design and implement the most effective monitoring, management, and recovery programs, a Bayesian assessment of Prince William Sound herring was developed by reformulating the current model used by the Alaska Department of Fish and Game. The Bayesian model estimated pre-fishery spawning biomass of herring age-3 and older in 2013 to be a median of 19,410 mt (95% credibility interval 12,150-31,740 mt), with a 54% probability that biomass in 2013 was below the management limit used to regulate fisheries in Prince William Sound. The main advantages of the Bayesian model are that it can more objectively weight different datasets and provide estimates of uncertainty for model parameters and outputs, unlike the weighted sum-of-squares used in the original model. In addition, the revised model could be used to manage herring stocks with a decision rule that considers both stock status and the uncertainty in stock status.

  5. Bayesian stock assessment of Pacific herring in Prince William Sound, Alaska

    PubMed Central

    Moffitt, Steven D.; Hulson, Peter-John F.

    2017-01-01

    The Pacific herring (Clupea pallasii) population in Prince William Sound, Alaska crashed in 1993 and has yet to recover, affecting food web dynamics in the Sound and impacting Alaskan communities. To help researchers design and implement the most effective monitoring, management, and recovery programs, a Bayesian assessment of Prince William Sound herring was developed by reformulating the current model used by the Alaska Department of Fish and Game. The Bayesian model estimated pre-fishery spawning biomass of herring age-3 and older in 2013 to be a median of 19,410 mt (95% credibility interval 12,150–31,740 mt), with a 54% probability that biomass in 2013 was below the management limit used to regulate fisheries in Prince William Sound. The main advantages of the Bayesian model are that it can more objectively weight different datasets and provide estimates of uncertainty for model parameters and outputs, unlike the weighted sum-of-squares used in the original model. In addition, the revised model could be used to manage herring stocks with a decision rule that considers both stock status and the uncertainty in stock status. PMID:28222151

  6. The influence of baseline marijuana use on treatment of cocaine dependence: application of an informative-priors bayesian approach.

    PubMed

    Green, Charles; Schmitz, Joy; Lindsay, Jan; Pedroza, Claudia; Lane, Scott; Agnelli, Rob; Kjome, Kimberley; Moeller, F Gerard

    2012-01-01

    Marijuana use is prevalent among patients with cocaine dependence and often non-exclusionary in clinical trials of potential cocaine medications. The dual-focus of this study was to (1) examine the moderating effect of baseline marijuana use on response to treatment with levodopa/carbidopa for cocaine dependence; and (2) apply an informative-priors, Bayesian approach for estimating the probability of a subgroup-by-treatment interaction effect. A secondary data analysis of two previously published, double-blind, randomized controlled trials provided complete data for the historical (Study 1: N = 64 placebo), and current (Study 2: N = 113) data sets. Negative binomial regression evaluated Treatment Effectiveness Scores (TES) as a function of medication condition (levodopa/carbidopa, placebo), baseline marijuana use (days in past 30), and their interaction. Bayesian analysis indicated that there was a 96% chance that baseline marijuana use predicts differential response to treatment with levodopa/carbidopa. Simple effects indicated that among participants receiving levodopa/carbidopa the probability that baseline marijuana confers harm in terms of reducing TES was 0.981; whereas the probability that marijuana confers harm within the placebo condition was 0.163. For every additional day of marijuana use reported at baseline, participants in the levodopa/carbidopa condition demonstrated a 5.4% decrease in TES; while participants in the placebo condition demonstrated a 4.9% increase in TES. The potential moderating effect of marijuana on cocaine treatment response should be considered in future trial designs. Applying Bayesian subgroup analysis proved informative in characterizing this patient-treatment interaction effect.

  7. The Influence of Baseline Marijuana Use on Treatment of Cocaine Dependence: Application of an Informative-Priors Bayesian Approach

    PubMed Central

    Green, Charles; Schmitz, Joy; Lindsay, Jan; Pedroza, Claudia; Lane, Scott; Agnelli, Rob; Kjome, Kimberley; Moeller, F. Gerard

    2012-01-01

    Background: Marijuana use is prevalent among patients with cocaine dependence and often non-exclusionary in clinical trials of potential cocaine medications. The dual-focus of this study was to (1) examine the moderating effect of baseline marijuana use on response to treatment with levodopa/carbidopa for cocaine dependence; and (2) apply an informative-priors, Bayesian approach for estimating the probability of a subgroup-by-treatment interaction effect. Method: A secondary data analysis of two previously published, double-blind, randomized controlled trials provided complete data for the historical (Study 1: N = 64 placebo), and current (Study 2: N = 113) data sets. Negative binomial regression evaluated Treatment Effectiveness Scores (TES) as a function of medication condition (levodopa/carbidopa, placebo), baseline marijuana use (days in past 30), and their interaction. Results: Bayesian analysis indicated that there was a 96% chance that baseline marijuana use predicts differential response to treatment with levodopa/carbidopa. Simple effects indicated that among participants receiving levodopa/carbidopa the probability that baseline marijuana confers harm in terms of reducing TES was 0.981; whereas the probability that marijuana confers harm within the placebo condition was 0.163. For every additional day of marijuana use reported at baseline, participants in the levodopa/carbidopa condition demonstrated a 5.4% decrease in TES; while participants in the placebo condition demonstrated a 4.9% increase in TES. Conclusion: The potential moderating effect of marijuana on cocaine treatment response should be considered in future trial designs. Applying Bayesian subgroup analysis proved informative in characterizing this patient-treatment interaction effect. PMID:23115553

  8. Prior robust empirical Bayes inference for large-scale data by conditioning on rank with application to microarray data

    PubMed Central

    Liao, J. G.; Mcmurry, Timothy; Berg, Arthur

    2014-01-01

    Empirical Bayes methods have been extensively used for microarray data analysis by modeling the large number of unknown parameters as random effects. Empirical Bayes allows borrowing information across genes and can automatically adjust for multiple testing and selection bias. However, the standard empirical Bayes model can perform poorly if the assumed working prior deviates from the true prior. This paper proposes a new rank-conditioned inference in which the shrinkage and confidence intervals are based on the distribution of the error conditioned on rank of the data. Our approach is in contrast to a Bayesian posterior, which conditions on the data themselves. The new method is almost as efficient as standard Bayesian methods when the working prior is close to the true prior, and it is much more robust when the working prior is not close. In addition, it allows a more accurate (but also more complex) non-parametric estimate of the prior to be easily incorporated, resulting in improved inference. The new method’s prior robustness is demonstrated via simulation experiments. Application to a breast cancer gene expression microarray dataset is presented. Our R package rank.Shrinkage provides a ready-to-use implementation of the proposed methodology. PMID:23934072

  9. Precise Network Modeling of Systems Genetics Data Using the Bayesian Network Webserver.

    PubMed

    Ziebarth, Jesse D; Cui, Yan

    2017-01-01

    The Bayesian Network Webserver (BNW, http://compbio.uthsc.edu/BNW ) is an integrated platform for Bayesian network modeling of biological datasets. It provides a web-based network modeling environment that seamlessly integrates advanced algorithms for probabilistic causal modeling and reasoning with Bayesian networks. BNW is designed for precise modeling of relatively small networks that contain less than 20 nodes. The structure learning algorithms used by BNW guarantee the discovery of the best (most probable) network structure given the data. To facilitate network modeling across multiple biological levels, BNW provides a very flexible interface that allows users to assign network nodes into different tiers and define the relationships between and within the tiers. This function is particularly useful for modeling systems genetics datasets that often consist of multiscalar heterogeneous genotype-to-phenotype data. BNW enables users to, within seconds or minutes, go from having a simply formatted input file containing a dataset to using a network model to make predictions about the interactions between variables and the potential effects of experimental interventions. In this chapter, we will introduce the functions of BNW and show how to model systems genetics datasets with BNW.

  10. Protein construct storage: Bayesian variable selection and prediction with mixtures.

    PubMed

    Clyde, M A; Parmigiani, G

    1998-07-01

    Determining optimal conditions for protein storage while maintaining a high level of protein activity is an important question in pharmaceutical research. A designed experiment based on a space-filling design was conducted to understand the effects of factors affecting protein storage and to establish optimal storage conditions. Different model-selection strategies to identify important factors may lead to very different answers about optimal conditions. Uncertainty about which factors are important, or model uncertainty, can be a critical issue in decision-making. We use Bayesian variable selection methods for linear models to identify important variables in the protein storage data, while accounting for model uncertainty. We also use the Bayesian framework to build predictions based on a large family of models, rather than an individual model, and to evaluate the probability that certain candidate storage conditions are optimal.

  11. Moderation analysis with missing data in the predictors.

    PubMed

    Zhang, Qian; Wang, Lijuan

    2017-12-01

    The most widely used statistical model for conducting moderation analysis is the moderated multiple regression (MMR) model. In MMR modeling, missing data could pose a challenge, mainly because the interaction term is a product of two or more variables and thus is a nonlinear function of the involved variables. In this study, we consider a simple MMR model, where the effect of the focal predictor X on the outcome Y is moderated by a moderator U. The primary interest is to find ways of estimating and testing the moderation effect with the existence of missing data in X. We mainly focus on cases when X is missing completely at random (MCAR) and missing at random (MAR). Three methods are compared: (a) Normal-distribution-based maximum likelihood estimation (NML); (b) Normal-distribution-based multiple imputation (NMI); and (c) Bayesian estimation (BE). Via simulations, we found that NML and NMI could lead to biased estimates of moderation effects under MAR missingness mechanism. The BE method outperformed NMI and NML for MMR modeling with missing data in the focal predictor, missingness depending on the moderator and/or auxiliary variables, and correctly specified distributions for the focal predictor. In addition, more robust BE methods are needed in terms of the distribution mis-specification problem of the focal predictor. An empirical example was used to illustrate the applications of the methods with a simple sensitivity analysis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Flood quantile estimation at ungauged sites by Bayesian networks

    NASA Astrophysics Data System (ADS)

    Mediero, L.; Santillán, D.; Garrote, L.

    2012-04-01

    Estimating flood quantiles at a site for which no observed measurements are available is essential for water resources planning and management. Ungauged sites have no observations about the magnitude of floods, but some site and basin characteristics are known. The most common technique used is the multiple regression analysis, which relates physical and climatic basin characteristic to flood quantiles. Regression equations are fitted from flood frequency data and basin characteristics at gauged sites. Regression equations are a rigid technique that assumes linear relationships between variables and cannot take the measurement errors into account. In addition, the prediction intervals are estimated in a very simplistic way from the variance of the residuals in the estimated model. Bayesian networks are a probabilistic computational structure taken from the field of Artificial Intelligence, which have been widely and successfully applied to many scientific fields like medicine and informatics, but application to the field of hydrology is recent. Bayesian networks infer the joint probability distribution of several related variables from observations through nodes, which represent random variables, and links, which represent causal dependencies between them. A Bayesian network is more flexible than regression equations, as they capture non-linear relationships between variables. In addition, the probabilistic nature of Bayesian networks allows taking the different sources of estimation uncertainty into account, as they give a probability distribution as result. A homogeneous region in the Tagus Basin was selected as case study. A regression equation was fitted taking the basin area, the annual maximum 24-hour rainfall for a given recurrence interval and the mean height as explanatory variables. Flood quantiles at ungauged sites were estimated by Bayesian networks. Bayesian networks need to be learnt from a huge enough data set. As observational data are reduced, a stochastic generator of synthetic data was developed. Synthetic basin characteristics were randomised, keeping the statistical properties of observed physical and climatic variables in the homogeneous region. The synthetic flood quantiles were stochastically generated taking the regression equation as basis. The learnt Bayesian network was validated by the reliability diagram, the Brier Score and the ROC diagram, which are common measures used in the validation of probabilistic forecasts. Summarising, the flood quantile estimations through Bayesian networks supply information about the prediction uncertainty as a probability distribution function of discharges is given as result. Therefore, the Bayesian network model has application as a decision support for water resources and planning management.

  13. Bayesian structural equation modeling in sport and exercise psychology.

    PubMed

    Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus

    2015-08-01

    Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.

  14. A Study of Mexican Free-Tailed Bat Chirp Syllables: Bayesian Functional Mixed Models for Nonstationary Acoustic Time Series

    PubMed Central

    MARTINEZ, Josue G.; BOHN, Kirsten M.; CARROLL, Raymond J.

    2013-01-01

    We describe a new approach to analyze chirp syllables of free-tailed bats from two regions of Texas in which they are predominant: Austin and College Station. Our goal is to characterize any systematic regional differences in the mating chirps and assess whether individual bats have signature chirps. The data are analyzed by modeling spectrograms of the chirps as responses in a Bayesian functional mixed model. Given the variable chirp lengths, we compute the spectrograms on a relative time scale interpretable as the relative chirp position, using a variable window overlap based on chirp length. We use 2D wavelet transforms to capture correlation within the spectrogram in our modeling and obtain adaptive regularization of the estimates and inference for the regions-specific spectrograms. Our model includes random effect spectrograms at the bat level to account for correlation among chirps from the same bat, and to assess relative variability in chirp spectrograms within and between bats. The modeling of spectrograms using functional mixed models is a general approach for the analysis of replicated nonstationary time series, such as our acoustical signals, to relate aspects of the signals to various predictors, while accounting for between-signal structure. This can be done on raw spectrograms when all signals are of the same length, and can be done using spectrograms defined on a relative time scale for signals of variable length in settings where the idea of defining correspondence across signals based on relative position is sensible. PMID:23997376

  15. Rationale of a novel study design for the BIOFLOW V study, a prospective, randomized multicenter study to assess the safety and efficacy of the Orsiro sirolimus-eluting coronary stent system using a Bayesian approach.

    PubMed

    Doros, Gheorghe; Massaro, Joseph M; Kandzari, David E; Waksman, Ron; Koolen, Jacques J; Cutlip, Donald E; Mauri, Laura

    2017-11-01

    Traditional study design submitted to the Food and Drug Administration to test newer drug-eluting stents (DES) for marketing approval is the prospective randomized controlled trial. However, several DES have extensive clinical data from trials conducted outside the United States that have led to utilization of a novel design using the Bayesian approach. This design was proposed for testing DES with bioresorbable polymer compared with DES most commonly in use today that use durable polymers for drug elution. This prospective, multicenter, randomized, controlled trial is designed to assess the safety and efficacy of the Orsiro bioresorbable polymer sirolimus-eluting stent (BP SES). Up to 1,334 subjects with up to 3 de novo or restenotic coronary artery lesions who qualify for percutaneous coronary intervention with stenting will be randomized 2:1 to the BP SES versus the Xience durable polymer everolimus-eluting stent (DP EES). Data from this trial will be combined with data from 2 similarly designed trials that also randomize subjects to BP SES and DP EES (BIOFLOW II, N=452 and BIOFLOW IV, N=579) by using a Bayesian approach. The primary end point is target lesion failure at 12 months post index procedure, defined as cardiac death, target vessel myocardial infarction, or clinically driven target lesion revascularization, and the primary analysis is a test of noninferiority of the BP SES versus DP EES on the primary end point according to a noninferiority delta of 3.85%. Secondary end points include stent thrombosis and the individual components of target lesion failure. Subjects will be followed for 5 years after randomization. The BIOFLOW V trial offers an opportunity to assess clinical outcomes in patients treated with coronary revascularization using the Orsiro BP SES relative to a commonly used DP EES. The use of a Bayesian analysis combines a large randomized cohort of patients 2 two smaller contributing randomized trials to augment the efficiency of the comparison. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Hydrologic Model Selection using Markov chain Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Marshall, L.; Sharma, A.; Nott, D.

    2002-12-01

    Estimation of parameter uncertainty (and in turn model uncertainty) allows assessment of the risk in likely applications of hydrological models. Bayesian statistical inference provides an ideal means of assessing parameter uncertainty whereby prior knowledge about the parameter is combined with information from the available data to produce a probability distribution (the posterior distribution) that describes uncertainty about the parameter and serves as a basis for selecting appropriate values for use in modelling applications. Widespread use of Bayesian techniques in hydrology has been hindered by difficulties in summarizing and exploring the posterior distribution. These difficulties have been largely overcome by recent advances in Markov chain Monte Carlo (MCMC) methods that involve random sampling of the posterior distribution. This study presents an adaptive MCMC sampling algorithm which has characteristics that are well suited to model parameters with a high degree of correlation and interdependence, as is often evident in hydrological models. The MCMC sampling technique is used to compare six alternative configurations of a commonly used conceptual rainfall-runoff model, the Australian Water Balance Model (AWBM), using 11 years of daily rainfall runoff data from the Bass river catchment in Australia. The alternative configurations considered fall into two classes - those that consider model errors to be independent of prior values, and those that model the errors as an autoregressive process. Each such class consists of three formulations that represent increasing levels of complexity (and parameterisation) of the original model structure. The results from this study point both to the importance of using Bayesian approaches in evaluating model performance, as well as the simplicity of the MCMC sampling framework that has the ability to bring such approaches within the reach of the applied hydrological community.

  17. An introduction to using Bayesian linear regression with clinical data.

    PubMed

    Baldwin, Scott A; Larson, Michael J

    2017-11-01

    Statistical training psychology focuses on frequentist methods. Bayesian methods are an alternative to standard frequentist methods. This article provides researchers with an introduction to fundamental ideas in Bayesian modeling. We use data from an electroencephalogram (EEG) and anxiety study to illustrate Bayesian models. Specifically, the models examine the relationship between error-related negativity (ERN), a particular event-related potential, and trait anxiety. Methodological topics covered include: how to set up a regression model in a Bayesian framework, specifying priors, examining convergence of the model, visualizing and interpreting posterior distributions, interval estimates, expected and predicted values, and model comparison tools. We also discuss situations where Bayesian methods can outperform frequentist methods as well has how to specify more complicated regression models. Finally, we conclude with recommendations about reporting guidelines for those using Bayesian methods in their own research. We provide data and R code for replicating our analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Predictability of extreme weather events for NE U.S.: improvement of the numerical prediction using a Bayesian regression approach

    NASA Astrophysics Data System (ADS)

    Yang, J.; Astitha, M.; Anagnostou, E. N.; Hartman, B.; Kallos, G. B.

    2015-12-01

    Weather prediction accuracy has become very important for the Northeast U.S. given the devastating effects of extreme weather events in the recent years. Weather forecasting systems are used towards building strategies to prevent catastrophic losses for human lives and the environment. Concurrently, weather forecast tools and techniques have evolved with improved forecast skill as numerical prediction techniques are strengthened by increased super-computing resources. In this study, we examine the combination of two state-of-the-science atmospheric models (WRF and RAMS/ICLAMS) by utilizing a Bayesian regression approach to improve the prediction of extreme weather events for NE U.S. The basic concept behind the Bayesian regression approach is to take advantage of the strengths of two atmospheric modeling systems and, similar to the multi-model ensemble approach, limit their weaknesses which are related to systematic and random errors in the numerical prediction of physical processes. The first part of this study is focused on retrospective simulations of seventeen storms that affected the region in the period 2004-2013. Optimal variances are estimated by minimizing the root mean square error and are applied to out-of-sample weather events. The applicability and usefulness of this approach are demonstrated by conducting an error analysis based on in-situ observations from meteorological stations of the National Weather Service (NWS) for wind speed and wind direction, and NCEP Stage IV radar data, mosaicked from the regional multi-sensor for precipitation. The preliminary results indicate a significant improvement in the statistical metrics of the modeled-observed pairs for meteorological variables using various combinations of the sixteen events as predictors of the seventeenth. This presentation will illustrate the implemented methodology and the obtained results for wind speed, wind direction and precipitation, as well as set the research steps that will be followed in the future.

  19. Predicting Software Suitability Using a Bayesian Belief Network

    NASA Technical Reports Server (NTRS)

    Beaver, Justin M.; Schiavone, Guy A.; Berrios, Joseph S.

    2005-01-01

    The ability to reliably predict the end quality of software under development presents a significant advantage for a development team. It provides an opportunity to address high risk components earlier in the development life cycle, when their impact is minimized. This research proposes a model that captures the evolution of the quality of a software product, and provides reliable forecasts of the end quality of the software being developed in terms of product suitability. Development team skill, software process maturity, and software problem complexity are hypothesized as driving factors of software product quality. The cause-effect relationships between these factors and the elements of software suitability are modeled using Bayesian Belief Networks, a machine learning method. This research presents a Bayesian Network for software quality, and the techniques used to quantify the factors that influence and represent software quality. The developed model is found to be effective in predicting the end product quality of small-scale software development efforts.

  20. Research on Bayes matting algorithm based on Gaussian mixture model

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Jiang, Shan; Han, Cheng; Zhang, Chao; Jiang, Zhengang

    2015-12-01

    The digital matting problem is a classical problem of imaging. It aims at separating non-rectangular foreground objects from a background image, and compositing with a new background image. Accurate matting determines the quality of the compositing image. A Bayesian matting Algorithm Based on Gaussian Mixture Model is proposed to solve this matting problem. Firstly, the traditional Bayesian framework is improved by introducing Gaussian mixture model. Then, a weighting factor is added in order to suppress the noises of the compositing images. Finally, the effect is further improved by regulating the user's input. This algorithm is applied to matting jobs of classical images. The results are compared to the traditional Bayesian method. It is shown that our algorithm has better performance in detail such as hair. Our algorithm eliminates the noise well. And it is very effectively in dealing with the kind of work, such as interested objects with intricate boundaries.

  1. A Taxonomic Reduced-Space Pollen Model for Paleoclimate Reconstruction

    NASA Astrophysics Data System (ADS)

    Wahl, E. R.; Schoelzel, C.

    2010-12-01

    Paleoenvironmental reconstruction from fossil pollen often attempts to take advantage of the rich taxonomic diversity in such data. Here, a taxonomically "reduced-space" reconstruction model is explored that would be parsimonious in introducing parameters needing to be estimated within a Bayesian Hierarchical Modeling context. This work involves a refinement of the traditional pollen ratio method. This method is useful when one (or a few) dominant pollen type(s) in a region have a strong positive correlation with a climate variable of interest and another (or a few) dominant pollen type(s) have a strong negative correlation. When, e.g., counts of pollen taxa a and b (r >0) are combined with pollen types c and d (r <0) to form ratios of the form (a + b) / (a + b + c + d), an appropriate estimation form is the binomial logistic generalized linear model (GLM). The GLM can readily model this relationship in the forward form, pollen = g(climate), which is more physically realistic than inverse models often used in paleoclimate reconstruction [climate = f(pollen)]. The specification of the model is: rnum Bin(n,p), where E(r|T) = p = exp(η)/[1+exp(η)], and η = α + β(T); r is the pollen ratio formed as above, rnum is the ratio numerator, n is the ratio denominator (i.e., the sum of pollen counts), the denominator-specific count is (n - rnum), and T is the temperature at each site corresponding to a specific value of r. Ecological and empirical screening identified the model (Spruce+Birch) / (Spruce+Birch+Oak+Hickory) for use in temperate eastern N. America. α and β were estimated using both "traditional" and Bayesian GLM algorithms (in R). Although it includes only four pollen types, the ratio model yields more explained variation ( 80%) in the pollen-temperature relationship of the study region than a 64-taxon modern analog technique (MAT). Thus, the new pollen ratio method represents an information-rich, reduced space data model that can be efficiently employed in a BHM framework. The ratio model can directly reconstruct past temperature by solving the GLM equations for T as a function of α, β, and E(r|T): T = {ln[E(r|T)/{1-E(r|T)}]-α}/β. To enable use in paleoreconstruction, the observed r values from fossil pollen data are, by assumption, treated as unbiased estimators of the true r value at each time sampled, which can be substituted for E(r|T). Uncertainty in this reconstruction is systematically evaluated in two parts: 1) the observed r values and their corresponding n values are input as parameters into the binomial distribution, Monte Carlo random pollen count draws are made, and a new ratio value is determined for each iteration; and 2) in the "traditional" GLM the estimated SEs for α and β are used with the α and β EV estimates to yield Monte Carlo random draws for each binomial draw (assuming α and β are Gaussian), in the Bayesian GLM random draws for α and β are taken directly from their estimated posterior distribution. Both methods yield nearly identical reconstructions from varved lakes in Wisconsin where the model has been tested; slightly narrower uncertainty ranges are produced by the Bayesian model. The Little Ice Age is readily identified. Pine:Oak and Fir:Oak versions of the model used in S. California show differences from MAT-based reconstructions.

  2. Statistical properties of four effect-size measures for mediation models.

    PubMed

    Miočević, Milica; O'Rourke, Holly P; MacKinnon, David P; Brown, Hendricks C

    2018-02-01

    This project examined the performance of classical and Bayesian estimators of four effect size measures for the indirect effect in a single-mediator model and a two-mediator model. Compared to the proportion and ratio mediation effect sizes, standardized mediation effect-size measures were relatively unbiased and efficient in the single-mediator model and the two-mediator model. Percentile and bias-corrected bootstrap interval estimates of ab/s Y , and ab(s X )/s Y in the single-mediator model outperformed interval estimates of the proportion and ratio effect sizes in terms of power, Type I error rate, coverage, imbalance, and interval width. For the two-mediator model, standardized effect-size measures were superior to the proportion and ratio effect-size measures. Furthermore, it was found that Bayesian point and interval summaries of posterior distributions of standardized effect-size measures reduced excessive relative bias for certain parameter combinations. The standardized effect-size measures are the best effect-size measures for quantifying mediated effects.

  3. Combining Computational Methods for Hit to Lead Optimization in Mycobacterium tuberculosis Drug Discovery

    PubMed Central

    Ekins, Sean; Freundlich, Joel S.; Hobrath, Judith V.; White, E. Lucile; Reynolds, Robert C

    2013-01-01

    Purpose Tuberculosis treatments need to be shorter and overcome drug resistance. Our previous large scale phenotypic high-throughput screening against Mycobacterium tuberculosis (Mtb) has identified 737 active compounds and thousands that are inactive. We have used this data for building computational models as an approach to minimize the number of compounds tested. Methods A cheminformatics clustering approach followed by Bayesian machine learning models (based on publicly available Mtb screening data) was used to illustrate that application of these models for screening set selections can enrich the hit rate. Results In order to explore chemical diversity around active cluster scaffolds of the dose-response hits obtained from our previous Mtb screens a set of 1924 commercially available molecules have been selected and evaluated for antitubercular activity and cytotoxicity using Vero, THP-1 and HepG2 cell lines with 4.3%, 4.2% and 2.7% hit rates, respectively. We demonstrate that models incorporating antitubercular and cytotoxicity data in Vero cells can significantly enrich the selection of non-toxic actives compared to random selection. Across all cell lines, the Molecular Libraries Small Molecule Repository (MLSMR) and cytotoxicity model identified ~10% of the hits in the top 1% screened (>10 fold enrichment). We also showed that seven out of nine Mtb active compounds from different academic published studies and eight out of eleven Mtb active compounds from a pharmaceutical screen (GSK) would have been identified by these Bayesian models. Conclusion Combining clustering and Bayesian models represents a useful strategy for compound prioritization and hit-to lead optimization of antitubercular agents. PMID:24132686

  4. Nonparametric Bayesian predictive distributions for future order statistics

    Treesearch

    Richard A. Johnson; James W. Evans; David W. Green

    1999-01-01

    We derive the predictive distribution for a specified order statistic, determined from a future random sample, under a Dirichlet process prior. Two variants of the approach are treated and some limiting cases studied. A practical application to monitoring the strength of lumber is discussed including choices of prior expectation and comparisons made to a Bayesian...

  5. Exact Bayesian p-values for a test of independence in a 2 × 2 contingency table with missing data.

    PubMed

    Lin, Yan; Lipsitz, Stuart R; Sinha, Debajyoti; Fitzmaurice, Garrett; Lipshultz, Steven

    2017-01-01

    Altham (Altham PME. Exact Bayesian analysis of a 2 × 2 contingency table, and Fisher's "exact" significance test. J R Stat Soc B 1969; 31: 261-269) showed that a one-sided p-value from Fisher's exact test of independence in a 2 × 2 contingency table is equal to the posterior probability of negative association in the 2 × 2 contingency table under a Bayesian analysis using an improper prior. We derive an extension of Fisher's exact test p-value in the presence of missing data, assuming the missing data mechanism is ignorable (i.e., missing at random or completely at random). Further, we propose Bayesian p-values for a test of independence in a 2 × 2 contingency table with missing data using alternative priors; we also present results from a simulation study exploring the Type I error rate and power of the proposed exact test p-values. An example, using data on the association between blood pressure and a cardiac enzyme, is presented to illustrate the methods.

  6. Statistical Surrogate Models for Estimating Probability of High-Consequence Climate Change

    NASA Astrophysics Data System (ADS)

    Field, R.; Constantine, P.; Boslough, M.

    2011-12-01

    We have posed the climate change problem in a framework similar to that used in safety engineering, by acknowledging that probabilistic risk assessments focused on low-probability, high-consequence climate events are perhaps more appropriate than studies focused simply on best estimates. To properly explore the tails of the distribution requires extensive sampling, which is not possible with existing coupled atmospheric models due to the high computational cost of each simulation. We have developed specialized statistical surrogate models (SSMs) that can be used to make predictions about the tails of the associated probability distributions. A SSM is different than a deterministic surrogate model in that it represents each climate variable of interest as a space/time random field, that is, a random variable for every fixed location in the atmosphere at all times. The SSM can be calibrated to available spatial and temporal data from existing climate databases, or to a collection of outputs from general circulation models. Because of its reduced size and complexity, the realization of a large number of independent model outputs from a SSM becomes computationally straightforward, so that quantifying the risk associated with low-probability, high-consequence climate events becomes feasible. A Bayesian framework was also developed to provide quantitative measures of confidence, via Bayesian credible intervals, to assess these risks. To illustrate the use of the SSM, we considered two collections of NCAR CCSM 3.0 output data. The first collection corresponds to average December surface temperature for years 1990-1999 based on a collection of 8 different model runs obtained from the Program for Climate Model Diagnosis and Intercomparison (PCMDI). We calibrated the surrogate model to the available model data and make various point predictions. We also analyzed average precipitation rate in June, July, and August over a 54-year period assuming a cyclic Y2K ocean model. We applied the calibrated surrogate model to study the probability that the precipitation rate falls below certain thresholds and utilized the Bayesian approach to quantify our confidence in these predictions. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  7. Bayesian spatio-temporal modeling of particulate matter concentrations in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Manga, Edna; Awang, Norhashidah

    2016-06-01

    This article presents an application of a Bayesian spatio-temporal Gaussian process (GP) model on particulate matter concentrations from Peninsular Malaysia. We analyze daily PM10 concentration levels from 35 monitoring sites in June and July 2011. The spatiotemporal model set in a Bayesian hierarchical framework allows for inclusion of informative covariates, meteorological variables and spatiotemporal interactions. Posterior density estimates of the model parameters are obtained by Markov chain Monte Carlo methods. Preliminary data analysis indicate information on PM10 levels at sites classified as industrial locations could explain part of the space time variations. We include the site-type indicator in our modeling efforts. Results of the parameter estimates for the fitted GP model show significant spatio-temporal structure and positive effect of the location-type explanatory variable. We also compute some validation criteria for the out of sample sites that show the adequacy of the model for predicting PM10 at unmonitored sites.

  8. Bayesian mixture modeling for blood sugar levels of diabetes mellitus patients (case study in RSUD Saiful Anwar Malang Indonesia)

    NASA Astrophysics Data System (ADS)

    Budi Astuti, Ani; Iriawan, Nur; Irhamah; Kuswanto, Heri; Sasiarini, Laksmi

    2017-10-01

    Bayesian statistics proposes an approach that is very flexible in the number of samples and distribution of data. Bayesian Mixture Model (BMM) is a Bayesian approach for multimodal models. Diabetes Mellitus (DM) is more commonly known in the Indonesian community as sweet pee. This disease is one type of chronic non-communicable diseases but it is very dangerous to humans because of the effects of other diseases complications caused. WHO reports in 2013 showed DM disease was ranked 6th in the world as the leading causes of human death. In Indonesia, DM disease continues to increase over time. These research would be studied patterns and would be built the BMM models of the DM data through simulation studies where the simulation data built on cases of blood sugar levels of DM patients in RSUD Saiful Anwar Malang. The results have been successfully demonstrated pattern of distribution of the DM data which has a normal mixture distribution. The BMM models have succeed to accommodate the real condition of the DM data based on the data driven concept.

  9. Bayesian analysis of time-series data under case-crossover designs: posterior equivalence and inference.

    PubMed

    Li, Shi; Mukherjee, Bhramar; Batterman, Stuart; Ghosh, Malay

    2013-12-01

    Case-crossover designs are widely used to study short-term exposure effects on the risk of acute adverse health events. While the frequentist literature on this topic is vast, there is no Bayesian work in this general area. The contribution of this paper is twofold. First, the paper establishes Bayesian equivalence results that require characterization of the set of priors under which the posterior distributions of the risk ratio parameters based on a case-crossover and time-series analysis are identical. Second, the paper studies inferential issues under case-crossover designs in a Bayesian framework. Traditionally, a conditional logistic regression is used for inference on risk-ratio parameters in case-crossover studies. We consider instead a more general full likelihood-based approach which makes less restrictive assumptions on the risk functions. Formulation of a full likelihood leads to growth in the number of parameters proportional to the sample size. We propose a semi-parametric Bayesian approach using a Dirichlet process prior to handle the random nuisance parameters that appear in a full likelihood formulation. We carry out a simulation study to compare the Bayesian methods based on full and conditional likelihood with the standard frequentist approaches for case-crossover and time-series analysis. The proposed methods are illustrated through the Detroit Asthma Morbidity, Air Quality and Traffic study, which examines the association between acute asthma risk and ambient air pollutant concentrations. © 2013, The International Biometric Society.

  10. Bayesian Hierarchical Model Characterization of Model Error in Ocean Data Assimilation and Forecasts

    DTIC Science & Technology

    2013-09-30

    proof-of-concept results comparing a BHM surface wind ensemble with the increments in the surface momentum flux control vector in a four-dimensional...Surface   Momentum  Flux  Ensembles  from  Summaries  of  BHM  Winds  (Mediterranean)   include  ocean  current  effect   Td...Bayesian Hierarchical Model to provide surface momentum flux ensembles. 3 Figure 2: Domain of interest : squares indicate spatial locations where

  11. Bayesian Hierarchical Model Characterization of Model Error in Ocean Data Assimilation and Forecasts

    DTIC Science & Technology

    2013-09-30

    wind ensemble with the increments in the surface momentum flux control vector in a four-dimensional variational (4dvar) assimilation system. The...stability  effects?   surface  stress   Surface   Momentum  Flux  Ensembles  from  Summaries  of  BHM  Winds  (Mediterranean...surface wind speed given ensemble winds from a Bayesian Hierarchical Model to provide surface momentum flux ensembles. 3 Figure 2: Domain of

  12. Bayesian 2-Stage Space-Time Mixture Modeling With Spatial Misalignment of the Exposure in Small Area Health Data.

    PubMed

    Lawson, Andrew B; Choi, Jungsoon; Cai, Bo; Hossain, Monir; Kirby, Russell S; Liu, Jihong

    2012-09-01

    We develop a new Bayesian two-stage space-time mixture model to investigate the effects of air pollution on asthma. The two-stage mixture model proposed allows for the identification of temporal latent structure as well as the estimation of the effects of covariates on health outcomes. In the paper, we also consider spatial misalignment of exposure and health data. A simulation study is conducted to assess the performance of the 2-stage mixture model. We apply our statistical framework to a county-level ambulatory care asthma data set in the US state of Georgia for the years 1999-2008.

  13. A Bayesian analysis of HAT-P-7b using the EXONEST algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Placek, Ben; Knuth, Kevin H.

    2015-01-13

    The study of exoplanets (planets orbiting other stars) is revolutionizing the way we view our universe. High-precision photometric data provided by the Kepler Space Telescope (Kepler) enables not only the detection of such planets, but also their characterization. This presents a unique opportunity to apply Bayesian methods to better characterize the multitude of previously confirmed exoplanets. This paper focuses on applying the EXONEST algorithm to characterize the transiting short-period-hot-Jupiter, HAT-P-7b (also referred to as Kepler-2b). EXONEST evaluates a suite of exoplanet photometric models by applying Bayesian Model Selection, which is implemented with the MultiNest algorithm. These models take into accountmore » planetary effects, such as reflected light and thermal emissions, as well as the effect of the planetary motion on the host star, such as Doppler beaming, or boosting, of light from the reflex motion of the host star, and photometric variations due to the planet-induced ellipsoidal shape of the host star. By calculating model evidences, one can determine which model best describes the observed data, thus identifying which effects dominate the planetary system. Presented are parameter estimates and model evidences for HAT-P-7b.« less

  14. Influence of Averaging Preprocessing on Image Analysis with a Markov Random Field Model

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hirotaka; Nakanishi-Ohno, Yoshinori; Okada, Masato

    2018-02-01

    This paper describes our investigations into the influence of averaging preprocessing on the performance of image analysis. Averaging preprocessing involves a trade-off: image averaging is often undertaken to reduce noise while the number of image data available for image analysis is decreased. We formulated a process of generating image data by using a Markov random field (MRF) model to achieve image analysis tasks such as image restoration and hyper-parameter estimation by a Bayesian approach. According to the notions of Bayesian inference, posterior distributions were analyzed to evaluate the influence of averaging. There are three main results. First, we found that the performance of image restoration with a predetermined value for hyper-parameters is invariant regardless of whether averaging is conducted. We then found that the performance of hyper-parameter estimation deteriorates due to averaging. Our analysis of the negative logarithm of the posterior probability, which is called the free energy based on an analogy with statistical mechanics, indicated that the confidence of hyper-parameter estimation remains higher without averaging. Finally, we found that when the hyper-parameters are estimated from the data, the performance of image restoration worsens as averaging is undertaken. We conclude that averaging adversely influences the performance of image analysis through hyper-parameter estimation.

  15. Statistical inference with quantum measurements: methodologies for nitrogen vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Hincks, Ian; Granade, Christopher; Cory, David G.

    2018-01-01

    The analysis of photon count data from the standard nitrogen vacancy (NV) measurement process is treated as a statistical inference problem. This has applications toward gaining better and more rigorous error bars for tasks such as parameter estimation (e.g. magnetometry), tomography, and randomized benchmarking. We start by providing a summary of the standard phenomenological model of the NV optical process in terms of Lindblad jump operators. This model is used to derive random variables describing emitted photons during measurement, to which finite visibility, dark counts, and imperfect state preparation are added. NV spin-state measurement is then stated as an abstract statistical inference problem consisting of an underlying biased coin obstructed by three Poisson rates. Relevant frequentist and Bayesian estimators are provided, discussed, and quantitatively compared. We show numerically that the risk of the maximum likelihood estimator is well approximated by the Cramér-Rao bound, for which we provide a simple formula. Of the estimators, we in particular promote the Bayes estimator, owing to its slightly better risk performance, and straightforward error propagation into more complex experiments. This is illustrated on experimental data, where quantum Hamiltonian learning is performed and cross-validated in a fully Bayesian setting, and compared to a more traditional weighted least squares fit.

  16. Hierarchical Bayesian modeling of ionospheric TEC disturbances as non-stationary processes

    NASA Astrophysics Data System (ADS)

    Seid, Abdu Mohammed; Berhane, Tesfahun; Roininen, Lassi; Nigussie, Melessew

    2018-03-01

    We model regular and irregular variation of ionospheric total electron content as stationary and non-stationary processes, respectively. We apply the method developed to SCINDA GPS data set observed at Bahir Dar, Ethiopia (11.6 °N, 37.4 °E) . We use hierarchical Bayesian inversion with Gaussian Markov random process priors, and we model the prior parameters in the hyperprior. We use Matérn priors via stochastic partial differential equations, and use scaled Inv -χ2 hyperpriors for the hyperparameters. For drawing posterior estimates, we use Markov Chain Monte Carlo methods: Gibbs sampling and Metropolis-within-Gibbs for parameter and hyperparameter estimations, respectively. This allows us to quantify model parameter estimation uncertainties as well. We demonstrate the applicability of the method proposed using a synthetic test case. Finally, we apply the method to real GPS data set, which we decompose to regular and irregular variation components. The result shows that the approach can be used as an accurate ionospheric disturbance characterization technique that quantifies the total electron content variability with corresponding error uncertainties.

  17. A Bayesian framework for infrasound location

    NASA Astrophysics Data System (ADS)

    Modrak, Ryan T.; Arrowsmith, Stephen J.; Anderson, Dale N.

    2010-04-01

    We develop a framework for location of infrasound events using backazimuth and infrasonic arrival times from multiple arrays. Bayesian infrasonic source location (BISL) developed here estimates event location and associated credibility regions. BISL accounts for unknown source-to-array path or phase by formulating infrasonic group velocity as random. Differences between observed and predicted source-to-array traveltimes are partitioned into two additive Gaussian sources, measurement error and model error, the second of which accounts for the unknown influence of wind and temperature on path. By applying the technique to both synthetic tests and ground-truth events, we highlight the complementary nature of back azimuths and arrival times for estimating well-constrained event locations. BISL is an extension to methods developed earlier by Arrowsmith et al. that provided simple bounds on location using a grid-search technique.

  18. Classification of Active Microwave and Passive Optical Data Based on Bayesian Theory and Mrf

    NASA Astrophysics Data System (ADS)

    Yu, F.; Li, H. T.; Han, Y. S.; Gu, H. Y.

    2012-08-01

    A classifier based on Bayesian theory and Markov random field (MRF) is presented to classify the active microwave and passive optical remote sensing data, which have demonstrated their respective advantages in inversion of surface soil moisture content. In the method, the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. And the model is validated for the necessities of integration of TM and ASAR, it shows that, the total precision of classification in this paper is 89.4%. Comparing with the classification with single TM, the accuracy increase 11.5%, illustrating that synthesis of active and passive optical remote sensing data is efficient and potential in classification.

  19. Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models

    NASA Astrophysics Data System (ADS)

    Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.

    2017-12-01

    Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream measurements.

  20. Spatial modeling of cutaneous leishmaniasis in the Andean region of Colombia.

    PubMed

    Pérez-Flórez, Mauricio; Ocampo, Clara Beatriz; Valderrama-Ardila, Carlos; Alexander, Neal

    2016-06-27

    The objective of this research was to identify environmental risk factors for cutaneous leishmaniasis (CL) in Colombia and map high-risk municipalities. The study area was the Colombian Andean region, comprising 715 rural and urban municipalities. We used 10 years of CL surveillance: 2000-2009. We used spatial-temporal analysis - conditional autoregressive Poisson random effects modelling - in a Bayesian framework to model the dependence of municipality-level incidence on land use, climate, elevation and population density. Bivariable spatial analysis identified rainforests, forests and secondary vegetation, temperature, and annual precipitation as positively associated with CL incidence. By contrast, livestock agroecosystems and temperature seasonality were negatively associated. Multivariable analysis identified land use - rainforests and agro-livestock - and climate - temperature, rainfall and temperature seasonality - as best predictors of CL. We conclude that climate and land use can be used to identify areas at high risk of CL and that this approach is potentially applicable elsewhere in Latin America.

  1. Gradient-free MCMC methods for dynamic causal modelling

    DOE PAGES

    Sengupta, Biswa; Friston, Karl J.; Penny, Will D.

    2015-03-14

    Here, we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time. For the Bayesian inversion of a single-node neural mass model, both adaptive and population-based samplers are more efficient compared with random walk Metropolis sampler or slice-sampling; yet adaptive MCMC sampling is more promising in terms of compute time. Slice-sampling yields the highest number of independent samples from the target density -- albeit at almost 1000% increase in computational time, in comparisonmore » to the most efficient algorithm (i.e., the adaptive MCMC sampler).« less

  2. pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies.

    PubMed

    Zhang, J; Feng, J-Y; Ni, Y-L; Wen, Y-J; Niu, Y; Tamba, C L; Yue, C; Song, Q; Zhang, Y-M

    2017-06-01

    Multilocus genome-wide association studies (GWAS) have become the state-of-the-art procedure to identify quantitative trait nucleotides (QTNs) associated with complex traits. However, implementation of multilocus model in GWAS is still difficult. In this study, we integrated least angle regression with empirical Bayes to perform multilocus GWAS under polygenic background control. We used an algorithm of model transformation that whitened the covariance matrix of the polygenic matrix K and environmental noise. Markers on one chromosome were included simultaneously in a multilocus model and least angle regression was used to select the most potentially associated single-nucleotide polymorphisms (SNPs), whereas the markers on the other chromosomes were used to calculate kinship matrix as polygenic background control. The selected SNPs in multilocus model were further detected for their association with the trait by empirical Bayes and likelihood ratio test. We herein refer to this method as the pLARmEB (polygenic-background-control-based least angle regression plus empirical Bayes). Results from simulation studies showed that pLARmEB was more powerful in QTN detection and more accurate in QTN effect estimation, had less false positive rate and required less computing time than Bayesian hierarchical generalized linear model, efficient mixed model association (EMMA) and least angle regression plus empirical Bayes. pLARmEB, multilocus random-SNP-effect mixed linear model and fast multilocus random-SNP-effect EMMA methods had almost equal power of QTN detection in simulation experiments. However, only pLARmEB identified 48 previously reported genes for 7 flowering time-related traits in Arabidopsis thaliana.

  3. Development and comparison in uncertainty assessment based Bayesian modularization method in hydrological modeling

    NASA Astrophysics Data System (ADS)

    Li, Lu; Xu, Chong-Yu; Engeland, Kolbjørn

    2013-04-01

    SummaryWith respect to model calibration, parameter estimation and analysis of uncertainty sources, various regression and probabilistic approaches are used in hydrological modeling. A family of Bayesian methods, which incorporates different sources of information into a single analysis through Bayes' theorem, is widely used for uncertainty assessment. However, none of these approaches can well treat the impact of high flows in hydrological modeling. This study proposes a Bayesian modularization uncertainty assessment approach in which the highest streamflow observations are treated as suspect information that should not influence the inference of the main bulk of the model parameters. This study includes a comprehensive comparison and evaluation of uncertainty assessments by our new Bayesian modularization method and standard Bayesian methods using the Metropolis-Hastings (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions were used in combination with standard Bayesian method: the AR(1) plus Normal model independent of time (Model 1), the AR(1) plus Normal model dependent on time (Model 2) and the AR(1) plus Multi-normal model (Model 3). The results reveal that the Bayesian modularization method provides the most accurate streamflow estimates measured by the Nash-Sutcliffe efficiency and provide the best in uncertainty estimates for low, medium and entire flows compared to standard Bayesian methods. The study thus provides a new approach for reducing the impact of high flows on the discharge uncertainty assessment of hydrological models via Bayesian method.

  4. Bayesian models: A statistical primer for ecologists

    USGS Publications Warehouse

    Hobbs, N. Thompson; Hooten, Mevin B.

    2015-01-01

    Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticiansCovers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and moreDeemphasizes computer coding in favor of basic principlesExplains how to write out properly factored statistical expressions representing Bayesian models

  5. Estimating effectiveness in HIV prevention trials with a Bayesian hierarchical compound Poisson frailty model

    PubMed Central

    Coley, Rebecca Yates; Browna, Elizabeth R.

    2016-01-01

    Inconsistent results in recent HIV prevention trials of pre-exposure prophylactic interventions may be due to heterogeneity in risk among study participants. Intervention effectiveness is most commonly estimated with the Cox model, which compares event times between populations. When heterogeneity is present, this population-level measure underestimates intervention effectiveness for individuals who are at risk. We propose a likelihood-based Bayesian hierarchical model that estimates the individual-level effectiveness of candidate interventions by accounting for heterogeneity in risk with a compound Poisson-distributed frailty term. This model reflects the mechanisms of HIV risk and allows that some participants are not exposed to HIV and, therefore, have no risk of seroconversion during the study. We assess model performance via simulation and apply the model to data from an HIV prevention trial. PMID:26869051

  6. A multivariate multilevel Gaussian model with a mixed effects structure in the mean and covariance part.

    PubMed

    Li, Baoyue; Bruyneel, Luk; Lesaffre, Emmanuel

    2014-05-20

    A traditional Gaussian hierarchical model assumes a nested multilevel structure for the mean and a constant variance at each level. We propose a Bayesian multivariate multilevel factor model that assumes a multilevel structure for both the mean and the covariance matrix. That is, in addition to a multilevel structure for the mean we also assume that the covariance matrix depends on covariates and random effects. This allows to explore whether the covariance structure depends on the values of the higher levels and as such models heterogeneity in the variances and correlation structure of the multivariate outcome across the higher level values. The approach is applied to the three-dimensional vector of burnout measurements collected on nurses in a large European study to answer the research question whether the covariance matrix of the outcomes depends on recorded system-level features in the organization of nursing care, but also on not-recorded factors that vary with countries, hospitals, and nursing units. Simulations illustrate the performance of our modeling approach. Copyright © 2013 John Wiley & Sons, Ltd.

  7. IMPLICATIONS OF USING ROBUST BAYESIAN ANALYSIS TO REPRESENT DIVERSE SOURCES OF UNCERTAINTY IN INTEGRATED ASSESSMENT

    EPA Science Inventory

    In our previous research, we showed that robust Bayesian methods can be used in environmental modeling to define a set of probability distributions for key parameters that captures the effects of expert disagreement, ambiguity, or ignorance. This entire set can then be update...

  8. Bayesian prestack seismic inversion with a self-adaptive Huber-Markov random-field edge protection scheme

    NASA Astrophysics Data System (ADS)

    Tian, Yu-Kun; Zhou, Hui; Chen, Han-Ming; Zou, Ya-Ming; Guan, Shou-Jun

    2013-12-01

    Seismic inversion is a highly ill-posed problem, due to many factors such as the limited seismic frequency bandwidth and inappropriate forward modeling. To obtain a unique solution, some smoothing constraints, e.g., the Tikhonov regularization are usually applied. The Tikhonov method can maintain a global smooth solution, but cause a fuzzy structure edge. In this paper we use Huber-Markov random-field edge protection method in the procedure of inverting three parameters, P-velocity, S-velocity and density. The method can avoid blurring the structure edge and resist noise. For the parameter to be inverted, the Huber-Markov random-field constructs a neighborhood system, which further acts as the vertical and lateral constraints. We use a quadratic Huber edge penalty function within the layer to suppress noise and a linear one on the edges to avoid a fuzzy result. The effectiveness of our method is proved by inverting the synthetic data without and with noises. The relationship between the adopted constraints and the inversion results is analyzed as well.

  9. Bayesian inference for joint modelling of longitudinal continuous, binary and ordinal events.

    PubMed

    Li, Qiuju; Pan, Jianxin; Belcher, John

    2016-12-01

    In medical studies, repeated measurements of continuous, binary and ordinal outcomes are routinely collected from the same patient. Instead of modelling each outcome separately, in this study we propose to jointly model the trivariate longitudinal responses, so as to take account of the inherent association between the different outcomes and thus improve statistical inferences. This work is motivated by a large cohort study in the North West of England, involving trivariate responses from each patient: Body Mass Index, Depression (Yes/No) ascertained with cut-off score not less than 8 at the Hospital Anxiety and Depression Scale, and Pain Interference generated from the Medical Outcomes Study 36-item short-form health survey with values returned on an ordinal scale 1-5. There are some well-established methods for combined continuous and binary, or even continuous and ordinal responses, but little work was done on the joint analysis of continuous, binary and ordinal responses. We propose conditional joint random-effects models, which take into account the inherent association between the continuous, binary and ordinal outcomes. Bayesian analysis methods are used to make statistical inferences. Simulation studies show that, by jointly modelling the trivariate outcomes, standard deviations of the estimates of parameters in the models are smaller and much more stable, leading to more efficient parameter estimates and reliable statistical inferences. In the real data analysis, the proposed joint analysis yields a much smaller deviance information criterion value than the separate analysis, and shows other good statistical properties too. © The Author(s) 2014.

  10. Planetary micro-rover operations on Mars using a Bayesian framework for inference and control

    NASA Astrophysics Data System (ADS)

    Post, Mark A.; Li, Junquan; Quine, Brendan M.

    2016-03-01

    With the recent progress toward the application of commercially-available hardware to small-scale space missions, it is now becoming feasible for groups of small, efficient robots based on low-power embedded hardware to perform simple tasks on other planets in the place of large-scale, heavy and expensive robots. In this paper, we describe design and programming of the Beaver micro-rover developed for Northern Light, a Canadian initiative to send a small lander and rover to Mars to study the Martian surface and subsurface. For a small, hardware-limited rover to handle an uncertain and mostly unknown environment without constant management by human operators, we use a Bayesian network of discrete random variables as an abstraction of expert knowledge about the rover and its environment, and inference operations for control. A framework for efficient construction and inference into a Bayesian network using only the C language and fixed-point mathematics on embedded hardware has been developed for the Beaver to make intelligent decisions with minimal sensor data. We study the performance of the Beaver as it probabilistically maps a simple outdoor environment with sensor models that include uncertainty. Results indicate that the Beaver and other small and simple robotic platforms can make use of a Bayesian network to make intelligent decisions in uncertain planetary environments.

  11. Bayesian multimodel inference of soil microbial respiration models: Theory, application and future prospective

    NASA Astrophysics Data System (ADS)

    Elshall, A. S.; Ye, M.; Niu, G. Y.; Barron-Gafford, G.

    2015-12-01

    Models in biogeoscience involve uncertainties in observation data, model inputs, model structure, model processes and modeling scenarios. To accommodate for different sources of uncertainty, multimodal analysis such as model combination, model selection, model elimination or model discrimination are becoming more popular. To illustrate theoretical and practical challenges of multimodal analysis, we use an example about microbial soil respiration modeling. Global soil respiration releases more than ten times more carbon dioxide to the atmosphere than all anthropogenic emissions. Thus, improving our understanding of microbial soil respiration is essential for improving climate change models. This study focuses on a poorly understood phenomena, which is the soil microbial respiration pulses in response to episodic rainfall pulses (the "Birch effect"). We hypothesize that the "Birch effect" is generated by the following three mechanisms. To test our hypothesis, we developed and assessed five evolving microbial-enzyme models against field measurements from a semiarid Savannah that is characterized by pulsed precipitation. These five model evolve step-wise such that the first model includes none of these three mechanism, while the fifth model includes the three mechanisms. The basic component of Bayesian multimodal analysis is the estimation of marginal likelihood to rank the candidate models based on their overall likelihood with respect to observation data. The first part of the study focuses on using this Bayesian scheme to discriminate between these five candidate models. The second part discusses some theoretical and practical challenges, which are mainly the effect of likelihood function selection and the marginal likelihood estimation methods on both model ranking and Bayesian model averaging. The study shows that making valid inference from scientific data is not a trivial task, since we are not only uncertain about the candidate scientific models, but also about the statistical methods that are used to discriminate between these models.

  12. Bayesian GGE biplot models applied to maize multi-environments trials.

    PubMed

    de Oliveira, L A; da Silva, C P; Nuvunga, J J; da Silva, A Q; Balestre, M

    2016-06-17

    The additive main effects and multiplicative interaction (AMMI) and the genotype main effects and genotype x environment interaction (GGE) models stand out among the linear-bilinear models used in genotype x environment interaction studies. Despite the advantages of their use to describe genotype x environment (AMMI) or genotype and genotype x environment (GGE) interactions, these methods have known limitations that are inherent to fixed effects models, including difficulty in treating variance heterogeneity and missing data. Traditional biplots include no measure of uncertainty regarding the principal components. The present study aimed to apply the Bayesian approach to GGE biplot models and assess the implications for selecting stable and adapted genotypes. Our results demonstrated that the Bayesian approach applied to GGE models with non-informative priors was consistent with the traditional GGE biplot analysis, although the credible region incorporated into the biplot enabled distinguishing, based on probability, the performance of genotypes, and their relationships with the environments in the biplot. Those regions also enabled the identification of groups of genotypes and environments with similar effects in terms of adaptability and stability. The relative position of genotypes and environments in biplots is highly affected by the experimental accuracy. Thus, incorporation of uncertainty in biplots is a key tool for breeders to make decisions regarding stability selection and adaptability and the definition of mega-environments.

  13. Predicting the multi-domain progression of Parkinson's disease: a Bayesian multivariate generalized linear mixed-effect model.

    PubMed

    Wang, Ming; Li, Zheng; Lee, Eun Young; Lewis, Mechelle M; Zhang, Lijun; Sterling, Nicholas W; Wagner, Daymond; Eslinger, Paul; Du, Guangwei; Huang, Xuemei

    2017-09-25

    It is challenging for current statistical models to predict clinical progression of Parkinson's disease (PD) because of the involvement of multi-domains and longitudinal data. Past univariate longitudinal or multivariate analyses from cross-sectional trials have limited power to predict individual outcomes or a single moment. The multivariate generalized linear mixed-effect model (GLMM) under the Bayesian framework was proposed to study multi-domain longitudinal outcomes obtained at baseline, 18-, and 36-month. The outcomes included motor, non-motor, and postural instability scores from the MDS-UPDRS, and demographic and standardized clinical data were utilized as covariates. The dynamic prediction was performed for both internal and external subjects using the samples from the posterior distributions of the parameter estimates and random effects, and also the predictive accuracy was evaluated based on the root of mean square error (RMSE), absolute bias (AB) and the area under the receiver operating characteristic (ROC) curve. First, our prediction model identified clinical data that were differentially associated with motor, non-motor, and postural stability scores. Second, the predictive accuracy of our model for the training data was assessed, and improved prediction was gained in particularly for non-motor (RMSE and AB: 2.89 and 2.20) compared to univariate analysis (RMSE and AB: 3.04 and 2.35). Third, the individual-level predictions of longitudinal trajectories for the testing data were performed, with ~80% observed values falling within the 95% credible intervals. Multivariate general mixed models hold promise to predict clinical progression of individual outcomes in PD. The data was obtained from Dr. Xuemei Huang's NIH grant R01 NS060722 , part of NINDS PD Biomarker Program (PDBP). All data was entered within 24 h of collection to the Data Management Repository (DMR), which is publically available ( https://pdbp.ninds.nih.gov/data-management ).

  14. Fragment virtual screening based on Bayesian categorization for discovering novel VEGFR-2 scaffolds.

    PubMed

    Zhang, Yanmin; Jiao, Yu; Xiong, Xiao; Liu, Haichun; Ran, Ting; Xu, Jinxing; Lu, Shuai; Xu, Anyang; Pan, Jing; Qiao, Xin; Shi, Zhihao; Lu, Tao; Chen, Yadong

    2015-11-01

    The discovery of novel scaffolds against a specific target has long been one of the most significant but challengeable goals in discovering lead compounds. A scaffold that binds in important regions of the active pocket is more favorable as a starting point because scaffolds generally possess greater optimization possibilities. However, due to the lack of sufficient chemical space diversity of the databases and the ineffectiveness of the screening methods, it still remains a great challenge to discover novel active scaffolds. Since the strengths and weaknesses of both fragment-based drug design and traditional virtual screening (VS), we proposed a fragment VS concept based on Bayesian categorization for the discovery of novel scaffolds. This work investigated the proposal through an application on VEGFR-2 target. Firstly, scaffold and structural diversity of chemical space for 10 compound databases were explicitly evaluated. Simultaneously, a robust Bayesian classification model was constructed for screening not only compound databases but also their corresponding fragment databases. Although analysis of the scaffold diversity demonstrated a very unevenly distribution of scaffolds over molecules, results showed that our Bayesian model behaved better in screening fragments than molecules. Through a literature retrospective research, several generated fragments with relatively high Bayesian scores indeed exhibit VEGFR-2 biological activity, which strongly proved the effectiveness of fragment VS based on Bayesian categorization models. This investigation of Bayesian-based fragment VS can further emphasize the necessity for enrichment of compound databases employed in lead discovery by amplifying the diversity of databases with novel structures.

  15. Bayesian dynamic mediation analysis.

    PubMed

    Huang, Jing; Yuan, Ying

    2017-12-01

    Most existing methods for mediation analysis assume that mediation is a stationary, time-invariant process, which overlooks the inherently dynamic nature of many human psychological processes and behavioral activities. In this article, we consider mediation as a dynamic process that continuously changes over time. We propose Bayesian multilevel time-varying coefficient models to describe and estimate such dynamic mediation effects. By taking the nonparametric penalized spline approach, the proposed method is flexible and able to accommodate any shape of the relationship between time and mediation effects. Simulation studies show that the proposed method works well and faithfully reflects the true nature of the mediation process. By modeling mediation effect nonparametrically as a continuous function of time, our method provides a valuable tool to help researchers obtain a more complete understanding of the dynamic nature of the mediation process underlying psychological and behavioral phenomena. We also briefly discuss an alternative approach of using dynamic autoregressive mediation model to estimate the dynamic mediation effect. The computer code is provided to implement the proposed Bayesian dynamic mediation analysis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. A Bayesian Approach for Population Pharmacokinetic Modeling of Alcohol in Japanese Individuals.

    PubMed

    Nemoto, Asuka; Masaaki, Matsuura; Yamaoka, Kazue

    2017-01-01

    Blood alcohol concentration data that were previously obtained from 34 healthy Japanese subjects with limited sampling times were reanalyzed. Characteristics of the data were that the concentrations were obtained from only the early part of the time-concentration curve. To explore significant covariates for the population pharmacokinetic analysis of alcohol by incorporating external data using a Bayesian method, and to estimate effects of the covariates. The data were analyzed using a Markov chain Monte Carlo Bayesian estimation with NONMEM 7.3 (ICON Clinical Research LLC, North Wales, Pennsylvania). Informative priors were obtained from the external study. A 1-compartment model with Michaelis-Menten elimination was used. The typical value for the apparent volume of distribution was 49.3 L at the age of 29.4 years. Volume of distribution was estimated to be 20.4 L smaller in subjects with the ALDH2*1/*2 genotype than in subjects with the ALDH2*1/*1 genotype. A population pharmacokinetic model for alcohol was updated. A Bayesian approach allowed interpretation of significant covariate relationships, even if the current dataset is not informative about all parameters. This is the first study reporting an estimate of the effect of the ALDH2 genotype in a PPK model.

  17. "A Bayesian sensitivity analysis to evaluate the impact of unmeasured confounding with external data: a real world comparative effectiveness study in osteoporosis".

    PubMed

    Zhang, Xiang; Faries, Douglas E; Boytsov, Natalie; Stamey, James D; Seaman, John W

    2016-09-01

    Observational studies are frequently used to assess the effectiveness of medical interventions in routine clinical practice. However, the use of observational data for comparative effectiveness is challenged by selection bias and the potential of unmeasured confounding. This is especially problematic for analyses using a health care administrative database, in which key clinical measures are often not available. This paper provides an approach to conducting a sensitivity analyses to investigate the impact of unmeasured confounding in observational studies. In a real world osteoporosis comparative effectiveness study, the bone mineral density (BMD) score, an important predictor of fracture risk and a factor in the selection of osteoporosis treatments, is unavailable in the data base and lack of baseline BMD could potentially lead to significant selection bias. We implemented Bayesian twin-regression models, which simultaneously model both the observed outcome and the unobserved unmeasured confounder, using information from external sources. A sensitivity analysis was also conducted to assess the robustness of our conclusions to changes in such external data. The use of Bayesian modeling in this study suggests that the lack of baseline BMD did have a strong impact on the analysis, reversing the direction of the estimated effect (odds ratio of fracture incidence at 24 months: 0.40 vs. 1.36, with/without adjusting for unmeasured baseline BMD). The Bayesian twin-regression models provide a flexible sensitivity analysis tool to quantitatively assess the impact of unmeasured confounding in observational studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Risk analysis of new oral anticoagulants for gastrointestinal bleeding and intracranial hemorrhage in atrial fibrillation patients: a systematic review and network meta-analysis.

    PubMed

    Xu, Wei-Wei; Hu, Shen-Jiang; Wu, Tao

    2017-07-01

    Antithrombotic therapy using new oral anticoagulants (NOACs) in patients with atrial fibrillation (AF) has been generally shown to have a favorable risk-benefit profile. Since there has been dispute about the risks of gastrointestinal bleeding (GIB) and intracranial hemorrhage (ICH), we sought to conduct a systematic review and network meta-analysis using Bayesian inference to analyze the risks of GIB and ICH in AF patients taking NOACs. We analyzed data from 20 randomized controlled trials of 91 671 AF patients receiving anticoagulants, antiplatelet drugs, or placebo. Bayesian network meta-analysis of two different evidence networks was performed using a binomial likelihood model, based on a network in which different agents (and doses) were treated as separate nodes. Odds ratios (ORs) and 95% confidence intervals (CIs) were modeled using Markov chain Monte Carlo methods. Indirect comparisons with the Bayesian model confirmed that aspirin+clopidogrel significantly increased the risk of GIB in AF patients compared to the placebo (OR 0.33, 95% CI 0.01-0.92). Warfarin was identified as greatly increasing the risk of ICH compared to edoxaban 30 mg (OR 3.42, 95% CI 1.22-7.24) and dabigatran 110 mg (OR 3.56, 95% CI 1.10-8.45). We further ranked the NOACs for the lowest risk of GIB (apixaban 5 mg) and ICH (apixaban 5 mg, dabigatran 110 mg, and edoxaban 30 mg). Bayesian network meta-analysis of treatment of non-valvular AF patients with anticoagulants suggested that NOACs do not increase risks of GIB and/or ICH, compared to each other.

  19. A Bayesian estimate of the concordance correlation coefficient with skewed data.

    PubMed

    Feng, Dai; Baumgartner, Richard; Svetnik, Vladimir

    2015-01-01

    Concordance correlation coefficient (CCC) is one of the most popular scaled indices used to evaluate agreement. Most commonly, it is used under the assumption that data is normally distributed. This assumption, however, does not apply to skewed data sets. While methods for the estimation of the CCC of skewed data sets have been introduced and studied, the Bayesian approach and its comparison with the previous methods has been lacking. In this study, we propose a Bayesian method for the estimation of the CCC of skewed data sets and compare it with the best method previously investigated. The proposed method has certain advantages. It tends to outperform the best method studied before when the variation of the data is mainly from the random subject effect instead of error. Furthermore, it allows for greater flexibility in application by enabling incorporation of missing data, confounding covariates, and replications, which was not considered previously. The superiority of this new approach is demonstrated using simulation as well as real-life biomarker data sets used in an electroencephalography clinical study. The implementation of the Bayesian method is accessible through the Comprehensive R Archive Network. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Improvement of Storm Forecasts Using Gridded Bayesian Linear Regression for Northeast United States

    NASA Astrophysics Data System (ADS)

    Yang, J.; Astitha, M.; Schwartz, C. S.

    2017-12-01

    Bayesian linear regression (BLR) is a post-processing technique in which regression coefficients are derived and used to correct raw forecasts based on pairs of observation-model values. This study presents the development and application of a gridded Bayesian linear regression (GBLR) as a new post-processing technique to improve numerical weather prediction (NWP) of rain and wind storm forecasts over northeast United States. Ten controlled variables produced from ten ensemble members of the National Center for Atmospheric Research (NCAR) real-time prediction system are used for a GBLR model. In the GBLR framework, leave-one-storm-out cross-validation is utilized to study the performances of the post-processing technique in a database composed of 92 storms. To estimate the regression coefficients of the GBLR, optimization procedures that minimize the systematic and random error of predicted atmospheric variables (wind speed, precipitation, etc.) are implemented for the modeled-observed pairs of training storms. The regression coefficients calculated for meteorological stations of the National Weather Service are interpolated back to the model domain. An analysis of forecast improvements based on error reductions during the storms will demonstrate the value of GBLR approach. This presentation will also illustrate how the variances are optimized for the training partition in GBLR and discuss the verification strategy for grid points where no observations are available. The new post-processing technique is successful in improving wind speed and precipitation storm forecasts using past event-based data and has the potential to be implemented in real-time.

  1. How Reliable is Bayesian Model Averaging Under Noisy Data? Statistical Assessment and Implications for Robust Model Selection

    NASA Astrophysics Data System (ADS)

    Schöniger, Anneli; Wöhling, Thomas; Nowak, Wolfgang

    2014-05-01

    Bayesian model averaging ranks the predictive capabilities of alternative conceptual models based on Bayes' theorem. The individual models are weighted with their posterior probability to be the best one in the considered set of models. Finally, their predictions are combined into a robust weighted average and the predictive uncertainty can be quantified. This rigorous procedure does, however, not yet account for possible instabilities due to measurement noise in the calibration data set. This is a major drawback, since posterior model weights may suffer a lack of robustness related to the uncertainty in noisy data, which may compromise the reliability of model ranking. We present a new statistical concept to account for measurement noise as source of uncertainty for the weights in Bayesian model averaging. Our suggested upgrade reflects the limited information content of data for the purpose of model selection. It allows us to assess the significance of the determined posterior model weights, the confidence in model selection, and the accuracy of the quantified predictive uncertainty. Our approach rests on a brute-force Monte Carlo framework. We determine the robustness of model weights against measurement noise by repeatedly perturbing the observed data with random realizations of measurement error. Then, we analyze the induced variability in posterior model weights and introduce this "weighting variance" as an additional term into the overall prediction uncertainty analysis scheme. We further determine the theoretical upper limit in performance of the model set which is imposed by measurement noise. As an extension to the merely relative model ranking, this analysis provides a measure of absolute model performance. To finally decide, whether better data or longer time series are needed to ensure a robust basis for model selection, we resample the measurement time series and assess the convergence of model weights for increasing time series length. We illustrate our suggested approach with an application to model selection between different soil-plant models following up on a study by Wöhling et al. (2013). Results show that measurement noise compromises the reliability of model ranking and causes a significant amount of weighting uncertainty, if the calibration data time series is not long enough to compensate for its noisiness. This additional contribution to the overall predictive uncertainty is neglected without our approach. Thus, we strongly advertise to include our suggested upgrade in the Bayesian model averaging routine.

  2. A Bayesian Meta-Analysis on Prevalence of Hepatitis B Virus Infection among Chinese Volunteer Blood Donors

    PubMed Central

    Liu, Guang-ying; Zheng, Yang; Deng, Yan; Gao, Yan-yan; Wang, Lie

    2013-01-01

    Background Although transfusion-transmitted infection of hepatitis B virus (HBV) threatens the blood safety of China, the nationwide circumstance of HBV infection among blood donors is still unclear. Objectives To comprehensively estimate the prevalence of HBsAg positive and HBV occult infection (OBI) among Chinese volunteer blood donors through bayesian meta-analysis. Methods We performed an electronic search in Pub-Med, Web of Knowledge, Medline, Wanfang Data and CNKI, complemented by a hand search of relevant reference lists. Two authors independently extracted data from the eligible studies. Then two bayesian random-effect meta-analyses were performed, followed by bayesian meta-regressions. Results 5957412 and 571227 donors were identified in HBsAg group and OBI group, respectively. The pooled prevalence of HBsAg group and OBI group among donors is 1.085% (95% credible interval [CI] 0.859%∼1.398%) and 0.094% (95% CI 0.0578%∼0.1655%). For HBsAg group, subgroup analysis shows the more developed area has a lower prevalence than the less developed area; meta-regression indicates there is a significant decreasing trend in HBsAg positive prevalence with sampling year (beta = −0.1202, 95% −0.2081∼−0.0312). Conclusion Blood safety against HBV infection in China is suffering serious threats and the government should take effective measures to improve this situation. PMID:24236110

  3. Spatio-temporal modelling of climate-sensitive disease risk: Towards an early warning system for dengue in Brazil

    NASA Astrophysics Data System (ADS)

    Lowe, Rachel; Bailey, Trevor C.; Stephenson, David B.; Graham, Richard J.; Coelho, Caio A. S.; Sá Carvalho, Marilia; Barcellos, Christovam

    2011-03-01

    This paper considers the potential for using seasonal climate forecasts in developing an early warning system for dengue fever epidemics in Brazil. In the first instance, a generalised linear model (GLM) is used to select climate and other covariates which are both readily available and prove significant in prediction of confirmed monthly dengue cases based on data collected across the whole of Brazil for the period January 2001 to December 2008 at the microregion level (typically consisting of one large city and several smaller municipalities). The covariates explored include temperature and precipitation data on a 2.5°×2.5° longitude-latitude grid with time lags relevant to dengue transmission, an El Niño Southern Oscillation index and other relevant socio-economic and environmental variables. A negative binomial model formulation is adopted in this model selection to allow for extra-Poisson variation (overdispersion) in the observed dengue counts caused by unknown/unobserved confounding factors and possible correlations in these effects in both time and space. Subsequently, the selected global model is refined in the context of the South East region of Brazil, where dengue predominates, by reverting to a Poisson framework and explicitly modelling the overdispersion through a combination of unstructured and spatio-temporal structured random effects. The resulting spatio-temporal hierarchical model (or GLMM—generalised linear mixed model) is implemented via a Bayesian framework using Markov Chain Monte Carlo (MCMC). Dengue predictions are found to be enhanced both spatially and temporally when using the GLMM and the Bayesian framework allows posterior predictive distributions for dengue cases to be derived, which can be useful for developing a dengue alert system. Using this model, we conclude that seasonal climate forecasts could have potential value in helping to predict dengue incidence months in advance of an epidemic in South East Brazil.

  4. Bayesian Data-Model Fit Assessment for Structural Equation Modeling

    ERIC Educational Resources Information Center

    Levy, Roy

    2011-01-01

    Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…

  5. Quantum-Like Representation of Non-Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.

    2013-01-01

    This research is related to the problem of "irrational decision making or inference" that have been discussed in cognitive psychology. There are some experimental studies, and these statistical data cannot be described by classical probability theory. The process of decision making generating these data cannot be reduced to the classical Bayesian inference. For this problem, a number of quantum-like coginitive models of decision making was proposed. Our previous work represented in a natural way the classical Bayesian inference in the frame work of quantum mechanics. By using this representation, in this paper, we try to discuss the non-Bayesian (irrational) inference that is biased by effects like the quantum interference. Further, we describe "psychological factor" disturbing "rationality" as an "environment" correlating with the "main system" of usual Bayesian inference.

  6. Bayesian bivariate meta-analysis of correlated effects: Impact of the prior distributions on the between-study correlation, borrowing of strength, and joint inferences

    PubMed Central

    Bujkiewicz, Sylwia; Riley, Richard D

    2016-01-01

    Multivariate random-effects meta-analysis allows the joint synthesis of correlated results from multiple studies, for example, for multiple outcomes or multiple treatment groups. In a Bayesian univariate meta-analysis of one endpoint, the importance of specifying a sensible prior distribution for the between-study variance is well understood. However, in multivariate meta-analysis, there is little guidance about the choice of prior distributions for the variances or, crucially, the between-study correlation, ρB; for the latter, researchers often use a Uniform(−1,1) distribution assuming it is vague. In this paper, an extensive simulation study and a real illustrative example is used to examine the impact of various (realistically) vague prior distributions for ρB and the between-study variances within a Bayesian bivariate random-effects meta-analysis of two correlated treatment effects. A range of diverse scenarios are considered, including complete and missing data, to examine the impact of the prior distributions on posterior results (for treatment effect and between-study correlation), amount of borrowing of strength, and joint predictive distributions of treatment effectiveness in new studies. Two key recommendations are identified to improve the robustness of multivariate meta-analysis results. First, the routine use of a Uniform(−1,1) prior distribution for ρB should be avoided, if possible, as it is not necessarily vague. Instead, researchers should identify a sensible prior distribution, for example, by restricting values to be positive or negative as indicated by prior knowledge. Second, it remains critical to use sensible (e.g. empirically based) prior distributions for the between-study variances, as an inappropriate choice can adversely impact the posterior distribution for ρB, which may then adversely affect inferences such as joint predictive probabilities. These recommendations are especially important with a small number of studies and missing data. PMID:26988929

  7. A Bayesian Approach to More Stable Estimates of Group-Level Effects in Contextual Studies.

    PubMed

    Zitzmann, Steffen; Lüdtke, Oliver; Robitzsch, Alexander

    2015-01-01

    Multilevel analyses are often used to estimate the effects of group-level constructs. However, when using aggregated individual data (e.g., student ratings) to assess a group-level construct (e.g., classroom climate), the observed group mean might not provide a reliable measure of the unobserved latent group mean. In the present article, we propose a Bayesian approach that can be used to estimate a multilevel latent covariate model, which corrects for the unreliable assessment of the latent group mean when estimating the group-level effect. A simulation study was conducted to evaluate the choice of different priors for the group-level variance of the predictor variable and to compare the Bayesian approach with the maximum likelihood approach implemented in the software Mplus. Results showed that, under problematic conditions (i.e., small number of groups, predictor variable with a small ICC), the Bayesian approach produced more accurate estimates of the group-level effect than the maximum likelihood approach did.

  8. Multi-state models for colon cancer recurrence and death with a cured fraction.

    PubMed

    Conlon, A S C; Taylor, J M G; Sargent, D J

    2014-05-10

    In cancer clinical trials, patients often experience a recurrence of disease prior to the outcome of interest, overall survival. Additionally, for many cancers, there is a cured fraction of the population who will never experience a recurrence. There is often interest in how different covariates affect the probability of being cured of disease and the time to recurrence, time to death, and time to death after recurrence. We propose a multi-state Markov model with an incorporated cured fraction to jointly model recurrence and death in colon cancer. A Bayesian estimation strategy is used to obtain parameter estimates. The model can be used to assess how individual covariates affect the probability of being cured and each of the transition rates. Checks for the adequacy of the model fit and for the functional forms of covariates are explored. The methods are applied to data from 12 randomized trials in colon cancer, where we show common effects of specific covariates across the trials. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Topics in Bayesian Hierarchical Modeling and its Monte Carlo Computations

    NASA Astrophysics Data System (ADS)

    Tak, Hyung Suk

    The first chapter addresses a Beta-Binomial-Logit model that is a Beta-Binomial conjugate hierarchical model with covariate information incorporated via a logistic regression. Various researchers in the literature have unknowingly used improper posterior distributions or have given incorrect statements about posterior propriety because checking posterior propriety can be challenging due to the complicated functional form of a Beta-Binomial-Logit model. We derive data-dependent necessary and sufficient conditions for posterior propriety within a class of hyper-prior distributions that encompass those used in previous studies. Frequency coverage properties of several hyper-prior distributions are also investigated to see when and whether Bayesian interval estimates of random effects meet their nominal confidence levels. The second chapter deals with a time delay estimation problem in astrophysics. When the gravitational field of an intervening galaxy between a quasar and the Earth is strong enough to split light into two or more images, the time delay is defined as the difference between their travel times. The time delay can be used to constrain cosmological parameters and can be inferred from the time series of brightness data of each image. To estimate the time delay, we construct a Gaussian hierarchical model based on a state-space representation for irregularly observed time series generated by a latent continuous-time Ornstein-Uhlenbeck process. Our Bayesian approach jointly infers model parameters via a Gibbs sampler. We also introduce a profile likelihood of the time delay as an approximation of its marginal posterior distribution. The last chapter specifies a repelling-attracting Metropolis algorithm, a new Markov chain Monte Carlo method to explore multi-modal distributions in a simple and fast manner. This algorithm is essentially a Metropolis-Hastings algorithm with a proposal that consists of a downhill move in density that aims to make local modes repelling, followed by an uphill move in density that aims to make local modes attracting. The downhill move is achieved via a reciprocal Metropolis ratio so that the algorithm prefers downward movement. The uphill move does the opposite using the standard Metropolis ratio which prefers upward movement. This down-up movement in density increases the probability of a proposed move to a different mode.

  10. Comparing energy sources for surgical ablation of atrial fibrillation: a Bayesian network meta-analysis of randomized, controlled trials.

    PubMed

    Phan, Kevin; Xie, Ashleigh; Kumar, Narendra; Wong, Sophia; Medi, Caroline; La Meir, Mark; Yan, Tristan D

    2015-08-01

    Simplified maze procedures involving radiofrequency, cryoenergy and microwave energy sources have been increasingly utilized for surgical treatment of atrial fibrillation as an alternative to the traditional cut-and-sew approach. In the absence of direct comparisons, a Bayesian network meta-analysis is another alternative to assess the relative effect of different treatments, using indirect evidence. A Bayesian meta-analysis of indirect evidence was performed using 16 published randomized trials identified from 6 databases. Rank probability analysis was used to rank each intervention in terms of their probability of having the best outcome. Sinus rhythm prevalence beyond the 12-month follow-up was similar between the cut-and-sew, microwave and radiofrequency approaches, which were all ranked better than cryoablation (respectively, 39, 36, and 25 vs 1%). The cut-and-sew maze was ranked worst in terms of mortality outcomes compared with microwave, radiofrequency and cryoenergy (2 vs 19, 34, and 24%, respectively). The cut-and-sew maze procedure was associated with significantly lower stroke rates compared with microwave ablation [odds ratio <0.01; 95% confidence interval 0.00, 0.82], and ranked the best in terms of pacemaker requirements compared with microwave, radiofrequency and cryoenergy (81 vs 14, and 1, <0.01% respectively). Bayesian rank probability analysis shows that the cut-and-sew approach is associated with the best outcomes in terms of sinus rhythm prevalence and stroke outcomes, and remains the gold standard approach for AF treatment. Given the limitations of indirect comparison analysis, these results should be viewed with caution and not over-interpreted. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  11. Bayesian multimodel inference for dose-response studies

    USGS Publications Warehouse

    Link, W.A.; Albers, P.H.

    2007-01-01

    Statistical inference in dose?response studies is model-based: The analyst posits a mathematical model of the relation between exposure and response, estimates parameters of the model, and reports conclusions conditional on the model. Such analyses rarely include any accounting for the uncertainties associated with model selection. The Bayesian inferential system provides a convenient framework for model selection and multimodel inference. In this paper we briefly describe the Bayesian paradigm and Bayesian multimodel inference. We then present a family of models for multinomial dose?response data and apply Bayesian multimodel inferential methods to the analysis of data on the reproductive success of American kestrels (Falco sparveriuss) exposed to various sublethal dietary concentrations of methylmercury.

  12. Modeling the survival kinetics of Salmonella in tree nuts for use in risk assessment.

    PubMed

    Santillana Farakos, Sofia M; Pouillot, Régis; Anderson, Nathan; Johnson, Rhoma; Son, Insook; Van Doren, Jane

    2016-06-16

    Salmonella has been shown to survive in tree nuts over long periods of time. This survival capacity and its variability are key elements for risk assessment of Salmonella in tree nuts. The aim of this study was to develop a mathematical model to predict survival of Salmonella in tree nuts at ambient storage temperatures that considers variability and uncertainty separately and can easily be incorporated into a risk assessment model. Data on Salmonella survival on raw almonds, pecans, pistachios and walnuts were collected from the peer reviewed literature. The Weibull model was chosen as the baseline model and various fixed effect and mixed effect models were fit to the data. The best model identified through statistical analysis testing was then used to develop a hierarchical Bayesian model. Salmonella in tree nuts showed slow declines at temperatures ranging from 21°C to 24°C. A high degree of variability in survival was observed across tree nut studies reported in the literature. Statistical analysis results indicated that the best applicable model was a mixed effect model that included a fixed and random variation of δ per tree nut (which is the time it takes for the first log10 reduction) and a fixed variation of ρ per tree nut (parameter which defines the shape of the curve). Higher estimated survival rates (δ) were obtained for Salmonella on pistachios, followed in decreasing order by pecans, almonds and walnuts. The posterior distributions obtained from Bayesian inference were used to estimate the variability in the log10 decrease levels in survival for each tree nut, and the uncertainty of these estimates. These modeled uncertainty and variability distributions of the estimates can be used to obtain a complete exposure assessment of Salmonella in tree nuts when including time-temperature parameters for storage and consumption data. The statistical approach presented in this study may be applied to any studies that aim to develop predictive models to be implemented in a probabilistic exposure assessment or a quantitative microbial risk assessment. Published by Elsevier B.V.

  13. A guide to Bayesian model selection for ecologists

    USGS Publications Warehouse

    Hooten, Mevin B.; Hobbs, N.T.

    2015-01-01

    The steady upward trend in the use of model selection and Bayesian methods in ecological research has made it clear that both approaches to inference are important for modern analysis of models and data. However, in teaching Bayesian methods and in working with our research colleagues, we have noticed a general dissatisfaction with the available literature on Bayesian model selection and multimodel inference. Students and researchers new to Bayesian methods quickly find that the published advice on model selection is often preferential in its treatment of options for analysis, frequently advocating one particular method above others. The recent appearance of many articles and textbooks on Bayesian modeling has provided welcome background on relevant approaches to model selection in the Bayesian framework, but most of these are either very narrowly focused in scope or inaccessible to ecologists. Moreover, the methodological details of Bayesian model selection approaches are spread thinly throughout the literature, appearing in journals from many different fields. Our aim with this guide is to condense the large body of literature on Bayesian approaches to model selection and multimodel inference and present it specifically for quantitative ecologists as neutrally as possible. We also bring to light a few important and fundamental concepts relating directly to model selection that seem to have gone unnoticed in the ecological literature. Throughout, we provide only a minimal discussion of philosophy, preferring instead to examine the breadth of approaches as well as their practical advantages and disadvantages. This guide serves as a reference for ecologists using Bayesian methods, so that they can better understand their options and can make an informed choice that is best aligned with their goals for inference.

  14. On the Adequacy of Bayesian Evaluations of Categorization Models: Reply to Vanpaemel and Lee (2012)

    ERIC Educational Resources Information Center

    Wills, Andy J.; Pothos, Emmanuel M.

    2012-01-01

    Vanpaemel and Lee (2012) argued, and we agree, that the comparison of formal models can be facilitated by Bayesian methods. However, Bayesian methods neither precede nor supplant our proposals (Wills & Pothos, 2012), as Bayesian methods can be applied both to our proposals and to their polar opposites. Furthermore, the use of Bayesian methods to…

  15. Projection of Diabetes Population Size and Associated Economic Burden through 2030 in Iran: Evidence from Micro-Simulation Markov Model and Bayesian Meta-Analysis

    PubMed Central

    Javanbakht, Mehdi; Mashayekhi, Atefeh; Baradaran, Hamid R.; Haghdoost, AliAkbar; Afshin, Ashkan

    2015-01-01

    Background The aim of this study was to estimate the economic burden of diabetes mellitus (DM) in Iran from 2009 to 2030. Methods A Markov micro-simulation (MM) model was developed to predict the DM population size and associated economic burden. Age- and sex-specific prevalence and incidence of diagnosed and undiagnosed DM were derived from national health surveys. A systematic review was performed to identify the cost of diabetes in Iran and the mean annual direct and indirect costs of patients with DM were estimated using a random-effect Bayesian meta-analysis. Face, internal, cross and predictive validity of the MM model were assessed by consulting an expert group, performing sensitivity analysis (SA) and comparing model results with published literature and national survey reports. Sensitivity analysis was also performed to explore the effect of uncertainty in the model. Results We estimated 3.78 million cases of DM (2.74 million diagnosed and 1.04 million undiagnosed) in Iran in 2009. This number is expected to rise to 9.24 million cases (6.73 million diagnosed and 2.50 million undiagnosed) by 2030. The mean annual direct and indirect costs of patients with DM in 2009 were US$ 556 (posterior standard deviation, 221) and US$ 689 (619), respectively. Total estimated annual cost of DM was $3.64 (2009 US$) billion (including US$1.71 billion direct and US$1.93 billion indirect costs) in 2009 and is predicted to increase to $9.0 (in 2009 US$) billion (including US$4.2 billion direct and US$4.8 billion indirect costs) by 2030. Conclusions The economic burden of DM in Iran is predicted to increase markedly in the coming decades. Identification and implementation of effective strategies to prevent and manage DM should be considered as a public health priority. PMID:26200913

  16. Projection of Diabetes Population Size and Associated Economic Burden through 2030 in Iran: Evidence from Micro-Simulation Markov Model and Bayesian Meta-Analysis.

    PubMed

    Javanbakht, Mehdi; Mashayekhi, Atefeh; Baradaran, Hamid R; Haghdoost, AliAkbar; Afshin, Ashkan

    2015-01-01

    The aim of this study was to estimate the economic burden of diabetes mellitus (DM) in Iran from 2009 to 2030. A Markov micro-simulation (MM) model was developed to predict the DM population size and associated economic burden. Age- and sex-specific prevalence and incidence of diagnosed and undiagnosed DM were derived from national health surveys. A systematic review was performed to identify the cost of diabetes in Iran and the mean annual direct and indirect costs of patients with DM were estimated using a random-effect Bayesian meta-analysis. Face, internal, cross and predictive validity of the MM model were assessed by consulting an expert group, performing sensitivity analysis (SA) and comparing model results with published literature and national survey reports. Sensitivity analysis was also performed to explore the effect of uncertainty in the model. We estimated 3.78 million cases of DM (2.74 million diagnosed and 1.04 million undiagnosed) in Iran in 2009. This number is expected to rise to 9.24 million cases (6.73 million diagnosed and 2.50 million undiagnosed) by 2030. The mean annual direct and indirect costs of patients with DM in 2009 were US$ 556 (posterior standard deviation, 221) and US$ 689 (619), respectively. Total estimated annual cost of DM was $3.64 (2009 US$) billion (including US$1.71 billion direct and US$1.93 billion indirect costs) in 2009 and is predicted to increase to $9.0 (in 2009 US$) billion (including US$4.2 billion direct and US$4.8 billion indirect costs) by 2030. The economic burden of DM in Iran is predicted to increase markedly in the coming decades. Identification and implementation of effective strategies to prevent and manage DM should be considered as a public health priority.

  17. Bayesian prediction of placebo analgesia in an instrumental learning model

    PubMed Central

    Jung, Won-Mo; Lee, Ye-Seul; Wallraven, Christian; Chae, Younbyoung

    2017-01-01

    Placebo analgesia can be primarily explained by the Pavlovian conditioning paradigm in which a passively applied cue becomes associated with less pain. In contrast, instrumental conditioning employs an active paradigm that might be more similar to clinical settings. In the present study, an instrumental conditioning paradigm involving a modified trust game in a simulated clinical situation was used to induce placebo analgesia. Additionally, Bayesian modeling was applied to predict the placebo responses of individuals based on their choices. Twenty-four participants engaged in a medical trust game in which decisions to receive treatment from either a doctor (more effective with high cost) or a pharmacy (less effective with low cost) were made after receiving a reference pain stimulus. In the conditioning session, the participants received lower levels of pain following both choices, while high pain stimuli were administered in the test session even after making the decision. The choice-dependent pain in the conditioning session was modulated in terms of both intensity and uncertainty. Participants reported significantly less pain when they chose the doctor or the pharmacy for treatment compared to the control trials. The predicted pain ratings based on Bayesian modeling showed significant correlations with the actual reports from participants for both of the choice categories. The instrumental conditioning paradigm allowed for the active choice of optional cues and was able to induce the placebo analgesia effect. Additionally, Bayesian modeling successfully predicted pain ratings in a simulated clinical situation that fits well with placebo analgesia induced by instrumental conditioning. PMID:28225816

  18. A Transferrable Belief Model Representation for Physical Security of Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Gerts

    This work analyzed various probabilistic methods such as classic statistics, Bayesian inference, possibilistic theory, and Dempster-Shafer theory of belief functions for the potential insight offered into the physical security of nuclear materials as well as more broad application to nuclear non-proliferation automated decision making theory. A review of the fundamental heuristic and basic limitations of each of these methods suggested that the Dempster-Shafer theory of belief functions may offer significant capability. Further examination of the various interpretations of Dempster-Shafer theory, such as random set, generalized Bayesian, and upper/lower probability demonstrate some limitations. Compared to the other heuristics, the transferrable beliefmore » model (TBM), one of the leading interpretations of Dempster-Shafer theory, can improve the automated detection of the violation of physical security using sensors and human judgment. The improvement is shown to give a significant heuristic advantage over other probabilistic options by demonstrating significant successes for several classic gedanken experiments.« less

  19. Bayesian random local clocks, or one rate to rule them all

    PubMed Central

    2010-01-01

    Background Relaxed molecular clock models allow divergence time dating and "relaxed phylogenetic" inference, in which a time tree is estimated in the face of unequal rates across lineages. We present a new method for relaxing the assumption of a strict molecular clock using Markov chain Monte Carlo to implement Bayesian modeling averaging over random local molecular clocks. The new method approaches the problem of rate variation among lineages by proposing a series of local molecular clocks, each extending over a subregion of the full phylogeny. Each branch in a phylogeny (subtending a clade) is a possible location for a change of rate from one local clock to a new one. Thus, including both the global molecular clock and the unconstrained model results, there are a total of 22n-2 possible rate models available for averaging with 1, 2, ..., 2n - 2 different rate categories. Results We propose an efficient method to sample this model space while simultaneously estimating the phylogeny. The new method conveniently allows a direct test of the strict molecular clock, in which one rate rules them all, against a large array of alternative local molecular clock models. We illustrate the method's utility on three example data sets involving mammal, primate and influenza evolution. Finally, we explore methods to visualize the complex posterior distribution that results from inference under such models. Conclusions The examples suggest that large sequence datasets may only require a small number of local molecular clocks to reconcile their branch lengths with a time scale. All of the analyses described here are implemented in the open access software package BEAST 1.5.4 (http://beast-mcmc.googlecode.com/). PMID:20807414

  20. Bayesian selection of misspecified models is overconfident and may cause spurious posterior probabilities for phylogenetic trees.

    PubMed

    Yang, Ziheng; Zhu, Tianqi

    2018-02-20

    The Bayesian method is noted to produce spuriously high posterior probabilities for phylogenetic trees in analysis of large datasets, but the precise reasons for this overconfidence are unknown. In general, the performance of Bayesian selection of misspecified models is poorly understood, even though this is of great scientific interest since models are never true in real data analysis. Here we characterize the asymptotic behavior of Bayesian model selection and show that when the competing models are equally wrong, Bayesian model selection exhibits surprising and polarized behaviors in large datasets, supporting one model with full force while rejecting the others. If one model is slightly less wrong than the other, the less wrong model will eventually win when the amount of data increases, but the method may become overconfident before it becomes reliable. We suggest that this extreme behavior may be a major factor for the spuriously high posterior probabilities for evolutionary trees. The philosophical implications of our results to the application of Bayesian model selection to evaluate opposing scientific hypotheses are yet to be explored, as are the behaviors of non-Bayesian methods in similar situations.

  1. Bayesian analyses of time-interval data for environmental radiation monitoring.

    PubMed

    Luo, Peng; Sharp, Julia L; DeVol, Timothy A

    2013-01-01

    Time-interval (time difference between two consecutive pulses) analysis based on the principles of Bayesian inference was investigated for online radiation monitoring. Using experimental and simulated data, Bayesian analysis of time-interval data [Bayesian (ti)] was compared with Bayesian and a conventional frequentist analysis of counts in a fixed count time [Bayesian (cnt) and single interval test (SIT), respectively]. The performances of the three methods were compared in terms of average run length (ARL) and detection probability for several simulated detection scenarios. Experimental data were acquired with a DGF-4C system in list mode. Simulated data were obtained using Monte Carlo techniques to obtain a random sampling of the Poisson distribution. All statistical algorithms were developed using the R Project for statistical computing. Bayesian analysis of time-interval information provided a similar detection probability as Bayesian analysis of count information, but the authors were able to make a decision with fewer pulses at relatively higher radiation levels. In addition, for the cases with very short presence of the source (< count time), time-interval information is more sensitive to detect a change than count information since the source data is averaged by the background data over the entire count time. The relationships of the source time, change points, and modifications to the Bayesian approach for increasing detection probability are presented.

  2. Bayesian inference for OPC modeling

    NASA Astrophysics Data System (ADS)

    Burbine, Andrew; Sturtevant, John; Fryer, David; Smith, Bruce W.

    2016-03-01

    The use of optical proximity correction (OPC) demands increasingly accurate models of the photolithographic process. Model building and inference techniques in the data science community have seen great strides in the past two decades which make better use of available information. This paper aims to demonstrate the predictive power of Bayesian inference as a method for parameter selection in lithographic models by quantifying the uncertainty associated with model inputs and wafer data. Specifically, the method combines the model builder's prior information about each modelling assumption with the maximization of each observation's likelihood as a Student's t-distributed random variable. Through the use of a Markov chain Monte Carlo (MCMC) algorithm, a model's parameter space is explored to find the most credible parameter values. During parameter exploration, the parameters' posterior distributions are generated by applying Bayes' rule, using a likelihood function and the a priori knowledge supplied. The MCMC algorithm used, an affine invariant ensemble sampler (AIES), is implemented by initializing many walkers which semiindependently explore the space. The convergence of these walkers to global maxima of the likelihood volume determine the parameter values' highest density intervals (HDI) to reveal champion models. We show that this method of parameter selection provides insights into the data that traditional methods do not and outline continued experiments to vet the method.

  3. Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer.

    PubMed

    Covarrubias-Pazaran, Giovanny

    2016-01-01

    Most traits of agronomic importance are quantitative in nature, and genetic markers have been used for decades to dissect such traits. Recently, genomic selection has earned attention as next generation sequencing technologies became feasible for major and minor crops. Mixed models have become a key tool for fitting genomic selection models, but most current genomic selection software can only include a single variance component other than the error, making hybrid prediction using additive, dominance and epistatic effects unfeasible for species displaying heterotic effects. Moreover, Likelihood-based software for fitting mixed models with multiple random effects that allows the user to specify the variance-covariance structure of random effects has not been fully exploited. A new open-source R package called sommer is presented to facilitate the use of mixed models for genomic selection and hybrid prediction purposes using more than one variance component and allowing specification of covariance structures. The use of sommer for genomic prediction is demonstrated through several examples using maize and wheat genotypic and phenotypic data. At its core, the program contains three algorithms for estimating variance components: Average information (AI), Expectation-Maximization (EM) and Efficient Mixed Model Association (EMMA). Kernels for calculating the additive, dominance and epistatic relationship matrices are included, along with other useful functions for genomic analysis. Results from sommer were comparable to other software, but the analysis was faster than Bayesian counterparts in the magnitude of hours to days. In addition, ability to deal with missing data, combined with greater flexibility and speed than other REML-based software was achieved by putting together some of the most efficient algorithms to fit models in a gentle environment such as R.

  4. Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition.

    PubMed

    Jones, Matt; Love, Bradley C

    2011-08-01

    The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls that have plagued previous theoretical movements.

  5. Heuristics as Bayesian inference under extreme priors.

    PubMed

    Parpart, Paula; Jones, Matt; Love, Bradley C

    2018-05-01

    Simple heuristics are often regarded as tractable decision strategies because they ignore a great deal of information in the input data. One puzzle is why heuristics can outperform full-information models, such as linear regression, which make full use of the available information. These "less-is-more" effects, in which a relatively simpler model outperforms a more complex model, are prevalent throughout cognitive science, and are frequently argued to demonstrate an inherent advantage of simplifying computation or ignoring information. In contrast, we show at the computational level (where algorithmic restrictions are set aside) that it is never optimal to discard information. Through a formal Bayesian analysis, we prove that popular heuristics, such as tallying and take-the-best, are formally equivalent to Bayesian inference under the limit of infinitely strong priors. Varying the strength of the prior yields a continuum of Bayesian models with the heuristics at one end and ordinary regression at the other. Critically, intermediate models perform better across all our simulations, suggesting that down-weighting information with the appropriate prior is preferable to entirely ignoring it. Rather than because of their simplicity, our analyses suggest heuristics perform well because they implement strong priors that approximate the actual structure of the environment. We end by considering how new heuristics could be derived by infinitely strengthening the priors of other Bayesian models. These formal results have implications for work in psychology, machine learning and economics. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Data-driven analysis for the temperature and momentum dependence of the heavy-quark diffusion coefficient in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Xu, Yingru; Bernhard, Jonah E.; Bass, Steffen A.; Nahrgang, Marlene; Cao, Shanshan

    2018-01-01

    By applying a Bayesian model-to-data analysis, we estimate the temperature and momentum dependence of the heavy quark diffusion coefficient in an improved Langevin framework. The posterior range of the diffusion coefficient is obtained by performing a Markov chain Monte Carlo random walk and calibrating on the experimental data of D -meson RAA and v2 in three different collision systems at the Relativistic Heavy-Ion Collidaer (RHIC) and the Large Hadron Collider (LHC): Au-Au collisions at 200 GeV and Pb-Pb collisions at 2.76 and 5.02 TeV. The spatial diffusion coefficient is found to be consistent with lattice QCD calculations and comparable with other models' estimation. We demonstrate the capability of our improved Langevin model to simultaneously describe the RAA and v2 at both RHIC and the LHC energies, as well as the higher order flow coefficient such as D meson v3. We show that by applying a Bayesian analysis, we are able to quantitatively and systematically study the heavy flavor dynamics in heavy-ion collisions.

  7. Progressive sampling-based Bayesian optimization for efficient and automatic machine learning model selection.

    PubMed

    Zeng, Xueqiang; Luo, Gang

    2017-12-01

    Machine learning is broadly used for clinical data analysis. Before training a model, a machine learning algorithm must be selected. Also, the values of one or more model parameters termed hyper-parameters must be set. Selecting algorithms and hyper-parameter values requires advanced machine learning knowledge and many labor-intensive manual iterations. To lower the bar to machine learning, miscellaneous automatic selection methods for algorithms and/or hyper-parameter values have been proposed. Existing automatic selection methods are inefficient on large data sets. This poses a challenge for using machine learning in the clinical big data era. To address the challenge, this paper presents progressive sampling-based Bayesian optimization, an efficient and automatic selection method for both algorithms and hyper-parameter values. We report an implementation of the method. We show that compared to a state of the art automatic selection method, our method can significantly reduce search time, classification error rate, and standard deviation of error rate due to randomization. This is major progress towards enabling fast turnaround in identifying high-quality solutions required by many machine learning-based clinical data analysis tasks.

  8. How the Bayesians Got Their Beliefs (and What Those Beliefs Actually Are): Comment on Bowers and Davis (2012)

    ERIC Educational Resources Information Center

    Griffiths, Thomas L.; Chater, Nick; Norris, Dennis; Pouget, Alexandre

    2012-01-01

    Bowers and Davis (2012) criticize Bayesian modelers for telling "just so" stories about cognition and neuroscience. Their criticisms are weakened by not giving an accurate characterization of the motivation behind Bayesian modeling or the ways in which Bayesian models are used and by not evaluating this theoretical framework against specific…

  9. Bayesian modeling and inference for diagnostic accuracy and probability of disease based on multiple diagnostic biomarkers with and without a perfect reference standard.

    PubMed

    Jafarzadeh, S Reza; Johnson, Wesley O; Gardner, Ian A

    2016-03-15

    The area under the receiver operating characteristic (ROC) curve (AUC) is used as a performance metric for quantitative tests. Although multiple biomarkers may be available for diagnostic or screening purposes, diagnostic accuracy is often assessed individually rather than in combination. In this paper, we consider the interesting problem of combining multiple biomarkers for use in a single diagnostic criterion with the goal of improving the diagnostic accuracy above that of an individual biomarker. The diagnostic criterion created from multiple biomarkers is based on the predictive probability of disease, conditional on given multiple biomarker outcomes. If the computed predictive probability exceeds a specified cutoff, the corresponding subject is allocated as 'diseased'. This defines a standard diagnostic criterion that has its own ROC curve, namely, the combined ROC (cROC). The AUC metric for cROC, namely, the combined AUC (cAUC), is used to compare the predictive criterion based on multiple biomarkers to one based on fewer biomarkers. A multivariate random-effects model is proposed for modeling multiple normally distributed dependent scores. Bayesian methods for estimating ROC curves and corresponding (marginal) AUCs are developed when a perfect reference standard is not available. In addition, cAUCs are computed to compare the accuracy of different combinations of biomarkers for diagnosis. The methods are evaluated using simulations and are applied to data for Johne's disease (paratuberculosis) in cattle. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Gradient-free MCMC methods for dynamic causal modelling.

    PubMed

    Sengupta, Biswa; Friston, Karl J; Penny, Will D

    2015-05-15

    In this technical note we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time. For the Bayesian inversion of a single-node neural mass model, both adaptive and population-based samplers are more efficient compared with random walk Metropolis sampler or slice-sampling; yet adaptive MCMC sampling is more promising in terms of compute time. Slice-sampling yields the highest number of independent samples from the target density - albeit at almost 1000% increase in computational time, in comparison to the most efficient algorithm (i.e., the adaptive MCMC sampler). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Predicting ICU mortality: a comparison of stationary and nonstationary temporal models.

    PubMed Central

    Kayaalp, M.; Cooper, G. F.; Clermont, G.

    2000-01-01

    OBJECTIVE: This study evaluates the effectiveness of the stationarity assumption in predicting the mortality of intensive care unit (ICU) patients at the ICU discharge. DESIGN: This is a comparative study. A stationary temporal Bayesian network learned from data was compared to a set of (33) nonstationary temporal Bayesian networks learned from data. A process observed as a sequence of events is stationary if its stochastic properties stay the same when the sequence is shifted in a positive or negative direction by a constant time parameter. The temporal Bayesian networks forecast mortalities of patients, where each patient has one record per day. The predictive performance of the stationary model is compared with nonstationary models using the area under the receiver operating characteristics (ROC) curves. RESULTS: The stationary model usually performed best. However, one nonstationary model using large data sets performed significantly better than the stationary model. CONCLUSION: Results suggest that using a combination of stationary and nonstationary models may predict better than using either alone. PMID:11079917

  12. Modeling Diagnostic Assessments with Bayesian Networks

    ERIC Educational Resources Information Center

    Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego

    2007-01-01

    This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…

  13. Bayesian estimation of the discrete coefficient of determination.

    PubMed

    Chen, Ting; Braga-Neto, Ulisses M

    2016-12-01

    The discrete coefficient of determination (CoD) measures the nonlinear interaction between discrete predictor and target variables and has had far-reaching applications in Genomic Signal Processing. Previous work has addressed the inference of the discrete CoD using classical parametric and nonparametric approaches. In this paper, we introduce a Bayesian framework for the inference of the discrete CoD. We derive analytically the optimal minimum mean-square error (MMSE) CoD estimator, as well as a CoD estimator based on the Optimal Bayesian Predictor (OBP). For the latter estimator, exact expressions for its bias, variance, and root-mean-square (RMS) are given. The accuracy of both Bayesian CoD estimators with non-informative and informative priors, under fixed or random parameters, is studied via analytical and numerical approaches. We also demonstrate the application of the proposed Bayesian approach in the inference of gene regulatory networks, using gene-expression data from a previously published study on metastatic melanoma.

  14. A Bayesian hierarchical model for accident and injury surveillance.

    PubMed

    MacNab, Ying C

    2003-01-01

    This article presents a recent study which applies Bayesian hierarchical methodology to model and analyse accident and injury surveillance data. A hierarchical Poisson random effects spatio-temporal model is introduced and an analysis of inter-regional variations and regional trends in hospitalisations due to motor vehicle accident injuries to boys aged 0-24 in the province of British Columbia, Canada, is presented. The objective of this article is to illustrate how the modelling technique can be implemented as part of an accident and injury surveillance and prevention system where transportation and/or health authorities may routinely examine accidents, injuries, and hospitalisations to target high-risk regions for prevention programs, to evaluate prevention strategies, and to assist in health planning and resource allocation. The innovation of the methodology is its ability to uncover and highlight important underlying structure of the data. Between 1987 and 1996, British Columbia hospital separation registry registered 10,599 motor vehicle traffic injury related hospitalisations among boys aged 0-24 who resided in British Columbia, of which majority (89%) of the injuries occurred to boys aged 15-24. The injuries were aggregated by three age groups (0-4, 5-14, and 15-24), 20 health regions (based of place-of-residence), and 10 calendar years (1987 to 1996) and the corresponding mid-year population estimates were used as 'at risk' population. An empirical Bayes inference technique using penalised quasi-likelihood estimation was implemented to model both rates and counts, with spline smoothing accommodating non-linear temporal effects. The results show that (a) crude rates and ratios at health region level are unstable, (b) the models with spline smoothing enable us to explore possible shapes of injury trends at both the provincial level and the regional level, and (c) the fitted models provide a wealth of information about the patterns (both over space and time) of the injury counts, rates and ratios. During the 10-year period, high injury risk ratios evolved from northwest to central-interior and the southeast [corrected].

  15. Bayesian microsaccade detection

    PubMed Central

    Mihali, Andra; van Opheusden, Bas; Ma, Wei Ji

    2017-01-01

    Microsaccades are high-velocity fixational eye movements, with special roles in perception and cognition. The default microsaccade detection method is to determine when the smoothed eye velocity exceeds a threshold. We have developed a new method, Bayesian microsaccade detection (BMD), which performs inference based on a simple statistical model of eye positions. In this model, a hidden state variable changes between drift and microsaccade states at random times. The eye position is a biased random walk with different velocity distributions for each state. BMD generates samples from the posterior probability distribution over the eye state time series given the eye position time series. Applied to simulated data, BMD recovers the “true” microsaccades with fewer errors than alternative algorithms, especially at high noise. Applied to EyeLink eye tracker data, BMD detects almost all the microsaccades detected by the default method, but also apparent microsaccades embedded in high noise—although these can also be interpreted as false positives. Next we apply the algorithms to data collected with a Dual Purkinje Image eye tracker, whose higher precision justifies defining the inferred microsaccades as ground truth. When we add artificial measurement noise, the inferences of all algorithms degrade; however, at noise levels comparable to EyeLink data, BMD recovers the “true” microsaccades with 54% fewer errors than the default algorithm. Though unsuitable for online detection, BMD has other advantages: It returns probabilities rather than binary judgments, and it can be straightforwardly adapted as the generative model is refined. We make our algorithm available as a software package. PMID:28114483

  16. Philosophy and the practice of Bayesian statistics

    PubMed Central

    Gelman, Andrew; Shalizi, Cosma Rohilla

    2015-01-01

    A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework. PMID:22364575

  17. Philosophy and the practice of Bayesian statistics.

    PubMed

    Gelman, Andrew; Shalizi, Cosma Rohilla

    2013-02-01

    A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework. © 2012 The British Psychological Society.

  18. Dengue on islands: a Bayesian approach to understanding the global ecology of dengue viruses.

    PubMed

    Feldstein, Leora R; Brownstein, John S; Brady, Oliver J; Hay, Simon I; Johansson, Michael A

    2015-05-01

    Transmission of dengue viruses (DENV), the most common arboviral pathogens globally, is influenced by many climatic and socioeconomic factors. However, the relative contributions of these factors on a global scale are unclear. We randomly selected 94 islands stratified by socioeconomic and geographic characteristics. With a Bayesian model, we assessed factors contributing to the probability of islands having a history of any dengue outbreaks and of having frequent outbreaks. Minimum temperature was strongly associated with suitability for DENV transmission. Islands with a minimum monthly temperature of greater than 14.8°C (95% CI: 12.4-16.6°C) were predicted to be suitable for DENV transmission. Increased population size and precipitation were associated with increased outbreak frequency, but did not capture all of the variability. Predictions for 48 testing islands verified these findings. This analysis clarified two key components of DENV ecology: minimum temperature was the most important determinant of suitability; and endemicity was more likely in areas with high precipitation and large, but not necessarily dense, populations. Wealth and connectivity, in contrast, had no discernable effects. This model adds to our knowledge of global determinants of dengue risk and provides a basis for understanding the ecology of dengue endemicity. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  19. Network discovery with DCM

    PubMed Central

    Friston, Karl J.; Li, Baojuan; Daunizeau, Jean; Stephan, Klaas E.

    2011-01-01

    This paper is about inferring or discovering the functional architecture of distributed systems using Dynamic Causal Modelling (DCM). We describe a scheme that recovers the (dynamic) Bayesian dependency graph (connections in a network) using observed network activity. This network discovery uses Bayesian model selection to identify the sparsity structure (absence of edges or connections) in a graph that best explains observed time-series. The implicit adjacency matrix specifies the form of the network (e.g., cyclic or acyclic) and its graph-theoretical attributes (e.g., degree distribution). The scheme is illustrated using functional magnetic resonance imaging (fMRI) time series to discover functional brain networks. Crucially, it can be applied to experimentally evoked responses (activation studies) or endogenous activity in task-free (resting state) fMRI studies. Unlike conventional approaches to network discovery, DCM permits the analysis of directed and cyclic graphs. Furthermore, it eschews (implausible) Markovian assumptions about the serial independence of random fluctuations. The scheme furnishes a network description of distributed activity in the brain that is optimal in the sense of having the greatest conditional probability, relative to other networks. The networks are characterised in terms of their connectivity or adjacency matrices and conditional distributions over the directed (and reciprocal) effective connectivity between connected nodes or regions. We envisage that this approach will provide a useful complement to current analyses of functional connectivity for both activation and resting-state studies. PMID:21182971

  20. The current state of Bayesian methods in medical product development: survey results and recommendations from the DIA Bayesian Scientific Working Group.

    PubMed

    Natanegara, Fanni; Neuenschwander, Beat; Seaman, John W; Kinnersley, Nelson; Heilmann, Cory R; Ohlssen, David; Rochester, George

    2014-01-01

    Bayesian applications in medical product development have recently gained popularity. Despite many advances in Bayesian methodology and computations, increase in application across the various areas of medical product development has been modest. The DIA Bayesian Scientific Working Group (BSWG), which includes representatives from industry, regulatory agencies, and academia, has adopted the vision to ensure Bayesian methods are well understood, accepted more broadly, and appropriately utilized to improve decision making and enhance patient outcomes. As Bayesian applications in medical product development are wide ranging, several sub-teams were formed to focus on various topics such as patient safety, non-inferiority, prior specification, comparative effectiveness, joint modeling, program-wide decision making, analytical tools, and education. The focus of this paper is on the recent effort of the BSWG Education sub-team to administer a Bayesian survey to statisticians across 17 organizations involved in medical product development. We summarize results of this survey, from which we provide recommendations on how to accelerate progress in Bayesian applications throughout medical product development. The survey results support findings from the literature and provide additional insight on regulatory acceptance of Bayesian methods and information on the need for a Bayesian infrastructure within an organization. The survey findings support the claim that only modest progress in areas of education and implementation has been made recently, despite substantial progress in Bayesian statistical research and software availability. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Nonparametric Bayesian Multiple Imputation for Incomplete Categorical Variables in Large-Scale Assessment Surveys

    ERIC Educational Resources Information Center

    Si, Yajuan; Reiter, Jerome P.

    2013-01-01

    In many surveys, the data comprise a large number of categorical variables that suffer from item nonresponse. Standard methods for multiple imputation, like log-linear models or sequential regression imputation, can fail to capture complex dependencies and can be difficult to implement effectively in high dimensions. We present a fully Bayesian,…

  2. Bayesian component separation: The Planck experience

    NASA Astrophysics Data System (ADS)

    Wehus, Ingunn Kathrine; Eriksen, Hans Kristian

    2018-05-01

    Bayesian component separation techniques have played a central role in the data reduction process of Planck. The most important strength of this approach is its global nature, in which a parametric and physical model is fitted to the data. Such physical modeling allows the user to constrain very general data models, and jointly probe cosmological, astrophysical and instrumental parameters. This approach also supports statistically robust goodness-of-fit tests in terms of data-minus-model residual maps, which are essential for identifying residual systematic effects in the data. The main challenges are high code complexity and computational cost. Whether or not these costs are justified for a given experiment depends on its final uncertainty budget. We therefore predict that the importance of Bayesian component separation techniques is likely to increase with time for intensity mapping experiments, similar to what has happened in the CMB field, as observational techniques mature, and their overall sensitivity improves.

  3. Probabilistic risk assessment for a loss of coolant accident in McMaster Nuclear Reactor and application of reliability physics model for modeling human reliability

    NASA Astrophysics Data System (ADS)

    Ha, Taesung

    A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential usefulness of quantifying model uncertainty as sensitivity analysis in the PRA model.

  4. Bayesian inference based on dual generalized order statistics from the exponentiated Weibull model

    NASA Astrophysics Data System (ADS)

    Al Sobhi, Mashail M.

    2015-02-01

    Bayesian estimation for the two parameters and the reliability function of the exponentiated Weibull model are obtained based on dual generalized order statistics (DGOS). Also, Bayesian prediction bounds for future DGOS from exponentiated Weibull model are obtained. The symmetric and asymmetric loss functions are considered for Bayesian computations. The Markov chain Monte Carlo (MCMC) methods are used for computing the Bayes estimates and prediction bounds. The results have been specialized to the lower record values. Comparisons are made between Bayesian and maximum likelihood estimators via Monte Carlo simulation.

  5. Fundamentals and Recent Developments in Approximate Bayesian Computation

    PubMed Central

    Lintusaari, Jarno; Gutmann, Michael U.; Dutta, Ritabrata; Kaski, Samuel; Corander, Jukka

    2017-01-01

    Abstract Bayesian inference plays an important role in phylogenetics, evolutionary biology, and in many other branches of science. It provides a principled framework for dealing with uncertainty and quantifying how it changes in the light of new evidence. For many complex models and inference problems, however, only approximate quantitative answers are obtainable. Approximate Bayesian computation (ABC) refers to a family of algorithms for approximate inference that makes a minimal set of assumptions by only requiring that sampling from a model is possible. We explain here the fundamentals of ABC, review the classical algorithms, and highlight recent developments. [ABC; approximate Bayesian computation; Bayesian inference; likelihood-free inference; phylogenetics; simulator-based models; stochastic simulation models; tree-based models.] PMID:28175922

  6. Model averaging in the presence of structural uncertainty about treatment effects: influence on treatment decision and expected value of information.

    PubMed

    Price, Malcolm J; Welton, Nicky J; Briggs, Andrew H; Ades, A E

    2011-01-01

    Standard approaches to estimation of Markov models with data from randomized controlled trials tend either to make a judgment about which transition(s) treatments act on, or they assume that treatment has a separate effect on every transition. An alternative is to fit a series of models that assume that treatment acts on specific transitions. Investigators can then choose among alternative models using goodness-of-fit statistics. However, structural uncertainty about any chosen parameterization will remain and this may have implications for the resulting decision and the need for further research. We describe a Bayesian approach to model estimation, and model selection. Structural uncertainty about which parameterization to use is accounted for using model averaging and we developed a formula for calculating the expected value of perfect information (EVPI) in averaged models. Marginal posterior distributions are generated for each of the cost-effectiveness parameters using Markov Chain Monte Carlo simulation in WinBUGS, or Monte-Carlo simulation in Excel (Microsoft Corp., Redmond, WA). We illustrate the approach with an example of treatments for asthma using aggregate-level data from a connected network of four treatments compared in three pair-wise randomized controlled trials. The standard errors of incremental net benefit using structured models is reduced by up to eight- or ninefold compared to the unstructured models, and the expected loss attaching to decision uncertainty by factors of several hundreds. Model averaging had considerable influence on the EVPI. Alternative structural assumptions can alter the treatment decision and have an overwhelming effect on model uncertainty and expected value of information. Structural uncertainty can be accounted for by model averaging, and the EVPI can be calculated for averaged models. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  7. Understanding and predicting changing use of groundwater with climate and other uncertainties: a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Costa, F. A. F.; Keir, G.; McIntyre, N.; Bulovic, N.

    2015-12-01

    Most groundwater supply bores in Australia do not have flow metering equipment and so regional groundwater abstraction rates are not well known. Past estimates of unmetered abstraction for regional numerical groundwater modelling typically have not attempted to quantify the uncertainty inherent in the estimation process in detail. In particular, the spatial properties of errors in the estimates are almost always neglected. Here, we apply Bayesian spatial models to estimate these abstractions at a regional scale, using the state-of-the-art computationally inexpensive approaches of integrated nested Laplace approximation (INLA) and stochastic partial differential equations (SPDE). We examine a case study in the Condamine Alluvium aquifer in southern Queensland, Australia; even in this comparatively data-rich area with extensive groundwater abstraction for agricultural irrigation, approximately 80% of bores do not have reliable metered flow records. Additionally, the metering data in this area are characterised by complicated statistical features, such as zero-valued observations, non-normality, and non-stationarity. While this precludes the use of many classical spatial estimation techniques, such as kriging, our model (using the R-INLA package) is able to accommodate these features. We use a joint model to predict both probability and magnitude of abstraction from bores in space and time, and examine the effect of a range of high-resolution gridded meteorological covariates upon the predictive ability of the model. Deviance Information Criterion (DIC) scores are used to assess a range of potential models, which reward good model fit while penalising excessive model complexity. We conclude that maximum air temperature (as a reasonably effective surrogate for evapotranspiration) is the most significant single predictor of abstraction rate; and that a significant spatial effect exists (represented by the SPDE approximation of a Gaussian random field with a Matérn covariance function). Our final model adopts air temperature, solar exposure, and normalized difference vegetation index (NDVI) as covariates, shows good agreement with previous estimates at a regional scale, and additionally offers rigorous quantification of uncertainty in the estimate.

  8. Joint analysis of input and parametric uncertainties in watershed water quality modeling: A formal Bayesian approach

    NASA Astrophysics Data System (ADS)

    Han, Feng; Zheng, Yi

    2018-06-01

    Significant Input uncertainty is a major source of error in watershed water quality (WWQ) modeling. It remains challenging to address the input uncertainty in a rigorous Bayesian framework. This study develops the Bayesian Analysis of Input and Parametric Uncertainties (BAIPU), an approach for the joint analysis of input and parametric uncertainties through a tight coupling of Markov Chain Monte Carlo (MCMC) analysis and Bayesian Model Averaging (BMA). The formal likelihood function for this approach is derived considering a lag-1 autocorrelated, heteroscedastic, and Skew Exponential Power (SEP) distributed error model. A series of numerical experiments were performed based on a synthetic nitrate pollution case and on a real study case in the Newport Bay Watershed, California. The Soil and Water Assessment Tool (SWAT) and Differential Evolution Adaptive Metropolis (DREAM(ZS)) were used as the representative WWQ model and MCMC algorithm, respectively. The major findings include the following: (1) the BAIPU can be implemented and used to appropriately identify the uncertain parameters and characterize the predictive uncertainty; (2) the compensation effect between the input and parametric uncertainties can seriously mislead the modeling based management decisions, if the input uncertainty is not explicitly accounted for; (3) the BAIPU accounts for the interaction between the input and parametric uncertainties and therefore provides more accurate calibration and uncertainty results than a sequential analysis of the uncertainties; and (4) the BAIPU quantifies the credibility of different input assumptions on a statistical basis and can be implemented as an effective inverse modeling approach to the joint inference of parameters and inputs.

  9. Using Structured Additive Regression Models to Estimate Risk Factors of Malaria: Analysis of 2010 Malawi Malaria Indicator Survey Data

    PubMed Central

    Chirombo, James; Lowe, Rachel; Kazembe, Lawrence

    2014-01-01

    Background After years of implementing Roll Back Malaria (RBM) interventions, the changing landscape of malaria in terms of risk factors and spatial pattern has not been fully investigated. This paper uses the 2010 malaria indicator survey data to investigate if known malaria risk factors remain relevant after many years of interventions. Methods We adopted a structured additive logistic regression model that allowed for spatial correlation, to more realistically estimate malaria risk factors. Our model included child and household level covariates, as well as climatic and environmental factors. Continuous variables were modelled by assuming second order random walk priors, while spatial correlation was specified as a Markov random field prior, with fixed effects assigned diffuse priors. Inference was fully Bayesian resulting in an under five malaria risk map for Malawi. Results Malaria risk increased with increasing age of the child. With respect to socio-economic factors, the greater the household wealth, the lower the malaria prevalence. A general decline in malaria risk was observed as altitude increased. Minimum temperatures and average total rainfall in the three months preceding the survey did not show a strong association with disease risk. Conclusions The structured additive regression model offered a flexible extension to standard regression models by enabling simultaneous modelling of possible nonlinear effects of continuous covariates, spatial correlation and heterogeneity, while estimating usual fixed effects of categorical and continuous observed variables. Our results confirmed that malaria epidemiology is a complex interaction of biotic and abiotic factors, both at the individual, household and community level and that risk factors are still relevant many years after extensive implementation of RBM activities. PMID:24991915

  10. Using structured additive regression models to estimate risk factors of malaria: analysis of 2010 Malawi malaria indicator survey data.

    PubMed

    Chirombo, James; Lowe, Rachel; Kazembe, Lawrence

    2014-01-01

    After years of implementing Roll Back Malaria (RBM) interventions, the changing landscape of malaria in terms of risk factors and spatial pattern has not been fully investigated. This paper uses the 2010 malaria indicator survey data to investigate if known malaria risk factors remain relevant after many years of interventions. We adopted a structured additive logistic regression model that allowed for spatial correlation, to more realistically estimate malaria risk factors. Our model included child and household level covariates, as well as climatic and environmental factors. Continuous variables were modelled by assuming second order random walk priors, while spatial correlation was specified as a Markov random field prior, with fixed effects assigned diffuse priors. Inference was fully Bayesian resulting in an under five malaria risk map for Malawi. Malaria risk increased with increasing age of the child. With respect to socio-economic factors, the greater the household wealth, the lower the malaria prevalence. A general decline in malaria risk was observed as altitude increased. Minimum temperatures and average total rainfall in the three months preceding the survey did not show a strong association with disease risk. The structured additive regression model offered a flexible extension to standard regression models by enabling simultaneous modelling of possible nonlinear effects of continuous covariates, spatial correlation and heterogeneity, while estimating usual fixed effects of categorical and continuous observed variables. Our results confirmed that malaria epidemiology is a complex interaction of biotic and abiotic factors, both at the individual, household and community level and that risk factors are still relevant many years after extensive implementation of RBM activities.

  11. SU-G-IeP4-03: Cone Beam X-Ray Luminescence Computed Tomography Based On Generalized Gaussian Markov Random Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, G; Xing, L

    2016-06-15

    Purpose: Cone beam X-ray luminescence computed tomography (CB-XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. However, the inverse problem of CB-XLCT is seriously ill-conditioned, hindering us to achieve good image quality. In this work, a novel reconstruction method based on Bayesian theory is proposed to tackle this problem Methods: Bayesian theory provides a natural framework for utilizing various kinds of available prior information to improve the reconstruction image quality. A generalized Gaussian Markov random field (GGMRF) model is proposed here to construct the prior model of the Bayesianmore » theory. The most important feature of GGMRF model is the adjustable shape parameter p, which can be continuously adjusted from 1 to 2. The reconstruction image tends to have more edge-preserving property when p is slide to 1, while having more noise tolerance property when p is slide to 2, just like the behavior of L1 and L2 regularization methods, respectively. The proposed method provides a flexible regularization framework to adapt to a wide range of applications. Results: Numerical simulations were implemented to test the performance of the proposed method. The Digimouse atlas were employed to construct a three-dimensional mouse model, and two small cylinders were placed inside to serve as the targets. Reconstruction results show that the proposed method tends to obtain better spatial resolution with a smaller shape parameter, while better signal-to-noise image with a larger shape parameter. Quantitative indexes, contrast-to-noise ratio (CNR) and full-width at half-maximum (FWHM), were used to assess the performance of the proposed method, and confirmed its effectiveness in CB-XLCT reconstruction. Conclusion: A novel reconstruction method for CB-XLCT is proposed based on GGMRF model, which enables an adjustable performance tradeoff between L1 and L2 regularization methods. Numerical simulations were conducted to demonstrate its performance.« less

  12. DM-BLD: differential methylation detection using a hierarchical Bayesian model exploiting local dependency.

    PubMed

    Wang, Xiao; Gu, Jinghua; Hilakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua

    2017-01-15

    The advent of high-throughput DNA methylation profiling techniques has enabled the possibility of accurate identification of differentially methylated genes for cancer research. The large number of measured loci facilitates whole genome methylation study, yet posing great challenges for differential methylation detection due to the high variability in tumor samples. We have developed a novel probabilistic approach, D: ifferential M: ethylation detection using a hierarchical B: ayesian model exploiting L: ocal D: ependency (DM-BLD), to detect differentially methylated genes based on a Bayesian framework. The DM-BLD approach features a joint model to capture both the local dependency of measured loci and the dependency of methylation change in samples. Specifically, the local dependency is modeled by Leroux conditional autoregressive structure; the dependency of methylation changes is modeled by a discrete Markov random field. A hierarchical Bayesian model is developed to fully take into account the local dependency for differential analysis, in which differential states are embedded as hidden variables. Simulation studies demonstrate that DM-BLD outperforms existing methods for differential methylation detection, particularly when the methylation change is moderate and the variability of methylation in samples is high. DM-BLD has been applied to breast cancer data to identify important methylated genes (such as polycomb target genes and genes involved in transcription factor activity) associated with breast cancer recurrence. A Matlab package of DM-BLD is available at http://www.cbil.ece.vt.edu/software.htm CONTACT: Xuan@vt.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Efficient fuzzy Bayesian inference algorithms for incorporating expert knowledge in parameter estimation

    NASA Astrophysics Data System (ADS)

    Rajabi, Mohammad Mahdi; Ataie-Ashtiani, Behzad

    2016-05-01

    Bayesian inference has traditionally been conceived as the proper framework for the formal incorporation of expert knowledge in parameter estimation of groundwater models. However, conventional Bayesian inference is incapable of taking into account the imprecision essentially embedded in expert provided information. In order to solve this problem, a number of extensions to conventional Bayesian inference have been introduced in recent years. One of these extensions is 'fuzzy Bayesian inference' which is the result of integrating fuzzy techniques into Bayesian statistics. Fuzzy Bayesian inference has a number of desirable features which makes it an attractive approach for incorporating expert knowledge in the parameter estimation process of groundwater models: (1) it is well adapted to the nature of expert provided information, (2) it allows to distinguishably model both uncertainty and imprecision, and (3) it presents a framework for fusing expert provided information regarding the various inputs of the Bayesian inference algorithm. However an important obstacle in employing fuzzy Bayesian inference in groundwater numerical modeling applications is the computational burden, as the required number of numerical model simulations often becomes extremely exhaustive and often computationally infeasible. In this paper, a novel approach of accelerating the fuzzy Bayesian inference algorithm is proposed which is based on using approximate posterior distributions derived from surrogate modeling, as a screening tool in the computations. The proposed approach is first applied to a synthetic test case of seawater intrusion (SWI) in a coastal aquifer. It is shown that for this synthetic test case, the proposed approach decreases the number of required numerical simulations by an order of magnitude. Then the proposed approach is applied to a real-world test case involving three-dimensional numerical modeling of SWI in Kish Island, located in the Persian Gulf. An expert elicitation methodology is developed and applied to the real-world test case in order to provide a road map for the use of fuzzy Bayesian inference in groundwater modeling applications.

  14. A two-component Bayesian mixture model to identify implausible gestational age.

    PubMed

    Mohammadian-Khoshnoud, Maryam; Moghimbeigi, Abbas; Faradmal, Javad; Yavangi, Mahnaz

    2016-01-01

    Background: Birth weight and gestational age are two important variables in obstetric research. The primary measure of gestational age is based on a mother's recall of her last menstrual period. This recall may cause random or systematic errors. Therefore, the objective of this study is to utilize Bayesian mixture model in order to identify implausible gestational age. Methods: In this cross-sectional study, medical documents of 502 preterm infants born and hospitalized in Hamadan Fatemieh Hospital from 2009 to 2013 were gathered. Preterm infants were classified to less than 28 weeks and 28 to 31 weeks. A two-component Bayesian mixture model was utilized to identify implausible gestational age; the first component shows the probability of correct and the second one shows the probability of incorrect classification of gestational ages. The data were analyzed through OpenBUGS 3.2.2 and 'coda' package of R 3.1.1. Results: The mean (SD) of the second component of less than 28 weeks and 28 to 31 weeks were 1179 (0.0123) and 1620 (0.0074), respectively. These values were larger than the mean of the first component for both groups which were 815.9 (0.0123) and 1061 (0.0074), respectively. Conclusion: Errors occurred in recording the gestational ages of these two groups of preterm infants included recording the gestational age less than the actual value at birth. Therefore, developing scientific methods to correct these errors is essential to providing desirable health services and adjusting accurate health indicators.

  15. Incorporating networks in a probabilistic graphical model to find drivers for complex human diseases.

    PubMed

    Mezlini, Aziz M; Goldenberg, Anna

    2017-10-01

    Discovering genetic mechanisms driving complex diseases is a hard problem. Existing methods often lack power to identify the set of responsible genes. Protein-protein interaction networks have been shown to boost power when detecting gene-disease associations. We introduce a Bayesian framework, Conflux, to find disease associated genes from exome sequencing data using networks as a prior. There are two main advantages to using networks within a probabilistic graphical model. First, networks are noisy and incomplete, a substantial impediment to gene discovery. Incorporating networks into the structure of a probabilistic models for gene inference has less impact on the solution than relying on the noisy network structure directly. Second, using a Bayesian framework we can keep track of the uncertainty of each gene being associated with the phenotype rather than returning a fixed list of genes. We first show that using networks clearly improves gene detection compared to individual gene testing. We then show consistently improved performance of Conflux compared to the state-of-the-art diffusion network-based method Hotnet2 and a variety of other network and variant aggregation methods, using randomly generated and literature-reported gene sets. We test Hotnet2 and Conflux on several network configurations to reveal biases and patterns of false positives and false negatives in each case. Our experiments show that our novel Bayesian framework Conflux incorporates many of the advantages of the current state-of-the-art methods, while offering more flexibility and improved power in many gene-disease association scenarios.

  16. Application of the quantum spin glass theory to image restoration.

    PubMed

    Inoue, J I

    2001-04-01

    Quantum fluctuation is introduced into the Markov random-field model for image restoration in the context of a Bayesian approach. We investigate the dependence of the quantum fluctuation on the quality of a black and white image restoration by making use of statistical mechanics. We find that the maximum posterior marginal (MPM) estimate based on the quantum fluctuation gives a fine restoration in comparison with the maximum a posteriori estimate or the thermal fluctuation based MPM estimate.

  17. Diagnosis and Reconfiguration using Bayesian Networks: An Electrical Power System Case Study

    NASA Technical Reports Server (NTRS)

    Knox, W. Bradley; Mengshoel, Ole

    2009-01-01

    Automated diagnosis and reconfiguration are important computational techniques that aim to minimize human intervention in autonomous systems. In this paper, we develop novel techniques and models in the context of diagnosis and reconfiguration reasoning using causal Bayesian networks (BNs). We take as starting point a successful diagnostic approach, using a static BN developed for a real-world electrical power system. We discuss in this paper the extension of this diagnostic approach along two dimensions, namely: (i) from a static BN to a dynamic BN; and (ii) from a diagnostic task to a reconfiguration task. More specifically, we discuss the auto-generation of a dynamic Bayesian network from a static Bayesian network. In addition, we discuss subtle, but important, differences between Bayesian networks when used for diagnosis versus reconfiguration. We discuss a novel reconfiguration agent, which models a system causally, including effects of actions through time, using a dynamic Bayesian network. Though the techniques we discuss are general, we demonstrate them in the context of electrical power systems (EPSs) for aircraft and spacecraft. EPSs are vital subsystems on-board aircraft and spacecraft, and many incidents and accidents of these vehicles have been attributed to EPS failures. We discuss a case study that provides initial but promising results for our approach in the setting of electrical power systems.

  18. Bayesian propensity scores for high-dimensional causal inference: A comparison of drug-eluting to bare-metal coronary stents.

    PubMed

    Spertus, Jacob V; Normand, Sharon-Lise T

    2018-04-23

    High-dimensional data provide many potential confounders that may bolster the plausibility of the ignorability assumption in causal inference problems. Propensity score methods are powerful causal inference tools, which are popular in health care research and are particularly useful for high-dimensional data. Recent interest has surrounded a Bayesian treatment of propensity scores in order to flexibly model the treatment assignment mechanism and summarize posterior quantities while incorporating variance from the treatment model. We discuss methods for Bayesian propensity score analysis of binary treatments, focusing on modern methods for high-dimensional Bayesian regression and the propagation of uncertainty. We introduce a novel and simple estimator for the average treatment effect that capitalizes on conjugacy of the beta and binomial distributions. Through simulations, we show the utility of horseshoe priors and Bayesian additive regression trees paired with our new estimator, while demonstrating the importance of including variance from the treatment regression model. An application to cardiac stent data with almost 500 confounders and 9000 patients illustrates approaches and facilitates comparison with existing alternatives. As measured by a falsifiability endpoint, we improved confounder adjustment compared with past observational research of the same problem. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Inference on the Genetic Basis of Eye and Skin Color in an Admixed Population via Bayesian Linear Mixed Models.

    PubMed

    Lloyd-Jones, Luke R; Robinson, Matthew R; Moser, Gerhard; Zeng, Jian; Beleza, Sandra; Barsh, Gregory S; Tang, Hua; Visscher, Peter M

    2017-06-01

    Genetic association studies in admixed populations are underrepresented in the genomics literature, with a key concern for researchers being the adequate control of spurious associations due to population structure. Linear mixed models (LMMs) are well suited for genome-wide association studies (GWAS) because they account for both population stratification and cryptic relatedness and achieve increased statistical power by jointly modeling all genotyped markers. Additionally, Bayesian LMMs allow for more flexible assumptions about the underlying distribution of genetic effects, and can concurrently estimate the proportion of phenotypic variance explained by genetic markers. Using three recently published Bayesian LMMs, Bayes R, BSLMM, and BOLT-LMM, we investigate an existing data set on eye ( n = 625) and skin ( n = 684) color from Cape Verde, an island nation off West Africa that is home to individuals with a broad range of phenotypic values for eye and skin color due to the mix of West African and European ancestry. We use simulations to demonstrate the utility of Bayesian LMMs for mapping loci and studying the genetic architecture of quantitative traits in admixed populations. The Bayesian LMMs provide evidence for two new pigmentation loci: one for eye color ( AHRR ) and one for skin color ( DDB1 ). Copyright © 2017 by the Genetics Society of America.

  20. Radiation dose reduction in computed tomography perfusion using spatial-temporal Bayesian methods

    NASA Astrophysics Data System (ADS)

    Fang, Ruogu; Raj, Ashish; Chen, Tsuhan; Sanelli, Pina C.

    2012-03-01

    In current computed tomography (CT) examinations, the associated X-ray radiation dose is of significant concern to patients and operators, especially CT perfusion (CTP) imaging that has higher radiation dose due to its cine scanning technique. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) parameter as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and degrade CT perfusion maps greatly if no adequate noise control is applied during image reconstruction. To capture the essential dynamics of CT perfusion, a simple spatial-temporal Bayesian method that uses a piecewise parametric model of the residual function is used, and then the model parameters are estimated from a Bayesian formulation of prior smoothness constraints on perfusion parameters. From the fitted residual function, reliable CTP parameter maps are obtained from low dose CT data. The merit of this scheme exists in the combination of analytical piecewise residual function with Bayesian framework using a simpler prior spatial constrain for CT perfusion application. On a dataset of 22 patients, this dynamic spatial-temporal Bayesian model yielded an increase in signal-tonoise-ratio (SNR) of 78% and a decrease in mean-square-error (MSE) of 40% at low dose radiation of 43mA.

Top