Yang, J; Chen, C S; Chen, S H; Ding, P; Fan, Z Y; Lu, Y W; Yu, L P; Lin, H D
2016-06-10
Amji's salamander (Hynobius amjiensis) is a critically endangered species (IUCN Red List), which is endemic to mainland China. In the present study, five haplotypes were genotyped for the mtDNA cyt b gene in 45 specimens from three populations. Relatively low levels of haplotype diversity (h = 0.524) and nucleotide diversity (π = 0.00532) were detected. Analyses of the phylogenic structure of H. amjiensis showed no evidence of major geographic partitions or substantial barriers to historical gene flow throughout the species' range. Two major phylogenetic haplotype groups were revealed, and were estimated to have diverged about 1.262 million years ago. Mismatch distribution analysis, neutrality tests, and Bayesian skyline plots revealed no evidence of dramatic changes in the effective population size. According to the SAMOVA and STRUCTURE analyses, H. amjiensis should be regarded as two different management units.
Hossack, Blake R.; Honeycutt, Richard; Sigafus, Brent H.; Muths, Erin L.; Crawford, Catherine L.; Jones, Thomas R.; Sorensen, Jeff A.; Rorabaugh, James C.; Chambert, Thierry
2017-01-01
Understanding the additive or interactive threats of habitat transformation and invasive species is critical for conservation, especially where climate change is expected to increase the severity or frequency of drought. In the arid southwestern USA, this combination of stressors has caused widespread declines of native aquatic and semi-aquatic species. Achieving resilience to drought and other effects of climate change may depend upon continued management, so understanding the combined effects of stressors is important. We used Bayesian hierarchical models fitted with 10-years of pond-based monitoring surveys for the federally-endangered Sonoran Tiger Salamander (Ambystoma mavortium stebbinsi) and invasive predators (fishes and American Bullfrogs, Lithobates catesbeianus) that threaten native species. We estimated trends in occupancy of salamanders and invasive predators while accounting for hydrological dynamics of ponds, then used a two-species interaction model to directly estimate how invasive predators affected salamander occupancy. We also tested a conceptual model that predicted that drought, by limiting the distribution of invasive predators, could ultimately benefit native species. Even though occupancy of invasive predators was stationary and their presence in a pond reduced the probability of salamander presence by 23%, occupancy of Sonoran Tiger Salamanders increased, annually, by 2.2%. Occupancy of salamanders and invasive predators both declined dramatically following the 5th consecutive year of drought. Salamander occupancy recovered quickly after return to non-drought conditions, while occupancy of invasive predators remained suppressed. Models that incorporated three time-lagged periods (1 to 4 years) of local moisture conditions confirmed that salamanders and invasive predators responded differently to drought, reflecting how life-history strategies shape responses to disturbances. The positive 10-year trend in salamander occupancy and their rapid recovery after drought provided partial support for the hypothesis of drought-mediated coexistence with invasive predators. These results also suggest management opportunities for conservation of the Sonoran Tiger Salamander and other imperiled organisms in human-transformed landscapes.
Chiari, Ylenia; van der Meijden, Arie; Mucedda, Mauro; Lourenço, João M; Hochkirch, Axel; Veith, Michael
2012-01-01
Detecting the factors that determine the interruption of gene flow between populations is key to understanding how speciation occurs. In this context, caves are an excellent system for studying processes of colonization, differentiation and speciation, since they represent discrete geographical units often with known geological histories. Here, we asked whether discontinuous calcareous areas and cave systems represent major barriers to gene flow within and among the five species of Sardinian cave salamanders (genus Hydromantes) and whether intraspecific genetic structure parallels geographic distance within and among caves. We generated mitochondrial cytochrome b gene sequences from 184 individuals representing 48 populations, and used a Bayesian phylogeographic approach to infer possible areas of cladogenesis for these species and reconstruct historical and current dispersal routes among distinct populations. Our results show deep genetic divergence within and among all Sardinian cave salamander species, which can mostly be attributed to the effects of mountains and discontinuities in major calcareous areas and cave systems acting as barriers to gene flow. While these salamander species can also occur outside caves, our results indicate that there is a very poor dispersal of these species between separate cave systems.
Hartwell H. Welsh; Howard Stauffer; David R. Clayton; Lisa M. Ollivier
2007-01-01
We analyzed environmental relationships of the Siskiyou Mountains salamander, comparing attributes at the landscape, macro- and micro-environmental scales, and the three scales combined, to determine which attributes best predicted salamander presence. Separate analyses were conducted for sites on the north and south sides of the Siskiyou Mountains which basically...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Rachel Lockridge; Macey, J. Robert; Jaekel, Martin
2004-08-01
The evolutionary history of the largest salamander family (Plethodontidae) is characterized by extreme morphological homoplasy. Analysis of the mechanisms generating such homoplasy requires an independent, molecular phylogeny. To this end, we sequenced 24 complete mitochondrial genomes (22 plethodontids and two outgroup taxa), added data for three species from GenBank, and performed partitioned and unpartitioned Bayesian, ML, and MP phylogenetic analyses. We explored four dataset partitioning strategies to account for evolutionary process heterogeneity among genes and codon positions, all of which yielded increased model likelihoods and decreased numbers of supported nodes in the topologies (PP > 0.95) relative to the unpartitionedmore » analysis. Our phylogenetic analyses yielded congruent trees that contrast with the traditional morphology-based taxonomy; the monophyly of three out of four major groups is rejected. Reanalysis of current hypotheses in light of these new evolutionary relationships suggests that (1) a larval life history stage re-evolved from a direct-developing ancestor multiple times, (2) there is no phylogenetic support for the ''Out of Appalachia'' hypothesis of plethodontid origins, and (3) novel scenarios must be reconstructed for the convergent evolution of projectile tongues, reduction in toe number, and specialization for defensive tail loss. Some of these novel scenarios imply morphological transformation series that proceed in the opposite direction than was previously thought. In addition, they suggest surprising evolutionary lability in traits previously interpreted to be conservative.« less
Sean B. Reilly; Andrew D Gottsho; Justin M. Garwood; Bryan Jennings
2010-01-01
Given the current global amphibian decline, it is crucial to obtain accurate and current information regarding species distributions. Secretive amphibians such as plethodontid salamanders can be difficult to detect in many cases, especially in remote, high elevation areas. We used molecular phylogenetic analyses to identify three partially digested salamanders palped...
Evaluating multi-level models to test occupancy state responses of Plethodontid salamanders
Kroll, Andrew J.; Garcia, Tiffany S.; Jones, Jay E.; Dugger, Catherine; Murden, Blake; Johnson, Josh; Peerman, Summer; Brintz, Ben; Rochelle, Michael
2015-01-01
Plethodontid salamanders are diverse and widely distributed taxa and play critical roles in ecosystem processes. Due to salamander use of structurally complex habitats, and because only a portion of a population is available for sampling, evaluation of sampling designs and estimators is critical to provide strong inference about Plethodontid ecology and responses to conservation and management activities. We conducted a simulation study to evaluate the effectiveness of multi-scale and hierarchical single-scale occupancy models in the context of a Before-After Control-Impact (BACI) experimental design with multiple levels of sampling. Also, we fit the hierarchical single-scale model to empirical data collected for Oregon slender and Ensatina salamanders across two years on 66 forest stands in the Cascade Range, Oregon, USA. All models were fit within a Bayesian framework. Estimator precision in both models improved with increasing numbers of primary and secondary sampling units, underscoring the potential gains accrued when adding secondary sampling units. Both models showed evidence of estimator bias at low detection probabilities and low sample sizes; this problem was particularly acute for the multi-scale model. Our results suggested that sufficient sample sizes at both the primary and secondary sampling levels could ameliorate this issue. Empirical data indicated Oregon slender salamander occupancy was associated strongly with the amount of coarse woody debris (posterior mean = 0.74; SD = 0.24); Ensatina occupancy was not associated with amount of coarse woody debris (posterior mean = -0.01; SD = 0.29). Our simulation results indicate that either model is suitable for use in an experimental study of Plethodontid salamanders provided that sample sizes are sufficiently large. However, hierarchical single-scale and multi-scale models describe different processes and estimate different parameters. As a result, we recommend careful consideration of study questions and objectives prior to sampling data and fitting models.
Sites, J.W.; Morando, M.; Highton, R.; Huber, F.; Jung, R.E.
2004-01-01
The Shenandoah salamander (Plethodon shenandoah), known from isolated talus slopes on three of the highest mountains in Shenandoah National Park, is listed as state-endangered in Virginia and federally endangered under the U.S. Endangered Species Act. A 1999 paper by G. R. Thurow described P. shenandoah-like salamanders from three localities further south in the Blue Ridge Physiographic Province, which, if confirmed, would represent a range extension for P. shenandoah of approximately 90 km from its nearest known locality. Samples collected from two of these three localities were included in a molecular phylogenetic study of the known populations of P. shenandoah, and all other recognized species in the Plethodon cinereus group, using a 792 bp region of the mitochondrial cytochrome-b gene. Phylogenetic estimates were based on Bayesian, maximum likelihood, and maximum parsimony methods and topologies examined for placement of the new P. shenandoah-like samples relative to all others. All topologies recovered all haplotypes of the P. shenandoah-like animals nested within P. cinereus, and a statistical comparison of the best likelihood tree topology with one with an enforced (Thurow + Shenandoah P. shenandoah) clade revealed that the unconstrained tree had a significantly lower -In L score (P < 0.05, using the Shimodaira-Hasegawa test) than the constraint tree. This result and other anecdotal information give us no solid reason to consider the Thurow report valid. The current recovery program for P. shenandoah should remain focused on populations in Shenandoah National Park.
Evolution of Gigantism in Amphiumid Salamanders
Bonett, Ronald M.; Chippindale, Paul T.; Moler, Paul E.; Van Devender, R. Wayne; Wake, David B.
2009-01-01
The Amphiumidae contains three species of elongate, permanently aquatic salamanders with four diminutive limbs that append one, two, or three toes. Two of the species, Amphiuma means and A. tridactylum, are among the largest salamanders in the world, reaching lengths of more than one meter, whereas the third species (A. pholeter), extinct amphiumids, and closely related salamander families are relatively small. Amphiuma means and A. tridactylum are widespread species and live in a wide range of lowland aquatic habitats on the Coastal Plain of the southeastern United States, whereas A. pholeter is restricted to very specialized organic muck habitats and is syntopic with A. means. Here we present analyses of sequences of mitochondrial and nuclear loci from across the distribution of the three taxa to assess lineage diversity, relationships, and relative timing of divergence in amphiumid salamanders. In addition we analyze the evolution of gigantism in the clade. Our analyses indicate three lineages that have diverged since the late Miocene, that correspond to the three currently recognized species, but the two gigantic species are not each other's closest relatives. Given that the most closely related salamander families and fossil amphiumids from the Upper Cretaceous and Paleocene are relatively small, our results suggest at least two extreme changes in body size within the Amphuimidae. Gigantic body size either evolved once as the ancestral condition of modern amphiumas, with a subsequent strong size reduction in A. pholeter, or gigantism independently evolved twice in the modern species, A. means and A. tridactylum. These patterns are concordant with differences in habitat breadth and range size among lineages, and have implications for reproductive isolation and diversification of amphiumid salamanders. PMID:19461997
Schwartz, Rachel S; Mueller, Rachel L
2010-01-11
Estimates of divergence dates between species improve our understanding of processes ranging from nucleotide substitution to speciation. Such estimates are frequently based on molecular genetic differences between species; therefore, they rely on accurate estimates of the number of such differences (i.e. substitutions per site, measured as branch length on phylogenies). We used simulations to determine the effects of dataset size, branch length heterogeneity, branch depth, and analytical framework on branch length estimation across a range of branch lengths. We then reanalyzed an empirical dataset for plethodontid salamanders to determine how inaccurate branch length estimation can affect estimates of divergence dates. The accuracy of branch length estimation varied with branch length, dataset size (both number of taxa and sites), branch length heterogeneity, branch depth, dataset complexity, and analytical framework. For simple phylogenies analyzed in a Bayesian framework, branches were increasingly underestimated as branch length increased; in a maximum likelihood framework, longer branch lengths were somewhat overestimated. Longer datasets improved estimates in both frameworks; however, when the number of taxa was increased, estimation accuracy for deeper branches was less than for tip branches. Increasing the complexity of the dataset produced more misestimated branches in a Bayesian framework; however, in an ML framework, more branches were estimated more accurately. Using ML branch length estimates to re-estimate plethodontid salamander divergence dates generally resulted in an increase in the estimated age of older nodes and a decrease in the estimated age of younger nodes. Branch lengths are misestimated in both statistical frameworks for simulations of simple datasets. However, for complex datasets, length estimates are quite accurate in ML (even for short datasets), whereas few branches are estimated accurately in a Bayesian framework. Our reanalysis of empirical data demonstrates the magnitude of effects of Bayesian branch length misestimation on divergence date estimates. Because the length of branches for empirical datasets can be estimated most reliably in an ML framework when branches are <1 substitution/site and datasets are > or =1 kb, we suggest that divergence date estimates using datasets, branch lengths, and/or analytical techniques that fall outside of these parameters should be interpreted with caution.
Uncovering a latent multinomial: Analysis of mark-recapture data with misidentification
Link, W.A.; Yoshizaki, J.; Bailey, L.L.; Pollock, K.H.
2010-01-01
Natural tags based on DNA fingerprints or natural features of animals are now becoming very widely used in wildlife population biology. However, classic capture-recapture models do not allow for misidentification of animals which is a potentially very serious problem with natural tags. Statistical analysis of misidentification processes is extremely difficult using traditional likelihood methods but is easily handled using Bayesian methods. We present a general framework for Bayesian analysis of categorical data arising from a latent multinomial distribution. Although our work is motivated by a specific model for misidentification in closed population capture-recapture analyses, with crucial assumptions which may not always be appropriate, the methods we develop extend naturally to a variety of other models with similar structure. Suppose that observed frequencies f are a known linear transformation f = A???x of a latent multinomial variable x with cell probability vector ?? = ??(??). Given that full conditional distributions [?? | x] can be sampled, implementation of Gibbs sampling requires only that we can sample from the full conditional distribution [x | f, ??], which is made possible by knowledge of the null space of A???. We illustrate the approach using two data sets with individual misidentification, one simulated, the other summarizing recapture data for salamanders based on natural marks. ?? 2009, The International Biometric Society.
Uncovering a Latent Multinomial: Analysis of Mark-Recapture Data with Misidentification
Link, W.A.; Yoshizaki, J.; Bailey, L.L.; Pollock, K.H.
2009-01-01
Natural tags based on DNA fingerprints or natural features of animals are now becoming very widely used in wildlife population biology. However, classic capture-recapture models do not allow for misidentification of animals which is a potentially very serious problem with natural tags. Statistical analysis of misidentification processes is extremely difficult using traditional likelihood methods but is easily handled using Bayesian methods. We present a general framework for Bayesian analysis of categorical data arising from a latent multinomial distribution. Although our work is motivated by a specific model for misidentification in closed population capture-recapture analyses, with crucial assumptions which may not always be appropriate, the methods we develop extend naturally to a variety of other models with similar structure. Suppose that observed frequencies f are a known linear transformation f=A'x of a latent multinomial variable x with cell probability vector pi= pi(theta). Given that full conditional distributions [theta | x] can be sampled, implementation of Gibbs sampling requires only that we can sample from the full conditional distribution [x | f, theta], which is made possible by knowledge of the null space of A'. We illustrate the approach using two data sets with individual misidentification, one simulated, the other summarizing recapture data for salamanders based on natural marks.
Jung, R.E.; Droege, S.; Sauer, J.R.; Landy, R.B.
2000-01-01
In response to concerns about amphibian declines, a study evaluating and validating amphibian monitoring techniques was initiated in Shenandoah and Big Bend National Parks in the spring of 1998. We evaluate precision, bias, and efficiency of several sampling methods for terrestrial and streamside salamanders in Shenandoah National Park and assess salamander abundance in relation to environmental variables, notably soil and water pH. Terrestrial salamanders, primarily redback salamanders (Plethodon cinereus), were sampled by searching under cover objects during the day in square plots (10 to 35 m2). We compared population indices (mean daily and total counts) with adjusted population estimates from capture-recapture. Analyses suggested that the proportion of salamanders detected (p) during sampling varied among plots, necessitating the use of adjusted population estimates. However, adjusted population estimates were less precise than population indices, and may not be efficient in relating salamander populations to environmental variables. In future sampling, strategic use of capture-recapture to verify consistency of p's among sites may be a reasonable compromise between the possibility of bias in estimation of population size and deficiencies due to inefficiency associated with the estimation of p. The streamside two-lined salamander (Eurycea bislineata) was surveyed using four methods: leaf litter refugia bags, 1 m2 quadrats, 50 x 1 m visual encounter transects, and electric shocking. Comparison of survey methods at nine streams revealed congruent patterns of abundance among sites, suggesting that relative bias among the methods is similar, and that choice of survey method should be based on precision and logistical efficiency. Redback and two-lined salamander abundance were not significantly related to soil or water pH, respectively.
Lamb, Jennifer Y.; Waddle, J. Hardin; Qualls, Carl P.
2017-01-01
Large gaps exist in our knowledge of the ecology of stream-breeding plethodontid salamanders in the Gulf Coastal Plain. Data describing where these salamanders are likely to occur along environmental gradients, as well as their likelihood of detection, are important for the prevention and management of amphibian declines. We used presence/absence data from leaf litter bag surveys and a hierarchical Bayesian multispecies single-season occupancy model to estimate the occurrence of five species of plethodontids across reaches in headwater streams in the Gulf Coastal Plain. Average detection probabilities were high (range = 0.432–0.942) and unaffected by sampling covariates specific to the use of litter bags (i.e., bag submergence, sampling season, in-stream cover). Estimates of occurrence probabilities differed substantially between species (range = 0.092–0.703) and were influenced by the size of the upstream drainage area and by the maximum proportion of the reach that dried. The effects of these two factors were not equivalent across species. Our results demonstrate that hierarchical multispecies models successfully estimate occurrence parameters for both rare and common stream-breeding plethodontids. The resulting models clarify how species are distributed within stream networks, and they provide baseline values that will be useful in evaluating the conservation statuses of plethodontid species within lotic systems in the Gulf Coastal Plain.
Multi-Scale Approach to Understanding Source-Sink Dynamics of Amphibians
2015-12-01
spotted salamander, A. maculatum) at Fort Leonard Wood (FLW), Missouri. We used a multi-faceted approach in which we combined ecological , genetic...spotted salamander, A. maculatum) at Fort Leonard Wood , Missouri through a combination of intensive ecological field studies, genetic analyses, and...spatial demographic networks to identify optimal locations for wetland construction and restoration. Ecological Applications. Walls, S. C., Ball, L. C
Fenolio, Danté B; Graening, G.O; Collier, Bret A; Stout, Jim F
2005-01-01
During a two year population ecology study in a cave environment, 15 Eurycea (=Typhlotriton) spelaea were observed ingesting bat guano. Furthermore, E. spelaea capture numbers increased significantly during the time that grey bats (Myotis grisescens) deposited fresh guano. We investigated the hypothesis that this behaviour was not incidental to the capture of invertebrate prey, but a diet switch to an energy-rich detritus in an oligotrophic environment. Stable isotope assays determined that guano may be assimilated into salamander muscle tissue, and nutritional analyses revealed that guano is a comparable food source to potential invertebrate prey items. This is the first report of coprophagy in a salamander and in any amphibian for reasons other than intestinal inoculation. Because many temperate subterranean environments are often energy poor and this limitation is thought to select for increased diet breadth, we predict that coprophagy may be common in subterranean vertebrates where it is not currently recognized. PMID:16615210
Fenolio, Danté B; Graening, G O; Collier, Bret A; Stout, Jim F
2006-02-22
During a two year population ecology study in a cave environment, 15 Eurycea (= Typhlotriton) spelaea were observed ingesting bat guano. Furthermore, E. spelaea capture numbers increased significantly during the time that grey bats (Myotis grisescens) deposited fresh guano. We investigated the hypothesis that this behaviour was not incidental to the capture of invertebrate prey, but a diet switch to an energy-rich detritus in an oligotrophic environment. Stable isotope assays determined that guano may be assimilated into salamander muscle tissue, and nutritional analyses revealed that guano is a comparable food source to potential invertebrate prey items. This is the first report of coprophagy in a salamander and in any amphibian for reasons other than intestinal inoculation. Because many temperate subterranean environments are often energy poor and this limitation is thought to select for increased diet breadth, we predict that coprophagy may be common in subterranean vertebrates where it is not currently recognized.
Courtship Pheromone Use in a Model Urodele, the Mexican Axolotl (Ambystoma mexicanum)
Maex, Margo; Van Bocxlaer, Ines; Mortier, Anneleen; Proost, Paul; Bossuyt, Franky
2016-01-01
Sex pheromones have been shown to constitute a crucial aspect of salamander reproduction. Until now, courtship pheromones of Salamandridae and Plethodontidae have been intensively studied, but information on chemical communication in other urodelan families is essentially lacking. The axolotl (Ambystoma mexicanum, Ambystomatidae) has a courtship display that suggests a key role for chemical communication in the orchestration of its sexual behavior, but no sex pheromones have yet been characterized from this species. Here we combined whole transcriptome analyses of the male cloaca with proteomic analyses of water in which axolotls were allowed to court to show that male axolotls secrete multiple ca. 20 kDa glycosylated sodefrin precursor-like factor (SPF) proteins during courtship. In combination with phylogenetic analyses, our data show that the male cloaca essentially secretes a courtship-specific clade of SPF proteins that is orthologous to salamandrid courtship pheromones. In addition, we identified an SPF protein for which no orthologs have been described from other salamanders so far. Overall, our study advocates a central role for SPF proteins during the courtship display of axolotls and adds knowledge on pheromone use in a previously unexplored deep evolutionary branch of salamander evolution. PMID:26842386
Courtship Pheromone Use in a Model Urodele, the Mexican Axolotl (Ambystoma mexicanum).
Maex, Margo; Van Bocxlaer, Ines; Mortier, Anneleen; Proost, Paul; Bossuyt, Franky
2016-02-04
Sex pheromones have been shown to constitute a crucial aspect of salamander reproduction. Until now, courtship pheromones of Salamandridae and Plethodontidae have been intensively studied, but information on chemical communication in other urodelan families is essentially lacking. The axolotl (Ambystoma mexicanum, Ambystomatidae) has a courtship display that suggests a key role for chemical communication in the orchestration of its sexual behavior, but no sex pheromones have yet been characterized from this species. Here we combined whole transcriptome analyses of the male cloaca with proteomic analyses of water in which axolotls were allowed to court to show that male axolotls secrete multiple ca. 20 kDa glycosylated sodefrin precursor-like factor (SPF) proteins during courtship. In combination with phylogenetic analyses, our data show that the male cloaca essentially secretes a courtship-specific clade of SPF proteins that is orthologous to salamandrid courtship pheromones. In addition, we identified an SPF protein for which no orthologs have been described from other salamanders so far. Overall, our study advocates a central role for SPF proteins during the courtship display of axolotls and adds knowledge on pheromone use in a previously unexplored deep evolutionary branch of salamander evolution.
Rodríguez, Ariel; Burgon, James D; Lyra, Mariana; Irisarri, Iker; Baurain, Denis; Blaustein, Leon; Göçmen, Bayram; Künzel, Sven; Mable, Barbara K; Nolte, Arne W; Veith, Michael; Steinfartz, Sebastian; Elmer, Kathryn R; Philippe, Hervé; Vences, Miguel
2017-10-01
The rise of high-throughput sequencing techniques provides the unprecedented opportunity to analyse controversial phylogenetic relationships in great depth, but also introduces a risk of being misinterpreted by high node support values influenced by unevenly distributed missing data or unrealistic model assumptions. Here, we use three largely independent phylogenomic data sets to reconstruct the controversial phylogeny of true salamanders of the genus Salamandra, a group of amphibians providing an intriguing model to study the evolution of aposematism and viviparity. For all six species of the genus Salamandra, and two outgroup species from its sister genus Lyciasalamandra, we used RNA sequencing (RNAseq) and restriction site associated DNA sequencing (RADseq) to obtain data for: (1) 3070 nuclear protein-coding genes from RNAseq; (2) 7440 loci obtained by RADseq; and (3) full mitochondrial genomes. The RNAseq and RADseq data sets retrieved fully congruent topologies when each of them was analyzed in a concatenation approach, with high support for: (1) S. infraimmaculata being sister group to all other Salamandra species; (2) S. algira being sister to S. salamandra; (3) these two species being the sister group to a clade containing S. atra, S. corsica and S. lanzai; and (4) the alpine species S. atra and S. lanzai being sister taxa. The phylogeny inferred from the mitochondrial genome sequences differed from these results, most notably by strongly supporting a clade containing S. atra and S. corsica as sister taxa. A different placement of S. corsica was also retrieved when analysing the RNAseq and RADseq data under species tree approaches. Closer examination of gene trees derived from RNAseq revealed that only a low number of them supported each of the alternative placements of S. atra. Furthermore, gene jackknife support for the S. atra - S. lanzai node stabilized only with very large concatenated data sets. The phylogeny of true salamanders thus provides a compelling example of how classical node support metrics such as bootstrap and Bayesian posterior probability can provide high confidence values in a phylogenomic topology even if the phylogenetic signal for some nodes is spurious, highlighting the importance of complementary approaches such as gene jackknifing. Yet, the general congruence among the topologies recovered from the RNAseq and RADseq data sets increases our confidence in the results, and validates the use of phylotranscriptomic approaches for reconstructing shallow relationships among closely related taxa. We hypothesize that the evolution of Salamandra has been characterized by episodes of introgressive hybridization, which would explain the difficulties of fully reconstructing their evolutionary relationships. Copyright © 2017. Published by Elsevier Inc.
Samuels, Amy K; Weisrock, David W; Smith, Jeramiah J; France, Katherine J; Walker, John A; Putta, Srikrishna; Voss, S Randal
2005-04-11
We report on a study that extended mitochondrial transcript information from a recent EST project to obtain complete mitochondrial genome sequence for 5 tiger salamander complex species (Ambystoma mexicanum, A. t. tigrinum, A. andersoni, A. californiense, and A. dumerilii). We describe, for the first time, aspects of mitochondrial transcription in a representative amphibian, and then use complete mitochondrial sequence data to examine salamander phylogeny at both deep and shallow levels of evolutionary divergence. The available mitochondrial ESTs for A. mexicanum (N=2481) and A. t. tigrinum (N=1205) provided 92% and 87% coverage of the mitochondrial genome, respectively. Complete mitochondrial sequences for all species were rapidly obtained by using long distance PCR and DNA sequencing. A number of genome structural characteristics (base pair length, base composition, gene number, gene boundaries, codon usage) were highly similar among all species and to other distantly related salamanders. Overall, mitochondrial transcription in Ambystoma approximated the pattern observed in other vertebrates. We inferred from the mapping of ESTs onto mtDNA that transcription occurs from both heavy and light strand promoters and continues around the entire length of the mtDNA, followed by post-transcriptional processing. However, the observation of many short transcripts corresponding to rRNA genes indicates that transcription may often terminate prematurely to bias transcription of rRNA genes; indeed an rRNA transcription termination signal sequence was observed immediately following the 16S rRNA gene. Phylogenetic analyses of salamander family relationships consistently grouped Ambystomatidae in a clade containing Cryptobranchidae and Hynobiidae, to the exclusion of Salamandridae. This robust result suggests a novel alternative hypothesis because previous studies have consistently identified Ambystomatidae and Salamandridae as closely related taxa. Phylogenetic analyses of tiger salamander complex species also produced robustly supported trees. The D-loop, used in previous molecular phylogenetic studies of the complex, was found to contain a relatively low level of variation and we identified mitochondrial regions with higher rates of molecular evolution that are more useful in resolving relationships among species. Our results show the benefit of using complete genome mitochondrial information in studies of recently and rapidly diverged taxa.
Li, Jun; Fu, Cuizhang; Lei, Guangchun
2011-01-01
Few studies have explored the role of Cenozoic tectonic evolution in shaping patterns and processes of extant animal distributions within East Asian margins. We select Hynobius salamanders (Amphibia: Hynobiidae) as a model to examine biogeographical consequences of Cenozoic tectonic events within East Asian margins. First, we use GenBank molecular data to reconstruct phylogenetic interrelationships of Hynobius by Bayesian and maximum likelihood analyses. Second, we estimate the divergence time using the Bayesian relaxed clock approach and infer dispersal/vicariance histories under the ‘dispersal–extinction–cladogenesis’ model. Finally, we test whether evolutionary history and biogeographical processes of Hynobius should coincide with the predictions of two major hypotheses (the ‘vicariance’/‘out of southwestern Japan’ hypothesis). The resulting phylogeny confirmed Hynobius as a monophyletic group, which could be divided into nine major clades associated with six geographical areas. Our results show that: (1) the most recent common ancestor of Hynobius was distributed in southwestern Japan and Hokkaido Island, (2) a sister taxon relationship between Hynobius retardatus and all remaining species was the results of a vicariance event between Hokkaido Island and southwestern Japan in the Middle Eocene, (3) ancestral Hynobius in southwestern Japan dispersed into the Taiwan Island, central China, ‘Korean Peninsula and northeastern China’ as well as northeastern Honshu during the Late Eocene–Late Miocene. Our findings suggest that Cenozoic tectonic evolution plays an important role in shaping disjunctive distributions of extant Hynobius within East Asian margins. PMID:21738684
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-20
... Final Determination for the Listing of the Georgetown Salamander and Salado Salamander AGENCY: Fish and... list the Georgetown salamander (Eurycea naufragia) and Salado salamander (Eurycea chisholmensis) as... Austin blind salamander (Eurycea waterlooensis), Georgetown salamander (Eurycea naufragia), Jollyville...
Rapid diversification and dispersal during periods of global warming by plethodontid salamanders
Vieites, David R.; Min, Mi-Sook; Wake, David B.
2007-01-01
A phylogeny and timescale derived from analyses of multilocus nuclear DNA sequences for Holarctic genera of plethodontid salamanders reveal them to be an old radiation whose common ancestor diverged from sister taxa in the late Jurassic and underwent rapid diversification during the late Cretaceous. A North American origin of plethodontids was followed by a continental-wide diversification, not necessarily centered only in the Appalachian region. The colonization of Eurasia by plethodontids most likely occurred once, by dispersal during the late Cretaceous. Subsequent diversification in Asia led to the origin of Hydromantes and Karsenia, with the former then dispersing both to Europe and back to North America. Salamanders underwent rapid episodes of diversification and dispersal that coincided with major global warming events during the late Cretaceous and again during the Paleocene–Eocene thermal optimum. The major clades of plethodontids were established during these episodes, contemporaneously with similar phenomena in angiosperms, arthropods, birds, and mammals. Periods of global warming may have promoted diversification and both inter- and transcontinental dispersal in northern hemisphere salamanders by making available terrain that shortened dispersal routes and offered new opportunities for adaptive and vicariant evolution. PMID:18077422
Beachy, Christopher K.; Ryan, Travis J.; Bonett, Ronald M.
2017-01-01
Plethodontid salamanders exhibit biphasic, larval form paedomorphic, and direct developing life cycles. This diversity of developmental strategies exceeds that of any other family of terrestrial vertebrate. Here we compare patterns of larval development among the three divergent lineages of biphasic plethodontids and other salamanders. We discuss how patterns of life-cycle evolution and larval ecology might have produced a wide array of larval life histories. Compared with many other salamanders, most larval plethodontids have relatively slow growth rates and sometimes exceptionally long larval periods (up to 60 mo). Recent phylogenetic analyses of life-cycle evolution indicate that ancestral plethodontids were likely direct developers. If true, then biphasic and paedomorphic lineages might have been independently derived through different developmental mechanisms. Furthermore, biphasic plethodontids largely colonized stream habitats, which tend to have lower productivity than seasonally ephemeral ponds. Consistent with this, plethodontid larvae grow very slowly, and metamorphic timing does not appear to be strongly affected by growth history. On the basis of this, we speculate that feeding schedules and stress hormones might play a comparatively reduced role in governing the timing of metamorphosis of stream-dwelling salamanders, particularly plethodontids. PMID:29269959
Invasive Asian Earthworms Negatively Impact Keystone Terrestrial Salamanders.
Ziemba, Julie L; Hickerson, Cari-Ann M; Anthony, Carl D
2016-01-01
Asian pheretimoid earthworms (e.g. Amynthas and Metaphire spp.) are invading North American forests and consuming the vital detrital layer that forest floor biota [including the keystone species Plethodon cinereus (Eastern Red-backed Salamander)], rely on for protection, food, and habitat. Plethodon cinereus population declines have been associated with leaf litter loss following the invasion of several exotic earthworm species, but there have been few studies on the specific interactions between pheretimoid earthworms and P. cinereus. Since some species of large and active pheretimoids spatially overlap with salamanders beneath natural cover objects and in detritus, they may distinctively compound the negative consequences of earthworm-mediated resource degradation by physically disturbing important salamander activities (foraging, mating, and egg brooding). We predicted that earthworms would exclude salamanders from high quality microhabitat, reduce foraging efficiency, and negatively affect salamander fitness. In laboratory trials, salamanders used lower quality microhabitat and consumed fewer flies in the presence of earthworms. In a natural field experiment, conducted on salamander populations from "non-invaded" and "pheretimoid invaded" sites in Ohio, salamanders and earthworms shared cover objects ~60% less than expected. Earthworm abundance was negatively associated with juvenile and male salamander abundance, but had no relationship with female salamander abundance. There was no effect of pheretimoid invasion on salamander body condition. Juvenile and non-resident male salamanders do not hold stable territories centered beneath cover objects such as rocks or logs, which results in reduced access to prey, greater risk of desiccation, and dispersal pressure. Habitat degradation and physical exclusion of salamanders from cover objects may hinder juvenile and male salamander performance, ultimately reducing recruitment and salamander abundance following Asian earthworm invasion.
Invasive Asian Earthworms Negatively Impact Keystone Terrestrial Salamanders
Ziemba, Julie L.
2016-01-01
Asian pheretimoid earthworms (e.g. Amynthas and Metaphire spp.) are invading North American forests and consuming the vital detrital layer that forest floor biota [including the keystone species Plethodon cinereus (Eastern Red-backed Salamander)], rely on for protection, food, and habitat. Plethodon cinereus population declines have been associated with leaf litter loss following the invasion of several exotic earthworm species, but there have been few studies on the specific interactions between pheretimoid earthworms and P. cinereus. Since some species of large and active pheretimoids spatially overlap with salamanders beneath natural cover objects and in detritus, they may distinctively compound the negative consequences of earthworm-mediated resource degradation by physically disturbing important salamander activities (foraging, mating, and egg brooding). We predicted that earthworms would exclude salamanders from high quality microhabitat, reduce foraging efficiency, and negatively affect salamander fitness. In laboratory trials, salamanders used lower quality microhabitat and consumed fewer flies in the presence of earthworms. In a natural field experiment, conducted on salamander populations from “non-invaded” and “pheretimoid invaded” sites in Ohio, salamanders and earthworms shared cover objects ~60% less than expected. Earthworm abundance was negatively associated with juvenile and male salamander abundance, but had no relationship with female salamander abundance. There was no effect of pheretimoid invasion on salamander body condition. Juvenile and non-resident male salamanders do not hold stable territories centered beneath cover objects such as rocks or logs, which results in reduced access to prey, greater risk of desiccation, and dispersal pressure. Habitat degradation and physical exclusion of salamanders from cover objects may hinder juvenile and male salamander performance, ultimately reducing recruitment and salamander abundance following Asian earthworm invasion. PMID:27144403
Effects of timber harvests and silvicultural edges on terrestrial salamanders.
MacNeil, Jami E; Williams, Rod N
2014-01-01
Balancing timber production and conservation in forest management requires an understanding of how timber harvests affect wildlife species. Terrestrial salamanders are useful indicators of mature forest ecosystem health due to their importance to ecosystem processes and sensitivity to environmental change. However, the effects of timber harvests on salamanders, though often researched, are still not well understood. To further this understanding, we used artificial cover objects to monitor the relative abundance of terrestrial salamanders for two seasons (fall and spring) pre-harvest and five seasons post-harvest in six forest management treatments, and for three seasons post-harvest across the edge gradients of six recent clearcuts. In total, we recorded 19,048 encounters representing nine species of salamanders. We observed declines in mean encounters of eastern red-backed salamanders (Plethodon cinereus) and northern slimy salamanders (P. glutinosus) from pre- to post-harvest in group selection cuts and in clearcuts. However, we found no evidence of salamander declines at shelterwoods and forested sites adjacent to harvests. Edge effects induced by recent clearcuts influenced salamanders for approximately 20 m into the forest, but edge influence varied by slope orientation. Temperature, soil moisture, and canopy cover were all correlated with salamander counts. Our results suggest silvicultural techniques that remove the forest canopy negatively affect salamander relative abundance on the local scale during the years immediately following harvest, and that the depth of edge influence of clearcuts on terrestrial salamanders is relatively shallow (<20 m). Small harvests (<4 ha) and techniques that leave the forest canopy intact may be compatible with maintaining terrestrial salamander populations across a forested landscape. Our results demonstrate the importance of examining species-specific responses and monitoring salamanders across multiple seasons and years. Long-term monitoring will be necessary to understand the full impacts of forest management on terrestrial salamanders.
Effects of Timber Harvests and Silvicultural Edges on Terrestrial Salamanders
MacNeil, Jami E.; Williams, Rod N.
2014-01-01
Balancing timber production and conservation in forest management requires an understanding of how timber harvests affect wildlife species. Terrestrial salamanders are useful indicators of mature forest ecosystem health due to their importance to ecosystem processes and sensitivity to environmental change. However, the effects of timber harvests on salamanders, though often researched, are still not well understood. To further this understanding, we used artificial cover objects to monitor the relative abundance of terrestrial salamanders for two seasons (fall and spring) pre-harvest and five seasons post-harvest in six forest management treatments, and for three seasons post-harvest across the edge gradients of six recent clearcuts. In total, we recorded 19,048 encounters representing nine species of salamanders. We observed declines in mean encounters of eastern red-backed salamanders (Plethodon cinereus) and northern slimy salamanders (P. glutinosus) from pre- to post-harvest in group selection cuts and in clearcuts. However, we found no evidence of salamander declines at shelterwoods and forested sites adjacent to harvests. Edge effects induced by recent clearcuts influenced salamanders for approximately 20 m into the forest, but edge influence varied by slope orientation. Temperature, soil moisture, and canopy cover were all correlated with salamander counts. Our results suggest silvicultural techniques that remove the forest canopy negatively affect salamander relative abundance on the local scale during the years immediately following harvest, and that the depth of edge influence of clearcuts on terrestrial salamanders is relatively shallow (<20 m). Small harvests (<4 ha) and techniques that leave the forest canopy intact may be compatible with maintaining terrestrial salamander populations across a forested landscape. Our results demonstrate the importance of examining species-specific responses and monitoring salamanders across multiple seasons and years. Long-term monitoring will be necessary to understand the full impacts of forest management on terrestrial salamanders. PMID:25517409
LTR Retrotransposons Contribute to Genomic Gigantism in Plethodontid Salamanders
Sun, Cheng; Shepard, Donald B.; Chong, Rebecca A.; López Arriaza, José; Hall, Kathryn; Castoe, Todd A.; Feschotte, Cédric; Pollock, David D.; Mueller, Rachel Lockridge
2012-01-01
Among vertebrates, most of the largest genomes are found within the salamanders, a clade of amphibians that includes 613 species. Salamander genome sizes range from ∼14 to ∼120 Gb. Because genome size is correlated with nucleus and cell sizes, as well as other traits, morphological evolution in salamanders has been profoundly affected by genomic gigantism. However, the molecular mechanisms driving genomic expansion in this clade remain largely unknown. Here, we present the first comparative analysis of transposable element (TE) content in salamanders. Using high-throughput sequencing, we generated genomic shotgun data for six species from the Plethodontidae, the largest family of salamanders. We then developed a pipeline to mine TE sequences from shotgun data in taxa with limited genomic resources, such as salamanders. Our summaries of overall TE abundance and diversity for each species demonstrate that TEs make up a substantial portion of salamander genomes, and that all of the major known types of TEs are represented in salamanders. The most abundant TE superfamilies found in the genomes of our six focal species are similar, despite substantial variation in genome size. However, our results demonstrate a major difference between salamanders and other vertebrates: salamander genomes contain much larger amounts of long terminal repeat (LTR) retrotransposons, primarily Ty3/gypsy elements. Thus, the extreme increase in genome size that occurred in salamanders was likely accompanied by a shift in TE landscape. These results suggest that increased proliferation of LTR retrotransposons was a major molecular mechanism contributing to genomic expansion in salamanders. PMID:22200636
Kawano, Sandy M; Blob, Richard W
2013-08-01
The invasion of land was a pivotal event in vertebrate evolution that was associated with major appendicular modifications. Although fossils indicate that the evolution of fundamentally limb-like appendages likely occurred in aquatic environments, the functional consequences of using early digited limbs, rather than fins, for terrestrial propulsion have had little empirical investigation. Paleontological and experimental analyses both have led to the proposal of an early origin of "hind limb-driven" locomotion among tetrapods or their ancestors. However, the retention of a pectoral appendage that had already developed terrestrial adaptations has been proposed for some taxa, and few data are available from extant functional models that can provide a foundation for evaluating the relative contributions of pectoral and pelvic appendages to terrestrial support among early stem tetrapods. To examine these aspects of vertebrate locomotor evolution during the invasion of land, we measured three-dimensional ground reaction forces (GRFs) produced by isolated pectoral fins of mudskipper fishes (Periophthalmus barbarus) during terrestrial crutching, and compared these to isolated walking footfalls by the forelimbs and hind limbs of tiger salamanders (Ambystoma tigrinum), a species with subequally-sized limbs that facilitate comparisons to early tetrapods. Pectoral appendages of salamanders and mudskippers exhibited numerous differences in GRFs. Compared with salamander forelimbs, isolated fins of mudskippers bear lower vertical magnitudes of GRFs (as a proportion of body weight), and had GRFs that were oriented more medially. Comparing the salamanders' forelimbs and hind limbs, although the peak net GRF occurs later in stance for the forelimb, both limbs experience nearly identical mediolateral and vertical components of GRF, suggesting comparable contributions to support. Thus, forelimbs could also have played a significant locomotor role among basal tetrapods that had limbs of sub-equal size. However, the salamander hind limb and mudskipper pectoral fin had a greater acceleratory role than did the salamander forelimb. Together, data from these extant taxa help to clarify how structural change may have influenced locomotor function through the evolutionary invasion of land by vertebrates.
Evolutionary history of a complex adaptation: Tetrodotoxin resistance in salamanders
Hanifin, Charles T.; Gilly, William F.
2017-01-01
Understanding the processes that generate novel adaptive phenotypes is central to evolutionary biology. We used comparative analyses to reveal the history of tetrodotoxin (TTX) resistance in TTX-bearing salamanders. Resistance to TTX is a critical component of the ability to use TTX defensively but the origin of the TTX-bearing phenotype is unclear. Skeletal muscle of TTX-bearing salamanders (modern newts, family: Salamandridae) is unaffected by TTX at doses far in excess of those that block action potentials in muscle and nerve of other vertebrates. Skeletal muscle of non-TTX-bearing salamandrids is also resistant to TTX but at lower levels. Skeletal muscle TTX resistance in the Salamandridae results from the expression of TTX-resistant variants of the voltage-gated sodium channel NaV 1.4 (SCN4a). We identified four substitutions in the coding region of salSCN4a that are likely responsible for the TTX resistance measured in TTX-bearing salamanders and variation at one of these sites likely explains variation in TTX resistance among other lineages. Our results suggest that exaptation has played a role in the evolution of the TTX-bearing phenotype and provide empirical evidence that complex physiological adaptations can arise through the accumulation of beneficial mutations in the coding region of conserved proteins. PMID:25346116
Genome architecture changes and major gene variations of Andrias davidianus ranavirus (ADRV)
2013-01-01
Ranaviruses are emerging pathogens that have led to global impact and public concern. As a rarely endangered species and the largest amphibian in the world, the Chinese giant salamander, Andrias davidianus, has recently undergone outbreaks of epidemic diseases with high mortality. In this study, we isolated and identified a novel ranavirus from the Chinese giant salamanders that exhibited systemic hemorrhage and swelling syndrome with high death rate in China during May 2011 to August 2012. The isolate, designated Andrias davidianus ranavirus (ADRV), not only could induce cytopathic effects in different fish cell lines and yield high viral titers, but also caused severely hemorrhagic lesions and resulted in 100% mortality in experimental infections of salamanders. The complete genome of ADRV was sequenced and compared with other sequenced amphibian ranaviruses. Gene content and phylogenetic analyses revealed that ADRV should belong to an amphibian subgroup in genus Ranavirus, and is more closely related to frog ranaviruses than to other salamander ranaviruses. Homologous gene comparisons show that ADRV contains 99%, 97%, 94%, 93% and 85% homologues in RGV, FV3, CMTV, TFV and ATV genomes respectively. In addition, several variable major genes, such as duplicate US22 family-like genes, viral eukaryotic translation initiation factor 2 alpha gene and novel 75L gene with both motifs of nuclear localization signal (NLS) and nuclear export signal (NES), were predicted to contribute to pathogen virulence and host susceptibility. These findings confirm the etiologic role of ADRV in epidemic diseases of Chinese giant salamanders, and broaden our understanding of evolutionary emergence of ranaviruses. PMID:24143877
Stream salamanders as indicators of stream quality in Maryland, USA
Southerland, M.T.; Jung, R.E.; Baxter, D.P.; Chellman, I.C.; Mercurio, G.; Volstad, J.H.
2004-01-01
Biological indicators are critical to the protection of small, headwater streams and the ecological values they provide. Maryland and other state monitoring programs have determined that fish indicators are ineffective in small streams, where stream salamanders may replace fish as top predators. Because of their life history, physiology, abundance, and ubiquity, stream salamanders are likely representative of biological integrity in these streams. The goal of this study was to determine whether stream salamanders are effective indicators of ecological conditions across biogeographic regions and gradients of human disturbance. During the summers of 2001 and 2002, we intensively surveyed for stream salamanders at 76 stream sites located west of the Maryland Coastal Plain, sites also monitored by the Maryland Biological Stream Survey (MBSS) and City of Gaithersburg. We found 1,584 stream salamanders, including all eight species known in Maryland, using two 15 ? 2 m transects and two 4 m2 quadrats that spanned both stream bank and channel. We performed removal sampling on transects to estimate salamander species detection probabilities, which ranged from 0.67-0.85. Stepwise regressions identified 15 of 52 non-salamander variables, representing water quality, physical habitat, land use, and biological conditions, which best predicted salamander metrics. Indicator development involved (1) identifying reference (non-degraded) and degraded sites (using percent forest, shading, riparian buffer width, aesthetic rating, and benthic macroinvertebrate and fish indices of biotic integrity); (2) testing 12 candidate salamander metrics (representing species richness and composition, abundance, species tolerance, and reproductive function) for their ability to distinguish reference from degraded sites; and (3) combining metrics into an index that effectively discriminated sites according to known stream conditions. Final indices for Highlands, Piedmont, and Non-Coastal Plain regions comprised four metrics: number of species, number of salamanders, number of intolerant salamanders, and number of adult salamanders, producing classification efficiencies between 87% and 90%. Partial validation of these indices was obtained when a test of the number of salamanders metric produced an 82% correct classification of 618 MBSS sites surveyed in 1995-97. This study supports the use of stream salamander monitoring and a composite stream salamander index of biotic integrity (SS-IBI) to determine stream quality in Maryland.
Qiu, Fan; Kitchen, Andrew; Beerli, Peter; Miyamoto, Michael M
2013-02-01
A recent study using both mitochondrial DNA (mtDNA) and microsatellite data reported on a population size discrepancy in the eastern tiger salamander where the effective population size (N(e)) estimate of the former exceeded that of the latter. That study suggested, among other hypotheses, that homoplasy of microsatellite alleles is responsible for the discrepancy. In this investigation, we report 10 new cases of a similar discrepancy in five species of tuna. These cases derive from our Bayesian inferences using data from Pacific Bluefin Tuna (Thunnus orientalis) and Yellowfin Tuna (Thunnus albacares), as well as from published estimates of genetic diversity for additional populations of Yellowfin Tuna and three other tuna species. Phylogenetic character analyses of inferred genealogies of Pacific Bluefin and Yellowfin Tuna reveal similar reduced levels of mtDNA and microsatellite homoplasy. Thus, the discrepancy between inferred population sizes from mtDNA and microsatellite data in tuna is most likely not an artifact of the chosen mutation models used in the microsatellite analyses, but may reflect behavioral differences between the sexes such as female-biased philopatry and male-biased dispersal. This explanation now warrants critical testing with more local populations of tuna and with other animal and plant groups that have different life histories. Copyright © 2012 Elsevier Inc. All rights reserved.
Kuchta, Shawn R.; Brown, Ashley D.; Converse, Paul E.; Highton, Richard
2016-01-01
Species are a fundamental unit of biodiversity, yet can be challenging to delimit objectively. This is particularly true of species complexes characterized by high levels of population genetic structure, hybridization between genetic groups, isolation by distance, and limited phenotypic variation. Previous work on the Cumberland Plateau Salamander, Plethodon kentucki, suggested that it might constitute a species complex despite occupying a relatively small geographic range. To examine this hypothesis, we sampled 135 individuals from 43 populations, and used four mitochondrial loci and five nuclear loci (5693 base pairs) to quantify phylogeographic structure and probe for cryptic species diversity. Rates of evolution for each locus were inferred using the multidistribute package, and time calibrated gene trees and species trees were inferred using BEAST 2 and *BEAST 2, respectively. Because the parameter space relevant for species delimitation is large and complex, and all methods make simplifying assumptions that may lead them to fail, we conducted an array of analyses. Our assumption was that strongly supported species would be congruent across methods. Putative species were first delimited using a Bayesian implementation of the GMYC model (bGMYC), Geneland, and Brownie. We then validated these species using the genealogical sorting index and BPP. We found substantial phylogeographic diversity using mtDNA, including four divergent clades and an inferred common ancestor at 14.9 myr (95% HPD: 10.8–19.7 myr). By contrast, this diversity was not corroborated by nuclear sequence data, which exhibited low levels of variation and weak phylogeographic structure. Species trees estimated a far younger root than did the mtDNA data, closer to 1.0 myr old. Mutually exclusive putative species were identified by the different approaches. Possible causes of data set discordance, and the problem of species delimitation in complexes with high levels of population structure and introgressive hybridization, are discussed. PMID:26974148
Parrott, Joshua Curtis; Shepack, Alexander; Burkart, David; LaBumbard, Brandon; Scimè, Patrick; Baruch, Ethan; Catenazzi, Alessandro
2017-06-01
Batrachochytrium salamandrivorans (Bsal) is a virulent fungal pathogen that infects salamanders. It is implicated in the recent collapse of several populations of fire salamanders in Europe. This pathogen seems much like that of its sister species, Batrachochytrium dendrobatidis (Bd), the agent responsible for anuran extinctions and extirpations worldwide, and is considered to be an emerging global threat to salamander communities. Bsal thrives at temperatures found in many mountainous regions rich in salamander species; because of this, we have screened specimens of salamanders representing 17 species inhabiting mountain ranges in three continents: The Smoky Mountains, the Swiss Alps, and the Peruvian Andes. We screened 509 salamanders, with 192 representing New World salamanders that were never tested for Bsal previously. Bsal was not detected, and Bd was mostly present at low prevalence except for one site in the Andes.
Reproductive biology of Ambystoma salamanders in the southeastern United States
Glorioso, Brad M.; Waddle, J. Hardin; Hefner, J. M.
2015-01-01
Reproductive aspects of Ambystoma salamanders were investigated at sites in Louisiana (2010–12) and Mississippi (2013). Three species occurred at the Louisiana site, Spotted Salamander (A. maculatum), Marbled Salamander (A. opacum), and Mole Salamander (A. talpoideum), whereas only Spotted Salamanders were studied at the Mississippi site. A total of 162 and 71 egg masses of Spotted Salamanders were examined at the Louisiana and Mississippi sites, respectively. Significantly more Spotted Salamander eggs per egg mass were observed at the Mississippi site (x̄ = 78.2) than the Louisiana site (x̄ = 53.8; P < 0.001). The mean snout–vent length of female Spotted Salamanders at the Mississippi site (82.9 mm) was significantly larger than the Louisiana site (76.1 mm; P < 0.001). Opaque Spotted Salamander egg masses were not found at the Mississippi site, but accounted for 11% of examined egg masses at the Louisiana site. The mean number of eggs per egg mass at the Louisiana site did not differ between opaque (47.3) and clear (54.6) egg masses (P = 0.21). A total of 47 egg masses of the Mole Salamander were examined, with a mean number of 6.7 embryos per mass. Twenty-three individual nests of the Marbled Salamander were found either under or in decaying logs in the dry pond basins. There was no difference between the mean numbers of eggs per mass of attended nests (93.0) versus those that were discovered unattended (86.6; P = 0.67). Females tended to place their nests at intermediate heights within the pond basin.
Ryan, Kevin J.; Zydlewski, Joseph D.; Calhoun, Aram J.K.
2014-01-01
Pure-diploid Blue-spotted Salamanders (Ambystoma laterale) are the smallest members of the family Ambystomatidae which makes tracking with radio-transmitters difficult because of small battery capacity. Passive integrated transponder (PIT) tags provide another tracking approach for small fossorial animals such as salamanders. We evaluated the use of portable PIT tag readers (PIT packs) to detect PIT tag-implanted pure-diploid Blue-spotted Salamanders in situ. We also examined the detection probability of salamanders with PIT tags held in enclosures in wetland and terrestrial habitats, as well as the underground detection range of PIT packs by scanning for buried tags not implanted into salamanders. Of the 532 PIT tagged salamanders, we detected 6.84% at least once during scanning surveys. We scanned systematically within a 13.37 ha area surrounding a salamander breeding pool on 34 occasions (~119 hours of survey time) and detected PIT tags 74 times. We detected 55% of PITs in tagged salamanders and 45%were expelled tags. We were able to reliably detect buried PIT tags from 1–22cm below the ground surface. Because nearly half the locations represented expelled tags, our data suggest this technique is inappropriate for future studies of pure-diploid Blue-spotted Salamanders, although it may be suitable for polyploid Blue-spotted Salamanders and other ambystomatid species, which are larger in size and may exhibit higher tag retention rates. It may also be prudent to conduct long-term tag retention studies in captivity before tagging and releasing salamanders for in situ study, and to double-mark individuals.
Native salamanders and introduced fish: Changing the nature of mountain lakes and ponds
Larson, Gary L.; Hoffman, Robert L.
2003-01-01
During the last century, many fishless mountain lakes and ponds in the Pacific Northwest were stocked with non-native fish, such as brook trout, for recreational purposes. These introduced fish replaced long-toed and northwestern salamander larvae as the top aquatic vertebrate predator by preying on salamander larvae. This predatory interaction has been shown to reduce the abundances of larval salamander populations. We conducted studies in two national parks to assess the abundances of salamander larvae in lakes with and without introduced fish. These studies suggest that the two salamander species were affected quite differently by the presence of introduced fish because of different life-history traits and different distributions of salamanders and fish within each park.
Experimental infection of native north Carolina salamanders with Batrachochytrium dendrobatidis.
Chinnadurai, Sathya K; Cooper, David; Dombrowski, Daniel S; Poore, Matthew F; Levy, Michael G
2009-07-01
Chytridiomycosis is an often fatal fungal disease of amphibians caused by Batrachochytrium dendrobatidis. This disease has been implicated in the worldwide decline of many anuran species, but studies of chytridiomycosis in wild salamanders are limited. Between August 2006 and December 2006, we tested wild amphibians in North Carolina, USA (n=212) by polymerase chain reaction (PCR). We identified three PCR-positive animals: one Rana clamitans and two Plethodontid salamanders. We experimentally infected two species of native North Carolina Plethodontid salamanders, the slimy salamander (Plethodon glutinosus) and the Blue Ridge Mountain dusky salamander (Desmognathus orestes) with 1,000,000 zoospores of B. dendrobatidis per animal. Susceptibility was species dependent; all slimy salamanders developed clinical signs of chytridiomycosis, and one died, whereas dusky salamanders remained unaffected. In a second experiment, we challenged naïve slimy salamanders with either 10,000 or 100,000 motile zoospores per animal. Clinical signs consistent with chytridiomycosis were not observed at either dose or in uninfected controls during the 45 days of this experiment. All animals inoculated with B. dendrobatidis in both experiments, regardless of dose, tested positive by PCR. Our study indicates that slimy salamanders are more susceptible to clinical chytridiomycosis than dusky salamanders, and in a laboratory setting, a dose greater than 100,000 zoospores per animal is required to induce clinical disease. This study also indicates that PCR is a very sensitive tool for detecting B. dendrobatidis infection, even in animals that are clinically unaffected, thus positive results should be interpreted with caution.
Ford, W. Mark; Mahoney, Kathleen R.; Russell, Kevin R.; Rodrigue, Jane L.; Riddle, Jason D.; Schuler, Thomas M.; Adams, Mary Beth
2015-01-01
Forest management practices that mimic natural canopy disturbances, including prescribed fire and timber harvests, may reduce competition and facilitate establishment of favorable vegetative species within various ecosystems. Fire suppression in the central Appalachian region for almost a century has contributed to a transition from oak-dominated to more mesophytic, fire-intolerant forest communities. Prescribed fire coupled with timber removal is currently implemented to aid in oak regeneration and establishment but responses of woodland salamanders to this complex silvicultural system is poorly documented. The purpose of our research was to determine how woodland salamanders respond to shelterwood harvests following successive burns in a central Appalachian mixed-oak forest. Woodland salamanders were surveyed using coverboard arrays in May, July, and August–September 2011 and 2012. Surveys were conducted within fenced shelterwood-burn (prescribed fires, shelterwood harvest, and fencing to prevent white-tailed deer [Odocoileus virginianus] herbivory), shelterwood-burn (prescribed fires and shelterwood harvest), and control plots. Relative abundance was modeled in relation to habitat variables measured within treatments for mountain dusky salamanders (Desmognathus ochrophaeus), slimy salamanders (Plethodon glutinosus), and eastern red-backed salamanders (Plethodon cinereus). Mountain dusky salamander relative abundance was positively associated with canopy cover and there were significantly more individuals within controls than either shelterwood-burn or fenced shelterwood-burn treatments. Conversely, habitat variables associated with slimy salamanders and eastern red-backed salamanders did not differ among treatments. Salamander age-class structure within controls did not differ from shelterwood-burn or fenced shelterwood-burn treatments for any species. Overall, the woodland salamander assemblage remained relatively intact throughout the shelterwoodburn silvicultural treatment compared to previous research within the same study area that examined pre-harvest fire effects. However, because of the multi-faceted complexities of this specific silvicultural system, continued research is warranted that evaluates long-term, additive impacts on woodland salamanders within managed central Appalachian deciduous forests.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-18
...-FXES11120800000F2-123-F2] Proposed Low-Effect Habitat Conservation Plan for the California Tiger Salamander... animal, the threatened Central California Distinct Population Segment of the California tiger salamander (tiger salamander). The applicant would implement a conservation program to minimize and mitigate the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
...] Proposed Low-Effect Habitat Conservation Plan for the California Tiger Salamander, AT&T Portable Generator... Federally listed animal, the California tiger salamander. The applicant would implement a conservation... permanently convert 1.24 acres of upland grassland habitat for the California tiger salamander into a new...
Impact of valley fills on streamside salamanders in southern West Virginia
Wood, Petra Bohall; Williams, Jennifer M.
2013-01-01
Valley fills associated with mountaintop-removal mining bury stream headwaters and affect water quality and ecological function of reaches below fills. We quantified relative abundance of streamside salamanders in southern West Virginia during 2002 in three streams below valley fills (VFS) and in three reference streams (RS). We surveyed 36 10- × 2-m stream transects, once in summer and fall, paired by order and structure. Of 2,343 salamanders captured, 66.7% were from RS. Total salamanders (adults plus larvae) were more abundant in RS than VFS for first-order and second-order reaches. Adult salamanders had greater abundance in first-order reaches of RS than VFS. Larval salamanders were more abundant in second-order reaches of RS than VFS. No stream width or mesohabitat variables differed between VFS and RS. Only two cover variables differed. Silt cover, greater in VFS than RS first-order reaches, is a likely contributor to reduced abundance of salamanders in VFS. Second-order RS had more boulder cover than second-order VFS, which may have contributed to the higher total and larval salamander abundance in RS. Water chemistry assessments of our VFS and RS reported elevated levels of metal and ion concentrations in VFS, which can depress macroinvertebrate populations and likely affect salamander abundance. Valley fills appear to have significant negative effects on stream salamander abundance due to alterations in habitat structure, water quality and chemistry, and macroinvertebrate communities in streams below fills.
Sutton, William B.; Barrett, Kyle; Moody, Allison T.; Loftin, Cynthia S.; deMaynadier, Phillip G.; Nanjappa, Priya
2015-01-01
Global climate change represents one of the most extensive and pervasive threats to wildlife populations. Amphibians, specifically salamanders, are particularly susceptible to the effects of changing climates due to their restrictive physiological requirements and low vagility; however, little is known about which landscapes and species are vulnerable to climate change. Our study objectives included, (1) evaluating species-specific predictions (based on 2050 climate projections) and vulnerabilities to climate change and (2) using collective species responses to identify areas of climate refugia for conservation priority salamanders in the northeastern United States. All evaluated salamander species were projected to lose a portion of their climatic niche. Averaged projected losses ranged from 3%–100% for individual species, with the Cow Knob Salamander (Plethodon punctatus), Cheat Mountain Salamander (Plethodon nettingi), Shenandoah Mountain Salamander (Plethodon virginia), Mabee’s Salamander (Ambystoma mabeei), and Streamside Salamander (Ambystoma barbouri) predicted to lose at least 97% of their landscape-scale climatic niche. The Western Allegheny Plateau was predicted to lose the greatest salamander climate refugia richness (i.e., number of species with a climatically-suitable niche in a landscape patch), whereas the Central Appalachians provided refugia for the greatest number of species during current and projected climate scenarios. Our results can be used to identify species and landscapes that are likely to be further affected by climate change and potentially resilient habitats that will provide consistent climatic conditions in the face of environmental change.
Weisrock, David W; Macey, J Robert; Matsui, Masafumi; Mulcahy, Daniel G; Papenfuss, Theodore J
2013-01-01
The salamander family Hynobiidae contains over 50 species and has been the subject of a number of molecular phylogenetic investigations aimed at reconstructing branches across the entire family. In general, studies using the greatest amount of sequence data have used reduced taxon sampling, while the study with the greatest taxon sampling has used a limited sequence data set. Here, we provide insights into the phylogenetic history of the Hynobiidae using both dense taxon sampling and a large mitochondrial DNA sequence data set. We report exclusive new mitochondrial DNA data of 2566 aligned bases (with 151 excluded sites, of included sites 1157 are variable with 957 parsimony informative). This is sampled from two genic regions encoding a 12S-16S region (the 3' end of 12S rRNA, tRNA(VAI), and the 5' end of 16S rRNA), and a ND2-COI region (ND2, tRNA(Trp), tRNA(Ala), tRNA(Asn), the origin for light strand replication--O(L), tRNA(Cys), tRNAT(Tyr), and the 5' end of COI). Analyses using parsimony, Bayesian, and maximum likelihood optimality criteria produce similar phylogenetic trees, with discordant branches generally receiving low levels of branch support. Monophyly of the Hynobiidae is strongly supported across all analyses, as is the sister relationship and deep divergence between the genus Onychodactylus with all remaining hynobiids. Within this latter grouping our phylogenetic results identify six clades that are relatively divergent from one another, but for which there is minimal support for their phylogenetic placement. This includes the genus Batrachuperus, the genus Hynobius, the genus Pachyhynobius, the genus Salamandrella, a clade containing the genera Ranodon and Paradactylodon, and a clade containing the genera Liua and Pseudohynobius. This latter clade receives low bootstrap support in the parsimony analysis, but is consistent across all three analytical methods. Our results also clarify a number of well-supported relationships within the larger Batrachuperus and Hynobius clades. While the relationships identified in this study do much to clarify the phylogenetic history of the Hynobiidae, the poor resolution among major hynobiid clades, and the contrast of mtDNA-derived relationships with recent phylogenetic results from a small number of nuclear genes, highlights the need for continued phylogenetic study with larger numbers of nuclear loci.
Using multilevel spatial models to understand salamander site occupancy patterns after wildfire
Chelgren, Nathan; Adams, Michael J.; Bailey, Larissa L.; Bury, R. Bruce
2011-01-01
Studies of the distribution of elusive forest wildlife have suffered from the confounding of true presence with the uncertainty of detection. Occupancy modeling, which incorporates probabilities of species detection conditional on presence, is an emerging approach for reducing observation bias. However, the current likelihood modeling framework is restrictive for handling unexplained sources of variation in the response that may occur when there are dependence structures such as smaller sampling units that are nested within larger sampling units. We used multilevel Bayesian occupancy modeling to handle dependence structures and to partition sources of variation in occupancy of sites by terrestrial salamanders (family Plethodontidae) within and surrounding an earlier wildfire in western Oregon, USA. Comparison of model fit favored a spatial N-mixture model that accounted for variation in salamander abundance over models that were based on binary detection/non-detection data. Though catch per unit effort was higher in burned areas than unburned, there was strong support that this pattern was due to a higher probability of capture for individuals in burned plots. Within the burn, the odds of capturing an individual given it was present were 2.06 times the odds outside the burn, reflecting reduced complexity of ground cover in the burn. There was weak support that true occupancy was lower within the burned area. While the odds of occupancy in the burn were 0.49 times the odds outside the burn among the five species, the magnitude of variation attributed to the burn was small in comparison to variation attributed to other landscape variables and to unexplained, spatially autocorrelated random variation. While ordinary occupancy models may separate the biological pattern of interest from variation in detection probability when all sources of variation are known, the addition of random effects structures for unexplained sources of variation in occupancy and detection probability may often more appropriately represent levels of uncertainty. ?? 2011 by the Ecological Society of America.
Murray, M.P.; Pearl, C.A.; Bury, R.B.
2005-01-01
We report observations of Gray Jays (Perisoreus canadensis) appearing to consume larval Long-toed Salamanders (Ambystoma macrodactylum) in a drying subalpine pond in Oregon, USA. Corvids are known to prey upon a variety of anuran amphibians, but to our knowledge, this is the first report of predation by any corvid on aquatic salamanders. Long-toed Salamanders appear palatable to Gray Jays, and may provide a food resource to Gray Jays when salamander larvae are concentrated in drying temporary ponds.
76 FR 46837 - Endangered and Threatened Species Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-03
...). Houston toad (Bufo houstonensis). Barton Springs salamander (Eurycea sosorum). San Marco salamander (Eurycea nana). Texas blind salamander (Typhlomolge rathbuni). Fountain darter (Etheostoma fonticola). Two...
Bromeliad Selection by Two Salamander Species in a Harsh Environment
Ruano-Fajardo, Gustavo; Rovito, Sean M.; Ladle, Richard J.
2014-01-01
Bromeliad phytotelmata are frequently used by several Neotropical amphibian taxa, possibly due to their high humidity, microclimatic stability, and role as a refuge from predators. Indeed, the ability of phytotelmata to buffer against adverse environmental conditions may be instrumental in allowing some amphibian species to survive during periods of environmental change or to colonize sub-optimal habitats. Association between bromeliad traits and salamanders has not been studied at a fine scale, despite the intimate association of many salamander species with bromeliads. Here, we identify microhabitat characteristics of epiphytic bromeliads used by two species of the Bolitoglossa morio group (B. morio and B. pacaya) in forest disturbed by volcanic activity in Guatemala. Specifically, we measured multiple variables for bromeliads (height and position in tree, phytotelma water temperature and pH, canopy cover, phytotelma size, leaf size, and tree diameter at breast height), as well as salamander size. We employed a DNA barcoding approach to identify salamanders. We found that B. morio and B. pacaya occurred in microsympatry in bromeliads and that phytotelmata size and temperature of bromeliad microhabitat were the most important factors associated with the presence of salamanders. Moreover, phytotelmata with higher pH contained larger salamanders, suggesting that larger salamanders or aggregated individuals might modify pH. These results show that bromeliad selection is nonrandom with respect to microhabitat characteristics, and provide insight into the relationship between salamanders and this unique arboreal environment. PMID:24892414
75 FR 5802 - Endangered and Threatened Species Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-04
... purposes to conduct presence/absence surveys for the following species: Texas blind salamander (Typhlomolge rathbuni), San Marcos salamander (Eurycea nana), Barton Springs salamander (Eurycea [[Page 5803
D.E. Rundio; D.H. Olson
2007-01-01
We examined the effect of forest thinning and riparian buffers along headwater streams on terrestrial salamanders at two sites in western Oregon. Salamander numbers were reduced postthinning at one site with lower down-wood volume. Terrestrial salamander distributions along stream-to-upslope transects suggest benefits of one and two site-potential tree-height stream...
Evolution mediates the effects of apex predation on aquatic food webs
Urban, Mark C.
2013-01-01
Ecological and evolutionary mechanisms are increasingly thought to shape local community dynamics. Here, I evaluate if the local adaptation of a meso-predator to an apex predator alters local food webs. The marbled salamander (Ambystoma opacum) is an apex predator that consumes both the spotted salamander (Ambystoma maculatum) and shared zooplankton prey. Common garden experiments reveal that spotted salamander populations which co-occur with marbled salamanders forage more intensely than those that face other predator species. These foraging differences, in turn, alter the diversity, abundance and composition of zooplankton communities in common garden experiments and natural ponds. Locally adapted spotted salamanders exacerbate prey biomass declines associated with apex predation, but dampen the top-down effects of apex predation on prey diversity. Countergradient selection on foraging explains why locally adapted spotted salamanders exacerbate prey biomass declines. The two salamander species prefer different prey species, which explains why adapted spotted salamanders buffer changes in prey composition owing to apex predation. Results suggest that local adaptation can strongly mediate effects from apex predation on local food webs. Community ecologists might often need to consider the evolutionary history of populations to understand local diversity patterns, food web dynamics, resource gradients and their responses to disturbance. PMID:23720548
Evolution mediates the effects of apex predation on aquatic food webs.
Urban, Mark C
2013-07-22
Ecological and evolutionary mechanisms are increasingly thought to shape local community dynamics. Here, I evaluate if the local adaptation of a meso-predator to an apex predator alters local food webs. The marbled salamander (Ambystoma opacum) is an apex predator that consumes both the spotted salamander (Ambystoma maculatum) and shared zooplankton prey. Common garden experiments reveal that spotted salamander populations which co-occur with marbled salamanders forage more intensely than those that face other predator species. These foraging differences, in turn, alter the diversity, abundance and composition of zooplankton communities in common garden experiments and natural ponds. Locally adapted spotted salamanders exacerbate prey biomass declines associated with apex predation, but dampen the top-down effects of apex predation on prey diversity. Countergradient selection on foraging explains why locally adapted spotted salamanders exacerbate prey biomass declines. The two salamander species prefer different prey species, which explains why adapted spotted salamanders buffer changes in prey composition owing to apex predation. Results suggest that local adaptation can strongly mediate effects from apex predation on local food webs. Community ecologists might often need to consider the evolutionary history of populations to understand local diversity patterns, food web dynamics, resource gradients and their responses to disturbance.
Leaf litter bags as an index to populations of northern two-lined salamanders (Eurycea bislineata)
Chalmers, R.J.; Droege, S.
2002-01-01
Concern about recent amphibian declines has led to research on amphibian populations, but few statistically tested, standardized methods of counting amphibians exist. We tested whether counts of northern two-lined salamander larvae (Eurycea bislineata) sheltered in leaf litter bags--a relatively new, easily replicable survey technique--had a linear correlation to total number of larvae. Using experimental enclosures placed in streams, we compared number of salamanders found in artificial habitat (leaf litter bags) with total number of salamanders in each enclosure. Low numbers of the animals were found in leaf litter bags, and the relative amount of variation in the index (number of animals in leaf litter bags compared to total number of animals in stream enclosures) was high. The index of salamanders in leaf litter bags was not significantly related to total number of salamanders in enclosures for two-thirds of the replicates or with pooled replicates (P= 0.066). Consequently, we cannot recommend using leaf litter bags to index populations of northern two-lined salamanders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinikour, W. S.; LaGory, K. E.; Adduci, J. J.
2006-10-20
The purpose of this conservation assessment is to summarize existing knowledge regarding the biology and ecology of the Siskiyou Mountains salamander and Scott Bar salamander, identify threats to the two species, and identify conservation considerations to aid federal management for persistence of the species. The conservation assessment will serve as the basis for a conservation strategy for the species.
Foraging trade-offs along a predator-permanence gradient in subalpine wetlands
Wissinger, S.A.; Whiteman, H.H.; Sparks, G.B.; Rouse, G.L.; Brown, W.S.
1999-01-01
We conducted a series of field and laboratory experiments to determine the direct and indirect effects of a top predator, the tiger salamander (Ambystoma tigrinum nebulosum), on larvae of two species of limnephilid caddisflies (Limnephilus externus and Asynarchus nigriculus) in subalpine wetlands in central Colorado. Asynarchus larvae predominate in temporary wetlands and are aggressive intraguild predators on Limnephilus larvae, which only predominate in permanent basins with salamanders. We first conducted a field experiment in mesocosms (cattle tanks) to quantify the predatory effects of different life stages of salamanders on the two caddisfly species. Two life stages of the salamanders (larvae and paedomorphs) preferentially preyed on Asynarchus relative to Limnephilus. Subsequent laboratory experiments revealed that high Asynarchus activity rates and relatively ineffective antipredatory behaviors led to higher salamander detection and attack rates compared to Limnephilus. In a second field experiment (full factorial for presence and absence of each of the three species), we found that salamander predation on Asynarchus had an indirect positive effect on Limnephilus: survival was higher in the presence of salamanders + Asynarchus than with just Asynarchus. In the laboratory we compared the predatory effects of salamanders with and without their mouths sewn shut and found the observed indirect positive effect on Limnephilus survival to be mainly the result of reduced numbers of Asynarchus rather than salamander-induced changes in Asynarchus behavior. We argue that indirect effects of predator-predator interactions on shared prey will be mainly density-mediated and not trait-mediated when one of the predators (in this case, Asynarchus) is under strong selection for rapid growth and therefore does not modify foraging behaviors in response to the other predator. The reciprocal dominance of Limnephilus and Asynarchus in habitats with and without salamanders probably reflects a tradeoff between competitive superiority and vulnerability to predation. The high activity levels and aggressiveness that enable Asynarchus to complete development in temporary habitats result in strong asymmetric competition (via intraguild predation) with Limnephilus. In permanent habitats these same behaviors increase Asynarchus vulnerability to salamander predation, which indirectly benefits Limnephilus. This and previous work implicate salamanders as keystone predators that exert a major influence on the composition of benthic and planktonic assemblages in subalpine wetlands.
Walker, Donald M.; Leys, Jacob E.; Dunham, Kelly E.; Oliver, Joshua C.; Schiller, Emily E.; Stephenson, Kelsey S.; Kimrey, John T.; Wooten, Jessica; Rogers, Mark W.
2017-01-01
Environmental DNA (eDNA) can be used as an assessment tool to detect populations of threatened species and provide fine-scale data required to make management decisions. The objectives of this project were to use quantitative PCR (qPCR) to: (i) detect spiked salamander DNA in soil, (ii) quantify eDNA degradation over time, (iii) determine detectability of salamander eDNA in a terrestrial environment using soil, faeces, and skin swabs, (iv) detect salamander eDNA in a mesocosm experiment. Salamander eDNA was positively detected in 100% of skin swabs and 66% of faecal samples and concentrations did not differ between the two sources. However, eDNA was not detected in soil samples collected from directly underneath wild-caught living salamanders. Salamander genomic DNA (gDNA) was detected in all qPCR reactions when spiked into soil at 10.0, 5.0, and 1.0 ng/g soil and spike concentration had a significant effect on detected concentrations. Only 33% of samples showed recoverable eDNA when spiked with 0.25 ng/g soil, which was the low end of eDNA detection. To determine the rate of eDNA degradation, gDNA (1 ng/g soil) was spiked into soil and quantified over seven days. Salamander eDNA concentrations decreased across days, but eDNA was still amplifiable at day 7. Salamander eDNA was detected in two of 182 mesocosm soil samples over 12 weeks (n = 52 control samples; n = 65 presence samples; n = 65 eviction samples). The discrepancy in detection success between experiments indicates the potential challenges for this method to be used as a monitoring technique for small-bodied wild terrestrial salamander populations.
Pilliod, David S.; Arkle, Robert S.; Maxell, Bryce A.
2012-01-01
Studies have demonstrated negative effects of non-native, predatory fishes on native amphibians, yet it is still unclear why some amphibian populations persist, while others are extirpated, following fish invasion. We examined this question by developing habitat-based occupancy models for the long-toed salamander (Ambystoma macrodactylum) and nonnative fish using survey data from 1,749 water bodies across 470 catchments in the Northern Rocky Mountains, USA. We first modeled the habitat associations of salamanders at 468 fishless water bodies in 154 catchments where non-native fish were historically, and are currently, absent from the entire catchment. Wethen applied this habitat model to the complete data set to predict the probability of salamander occupancy in each water body, removing any effect of fish presence. Finally, we compared field-observed occurrences of salamanders and fish to modeled probability of salamander occupancy. Suitability models indicated that fish and salamanders had similar habitat preferences, possibly resulting in extirpations of salamander populations from entire catchments where suitable habitats were limiting. Salamanders coexisted with non-native fish in some catchments by using marginal quality, isolated (no inlet or outlet) habitats that remained fishless. They rarely coexisted with fish within individual water bodies and only where habitat quality was highest. Connectivity of water bodies via streams resulted in increased probability of fish invasion and consequently reduced probability of salamander occupancy.These results could be used to identify and prioritize catchments and water bodies where control measures would be most effective at restoring amphibian populations. Our approach could be useful as a framework for improved investigations into questions of persistence and extirpation of native species when non-native species have already become established.
Walker, Donald M; Leys, Jacob E; Dunham, Kelly E; Oliver, Joshua C; Schiller, Emily E; Stephenson, Kelsey S; Kimrey, John T; Wooten, Jessica; Rogers, Mark W
2017-11-01
Environmental DNA (eDNA) can be used as an assessment tool to detect populations of threatened species and provide fine-scale data required to make management decisions. The objectives of this project were to use quantitative PCR (qPCR) to: (i) detect spiked salamander DNA in soil, (ii) quantify eDNA degradation over time, (iii) determine detectability of salamander eDNA in a terrestrial environment using soil, faeces, and skin swabs, (iv) detect salamander eDNA in a mesocosm experiment. Salamander eDNA was positively detected in 100% of skin swabs and 66% of faecal samples and concentrations did not differ between the two sources. However, eDNA was not detected in soil samples collected from directly underneath wild-caught living salamanders. Salamander genomic DNA (gDNA) was detected in all qPCR reactions when spiked into soil at 10.0, 5.0, and 1.0 ng/g soil and spike concentration had a significant effect on detected concentrations. Only 33% of samples showed recoverable eDNA when spiked with 0.25 ng/g soil, which was the low end of eDNA detection. To determine the rate of eDNA degradation, gDNA (1 ng/g soil) was spiked into soil and quantified over seven days. Salamander eDNA concentrations decreased across days, but eDNA was still amplifiable at day 7. Salamander eDNA was detected in two of 182 mesocosm soil samples over 12 weeks (n = 52 control samples; n = 65 presence samples; n = 65 eviction samples). The discrepancy in detection success between experiments indicates the potential challenges for this method to be used as a monitoring technique for small-bodied wild terrestrial salamander populations. © 2017 John Wiley & Sons Ltd.
Sweeten, Sara E.; Ford, W. Mark
2015-01-01
Large-scale land uses such as residential wastewater discharge and coal mining practices, particularly surface coal extraction and associated valley fills, are of particular ecological concern in central Appalachia. Identification and quantification of both alterations across scales are a necessary first-step to mitigate negative consequences to biota. In central Appalachian headwater streams absent of fish, salamanders are the dominant, most abundant vertebrate predator providing a significant intermediate trophic role. Stream salamander species are considered to be sensitive to aquatic stressors and environmental alterations, and past research has shown linkages among microhabitat parameters, large-scale land use such as urbanization and logging with salamander abundances. However, little is known about these linkages in the coalfields of central Appalachia. In the summer of 2013, we visited 70 sites (sampled three times each) in the southwest Virginia coalfields to survey salamanders and quantify stream and riparian microhabitat parameters. Using an information-theoretic framework we compared the effects of microhabitat and large-scale land use on salamander abundances. Our findings indicate that dusky salamander (Desmognathus spp.) abundances are more correlated to microhabitat parameters such as canopy cover than to subwatershed land uses. Brook salamander (Eurycea spp.) abundances show strong negative associations to the suspended sediments and stream substrate embeddedness. Neither Desmognathus spp. nor Eurycea spp. abundances were influenced by water conductivity. These suggest protection or restoration of riparian habitats and erosion control is an important conservation component for maintaining stream salamanders in the mined landscapes of central Appalachia.
Local and landscape scale factors influencing edge effects on woodland salamanders.
Moseley, Kurtis R; Ford, W Mark; Edwards, John W
2009-04-01
We examined local and landscape-scale variable influence on the depth and magnitude of edge effects on woodland salamanders in mature mixed mesophytic and northern hardwood forest adjacent to natural gas well sites maintained as wildlife openings. We surveyed woodland salamander occurrence from June-August 2006 at 33 gas well sites in the Monongahela National Forest, West Virginia. We used an information-theoretic approach to test nine a priori models explaining landscape-scale effects on woodland salamander capture proportion within 20 m of field edge. Salamander capture proportion was greater within 0-60 m than 61-100 m of field edges. Similarly, available coarse woody debris proportion was greater within 0-60 m than 61-100 m of field edge. Our ASPECT model, that incorporated the single variable aspect, received the strongest support for explaining landscape-scale effects on salamander capture proportion within 20 m of opening edge. The ASPECT model indicated that fewer salamanders occurred within 20 m of opening edges on drier, hotter southwestern aspects than in moister, cooler northeastern aspects. Our results suggest that forest habitat adjacent to maintained edges and with sufficient cover still can provide suitable habitat for woodland salamander species in central Appalachian mixed mesophytic and northern hardwood forests. Additionally, our modeling results support the contention that edge effects are more severe on southwesterly aspects. These results underscore the importance of distinguishing among different edge types as well as placing survey locations within a landscape context when investigating edge impacts on woodland salamanders.
Kenison, Erin K; Litt, Andrea R.; Pilliod, David S.; McMahon, Tom E
2016-01-01
Predation by nonnative fishes has reduced abundance and increased extinction risk for amphibian populations worldwide. Although rare, fish and palatable amphibians have been observed to coexist where aquatic vegetation and structural complexity provide suitable refugia. We examined whether larval long-toed salamanders (Ambystoma macrodactylum Baird, 1849) increased use of vegetation cover in lakes with trout and whether adding vegetation structure could reduce predation risk and nonconsumptive effects (NCEs), such as reductions in body size and delayed metamorphosis. We compared use of vegetation cover by larval salamanders in lakes with and without trout and conducted a field experiment to investigate the influence of added vegetation structure on salamander body morphology and life history. The probability of catching salamanders in traps in lakes with trout was positively correlated with the proportion of submerged vegetation and surface cover. Growth rates of salamanders in enclosures with trout cues decreased as much as 85% and the probability of metamorphosis decreased by 56%. We did not find evidence that adding vegetation reduced NCEs in experimental enclosures, but salamanders in lakes with trout utilized more highly-vegetated areas which suggests that adding vegetation structure at the scale of the whole lake may facilitate coexistence between salamanders and introduced trout.
Homing orientation in salamanders: A mechanism involving chemical cues
NASA Technical Reports Server (NTRS)
Madison, D. M.
1972-01-01
A detailed description is given of experiments made to determine the senses and chemical cues used by salamanders for homing orientation. Sensory impairment and cue manipulative techniques were used in the investigation. All experiments were carried out at night. Results show that sense impaired animals did not home as readily as those who were blind but retained their sensory mechanism. This fact suggests that the olfactory mechanism is necessary for homing in the salamander. It was determined that after the impaired salamander regenerated its sensory mechanism it too returned home. It was concluded that homing ability in salamanders is direction independent, distant dependent, and vision independent.
76 FR 20004 - Endangered Species Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-11
... salamander (Ambystoma californiense), the Tipton kangaroo rat (Dipodomys nitratoides nitratoides), giant... biological samples, and release) the California tiger salamander (Ambystoma californiense) in conjunction... (survey, capture, handle, identify, measure, and release) the California tiger salamander (Ambystoma...
Rovito, Sean M.; Parra-Olea, Gabriela; Vásquez-Almazán, Carlos R.; Papenfuss, Theodore J.; Wake, David B.
2009-01-01
We document major declines of many species of salamanders at several sites in Central America and Mexico, with emphasis on the San Marcos region of Guatemala, one of the best studied and most diverse salamander communities in the Neotropics. Profound declines of several formerly abundant species, including 2 apparent extinctions, are revealed. Terrestrial microhabitat specialists at mid- to high elevations have declined more than microhabitat generalists. These terrestrial microhabitat specialists have largely disappeared from multiple sites in western Guatemala, including in well-protected areas, suggesting that the phenomenon cannot be explained solely by localized habitat destruction. Major declines in southern Mexican plethodontid salamanders occurred in the late 1970s to early 1980s, concurrent with or preceding many reported frog declines. The species in decline comprise several major evolutionary lineages of tropical salamanders, underscoring that significant portions of the phylogenetic diversity of Neotropical salamanders are at risk. Our results highlight the urgent need to document and understand Neotropical salamander declines as part of the larger effort to conserve global amphibian diversity. PMID:19204286
Terrestrial salamander abundance on reclaimed mountaintop removal mines
Wood, Petra Bohall; Williams, Jennifer M.
2013-01-01
Mountaintop removal mining, a large-scale disturbance affecting vegetation, soil structure, and topography, converts landscapes from mature forests to extensive grassland and shrubland habitats. We sampled salamanders using drift-fence arrays and coverboard transects on and near mountaintop removal mines in southern West Virginia, USA, during 2000–2002. We compared terrestrial salamander relative abundance and species richness of un-mined, intact forest with habitats on reclaimed mountaintop removal mines (reclaimed grassland, reclaimed shrubland, and fragmented forest). Salamanders within forests increased in relative abundance with increasing distance from reclaimed mine edge. Reclaimed grassland and shrubland habitats had lower relative abundance and species richness than forests. Characteristics of reclaimed habitats that likely contributed to lower salamander abundance included poor soils (dry, compacted, little organic matter, high rock content), reduced vertical structure of vegetation and little tree cover, and low litter and woody debris cover. Past research has shown that salamander populations reduced by clearcutting may rebound in 15–24 years. Time since disturbance was 7–28 years in reclaimed habitats on our study areas and salamander populations had not reached levels found in adjacent mature forests.
77 FR 71818 - Endangered Species Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-04
... tiger salamander (Santa Barbara County DPS) (Ambystoma californiense) in conjunction with habitat..., handle, and release) the California tiger salamander (Sonoma County Distinct Population Segment) (Ambystoma californiense) and California tiger salamander (Santa Barbara County DPS) (Ambystoma californiense...
Miller, Mark P.; Haig, Susan M.; Wagner, R.S.
2006-01-01
The Southern torrent salamander (Rhyacotriton variegatus) was recently found not warranted for listing under the US Endangered Species Act due to lack of information regarding population fragmentation and gene flow. Found in small-order streams associated with late-successional coniferous forests of the US Pacific Northwest, threats to their persistence include disturbance related to timber harvest activities. We conducted a study of genetic diversity throughout this species' range to 1) identify major phylogenetic lineages and phylogeographic barriers and 2) elucidate regional patterns of population genetic and spatial phylogeographic structure. Cytochrome b sequence variation was examined for 189 individuals from 72 localities. We identified 3 major lineages corresponding to nonoverlapping geographic regions: a northern California clade, a central Oregon clade, and a northern Oregon clade. The Yaquina River may be a phylogeographic barrier between the northern Oregon and central Oregon clades, whereas the Smith River in northern California appears to correspond to the discontinuity between the central Oregon and northern California clades. Spatial analyses of genetic variation within regions encompassing major clades indicated that the extent of genetic structure is comparable among regions. We discuss our results in the context of conservation efforts for Southern torrent salamanders.
Rheubert, Justin L; Cook, Hanna E; Siegel, Dustin S; Trauth, Stanley E
2017-10-01
Previous studies have revealed variations in the urogenital system morphology of amphibians. Recently, the urogenital system of salamanders was reviewed and terminology was synonymized across taxa. Discrepancies exist in the terminology describing the urogenital system of anurans, which prompted our group to develop a complete, detailed description of the urogenital system in an anuran species and provide nomenclature that is synonymous with those of other amphibian taxa. In Rana catesbeiana, sperm mature within spermatocysts of the seminiferous tubule epithelia and are transported to a series of intratesticular ducts that exit the testes and merge to form vasa efferentia. Vasa efferentia converge into single longitudinal ducts (Bidder's ducts) on the lateral aspects of the kidneys. Branches from the longitudinal ducts merge with genital kidney renal tubules through renal corpuscles. The nephrons travel caudally and empty into the Wöffian ducts. Similar to salamanders, the caudal portion of the kidneys (termed the pelvic kidneys in salamanders) only possesses nephrons involved in urine formation, not sperm transport. Data from the present study provide a detailed description and synonymous nomenclature that can be used to make future comparative analyses between taxa more efficient.
Tiger salamanders' (Ambystoma tigrinum) response learning and usage of visual cues.
Kundey, Shannon M A; Millar, Roberto; McPherson, Justin; Gonzalez, Maya; Fitz, Aleyna; Allen, Chadbourne
2016-05-01
We explored tiger salamanders' (Ambystoma tigrinum) learning to execute a response within a maze as proximal visual cue conditions varied. In Experiment 1, salamanders learned to turn consistently in a T-maze for reinforcement before the maze was rotated. All learned the initial task and executed the trained turn during test, suggesting that they learned to demonstrate the reinforced response during training and continued to perform it during test. In a second experiment utilizing a similar procedure, two visual cues were placed consistently at the maze junction. Salamanders were reinforced for turning towards one cue. Cue placement was reversed during test. All learned the initial task, but executed the trained turn rather than turning towards the visual cue during test, evidencing response learning. In Experiment 3, we investigated whether a compound visual cue could control salamanders' behaviour when it was the only cue predictive of reinforcement in a cross-maze by varying start position and cue placement. All learned to turn in the direction indicated by the compound visual cue, indicating that visual cues can come to control their behaviour. Following training, testing revealed that salamanders attended to stimuli foreground over background features. Overall, these results suggest that salamanders learn to execute responses over learning to use visual cues but can use visual cues if required. Our success with this paradigm offers the potential in future studies to explore salamanders' cognition further, as well as to shed light on how features of the tiger salamanders' life history (e.g. hibernation and metamorphosis) impact cognition.
75 FR 31812 - Receipt of Applications for Endangered Species Permits
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-04
..., and release of eastern indigo snake (Drymarchon corais couperi), reticulated flatwoods salamander (Ambystoma bishopi), and frosted flatwoods salamander (Ambystoma cingulatum) in Georgia. Applicant: Jess... authorization to: Capture and release eastern indigo snake, frosted flatwood salamander, reticulated flatwoods...
76 FR 7577 - Endangered and Threatened Species Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-10
.../absence surveys for the following species: Texas blind salamander (Typhlomolge rathbuni), Barton Springs salamander (Eurycea sosorum), Mexican long-nosed bat (Leptonycteris nivalis), American burying beetle... cupido attwateri) Barton Springs salamander (Eurycea sosorum) Bee Creek Cave harvestman (Texella reddelli...
Effects of host species and environment on the skin microbiome of Plethodontid salamanders
Muletz-Wolz, Carly R.; Yarwood, Stephanie A.; Grant, Evan H. Campbell; Fleischer, Robert C.; Lips, Karen R.
2018-01-01
The amphibian skin microbiome is recognized for its role in defence against pathogens, including the deadly fungal pathogen Batrachochytrium dendrobatidis (Bd). Yet, we have little understanding of evolutionary and ecological processes that structure these communities, especially for salamanders and closely related species. We investigated patterns in the distribution of bacterial communities on Plethodon salamander skin across host species and environments.Quantifying salamander skin microbiome structure contributes to our understanding of how host-associated bacteria are distributed across the landscape, among host species, and their putative relationship with disease.We characterized skin microbiome structure (alpha-diversity, beta-diversity and bacterial operational taxonomic unit [OTU] abundances) using 16S rRNA gene sequencing for co-occurring Plethodon salamander species (35 Plethodon cinereus, 17 Plethodon glutinosus, 10 Plethodon cylindraceus) at three localities to differentiate the effects of host species from environmental factors on the microbiome. We sampled the microbiome of P. cinereus along an elevational gradient (n = 50, 700–1,000 m a.s.l.) at one locality to determine whether elevation predicts microbiome structure. Finally, we quantified prevalence and abundance of putatively anti-Bd bacteria to determine if Bd-inhibitory bacteria are dominant microbiome members.Co-occurring salamanders had similar microbiome structure, but among sites salamanders had dissimilar microbiome structure for beta-diversity and abundance of 28 bacterial OTUs. We found that alpha-diversity increased with elevation, beta-diversity and the abundance of 17 bacterial OTUs changed with elevation (16 OTUs decreasing, 1 OTU increasing). We detected 11 putatively anti-Bd bacterial OTUs that were present on 90% of salamanders and made up an average relative abundance of 83% (SD ± 8.5) per salamander. All salamanders tested negative for Bd.We conclude that environment is more influential in shaping skin microbiome structure than host differences in these congeneric species, and suggest that environmental characteristics that covary with elevation influence microbiome structure. High prevalence and abundance of anti-Bd bacteria may contribute to low Bd levels in these populations of Plethodon salamanders.
75 FR 35834 - Receipt of Applications for Endangered Species Permits
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-23
... presence/ absence surveys for the reticulated flatwoods salamander (Ambystoma bishopi) and frosted flatwoods salamander (Ambystoma cingulatum) in South Carolina and Florida. Applicant: University of Georgia... surveys for the reticulated flatwoods salamander in Santa Rosa County, Florida. Applicant: Conservation...
75 FR 33633 - Endangered Species Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-14
..., handle, kill and remove from the wild) the California tiger salamander (Ambystoma californiense) in..., handle, and release) the California tiger salamander (Ambystoma californiense) in conjunction with... applicant requests a permit to take (survey, capture, handle, and release) the California tiger salamander...
78 FR 9727 - Endangered Species Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-11
... California red-legged frog (Rana draytonii) (R. aurora d.) and the California tiger salamander (central DPS... salamander (central DPS) (Ambystoma californiense) in conjunction with survey and scientific research...) the California tiger salamander (Santa Barbara County DPS and Sonoma County DPS) (Ambystoma...
Amphibian commerce as a likely source of pathogen pollution.
Picco, Angela M; Collins, James P
2008-12-01
The commercial trade of wildlife occurs on a global scale. In addition to removing animals from their native populations, this trade may lead to the release and subsequent introduction of nonindigenous species and the pathogens they carry. Emerging infectious diseases, such as chytridiomycosis caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), and ranaviral disease have spread with global trade in amphibians and are linked to amphibian declines and die-offs worldwide, which suggests that the commercial trade in amphibians may be a source of pathogen pollution. We screened tiger salamanders involved in the bait trade in the western United States for both ranaviruses and Bd with polymerase chain reaction and used oral reports from bait shops and ranavirus DNA sequences from infected bait salamanders to determine how these animals and their pathogens are moved geographically by commerce. In addition, we conducted 2 surveys of anglers to determine how often tiger salamanders are used as bait and how often they are released into fishing waters by anglers, and organized bait-shop surveys to determine whether tiger salamanders are released back into the wild after being housed in bait shops. Ranaviruses were detected in the tiger salamander bait trade in Arizona, Colorado, and New Mexico, and Bd was detected in Arizona bait shops. Ranaviruses were spread geographically through the bait trade. All tiger salamanders in the bait trade were collected from the wild, and in general they moved east to west and north to south, bringing with them their multiple ranavirus strains. Finally, 26-73% of anglers used tiger salamanders as fishing bait, 26-67% of anglers released tiger salamanders bought as bait into fishing waters, and 4% of bait shops released tiger salamanders back into the wild after they were housed in shops with infected animals. The tiger salamander bait trade in the western United States is a useful model for understanding the consequences of the unregulated anthropogenic movement of amphibians and their pathogens through trade.
A new model of the spinal locomotor networks of a salamander and its properties.
Liu, Qiang; Yang, Huizhen; Zhang, Jinxue; Wang, Jingzhuo
2018-05-22
A salamander is an ideal animal for studying the spinal locomotor network mechanism of vertebrates from an evolutionary perspective since it represents the transition from an aquatic to a terrestrial animal. However, little is known about the spinal locomotor network of a salamander. A spinal locomotor network model is a useful tool for exploring the working mechanism of the spinal networks of salamanders. A new spinal locomotor network model for a salamander is built for a three-dimensional (3D) biomechanical model of the salamander using a novel locomotion-controlled neural network model. Based on recent experimental data on the spinal circuitry and observational results of gaits of vertebrates, we assume that different interneuron sets recruited for mediating the frequency of spinal circuits are also related to the generation of different gaits. The spinal locomotor networks of salamanders are divided into low-frequency networks for walking and high-frequency networks for swimming. Additionally, a new topological structure between the body networks and limb networks is built, which only uses the body networks to coordinate the motion of limbs. There are no direct synaptic connections among limb networks. These techniques differ from existing salamander spinal locomotor network models. A simulation is performed and analyzed to validate the properties of the new spinal locomotor networks of salamanders. The simulation results show that the new spinal locomotor networks can generate a forward walking gait, a backward walking gait, a swimming gait, and a turning gait during swimming and walking. These gaits can be switched smoothly by changing external inputs from the brainstem. These properties are consistent with those of a real salamander. However, it is still difficult for the new spinal locomotor networks to generate highly efficient turning during walking, 3D swimming, nonrhythmic movements, and so on. New experimental data are required for further validation.
Marvin, Glenn A; Davis, Kayla; Dawson, Jacob
2016-05-01
The low-temperature limit for feeding in some salamander species (Desmognathus, Plethodontidae) has been inferred from field studies of seasonal variation in salamander activity and gut contents, which could not determine whether feeding is more dependent on environmental conditions influencing salamander foraging behavior or prey availability and movement. We performed two controlled laboratory experiments to examine the effect of short-term (acute) low body temperature on predatory behavior and prey-capture efficiency in a semiaquatic plethodontid salamander (Desmognathus conanti). In the first experiment, we quantified variation in the feeding responses of cold salamanders (at 1, 3, 5 and 7°C) to a video recording of a walking, warm (15°C) cricket to determine the lower thermal limit for predatory behavior, independent of any temperature effect on movement of prey. Experimental-group salamanders exhibited vigorous feeding responses at 5 and 7°C, large variation in feeding responses both among and within individuals (over time) at 3°C, and little to no feeding response at 1°C. Feeding responses at both 1 and 3°C were significantly less than at each higher temperature, whereas responses of control-group individuals at 15°C did not vary over time. In the second experiment, we quantified feeding by cold salamanders (at 3, 5, 7 and 11°C) on live, warm crickets to examine thermal effects on prey-capture ability. The mean feeding response to live crickets was significantly less at 3°C than at higher temperatures; however, 50% of salamanders captured and ingested prey with high efficiency at this temperature. We conclude that many individuals stalk and capture prey at very low temperatures (down to 3°C). Our results support a growing body of data that indicate many plethodontid salamanders feed at temperatures only a few degrees above freezing. Copyright © 2016 Elsevier Inc. All rights reserved.
Detection of Batrachochytrium dendrobatidis in endemic salamander species from central Texas.
Gaertner, James P; Forstner, Michael R J; O'Donnell, Lisa; Hahn, Dittmar
2009-03-01
A nested PCR protocol was used to analyze five endemic salamander species from Central Texas for the presence of the emerging pathogen, chytrid fungus (Batrachochytrium dendrobatidis). Chytrid fungus was detected from samples of each of the five species sampled: with low abundance, in the Texas salamander (Eurycea neotenes) (1 positive out of 16 individuals tested; 1/16), the Blanco River Springs salamander (E. pterophila) (1/20), the threatened San Marcos salamander (E. nana) (1/17), and the endangered Barton Springs salamander (E. sosorum) (1/7); much higher abundance was obtained for the Jollyville Plateau salamander (E. tonkawae) (6/14), which has recently been petitioned for addition to the USA endangered species list. With one exception, sequences of PCR products were identical to the 5.8S rRNA gene, and nearly so for the flanking internal transcribed spacer (ITS) regions of B. dendrobatidis which confirmed the detection of chytrid fungus, and thus demonstrated the presence of this pathogen in populations of endangered species in Central Texas. These confirmations were obtained from nonconsumptive tail clippings which confirms the applicability of historically collected samples from other studies in the examination of the fungus across time.
78 FR 16703 - Endangered Species Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-18
... California tiger salamander (Santa Barbara County DPS and Sonoma County DPS) (Ambystoma californiense) in... requests a permit to take (harass by survey, capture, handle, and release) the California tiger salamander... tiger salamander (Santa Barbara County DPS) (Ambystoma californiense) in conjunction with surveys and...
75 FR 18482 - Stanford University Habitat Conservation Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-12
... includes the federally listed as threatened California tiger salamander (Ambystoma californiense... preserved as needed. A 315-acre ``California Tiger Salamander Reserve'' also would be established at the... habitat within the Reserve would be permanently protected to offset any loss of tiger salamander habitat...
78 FR 55287 - Endangered Species Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-10
... requests a permit to take (harass by survey, capture, handle, and release) the California tiger salamander...) the California tiger salamander (Santa Barbara County DPS and Sonoma County DPS) (Ambystoma...) the California tiger salamander (Santa Barbara County DPS and Sonoma County DPS) (Ambystoma...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
...We, the U.S. Fish and Wildlife Service (Service), propose to list the Austin blind salamander, Jollyville Plateau salamander, Georgetown salamander, and Salado salamander as endangered under the Endangered Species Act of 1973, as amended (Act), and propose to designate critical habitat for the species. In total, we propose to designate approximately 5,983 acres (2,440 hectares) as critical habitat for the four species. The proposed critical habitat is located in Travis, Williamson, and Bell Counties, Texas.
Reintroduction and Post-Release Survival of a Living Fossil: The Chinese Giant Salamander
Zhang, Lu; Jiang, Wei; Wang, Qi-Jun; Zhao, Hu; Zhang, Hong-Xing; Marcec, Ruth M.; Willard, Scott T.; Kouba, Andrew J.
2016-01-01
Captive rearing and reintroduction / translocation are increasingly used as tools to supplement wild populations of threatened species. Reintroducing captive-reared Chinese giant salamanders may help to augment the declining wild populations and conserve this critically endangered amphibian. We released 31 captive-reared juvenile giant salamanders implanted with VHF radio transmitters at the Heihe River (n = 15) and the Donghe River (n = 16) in the Qinling Mountains of central China. Salamanders were monitored every day for survival from April 28th 2013 to September 3rd 2014. We attempted to recapture all living individuals by the end of the study, measured their body mass and total body length, and checked for abnormalities and presence of external parasites. Two salamanders at the Heihe River and 10 animals at the Donghe River survived through the project timeline. Nine salamanders were confirmed dead, while the status of the other 10 animals was undetermined. The annual survival rate of giant salamanders at the Donghe River (0.702) was 1.7-fold higher than that at the Heihe River (0.405). Survival increased as individuals were held longer following surgery, whereas body mass did not have a significant impact on survival rate. All salamanders recaptured from the Donghe River (n = 8) increased in mass (0.50 ± 0.13 kg) and length (5.5 ± 1.5 cm) after approximately 11 months in the wild, and they were only 7% lighter than wild animals of the same length (mean residual = -0.033 ± 0.025). Our results indicate that captive-reared Chinese giant salamanders can survive in the wild one year after release and adequate surgical recovery time is extremely important to post-release survival. Future projects may reintroduce older juveniles to achieve better survival and longer monitoring duration. PMID:27258650
Diagnostic and molecular evaluation of three iridovirus-associated salamander mortality events
Docherty, D.E.; Meteyer, C.U.; Wang, Jingyuan; Mao, J.; Case, S.T.; Chinchar, V.G.
2003-01-01
In 1998 viruses were isolated from tiger salamander larvae (Ambystoma tigrinum diaboli and A. tigrinum melanostictum) involved in North Dakota and Utah (USA) mortality events and spotted salamander (A. maculatum) larvae in a third event in Maine (USA). Although sympatric caudates and anurans were present at all three sites only ambystomid larvae appeared to be affected. Mortality at the North Dakota site was in the thousands while at the Utah and Maine sites mortality was in the hundreds. Sick larvae were lethargic and slow moving. They swam in circles with obvious buoyancy problems and were unable to remain upright. On the ventral surface, near the gills and hind limbs, red spots or swollen areas were noted. Necropsy findings included: hemorrhages and ulceration of the skin, subcutaneous and intramuscular edema, swollen and pale livers with multifocal hemorrhage, and distended fluid-filled intestines with areas of hemorrhage. Light microscopy revealed intracytoplasmic inclusions, suggestive of a viral infection, in a variety of organs. Electron microscopy of ultra thin sections of the same tissues revealed iridovirus-like particles within the inclusions. These viruses were isolated from a variety of organs, indicating a systemic infection. Representative viral isolates from the three mortality events were characterized using molecular assays. Characterization confirmed that the viral isolates were iridoviruses and that the two tiger salamander isolates were similar and could be distinguished from the spotted salamander isolate. The spotted salamander isolate was similar to frog virus 3, the type species of the genus Ranavirus, while the tiger salamander isolates were not. These data indicate that different species of salamanders can become infected and die in association with different iridoviruses. Challenge assays are required to determine the fish and amphibian host range of these isolates and to assess the susceptibility of tiger and spotted salamanders to heterologous virus isolates.
Lefcort, H; Hancock, K A; Maur, K M; Rostal, D C
1997-05-01
Amphibians appear to be declining worldwide. One cause of their decline may be used crankcase oil which leaks from motor vehicles and washes into ponds. Once in ponds, the oil may either be directly toxic to amphibians, or may indirectly affect them by disrupting food chains. The effects of oil may also be compounded by naturally occurring materials in the water column such as silt. Silt may interfere with respiration across gill surfaces. This study examined the effects of oil and silt on the growth and metamorphosis of larval mole salamanders, Ambystoma opacum and A. tigrinum tigrinum. In Experiment One it examined ponds with and without silty water and oil pollution to determine their suitability as habitats for salamander larvae. In Experiment Two it studied the effects of low levels of oil combined with silt on animals raised in the laboratory and fed prey items not raised in oil. In Experiment Three, it explored the effects of oil at an ecosystem level by raising the salamanders in the field in plastic micromesocosms that mimicked small ponds. Finally, in Experiment Four, in the laboratory, it examined the short-term survival of salamanders in high concentrations of oil. This study found that ponds containing oil and silt produce salamanders of reduced size and weight. Furthermore, while salamanders are relatively robust to the short term effects of large concentrations of used motor oil, oil has deleterious effects on the community and therefore exerts an indirect negative effect on salamanders. In the mi- cro-mesocosms containing oil, salamanders were smaller and weighed less than animals not raised in oil. Furthermore, silt results in reduced growth, earlier metamorphosis, and increased susceptibility to the water mold Saprolegnia parasitica.
Jung, R.E.; Royle, J. Andrew; Sauer, J.R.; Addison, C.; Rau, R.D.; Shirk, J.L.; Whissel, J.C.
2005-01-01
Stream salamanders in the family Plethodontidae constitute a large biomass in and near headwater streams in the eastern United States and are promising indicators of stream ecosystem health. Many studies of stream salamanders have relied on population indices based on counts rather than population estimates based on techniques such as capture-recapture and removal. Application of estimation procedures allows the calculation of detection probabilities (the proportion of total animals present that are detected during a survey) and their associated sampling error, and may be essential for determining salamander population sizes and trends. In 1999, we conducted capture-recapture and removal population estimation methods for Desmognathus salamanders at six streams in Shenandoah National Park, Virginia, USA. Removal sampling appeared more efficient and detection probabilities from removal data were higher than those from capture-recapture. During 2001-2004, we used removal estimation at eight streams in the park to assess the usefulness of this technique for long-term monitoring of stream salamanders. Removal detection probabilities ranged from 0.39 to 0.96 for Desmognathus, 0.27 to 0.89 for Eurycea and 0.27 to 0.75 for northern spring (Gyrinophilus porphyriticus) and northern red (Pseudotriton ruber) salamanders across stream transects. Detection probabilities did not differ across years for Desmognathus and Eurycea, but did differ among streams for Desmognathus. Population estimates of Desmognathus decreased between 2001-2002 and 2003-2004 which may be related to changes in stream flow conditions. Removal-based procedures may be a feasible approach for population estimation of salamanders, but field methods should be designed to meet the assumptions of the sampling procedures. New approaches to estimating stream salamander populations are discussed.
DeGross, Douglas J.; Bury, R. Bruce
2007-01-01
The Plethodon elongatus Complex in the Klamath-Siskiyou Ecoregion of southern Oregon and northern California includes three species: the Del Norte salamander, Plethodon elongatus; the Siskiyou Mountains salamander, P. stormi; and the Scott Bar salamander, P. asupak. This review aims to summarize the current literature and information available on select topics for P. stormi and P. asupak. These are both terrestrial salamanders belonging to the Family Plethodontidae, which contains more species and has a wider geographic distribution than any other family of salamanders (Wake 1966, 2006; Pough 1989). The genera of this family have greatly diversified ecologically across North America, Central America, northern South America, Sardinia, southeastern France and northwestern Italy, and have recently been discovered on the Korean peninsula (Min et al. 2005). The genus Plethodon is found exclusively in North America and is split into three distinct clades, based upon morphology and phylogenetics (Highton and Larson 1979): eastern small Plethodon, eastern large Plethodon, and the western Plethodon. The western Plethodon are the greatest representation of Plethodontidae in the Pacific Northwest, with 8 species. The two species with the most restricted ranges of these regional congeners are the Siskiyou Mountains and Scott Bar salamanders. These salamanders occupy the interior of the Klamath-Siskiyou Ecoregion which straddles the California and Oregon state lines, between Siskiyou County (CA) and Jackson and Josephine Counties (OR). The relatively recent discovery of P. asupak (Mead et al. 2005) and the limited range of both species have created an environment of uncertain conservation status for these species. This review will focus on four central topics of concern for land and resource managers: Biology; Taxonomy; Habitat; and Detection Probabilities/Occupancy.
78 FR 27249 - Endangered Species Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-09
... samples, and release) the California tiger salamander (Santa Barbara County DPS and Sonoma County DPS... renewal to take (harass by survey, capture, handle, mark, and release) the California tiger salamander..., mark, release, and collect) the Santa Cruz long-toed salamander (Ambystoma macrodactylum croceum), in...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-20
...), including the endangered fountain darter (Etheostoma fonticola), threatened San Marcos salamander (Eurycea nana), endangered San Marcos gambusia (Gambusia georgei), endangered Texas blind salamander...), Comal Springs salamander (Eurycea sp.), and Texas troglobitic water slater (Lirceolus smithii) in case...
Characterization of the ecological requirements for three plethodontid salamander species
Jessica A. Wooten; William B. Sutton; Thomas K. Pauley
2010-01-01
Increased availability of habitat and climate data has facilitated much research concerning the influence of these characteristics on the structure of salamander communities. We aimed to outline environmental requirements influencing the distribution of three sympatric plethodontid salamander species, including Plethodon cinereus, Desmognathus ochrophaeus...
50 CFR 17.43 - Special rules-amphibians.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Special rules—amphibians. (a) San Marcos salamander (Eurycea nana). (1) All provisions of § 17.31 apply to... livestock. (c) California tiger salamander (Ambystoma californiense). (1) Which populations of the California tiger salamander are covered by this special rule? This rule covers the California tiger...
Stream water temperature limits occupancy of salamanders in mid-Atlantic protected areas
Grant, Evan H. Campbell; Wiewel, Amber N. M.; Rice, Karen C.
2014-01-01
Stream ecosystems are particularly sensitive to urbanization, and tolerance of water-quality parameters is likely important to population persistence of stream salamanders. Forecasted climate and landscape changes may lead to significant changes in stream flow, chemical composition, and temperatures in coming decades. Protected areas where landscape alterations are minimized will therefore become increasingly important for salamander populations. We surveyed 29 streams at three national parks in the highly urbanized greater metropolitan area of Washington, DC. We investigated relationships among water-quality variables and occupancy of three species of stream salamanders (Desmognathus fuscus, Eurycea bislineata, and Pseudotriton ruber). With the use of a set of site-occupancy models, and accounting for imperfect detection, we found that stream-water temperature limits salamander occupancy. There was substantial uncertainty about the effects of the other water-quality variables, although both specific conductance (SC) and pH were included in competitive models. Our estimates of occupancy suggest that temperature, SC, and pH have some importance in structuring stream salamander distribution.
Crocker, J.B.; Bank, M.S.; Loftin, C.S.; Jung Brown, R.E.
2007-01-01
We investigated effects of observers and stream flow on Northern Two-Lined Salamander (Eurycea bislineata bislineata) counts in streams in Acadia (ANP) and Shenandoah National Parks (SNP). We counted salamanders in 22 ANP streams during high flow (May to June 2002) and during low flow (July 2002). We also counted salamanders in SNP in nine streams during high flow (summer 2003) and 11 streams during low flow (summers 2001?02, 2004). In 2002, we used a modified cover-controlled active search method with a first and second observer. In succession, observers turned over 100 rocks along five 1-m belt transects across the streambed. The difference between observers in total salamander counts was not significant. We counted fewer E. b. bislineata during high flow conditions, confirming that detection of this species is reduced during high flow periods and that assessment of stream salamander relative abundance is likely more reliable during low or base flow conditions.
Kurtis R. Moseley; W. Mark Ford; Thomas M. Schuler
2008-01-01
To understand long-term impacts of partial cutting practices on stream-dwelling salamanders in the central Appalachians, we examined pooled abundance of Desmognathus fuscus and D. monticola salamanders (hereafter Desmognathus) in headwater streams located within long-term silvicultural research compartments on...
Predicting variation in microhabitat utilization of terrestrial salamanders
Katherine M. O' Donnell; Frank R. Thompson; Raymond D. Semlitsch
2014-01-01
Understanding patterns of microhabitat use among terrestrial salamanders is important for predicting their responses to natural and anthropogenic disturbances. The dependence of terrestrial salamanders on cutaneous respiration limits their spatial distribution to moist, humid areas. Although many studies have shown negative effects of canopy removal on terrestrial...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-15
... fonticola) Texas blind salamander (Eurycea [=Typhlomolge] rathbuni) San Marcos gambusia (Gambusia georgei) Threatened San Marcos salamander (Eurycea nana) Non-listed Species Texas cave diving beetle (Haideoporus texanus) Texas troglobitic water slater (Lirceolus smithii) Comal Springs salamander (Eurycea sp.) Take of...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
... Critical Habitat for the Sonoma County Distinct Population Segment of the California Tiger Salamander... Sonoma County Distinct Population Segment of the California tiger salamander (Ambystoma californiense... (ac) (22,580 hectares (ha)) of land as critical habitat for the Sonoma California tiger salamander. We...
Plethodontid salamander response to Silvilcultural Practices in Missouri Ozark forests
Laura A. Herbeck; David R. Larsen
1999-01-01
There is little information on the effects of tree harvest on salamander populations in the midwestern United States. We present data on plethodontid salamander densities in replicated stands of three forest age classes in the southeastern Ozarks of Missouri. Forest age classes consisted of regeneration-cut sites
Sweeten, Sara E.; Ford, W. Mark
2016-01-01
Within the central Appalachia Coalfields, the aquatic impacts of large-scale land uses, such as surface mining, are of particular ecological concern. Identification and quantification of land use impacts to aquatic ecosystems are a necessary first step to aid in mitigation of negative consequences to biota. However, quantifying physical environmental quality such as stream and riparian habitat often can be quite difficult, particularly when there is time or fiscal limitations. As such, standard protocols such as the U.S. EPA’s Stream Habitat Rapid Bioassessment Protocol have been established to be cost- and time-effective. This protocol estimates ten different stream and riparian conditions on a scale of 0 to 20. Unfortunately, using estimations can be problematic because of large potential variation in the scoring depending on differences in training, experience, and opinion of the personnel doing the estimations. In order to help negate these biases and provide a simplified process, the U.S. Army Corps of Engineers (USACE) developed a functional assessment for streams that measures 11 stream and riparian variables along with watershed land use to calculate three different scores, a hydrology score, biogeochemical score, and habitat score. In our study, we examined the correlation of stream salamander presence and abundance to the three USACE scores. In the summer of 2013, we visited 70 sites in the southwest Virginia Coalfields multiple times to collect salamanders and quantify stream and riparian microhabitat parameters. Using occupancy and abundance analyses, we found strong relationships among three Desmognathus spp. and the USACE Habitat FCI score. Accordingly, the Habitat FCI score provides a reasonable assessment of physical instream and riparian conditions that may serve as a surrogate for understanding the community composition and integrity of aquatic salamander in the region.
Skutschas, Pavel; Stein, Koen
2015-01-01
Kokartus honorarius from the Middle Jurassic (Bathonian) of Kyrgyzstan is one of the oldest salamanders in the fossil record, characterized by a mixture of plesiomorphic morphological features and characters shared with crown-group salamanders. Here we present a detailed histological analysis of its long bones. The analysis of a growth series demonstrates a significant histological maturation during ontogeny, expressed by the progressive appearance of longitudinally oriented primary vascular canals, primary osteons, growth marks, remodelling features in primary bone tissues, as well as progressive resorption of the calcified cartilage, formation of endochondral bone and development of cartilaginous to bony trabeculae in the epiphyses. Apart from the presence of secondary osteons, the long bone histology of Kokartus is very similar to that of miniaturized temnospondyls, other Jurassic stem salamanders, miniaturized seymouriamorphs and modern crown-group salamanders. We propose that the presence of secondary osteons in Kokartus honorarius is a plesiomorphic feature, and the loss of secondary osteons in the long bones of crown-group salamanders as well as in those of miniaturized temnospondyls is the result of miniaturization processes. Hitherto, all stem salamander long bong histology (Kokartus, Marmorerpeton and ‘salamander A’) has been generally described as having paedomorphic features (i.e. the presence of Katschenko's Line and a layer of calcified cartilage), these taxa were thus most likely neotenic forms. The absence of clear lines of arrested growth and annuli in long bones of Kokartus honorarius suggests that the animals lived in an environment with stable local conditions. PMID:25682890
Skutschas, Pavel; Stein, Koen
2015-04-01
Kokartus honorarius from the Middle Jurassic (Bathonian) of Kyrgyzstan is one of the oldest salamanders in the fossil record, characterized by a mixture of plesiomorphic morphological features and characters shared with crown-group salamanders. Here we present a detailed histological analysis of its long bones. The analysis of a growth series demonstrates a significant histological maturation during ontogeny, expressed by the progressive appearance of longitudinally oriented primary vascular canals, primary osteons, growth marks, remodelling features in primary bone tissues, as well as progressive resorption of the calcified cartilage, formation of endochondral bone and development of cartilaginous to bony trabeculae in the epiphyses. Apart from the presence of secondary osteons, the long bone histology of Kokartus is very similar to that of miniaturized temnospondyls, other Jurassic stem salamanders, miniaturized seymouriamorphs and modern crown-group salamanders. We propose that the presence of secondary osteons in Kokartus honorarius is a plesiomorphic feature, and the loss of secondary osteons in the long bones of crown-group salamanders as well as in those of miniaturized temnospondyls is the result of miniaturization processes. Hitherto, all stem salamander long bong histology (Kokartus, Marmorerpeton and 'salamander A') has been generally described as having paedomorphic features (i.e. the presence of Katschenko's Line and a layer of calcified cartilage), these taxa were thus most likely neotenic forms. The absence of clear lines of arrested growth and annuli in long bones of Kokartus honorarius suggests that the animals lived in an environment with stable local conditions. © 2015 Anatomical Society.
Miller, M.P.; Haig, S.M.; Wagner, R.S.
2006-01-01
The Southern torrent salamander (Rhyacotriton variegatus) was recently found not warranted for listing under the US Endangered Species Act due to lack of information regarding population fragmentation and gene flow. Found in small-order streams associated with late-successional coniferous forests of the US Pacific Northwest, threats to their persistence include disturbance related to timber harvest activities. We conducted a study of genetic diversity throughout this species' range to 1) identify major phylogenetic lineages and phylogeographic barriers and 2) elucidate regional patterns of population genetic and spatial phylogeographic structure. Cytochrome b sequence variation was examined for 189 individuals from 72 localities. We identified 3 major lineages corresponding to nonoverlapping geographic regions: a northern California clade, a central Oregon clade, and a northern Oregon clade. The Yaquina River may be a phylogeographic barrier between the northern Oregon and central Oregon clades, whereas the Smith River in northern California appears to correspond to the discontinuity between the central Oregon and northern California clades. Spatial analyses of genetic variation within regions encompassing major clades indicated that the extent of genetic structure is comparable among regions. We discuss our results in the context of conservation efforts for Southern torrent salamanders. ?? The American Genetic Association. 2006. All rights reserved.
Breanna L. Riedel; Kevin R. Russell; W. Mark Ford; Katherine P. O' Neill; Harry W. Godwin
2008-01-01
Woodland salamander responses to either traditional grazing or silvopasture systems are virtually unknown. An information-theoretic modelling approach was used to evaluate responses of red-backed salamanders (Plethodon cinereus) to silvopasture and meadow conversions in southern West Virginia. Searches of area-constrained plots and artificial...
A nondestructive technique to monitor the relative abundance of terrestrial salamanders
Richard M. DeGraaf; Mariko Yamasaki
1992-01-01
Salamanders are abundant vertebrates in many forest ecosystems, and their annual biomass production can be important in forest food webs (Pough et al. 1987). Population densities of eastern redback salamanders (Plethodon cinereus) can exceed 2 individuals/m2 in deciduous forests of the United States (Heatwole 1962, Jaeger 1980...
Short-Term Response of Jordan's Salamander to a Shelterwood Timber Harvest in Western North Carolina
Chad E. Bartman; Kathleen C. Parker; Joshua Laerm; Timothy S. McCay
2001-01-01
The effects of shelterwood cutting on the abundance of Jordan's salamander (Plethodon jordani) in western North Carolina were examined during 1997 and 1998. Terrestrial salamander assemblages were sampled before, immediately after, and one year after timber harvest on control and treatment plots to estimate abundance. We also surveyed...
Effects of edge contrast on redback salamander distribution in even-aged northern hardwoods
Richard M. DeGraaf; Mariko Yamasaki
2002-01-01
Terrestrial salamanders are sensitive to forest disturbance associated with even-aged management. We studied the distribution of redback salamanders (Plethodon cinereus) for 4 yr at edges between even-aged northern hardwood stands along three replicate transects in each of three edge contrast types: regeneration/mature, sapling/mature, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
... Shenandoah salamander. We will also review the following threatened species: Knieskern's beaked-rush, small...; 57 FR 54722. Shenandoah salamander Plethodon Endangered........ U.S.A.; VA........ August 18, 1989..., 330 Cummings Street, Abingdon, VA 24210. Shenandoah salamander....... Cindy Schulz, (804) U.S. Fish...
Diet of the Del Norte Salamander (Plethodon elongatus): Differences by age, gender, and season.
Clara A. Wheeler; Nancy E. Karraker; Hartwell H. Welsh; Lisa M. Ollivier
2007-01-01
Terrestrial salamanders are integral components of forest ecosystems and the examination of their feeding habits may provide useful information regarding various ecosystem processes. We studied the diet of the Del Norte Salamander (Plethodon elongatus) and assessed diet differences between age classes, genders, and seasons. The stomachs of 309...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... Salamanders Within the Santa Fe National Forest, New Mexico AGENCY: Fish and Wildlife Service, Interior... Jemez Mountain salamander (Plethodon neomexicanus) as endangered throughout its range in New Mexico... individual Jemez Mountain salamanders being needlessly harmed or killed. We, the U.S. Fish and Wildlife...
Currens, C.R.; Liss, W.J.; Hoffman, R.L.
2007-01-01
The formation of amphibian population structure is directly affected by predation. Although aquatic predators have been shown to have direct negative effects on larval salamanders in laboratory and field experiments, the potential impacts of gape-limited fish on larval salamander growth has been largely underexplored. We designed an enclosure experiment conducted in situ to quantify the effects of gape-limited Brook Trout (Salvelinus fontinalis) on larval Northwestern Salamander (Ambystoma gracile) growth. We specifically tested whether the presence of fish too small to consume larvae had a negative effect on larval growth. The results of this study indicate that the presence of a gape-limited S. fontinalis can have a negative effect on growth of larval A. gracile salamanders. Copyright 2007 Society for the Study of Amphibians and Reptiles.
Bank, M.S.; Loftin, C.S.; Jung, R.E.
2005-01-01
Mercury (Hg) bioaccumulation in salamanders has received little attention despite widespread Hg contamination of aquatic ecosystems and worldwide amphibian declines. Here we report concentrations of methyl Hg (MeHg) and total Hg in larval northern two-lined salamanders (Eurycea bislineata bislineata) collected from streams in Acadia National Park (ANP), Maine, and Bear Brook Watershed, Maine (BBWM; a paired, gauged watershed treated with bimonthly applications (25 kg/ha/yr) of ammonium sulfate [(NH4)(2)SO4]) since 1989), and Shenandoah National Park (SNP), Virginia. MeHg comprised 73-97% of total Hg in the larval salamander composite samples from ANP. At BBWM we detected significantly higher total Hg levels in larvae from the (NH4)(2)SO4 treatment watershed. At ANP total Hg concentrations in salamander larvae were significantly higher from streams in unburned watersheds in contrast with larval samples collected from streams located in watersheds burned by the 1947 Bar Harbor fire. Additionally, total Hg levels were significantly higher in salamander larvae collected at ANP in contrast with SNP. Our results suggest that watershed-scale attributes including. re history, whole-catchment (NH4)(2)SO4 additions, wetland extent, and forest cover type influence mercury bioaccumulation in salamanders inhabiting lotic environments. We also discuss the use of this species as an indicator of Hg bioaccumulation in stream ecosystems.
Response of two terrestrial salamander species to spring burning in the Sierra Nevada, California
Karen E. Bagne; Kathryn L. Purcell
2009-01-01
Terrestrial salamanders may be vulnerable to prescribed fire applications due to their moist, permeable skin and limited mobility. We present data collected on terrestrial salamander populations in a ponderosa pine-dominated forest in the Sierra Nevada where fire was applied in the spring. Two species, Sierra ensatina (Ensatina eschscholtzi platensis...
Do silvicultural practices to restore oaks affect salamanders in the short term?
Amy L. Raybuck; Christopher E. Moorman; Sarah R. Fritts; Cathryn H. Greenberg; Christopher S. Deperno; Dean M. Simon; Gordon S. Warburton
2015-01-01
Salamanders are an important ecological component of eastern hardwood forests and may be affected by natural or silvicultural disturbances that alter habitat structure and associated microclimate. From May to August in 2008 (pre- treatment) and 2011 (post-treatment), we evaluated the response of salamanders to three silvicultural practices designed to promote oak...
Jami E. MacNeil; Rod N. Williams
2013-01-01
Terrestrial salamanders are ideal indicators of forest ecosystem integrity due to their abundance, their role in nutrient cycling, and their sensitivity to environmental change. To understand better how terrestrial salamanders are affected by forest management practices, we monitored species diversity and abundance before implementation of timber harvests within the...
Eric B. Sucre; Jessica A. Homyack; Thomas R. Fox; Carola A. Haas
2010-01-01
The use of amphibians as biological indicators of ecosystem health has received considerable attention because of the increasing importance placed upon maintaining biodiversity in forested ecosystems. In this study, we imposed three different eastern red-backed salamander (Plethodon cinereus) treatments: 1) low (n = 4; added 0 salamanders to each...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... Austin blind salamander as an additional covered species; to increase the amount of take for Barton Springs salamander; and to extend the permit term for an additional 20 years. DATES: We are issuing the... authorizes incidental take of two animal species (covered species), the endangered Barton Springs salamander...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-22
... Species Act incidental take permit, with a major amendment to add the Austin blind salamander, which is... salamander; and to extend the permit term for an additional 20 years. DATES: Comments: We will accept... (covered species), the Barton Springs salamander (Eurycea sosorum), which is listed as endangered, and the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-02
... To List the Bay Springs Salamander as Endangered AGENCY: Fish and Wildlife Service, Interior. ACTION... finding on a petition to list the Bay Springs salamander (Plethodon ainsworthi) as endangered under the... information that becomes available concerning the status of, or threats to, the Bay Springs salamander or its...
William E Peterman; Raymond D. Semlitch
2009-01-01
Headwater streams are an important and prevalent feature of the eastern North American landscape.These streams provide a wealth of ecosystem services and support tremendous biological diversity, which is predominated by salamanders in the Appalachian region. Salamanders are ubiquitous throughout the region, contributing a significant...
W. Mark Ford; Michael A. Menzel; Timothy S. McCay; Jonathan W. Gassett; Joshua Laerm
2000-01-01
The effects of 2 years post-treatment of group selection and 2-aged timber harvests on woodland salamanders and mammals were assessed on stands in high elevation, southern Appalachian northern red oak (Quercus rubra)-flame azalea (Rhododendron calendulaceum) communities, in the Nantahala National Forest. We collected 4 salamander...
Wagner, R.S.; Miller, Mark P.; Crisafulli, Charles; Haig, Susan M.
2005-01-01
The Larch Mountain salamander (Plethodon larselli Burns, 1954) is an endemic species in the Pacific northwestern United States facing threats related to habitat destruction. To facilitate development of conservation strategies, we used DNA sequences and RAPDs (random amplified polymorphic DNA) to examine differences among populations of this species. Phylogenetic analyses of cytochrome b revealed a clade of haplotypes from populations north of the Columbia River derived from a clade containing haplotypes from the river's southwestern region. Haplotypes from southeastern populations formed a separate clade. Nucleotide diversity was reduced in northern populations relative to southern populations. These results were corroborated by analyses of RAPD loci, which revealed similar patterns of clustering and diversity. Network analyses suggested that northern populations were colonized following a range expansion mediated by individuals from populations located southwest of the river. Changes in the Columbia River's location during the Pliocene and Pleistocene likely released distributional constraints on this species, permitting their northern range expansion. Based on the barrier presented by the Columbia River's present location and differences in haplotype diversity and population structure observed between northern and southern populations, we suggest that designation of separate management units encompassing each region may assist with mitigating different threats to this species.
Zabierek, Kristina C; Gabor, Caitlin R
2016-09-01
Prey may use multiple sensory channels to detect predators, whose cues may differ in altered sensory environments, such as turbid conditions. Depending on the environment, prey may use cues in an additive/complementary manner or in a compensatory manner. First, to determine whether the purely aquatic Barton Springs salamander, Eurycea sosorum, show an antipredator response to visual cues, we examined their activity when exposed to either visual cues of a predatory fish (Lepomis cyanellus) or a non-predatory fish (Etheostoma lepidum). Salamanders decreased activity in response to predator visual cues only. Then, we examined the antipredator response of these salamanders to all matched and mismatched combinations of chemical and visual cues of the same predatory and non-predatory fish in clear and low turbidity conditions. Salamanders decreased activity in response to predator chemical cues matched with predator visual cues or mismatched with non-predator visual cues. Salamanders also increased latency to first move to predator chemical cues mismatched with non-predator visual cues. Salamanders decreased activity and increased latency to first move more in clear as opposed to turbid conditions in all treatment combinations. Our results indicate that salamanders under all conditions and treatments preferentially rely on chemical cues to determine antipredator behavior, although visual cues are potentially utilized in conjunction for latency to first move. Our results also have potential conservation implications, as decreased antipredator behavior was seen in turbid conditions. These results reveal complexity of antipredator behavior in response to multiple cues under different environmental conditions, which is especially important when considering endangered species. Copyright © 2016 Elsevier B.V. All rights reserved.
Boone, M.D.; Little, E.E.; Semlitsch, R.D.
2004-01-01
We examined the interactive effects of overwintered Bullfrog (Rana catesbeiana) tadpoles and pond hydroperiod on a community of larval amphibians in outdoor mesocosms including American Toads (Bufo americanus), Southern Leopard Frogs (Rana sphenocephala), and Spotted Salamanders (Ambystoma maculatum) - species within the native range of Bullfrogs. Spotted Salamanders and Southern Leopard Frogs were negatively influenced by the presence of overwintered Bullfrogs. Spotted Salamanders had shorter larval periods and slightly smaller masses at metamorphosis, and Southern Leopard Frogs had smaller masses at metamorphosis when reared with Bullfrogs than without. Presence of overwintered Bullfrogs, however, did not significantly affect American Toads. Longer pond hydroperiods resulted in greater survival, greater size at metamorphosis, longer larval periods, and later time until emergence of the first metamorphs for Southern Leopard Frog tadpoles and Spotted Salamander larvae. Our study demonstrated that overwintered Bullfrog tadpoles can respond to changing pond hydroperiods and can negatively impact metamorphosis of native amphibians.
The Abundance of Salamanders in Forest Stands with Different Histories of Disturbance
F. Harvey Pough; Donald H. Rhodes; Andres Collazo
1987-01-01
Because of the importance of salamanders in forest food chains, the effects of forest management practices on populations of these animals warrant consideration. We compared the numbers and activity patterns of salamanders in areas of a deciduous forest in central New York State that had been cut selectively for firewood, or c1earcut, or planted with conifers. Numbers...
Jennie A. Wyderko; Ernest F. Benfield; John C. Maerz; Kristen C. Cecala; Lisa K. Belden
2015-01-01
Many factors contribute to parasites varying in host specificity and distribution among potential hosts. Metagonimoides oregonensis is a digenetic trematode that uses stream-dwelling plethodontid salamanders as second intermediate hosts in the Eastern US. We completed a field survey to identify which stream salamander species, at a regional level, are most...
S. Conor Keitzer; Reuben R. Goforth
2013-01-01
Salamanders are abundant consumers in many temperate streams and may be important recyclers of biologically essential nutrients, but their ecological role is poorly understood. The ecological significance of nutrient recycling by salamanders may vary spatially and seasonally because of their potentially patchy distribution in streams and the dynamic nature of stream...
James C. Spickler; Stephen C. Sillett; Sharyn B. Marks; Hartwell H. Welsh Jr.
2006-01-01
We investigated habitat use and movements of the wandering salamander, Aneides vagrans, in an old-growth forest canopy. We conducted a mark-recapture study of salamanders in the crowns of five large redwoods (Sequoia sempervirens) in Prairie Creek Redwoods State Park, California. This represented a first attempt to document the...
Breanna L. Riedel; Kevin R. Russell; W. Mark Ford
2012-01-01
Nonforested habitats such as open fields and pastures have been considered unsuitable for desiccation-prone woodland salamanders such as the Eastern Red-backed Salamander (Plethodon cinereus). Recent research has suggested that Plethodon cinereus may not only disperse across but also reside within open habitats including fields,...
Using a GIS model to assess terrestrial salamander response to alternative forest management plans
Eric J. Gustafson; Nathan L. Murphy; Thomas R. Crow
2001-01-01
A GIS model predicting the spatial distribution of terrestrial salamander abundance based on topography and forest age was developed using parameters derived from the literature. The model was tested by sampling salamander abundance across the full range of site conditions used in the model. A regression of the predictions of our GIS model against these sample data...
DiRenzo, Graziella V.; Yarwood, Stephanie A.; Campbell Grant, Evan H.; Fleischer, Robert C.; Lips, Karen R.
2017-01-01
ABSTRACT Diverse bacteria inhabit amphibian skin; some of those bacteria inhibit growth of the fungal pathogen Batrachochytrium dendrobatidis. Yet there has been no systematic survey of anti-B. dendrobatidis bacteria across localities, species, and elevations. This is important given geographic and taxonomic variations in amphibian susceptibility to B. dendrobatidis. Our collection sites were at locations within the Appalachian Mountains where previous sampling had indicated low B. dendrobatidis prevalence. We determined the numbers and identities of anti-B. dendrobatidis bacteria on 61 Plethodon salamanders (37 P. cinereus, 15 P. glutinosus, 9 P. cylindraceus) via culturing methods and 16S rRNA gene sequencing. We sampled co-occurring species at three localities and sampled P. cinereus along an elevational gradient (700 to 1,000 meters above sea level [masl]) at one locality. We identified 50 anti-B. dendrobatidis bacterial operational taxonomic units (OTUs) and found that the degree of B. dendrobatidis inhibition was not correlated with relatedness. Five anti-B. dendrobatidis bacterial strains occurred on multiple amphibian species at multiple localities, but none were shared among all species and localities. The prevalence of anti-B. dendrobatidis bacteria was higher at Shenandoah National Park (NP), VA, with 96% (25/26) of salamanders hosting at least one anti-B. dendrobatidis bacterial species compared to 50% (7/14) at Catoctin Mountain Park (MP), MD, and 38% (8/21) at Mt. Rogers National Recreation Area (NRA), VA. At the individual level, salamanders at Shenandoah NP had more anti-B. dendrobatidis bacteria per individual (μ = 3.3) than those at Catoctin MP (μ = 0.8) and at Mt. Rogers NRA (μ = 0.4). All salamanders tested negative for B. dendrobatidis. Anti-B. dendrobatidis bacterial species are diverse in central Appalachian Plethodon salamanders, and their distribution varied geographically. The antifungal bacterial species that we identified may play a protective role for these salamanders. IMPORTANCE Amphibians harbor skin bacteria that can kill an amphibian fungal pathogen, Batrachochytrium dendrobatidis. Some amphibians die from B. dendrobatidis infection, whereas others do not. The bacteria that can kill B. dendrobatidis, called anti-B. dendrobatidis bacteria, are thought to influence the B. dendrobatidis infection outcome for the amphibian. Yet how anti-B. dendrobatidis bacterial species vary among amphibian species and populations is unknown. We determined the distribution of anti-B. dendrobatidis bacterial species among three salamander species (n = 61) sampled at three localities. We identified 50 unique anti-B. dendrobatidis bacterial species and found that all of the tested salamanders were negative for B. dendrobatidis. Five anti-B. dendrobatidis bacterial species were commonly detected, suggesting a stable, functional association with these salamanders. The number of anti-B. dendrobatidis bacteria per individual varied among localities but not among co-occurring salamander species, demonstrating that environment is more influential than host factors in structuring the anti-B. dendrobatidis bacterial community. These anti-B. dendrobatidis bacteria may serve a protective function for their salamander hosts. PMID:28213545
Muletz-Wolz, Carly R; DiRenzo, Graziella V; Yarwood, Stephanie A; Campbell Grant, Evan H; Fleischer, Robert C; Lips, Karen R
2017-05-01
Diverse bacteria inhabit amphibian skin; some of those bacteria inhibit growth of the fungal pathogen Batrachochytrium dendrobatidis Yet there has been no systematic survey of anti- B. dendrobatidis bacteria across localities, species, and elevations. This is important given geographic and taxonomic variations in amphibian susceptibility to B. dendrobatidis Our collection sites were at locations within the Appalachian Mountains where previous sampling had indicated low B. dendrobatidis prevalence. We determined the numbers and identities of anti- B. dendrobatidis bacteria on 61 Plethodon salamanders (37 P. cinereus , 15 P. glutinosus , 9 P. cylindraceus ) via culturing methods and 16S rRNA gene sequencing. We sampled co-occurring species at three localities and sampled P. cinereus along an elevational gradient (700 to 1,000 meters above sea level [masl]) at one locality. We identified 50 anti- B. dendrobatidis bacterial operational taxonomic units (OTUs) and found that the degree of B. dendrobatidis inhibition was not correlated with relatedness. Five anti- B. dendrobatidis bacterial strains occurred on multiple amphibian species at multiple localities, but none were shared among all species and localities. The prevalence of anti- B. dendrobatidis bacteria was higher at Shenandoah National Park (NP), VA, with 96% (25/26) of salamanders hosting at least one anti- B. dendrobatidis bacterial species compared to 50% (7/14) at Catoctin Mountain Park (MP), MD, and 38% (8/21) at Mt. Rogers National Recreation Area (NRA), VA. At the individual level, salamanders at Shenandoah NP had more anti- B. dendrobatidis bacteria per individual (μ = 3.3) than those at Catoctin MP (μ = 0.8) and at Mt. Rogers NRA (μ = 0.4). All salamanders tested negative for B. dendrobatidis Anti- B. dendrobatidis bacterial species are diverse in central Appalachian Plethodon salamanders, and their distribution varied geographically. The antifungal bacterial species that we identified may play a protective role for these salamanders. IMPORTANCE Amphibians harbor skin bacteria that can kill an amphibian fungal pathogen, Batrachochytrium dendrobatidis Some amphibians die from B. dendrobatidis infection, whereas others do not. The bacteria that can kill B. dendrobatidis , called anti- B. dendrobatidis bacteria, are thought to influence the B. dendrobatidis infection outcome for the amphibian. Yet how anti- B. dendrobatidis bacterial species vary among amphibian species and populations is unknown. We determined the distribution of anti- B. dendrobatidis bacterial species among three salamander species ( n = 61) sampled at three localities. We identified 50 unique anti- B. dendrobatidis bacterial species and found that all of the tested salamanders were negative for B. dendrobatidis Five anti- B. dendrobatidis bacterial species were commonly detected, suggesting a stable, functional association with these salamanders. The number of anti- B. dendrobatidis bacteria per individual varied among localities but not among co-occurring salamander species, demonstrating that environment is more influential than host factors in structuring the anti- B. dendrobatidis bacterial community. These anti- B. dendrobatidis bacteria may serve a protective function for their salamander hosts. Copyright © 2017 American Society for Microbiology.
Randall J. Wilk; Jeffrey D. Ricklefs; Martin G. Raphael
2014-01-01
We evaluated the effect of forest riparian alternative tree buffer designs on Western Red-backed Salamanders (Plethodon vehiculum) along headwater stream banks in managed forests of the Washington Coast Range. We used pit trap live removals in early autumn to estimate relative abundances of surface-active salamanders before and after 3 levels of riparian buffer...
Donner, Deahn M.; Ribic, Christine; Beck, Albert J.; Higgins, Dale; Eklund, Dan; Reinecke, Susan
2015-01-01
Woodland ponds are important landscape features that help sustain populations of amphibians that require this aquatic habitat for successful reproduction. Species abundance patterns often reflect site-specific differences in hydrology, physical characteristics, and surrounding vegetation. Large-scale processes such as changing land cover and environmental conditions are other potential drivers influencing amphibian populations in the Upper Midwest, but little information exists on the combined effects of these factors. We used Blue-spotted (Ambystoma laterale Hallowell) and Spotted Salamander (A. maculatum Shaw) monitoring data collected at the same woodland ponds thirteen years apart to determine if changing environmental conditions and vegetation cover in surrounding landscapes influenced salamander movement phenology and abundance. Four woodland ponds in northern Wisconsin were sampled for salamanders in April 1992-1994 and 2005-2007. While Blue-spotted Salamanders were more abundant than Spotted Salamanders in all ponds, there was no change in the numbers of either species over the years. However, peak numbers of Blue-spotted Salamanders occurred 11.7 days earlier (range: 9-14 days) in the 2000s compared to the 1990s; Spotted Salamanders occurred 9.5 days earlier (range: 3 - 13 days). Air and water temperatures (April 13- 24) increased, on average, 4.8°C and 3.7°C, respectively, between the decades regardless of pond. There were no discernible changes in canopy openness in surrounding forests between decades that would have warmed the water sooner (i.e., more light penetration). Our finding that salamander breeding phenology can vary by roughly 10 days in Wisconsin contributes to growing evidence that amphibian populations have responded to changing climate conditions by shifting life-cycle events. Managers can use this information to adjust monitoring programs and forest management activities in the surrounding landscape to avoid vulnerable amphibian movement periods. Considering direct and indirect stressors such as changing habitat and environmental conditions simultaneously to better understand trends in space and time can help improve monitoring programs for this taxa, which is at major risk of continued declines.
García-Gutiérrez, Javier; Escalona, Moisés; Mora, Andrés; Díaz De Pascual, Amelia; Fermin, Gustavo
2013-01-01
In this article, a new species of salamander of the genus Bolitoglossa (Eladinea) from the cloud forest near La Mucuy in Sierra Nevada de Mérida, Venezuelan Andes, is described. Bolitoglossa mucuyensis sp. nov. differs from all Venezuelan salamanders, except B. orestes, by a larger SVL/TL ratio, and from La Culata salamander B. orestes by a reduced webbing extension of the front and hind limbs. Additionally, B. mucuyensis sp. nov. and B. orestes diverge 3.12% in terms of the nucleotide sequence of the 16S rRNA gene, as previously reported, and in 8.1% for the cytb gene as shown in this study.
Richgels, Katherine L. D.; Russell, Robin E.; Adams, Michael J.; White, C. LeAnn; Campbell Grant, Evan H.
2016-01-01
A newly identified fungal pathogen, Batrachochytrium salamandrivorans (Bsal), is responsible for mass mortality events and severe population declines in European salamanders. The eastern USA has the highest diversity of salamanders in the world and the introduction of this pathogen is likely to be devastating. Although data are inevitably limited for new pathogens, disease-risk assessments use best available data to inform management decisions. Using characteristics of Bsal ecology, spatial data on imports and pet trade establishments, and salamander species diversity, we identify high-risk areas with both a high likelihood of introduction and severe consequences for local salamanders. We predict that the Pacific coast, southern Appalachian Mountains and mid-Atlantic regions will have the highest relative risk from Bsal. Management of invasive pathogens becomes difficult once they are established in wildlife populations; therefore, import restrictions to limit pathogen introduction and early detection through surveillance of high-risk areas are priorities for preventing the next crisis for North American salamanders.
Welsh, H.H.; Droege, S.
2001-01-01
Terrestrial salamanders of the family P!ethodontidae have unique attributes that make them excellent indicators of biodiversity and ecosystem integrity in forested habitats. Their longevity, small territory size, site fidelity, sensitivity to natural and anthropogenic perturbations, tendency to occur in high densities, and low sampling costs mean that counts of plethodontid salamanders provide numerous advantages over counts of other North American forest organisms for indicating environmental change. Furthermore, they are tightly linked physiologically to microclimatic and successional processes that influence the distribution and abundance of numerous other hydrophilic but difficult-to-study forest-dwelling plants and animals. Ecosystem processes such as moisture cycling, food-web dynamics, and succession, with their related structural and microclimatic variability, all affect forest biodiversity and have been shown to affect salamander populations as well. We determined the variability associated with sampling for plethodontid salamanders by estimating the coefficient of variation (CV) from available time-series data. The median coefficient of variation indicated that variation in counts of individuals among studies was much lower in plethodonticis (27%) than in lepidoptera (93%), passerine birds (57%), small mammals (69%), or other amphibians (37-46%), which means plethodontid salamanders provide an important statistical advantage over other species for monitoring long-term forest health.
Deep-time evolution of regeneration and preaxial polarity in tetrapod limb development.
Fröbisch, Nadia B; Bickelmann, Constanze; Olori, Jennifer C; Witzmann, Florian
2015-11-12
Among extant tetrapods, salamanders are unique in showing a reversed preaxial polarity in patterning of the skeletal elements of the limbs, and in displaying the highest capacity for regeneration, including full limb and tail regeneration. These features are particularly striking as tetrapod limb development has otherwise been shown to be a highly conserved process. It remains elusive whether the capacity to regenerate limbs in salamanders is mechanistically and evolutionarily linked to the aberrant pattern of limb development; both are features classically regarded as unique to urodeles. New molecular data suggest that salamander-specific orphan genes play a central role in limb regeneration and may also be involved in the preaxial patterning during limb development. Here we show that preaxial polarity in limb development was present in various groups of temnospondyl amphibians of the Carboniferous and Permian periods, including the dissorophoids Apateon and Micromelerpeton, as well as the stereospondylomorph Sclerocephalus. Limb regeneration has also been reported in Micromelerpeton, demonstrating that both features were already present together in antecedents of modern salamanders 290 million years ago. Furthermore, data from lepospondyl 'microsaurs' on the amniote stem indicate that these taxa may have shown some capacity for limb regeneration and were capable of tail regeneration, including re-patterning of the caudal vertebral column that is otherwise only seen in salamander tail regeneration. The data from fossils suggest that salamander-like regeneration is an ancient feature of tetrapods that was subsequently lost at least once in the lineage leading to amniotes. Salamanders are the only modern tetrapods that retained regenerative capacities as well as preaxial polarity in limb development.
Larson, Gary L.; Hoffman, Robert L.
2002-01-01
In Mount Rainier National Park, the northwestern salamander usually inhabits relatively large and deep lakes and ponds (average size = 0.3 ha; average depth > 2 m) that contain flocculent, organic bottom sediments and abundant coarse wood. Prior to 1970, salmonids were introduced into many of the park's lakes and ponds that were typical habitat of the northwestern salamander. The objective of this study was to compare, in lakes and ponds with suitable habitat characteristics for northwestern salamanders, the observed abundances of larvae in takes and ponds with and without these introduced salmonids. Day surveys of 61 lakes were conducted between 1993 and 1999. Fish were limited to takes and ponds deeper than 2 in. For the 48 lakes and ponds deeper than 2 in (i.e., 25 fishless lakes and 23 fish lakes), the mean and median observed abundances of northwestern salamander larvae in fishless lakes and ponds was significantly greater than the mean and median observed abundances of larvae in lakes and ponds with fish. Northwestern salamander larvae were not observed in 11 fish lakes. These lakes were similar in median elevation, surface area, and maximum depth to the fishless lakes. The 12 fish lakes with observed larvae were significantly lower in median elevation, larger in median surface area, and deeper in median maximum depth than the fishless lakes. Low to null observed abundances of northwestern salamander larvae in lakes and ponds with fish were attributed to a combination of fish predation of larvae and changes in larval behavior.
Peterman, W E; Semlitsch, R D
2014-10-01
Many patterns observed in ecology, such as species richness, life history variation, habitat use, and distribution, have physiological underpinnings. For many ectothermic organisms, temperature relationships shape these patterns, but for terrestrial amphibians, water balance may supersede temperature as the most critical physiologically limiting factor. Many amphibian species have little resistance to water loss, which restricts them to moist microhabitats, and may significantly affect foraging, dispersal, and courtship. Using plaster models as surrogates for terrestrial plethodontid salamanders (Plethodon albagula), we measured water loss under ecologically relevant field conditions to estimate the duration of surface activity time across the landscape. Surface activity time was significantly affected by topography, solar exposure, canopy cover, maximum air temperature, and time since rain. Spatially, surface activity times were highest in ravine habitats and lowest on ridges. Surface activity time was a significant predictor of salamander abundance, as well as a predictor of successful recruitment; the probability of a juvenile salamander occupying an area with high surface activity time was two times greater than an area with limited predicted surface activity. Our results suggest that survival, recruitment, or both are demographic processes that are affected by water loss and the ability of salamanders to be surface-active. Results from our study extend our understanding of plethodontid salamander ecology, emphasize the limitations imposed by their unique physiology, and highlight the importance of water loss to spatial population dynamics. These findings are timely for understanding the effects that fluctuating temperature and moisture conditions predicted for future climates will have on plethodontid salamanders.
Sweeten, Sara E.; Ford, W. Mark
2016-01-01
Large-scale coal mining practices, particularly surface coal extraction and associated valley fills as well as residential wastewater discharge, are of ecological concern for aquatic systems in central Appalachia. Identifying and quantifying alterations to ecosystems along a gradient of spatial scales is a necessary first-step to aid in mitigation of negative consequences to aquatic biota. In central Appalachian headwater streams, apart from fish, salamanders are the most abundant vertebrate predator that provide a significant intermediate trophic role linking aquatic and terrestrial food webs. Stream salamander species are considered to be sensitive to aquatic stressors and environmental alterations, as past research has shown linkages among microhabitat parameters, large-scale land use such as urbanization and logging, and salamander abundances. However, there is little information examining these relationships between environmental conditions and salamander occupancy in the coalfields of central Appalachia. In the summer of 2013, 70 sites (sampled two to three times each) in the southwest Virginia coalfields were visited to collect salamanders and quantify stream and riparian microhabitat parameters. Using an information-theoretic framework, effects of microhabitat and large-scale land use on stream salamander occupancy were compared. The findings indicate that Desmognathus spp. occupancy rates are more correlated to microhabitat parameters such as canopy cover than to large-scale land uses. However, Eurycea spp. occupancy rates had a strong association with large-scale land uses, particularly recent mining and forest cover within the watershed. These findings suggest that protection of riparian habitats is an important consideration for maintaining aquatic systems in central Appalachia. If this is not possible, restoration riparian areas should follow guidelines using quick-growing tree species that are native to Appalachian riparian areas. These types of trees would rapidly establish a canopy cover, stabilize the soil, and impede invasive plant species which would, in turn, provide high-quality refuges for stream salamanders.
Salamander abundance along road edges and within abandoned logging roads in Appalachian forests.
Semlitsch, Raymond D; Ryan, Travis J; Hamed, Kevin; Chatfield, Matt; Drehman, Bethany; Pekarek, Nicole; Spath, Mike; Watland, Angie
2007-02-01
Roads may be one of the most common disturbances in otherwise continuous forested habitat in the southern Appalachian Mountains. Despite their obvious presence on the landscape, there is limited data on the ecological effects along a road edge or the size of the "road-effect zone." We sampled salamanders at current and abandoned road sites within the Nantahala National Forest, North Carolina (U.S.A.) to determine the road-effect zone for an assemblage of woodland salamanders. Salamander abundance near the road was reduced significantly, and salamanders along the edges were predominantly large individuals. These results indicate that the road-effect zone for these salamanders extended 35 m on either side of the relatively narrow, low-use forest roads along which we sampled. Furthermore, salamander abundance was significantly lower on old, abandoned logging roads compared with the adjacent upslope sites. These results indicate that forest roads and abandoned logging roads have negative effects on forest-dependent species such as plethodontid salamanders. Our results may apply to other protected forests in the southern Appalachians and may exemplify a problem created by current and past land use activities in all forested regions, especially those related to road building for natural-resource extraction. Our results show that the effect of roads reached well beyond their boundary and that abandonment or the decommissioning of roads did not reverse detrimental ecological effects; rather, our results indicate that management decisions have significant repercussions for generations to come. Furthermore, the quantity of suitable forested habitat in the protected areas we studied was significantly reduced: between 28.6% and 36.9% of the area was affected by roads. Management and policy decisions must use current and historical data on land use to understand cumulative impacts on forest-dependent species and to fully protect biodiversity on national lands.
77 FR 5045 - Endangered Species Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-01
... take (survey, capture, handle, and release) the California tiger salamander (Ambystoma californiense..., capture, handle, and release) the California tiger salamander (Ambystoma californiense) and arroyo toad...
76 FR 14424 - Endangered Species Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-16
... specimens) the California tiger salamander (Ambystomacaliforniense) in conjunction with surveys, genetic... requests a permit to take (survey, capture, handle, and release) the California tiger salamander...
75 FR 23287 - Endangered Species Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-03
..., photograph, collect tissue, and release) the Santa Cruz long- toed salamander (Ambystoma macrodactylum croceum) and California tiger salamander (Ambystoma californiense); and take (survey, capture, handle...
77 FR 37700 - Endangered Species Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-22
... take (survey, capture, handle, and release) the California tiger salamander (Ambystoma californiense... permit to take (survey, capture, handle, and release) the California tiger salamander (Ambystoma...
76 FR 6490 - Endangered Species Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-04
...) to take (survey, capture, handle and release) the California tiger salamander (Ambystoma... 66668) to take (collect tissue samples) the California tiger salamander (Ambystoma californiense) in...
At random meetings to the creation of new species of Salamander
NASA Astrophysics Data System (ADS)
Brillant, Marie-Pierre
2013-04-01
The pupils in final year of high school (15-18 years old) study the notion "species" and the creation of new species in various ways. Having studied genetic admixtures, this activity allows the pupils to build a scenario explaining the creation of a new species of Salamander in southern California from an ancestral population existing in northern Oregon. They can observe, on Google Earth, various populations of Salamander of the genus Ensatina. Salamanders of the genus Ensatina live in California around the Joaquin and Sacramento dry valleys. In this software, the pupils get information about the salamanders' environment and photographs of individuals and environments. During a migratory movement toward new territories to be colonized, these salamanders meet an inhospitable environment that they can not occupy. This population then splits up into two migratory branches, east and west, each overcoming the obstacles in different ways. The two groups gradually colonized southern territories but they avoided the too dry and hot San Joaquin plains. The two main branches of the original population gradually move away from each other, and genetic exchanges between them decrease over time. Eventually, we can find various populations of Salamander on both sides of the valleys, since the salamanders occupied new territories and diversified along the way. Among mutations that randomly occur, only those mutations that are best adapted in the origin were conserved in the genetic heritage of every population. When the individuals stemming from different western populations met, they were interfertile and give fertile hybrids, which was verified in the laboratory. Likewise, when individuals of the different eastern subspecies met accidentally, fertile hybrids also could arise from these crossings. The pupils can observe what happens in the overlap of various populations : interfertility or not. They also have geological, geographical and climatic information about the San Joaquin valleys. However, in the southern dry valleys, having by-passed the obstacle, the fate of meeting of the final east-coming population with the individuals of the final west-coming population doesn't allow fertilization : interfertility is impossible. It's confirmed in the laboratory, the two populations do not interbreed. So, the various populations of salamanders draw a ring around the dry valleys of California. The progressive genetic estrangement of populations ends then in the creation of a new southern species of salamanders in which fertility with the other salamander population is impossible. The originality of this process of speciation is that the populations of the two migratory branches establish a continuous ring of populations encircling each side of the geographical obstacle and diverging imperceptibly by natural selection or genetic drift, and while staying step-by-step interfertile along the way, where both extremities of the ring meet again, they can not reproduce. The pupils have to explain the genetic processes by completing a map with detailed information. They can also write a paragraph but it isn't required. Other follow-up studies allow us to discuss the definition of "species".
The role of climate in the dynamics of a hybrid zone in Appalachian salamanders
Walls, Susan
2009-01-01
I examined the potential influence of climate change on the dynamics of a previously studied hybrid zone between a pair of terrestrial salamanders at the Coweeta Hydrologic Laboratory, U.S. Forest Service, in the Nantahala Mountains of North Carolina, USA. A 16-year study led by Nelson G. Hairston, Sr. revealed that Plethodon teyahalee and Plethodon shermani hybridized at intermediate elevations, forming a cline between 'pure' parental P. teyahalee at lower elevations and 'pure' parental P. shermani at higher elevations. From 1974 to 1990 the proportion of salamanders at the higher elevation scored as 'pure' P. shermani declined significantly, indicating that the hybrid zone was spreading upward. To date there have been no rigorous tests of hypotheses for the movement of this hybrid zone. Using temperature and precipitation data from Coweeta, I re-analyzed Hairston's data to examine whether the observed elevational shift was correlated with variation in either air temperature or precipitation from the same time period. For temperature, my analysis tracked the results of the original study: the proportion of 'pure' P. shermani at the higher elevation declined significantly with increasing mean annual temperature, whereas the proportion of 'pure' P. teyahalee at lower elevations did not. There was no discernable relationship between proportions of 'pure' individuals of either species with variation in precipitation. From 1974 to 1990, low-elevation air temperatures at the Coweeta Laboratory ranged from annual means of 11.8 to 14.2 °C, compared with a 55-year average (1936-1990) of 12.6 °C. My re-analyses indicate that the upward spread of the hybrid zone is correlated with increasing air temperatures, but not precipitation, and provide an empirical test of a hypothesis for one factor that may have influenced this movement. My results aid in understanding the potential impact that climate change may have on the ecology and evolution of terrestrial salamanders in montane regions.
Sandoval-Comte, Adriana; Pineda, Eduardo; Aguilar-López, José L
2012-01-01
Worldwide, one in every three species of amphibian is endangered, 39 species have gone extinct in the last 500 years and another 130 species are suspected to have gone extinct in recent decades. Of the amphibians, salamanders have the highest portion of their species in one of the risk categories, even higher than the frogs. To date there have been few studies that have used recent field data to examine the status of populations of endangered salamanders. In this study we evaluate the current situation of two tiny salamanders, Parvimolge townsendi and Thorius pennatulus, both of which are distributed at intermediate elevations in the mountains of the northern Neotropics and are considered to be critically endangered; the first has been proposed as possibly extinct. By carrying out exhaustive surveys in both historical and potentially suitable sites for these two species, we evaluated their abundance and the characteristics of their habitats, and we estimated their potential geographic distribution. We visited 22 sites, investing 672 person-hours of sampling effort in the surveys, and found 201 P. townsendi salamanders in 11 sites and only 13 T. pennatulus salamanders in 5 sites. Both species were preferentially found in cloud forest fragments that were well conserved or only moderately transformed, and some of the salamanders were found in shade coffee plantations. The potential distribution area of both species is markedly fragmented and we estimate that it has decreased by more than 48%. The results of this study highlight the importance of carrying out exhaustive, systematic field surveys to obtain accurate information about the current situation of critically endangered species, and help us better understand the crisis that amphibians are facing worldwide.
Hoffman, R.; Pearl, C.A.; Larson, G.L.; Samora, B.
2012-01-01
Oviposition timing, behaviors, and microhabitats of ambystomatid salamanders vary considerably (Egan and Paton 2004; Figiel and Semlitsch 1995; Howard and Wallace 1985; Mac-Cracken 2007). Regardless of species, however, females typically oviposit using sites conducive to embryo development and survival. For example, the results of an experiment by Figiel and Semlitsch (1995) on Ambystoma opacum (Marbled Salamander) oviposition indicated that females actively selected sites that were under grass clumps in wet versus dry treatments, and surmised that environmental conditions such as humidity, moisture, and temperature contributed to their results. Other factors associated with ambystomatid oviposition and embryo survival include water temperature (Anderson 1972; Brown 1976), dissolved oxygen concentration (Petranka et al. 1982; Sacerdote and King 2009), oviposition depth (Dougherty et al. 2005; Egan and Paton 2004), and oviposition attachment structures such as woody vegetation (McCracken 2007; Nussbaum et al. 1983). Resetarits (1996), in creating a model of oviposition site selection for anuran amphibians, hypothesized that oviparous organisms were also capable of modifying oviposition behavior and site selection to accommodate varying habitat conditions and to minimize potential negative effects of environmental stressors. Kats and Sih (1992), investigating the oviposition of Ambystoma barbouri (Streamside Salamander) in pools of a Kentucky stream, found that females preferred pools without predatory Lepomis cyanellus (Green Sunfish), and that the number of egg masses present in a pool historically containing fish increased significantly the year after fish had been extirpated from the pool. Palen et al. (2005) determined that Ambystoma gracile (Northwestern Salamander) and Ambystoma macrodactylum (Longtoed Salamander) eggs were deposited either at increased depth or in full shaded habitats, respectively, as water transperancy to UV-B radiation increased.
Mechanics of lung ventilation in a post-metamorphic salamander, Ambystoma Tigrinum.
Simons, R S; Bennett, W O; Brainerd, E L
2000-03-01
The mechanics of lung ventilation in frogs and aquatic salamanders has been well characterized, whereas lung ventilation in terrestrial-phase (post-metamorphic) salamanders has received little attention. We used electromyography (EMG), X-ray videography, standard videography and buccal and body cavity pressure measurements to characterize the ventilation mechanics of adult (post-metamorphic) tiger salamanders (Ambystoma tigrinum). Three results emerged: (i) under terrestrial conditions or when floating at the surface of the water, adult A. tigrinum breathed through their nares using a two-stroke buccal pump; (ii) in addition to this narial two-stroke pump, adult tiger salamanders also gulped air in through their mouths using a modified two-stroke buccal pump when in an aquatic environment; and (iii) exhalation in adult tiger salamanders is active during aquatic gulping breaths, whereas exhalation appears to be passive during terrestrial breathing at rest. Active exhalation in aquatic breaths is indicated by an increase in body cavity pressure during exhalation and associated EMG activity in the lateral hypaxial musculature, particularly the M. transversus abdominis. In terrestrial breathing, no EMG activity in the lateral hypaxial muscles is generally present, and body cavity pressure decreases during exhalation. In aquatic breaths, tidal volume is larger than in terrestrial breaths, and breathing frequency is much lower (approximately 1 breath 10 min(-)(1 )versus 4-6 breaths min(-)(1)). The use of hypaxial muscles to power active exhalation in the aquatic environment may result from the need for more complete exhalation and larger tidal volumes when breathing infrequently. This hypothesis is supported by previous findings that terrestrial frogs ventilate their lungs with small tidal volumes and exhale passively, whereas aquatic frogs and salamanders use large tidal volumes and and exhale actively.
Influence of forest management on headwater stream amphibians at multiple spatial scales
Stoddard, Margo; Hayes, John P.; Erickson, Janet L.
2004-01-01
Background Amphibians are important components of headwater streams in forest ecosystems of the Pacific Northwest (PNW). They comprise the highest vertebrate biomass and density in these systems and are integral to trophic dynamics both as prey and as predators. The most commonly encountered amphibians in PNW headwater streams include the Pacific giant salamander (Dicamptodon tenebrosus), the tailed frog (Ascaphus truei), the southern torrent salamander (Rhyacotriton variegatus), and the Columbia torrent salamander (R. kezeri).
Kleinteich, Thomas; Herzen, Julia; Beckmann, Felix; Matsui, Masafumi; Haas, Alexander
2014-02-01
Larval salamanders (Lissamphibia: Caudata) are known to be effective suction feeders in their aquatic environments, although they will eventually transform into terrestrial tongue feeding adults during metamorphosis. Early tetrapods may have had a similar biphasic life cycle and this makes larval salamanders a particularly interesting model to study the anatomy, function, development, and evolution of the feeding apparatus in terrestrial vertebrates. Here, we provide a description of the muscles that are involved in the feeding strike in salamander larvae of the Hynobiidae and compare them to larvae of the paedomorphic Cryptobranchidae. We provide a functional and evolutionary interpretation for the observed muscle characters. The cranial muscles in larvae from species of the Hynobiidae and Cryptobranchidae are generally very similar. Most notable are the differences in the presence of the m. hyomandibularis, a muscle that connects the hyobranchial apparatus with the lower jaw. We found this muscle only in Onychodactylus japonicus (Hynobiidae) but not in other hynobiid or cryptobranchid salamanders. Interestingly, the m. hyomandibularis in O. japonicus originates from the ceratobranchial I and not the ceratohyal, and thus exhibits what was previously assumed to be the derived condition. Finally, we applied a biomechanical model to simulate suction feeding in larval salamanders. We provide evidence that a flattened shape of the hyobranchial apparatus in its resting position is beneficial for a fast and successful suction feeding strike. Copyright © 2013 Wiley Periodicals, Inc.
Larval long-toed salamanders incur nonconsumptive effects in the presence of nonnative trout
Kenison, Erin K.; Litt, Andrea R.; Pilliod, David S.; McMahon, Thomas E.
2016-01-01
Predators can influence prey directly through consumption or indirectly through nonconsumptive effects (NCEs) by altering prey behavior, morphology, and life history. We investigated whether predator-avoidance behaviors by larval long-toed salamanders (Ambystoma macrodactylum) in lakes with nonnative trout result in NCEs on morphology and development. Field studies in lakes with and without trout were corroborated by experimental enclosures, where prey were exposed only to visual and chemical cues of predators. We found that salamanders in lakes with trout were consistently smaller than in lakes without trout: 38% lower weight, 24% shorter body length, and 29% shorter tail length. Similarly, salamanders in protective enclosures grew 2.9 times slower when exposed to visual and olfactory trout cues than when no trout cues were present. Salamanders in trout-free lakes and enclosures were 22.7 times and 1.48 times, respectively, more likely to metamorphose during the summer season than those exposed to trout in lakes and/or their cues. Observed changes in larval growth rate and development likely resulted from a facultative response to predator-avoidance behavior and demonstrate NCEs occurred even when predation risk was only perceived. Reduced body size and growth, as well as delayed metamorphosis, could have ecological consequences for salamander populations existing with fish if those effects carry-over into lower recruitment, survival, and fecundity.
Salamander occupancy in headwater stream networks
Grant, E.H.C.; Green, L.E.; Lowe, W.H.
2009-01-01
1. Stream ecosystems exhibit a highly consistent dendritic geometry in which linear habitat units intersect to create a hierarchical network of connected branches. 2. Ecological and life history traits of species living in streams, such as the potential for overland movement, may interact with this architecture to shape patterns of occupancy and response to disturbance. Specifically, large-scale habitat alteration that fragments stream networks and reduces connectivity may reduce the probability a stream is occupied by sensitive species, such as stream salamanders. 3. We collected habitat occupancy data on four species of stream salamanders in first-order (i.e. headwater) streams in undeveloped and urbanised regions of the eastern U.S.A. We then used an information-theoretic approach to test alternative models of salamander occupancy based on a priori predictions of the effects of network configuration, region and salamander life history. 4. Across all four species, we found that streams connected to other first-order streams had higher occupancy than those flowing directly into larger streams and rivers. For three of the four species, occupancy was lower in the urbanised region than in the undeveloped region. 5. These results demonstrate that the spatial configuration of stream networks within protected areas affects the occurrences of stream salamander species. We strongly encourage preservation of network connections between first-order streams in conservation planning and management decisions that may affect stream species.
Genetic drift and mutational hazard in the evolution of salamander genomic gigantism.
Mohlhenrich, Erik Roger; Mueller, Rachel Lockridge
2016-12-01
Salamanders have the largest nuclear genomes among tetrapods and, excepting lungfishes, among vertebrates as a whole. Lynch and Conery (2003) have proposed the mutational-hazard hypothesis to explain variation in genome size and complexity. Under this hypothesis, noncoding DNA imposes a selective cost by increasing the target for degenerative mutations (i.e., the mutational hazard). Expansion of noncoding DNA, and thus genome size, is driven by increased levels of genetic drift and/or decreased mutation rates; the former determines the efficiency with which purifying selection can remove excess DNA, whereas the latter determines the level of mutational hazard. Here, we test the hypothesis that salamanders have experienced stronger long-term, persistent genetic drift than frogs, a related clade with more typically sized vertebrate genomes. To test this hypothesis, we compared dN/dS and Kr/Kc values of protein-coding genes between these clades. Our results do not support this hypothesis; we find that salamanders have not experienced stronger genetic drift than frogs. Additionally, we find evidence consistent with a lower nucleotide substitution rate in salamanders. This result, along with previous work showing lower rates of small deletion and ectopic recombination in salamanders, suggests that a lower mutational hazard may contribute to genomic gigantism in this clade. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Plethodon cinereus (Redback Salamander) predation
Jung, R.E.; Ward, W.L.; Kings, C.O.; Weir, L.A.
2000-01-01
In 1999 at the Patuxent Research Refuge, we observed a large rove beetle (Staphylinus maculosus) consuming an eviscerated redback salamander (Plethodon cinereus) underneath a coverboard. Rove beetles typically eat invertebrates.
Quantifiable long-term monitoring on parks and nature preserves
Beck, Scott; Moorman, Christopher; DePerno, Christopher S.; Simons, Theodore R.
2013-01-01
Herpetofauna have declined globally, and monitoring is a useful approach to document local and long-term changes. However, monitoring efforts often fail to account for detectability or follow standardized protocols. We performed a case study at Hemlock Bluffs Nature Preserve in Cary, NC to model occupancy of focal species and demonstrate a replicable long-term protocol useful to parks and nature preserves. From March 2010 to 2011, we documented occupancy of Ambystoma opacum(Marbled Salamander), Plethodon cinereus (Red-backed Salamander), Carphophis amoenus (Eastern Worm Snake), and Diadophis punctatus (Ringneck Snake) at coverboard sites and estimated breeding female Ambystoma maculatum (Spotted Salamander) abundance via dependent double-observer egg-mass counts in ephemeral pools. Temperature influenced detection of both Marbled and Red-backed Salamanders. Based on egg-mass data, we estimated Spotted Salamander abundance to be between 21 and 44 breeding females. We detected 43 of 53 previously documented herpetofauna species. Our approach demonstrates a monitoring protocol that accounts for factors that influence species detection and is replicable by parks or nature preserves with limited resources.
29 CFR 1926.154 - Temporary heating devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., unless otherwise permitted by the manufacturer's markings. (d) Solid fuel salamanders. Solid fuel salamanders are prohibited in buildings and on scaffolds. (e) Oil-fired heaters. (1) Flammable liquid-fired...
29 CFR 1926.154 - Temporary heating devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., unless otherwise permitted by the manufacturer's markings. (d) Solid fuel salamanders. Solid fuel salamanders are prohibited in buildings and on scaffolds. (e) Oil-fired heaters. (1) Flammable liquid-fired...
Recent introduction of a chytrid fungus endangers Western Palearctic salamanders
Martel, A.; Beukema, W.; Fisher, M. C.; Farrer, R. A.; Schmidt, B. R.; Tobler, U.; Goka, K.; Lips, K. R.; Muletz, C.; Zamudio, K. R.; Bosch, J.; Lötters, S.; Wombwell, E.; Garner, T.W. J.; Cunningham, A. A.; Spitzen-van der Sluijs, A.; Salvidio, S.; Ducatelle, R.; Nishikawa, K.; Nguyen, T. T.; Kolby, J. E.; Van Bocxlaer, I.; Bossuyt, F.; Pasmans, F.
2018-01-01
Emerging infectious diseases are reducing biodiversity on a global scale. Recently, the emergence of the chytrid fungus Batrachochytrium salamandrivorans resulted in rapid declines in populations of European fire salamanders. Here, we screened more than 5000 amphibians from across four continents and combined experimental assessment of pathogenicity with phylogenetic methods to estimate the threat that this infection poses to amphibian diversity. Results show that B. salamandrivorans is restricted to, but highly pathogenic for, salamanders and newts (Urodela). The pathogen likely originated and remained in coexistence with a clade of salamander hosts for millions of years in Asia. As a result of globalization and lack of biosecurity, it has recently been introduced into naïve European amphibian populations, where it is currently causing biodiversity loss. PMID:25359973
77 FR 70456 - Receipt of Applications for Endangered Species Permits
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-26
... authorization to conduct scientific research involving capture and handling of reticulated flatwoods salamanders (Ambystoma bishop) and frosted flatwoods salamanders (Ambystoma cingulatum). This study will be conducted in...
75 FR 20857 - Endangered Species Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-21
... 2, 2003, 68 FR 67465) to take (survey, capture, handle, and release) the California tiger salamander... tiger salamander (Ambystoma californiense) and to take (capture, collect, and kill) the Conservancy...
75 FR 61513 - Receipt of Applications for Endangered Species Permits
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-05
..., Virginia, TE-49502. Applicant requests authorization to take flatwoods salamander (Ambystoma bishop) for... authorization to take by collecting flatwoods salamander for the purpose of conducting presence/absence surveys...
Metcalfe, Cushla J.; Casane, Didier
2013-01-01
Very large genomes, that is, those above 20 Gb, are rare but widely distributed throughout the eukaryotes. They are found within the diatoms, dinoflagellates, metazoans and green plants, but so far have not been found in the excavates. There is a known positive correlation between genome size and the proportion of the genome composed of transposable elements (TEs). Very large genomes may therefore be expected to be almost entirely composed of TEs. Of the large genomes examined, in the angiosperms, gymnosperms and the dinoflagellates only a small portion of the genome was identified as TEs, most of these genomes were unidentified and may be novel or diverse TEs. In the salamanders and lungfish, 25 to 47% of the genome were identifiable retrotransposons, that is, TEs that copy themselves before insertion. However, the predominant class of TEs found in the lungfish was not the same as that found in the salamanders. The little data we have at the moment suggests therefore that the diversity and abundance of TEs is variable between taxa with large genomes, similar to patterns found in taxa with smaller genomes. Based on results from the human genome, we suggest that the ‘missing’ portion of the lungfish and salamander genomes are old, highly divergent, and therefore inactive copies of TEs. The data available indicate that, unlike plants with large genomes, neither the lungfish nor the salamanders show an increased risk of extinction. Based on a slow rate of DNA loss in salamanders it has been suggested that the large salamander genome is the result of run-away genome expansion involving genome size increases via TE proliferation associated with reduced recombination rate. We know of no studies on DNA loss or recombination rates in lungfish genomes, however a similar scenario could describe the process of genome expansion in the lungfish. A series of waves of TE transposition and sequence decay would describe the pattern of TE content seen in both the lungfish and the salamanders. The lungfish and salamanders, therefore, may accommodate their large load of TEs because these TEs have accumulated gradually over a long period of time and have been subject to inactivation and decay. PMID:24616835
2010-01-01
Background The Mexican axolotl (Ambystoma mexicanum) is considered a hopeful monster because it exhibits an adaptive and derived mode of development - paedomorphosis - that has evolved rapidly and independently among tiger salamanders. Unlike related tiger salamanders that undergo metamorphosis, axolotls retain larval morphological traits into adulthood and thus present an adult body plan that differs dramatically from the ancestral (metamorphic) form. The basis of paedomorphic development was investigated by comparing temporal patterns of gene transcription between axolotl and tiger salamander larvae (Ambystoma tigrinum tigrinum) that typically undergo a metamorphosis. Results Transcript abundances from whole brain and pituitary were estimated via microarray analysis on four different days post hatching (42, 56, 70, 84 dph) and regression modeling was used to independently identify genes that were differentially expressed as a function of time in both species. Collectively, more differentially expressed genes (DEGs) were identified as unique to the axolotl (n = 76) and tiger salamander (n = 292) than were identified as shared (n = 108). All but two of the shared DEGs exhibited the same temporal pattern of expression and the unique genes tended to show greater changes later in the larval period when tiger salamander larvae were undergoing anatomical metamorphosis. A second, complementary analysis that directly compared the expression of 1320 genes between the species identified 409 genes that differed as a function of species or the interaction between time and species. Of these 409 DEGs, 84% exhibited higher abundances in tiger salamander larvae at all sampling times. Conclusions Many of the unique tiger salamander transcriptional responses are probably associated with metamorphic biological processes. However, the axolotl also showed unique patterns of transcription early in development. In particular, the axolotl showed a genome-wide reduction in mRNA abundance across loci, including genes that regulate hypothalamic-pituitary activities. This suggests that an axolotls failure to undergo anatomical metamorphosis late in the larval period is indirectly associated with a mechanism(s) that acts earlier in development to broadly program transcription. The axolotl hopeful monster provides a model to identify mechanisms of early brain development that proximally and ultimately affect the expression of adult phenotypes. PMID:20584293
Use of multiple dispersal pathways facilitates amphibian persistence in stream networks.
Campbell Grant, Evan H; Nichols, James D; Lowe, Winsor H; Fagan, William F
2010-04-13
Although populations of amphibians are declining worldwide, there is no evidence that salamanders occupying small streams are experiencing enigmatic declines, and populations of these species seem stable. Theory predicts that dispersal through multiple pathways can stabilize populations, preventing extinction in habitat networks. However, empirical data to support this prediction are absent for most species, especially those at risk of decline. Our mark-recapture study of stream salamanders reveals both a strong upstream bias in dispersal and a surprisingly high rate of overland dispersal to adjacent headwater streams. This evidence of route-dependent variation in dispersal rates suggests a spatial mechanism for population stability in headwater-stream salamanders. Our results link the movement behavior of stream salamanders to network topology, and they underscore the importance of identifying and protecting critical dispersal pathways when addressing region-wide population declines.
Use of multiple dispersal pathways facilitates amphibian persistence in stream networks
Campbell, Grant E.H.; Nichols, J.D.; Lowe, W.H.; Fagan, W.F.
2010-01-01
Although populations of amphibians are declining worldwide, there is no evidence that salamanders occupying small streams are experiencing enigmatic declines, and populations of these species seem stable. Theory predicts that dispersal through multiple pathways can stabilize populations, preventing extinction in habitat networks. However, empirical data to support this prediction are absent for most species, especially those at risk of decline. Our mark-recapture study of stream salamanders reveals both a strong upstream bias in dispersal and a surprisingly high rate of overland dispersal to adjacent headwater streams. This evidence of route-dependent variation in dispersal rates suggests a spatial mechanism for population stability in headwater-stream salamanders. Our results link the movement behavior of stream salamanders to network topology, and they underscore the importance of identifying and protecting critical dispersal pathways when addressing region-wide population declines.
Use of multiple dispersal pathways facilitates amphibian persistence in stream networks
Campbell Grant, Evan H.; Nichols, James D.; Lowe, Winsor H.; Fagan, William F.
2010-01-01
Although populations of amphibians are declining worldwide, there is no evidence that salamanders occupying small streams are experiencing enigmatic declines, and populations of these species seem stable. Theory predicts that dispersal through multiple pathways can stabilize populations, preventing extinction in habitat networks. However, empirical data to support this prediction are absent for most species, especially those at risk of decline. Our mark-recapture study of stream salamanders reveals both a strong upstream bias in dispersal and a surprisingly high rate of overland dispersal to adjacent headwater streams. This evidence of route-dependent variation in dispersal rates suggests a spatial mechanism for population stability in headwater-stream salamanders. Our results link the movement behavior of stream salamanders to network topology, and they underscore the importance of identifying and protecting critical dispersal pathways when addressing region-wide population declines. PMID:20351269
Campbell Grant, Evan H.; Bailey, Larissa L.; Ware, Joy L.; Duncan, Karen L.
2008-01-01
The amphibian chytrid fungus Batrachochytrium dendrobatidis, responsible for the potentially fatal amphibian disease chytridiomycosis, is known to occur in a large and ever increasing number of amphibian populations around the world. However, sampling has been biased towards stream- and wetland-breeding anurans, with little attention paid to stream-associated salamanders. We sampled three frog and three salamander species in the Chesapeake and Ohio Canal National Historic Park, Maryland, by swabbing animals for PCR analysis to detect DNA of B. dendrobatidis. Using PCR, we detected B. dendrobatidis DNA in both stream and wetland amphibians, and report here the first occurrence of the pathogen in two species of stream-associated salamanders. Future research should focus on mechanisms within habitats that may affect persistence and dissemination of B. dendrobatidis among stream-associated salamanders
Jia, Jia
2016-01-01
A new fossil salamander, Nuominerpeton aquilonaris (gen. et sp. nov.), is named and described based on specimens from the Lower Cretaceous Guanghua Formation of Inner Mongolia, China. The new discovery documents a far northern occurrence of Early Cretaceous salamanders in China, extending the geographic distribution for the Mesozoic fossil record of the group from the Jehol area (40th–45th parallel north) to near the 49th parallel north. The new salamander is characterized by having the orbitosphenoid semicircular in shape; coracoid plate of the scapulocoracoid greatly expanded with a convex ventral and posterior border; ossification of two centralia in carpus and tarsus; and first digit being about half the length of the second digit in both manus and pes. The new salamander appears to be closely related to hynobiids, although this inferred relationship awaits confirmation by research in progress by us on a morphological and molecular combined analysis of cryptobranchoid relationships. Comparison of adult with larval and postmetamorphic juvenile specimens provides insights into developmental patterns of cranial and postcranial skeletons in this fossil species, especially resorption of the palatine and anterior portions of the palatopterygoid in the palate and the coronoid in the mandible during metamorphosis, and postmetamorphic ossification of the mesopodium in both manus and pes. Thus, this study provides a rare case study of developmental features in a Mesozoic salamander. PMID:27761316
Habitat alteration increases invasive fire ant abundance to the detriment of amphibians and reptiles
Todd, B.D.; Rothermel, B.B.; Reed, R.N.; Luhring, T.M.; Schlatter, K.; Trenkamp, L.; Gibbons, J.W.
2008-01-01
Altered habitats have been suggested to facilitate red imported fire ant (Solenopsis invicta) colonization and dispersal, possibly compounding effects of habitat alteration on native wildlife. In this study, we compared colonization intensity of wood cover boards by S. invicta among four forest management treatments in South Carolina, USA: an unharvested control (>30 years old); a partially thinned stand; a clearcut with coarse woody debris retained; and a clearcut with coarse woody debris removed. Additionally, we compared dehydration rates and survival of recently metamorphosed salamanders (marbled salamanders, Ambystoma opacum, and mole salamanders, A. talpoideum) among treatments. We found that the number of wood cover boards colonized by S. invicta differed significantly among treatments, being lowest in the unharvested forest treatments and increasing with the degree of habitat alteration. Salamanders that were maintained in experimental field enclosures to study water loss were unexpectedly subjected to high levels of S. invicta predation that differed among forest treatments. All known predation by S. invicta was restricted to salamanders in clearcuts. The amount of vegetative ground cover was inversely related to the likelihood of S. invicta predation of salamanders. Our results show that S. invicta abundance increases with habitat disturbance and that this increased abundance has negative consequences for amphibians that remain in altered habitats. Our findings also suggest that the presence of invasive S. invicta may compromise the utility of cover boards and other techniques commonly used in herpetological studies in the Southeast. ?? 2007 Springer Science+Business Media B.V.
Kochegarov, Andrei; Moses-Arms, Ashley; Lemanski, Larry F
2015-08-01
A specific human fetal heart RNA has been discovered, which has the ability to induce myocardial cell formation from mouse embryonic and human-induced pluripotent stem cells in culture. In this study, commercially obtained RNA from human fetal heart was cloned, sequenced, and synthesized using standard laboratory approaches. Molecular analyses of the specific fetal cardiac-inducing RNA (CIR), revealed that it is a fragment of N-sulfoglucosaminesulfohydrolase and the caspase recruitment domain family member 14 precursor. Stem cells transfected with CIRs often form into spindle-shaped cells characteristic of cardiomyocytes,and express the cardiac-specific contractile protein marker, troponin-T, in addition to tropomyosin and α-actinin as detected by immunohistochemical staining. Expression of these contractile proteins showed organization into sarcomeric myofibrils characteristic of striated cardiac muscle cells. Computer analyses of the RNA secondary structures of the active CIR show significant similarities to a RNA from salamander or myofibril-inducing RNA (MIR), which also promotes non-muscle cells to differentiate into cardiac muscle. Thus, these two RNAs, salamander MIR and the newly discovered human-cloned CIR reported here, appear to have evolutionarily conserved secondary structures suggesting that both play major roles in vertebrate heart development and, particularly, in the differentiation of cardiomyocytes from non-muscle cells during development.
Bayesian survival analysis in clinical trials: What methods are used in practice?
Brard, Caroline; Le Teuff, Gwénaël; Le Deley, Marie-Cécile; Hampson, Lisa V
2017-02-01
Background Bayesian statistics are an appealing alternative to the traditional frequentist approach to designing, analysing, and reporting of clinical trials, especially in rare diseases. Time-to-event endpoints are widely used in many medical fields. There are additional complexities to designing Bayesian survival trials which arise from the need to specify a model for the survival distribution. The objective of this article was to critically review the use and reporting of Bayesian methods in survival trials. Methods A systematic review of clinical trials using Bayesian survival analyses was performed through PubMed and Web of Science databases. This was complemented by a full text search of the online repositories of pre-selected journals. Cost-effectiveness, dose-finding studies, meta-analyses, and methodological papers using clinical trials were excluded. Results In total, 28 articles met the inclusion criteria, 25 were original reports of clinical trials and 3 were re-analyses of a clinical trial. Most trials were in oncology (n = 25), were randomised controlled (n = 21) phase III trials (n = 13), and half considered a rare disease (n = 13). Bayesian approaches were used for monitoring in 14 trials and for the final analysis only in 14 trials. In the latter case, Bayesian survival analyses were used for the primary analysis in four cases, for the secondary analysis in seven cases, and for the trial re-analysis in three cases. Overall, 12 articles reported fitting Bayesian regression models (semi-parametric, n = 3; parametric, n = 9). Prior distributions were often incompletely reported: 20 articles did not define the prior distribution used for the parameter of interest. Over half of the trials used only non-informative priors for monitoring and the final analysis (n = 12) when it was specified. Indeed, no articles fitting Bayesian regression models placed informative priors on the parameter of interest. The prior for the treatment effect was based on historical data in only four trials. Decision rules were pre-defined in eight cases when trials used Bayesian monitoring, and in only one case when trials adopted a Bayesian approach to the final analysis. Conclusion Few trials implemented a Bayesian survival analysis and few incorporated external data into priors. There is scope to improve the quality of reporting of Bayesian methods in survival trials. Extension of the Consolidated Standards of Reporting Trials statement for reporting Bayesian clinical trials is recommended.
Coexistence in streams: Do source-sink dynamics allow salamanders to persist with fish predators?
Sepulveda, A.J.; Lowe, W.H.
2011-01-01
Theory suggests that source-sink dynamics can allow coexistence of intraguild predators and prey, but empirical evidence for this coexistence mechanism is limited. We used capture-mark-recapture, genetic methods, and stable isotopes to test whether source-sink dynamics promote coexistence between stream fishes, the intraguild predator, and stream salamanders (Dicamptodon aterrimus), the intraguild prey. Salamander populations from upstream reaches without fish were predicted to maintain or supplement sink populations in downstream reaches with fish. We found instead that downstream reaches with fish were not sinks even though fish consumed salamander larvae-apparent survival, recruitment, and population growth rate did not differ between upstream and downstream reaches. There was also no difference between upstream and downstream reaches in net emigration. We did find that D. aterrimus moved frequently along streams, but believe that this is a response to seasonal habitat changes rather than intraguild predation. Our study provides empirical evidence that local-scale mechanisms are more important than dispersal dynamics to coexistence of streams salamanders and fish. More broadly, it shows the value of empirical data on dispersal and gene flow for distinguishing between local and spatial mechanisms of coexistence. ?? 2011 Springer-Verlag.
Muletz-Wolz, Carly R.; DiRenzo, Graziella V.; Yarwood, Stephanie A.; Grant, Evan H. Campbell; Fleischer, Robert C.; Lips, Karen R.
2017-01-01
Diverse bacteria inhabit amphibian skin; some of those bacteria inhibit growth of the fungal pathogen Batrachochytrium dendrobatidis. Yet there has been no systematic survey of anti-B. dendrobatidis bacteria across localities, species, and elevations. This is important given geographic and taxonomic variations in amphibian susceptibility to B. dendrobatidis. Our collection sites were at locations within the Appalachian Mountains where previous sampling had indicated low B. dendrobatidis prevalence. We determined the numbers and identities of anti-B. dendrobatidis bacteria on 61 Plethodon salamanders (37 P. cinereus, 15 P. glutinosus, 9 P. cylindraceus) via culturing methods and 16S rRNA gene sequencing. We sampled co-occurring species at three localities and sampled P. cinereus along an elevational gradient (700 to 1,000 meters above sea level [masl]) at one locality. We identified 50 anti-B. dendrobatidis bacterial operational taxonomic units (OTUs) and found that the degree of B. dendrobatidis inhibition was not correlated with relatedness. Five anti-B. dendrobatidis bacterial strains occurred on multiple amphibian species at multiple localities, but none were shared among all species and localities. The prevalence of anti-B. dendrobatidis bacteria was higher at Shenandoah National Park (NP), VA, with 96% (25/26) of salamanders hosting at least one anti-B. dendrobatidis bacterial species compared to 50% (7/14) at Catoctin Mountain Park (MP), MD, and 38% (8/21) at Mt. Rogers National Recreation Area (NRA), VA. At the individual level, salamanders at Shenandoah NP had more anti-B. dendrobatidis bacteria per individual (μ = 3.3) than those at Catoctin MP (μ = 0.8) and at Mt. Rogers NRA (μ = 0.4). All salamanders tested negative for B. dendrobatidis. Anti-B. dendrobatidis bacterial species are diverse in central Appalachian Plethodon salamanders, and their distribution varied geographically. The antifungal bacterial species that we identified may play a protective role for these salamanders.
Bayesian methods including nonrandomized study data increased the efficiency of postlaunch RCTs.
Schmidt, Amand F; Klugkist, Irene; Klungel, Olaf H; Nielen, Mirjam; de Boer, Anthonius; Hoes, Arno W; Groenwold, Rolf H H
2015-04-01
Findings from nonrandomized studies on safety or efficacy of treatment in patient subgroups may trigger postlaunch randomized clinical trials (RCTs). In the analysis of such RCTs, results from nonrandomized studies are typically ignored. This study explores the trade-off between bias and power of Bayesian RCT analysis incorporating information from nonrandomized studies. A simulation study was conducted to compare frequentist with Bayesian analyses using noninformative and informative priors in their ability to detect interaction effects. In simulated subgroups, the effect of a hypothetical treatment differed between subgroups (odds ratio 1.00 vs. 2.33). Simulations varied in sample size, proportions of the subgroups, and specification of the priors. As expected, the results for the informative Bayesian analyses were more biased than those from the noninformative Bayesian analysis or frequentist analysis. However, because of a reduction in posterior variance, informative Bayesian analyses were generally more powerful to detect an effect. In scenarios where the informative priors were in the opposite direction of the RCT data, type 1 error rates could be 100% and power 0%. Bayesian methods incorporating data from nonrandomized studies can meaningfully increase power of interaction tests in postlaunch RCTs. Copyright © 2015 Elsevier Inc. All rights reserved.
75 FR 44806 - Ellicott Slough National Wildlife Refuge, Santa Cruz County, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-29
... watersheds. The Refuge was established to protect the endangered Santa Cruz long-toed salamander by supporting 2 of the 20 known breeding populations of the salamander. Due to the sensitivity of the habitat...
Advances in Decoding Axolotl Limb Regeneration.
Haas, Brian J; Whited, Jessica L
2017-08-01
Humans and other mammals are limited in their natural abilities to regenerate lost body parts. By contrast, many salamanders are highly regenerative and can spontaneously replace lost limbs even as adults. Because salamander limbs are anatomically similar to human limbs, knowing how they regenerate should provide important clues for regenerative medicine. Although interest in understanding the mechanics of this process has never wavered, until recently researchers have been vexed by seemingly impenetrable logistics of working with these creatures at a molecular level. Chief among the problems has been the very large size of salamander genomes, and not a single salamander genome has been fully sequenced to date. Recently the enormous gap in sequence information has been bridged by approaches that leverage mRNA as the starting point. Together with functional experimentation, these data are rapidly enabling researchers to finally uncover the molecular mechanisms underpinning the astonishing biological process of limb regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-22
...We, the U.S. Fish and Wildlife Service (Service), announce a 12-month finding on a petition to list the Berry Cave salamander (Gyrinophilus gulolineatus) as endangered under the Endangered Species Act of 1973, as amended (Act). After review of all available scientific and commercial information, we find that listing the Berry Cave salamander is warranted. Currently, however, listing is precluded by higher priority actions to amend the Lists of Endangered and Threatened Wildlife and Plants. Upon publication of this 12-month petition finding, we will add the Berry Cave salamander to our candidate species list. We will develop a proposed rule to list the Berry Cave salamander as our priorities allow. We will make any determination on critical habitat during development of the proposed listing rule. During any interim period, we will address the status of the candidate taxon through our annual Candidate Notice of Review (CNOR).
Cudmore, Wynn W.; Bury, R. Bruce
2014-01-01
We investigated the potential for resource partitioning between the Coastal giant salamander (Dicamptodon tenebrosus) and the Cascade torrent salamander (Rhyacotriton cascadae) by examining their diet and microhabitats in forest streams. Larval D. tenebrosus and R. cascadae fed primarily upon aquatic insect larvae. We found similar foods in larval and adult R. cascadae and combined these results. Dicamptodon larvae consumed ephemeropteran, plecopteran, and trichopteran larvae in about equal amounts whereas R. cascadae ate more trichopteran and less ephemeropteran larvae than D. tenebrosus. Diet of all R. cascadae overlapped more with smaller than larger sized D. tenebrosus larvae. Comparisons of diets with available foods indicated R. cascadae is more selective or more gape-limited in its feeding habits than D. tenebrosus larvae. The two salamanders differed in use of microhabitats in creeks, which may contribute to their diet differences.
DeMali, Heather M; Trauth, Stanley E; Bouldin, Jennifer L
2016-06-01
The spotted salamander (Ambystoma maculatum) is indigenous to northern Arkansas, and several breeding sites are known to exist in the region. Spotted salamanders (n = 17) were collected and examined for parasites and only three females harbored nematodes (Physaloptera spp.). Chronic aquatic bioassays were conducted using water collected from eight breeding ponds during different hydroperiod events. No lethal or sublethal effects were measured in Ceriodaphnia dubia; however, decreased growth and survival were seen in Pimephales promelas. Aqueous, sediment, and salamander hepatic samples were analyzed for As, Cd, Cu, Pb, and Ni. Metal analysis revealed possible increased metal exposure following precipitation, with greatest metal concentrations measured in sediment samples. Hepatic metal concentrations were similar in parasitized and non-parasitized individuals, and greatest Pb concentrations were measured following normal precipitation events. Determining environmental stressors of amphibians, especially during their breeding and subsequent larval life stage, is imperative to improve species conservation.
Frahry, Matthew Blake; Sun, Cheng; Chong, Rebecca A; Mueller, Rachel Lockridge
2015-02-01
Across the tree of life, species vary dramatically in nuclear genome size. Mutations that add or remove sequences from genomes-insertions or deletions, or indels-are the ultimate source of this variation. Differences in the tempo and mode of insertion and deletion across taxa have been proposed to contribute to evolutionary diversity in genome size. Among vertebrates, most of the largest genomes are found within the salamanders, an amphibian clade with genome sizes ranging from ~14 to ~120 Gb. Salamander genomes have been shown to experience slower rates of DNA loss through small (i.e., <30 bp) deletions than do other vertebrate genomes. However, no studies have addressed DNA loss from salamander genomes resulting from larger deletions. Here, we focus on one type of large deletion-ectopic-recombination-mediated removal of LTR retrotransposon sequences. In ectopic recombination, double-strand breaks are repaired using a "wrong" (i.e., ectopic, or non-allelic) template sequence-typically another locus of similar sequence. When breaks occur within the LTR portions of LTR retrotransposons, ectopic-recombination-mediated repair can produce deletions that remove the internal transposon sequence and the equivalent of one of the two LTR sequences. These deletions leave a signature in the genome-a solo LTR sequence. We compared levels of solo LTRs in the genomes of four salamander species with levels present in five vertebrates with smaller genomes. Our results demonstrate that salamanders have low levels of solo LTRs, suggesting that ectopic-recombination-mediated deletion of LTR retrotransposons occurs more slowly than in other vertebrates with smaller genomes.
Barr, Garrett E; Babbitt, Kimberly J
2002-10-01
We sampled eight streams in the White Mountain National Forest, New Hampshire, throughout their elevational reach for larval salamanders and predatory fish to examine the effects of abiotic factors and predation on the distribution and abundance of larval salamanders. Eurycea bislineata (two-lined salamander) and Salvelinus fontinalis (brook trout) abundance varied among and within streams. Eurycea bislineata showed a negative association with S. fontinalis across spatial scales (micro-scale, among quadrats; meso-scale, among pool/riffle pairs; macro-scale, among streams). At the smallest scale, the average density of larval E. bislineata was greatest in microhabitats with relatively high boulder cover and low sand and bare rock cover only in the presence of S. fontinalis; no such relationship was observed in the absence of S. fontinalis. In a mesocosm experiment, larval salamander survival was higher in enclosures containing cobbles than enclosures containing a gravel mix, illustrating the advantage of coarse substrates with interstitial spaces that are inaccessible to predatory fish. At the meso-scale, E. bislineata larvae were less abundant in stream sections with S. fontinalis than those without. Among streams, those with many S. fontinalis had fewer E. bislineata. Of the abiotic parameters measured, water temperature and pH were positively related to E. bislineata presence, and elevation, water temperature, pH, canopy cover, and gradient were positively related to E. bislineata abundance. Larval Plethodontid salamanders can reach high densities and appear to have strong interactions with stream biota, thus their functional role in stream communities deserves further attention.
NASA Astrophysics Data System (ADS)
Bank, M. S.; Crocker, J.; Wachtl, J.; Kleeman, P.; Fellers, G.; Currens, C.; Hothem, R.; Madej, M. A.
2014-12-01
Mercury (Hg) contamination of stream salamanders in the Pacific Northwest region of the United States has received little attention. Here we report total Hg (HgT) and methyl mercury (MeHg) concentrations in larval giant salamanders (Dicamptodon spp.) and surface water from forested and chaparral lotic ecosystems distributed along a latitudinal gradient throughout Northern California and Washington. To test hypotheses related to potential effects from mining land-use activities, salamander larvae were also sampled from a reference site at Whiskeytown National Recreation Area, California, and at a nearby, upstream site (Shasta county) on Bureau of Land Management land where Hg contamination from gold mining activities has been documented. HgT concentrations in whole body larvae ranged from 4.6 to 74.5 ng/g wet wt. and percent MeHg ranged from 67% to 86%. Both HgT and MeHg larval tissue concentrations were significantly higher at the mining site in comparison to measured background levels (P < 0.001). We conclude that salamander larvae in remote stream ecosystems, where Hg sources were dominated by atmospheric deposition, were generally low in HgT and MeHg and, in comparison, watersheds with a legacy of land-use practices (i.e., mining operations) had approximately 4.5 - 5.5 times the level of HgT bioaccumulation. Moreover, trophic magnification slopes were highest in the Shasta county region where mining was present. These findings suggest that mining activities increase HgT and MeHg exposure to salamander larvae in the region and may present a threat to other higher trophically positioned organisms, and their associated food webs.
Seasonality and microhabitat selection in a forest-dwelling salamander
NASA Astrophysics Data System (ADS)
Basile, Marco; Romano, Antonio; Costa, Andrea; Posillico, Mario; Scinti Roger, Daniele; Crisci, Aldo; Raimondi, Ranieri; Altea, Tiziana; Garfì, Vittorio; Santopuoli, Giovanni; Marchetti, Marco; Salvidio, Sebastiano; De Cinti, Bruno; Matteucci, Giorgio
2017-10-01
Many small terrestrial vertebrates exhibit limited spatial movement and are considerably exposed to changes in local environmental variables. Among such vertebrates, amphibians at present experience a dramatic decline due to their limited resilience to environmental change. Since the local survival and abundance of amphibians is intrinsically related to the availability of shelters, conservation plans need to take microhabitat requirements into account. In order to gain insight into the terrestrial ecology of the spectacled salamander Salamandrina perspicillata and to identify appropriate forest management strategies, we investigated the salamander's seasonal variability in habitat use of trees as shelters in relation to tree features (size, buttresses, basal holes) and environmental variables in a beech forest in Italy. We used the occupancy approach to assess tree suitability on a non-conventional spatial scale. Our approach provides fine-grained parameters of microhabitat suitability and elucidates many aspects of the salamander's terrestrial ecology . Occupancy changed with the annual life cycle and was higher in autumn than in spring, when females were found closer to the stream in the study area. Salamanders showed a seasonal pattern regarding the trees they occupied and a clear preference for trees with a larger diameter and more burrows. With respect to forest management, we suggest maintaining a suitable number of trees with a trunk diameter exceeding 30 cm. A practice of selective logging along the banks of streams could help maintain an adequate quantity of the appropriate microhabitat. Furthermore, in areas with a presence of salamanders, a good forest management plan requires leaving an adequate buffer zone around streams, which should be wider in autumn than in spring.
We investigated the metapopulation structure of the California tiger salamander (Ambystoma californiense) using a combination of indirect and direct methods to evaluate two key requirements of modern metapopulation models: 1) that patches support somewhat independent populations ...
Use of arboreal nests of tree voles (Arborimus spp.) by amphibians.
Eric D. Forsman; James K. Swingle
2007-01-01
We describe occupancy of arboreal nests of tree voles (Arborintus spp.) by four amphibian species in western Oregon and northern California, including clouded salamanders (Aneides ferreus), arboreal salamanders (Aneides lugubris), Pacific tree frogs (Pseudacris regilla), and a...
Campbell Grant, Evan H.; Jung, Robin E.; Rice, Karen C.
2005-01-01
Stream salamanders are sensitive to acid mine drainage and may be sensitive to acidification and low acid neutralizing capacity (ANC) of a watershed. Streams in Shenandoah National Park, Virginia, are subject to episodic acidification from precipitation events. We surveyed 25 m by 2 m transects located on the stream bank adjacent to the water channel in Shenandoah National Park for salamanders using a stratified random sampling design based on elevation, aspect and bedrock geology. We investigated the relationships of four species (Eurycea bislineata, Desmognathus fuscus, D. monticola and Gyrinophilus porphyriticus) to habitat and water quality variables. We did not find overwhelming evidence that stream salamanders are affected by the acid-base status of streams in Shenandoah National Park. Desmognathus fuscus and D. monticola abundance was greater both in streams that had a higher potential to neutralize acidification, and in higher elevation (>700 m) streams. Neither abundance of E. bislineata nor species richness were related to any of the habitat variables. Our sampling method preferentially detected the adult age class of the study species and did not allow us to estimate population sizes. We suggest that continued monitoring of stream salamander populations in SNP will determine the effects of stream acidification on these taxa.
Beier, Colin M.; Woods, Anne M.; Hotopp, Kenneth P.; Gibbs, James P.; Mitchell, Myron J.; Dovciak, Martin; Leopold, Donald J.; Lawrence, Gregory B.; Page, Blair D.
2012-01-01
Depletion of Ca from forest soils due to acidic deposition has had potentially pervasive effects on forest communities, but these impacts remain largely unknown. Because snails, salamanders, and plants play essential roles in the Ca cycle of northern hardwood forests, we hypothesized that their community diversity, abundance, and structure would vary with differences in biotic Ca availability. To test this hypothesis, we sampled 12 upland hardwood forests representing a soil Ca gradient in the Adirondack Mountains, New York (USA), where chronic deposition has resulted in acidified soils but where areas of well-buffered soils remain Ca rich due to parent materials. Along the gradient of increasing soil [Ca2+], we observed increasing trends in snail community richness and abundance, live biomass of redback salamanders (Plethodon cinereus (Green, 1818)), and canopy tree basal area. Salamander communities were dominated by mountain dusky salamanders (Desmognathus ochrophaeus Cope, 1859) at Ca-poor sites and changed continuously along the Ca gradient to become dominated by redback salamanders at the Ca-rich sites. Several known calciphilic species of snails and plants were found only at the highest-Ca sites. Our results indicated that Ca availability, which is shaped by geology and acidic deposition inputs, influences northern hardwood forest ecosystems at multiple trophic levels, although the underlying mechanisms require further study.
The Chinese giant salamander exemplifies the hidden extinction of cryptic species.
Yan, Fang; Lü, Jingcai; Zhang, Baolin; Yuan, Zhiyong; Zhao, Haipeng; Huang, Song; Wei, Gang; Mi, Xue; Zou, Dahu; Xu, Wei; Chen, Shu; Wang, Jie; Xie, Feng; Wu, Minyao; Xiao, Hanbin; Liang, Zhiqiang; Jin, Jieqiong; Wu, Shifang; Xu, CunShuan; Tapley, Benjamin; Turvey, Samuel T; Papenfuss, Theodore J; Cunningham, Andrew A; Murphy, Robert W; Zhang, Yaping; Che, Jing
2018-05-21
Overexploitation, habitat destruction, human-driven climate change and disease spread are resulting in the extinction of innumerable species, with amphibians being hit harder than most other groups [1]. Few species of amphibians are widespread, and those that are often represent complexes of multiple cryptic species. This is especially true for range-restricted salamanders [2]. Here, we used the widespread and critically endangered Chinese giant salamander (Andrias davidianus) to show how genetically uninformed management efforts can negatively affect species conservation. We find that this salamander consists of at least five species-level lineages. However, the extensive recent translocation of individuals between farms, where the vast majority of extant salamanders now live, has resulted in genetic homogenization. Mitochondrial DNA (mtDNA) haplotypes from northern China now predominate in farms. Unfortunately, hybrid offspring are being released back into the wild under well-intentioned, but misguided, conservation management. Our findings emphasize the necessity of genetic assessments for seemingly well-known, widespread species in conservation initiatives. Species serve as the primary unit for protection and management in conservation actions [3], so determining the taxonomic status of threatened species is a major concern, especially for amphibians. The level of threat to amphibians may be underestimated, and existing conservation strategies may be inadvertently harmful if conducted without genetic assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Newman, Catherine E.; Austin, Christopher C.
2015-01-01
The dynamic geologic history of the southeastern United States has played a major role in shaping the geographic distributions of amphibians in the region. In the phylogeographic literature, the predominant pattern of distribution shifts through time of temperate species is one of contraction during glacial maxima and persistence in refugia. However, the diverse biology and ecology of amphibian species suggest that a “one-size-fits-all” model may be inappropriate. Nearly 10% of amphibian species in the region have a current distribution comprised of multiple disjunct, restricted areas that resemble the shape of Pleistocene refugia identified for other temperate taxa in the literature. Here, we apply genetics and spatially explicit climate analyses to test the hypothesis that the disjunct regions of these species ranges are climatic refugia for species that were more broadly distributed during glacial maxima. We use the salamander Plethodon serratus as a model, as its range consists of four disjunct regions in the Southeast. Phylogenetic results show that P. serratus is comprised of multiple genetic lineages, and the four regions are not reciprocally monophyletic. The Appalachian salamanders form a clade sister to all other P. serratus. Niche and paleodistribution modeling results suggest that P. serratus expanded from the Appalachians during the cooler Last Glacial Maximum and has since been restricted to its current disjunct distribution by a warming climate. These data reject the universal applicability of the glacial contraction model to temperate taxa and reiterate the importance of considering the natural history of individual species. PMID:26132077
Steinfartz, Sebastian; Weitere, Markus; Tautz, Diethard
2007-11-01
Mechanisms and processes of ecologically driven adaptive speciation are best studied in natural situations where the splitting process is still occurring, i.e. before complete reproductive isolation is achieved. Here, we present a case of an early stage of adaptive differentiation under sympatric conditions in the fire salamander, Salamandra salamandra, that allows inferring the underlying processes for the split. Larvae of S. salamandra normally mature in small streams until metamorphosis, but in an old, continuous forest area near Bonn (the Kottenforst), we found salamander larvae not only in small streams but also in shallow ponds, which are ecologically very different from small streams. Common-environment experiments with larvae from both habitat types reveal specific adaptations to these different ecological conditions. Mitochondrial and microsatellite analyses show that the two ecologically differentiated groups also show signs of genetic differentiation. A parallel analysis of animals from a neighbouring much larger forest area (the Eifel), in which larvae mature only in streams, shows no signs of genetic differentiation, indicating that gene flow between ecologically similar types can occur over large distances. Hence, geographical factors cannot explain the differential larval habitat adaptations in the Kottenforst, in particular since adult life and mating of S. salamandra is strictly terrestrial and not associated with larval habitats. We propose therefore that the evolution of these adaptations was coupled with the evolution of cues for assortative mating which would be in line with models of sympatric speciation that suggest a co-evolution of habitat adaptations and associated mating signals.
Lourenço, André; Álvarez, David; Wang, Ian J; Velo-Antón, Guillermo
2017-03-01
Urbanization is a severe form of habitat fragmentation that can cause many species to be locally extirpated and many others to become trapped and isolated within an urban matrix. The role of drift in reducing genetic diversity and increasing genetic differentiation is well recognized in urban populations. However, explicit incorporation and analysis of the demographic and temporal factors promoting drift in urban environments are poorly studied. Here, we genotyped 15 microsatellites in 320 fire salamanders from the historical city of Oviedo (Est. 8th century) to assess the effects of time since isolation, demographic history (historical effective population size; N e ) and patch size on genetic diversity, population structure and contemporary N e . Our results indicate that urban populations of fire salamanders are highly differentiated, most likely due to the recent N e declines, as calculated in coalescence analyses, concomitant with the urban development of Oviedo. However, urbanization only caused a small loss of genetic diversity. Regression modelling showed that patch size was positively associated with contemporary N e , while we found only moderate support for the effects of demographic history when excluding populations with unresolved history. This highlights the interplay between different factors in determining current genetic diversity and structure. Overall, the results of our study on urban populations of fire salamanders provide some of the very first insights into the mechanisms affecting changes in genetic diversity and population differentiation via drift in urban environments, a crucial subject in a world where increasing urbanization is forecasted. © 2017 John Wiley & Sons Ltd.
Goedbloed, D J; Czypionka, T; Altmüller, J; Rodriguez, A; Küpfer, E; Segev, O; Blaustein, L; Templeton, A R; Nolte, A W; Steinfartz, S
2017-12-01
The utilization of similar habitats by different species provides an ideal opportunity to identify genes underlying adaptation and acclimatization. Here, we analysed the gene expression of two closely related salamander species: Salamandra salamandra in Central Europe and Salamandra infraimmaculata in the Near East. These species inhabit similar habitat types: 'temporary ponds' and 'permanent streams' during larval development. We developed two species-specific gene expression microarrays, each targeting over 12 000 transcripts, including an overlapping subset of 8331 orthologues. Gene expression was examined for systematic differences between temporary ponds and permanent streams in larvae from both salamander species to establish gene sets and functions associated with these two habitat types. Only 20 orthologues were associated with a habitat in both species, but these orthologues did not show parallel expression patterns across species more than expected by chance. Functional annotation of a set of 106 genes with the highest effect size for a habitat suggested four putative gene function categories associated with a habitat in both species: cell proliferation, neural development, oxygen responses and muscle capacity. Among these high effect size genes was a single orthologue (14-3-3 protein zeta/YWHAZ) that was downregulated in temporary ponds in both species. The emergence of four gene function categories combined with a lack of parallel expression of orthologues (except 14-3-3 protein zeta) suggests that parallel habitat adaptation or acclimatization by larvae from S. salamandra and S. infraimmaculata to temporary ponds and permanent streams is mainly realized by different genes with a converging functionality.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-11
... Santa Cruz long-toed salamander, and currently supports 2 of the 20 known breeding populations of the salamander. We announce our decision and the availability of the FONSI for the final CCP for Ellicott Slough...
Regulatory agencies need rapid indicators of hydrologic permanence for jurisdictional determinations of headwater streams. Our study objective was to assess the utility of larval salamander presence and assemblage structure and habitat variables for determining stream permanence ...
Interactions of an insecticide, herbicide, and natural stressors in amphibian community mesocosms
Boone, M.D.; James, S.M.
2003-01-01
Amphibians developing in wetlands embedded within or near agricultural lands may frequently encounter chemical mixtures. The objectives of our study were to determine the effects that post-application concentrations of an insecticide (carbaryl) and an herbicide (atrazine) have on body mass, development, and survival of two anuran species (southern leopard frog, Rana sphenocephala; American toad, Bufo americanus) and two caudate species (spotted salamander, Ambystoma maculatum; small-mouthed salamander, A. texanum) reared in outdoor cattle tank mesocosms. In one experiment, we manipulated tadpole density (low or high), carbaryl exposure (0, 3.5, 7.0 mg/L), and atrazine exposure (0 or 200 μg/L) to test for effects on development, mass, and survival of larvae. In a second experiment, we manipulated pond hydroperiod (constant or drying), carbaryl exposure (0 or 5 mg/L), and atrazine exposure (0 or 200 μg/L) to test for effects on mass, time, and survival to metamorphosis. Salamanders were virtually eliminated in carbaryl treatments, indicating that at realistic levels, this insecticide could cause population declines for salamanders in contaminated habitats. Carbaryl also had negative effects on toad survival. Exposure to atrazine had negative effects on body size, development, and time to metamorphosis in anuran species, which were associated with reduced chlorophyll levels. Both chemicals interacted significantly with density or hydroperiod, indicating that the environmental conditions could influence the impact of a contaminant. A significant atrazine-by-carbaryl interaction resulted in smaller and less developed spotted salamander larvae than in control ponds. Atrazine exposure, however, appeared to moderate negative effects of carbaryl for spotted salamanders. Our research suggests that important changes in the community's food web result from chemical exposure, which influence the susceptibility of amphibian species to contaminants.
Cecala, Kristen K.; Maerz, John C.; Halstead, Brian J.; Frisch, John R.; Gragson, Ted L.; Hepinstall-Cymerman, Jeffrey; Leigh, David S.; Jackson, C. Rhett; Peterson, James T.; Pringle, Catherine M.
2018-01-01
Understanding how factors that vary in spatial scale relate to population abundance is vital to forecasting species responses to environmental change. Stream and river ecosystems are inherently hierarchical, potentially resulting in organismal responses to fine‐scale changes in patch characteristics that are conditional on the watershed context. Here, we address how populations of two salamander species are affected by interactions among hierarchical processes operating at different scales within a rapidly changing landscape of the southern Appalachian Mountains. We modeled reach‐level occupancy of larval and adult black‐bellied salamanders (Desmognathus quadramaculatus) and larval Blue Ridge two‐lined salamanders (Eurycea wilderae) as a function of 17 different terrestrial and aquatic predictor variables that varied in spatial extent. We found that salamander occurrence varied widely among streams within fully forested catchments, but also exhibited species‐specific responses to changes in local conditions. While D. quadramaculatus declined predictably in relation to losses in forest cover, larval occupancy exhibited the strongest negative response to forest loss as well as decreases in elevation. Conversely, occupancy of E. wilderae was unassociated with watershed conditions, only responding negatively to higher proportions of fast‐flowing stream habitat types. Evaluation of hierarchical relationships demonstrated that most fine‐scale variables were closely correlated with broad watershed‐scale variables, suggesting that local reach‐scale factors have relatively smaller effects within the context of the larger landscape. Our results imply that effective management of southern Appalachian stream salamanders must first focus on the larger scale condition of watersheds before management of local‐scale conditions should proceed. Our findings confirm the results of some studies while refuting the results of others, which may indicate that prescriptive recommendations for range‐wide management of species or the application of a single management focus across large geographic areas is inappropriate.
NASA Astrophysics Data System (ADS)
Iskandar, Ismed; Satria Gondokaryono, Yudi
2016-02-01
In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range between the true value and the maximum likelihood estimated value lines.
Clarkson, Pamela M; Beachy, Christopher K
2015-12-01
We tested the hypothesis that salamanders growing at different rates would have allocation patterns that differ among male and female metamorphic and larval salamanders. We raised individual axolotls, Ambystoma mexicanum , on four food regimes: constant high growth (throughout the experiment), constant low growth (restricted throughout the experiment), high growth switched to low growth (ad libitum switched after 140 d to restricted), and low growth switched to high growth (restricted switched after 140 d to ad libitum). Because axolotls are obligate paedomorphs, we exposed half of the salamanders to thyroid hormone to induce metamorphosis. We assayed growth and dissected and weighed gonads and fat bodies. Salamanders that were switched from restricted to ad libitum food regime delayed metamorphosis. In all treatment groups, females had larger gonads than males and males had larger fat bodies than females. The association between storage and reproduction differed between larvae and metamorphs and depended on sex.
Comparing population size estimators for plethodontid salamanders
Bailey, L.L.; Simons, T.R.; Pollock, K.H.
2004-01-01
Despite concern over amphibian declines, few studies estimate absolute abundances because of logistic and economic constraints and previously poor estimator performance. Two estimation approaches recommended for amphibian studies are mark-recapture and depletion (or removal) sampling. We compared abundance estimation via various mark-recapture and depletion methods, using data from a three-year study of terrestrial salamanders in Great Smoky Mountains National Park. Our results indicate that short-term closed-population, robust design, and depletion methods estimate surface population of salamanders (i.e., those near the surface and available for capture during a given sampling occasion). In longer duration studies, temporary emigration violates assumptions of both open- and closed-population mark-recapture estimation models. However, if the temporary emigration is completely random, these models should yield unbiased estimates of the total population (superpopulation) of salamanders in the sampled area. We recommend using Pollock's robust design in mark-recapture studies because of its flexibility to incorporate variation in capture probabilities and to estimate temporary emigration probabilities.
Detection of an enigmatic plethodontid Salamander using Environmental DNA
Pierson, Todd W.; Mckee, Anna; Spear, Stephen F.; Maerz, John C.; Camp, Carlos D.; Glenn, Travis C.
2016-01-01
The isolation and identification of environmental DNA (eDNA) offers a non-invasive and efficient method for the detection of rare and secretive aquatic wildlife, and it is being widely integrated into inventory and monitoring efforts. The Patch-Nosed Salamander (Urspelerpes brucei) is a tiny, recently discovered species of plethodontid salamander known only from headwater streams in a small region of Georgia and South Carolina. Here, we present results of a quantitative PCR-based eDNA assay capable of detecting Urspelerpes in more than 75% of 33 samples from five confirmed streams. We deployed the method at 31 additional streams and located three previously undocumented populations of Urspelerpes. We compare the results of our eDNA assay with our attempt to use aquatic leaf litterbags for the rapid detection of Urspelerpes and demonstrate the relative efficacy of the eDNA assay. We suggest that eDNA offers great potential for use in detecting other aquatic and semi-aquatic plethodontid salamanders.
Molecular evidence for the early history of living amphibians.
Feller, A E; Hedges, S B
1998-06-01
The evolutionary relationships of the three orders of living amphibians (lissamphibians) has been difficult to resolve, partly because of their specialized morphologies. Traditionally, frogs and salamanders are considered to be closest relatives, and all three orders are thought to have arisen in the Paleozoic (>250 myr). Here, we present evidence from the DNA sequences of four mitochondrial genes (2.7 kilobases) that challenges the conventional hypothesis and supports a salamander-caecilian relationship. This, in light of the fossil record and distribution of the families, suggests a more recent (Mesozoic) origin for salamanders and caecilians directly linked to the initial breakup of the supercontinent Pangaea. We propose that this single geologic event isolated salamanders and archaeobatrachian frogs on the northern continents (Laurasia) and the caecilians and neobatrachian frogs on the southern continents (Gondwana). Among the neobatrachian frog families, molecular evidence supports a South American clade and an African clade, inferred here to be the result of mid-Cretaceous vicariance. Copyright 1998 Academic Press.
Burns, John A; Zhang, Huanjia; Hill, Elizabeth; Kim, Eunsoo; Kerney, Ryan
2017-01-01
During embryonic development, cells of the green alga Oophila amblystomatis enter cells of the salamander Ambystoma maculatum forming an endosymbiosis. Here, using de novo dual-RNA seq, we compared the host salamander cells that harbored intracellular algae to those without algae and the algae inside the animal cells to those in the egg capsule. This two-by-two-way analysis revealed that intracellular algae exhibit hallmarks of cellular stress and undergo a striking metabolic shift from oxidative metabolism to fermentation. Culturing experiments with the alga showed that host glutamine may be utilized by the algal endosymbiont as a primary nitrogen source. Transcriptional changes in salamander cells suggest an innate immune response to the alga, with potential attenuation of NF-κB, and metabolic alterations indicative of modulation of insulin sensitivity. In stark contrast to its algal endosymbiont, the salamander cells did not exhibit major stress responses, suggesting that the host cell experience is neutral or beneficial. DOI: http://dx.doi.org/10.7554/eLife.22054.001 PMID:28462779
Movement and survival of an amphibian in relation to sediment and culvert design
Honeycutt, R.K; Lowe, W.H.; Hossack, Blake R.
2016-01-01
Habitat disturbance from stream culverts can affect aquatic organisms by increasing sedimentation or forming barriers to movement. Land managers are replacing many culverts to reduce these negative effects, primarily for stream fishes. However, these management actions are likely to have broad implications for many organisms, including amphibians in small streams. To assess the effects of culverts on movement and survival of the Idaho giant salamander (Dicamptodon aterrimus), we used capture-mark-recapture surveys and measured sediment in streams with 2 culvert types (i.e., unimproved culverts, improved culverts) and in streams without culverts (i.e., reference streams). We predicted culverts would increase stream sediment levels, limit movement, and reduce survival of Idaho giant salamanders. We also determined the effect of sediment levels on survival of salamanders because although sediment is often associated with distribution and abundance of stream amphibians, links with vital rates remain unclear. To estimate survival, we used a spatial Cormack–Jolly–Seber (CJS) model that explicitly incorporated information on movement, eliminating bias in apparent survival estimated from traditional (i.e., non-spatial) CJS models caused by permanent emigration beyond the study area. To demonstrate the importance of using spatial data in studies of wildlife populations, we compared estimates from the spatial CJS to estimates of apparent survival from a traditional CJS model. Although high levels of sediment reduced survival of salamanders, culvert type was unrelated to sediment levels or true survival of salamanders. Across all streams, we documented only 15 movement events between study reaches. All movement events were downstream, and they occurred disproportionately in 1 stream, which precluded measuring the effect of culvert design on movement. Although movement was low overall, the variance among streams was high enough to bias estimates of apparent survival compared to true survival. Our results suggest that where sedimentation occurs from roads and culverts, survival of the Idaho giant salamander could be reduced. Though culverts clearly do not completely block downstream movements of Idaho giant salamanders, the degree to which culvert improvements affect movements under roads in comparison to unimproved culverts remains unclear, especially for rare, but potentially important, upstream movements.
McKenny, H.C.; Keeton, W.S.; Donovan, T.M.
2006-01-01
Managing for stand structural complexity in northern hardwood forests has been proposed as a method for promoting microhabitat characteristics important to eastern red-backed salamanders (Plethodon cinereus). We evaluated the effects of alternate, structure-based silvicultural systems on red-backed salamander populations at two research sites in northwestern Vermont. Treatments included two uneven-aged approaches (single-tree selection and group-selection) and one unconventional approach, termed "structural complexity enhancement" (SCE), that promotes development of late-successional structure, including elevated levels of coarse woody debris (CWD). Treatments were applied to 2 ha units and were replicated two to four times depending on treatment. We surveyed red-backed salamanders with a natural cover search method of transects nested within vegetation plots 1 year after logging. Abundance estimates corrected for detection probability were calculated from survey data with a binomial mixture model. Abundance estimates differed between study areas and were influenced by forest structural characteristics. Model selection was conducted using Akaike Information Criteria, corrected for over-dispersed data and small sample size (QAICc). We found no difference in abundance as a response to treatment as a whole, suggesting that all of the uneven-aged silvicultural systems evaluated can maintain salamander populations after harvest. However, abundance was tied to specific structural habitat attributes associated with study plots within treatments. The most parsimonious model of habitat covariates included site, relative density of overstory trees, and density of more-decayed and less-decayed downed CWD. Abundance responded positively to the density of downed, well-decayed CWD and negatively to the density of poorly decayed CWD and to overstory relative density. CWD volume was not a strong predictor of salamander abundance. We conclude that structural complexity enhancement and the two uneven-aged approaches maintained important microhabitat characteristics for red-backed salamander populations in the short term. Over the long-term, given decay processes as a determinant of biological availability, forestry practices such as SCE that enhance CWD availability and recruitment may result in associated population responses. ?? 2006 Elsevier B.V. All rights reserved.
Muñoz, David J.; Miller, David A.W.; Sutherland, Chris; Grant, Evan H. Campbell
2016-01-01
The cryptic behavior and ecology of herpetofauna make estimating the impacts of environmental change on demography difficult; yet, the ability to measure demographic relationships is essential for elucidating mechanisms leading to the population declines reported for herpetofauna worldwide. Recently developed spatial capture–recapture (SCR) methods are well suited to standard herpetofauna monitoring approaches. Individually identifying animals and their locations allows accurate estimates of population densities and survival. Spatial capture–recapture methods also allow estimation of parameters describing space-use and movement, which generally are expensive or difficult to obtain using other methods. In this paper, we discuss the basic components of SCR models, the available software for conducting analyses, and the experimental designs based on common herpetological survey methods. We then apply SCR models to Red-backed Salamander (Plethodon cinereus), to determine differences in density, survival, dispersal, and space-use between adult male and female salamanders. By highlighting the capabilities of SCR, and its advantages compared to traditional methods, we hope to give herpetologists the resource they need to apply SCR in their own systems.
Miller, Mark; Haig, Susan M.; Wagner, R.S.
2005-01-01
Endemic to Oregon in the northwestern US, the Oregon slender salamander (Batrachoseps wrighti) is a terrestrial plethodontid found associated with late successional mesic forests. Consequently, forest management practices such as timber harvesting may impact their persistence. Therefore, to infer possible future effects of these practices on population structure and differentiation, we used mitochondrial DNA sequences (cytochrome b) and RAPD markers to analyze 22 populations across their range. Phylogenetic analyses of sequence data (774 bp) revealed two historical lineages corresponding to northern and southern-distributed populations. Relationships among haplotypes and haplotype diversity within lineages suggested that the northern region may have more recently been colonized compared to the southern region. In contrast to the mitochondrial data, analyses of 46 RAPD loci suggested an overall pattern of isolation-by-distance in the set of populations examined and no particularly strong clustering of populations based on genetic distances. We propose two non-exclusive hypotheses to account for discrepancies between mitochondrial and nuclear data sets. First, our data may reflect an overall ancestral pattern of isolation-by-distance that has subsequently been influenced by vicariance. Alternately, our analyses may suggest that male-mediated gene flow and female philopatry are important contributors to the pattern of genetic diversity. We discuss the importance of distinguishing between these two hypotheses for the purposes of identifying conservation units and note that, regardless of the relative contribution of each mechanism towards the observed pattern of diversity, protection of habitat will likely prove critical for the long-term persistence of this species.
USDA-ARS?s Scientific Manuscript database
NIR spectra were collected at three surface locations for Chinese giant salamanders to ascertain whether spectral signatures could be separated by anatomical, presumably physiologically-based, locations. The first location was the smooth area immediately above the cloaca on the animal’s abdomen, whi...
Reproductive biology of the Del Norte salamander (Plethodon elongatus).
Clara A. Wheeler; Hartwell H. Welsh Jr.; Lisa M. Ollivier
2013-01-01
We examined seasonal reproductive patterns of the Del Norte Salamander, Plethodon elongatus, in mixed conifer and hardwood forests of northwestern California and southwestern Oregon. Seasonal size differences in reproductive structures suggested that maximum spermatogenic activity occurred during the late summer, with spermatozoa transfer to the...
Overview of the status of the Cheat Mountain salamander
Thomas K. Pauley
2010-01-01
Plethodon nettingi, the Cheat Mountain salamander, is endemic to the high elevations of the Allegheny Mountains in eastern West Virginia. In 1938, N.B. Green named the species from specimens collected at Barton Knob, Randolph County, in honor of his friend and colleague Graham Netting.
Understanding the role of uncertainty on learning and retention of predator information.
Ferrari, Maud C O; Vrtělová, Jana; Brown, Grant E; Chivers, Douglas P
2012-09-01
Due to the highly variable nature of predation risk, prey animals need to continuously collect information regarding the risk posed by predators. One question that ensues is how long to use this information for? An adaptive framework of predator-related information use predicted that certainty should influence the duration for which information regarding the threatening nature of a species is used in decision-making. It predicts that uncertainty contributes to the reduction in the duration of information use, due to the cost of displaying antipredator behaviours towards non-threatening species. Here, we test this prediction using repetition of conditioning events as a way to increase the certainty associated with the predatory nature of a novel salamander for woodfrog tadpoles. Tadpoles were conditioned 1, 2 or 4 times to recognize a novel salamander as a predator and subsequently tested for their response to the salamander 1 day or 11 days post-conditioning. We found that conditioning repetition did not affect the intensity with which tadpoles learned to respond to the salamander after 1 day. However, after 11 days, tadpoles with fewer conditionings responded to the salamander with a weaker intensity than those that received more conditionings. Our results provide support for the model prediction that an increase in the certainty associated with correctly identifying a predator leads to longer retention of the threat.
Zak, Yana; Pehek, Ellen
2013-01-01
Urbanization is a major cause of amphibian decline. Stream-dwelling plethodontid salamanders are particularly susceptible to urbanization due to declining water quality and hydrological changes, but few studies have examined these taxa in cities. The northern dusky salamander (Desmognathus fuscus) was once common in the New York City metropolitan area, but has substantially declined throughout the region in recent decades. We used five tetranucleotide microsatellite loci to examine population differentiation, genetic variation, and bottlenecks among five remnant urban populations of dusky salamanders in NYC. These genetic measures provide information on isolation, prevalence of inbreeding, long-term prospects for population persistence, and potential for evolutionary responses to future environmental change. All populations were genetically differentiated from each other, and the most isolated populations in Manhattan have maintained very little genetic variation (i.e. <20% heterozygosity). A majority of the populations also exhibited evidence of genetic bottlenecks. These findings contrast with published estimates of high genetic variation within and lack of structure between populations of other desmognathine salamanders sampled over similar or larger spatial scales. Declines in genetic variation likely resulted from population extirpations and the degradation of stream and terrestrial paths for dispersal in NYC. Loss of genetic variability in populations isolated by human development may be an underappreciated cause and/or consequence of the decline of this species in urbanized areas of the northeast USA. PMID:23646283
Exceptional soft tissues preservation in a mummified frog-eating Eocene salamander.
Tissier, Jérémy; Rage, Jean-Claude; Laurin, Michel
2017-01-01
Fossils are almost always represented by hard tissues but we present here the exceptional case of a three-dimensionally preserved specimen that was 'mummified' (likely between 40 and 34 million years ago) in a terrestrial karstic environment. This fossil is the incomplete body of a salamander, Phosphotriton sigei , whose skeleton and external morphology are well preserved, as revealed by phase-contrast synchrotron X-ray microtomography. In addition, internal structures composed of soft tissues preserved in three dimensions are now identified: a lung, the spinal cord, a lumbosacral plexus, the digestive tract, muscles and urogenital organs that may be cloacal glands. These are among the oldest known cases of three-dimensional preservation of these organs in vertebrates and shed light on the ecology of this salamander. Indeed, the digestive tract contains remains of a frog, which represents the only known case of an extinct salamander that fed on a frog, an extremely rare type of predation in extant salamanders. These new data improve our scarce knowledge on soft tissue anatomy of early urodeles and should prove useful for future biologists and palaeontologists working on urodele evolutionary biology. We also suggest that the presence of bat guano and carcasses represented a close source of phosphorus, favouring preservation of soft tissues. Bone microanatomy indicates that P. sigei was likely amphibious or terrestrial, and was probably not neotenic.
Fortuny, Josep; Marcé-Nogué, Jordi; Heiss, Egon; Sanchez, Montserrat; Gil, Lluis; Galobart, Àngel
2015-01-01
Biting is an integral feature of the feeding mechanism for aquatic and terrestrial salamanders to capture, fix or immobilize elusive or struggling prey. However, little information is available on how it works and the functional implications of this biting system in amphibians although such approaches might be essential to understand feeding systems performed by early tetrapods. Herein, the skull biomechanics of the Chinese giant salamander, Andrias davidianus is investigated using 3D finite element analysis. The results reveal that the prey contact position is crucial for the structural performance of the skull, which is probably related to the lack of a bony bridge between the posterior end of the maxilla and the anterior quadrato-squamosal region. Giant salamanders perform asymmetrical strikes. These strikes are unusual and specialized behavior but might indeed be beneficial in such sit-and-wait or ambush-predators to capture laterally approaching prey. However, once captured by an asymmetrical strike, large, elusive and struggling prey have to be brought to the anterior jaw region to be subdued by a strong bite. Given their basal position within extant salamanders and their “conservative” morphology, cryptobranchids may be useful models to reconstruct the feeding ecology and biomechanics of different members of early tetrapods and amphibians, with similar osteological and myological constraints. PMID:25853557
Survival of spotted salamander eggs in temporary woodland ponds of coastal Maryland
Albers, P.H.; Prouty, R.M.
1987-01-01
Temporary ponds on the Atlantic Coastal Plain in maryland were characterized according to water chemistry, rain input, phytoplankton, zooplankton and use by the spotted salamander Ambystoma maculatum during March-October 1983-1984. Neither the number of egg masses per unit of pond surface (abundance) nor the survival of spotted salamander embryos was significantly correlated (P>0.05) with pond pH. Rainfall during May-July significantly increased the hydrogen ion concentration of 5 of 11 ponds evaluated for the impact of rainfall during the previous 48h and the previous week. Survival of egg masses transferred among eight ponds with pH3.66-4.45 and one pond with pH5.18 was significantly reduced (P
Amphibian and reptile abundance in riparian and upslope areas of five forest types in western Oregon
Gomez, D.M.; Anthony, R.G.
1996-01-01
We compared species composition and relative abundance of herpetofauna between riparian and upslope habitats among 5 forest types (shrub, open sapling-pole, large sawtimber and old-growth conifer forests, and deciduous forests) in Western Oregon. Riparian- and upslope- associated species were identified based on capture frequencies from pitfall trapping. Species richness was similar among forest types but slightly greater in the shrub stands. The abundances of 3 species differed among forest types. Total captures was highest in deciduous forests, intermediate in the mature conifer forests, and lowest in the 2 young coniferous forests. Species richness was similar between stream and upslope habitats; however, captures were higher in riparian than upslope habitat. Tailed frogs (Ascaphus truei), Dunn's salamanders (Plethodon dunni), roughskin newts(Tanicha granulosa), Pacific giant salamanders (Dicamptodon tenebrosus) and red-legged frogs(Rana aurora) were captured more frequently in riparian than upslope habitats. Of these species the red-legged frog and Pacific giant salamander may depend on riparian habitat for at least part of their life requirements, while tailed frogs, Dunn's salamanders and roughskin newts appear to be riparian associated species. In addition, we found Oregon salamanders (Ensatina eschscholtzi) were associated with upslope habitats. We suggest riparian management zones should be al least 75-100 m on each side of the stream and that management for upslope/and or old forest associates may be equally as important as for riparian species.
Aneides ferreus (clouded salamander): arboreal activity
William W. Price; Clinton P. Landon; Eric D. Forsman
2010-01-01
Aneides ferreus (clouded salamander) inhabits the forests of western Oregon and extreme northwestern California. Although thought to be primarily terrestrial, A. ferreus has occasionally been found as high as 60 m up in trees and two recent reports suggest that it may be more arboreal than previously believed. However, it is...
Life-history perspective of adaptive radiation in desmognathine salamanders
Richard C. Bruce
1996-01-01
This study investigates interspecific variation in age at first reproduction, fecundity, and body size in multispecies assemblages of desmognathine salamanders. The hypotheses tested are that interspecific differences in body size among desmognathines stem proximately from variation in age at first reproduction and that variation in the latter trait is positively...
Nancy E. Karraker; Lisa M. Ollivier; Garth R. Hodgson
2005-01-01
Oviposition sites and reproductive ecology of the southern-torrent salamander (Rhyacotriton variegatus) remain poorly documented. This species oviposits in cryptic locations making the detection of eggs difficult. Here we describe the discovery of 1 clutch of eggs of R. variegatus from northern California, which further expands our...
Things That Go "Peent" in the Night.
ERIC Educational Resources Information Center
Neidich, Carole Louise
1981-01-01
Describes early spring night field trips by two naturalists and ten adults, armed with cameras and flashlights, in search of Spotted Salamanders performing ritual mating dances. Although dancing salamanders proved elusive, their habits and those of other pond life were examined and Spring American Woodcock nuptial flights were observed. (NEC)
On the ecological role of salamanders
Robert D. Davic; Hartwell H. Welsh Jr.
2004-01-01
Salamanders are cryptic and, though largely unrecognized as such, extremely abundant vertebrates in a variety of primarily forest and grassland environments, where they regulate food webs and contribute to ecosystem resilience-resistance (= stability) in several ways: (a) As mid-level vertebrate predators, they provide direct and indirect biotic control of species...
A Salamander Tale: Effective Exhibits and Attitude Change
ERIC Educational Resources Information Center
Rollins, Jeffrey; Watson, Sunnie Lee
2017-01-01
Little information exists regarding intention behind the design and development of Extension outreach and educational exhibits. An evaluation of response to the exhibit "A Salamander Tale" indicates that the methods used to develop the exhibit resulted in an effective way to present information to an adult audience. Survey questions were…
Determining sex and life stage of Del Norte salamanders from external cues
Lisa Ollivier; Hartwell H. Welsh Jr
2003-01-01
Life stage determination for many western plethodontids often requires dissection of the specimen. Availability of reliable external measures that could be applied under field conditions would enhance future studies of the genus Plethodon. We examined preserved specimens of the Del Norte Salamander, Plethodon elongatus, taken from...
Trouble in the aquatic world: how wildlife professionals are battling amphibian declines
Deanna H. Olson; Tara Chestnut
2014-01-01
Aparasitic fungus, similar to the one that caused the extinction of numerous tropical frog and toad species, is killing salamanders in Europe. Scientists first identified the fungus, Batrachochytrium salamandrivorans, in 2013 as the culprit behind the death of fire salamanders (Salamandra salamandra) in the Netherlands (Martel...
Keitzer, S Conor; Goforth, Reuben; Pessier, Allan P; Johnson, April J
2011-04-01
Batrachochytrium dendrobatidis is a fungal pathogen responsible for a potentially fatal disease of amphibians. We conducted a survey for B. dendrobatidis in the Appalachian Mountains of southwestern North Carolina, USA, from 10 June to 23 July 23 2009. Ventral skin swabs were collected from plethodontid salamanders (n=278) and real-time PCR was performed to test for the presence of B. dendrobatidis. We found no evidence of B. dendrobatidis, suggesting that B. dendrobatidis is absent or present in such low levels that it was undetected. If B. dendrobatidis was present at the time of our sampling, this survey supports evidence of low prevalence of B. dendrobatidis in North American headwater stream salamander populations.
Climate-mediated competition in a high-elevation salamander community
Dallalio, Eric A.; Brand, Adrianne B,; Grant, Evan H. Campbell
2017-01-01
The distribution of the federally endangered Shenandoah Salamander (Plethodon shenandoah) is presumed to be limited by competition with the Red-backed Salamander (Plethodon cinereus). In particular, the current distribution of P. shenandoah is understood to be restricted to warmer and drier habitats because of interspecific interactions. These habitats may be particularly sensitive to climate change, though the influence of competition may also be affected by temperature and relative humidity. We investigated the response of P. shenandoah to competition with P. cinereus under four climate scenarios in 3-dimensional mesocosms. The results suggest that, although climate change may alleviate competitive pressure from P. cinereus, warmer temperatures may also significantly influence the persistence of the species across its known range.
The effect of waist twisting on walking speed of an amphibious salamander like robot
NASA Astrophysics Data System (ADS)
Yin, Xin-Yan; Jia, Li-Chao; Wang, Chen; Xie, Guang-Ming
2016-06-01
Amphibious salamanders often swing their waist to coordinate quadruped walking in order to improve their crawling speed. A robot with a swing waist joint, like an amphibious salamander, is used to mimic this locomotion. A control method is designed to allow the robot to maintain the rotational speed of its legs continuous and avoid impact between its legs and the ground. An analytical expression is established between the amplitude of the waist joint and the step length. Further, an optimization amplitude is obtained corresponding to the maximum stride. The simulation results based on automatic dynamic analysis of mechanical systems (ADAMS) and physical experiments verify the rationality and validity of this expression.
Gifford, Matthew E; Clay, Timothy A; Careau, Vincent
2014-01-01
Repeatability is an important concept in evolutionary analyses because it provides information regarding the benefit of repeated measurements and, in most cases, a putative upper limit to heritability estimates. Repeatability (R) of different aspects of energy metabolism and behavior has been demonstrated in a variety of organisms over short and long time intervals. Recent research suggests that consistent individual differences in behavior and energy metabolism might covary. Here we present new data on the repeatability of body mass, standard metabolic rate (SMR), voluntary exploratory behavior, and feeding rate in a semiaquatic salamander and ask whether individual variation in behavioral traits is correlated with individual variation in metabolism on a whole-animal basis and after conditioning on body mass. All measured traits were repeatable, but the repeatability estimates ranged from very high for body mass (R = 0.98), to intermediate for SMR (R = 0.39) and food intake (R = 0.58), to low for exploratory behavior (R = 0.25). Moreover, repeatability estimates for all traits except body mass declined over time (i.e., from 3 to 9 wk), although this pattern could be a consequence of the relatively low sample size used in this study. Despite significant repeatability in all traits, we find little evidence that behaviors are correlated with SMR at the phenotypic and among-individual levels when conditioned on body mass. Specifically, the phenotypic correlations between SMR and exploratory behavior were negative in all trials but significantly so in one trial only. Salamanders in this study showed individual variation in how their exploratory behavior changed across trials (but not body mass, SMR, and feed intake), which might have contributed to observed changing correlations across trials.
Size-Mediated Tradeoffs in Life-History Traits in Dusky Salamanders
Richard C. Bruce
2013-01-01
Among salamanders of the genus Desmognathus, the larger species tend to be more aquatic and the smaller more terrestrial. I studied life histories in assemblages of Desmognathus in the southern Blue Ridge Mountains of North Carolina at sites in the Cowee and southern Nantahala Mountains. Traits evaluated included mortality/survival...
Louise S. Mead; David R. Clayton; Richard S. Nauman; Deanna H. Olson; Michael E. Pfrender
2005-01-01
Plethodon stormi and Plethodon elongatus are two closely related species of plethodontid salamanders that are restricted to the Klamath Province of northwestern California and southwestern Oregon. Discovery of three localities south of the Klamath River, in the Scott River drainage, not assignable to either P....
Using the Eastern Hellbender Salamander in a High School Genetics & Ecological Conservation Activity
ERIC Educational Resources Information Center
Chudyk, Sarah; McMillan, Amy; Lange, Catherine
2014-01-01
This article contains an original 5E lesson plan developed from conservation genetics research on the giant North American hellbender salamander, Cryptobranchus alleganiensis alleganiensis. The lesson plan provides background information on the hellbender, reviews basic genetics, and exposes students to the scientific process that is used during…
Elevation, aspect, and cove size effects on southern Appalachian salamanders
W. Mark Ford; Michael A. Menzel; Richard H. Odom
2002-01-01
Using museum collection records and variables computed by digital terrain modeling in a geographic information system, we examined the relationship of elevation, aspect, and "cove" patch size to the presence or absence of 7 common woodland salamanders in mature cove hardwood and northern hardwood forests in the southern Appalachians of Georgia, North Carolina...
R. Steven Wagner; Mark P. Miller; Charles M. Crisafulli; Susan M. Haig
2005-01-01
The Larch Mountain salamander (Plethodon larselli Burns, 1954) is an endemic species in the Pacific northwestern United States facing threats related to habitat destruction. To facilitate development of conservation strategies, we used DNA sequences and RAPDs (random amplified polymorphic DNA) to examine differences among populations of this...
Katherine M. O' Donnell; Frank R. Thompson; Raymond D. Semlitsch
2015-01-01
Prescribed fire and timber harvest are anthropogenic disturbances that modify resource availability and ecosystem structure, and can affect wildlife both directly and indirectly. Terrestrial salamanders are effective indicators of forest health due to their high abundance and sensitivity to microclimatic conditions. Given their ecological importance, it is critical to...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
... Ecological Services Field Office, 10711 Burnet Rd, Suite 200, Austin, TX 78758; by telephone 512-490- 0057... proposed designation of critical habitat for the Austin blind salamander, Georgetown salamander, Jollyville... or by mail from the Austin Ecological Services Field Office (see FOR FURTHER INFORMATION CONTACT...
ERIC Educational Resources Information Center
Ilseman, Kelly; Hoffmann, Kristine
2016-01-01
On a spring morning in Maine, traps made of nets rise above vernal pools in a small wetland, ready to collect salamanders. The traps were designed by groups of rural and urban high school students from Maine and Massachusetts participating in the University of Maine Upward Bound Math Science Program (UBMS) at the university campus in Orono, Maine.…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-18
...-0044; MO 92210-0-0009] RIN 1018-AW86 Endangered and Threatened Wildlife and Plants; Designation of... Engineers Permitted Projects that May Affect California Tiger Salamander and Three Endangered Plant Species... the revised proposed critical habitat where breeding salamanders have been located since the...
Woodland salamander response to two prescribed fires in the central Appalachians
W. Mark Ford; Jane L. Rodrigue; Ella L. Rowan; Steven B. Castleberry; Thomas M. Schuler
2010-01-01
Using coverboard arrays, we monitored woodland salamanders on the Fernow Experimental Forest in the central Appalachian Mountains, West Virginia, USA prior to and following two prescribed fires in mixed oak (Quercus spp.) forest stands. Treatments were burn plots on upper slopes or lower slopes fenced to prevent white-tailed deer (Odocoileus...
Projected loss of a salamander diversity hotspot as a consequence of projected global climate change
Joseph R. Milanovich; William E. Peterman; Nathan P. Nibbelink; John C. Maerz
2010-01-01
Background: Significant shifts in climate are considered a threat to plants and animals with significant physiological limitations and limited dispersal abilities. The southern Appalachian Mountains are a global hotspot for plethodontid salamander diversity. Plethodontids are lungless ectotherms, so their ecology is strongly governed by temperature and precipitation....
Biogeography and body size shuffling of aquatic salamander communities on a shifting refuge
Bonett, Ronald M.; Trujano-Alvarez, Ana Lilia; Williams, Michael J.; Timpe, Elizabeth K.
2013-01-01
Freshwater habitats of coastal plains are refugia for many divergent vertebrate lineages, yet these environments are highly vulnerable to sea-level fluctuations, which suggest that resident communities have endured dynamic histories. Using the fossil record and a multi-locus nuclear phylogeny, we examine divergence times, biogeography, body size evolution and patterns of community assembly of aquatic salamanders from North American coastal plains since the Late Cretaceous. At least five salamander families occurred on the extensive Western Interior Coastal Plain (WICP), which existed from the Late Cretaceous through the Eocene. Four of these families subsequently colonized the emergent Southeastern Coastal Plain (SECP) by the Early Oligocene to Late Miocene. Three families ultimately survived and underwent extensive body size evolution in situ on the SECP. This included at least two major size reversals in recent taxa that are convergent with confamilial WICP ancestors. Dynamics of the coastal plain, major lineage extinctions and frequent extreme changes in body size have resulted in significant shuffling of the size structure of aquatic salamander communities on this shifting refuge since the Cretaceous. PMID:23466988
Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians
Martel, An; Spitzen-van der Sluijs, Annemarieke; Blooi, Mark; Bert, Wim; Ducatelle, Richard; Fisher, Matthew C.; Woeltjes, Antonius; Bosman, Wilbert; Chiers, Koen; Bossuyt, Franky; Pasmans, Frank
2013-01-01
The current biodiversity crisis encompasses a sixth mass extinction event affecting the entire class of amphibians. The infectious disease chytridiomycosis is considered one of the major drivers of global amphibian population decline and extinction and is thought to be caused by a single species of aquatic fungus, Batrachochytrium dendrobatidis. However, several amphibian population declines remain unexplained, among them a steep decrease in fire salamander populations (Salamandra salamandra) that has brought this species to the edge of local extinction. Here we isolated and characterized a unique chytrid fungus, Batrachochytrium salamandrivorans sp. nov., from this salamander population. This chytrid causes erosive skin disease and rapid mortality in experimentally infected fire salamanders and was present in skin lesions of salamanders found dead during the decline event. Together with the closely related B. dendrobatidis, this taxon forms a well-supported chytridiomycete clade, adapted to vertebrate hosts and highly pathogenic to amphibians. However, the lower thermal growth preference of B. salamandrivorans, compared with B. dendrobatidis, and resistance of midwife toads (Alytes obstetricans) to experimental infection with B. salamandrivorans suggest differential niche occupation of the two chytrid fungi. PMID:24003137
Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians.
Martel, An; Spitzen-van der Sluijs, Annemarieke; Blooi, Mark; Bert, Wim; Ducatelle, Richard; Fisher, Matthew C; Woeltjes, Antonius; Bosman, Wilbert; Chiers, Koen; Bossuyt, Franky; Pasmans, Frank
2013-09-17
The current biodiversity crisis encompasses a sixth mass extinction event affecting the entire class of amphibians. The infectious disease chytridiomycosis is considered one of the major drivers of global amphibian population decline and extinction and is thought to be caused by a single species of aquatic fungus, Batrachochytrium dendrobatidis. However, several amphibian population declines remain unexplained, among them a steep decrease in fire salamander populations (Salamandra salamandra) that has brought this species to the edge of local extinction. Here we isolated and characterized a unique chytrid fungus, Batrachochytrium salamandrivorans sp. nov., from this salamander population. This chytrid causes erosive skin disease and rapid mortality in experimentally infected fire salamanders and was present in skin lesions of salamanders found dead during the decline event. Together with the closely related B. dendrobatidis, this taxon forms a well-supported chytridiomycete clade, adapted to vertebrate hosts and highly pathogenic to amphibians. However, the lower thermal growth preference of B. salamandrivorans, compared with B. dendrobatidis, and resistance of midwife toads (Alytes obstetricans) to experimental infection with B. salamandrivorans suggest differential niche occupation of the two chytrid fungi.
NASA Astrophysics Data System (ADS)
Salvidio, Sebastiano; Palumbi, Giulia; Romano, Antonio; Costa, Andrea
2017-04-01
Recent studies suggest that many organisms actively colonize the subterranean environment to avoid climatic stress, exploit new ecological opportunities and reduce competition and predation. Terrestrial salamanders are known to colonize the more stable subterranean habitats mainly to escape external climatic extremes, while the role of predation avoidance remains untested. To better understand the importance of predation, we used clay models of the cave salamander Speleomantes strinatii to compare the predation occurring in woodland and subterranean habitats. Models were positioned in three forests and in three caves in NW Italy. One-hundred eighty-four models were retrieved from the field and 59 (32%) were attacked by predators. Models were attacked on their head more often than expected by chance and, therefore, were perceived by predators as real prey items. In the woodlands, clay models showed a four-time higher probability of being attacked in comparison to caves, suggesting a different level of potential predation risk in these surface habitats. These findings are one of the first experimental evidences that, in terrestrial ecosystems, predation avoidance may contribute to the salamander underground colonization process.
Cannibalistic-morph Tiger Salamanders in unexpected ecological contexts
McLean, Kyle I.; Stockwell, Craig A.; Mushet, David M.
2016-01-01
Barred tiger salamanders [Ambystoma mavortium (Baird, 1850)] exhibit two trophic morphologies; a typical and a cannibalistic morph. Cannibalistic morphs, distinguished by enlarged vomerine teeth, wide heads, slender bodies, and cannibalistic tendencies, are often found where conspecifics occur at high density. During 2012 and 2013, 162 North Dakota wetlands and lakes were sampled for salamanders. Fifty-one contained A. mavortium populations; four of these contained cannibalistic morph individuals. Two populations with cannibalistic morphs occurred at sites with high abundances of conspecifics. However, the other two populations occurred at sites with unexpectedly low conspecific but high fathead minnow [Pimephales promelas (Rafinesque, 1820)] abundances. Further, no typical morphs were observed in either of these later two populations, contrasting with earlier research suggesting cannibalistic morphs only occur at low frequencies in salamander populations. Another anomaly of all four populations was the occurrence of cannibalistic morphs in permanent water sites, suggesting their presence was due to factors other than faster growth allowing them to occupy ephemeral habitats. Therefore, our findings suggest environmental factors inducing the cannibalistic morphism may be more complex than previously thought.
Design tradeoffs in long-term research for stream salamanders
Brand, Adrianne B,; Grant, Evan H. Campbell
2017-01-01
Long-term research programs can benefit from early and periodic evaluation of their ability to meet stated objectives. In particular, consideration of the spatial allocation of effort is key. We sampled 4 species of stream salamanders intensively for 2 years (2010–2011) in the Chesapeake and Ohio Canal National Historical Park, Maryland, USA to evaluate alternative distributions of sampling locations within stream networks, and then evaluated via simulation the ability of multiple survey designs to detect declines in occupancy and to estimate dynamic parameters (colonization, extinction) over 5 years for 2 species. We expected that fine-scale microhabitat variables (e.g., cobble, detritus) would be the strongest determinants of occupancy for each of the 4 species; however, we found greater support for all species for models including variables describing position within the stream network, stream size, or stream microhabitat. A monitoring design focused on headwater sections had greater power to detect changes in occupancy and the dynamic parameters in each of 3 scenarios for the dusky salamander (Desmognathus fuscus) and red salamander (Pseudotriton ruber). Results for transect length were more variable, but across all species and scenarios, 25-m transects are most suitable as a balance between maximizing detection probability and describing colonization and extinction. These results inform sampling design and provide a general framework for setting appropriate goals, effort, and duration in the initial planning stages of research programs on stream salamanders in the eastern United States.
García-París, Mario; Good, David A.; Parra-Olea, Gabriela; Wake, David B.
2000-01-01
Although salamanders are characteristic amphibians in Holarctic temperate habitats, in tropical regions they have diversified evolutionarily only in tropical America. An adaptive radiation centered in Middle America occurred late in the history of a single clade, the supergenus Bolitoglossa (Plethodontidae), and large numbers of species now occur in diverse habitats. Sublineages within this clade decrease in number from the northern to southern parts of Middle America, and in Costa Rica, there are but three. Despite this phylogenetic constraint, Costa Rica has many species; the number of salamander species on one local elevational transect in the Cordillera de Talamanca may be the largest for any such transect in the world. Extraordinary variation in sequences of the mitochondrial gene cytochrome b within a clade of the genus Bolitoglossa in Costa Rica reveals strong phylogeographic structure within a single species, Bolitoglossa pesrubra. Allozymic variation in 19 proteins reveals a pattern largely concordant with the mitochondrial DNA phylogeography. More species exist than are currently recognized. Diversification occurs in restricted geographic areas and involves sharp geographic and elevational differentiation and zonation. In their degree of genetic differentiation at a local scale, these species of the deep tropics exceed the known variation of extratropical salamanders, which also differ in being less restricted in elevational range. Salamanders display “tropicality” in that although speciose, they are usually local in distribution and rare. They display strong ecological and physiological differentiation that may contribute importantly to morphological divergence and species formation. PMID:10677512
Predator cannibalism can intensify negative impacts on heterospecific prey.
Takatsu, Kunio; Kishida, Osamu
2015-07-01
Although natural populations consist of individuals with different traits, and the degree of phenotypic variation varies among populations, the impact of phenotypic variation on ecological interactions has received little attention, because traditional approaches to community ecology assume homogeneity of individuals within a population. Stage structure, which is a common way of generating size and developmental variation within predator populations, can drive cannibalistic interactions, which can affect the strength of predatory effects on the predator's heterospecific prey. Studies have shown that predator cannibalism weakens predatory effects on heterospecific prey by reducing the size of the predator population and by inducing less feeding activity of noncannibal predators. We predict, however, that predator cannibalism, by promoting rapid growth of the cannibals, can also intensify predation pressure on heterospecific prey, because large predators have large resource requirements and may utilize a wider variety of prey species. To test this hypothesis, we conducted an experiment in which we created carnivorous salamander (Hynobius retardatus) populations with different stage structures by manipulating the salamander's hatch timing (i.e., populations with large or small variation in the timing of hatching), and explored the resultant impacts on the abundance, behavior, morphology, and life history of the salamander's large heterospecific prey, Rana pirica frog tadpoles. Cannibalism was rare in salamander populations having small hatch-timing variation, but was frequent in those having large hatch-timing variation. Thus, giant salamander cannibals occurred only in the latter. We clearly showed that salamander giants exerted strong predation pressure on frog tadpoles, which induced large behavioral and morphological defenses in the tadpoles and caused them to metamorphose late at large size. Hence, predator cannibalism arising from large variation in the timing of hatching can strengthen predatory effects on heterospecific prey and can have impacts on various, traits of both predator and prey. Because animals commonly broaden their diet as they grow, such negative impacts of predator cannibalism on the heterospecific prey may be common in interactions between predators and prey species of similar size.
Markle, Tricia M; Kozak, Kenneth H
2018-05-01
Thermal acclimation is hypothesized to offer a selective advantage in seasonal habitats and may underlie disparities in geographic range size among closely-related species with similar ecologies. Understanding this relationship is also critical for identifying species that are more sensitive to warming climates. Here, we study North American plethodontid salamanders to investigate whether acclimation ability is associated with species' latitudinal extents and the thermal range of the environments they inhabit. We quantified variation in thermal physiology by measuring standard metabolic rate (SMR) at different test and acclimation temperatures for 16 species of salamanders with varying latitudinal extents. A phylogenetically-controlled Markov chain Monte Carlo generalized linear mixed model (MCMCglmm) was then employed to determine whether there are differences in SMR between wide- and narrow-ranging species at different acclimation temperatures. In addition, we tested for a relationship between the acclimation ability of species and the environmental temperature ranges they inhabit. Further, we investigated if there is a trade-off between critical thermal maximum (CTMax) and thermal acclimation ability. MCMCglmm results show a significant difference in acclimation ability between wide and narrow-ranging temperate salamanders. Salamanders with wide latitudinal distributions maintain or slightly increase SMR when subjected to higher test and acclimation temperatures, whereas several narrow-ranging species show significant metabolic depression. We also found significant, positive relationships between acclimation ability and environmental thermal range, and between acclimation ability and CTMax. Wide-ranging salamander species exhibit a greater capacity for thermal acclimation than narrow-ranging species, suggesting that selection for acclimation ability may have been a key factor enabling geographic expansion into areas with greater thermal variability. Further, given that narrow-ranging salamanders are found to have both poor acclimation ability and lower tolerance to warm temperatures, they are likely to be more susceptible to environmental warming associated with anthropogenic climate change.
Bayesian methods in reliability
NASA Astrophysics Data System (ADS)
Sander, P.; Badoux, R.
1991-11-01
The present proceedings from a course on Bayesian methods in reliability encompasses Bayesian statistical methods and their computational implementation, models for analyzing censored data from nonrepairable systems, the traits of repairable systems and growth models, the use of expert judgment, and a review of the problem of forecasting software reliability. Specific issues addressed include the use of Bayesian methods to estimate the leak rate of a gas pipeline, approximate analyses under great prior uncertainty, reliability estimation techniques, and a nonhomogeneous Poisson process. Also addressed are the calibration sets and seed variables of expert judgment systems for risk assessment, experimental illustrations of the use of expert judgment for reliability testing, and analyses of the predictive quality of software-reliability growth models such as the Weibull order statistics.
Monasson, Remi; Cocco, Simona
2011-10-01
We present two Bayesian procedures to infer the interactions and external currents in an assembly of stochastic integrate-and-fire neurons from the recording of their spiking activity. The first procedure is based on the exact calculation of the most likely time courses of the neuron membrane potentials conditioned by the recorded spikes, and is exact for a vanishing noise variance and for an instantaneous synaptic integration. The second procedure takes into account the presence of fluctuations around the most likely time courses of the potentials, and can deal with moderate noise levels. The running time of both procedures is proportional to the number S of spikes multiplied by the squared number N of neurons. The algorithms are validated on synthetic data generated by networks with known couplings and currents. We also reanalyze previously published recordings of the activity of the salamander retina (including from 32 to 40 neurons, and from 65,000 to 170,000 spikes). We study the dependence of the inferred interactions on the membrane leaking time; the differences and similarities with the classical cross-correlation analysis are discussed.
UniEnt: uniform entropy model for the dynamics of a neuronal population
NASA Astrophysics Data System (ADS)
Hernandez Lahme, Damian; Nemenman, Ilya
Sensory information and motor responses are encoded in the brain in a collective spiking activity of a large number of neurons. Understanding the neural code requires inferring statistical properties of such collective dynamics from multicellular neurophysiological recordings. Questions of whether synchronous activity or silence of multiple neurons carries information about the stimuli or the motor responses are especially interesting. Unfortunately, detection of such high order statistical interactions from data is especially challenging due to the exponentially large dimensionality of the state space of neural collectives. Here we present UniEnt, a method for the inference of strengths of multivariate neural interaction patterns. The method is based on the Bayesian prior that makes no assumptions (uniform a priori expectations) about the value of the entropy of the observed multivariate neural activity, in contrast to popular approaches that maximize this entropy. We then study previously published multi-electrode recordings data from salamander retina, exposing the relevance of higher order neural interaction patterns for information encoding in this system. This work was supported in part by Grants JSMF/220020321 and NSF/IOS/1208126.
Reproductive allometry in three species of Dusky Salamanders
Richard C. Bruce
2014-01-01
Desmognathus comprises 21 currently recognized species of salamanders in eastern North America. Assemblages of 3â6 species occur in the Appalachian Mountains, wherein the larger species are more aquatic and the smaller more terrestrial. Adaptive divergence along the habitat gradient from stream to forest involves variation in such life-history traits as age and size at...
A.P. McIntyre; R.A. Schmitz; C.M. Crisafulli
2006-01-01
We explored the association between Van Dyke's salamander (Plethodon vandykei) and hydrologic condition, geomorphology, and vegetation structure in headwall seeps in the Cascade Range of Washington State. We modeled occurrence of P. vandykei at three site scales: between seeps, within seeps, and between microhabitat sites...
Richard C. Bruce
2016-01-01
Gompertz growth functions were fitted to skeletochronological data sets of three species of desmognathine salamanders from an assemblage (Wolf Creek) in the Cowee Mountains of southwestern North Carolina. The results were compared to earlier evaluations of growth in desmognathines from a nearby assemblage (Coweeta) in the Nantahala Mountains. In two of the species,...
Macrohabitat models of occurrence for the threatened Cheat Mountain salamander, Plethodon nettingi
Lester O. Dillard; Kevin R. Russell; W. Mark Ford
2008-01-01
The federally threatened Cheat Mountain salamander (Plethodon nettingi; hereafter CMS) is known to occur at approximately 70 small, scattered sites in the Allegheny Mountains of eastern West Virginia. We used a comparative modeling approach to explain the landscape-level distribution and habitat relationships of CMS in relation to a suite of biotic...
The Dynamics of Two Hybrid Zones in Appalachian Salamanders of the Genus Plethodon
Nelson G. Hairston; R. Haven Wiley; Charles K. Smith; Kenneth A. Kneidel
1992-01-01
Two zones of intergradation between populations of Plethodon have been studied for 18 and 20 years, respectively. The data consist of systematic scores of colors, made at least twice annually. Near Heintooga Overlook in the Balsam Mountains (Great Smoky Mountains National Park), the salamanders' cheeks are gray. Proceeding north toward the...
Bottom-up limitation of a stream salamander in a detritus-based food web
Brent R. Johnson; J. Bruce Wallace
2005-01-01
The indirect effects that resources can have on higher trophic levels remain poorly understood for detritus-based ecosystems. Our objective was to examine effects of long-term terrestrial litter exclusion on a larval salamander, Eurycea wilderae, in a detritus-based stream. After 4 years of exclusion treatment, we conducted a mark-recapture study and...
M. L. Best; H. H. Welsh
2014-01-01
Woodland (Plethodontid) salamanders are the most abundant vertebrates in North American forests, functioning as predators on invertebrates and prey for higher trophic levels. We investigated the role of Ensatina (Ensatina eschscholtzii) in regulating invertebrate numbers and leaf litter retention in a northern California forest. Our objective was...
Cathryn H. Greenberg; Christopher E. Moorman; Amy L. Raybuck; Chad Sundol; Tara L. Keyser; Janis Bush; Dean M. Simon; Gordon S. Warburton
2016-01-01
Forest restoration efforts commonly employ silvicultural methods that alter light and competition to influence species composition. Changes to forest structure and microclimate may adversely affect some taxa (e.g., terrestrial salamanders), but positively affect others (e.g., early successional birds). Salamanders are cited as indicators of ecosystem health because of...
Acid precipitation and reproductive success of Ambystoma salamanders
F. Harvey Pough; Richard E. Wilson
1976-01-01
The two species of mole salamander that occur in the Ithaca, New York, region (Ambystoma maculatum and A. jeffersonianum) breed in temporary ponds that are formed by accumulation of melted snow and spring rains. Water in many of these pools during the breeding season is acid; pH values as low as 3.5 have been measured. In...
Effects of nitrogenous wastes on survival of the Barton Springs salamander (Eurycea sosorum).
Crow, Justin C; Ostrand, Kenneth G; Forstner, Michael R J; Catalano, Matthew; Tomasso, Joseph R
2017-11-01
The objective of our study was to determine the acute toxicity of 3 common aquatic nitrogenous toxicants to the federally endangered Barton Springs salamander (Eurycea sosorum). Based on our findings, the 96-h median lethal concentrations (96-h LC50) for un-ionized ammonia-N, nitrite-N, and nitrate-N to E. sosorum are 2.0 ± 0.32, 31.7 ± 4.02, and 968.5 ± 150.6 mg/L, respectively. These results establish a benchmark for the tolerance of plethodontid salamanders to these toxicants and indicate that current water quality criteria are adequate for their protection. Environ Toxicol Chem 2017;36:3003-3007. © 2017 SETAC. © 2017 SETAC.
Decline of disjunct green salamander (Aneides aeneus) populations in the southern appalachians
Corser, J.D.
2001-01-01
Coincident with other amphibians around the world Aneides aeneus, a terrestrial plethodontid salamander, suffered a population collapse in a disjunct portion of its range in the mid-late 1970s. Long-term monitoring of seven historical green salamander populations throughout the 1990s showed a 98% decline in relative abundance since 1970. Three out of six populations first discovered in 1991 also crashed in 1996-1997. The synchronized suddenness of the declines, their region-wide impact, and effects on both small and larger populations, suggest the role of a novel agent of mortality beginning in the mid-late 1970s. Acting alone, but more likely in concert, habitat loss, overcollecting, epidemic disease and climate change could account for this region-wide decline.
Harrison, Jay M; Breeze, Matthew L; Harrigan, George G
2011-08-01
Statistical comparisons of compositional data generated on genetically modified (GM) crops and their near-isogenic conventional (non-GM) counterparts typically rely on classical significance testing. This manuscript presents an introduction to Bayesian methods for compositional analysis along with recommendations for model validation. The approach is illustrated using protein and fat data from two herbicide tolerant GM soybeans (MON87708 and MON87708×MON89788) and a conventional comparator grown in the US in 2008 and 2009. Guidelines recommended by the US Food and Drug Administration (FDA) in conducting Bayesian analyses of clinical studies on medical devices were followed. This study is the first Bayesian approach to GM and non-GM compositional comparisons. The evaluation presented here supports a conclusion that a Bayesian approach to analyzing compositional data can provide meaningful and interpretable results. We further describe the importance of method validation and approaches to model checking if Bayesian approaches to compositional data analysis are to be considered viable by scientists involved in GM research and regulation. Copyright © 2011 Elsevier Inc. All rights reserved.
Developing Critical Thinking about Reporting of Bayesian Analyses
ERIC Educational Resources Information Center
Pullenayegum, Eleanor M.; Guo, Qing; Hopkins, Robert B.
2012-01-01
Graduate students in the health sciences who hope to become independent researchers must be able to write up their results at a standard suitable for submission to peer-reviewed journals. Bayesian analyses are still rare in the medical literature, and students are often unclear on what should be included in a manuscript. Whilst there are published…
Costa, Andrea; Salvidio, Sebastiano; Posillico, Mario; Matteucci, Giorgio; De Cinti, Bruno; Romano, Antonio
2015-01-01
Specialization is typically inferred at population and species level but in the last decade many authors highlighted this trait at the individual level, finding that generalist populations can be composed by both generalist and specialist individual. Despite hundreds of reported cases of individual specialization there is a complete lack of information on inter-individual diet variation in specialist species. We studied the diet of the Italian endemic Spectacled Salamander (Salamandrina perspicillata), in a temperate forest ecosystem, to disclose the realised trophic niche, prey selection strategy in function of phenotypic variation and inter-individual diet variation. Our results showed that Salamandrina is highly specialized on Collembola and the more specialized individuals are the better performing ones. Analyses of inter-individual diet variation showed that a subset of animals exhibited a broader trophic niche, adopting different foraging strategies. Our findings reflects the optimal foraging theory both at population and individual level, since animals in better physiological conditions are able to exploit the most profitable prey, suggesting that the two coexisting strategies are not equivalent. At last this species, feeding on decomposers of litter detritus, could play a key role determining litter retention rate, nutrient cycle and carbon sequestration. PMID:26292804
Gandhi, Jaina S; Cecala, Kristen K
2016-09-01
The objective of the present study was to evaluate the potential interactive effects of stream temperatures and environmentally relevant glyphosate-based herbicide concentrations on movement and antipredator behaviors of larval Eurycea wilderae (Blue Ridge two-lined salamander). Larval salamanders were exposed to 1 of 4 environmentally relevant glyphosate concentrations (0.00 µg acid equivalent [a.e.]/L, 0.73 µg a.e./L, 1.46 µg a.e./L, and 2.92 µg a.e./L) at either ambient (12 °C) or elevated (23 °C) water temperature. Behaviors observed included the exploration of a novel habitat, use of refuge, habitat selection relative to a potential predator, and burst movement distance. In the absence of glyphosate, temperature consistently affected movement and refuge-use behavior, with individuals moving longer distances more frequently and using refuge less at warm temperatures; however, when glyphosate was added, the authors observed inconsistent effects of temperature that may have resulted from differential toxicity at various temperatures. Larval salamanders made shorter, more frequent movements and demonstrated reduced burst distance at higher glyphosate concentrations. The authors also found that lower glyphosate concentrations sometimes had stronger effects than higher concentrations (i.e., nonmonotonic dose responses), suggesting that standard safety tests conducted only at higher glyphosate concentrations might overlook important sublethal effects on salamander behavior. These data demonstrate that sublethal effects of glyphosate-based herbicides on natural behaviors of amphibians can occur with short-term exposure to environmentally relevant concentrations. Environ Toxicol Chem 2016;35:2297-2303. © 2016 SETAC. © 2016 SETAC.
Loudon, Andrew H; Woodhams, Douglas C; Parfrey, Laura Wegener; Archer, Holly; Knight, Rob; McKenzie, Valerie; Harris, Reid N
2014-01-01
Beneficial cutaneous bacteria on amphibians can protect against the lethal disease chytridiomycosis, which has devastated many amphibian species and is caused by the fungus Batrachochytrium dendrobatidis. We describe the diversity of bacteria on red-backed salamanders (Plethodon cinereus) in the wild and the stability of these communities through time in captivity using culture-independent Illumina 16S rRNA gene sequencing. After field sampling, salamanders were housed with soil from the field or sterile media. The captive conditions led to different trajectories of bacterial communities. Eight OTUs present on >90% of salamanders in the field, through time, and in both treatments were defined as the core community, suggesting that some bacteria are closely associated with the host and are independent of an environmental reservoir. One of these taxa, a Pseudomonas sp., was previously cultured from amphibians and found to be antifungal. As all host-associated bacteria were found in the soil reservoir, environmental microbes strongly influence host–microbial diversity and likely regulate the core community. Using PICRUSt, an exploratory bioinformatics tool to predict gene functions, we found that core skin bacteria provided similar gene functions to the entire community. We suggest that future experiments focus on testing whether core bacteria on salamander skin contribute to the observed resistance to chytridiomycosis in this species even under hygenic captive conditions. For disease-susceptible hosts, providing an environmental reservoir with defensive bacteria in captive-rearing programs may improve outcomes by increasing bacterial diversity on threatened amphibians or increasing the likelihood that defensive bacteria are available for colonization. PMID:24335825
Kershenbaum, Arik; Blank, Lior; Sinai, Iftach; Merilä, Juha; Blaustein, Leon; Templeton, Alan R
2014-06-01
When populations reside within a heterogeneous landscape, isolation by distance may not be a good predictor of genetic divergence if dispersal behaviour and therefore gene flow depend on landscape features. Commonly used approaches linking landscape features to gene flow include the least cost path (LCP), random walk (RW), and isolation by resistance (IBR) models. However, none of these models is likely to be the most appropriate for all species and in all environments. We compared the performance of LCP, RW and IBR models of dispersal with the aid of simulations conducted on artificially generated landscapes. We also applied each model to empirical data on the landscape genetics of the endangered fire salamander, Salamandra infraimmaculata, in northern Israel, where conservation planning requires an understanding of the dispersal corridors. Our simulations demonstrate that wide dispersal corridors of the low-cost environment facilitate dispersal in the IBR model, but inhibit dispersal in the RW model. In our empirical study, IBR explained the genetic divergence better than the LCP and RW models (partial Mantel correlation 0.413 for IBR, compared to 0.212 for LCP, and 0.340 for RW). Overall dispersal cost in salamanders was also well predicted by landscape feature slope steepness (76%), and elevation (24%). We conclude that fire salamander dispersal is well characterised by IBR predictions. Together with our simulation findings, these results indicate that wide dispersal corridors facilitate, rather than hinder, salamander dispersal. Comparison of genetic data to dispersal model outputs can be a useful technique in inferring dispersal behaviour from population genetic data.
Stand age and habitat influences on salamanders in Appalachian cove hardwood forests
W. Mark Ford; Brian R. Chapman; Michael A. Menzel; Richard H. Odom
2002-01-01
We surveyed cove hardwood stands aged 15, 25, 50, and ≥85 years following clearcutting in the southern Appalachian Mountains of northern Georgia to assess the effects of stand age and stand habitat characteristics on salamander communities using drift-fence array and pitfall methodologies from May 1994 to April 1995. Over a 60,060 pitfall trapnight effort, we...
Hart Welsh; Garth Hodgson
2013-01-01
Woodland (Plethodontid) salamanders occur in huge numbers in healthy forests in North America where the abundances of many species vary along successional gradients. Their high numbers and trophic role as predators on shredder and decomposer arthropods influence nutrient and carbon pathways at the leaf litter/soil interface. Their extreme niche conservatism and low...
Nobuya Suzuki; Deanna H. Olson; Edward C. Reilly
2007-01-01
To advance the development of conservation planning for rare species with small geographic ranges, we determined habitat associations of Siskiyou Mountains salamanders (Plethodon stormi) and developed habitat suitability models at fine (10 ha), medium (40 ha), and broad (202 ha) spatial scales using available geographic information systems data and...
Lester O. Dillard; Kevin R. Russell; W. Mark Ford
2008-01-01
The federally threatened Cheat Mountain salamander (Plethodon nettingi; hereafter CMS) is known to occur in approximately 70 small, scattered populations in the Allegheny Mountains of eastern West Virginia, USA. Current conservation and management efforts on federal, state, and private lands involving CMS largely rely on small scale, largely...
Glenn R. Stewart; Mark R. Jennings; Robert H. Jr. Goodman
2005-01-01
At least 35 species of amphibians and reptiles occur regularly in the conifer forest areas of southern California. Twelve of them have some or all of their populations identified as experiencing some degree of threat. Among the snakes, frogs, and salamanders that we believe need particular attention are the southern rubber boa (Charina bottae umbratica...
S. Keitzer; Reuben Goforth; Allan Pessier; April Johnson
2011-01-01
Batrachochytrium dendrobatidis is a fungal pathogen responsible for a potentially fatal disease of amphibians. We conducted a survey for B. dendrobatidis in the Appalachian Mountains of southwestern North Carolina, USA, from 10 June to 23 July 23 2009. Ventral skin swabs were collected from plethodontid salamanders (n=278) and real-time PCR was performed to test for...
Richard Bruce
2010-01-01
I used skeletochronological data to evaluate the contributions of propagule size, larval/juvenile growth, and age at first reproduction to differences in adult body size in two species of plethodontid salamanders of the genus Desmognathus. The traits in question were evaluated in populations of the larger D. quadramaculatus and smaller D. monticola in the southern Blue...
Phan, Anne Q; Lee, Jangwoo; Oei, Michelle; Flath, Craig; Hwe, Caitlyn; Mariano, Rachele; Vu, Tiffany; Shu, Cynthia; Dinh, Andrew; Simkin, Jennifer; Muneoka, Ken; Bryant, Susan V; Gardiner, David M
2015-08-01
Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain-of-function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position-specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position-specific, developmental-stage-specific, and heparan sulfate-dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals.
Phan, Anne Q.; Lee, Jangwoo; Oei, Michelle; Flath, Craig; Hwe, Caitlyn; Mariano, Rachele; Vu, Tiffany; Shu, Cynthia; Dinh, Andrew; Simkin, Jennifer; Muneoka, Ken; Bryant, Susan V.
2015-01-01
Abstract Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain‐of‐function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position‐specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position‐specific, developmental‐stage‐specific, and heparan sulfate‐dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals. PMID:27499874
The dynamic evolutionary history of genome size in North American woodland salamanders.
Newman, Catherine E; Gregory, T Ryan; Austin, Christopher C
2017-04-01
The genus Plethodon is the most species-rich salamander genus in North America, and nearly half of its species face an uncertain future. It is also one of the most diverse families in terms of genome sizes, which range from 1C = 18.2 to 69.3 pg, or 5-20 times larger than the human genome. Large genome size in salamanders results in part from accumulation of transposable elements and is associated with various developmental and physiological traits. However, genome sizes have been reported for only 25% of the species of Plethodon (14 of 55). We collected genome size data for Plethodon serratus to supplement an ongoing phylogeographic study, reconstructed the evolutionary history of genome size in Plethodontidae, and inferred probable genome sizes for the 41 species missing empirical data. Results revealed multiple genome size changes in Plethodon: genomes of western Plethodon increased, whereas genomes of eastern Plethodon decreased, followed by additional decreases or subsequent increases. The estimated genome size of P. serratus was 21 pg. New understanding of variation in genome size evolution, along with genome size inferences for previously unstudied taxa, provide a foundation for future studies on the biology of plethodontid salamanders.
Spatial data for Eurycea salamander habitats associated With three aquifers in south-central Texas
Heitmuller, Franklin T.; Reece, Brian D.
2006-01-01
Eurycea salamander taxa comprise 12 known species that inhabit springs and caves in south-central Texas. Many of these are threatened or endangered species, and some are found only at one location. A number of the neotenic salamanders might be at risk from habitat loss associated with declines in ground-water levels. Eurycea salamander habitats are associated with three aquifers in south-central Texas: (1) the Edwards-Trinity (Plateau) aquifer, (2) the Edwards (Balcones Fault Zone) aquifer, and (3) the Trinity aquifer. The Edwards (Balcones fault zone) aquifer is commonly separated into three segments: from southwest to northeast, the San Antonio segment, the Barton Springs segment, and the northern segment. The Trinity aquifer south of the Colorado River can be divided into three permeable zones, the upper, middle, and lower zone. The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, developed this report (geodatabase) to aggregate the spatial data necessary to assess the potential effects of ground-water declines on known Eurycea habitat locations in south-central Texas. The geodatabase provides information about spring habitats, spring flow, cave habitats, aquifers, and projected water levels.
Bayesian just-so stories in psychology and neuroscience.
Bowers, Jeffrey S; Davis, Colin J
2012-05-01
According to Bayesian theories in psychology and neuroscience, minds and brains are (near) optimal in solving a wide range of tasks. We challenge this view and argue that more traditional, non-Bayesian approaches are more promising. We make 3 main arguments. First, we show that the empirical evidence for Bayesian theories in psychology is weak. This weakness relates to the many arbitrary ways that priors, likelihoods, and utility functions can be altered in order to account for the data that are obtained, making the models unfalsifiable. It further relates to the fact that Bayesian theories are rarely better at predicting data compared with alternative (and simpler) non-Bayesian theories. Second, we show that the empirical evidence for Bayesian theories in neuroscience is weaker still. There are impressive mathematical analyses showing how populations of neurons could compute in a Bayesian manner but little or no evidence that they do. Third, we challenge the general scientific approach that characterizes Bayesian theorizing in cognitive science. A common premise is that theories in psychology should largely be constrained by a rational analysis of what the mind ought to do. We question this claim and argue that many of the important constraints come from biological, evolutionary, and processing (algorithmic) considerations that have no adaptive relevance to the problem per se. In our view, these factors have contributed to the development of many Bayesian "just so" stories in psychology and neuroscience; that is, mathematical analyses of cognition that can be used to explain almost any behavior as optimal. 2012 APA, all rights reserved.
Turner, Rebecca M; Jackson, Dan; Wei, Yinghui; Thompson, Simon G; Higgins, Julian P T
2015-01-01
Numerous meta-analyses in healthcare research combine results from only a small number of studies, for which the variance representing between-study heterogeneity is estimated imprecisely. A Bayesian approach to estimation allows external evidence on the expected magnitude of heterogeneity to be incorporated. The aim of this paper is to provide tools that improve the accessibility of Bayesian meta-analysis. We present two methods for implementing Bayesian meta-analysis, using numerical integration and importance sampling techniques. Based on 14 886 binary outcome meta-analyses in the Cochrane Database of Systematic Reviews, we derive a novel set of predictive distributions for the degree of heterogeneity expected in 80 settings depending on the outcomes assessed and comparisons made. These can be used as prior distributions for heterogeneity in future meta-analyses. The two methods are implemented in R, for which code is provided. Both methods produce equivalent results to standard but more complex Markov chain Monte Carlo approaches. The priors are derived as log-normal distributions for the between-study variance, applicable to meta-analyses of binary outcomes on the log odds-ratio scale. The methods are applied to two example meta-analyses, incorporating the relevant predictive distributions as prior distributions for between-study heterogeneity. We have provided resources to facilitate Bayesian meta-analysis, in a form accessible to applied researchers, which allow relevant prior information on the degree of heterogeneity to be incorporated. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:25475839
Steingroever, Helen; Pachur, Thorsten; Šmíra, Martin; Lee, Michael D
2018-06-01
The Iowa Gambling Task (IGT) is one of the most popular experimental paradigms for comparing complex decision-making across groups. Most commonly, IGT behavior is analyzed using frequentist tests to compare performance across groups, and to compare inferred parameters of cognitive models developed for the IGT. Here, we present a Bayesian alternative based on Bayesian repeated-measures ANOVA for comparing performance, and a suite of three complementary model-based methods for assessing the cognitive processes underlying IGT performance. The three model-based methods involve Bayesian hierarchical parameter estimation, Bayes factor model comparison, and Bayesian latent-mixture modeling. We illustrate these Bayesian methods by applying them to test the extent to which differences in intuitive versus deliberate decision style are associated with differences in IGT performance. The results show that intuitive and deliberate decision-makers behave similarly on the IGT, and the modeling analyses consistently suggest that both groups of decision-makers rely on similar cognitive processes. Our results challenge the notion that individual differences in intuitive and deliberate decision styles have a broad impact on decision-making. They also highlight the advantages of Bayesian methods, especially their ability to quantify evidence in favor of the null hypothesis, and that they allow model-based analyses to incorporate hierarchical and latent-mixture structures.
Application of Comparative Functional Genomics to Identify Regeneration-Specific Genes
2014-08-25
The first objective will extend an ongoing study of the transcriptional basis of limb regeneration in the Mexican axolotl (Ambystoma mexicanum) to...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Limb Regeneration, Transcriptome, Salamander, Axolotl REPORT...transcriptional basis of limb regeneration in the Mexican axolotl (Ambystoma mexicanum) to three additional salamander species (A. tigrinum, A. maculatum, and
Hartwell Welsh; Jeff Waters; Garth Hodgson; Ted Weller; Cynthia Zabel
2015-01-01
We examined responses of the woodland salamander Ensatina (Ensatina eschscholtzii) to commercial thinning by helicopter in late-seral Douglas-fir forest in northwestern California, USA, using a before-after control-impact (BACI) design. We employed passive pitfall traps on eight (four each treatment and control) 100 trap grids over eight years (...
2002-08-01
56 Tadpoles of Frogs & Toads ....................................... 61 Salamanders...3. Larval Surveys Assessing amphibian larval ( tadpoles and aquatic salamander larvae) presence and relative abundance can be an effective way to...biology. This is especially important because studying tadpoles through metamorphosis provides information on reproductive success and phenology of
S. Conner Keitzer; Reuben Goforth
2012-01-01
Summary 1. Increased fine sediment deposition is a prevalent threat to stream biodiversity and has been shown to impact stream-breeding salamanders negatively. However, their complex life histories make it difficult to determine which stage is affected. 2. We conducted field experiments from 26 August to 11 September 2010 and 11 October to 11...
Craig A. Harper; David C. Guynn
1999-01-01
We used a terrestrial vacuum to sample known area plots in order to obtain density estimates of salamanders and their primary prey, invertebrates of the forest floor. We sampled leaf litter and measured various vegetative and topographic parameters within four forest types (oak-pine, oak-hickory, mixed mesophytic and northern hardwoods) and three age classes (0-12,13-...
Distribution of the Sonora Tiger Salamander (Ambystoma mavortium stebbinsi) in Mexico
Hossack, Blake R.; Muths, Erin L.; Rorabaugh, James C.; Lemos Espinal, Julio A.; Sigafus, Brent H.; Chambert, Thierry A.; Carreon Arroyo, Gerardo; Hurtado Felix, David; Toyos Martinez, Daniel; Jones, Thomas R.
2016-01-01
The Sonoran Tiger Salamander (Ambystoma mavortium stebbinsi Lowe, 1954) was listed as federally endangered in the USA in 1997 (USFWS 1997). In the USA, the distribution of A. mavortium stebbinsi is limited to the San Rafael Valley (approximately 567 km2), between the Sierra San Antonio (called the Patagonia Mountains in Arizona) and Huachuca Mountains, and south of the Canelo Hills, Arizona (Fig. 1). The USA listing was triggered by loss of natural wetland habitats, threats from invasive predators, frequent die-offs from disease, introgression with the introduced Barred Tiger Salamander (A. mavortium mavortium), and small range and number of breeding sites that increases susceptibility to stochastic events (USFWS 1997). Small population sizes and limited gene flow have caused inbreeding, which may further reduce population viability and the potential for recovery (Jones et al. 1988; Storfer et al. 2014).
Better than fish on land? Hearing across metamorphosis in salamanders.
Christensen, Christian Bech; Lauridsen, Henrik; Christensen-Dalsgaard, Jakob; Pedersen, Michael; Madsen, Peter Teglberg
2015-03-07
Early tetrapods faced an auditory challenge from the impedance mismatch between air and tissue in the transition from aquatic to terrestrial lifestyles during the Early Carboniferous (350 Ma). Consequently, tetrapods may have been deaf to airborne sounds for up to 100 Myr until tympanic middle ears evolved during the Triassic. The middle ear morphology of recent urodeles is similar to that of early 'lepospondyl' microsaur tetrapods, and experimental studies on their hearing capabilities are therefore useful to understand the evolutionary and functional drivers behind the shift from aquatic to aerial hearing in early tetrapods. Here, we combine imaging techniques with neurophysiological measurements to resolve how the change from aquatic larvae to terrestrial adult affects the ear morphology and sensory capabilities of salamanders. We show that air-induced pressure detection enhances underwater hearing sensitivity of salamanders at frequencies above 120 Hz, and that both terrestrial adults and fully aquatic juvenile salamanders can detect airborne sound. Collectively, these findings suggest that early atympanic tetrapods may have been pre-equipped to aerial hearing and are able to hear airborne sound better than fish on land. When selected for, this rudimentary hearing could have led to the evolution of tympanic middle ears. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Page, Robert B; Monaghan, James R; Samuels, Amy K; Smith, Jeramiah J; Beachy, Christopher K; Voss, S Randal
2007-02-01
Ambystomatid salamanders offer several advantages for endocrine disruption research, including genomic and bioinformatics resources, an accessible laboratory model (Ambystoma mexicanum), and natural lineages that are broadly distributed among North American habitats. We used microarray analysis to measure the relative abundance of transcripts isolated from A. mexicanum epidermis (skin) after exogenous application of thyroid hormone (TH). Only one gene had a >2-fold change in transcript abundance after 2 days of TH treatment. However, hundreds of genes showed significantly different transcript levels at days 12 and 28 in comparison to day 0. A list of 123 TH-responsive genes was identified using statistical, BLAST, and fold level criteria. Cluster analysis identified two groups of genes with similar transcription patterns: up-regulated versus down-regulated. Most notably, several keratins exhibited dramatic (1000 fold) increases or decreases in transcript abundance. Keratin gene expression changes coincided with morphological remodeling of epithelial tissues. This suggests that keratin loci can be developed as sensitive biomarkers to assay temporal disruptions of larval-to-adult gene expression programs. Our study has identified the first collection of loci that are regulated during TH-induced metamorphosis in a salamander, thus setting the stage for future investigations of TH disruption in the Mexican axolotl and other salamanders of the genus Ambystoma.
Comparative and developmental patterns of amphibious auditory function in salamanders.
Zeyl, Jeffrey N; Johnston, Carol E
2016-12-01
Early amphibious tetrapods may have detected aquatic sound pressure using sound-induced lung vibrations, but their lack of tympanic middle ears would have restricted aerial sensitivity. Sharing these characteristics, salamanders could be models for the carryover of auditory function across an aquatic-terrestrial boundary without tympanic middle ears. We measured amphibious auditory evoked potential audiograms in five phylogenetically and ecologically distinct salamanders (Amphiuma means, Notophthalmus viridescens, Ambystoma talpoideum, Eurycea spp., and Plethodon glutinosus) and tested whether metamorphosis and terrestrial niche were linked to aerial sensitivity. Threshold differences between media varied between species. A. means' relative aerial sensitivity was greatest at 100 Hz and decreased with increasing frequency. In contrast, all other salamanders retained greater sensitivity up to 500 Hz, and in A. talpoideum and Eurycea, relative sensitivity at 500 Hz was higher than at 100 Hz. Aerial thresholds of terrestrial P. glutinosus above 200 Hz were similar to A. talpoideum and Eurycea, but lower than N. viridescens and A. means. Metamorphosis did not affect aerial sensitivity in N. viridescens or A. talpoideum. These results fail to support a hypothesis of terrestrial hearing specialization across ontogeny or phylogeny. We discuss methodological limitations to our amphibious comparisons and factors affecting variation in amphibious performance.
Biek, Roman; Mills, L. Scott; Bury, R. Bruce
2002-01-01
Timber harvest in the Pacific Northwest has resulted in a highly fragmented landscape. but there is no information on responses of amphibians to forest edges for this region. We investigated abundance of terrestrial and stream-dwelling amphibians on the interface of recent clearcuts and mature forest in the Siskiyou Mountains, Oregon, in summer and fall of 1998. We assessed relative abundance of terrestrial -amphibians on four clearcut forest transects with a combination of pitfall trapping and manual searches. Ensantinas and Del Norte salamanders, the most frequently recorded species, were found on all four sites. While we commonly captured ensantinas using both techniques, we caught most Del Norte salamanders during manual searches. For both species we found no differences in abundance associated with distance to forest edge. Lack of differences in salamander abundance among clearcut and adjacent forests may be related lo large amounts of small woody debris that remained in the clearcuts. The abundance of larvae of tailed frogs and Pacific giant salamanders in five headwater streams was markedly lower in clearcuts than in downstream mature forest stands. No obvious differences existed for stream habitat variables across transects. but abundance of metamorphosed individuals and recruitment may be reduced in clearcut areas due lo hotter and drier conditions during
Morphological variation in salamanders and their potential response to climate change.
Ficetola, Gentile Francesco; Colleoni, Emiliano; Renaud, Julien; Scali, Stefano; Padoa-Schioppa, Emilio; Thuiller, Wilfried
2016-06-01
Despite the recognition that some species might quickly adapt to new conditions under climate change, demonstrating and predicting such a fundamental response is challenging. Morphological variations in response to climate may be caused by evolutionary changes or phenotypic plasticity, or both, but teasing apart these processes is difficult. Here, we built on the number of thoracic vertebrae (NTV) in ectothermic vertebrates, a known genetically based feature, to establish a link with body size and evaluate how climate change might affect the future morphological response of this group of species. First, we show that in old-world salamanders, NTV variation is strongly related to changes in body size. Secondly, using 22 salamander species as a case study, we found support for relationships between the spatial variation in selected bioclimatic variables and NTV for most of species. For 44% of species, precipitation and aridity were the predominant drivers of geographical variation of the NTV. Temperature features were dominant for 31% of species, while for 19% temperature and precipitation played a comparable role. This two-step analysis demonstrates that ectothermic vertebrates may evolve in response to climate change by modifying the number of thoracic vertebrae. These findings allow to develop scenarios for potential morphological evolution under future climate change and to identify areas and species in which the most marked evolutionary responses are expected. Resistance to climate change estimated from species distribution models was positively related to present-day species morphological response, suggesting that the ability of morphological evolution may play a role for species' persistence under climate change. The possibility that present-day capacity for local adaptation might help the resistance response to climate change can be integrated into analyses of the impact of global changes and should also be considered when planning management actions favouring species persistence. © 2016 John Wiley & Sons Ltd.
Bartlett, Jonathan W; Keogh, Ruth H
2018-06-01
Bayesian approaches for handling covariate measurement error are well established and yet arguably are still relatively little used by researchers. For some this is likely due to unfamiliarity or disagreement with the Bayesian inferential paradigm. For others a contributory factor is the inability of standard statistical packages to perform such Bayesian analyses. In this paper, we first give an overview of the Bayesian approach to handling covariate measurement error, and contrast it with regression calibration, arguably the most commonly adopted approach. We then argue why the Bayesian approach has a number of statistical advantages compared to regression calibration and demonstrate that implementing the Bayesian approach is usually quite feasible for the analyst. Next, we describe the closely related maximum likelihood and multiple imputation approaches and explain why we believe the Bayesian approach to generally be preferable. We then empirically compare the frequentist properties of regression calibration and the Bayesian approach through simulation studies. The flexibility of the Bayesian approach to handle both measurement error and missing data is then illustrated through an analysis of data from the Third National Health and Nutrition Examination Survey.
Michael Roy Lau
1994-01-01
Abstract - Small Pacific northwestern coastal streams are nurseries for populations of young of the year coho salmon, steelhead trout, and the Pacific giant salamander larvae. Previous field studies suggest that the habitats of the juveniles of these species were similar to one another. Few habitat utilization studies focus on the juvenile stages of these species...
Sepulveda, Adam; Lowe, Winsor H.; Marra, Peter P.
2012-01-01
5. Although we did not identify mechanisms that facilitate salamander and fish coexistence, our empirical data and use of novel approaches to describe the trophic niche did yield important insights on the role of predator–prey interactions and cannibalism as alternative coexistence mechanisms. In addition, we found that 95% kernel estimators are a simple and robust method to describe population-level measure of trophic structure.
Embryo Development inside Female Salamander (Ambystoma jeffersonianum-laterale) Prior to Egg Laying
Charney, Noah D.; Castorino, John J.; Dobro, Megan J.; Steely, Sarah L.
2014-01-01
The length of embryo retention prior to oviposition is a critical evolutionary trait. In all oviparous salamanders, which include the vast majority of species in the order, fertilization is thought to occur at the time of egg laying. Embryos then enter the first cleavage stage several hours after being deposited. This pattern holds for previously studied individuals in the Ambystoma jeffersonianum-laterale complex. Here, we document an instance in which a female Ambystoma jeffersonianum-laterale was carrying embryos internally that had already reached stage 10 of development. Development likely began several days prior to the start of migration to the breeding pond. This is the first such record for any egg-laying salamander, and suggests a degree of plasticity in the timing of fertilization and development not previously recognized. Further work is needed to ascertain the prevalence, mechanics, and evolutionary significance of this phenomenon. PMID:24651275
Bayesian molecular dating: opening up the black box.
Bromham, Lindell; Duchêne, Sebastián; Hua, Xia; Ritchie, Andrew M; Duchêne, David A; Ho, Simon Y W
2018-05-01
Molecular dating analyses allow evolutionary timescales to be estimated from genetic data, offering an unprecedented capacity for investigating the evolutionary past of all species. These methods require us to make assumptions about the relationship between genetic change and evolutionary time, often referred to as a 'molecular clock'. Although initially regarded with scepticism, molecular dating has now been adopted in many areas of biology. This broad uptake has been due partly to the development of Bayesian methods that allow complex aspects of molecular evolution, such as variation in rates of change across lineages, to be taken into account. But in order to do this, Bayesian dating methods rely on a range of assumptions about the evolutionary process, which vary in their degree of biological realism and empirical support. These assumptions can have substantial impacts on the estimates produced by molecular dating analyses. The aim of this review is to open the 'black box' of Bayesian molecular dating and have a look at the machinery inside. We explain the components of these dating methods, the important decisions that researchers must make in their analyses, and the factors that need to be considered when interpreting results. We illustrate the effects that the choices of different models and priors can have on the outcome of the analysis, and suggest ways to explore these impacts. We describe some major research directions that may improve the reliability of Bayesian dating. The goal of our review is to help researchers to make informed choices when using Bayesian phylogenetic methods to estimate evolutionary rates and timescales. © 2017 Cambridge Philosophical Society.
Bayesian models for comparative analysis integrating phylogenetic uncertainty.
de Villemereuil, Pierre; Wells, Jessie A; Edwards, Robert D; Blomberg, Simon P
2012-06-28
Uncertainty in comparative analyses can come from at least two sources: a) phylogenetic uncertainty in the tree topology or branch lengths, and b) uncertainty due to intraspecific variation in trait values, either due to measurement error or natural individual variation. Most phylogenetic comparative methods do not account for such uncertainties. Not accounting for these sources of uncertainty leads to false perceptions of precision (confidence intervals will be too narrow) and inflated significance in hypothesis testing (e.g. p-values will be too small). Although there is some application-specific software for fitting Bayesian models accounting for phylogenetic error, more general and flexible software is desirable. We developed models to directly incorporate phylogenetic uncertainty into a range of analyses that biologists commonly perform, using a Bayesian framework and Markov Chain Monte Carlo analyses. We demonstrate applications in linear regression, quantification of phylogenetic signal, and measurement error models. Phylogenetic uncertainty was incorporated by applying a prior distribution for the phylogeny, where this distribution consisted of the posterior tree sets from Bayesian phylogenetic tree estimation programs. The models were analysed using simulated data sets, and applied to a real data set on plant traits, from rainforest plant species in Northern Australia. Analyses were performed using the free and open source software OpenBUGS and JAGS. Incorporating phylogenetic uncertainty through an empirical prior distribution of trees leads to more precise estimation of regression model parameters than using a single consensus tree and enables a more realistic estimation of confidence intervals. In addition, models incorporating measurement errors and/or individual variation, in one or both variables, are easily formulated in the Bayesian framework. We show that BUGS is a useful, flexible general purpose tool for phylogenetic comparative analyses, particularly for modelling in the face of phylogenetic uncertainty and accounting for measurement error or individual variation in explanatory variables. Code for all models is provided in the BUGS model description language.
Bayesian models for comparative analysis integrating phylogenetic uncertainty
2012-01-01
Background Uncertainty in comparative analyses can come from at least two sources: a) phylogenetic uncertainty in the tree topology or branch lengths, and b) uncertainty due to intraspecific variation in trait values, either due to measurement error or natural individual variation. Most phylogenetic comparative methods do not account for such uncertainties. Not accounting for these sources of uncertainty leads to false perceptions of precision (confidence intervals will be too narrow) and inflated significance in hypothesis testing (e.g. p-values will be too small). Although there is some application-specific software for fitting Bayesian models accounting for phylogenetic error, more general and flexible software is desirable. Methods We developed models to directly incorporate phylogenetic uncertainty into a range of analyses that biologists commonly perform, using a Bayesian framework and Markov Chain Monte Carlo analyses. Results We demonstrate applications in linear regression, quantification of phylogenetic signal, and measurement error models. Phylogenetic uncertainty was incorporated by applying a prior distribution for the phylogeny, where this distribution consisted of the posterior tree sets from Bayesian phylogenetic tree estimation programs. The models were analysed using simulated data sets, and applied to a real data set on plant traits, from rainforest plant species in Northern Australia. Analyses were performed using the free and open source software OpenBUGS and JAGS. Conclusions Incorporating phylogenetic uncertainty through an empirical prior distribution of trees leads to more precise estimation of regression model parameters than using a single consensus tree and enables a more realistic estimation of confidence intervals. In addition, models incorporating measurement errors and/or individual variation, in one or both variables, are easily formulated in the Bayesian framework. We show that BUGS is a useful, flexible general purpose tool for phylogenetic comparative analyses, particularly for modelling in the face of phylogenetic uncertainty and accounting for measurement error or individual variation in explanatory variables. Code for all models is provided in the BUGS model description language. PMID:22741602
Ortega, Alonso; Labrenz, Stephan; Markowitsch, Hans J; Piefke, Martina
2013-01-01
In the last decade, different statistical techniques have been introduced to improve assessment of malingering-related poor effort. In this context, we have recently shown preliminary evidence that a Bayesian latent group model may help to optimize classification accuracy using a simulation research design. In the present study, we conducted two analyses. Firstly, we evaluated how accurately this Bayesian approach can distinguish between participants answering in an honest way (honest response group) and participants feigning cognitive impairment (experimental malingering group). Secondly, we tested the accuracy of our model in the differentiation between patients who had real cognitive deficits (cognitively impaired group) and participants who belonged to the experimental malingering group. All Bayesian analyses were conducted using the raw scores of a visual recognition forced-choice task (2AFC), the Test of Memory Malingering (TOMM, Trial 2), and the Word Memory Test (WMT, primary effort subtests). The first analysis showed 100% accuracy for the Bayesian model in distinguishing participants of both groups with all effort measures. The second analysis showed outstanding overall accuracy of the Bayesian model when estimates were obtained from the 2AFC and the TOMM raw scores. Diagnostic accuracy of the Bayesian model diminished when using the WMT total raw scores. Despite, overall diagnostic accuracy can still be considered excellent. The most plausible explanation for this decrement is the low performance in verbal recognition and fluency tasks of some patients of the cognitively impaired group. Additionally, the Bayesian model provides individual estimates, p(zi |D), of examinees' effort levels. In conclusion, both high classification accuracy levels and Bayesian individual estimates of effort may be very useful for clinicians when assessing for effort in medico-legal settings.
Keinath, Melissa C.; Timoshevskiy, Vladimir A.; Timoshevskaya, Nataliya Y.; Tsonis, Panagiotis A.; Voss, S. Randal; Smith, Jeramiah J.
2015-01-01
Vertebrates exhibit substantial diversity in genome size, and some of the largest genomes exist in species that uniquely inform diverse areas of basic and biomedical research. For example, the salamander Ambystoma mexicanum (the Mexican axolotl) is a model organism for studies of regeneration, development and genome evolution, yet its genome is ~10× larger than the human genome. As part of a hierarchical approach toward improving genome resources for the species, we generated 600 Gb of shotgun sequence data and developed methods for sequencing individual laser-captured chromosomes. Based on these data, we estimate that the A. mexicanum genome is ~32 Gb. Notably, as much as 19 Gb of the A. mexicanum genome can potentially be considered single copy, which presumably reflects the evolutionary diversification of mobile elements that accumulated during an ancient episode of genome expansion. Chromosome-targeted sequencing permitted the development of assemblies within the constraints of modern computational platforms, allowed us to place 2062 genes on the two smallest A. mexicanum chromosomes and resolves key events in the history of vertebrate genome evolution. Our analyses show that the capture and sequencing of individual chromosomes is likely to provide valuable information for the systematic sequencing, assembly and scaffolding of large genomes. PMID:26553646
Keinath, Melissa C; Timoshevskiy, Vladimir A; Timoshevskaya, Nataliya Y; Tsonis, Panagiotis A; Voss, S Randal; Smith, Jeramiah J
2015-11-10
Vertebrates exhibit substantial diversity in genome size, and some of the largest genomes exist in species that uniquely inform diverse areas of basic and biomedical research. For example, the salamander Ambystoma mexicanum (the Mexican axolotl) is a model organism for studies of regeneration, development and genome evolution, yet its genome is ~10× larger than the human genome. As part of a hierarchical approach toward improving genome resources for the species, we generated 600 Gb of shotgun sequence data and developed methods for sequencing individual laser-captured chromosomes. Based on these data, we estimate that the A. mexicanum genome is ~32 Gb. Notably, as much as 19 Gb of the A. mexicanum genome can potentially be considered single copy, which presumably reflects the evolutionary diversification of mobile elements that accumulated during an ancient episode of genome expansion. Chromosome-targeted sequencing permitted the development of assemblies within the constraints of modern computational platforms, allowed us to place 2062 genes on the two smallest A. mexicanum chromosomes and resolves key events in the history of vertebrate genome evolution. Our analyses show that the capture and sequencing of individual chromosomes is likely to provide valuable information for the systematic sequencing, assembly and scaffolding of large genomes.
Rangewide landscape genetics of an endemic Pacific northwestern salamander.
Trumbo, Daryl R; Spear, Stephen F; Baumsteiger, Jason; Storfer, Andrew
2013-03-01
A species' genetic structure often varies in response to ecological and landscape processes that differ throughout the species' geographic range, yet landscape genetics studies are rarely spatially replicated. The Cope's giant salamander (Dicamptodon copei) is a neotenic, dispersal-limited amphibian with a restricted geographic range in the Pacific northwestern USA. We investigated which landscape factors affect D. copei gene flow in three regions spanning the species' range, which vary in climate, landcover and degree of anthropogenic disturbance. Least cost paths and Circuitscape resistance analyses revealed that gene flow patterns vary across the species' range, with unique combinations of landscape variables affecting gene flow in different regions. Populations in the northern coastal portions of the range had relatively high gene flow, largely facilitated by stream and river networks. Near the southeastern edge of the species' range, gene flow was more restricted overall, with relatively less facilitation by streams and more limitation by heat load index and fragmented forest cover. These results suggested that the landscape is more difficult for individuals to disperse through at the southeastern edge of the species' range, with terrestrial habitat desiccation factors becoming more limiting to gene flow. We suggest that caution be used when attempting to extrapolate landscape genetic models and conservation measures from one portion of a species' range to another. © 2013 Blackwell Publishing Ltd.
Bayesian statistics in medicine: a 25 year review.
Ashby, Deborah
2006-11-15
This review examines the state of Bayesian thinking as Statistics in Medicine was launched in 1982, reflecting particularly on its applicability and uses in medical research. It then looks at each subsequent five-year epoch, with a focus on papers appearing in Statistics in Medicine, putting these in the context of major developments in Bayesian thinking and computation with reference to important books, landmark meetings and seminal papers. It charts the growth of Bayesian statistics as it is applied to medicine and makes predictions for the future. From sparse beginnings, where Bayesian statistics was barely mentioned, Bayesian statistics has now permeated all the major areas of medical statistics, including clinical trials, epidemiology, meta-analyses and evidence synthesis, spatial modelling, longitudinal modelling, survival modelling, molecular genetics and decision-making in respect of new technologies.
An introduction to using Bayesian linear regression with clinical data.
Baldwin, Scott A; Larson, Michael J
2017-11-01
Statistical training psychology focuses on frequentist methods. Bayesian methods are an alternative to standard frequentist methods. This article provides researchers with an introduction to fundamental ideas in Bayesian modeling. We use data from an electroencephalogram (EEG) and anxiety study to illustrate Bayesian models. Specifically, the models examine the relationship between error-related negativity (ERN), a particular event-related potential, and trait anxiety. Methodological topics covered include: how to set up a regression model in a Bayesian framework, specifying priors, examining convergence of the model, visualizing and interpreting posterior distributions, interval estimates, expected and predicted values, and model comparison tools. We also discuss situations where Bayesian methods can outperform frequentist methods as well has how to specify more complicated regression models. Finally, we conclude with recommendations about reporting guidelines for those using Bayesian methods in their own research. We provide data and R code for replicating our analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Gibbs sampler for Bayesian analysis of site-occupancy data
Dorazio, Robert M.; Rodriguez, Daniel Taylor
2012-01-01
1. A Bayesian analysis of site-occupancy data containing covariates of species occurrence and species detection probabilities is usually completed using Markov chain Monte Carlo methods in conjunction with software programs that can implement those methods for any statistical model, not just site-occupancy models. Although these software programs are quite flexible, considerable experience is often required to specify a model and to initialize the Markov chain so that summaries of the posterior distribution can be estimated efficiently and accurately. 2. As an alternative to these programs, we develop a Gibbs sampler for Bayesian analysis of site-occupancy data that include covariates of species occurrence and species detection probabilities. This Gibbs sampler is based on a class of site-occupancy models in which probabilities of species occurrence and detection are specified as probit-regression functions of site- and survey-specific covariate measurements. 3. To illustrate the Gibbs sampler, we analyse site-occupancy data of the blue hawker, Aeshna cyanea (Odonata, Aeshnidae), a common dragonfly species in Switzerland. Our analysis includes a comparison of results based on Bayesian and classical (non-Bayesian) methods of inference. We also provide code (based on the R software program) for conducting Bayesian and classical analyses of site-occupancy data.
Bayesian multimodel inference for dose-response studies
Link, W.A.; Albers, P.H.
2007-01-01
Statistical inference in dose?response studies is model-based: The analyst posits a mathematical model of the relation between exposure and response, estimates parameters of the model, and reports conclusions conditional on the model. Such analyses rarely include any accounting for the uncertainties associated with model selection. The Bayesian inferential system provides a convenient framework for model selection and multimodel inference. In this paper we briefly describe the Bayesian paradigm and Bayesian multimodel inference. We then present a family of models for multinomial dose?response data and apply Bayesian multimodel inferential methods to the analysis of data on the reproductive success of American kestrels (Falco sparveriuss) exposed to various sublethal dietary concentrations of methylmercury.
Bayesian data analysis in population ecology: motivations, methods, and benefits
Dorazio, Robert
2016-01-01
During the 20th century ecologists largely relied on the frequentist system of inference for the analysis of their data. However, in the past few decades ecologists have become increasingly interested in the use of Bayesian methods of data analysis. In this article I provide guidance to ecologists who would like to decide whether Bayesian methods can be used to improve their conclusions and predictions. I begin by providing a concise summary of Bayesian methods of analysis, including a comparison of differences between Bayesian and frequentist approaches to inference when using hierarchical models. Next I provide a list of problems where Bayesian methods of analysis may arguably be preferred over frequentist methods. These problems are usually encountered in analyses based on hierarchical models of data. I describe the essentials required for applying modern methods of Bayesian computation, and I use real-world examples to illustrate these methods. I conclude by summarizing what I perceive to be the main strengths and weaknesses of using Bayesian methods to solve ecological inference problems.
Corser, J.D.; Dodd, C.K.
2004-01-01
We tested two predictions associated with the hypothesis that certain populations of pond-breeding amphibians are structured into metapopulations using minimum relative abundance estimates of nesting four-toed salamanders (Hemidactylium scutatum Schlegel) from 11 different ponds in the Great Smoky Mountains National Park. Coefficients of variation (CV) for counts at individual ponds ranged from 0.25 to 1.26, and the overall mean CV at all 11 ponds was 0.34. Many pairs of ponds had negative correlations in abundance from 1999-2003, whereas others had various degrees of positive correlation (mean r = 0.29). Thus, nesting population size fluctuated semi-independently among the ponds from year to year, inferring the existence of inter-pond dispersal. The mean number of nesting females at a pond was negatively, but non-significantly, correlated (r = -0.27; P = 0.40; 10 d.f.) to the pond's isolation. Owing to physiological constraints on plethodontid salamander energetics, precipitation during the nesting season (February and March) appeared to play an important role (r = 0.78; P = 0.12; 4 d.f.) in the number of nesting females we observed. Unlike some other plethodontid salamander populations in more fragmented southern Appalachian forest ecosystems, this (meta)population within Great Smoky Mountains National Park does not appear to be declining.
Potential reduction in terrestrial salamander ranges associated with Marcellus shale development
Brand, Adrianne B,; Wiewel, Amber N. M.; Grant, Evan H. Campbell
2014-01-01
Natural gas production from the Marcellus shale is rapidly increasing in the northeastern United States. Most of the endemic terrestrial salamander species in the region are classified as ‘globally secure’ by the IUCN, primarily because much of their ranges include state- and federally protected lands, which have been presumed to be free from habitat loss. However, the proposed and ongoing development of the Marcellus gas resources may result in significant range restrictions for these and other terrestrial forest salamanders. To begin to address the gaps in our knowledge of the direct impacts of shale gas development, we developed occurrence models for five species of terrestrial plethodontid salamanders found largely within the Marcellus shale play. We predicted future Marcellus shale development under several scenarios. Under scenarios of 10,000, 20,000, and 50,000 new gas wells, we predict 4%, 8%, and 20% forest loss, respectively, within the play. Predictions of habitat loss vary among species, but in general, Plethodon electromorphus and Plethodonwehrlei are predicted to lose the greatest proportion of forested habitat within their ranges if future Marcellus development is based on characteristics of the shale play. If development is based on current well locations,Plethodonrichmondi is predicted to lose the greatest proportion of habitat. Models showed high uncertainty in species’ ranges and emphasize the need for distribution data collected by widespread and repeated, randomized surveys.
Effects of hatching time for larval ambystomatid salamanders
Boone, M.D.; Scott, D.E.; Niewiarowski, P.H.
2002-01-01
In aquatic communities, the phenology of breeding may influence species interactions. In the early-breeding marbled salamander, Ambystoma opacum, timing of pond filling may determine whether interactions among larvae are competitive or predatory. The objectives of our studies were to determine how time of egg hatching affected size, larval period, and survival to metamorphosis in A. opacum, and if early-hatching in A. opacum influenced the competitive and predator-prey relationships with smaller larvae of the mole salamander, Ambystoma talpoideum. Salamander larvae were reared from hatching through metamorphosis in large, outdoor enclosures located in a natural temporary pond in Aiken County, South Carolina, in two experiments. In study 1, we reared early- and late-hatching A. opacum larvae separately from hatching through metamorphosis. In study 2, we examined how early- versus late-hatching A. opacum affected a syntopic species, A. talpoideum. In general, early-hatching A. opacum were larger and older at metamorphosis, had greater survival, and left the pond earlier than late-hatching larvae. Ambystoma talpoideum reared in the presence of early-hatching A. opacum had lower survival than in controls, suggesting that A. opacum may predate upon A. talpoideum when they gain a growth advantage over later-hatching larvae. Our studies demonstrate that time of pond filling and phenology of breeding may influence population dynamics and alter the nature of relationships that develop among species.
Brucker, Robert M; Harris, Reid N; Schwantes, Christian R; Gallaher, Thomas N; Flaherty, Devon C; Lam, Brianna A; Minbiole, Kevin P C
2008-11-01
Disease has spurred declines in global amphibian populations. In particular, the fungal pathogen Batrachochytrium dendrobatidis has decimated amphibian diversity in some areas unaffected by habitat loss. However, there is little evidence to explain how some amphibian species persist despite infection or even clear the pathogen beyond detection. One hypothesis is that certain bacterial symbionts on the skin of amphibians inhibit the growth of the pathogen. An antifungal strain of Janthinobacterium lividum, isolated from the skin of the red-backed salamander Plethodon cinereus, produces antifungal metabolites at concentrations lethal to B. dendrobatidis. Antifungal metabolites were identified by using reversed phase high performance liquid chromatography, high resolution mass spectrometry, nuclear magnetic resonance, and UV-Vis spectroscopy and tested for efficacy of inhibiting the pathogen. Two metabolites, indole-3-carboxaldehyde and violacein, inhibited the pathogen's growth at relatively low concentrations (68.9 and 1.82 microM, respectively). Analysis of fresh salamander skin confirmed the presence of J. lividum and its metabolites on the skin of host salamanders in concentrations high enough to hinder or kill the pathogen (51 and 207 microM, respectively). These results support the hypothesis that cutaneous, mutualistic bacteria play a role in amphibian resistance to fungal disease. Exploitation of this biological process may provide long-term resistance to B. dendrobatidis for vulnerable amphibians and serve as a model for managing future emerging diseases in wildlife populations.
Sutherland, Chris; Munoz, David; Miller, David A.W.; Grant, Evan H. Campbell
2016-01-01
Spatial capture–recapture (SCR) is a relatively recent development in ecological statistics that provides a spatial context for estimating abundance and space use patterns, and improves inference about absolute population density. SCR has been applied to individual encounter data collected noninvasively using methods such as camera traps, hair snares, and scat surveys. Despite the widespread use of capture-based surveys to monitor amphibians and reptiles, there are few applications of SCR in the herpetological literature. We demonstrate the utility of the application of SCR for studies of reptiles and amphibians by analyzing capture–recapture data from Red-Backed Salamanders, Plethodon cinereus, collected using artificial cover boards. Using SCR to analyze spatial encounter histories of marked individuals, we found evidence that density differed little among four sites within the same forest (on average, 1.59 salamanders/m2) and that salamander detection probability peaked in early October (Julian day 278) reflecting expected surface activity patterns of the species. The spatial scale of detectability, a measure of space use, indicates that the home range size for this population of Red-Backed Salamanders in autumn was 16.89 m2. Surveying reptiles and amphibians using artificial cover boards regularly generates spatial encounter history data of known individuals, which can readily be analyzed using SCR methods, providing estimates of absolute density and inference about the spatial scale of habitat use.
Kärkkäinen, Hanni P; Sillanpää, Mikko J
2013-09-04
Because of the increased availability of genome-wide sets of molecular markers along with reduced cost of genotyping large samples of individuals, genomic estimated breeding values have become an essential resource in plant and animal breeding. Bayesian methods for breeding value estimation have proven to be accurate and efficient; however, the ever-increasing data sets are placing heavy demands on the parameter estimation algorithms. Although a commendable number of fast estimation algorithms are available for Bayesian models of continuous Gaussian traits, there is a shortage for corresponding models of discrete or censored phenotypes. In this work, we consider a threshold approach of binary, ordinal, and censored Gaussian observations for Bayesian multilocus association models and Bayesian genomic best linear unbiased prediction and present a high-speed generalized expectation maximization algorithm for parameter estimation under these models. We demonstrate our method with simulated and real data. Our example analyses suggest that the use of the extra information present in an ordered categorical or censored Gaussian data set, instead of dichotomizing the data into case-control observations, increases the accuracy of genomic breeding values predicted by Bayesian multilocus association models or by Bayesian genomic best linear unbiased prediction. Furthermore, the example analyses indicate that the correct threshold model is more accurate than the directly used Gaussian model with a censored Gaussian data, while with a binary or an ordinal data the superiority of the threshold model could not be confirmed.
Kärkkäinen, Hanni P.; Sillanpää, Mikko J.
2013-01-01
Because of the increased availability of genome-wide sets of molecular markers along with reduced cost of genotyping large samples of individuals, genomic estimated breeding values have become an essential resource in plant and animal breeding. Bayesian methods for breeding value estimation have proven to be accurate and efficient; however, the ever-increasing data sets are placing heavy demands on the parameter estimation algorithms. Although a commendable number of fast estimation algorithms are available for Bayesian models of continuous Gaussian traits, there is a shortage for corresponding models of discrete or censored phenotypes. In this work, we consider a threshold approach of binary, ordinal, and censored Gaussian observations for Bayesian multilocus association models and Bayesian genomic best linear unbiased prediction and present a high-speed generalized expectation maximization algorithm for parameter estimation under these models. We demonstrate our method with simulated and real data. Our example analyses suggest that the use of the extra information present in an ordered categorical or censored Gaussian data set, instead of dichotomizing the data into case-control observations, increases the accuracy of genomic breeding values predicted by Bayesian multilocus association models or by Bayesian genomic best linear unbiased prediction. Furthermore, the example analyses indicate that the correct threshold model is more accurate than the directly used Gaussian model with a censored Gaussian data, while with a binary or an ordinal data the superiority of the threshold model could not be confirmed. PMID:23821618
The Bayesian approach to reporting GSR analysis results: some first-hand experiences
NASA Astrophysics Data System (ADS)
Charles, Sebastien; Nys, Bart
2010-06-01
The use of Bayesian principles in the reporting of forensic findings has been a matter of interest for some years. Recently, also the GSR community is gradually exploring the advantages of this method, or rather approach, for writing reports. Since last year, our GSR group is adapting reporting procedures to the use of Bayesian principles. The police and magistrates find the reports more directly accessible and useful in their part of the criminal investigation. In the lab we find that, through applying the Bayesian principles, unnecessary analyses can be eliminated and thus time can be freed on the instruments.
Two-species occupancy modeling accounting for species misidentification and nondetection
Chambert, Thierry; Grant, Evan H. Campbell; Miller, David A. W.; Nichols, James; Mulder, Kevin P.; Brand, Adrianne B,
2018-01-01
In occupancy studies, species misidentification can lead to false‐positive detections, which can cause severe estimator biases. Currently, all models that account for false‐positive errors only consider omnibus sources of false detections and are limited to single‐species occupancy.However, false detections for a given species often occur because of the misidentification with another, closely related species. To exploit this explicit source of false‐positive detection error, we develop a two‐species occupancy model that accounts for misidentifications between two species of interest. As with other false‐positive models, identifiability is greatly improved by the availability of unambiguous detections at a subset of site x occasions. Here, we consider the case where some of the field observations can be confirmed using laboratory or other independent identification methods (“confirmatory data”).We performed three simulation studies to (1) assess the model's performance under various realistic scenarios, (2) investigate the influence of the proportion of confirmatory data on estimator accuracy and (3) compare the performance of this two‐species model with that of the single‐species false‐positive model. The model shows good performance under all scenarios, even when only small proportions of detections are confirmed (e.g. 5%). It also clearly outperforms the single‐species model.We illustrate application of this model using a 4‐year dataset on two sympatric species of lungless salamanders: the US federally endangered Shenandoah salamander Plethodon shenandoah, and its presumed competitor, the red‐backed salamander Plethodon cinereus. Occupancy of red‐backed salamanders appeared very stable across the 4 years of study, whereas the Shenandoah salamander displayed substantial turnover in occupancy of forest habitats among years.Given the extent of species misidentification issues in occupancy studies, this modelling approach should help improve the reliability of estimates of species distribution, which is the goal of many studies and monitoring programmes. Further developments, to account for different forms of state uncertainty, can be readily undertaken under our general approach.
An Experimental Test of Buffer Utility as a Technique for Managing Pool-Breeding Amphibians
Veysey Powell, Jessica S.; Babbitt, Kimberly J.
2015-01-01
Vegetated buffers are used extensively to manage wetland-dependent wildlife. Despite widespread application, buffer utility has not been experimentally validated for most species. To address this gap, we conducted a six-year, landscape-scale experiment, testing how buffers of different widths affect the demographic structure of two amphibian species at 11 ephemeral pools in a working forest of the northeastern U.S. We randomly assigned each pool to one of three treatments (i.e., reference, 100m buffer, 30m buffer) and clearcut to create buffers. We captured all spotted salamanders and wood frogs breeding in each pool and examined the impacts of treatment and hydroperiod on breeding-population abundance, sex ratio, and recapture rate. The negative effects of clearcutting tended to increase as forest-buffer width decreased and be strongest for salamanders and when other stressors were present (e.g., at short-hydroperiod pools). Recapture rates were reduced in the 30m, but not 100m, treatment. Throughout the experiment for frogs, and during the first year post-cut for salamanders, the predicted mean proportion of recaptured adults in the 30m treatment was only 62% and 40%, respectively, of that in the reference treatment. Frog sex ratio and abundance did not differ across treatments, but salamander sex ratios were increasingly male-biased in both cut treatments. By the final year, there were on average, only about 40% and 65% as many females predicted in the 100m and 30m treatments, respectively, compared to the first year. Breeding salamanders at short-hydroperiod pools were about 10% as abundant in the 100m versus reference treatment. Our study demonstrates that buffers partially mitigate the impacts of habitat disturbance on wetland-dependent amphibians, but buffer width and hydroperiod critically mediate that process. We provide the first experimental evidence showing that 30-m-wide buffers may be insufficient for maintaining resilient breeding populations of pool-dependent amphibians, at least during the first six years post-disturbance. PMID:26196129
Niemiller, Matthew L.; Glorioso, Brad M.; Fenolio, Dante B.; Reynolds, R. Graham; Taylor, Steven J.; Miller, Brian T.
2016-01-01
Salamander species that live entirely in subterranean habitats have evolved adaptations that allow them to cope with perpetual darkness and limited energy resources. We conducted a 26-month mark–recapture study to better understand the individual growth and demography of a population of the Big Mouth Cave Salamander (Gyrinophilus palleucus necturoides). We employed a growth model to estimate growth rates, age at sexual maturity, and longevity, and an open population model to estimate population size, density, detectability, and survival rates. Furthermore, we examined cover use and evidence of potential predation. Individuals probably reach sexual maturity in 3–5 years and live at least nine years. Survival rates were generally high (>75%) but declined during the study. More than 30% of captured salamanders had regenerating tails or tail damage, which presumably represent predation attempts by conspecifics or crayfishes. Most salamanders (>90%) were found under cover (e.g., rocks, trash, decaying plant material). Based on 11 surveys during the study, population size estimates ranged from 21 to 104 individuals in the ca. 710 m2 study area. Previous surveys indicated that this population experienced a significant decline from the early 1970s through the 1990s, perhaps related to silvicultural and agricultural practices. However, our data suggest that this population has either recovered or stabilized during the past 20 years. Differences in relative abundance between early surveys and our survey could be associated with differences in survey methods or sampling conditions rather than an increase in population size. Regardless, our study demonstrates that this population is larger than previously thought and is in no immediate risk of extirpation, though it does appear to exhibit higher rates of predation than expected for a species believed to be an apex predator of subterranean food webs.
Pearl, Christopher A.; Adams, Michael J.; Leuthold, N.; Bury, R. Bruce
2005-01-01
Despite concern about the conservation status of amphibians in western North America, few field studies have documented occurrence patterns of amphibians relative to potential stressors. We surveyed wetland fauna in Oregon's Willamette Valley and used an information theoretic approach (AIC) to rank the associations between native amphibian breeding occurrence and wetland characteristics, non-native aquatic predators, and landscape characteristics in a mixed urban-agricultural landscape. Best predictors varied among the five native amphibians and were generally consistent with life history differences. Pacific tree frog (Pseudacris regilla) and long-toed salamander (Ambystoma macrodactylum) occurrence was best predicted by the absence of non-native fish. Northern red-legged frog (Rana a. aurora) and northwestern salamander (Ambystoma gracile) were most strongly related to wetland vegetative characteristics. The occurrence of rough-skinned newts (Taricha granulosa), a migratory species that makes extensive use of terrestrial habitats, was best predicted by greater forest cover within 1 km. The absence of non-native fish was a strong predictor of occurrence for four of the five native species. In contrast, amphibians were not strongly related to native fish presence. We found little evidence supporting negative effects of the presence of breeding populations of bullfrog (Rana catesbeiana) on any native species. Only the two Ambystoma salamanders were associated with wetland permanence. Northwestern salamanders (which usually have a multi-year larval stage) were associated with permanent waters, while long-toed salamanders were associated with temporary wetlands. Although all the species make some use of upland habitats, only one (rough-skinned newt) was strongly associated with surrounding landscape conditions. Instead, our analysis suggests that within-wetland characteristics best predict amphibian occurrence in this region. We recommend that wetland preservation and mitigation efforts concentrate on sites lacking non-native fish for the conservation of native amphibians in the Willamette Valley and other western lowlands.
Rhodes, Kirsty M; Turner, Rebecca M; White, Ian R; Jackson, Dan; Spiegelhalter, David J; Higgins, Julian P T
2016-12-20
Many meta-analyses combine results from only a small number of studies, a situation in which the between-study variance is imprecisely estimated when standard methods are applied. Bayesian meta-analysis allows incorporation of external evidence on heterogeneity, providing the potential for more robust inference on the effect size of interest. We present a method for performing Bayesian meta-analysis using data augmentation, in which we represent an informative conjugate prior for between-study variance by pseudo data and use meta-regression for estimation. To assist in this, we derive predictive inverse-gamma distributions for the between-study variance expected in future meta-analyses. These may serve as priors for heterogeneity in new meta-analyses. In a simulation study, we compare approximate Bayesian methods using meta-regression and pseudo data against fully Bayesian approaches based on importance sampling techniques and Markov chain Monte Carlo (MCMC). We compare the frequentist properties of these Bayesian methods with those of the commonly used frequentist DerSimonian and Laird procedure. The method is implemented in standard statistical software and provides a less complex alternative to standard MCMC approaches. An importance sampling approach produces almost identical results to standard MCMC approaches, and results obtained through meta-regression and pseudo data are very similar. On average, data augmentation provides closer results to MCMC, if implemented using restricted maximum likelihood estimation rather than DerSimonian and Laird or maximum likelihood estimation. The methods are applied to real datasets, and an extension to network meta-analysis is described. The proposed method facilitates Bayesian meta-analysis in a way that is accessible to applied researchers. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Alex D. Foster; Deanna H. Olson; Lawrence L.C. Jones
2015-01-01
The Copeâs Giant Salamander Dicamptodon copei is a stream dwelling amphibian reliant on cool streams, native to forested areas primarily west of the crest of the Cascade Range in the Pacific Northwest region, USA. Unlike other members of the genus, adult D. copei are most often found in a paedomorphic form, and rarely transforms to a terrestrial stage. As a result,...
Wijeysundera, Duminda N; Austin, Peter C; Hux, Janet E; Beattie, W Scott; Laupacis, Andreas
2009-01-01
Randomized trials generally use "frequentist" statistics based on P-values and 95% confidence intervals. Frequentist methods have limitations that might be overcome, in part, by Bayesian inference. To illustrate these advantages, we re-analyzed randomized trials published in four general medical journals during 2004. We used Medline to identify randomized superiority trials with two parallel arms, individual-level randomization and dichotomous or time-to-event primary outcomes. Studies with P<0.05 in favor of the intervention were deemed "positive"; otherwise, they were "negative." We used several prior distributions and exact conjugate analyses to calculate Bayesian posterior probabilities for clinically relevant effects. Of 88 included studies, 39 were positive using a frequentist analysis. Although the Bayesian posterior probabilities of any benefit (relative risk or hazard ratio<1) were high in positive studies, these probabilities were lower and variable for larger benefits. The positive studies had only moderate probabilities for exceeding the effects that were assumed for calculating the sample size. By comparison, there were moderate probabilities of any benefit in negative studies. Bayesian and frequentist analyses complement each other when interpreting the results of randomized trials. Future reports of randomized trials should include both.
Bayesian analyses of seasonal runoff forecasts
NASA Astrophysics Data System (ADS)
Krzysztofowicz, R.; Reese, S.
1991-12-01
Forecasts of seasonal snowmelt runoff volume provide indispensable information for rational decision making by water project operators, irrigation district managers, and farmers in the western United States. Bayesian statistical models and communication frames have been researched in order to enhance the forecast information disseminated to the users, and to characterize forecast skill from the decision maker's point of view. Four products are presented: (i) a Bayesian Processor of Forecasts, which provides a statistical filter for calibrating the forecasts, and a procedure for estimating the posterior probability distribution of the seasonal runoff; (ii) the Bayesian Correlation Score, a new measure of forecast skill, which is related monotonically to the ex ante economic value of forecasts for decision making; (iii) a statistical predictor of monthly cumulative runoffs within the snowmelt season, conditional on the total seasonal runoff forecast; and (iv) a framing of the forecast message that conveys the uncertainty associated with the forecast estimates to the users. All analyses are illustrated with numerical examples of forecasts for six gauging stations from the period 1971 1988.
A Bayesian approach to meta-analysis of plant pathology studies.
Mila, A L; Ngugi, H K
2011-01-01
Bayesian statistical methods are used for meta-analysis in many disciplines, including medicine, molecular biology, and engineering, but have not yet been applied for quantitative synthesis of plant pathology studies. In this paper, we illustrate the key concepts of Bayesian statistics and outline the differences between Bayesian and classical (frequentist) methods in the way parameters describing population attributes are considered. We then describe a Bayesian approach to meta-analysis and present a plant pathological example based on studies evaluating the efficacy of plant protection products that induce systemic acquired resistance for the management of fire blight of apple. In a simple random-effects model assuming a normal distribution of effect sizes and no prior information (i.e., a noninformative prior), the results of the Bayesian meta-analysis are similar to those obtained with classical methods. Implementing the same model with a Student's t distribution and a noninformative prior for the effect sizes, instead of a normal distribution, yields similar results for all but acibenzolar-S-methyl (Actigard) which was evaluated only in seven studies in this example. Whereas both the classical (P = 0.28) and the Bayesian analysis with a noninformative prior (95% credibility interval [CRI] for the log response ratio: -0.63 to 0.08) indicate a nonsignificant effect for Actigard, specifying a t distribution resulted in a significant, albeit variable, effect for this product (CRI: -0.73 to -0.10). These results confirm the sensitivity of the analytical outcome (i.e., the posterior distribution) to the choice of prior in Bayesian meta-analyses involving a limited number of studies. We review some pertinent literature on more advanced topics, including modeling of among-study heterogeneity, publication bias, analyses involving a limited number of studies, and methods for dealing with missing data, and show how these issues can be approached in a Bayesian framework. Bayesian meta-analysis can readily include information not easily incorporated in classical methods, and allow for a full evaluation of competing models. Given the power and flexibility of Bayesian methods, we expect them to become widely adopted for meta-analysis of plant pathology studies.
Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease
Flowers, G. Parker; Timberlake, Andrew T.; Mclean, Kaitlin C.; Monaghan, James R.; Crews, Craig M.
2014-01-01
Among tetrapods, only urodele salamanders, such as the axolotl Ambystoma mexicanum, can completely regenerate limbs as adults. The mystery of why salamanders, but not other animals, possess this ability has for generations captivated scientists seeking to induce this phenomenon in other vertebrates. Although many recent advances in molecular biology have allowed limb regeneration and tissue repair in the axolotl to be investigated in increasing detail, the molecular toolkit for the study of this process has been limited. Here, we report that the CRISPR-Cas9 RNA-guided nuclease system can efficiently create mutations at targeted sites within the axolotl genome. We identify individual animals treated with RNA-guided nucleases that have mutation frequencies close to 100% at targeted sites. We employ this technique to completely functionally ablate EGFP expression in transgenic animals and recapitulate developmental phenotypes produced by loss of the conserved gene brachyury. Thus, this advance allows a reverse genetic approach in the axolotl and will undoubtedly provide invaluable insight into the mechanisms of salamanders' unique regenerative ability. PMID:24764077
Pathogen host switching in commercial trade with management recommendations.
Picco, Angela M; Karam, Abraham P; Collins, James P
2010-06-01
Global wildlife trade exacerbates the spread of nonindigenous species. Pathogens also move with hosts through trade and often are released into naïve populations with unpredictable outcomes. Amphibians are moved commercially for pets, food, bait, and biomedicine, and are an excellent model for studying how wildlife trade relates to pathogen pollution. Ranaviruses are amphibian pathogens associated with annual population die-offs; multiple strains of tiger salamander ranaviruses move through the bait trade in the western United States. Ranaviruses infect amphibians, reptiles, and fish and are of additional concern because they can switch hosts. Tiger salamanders are used as live bait for freshwater fishing and are a potential source for ranaviruses switching hosts from amphibians to fish. We experimentally injected largemouth bass with a bait trade tiger salamander ranavirus. Largemouth bass became infected but exhibited no signs of disease or mortality. Amphibian bait ranaviruses have the potential to switch hosts to infect fish, but fish may act as dead-end hosts or nonsymptomatic carriers, potentially spreading infection as a result of trade.
Portnoy, J.W.
1990-01-01
The relationship between water chemistry and breeding success of spotted salamanders Ambystoma maculatum (Shaw) was examined in temporary woodland ponds on outer Cape Cod, Massachusetts in 1985 and 1986. Most pond waters were dilute (3median coductivity = 57 umhos cm-1 (1 umhos cm-1 = 0?1 mSm-1)), acidic (median pH = 4?82), and highly colored (median = 140 Pt-Co units). Most acidity was due to abundant organic acids. Salamander survival to hatching was over 80% at 8 of 12 ponds monitored. Complete mortality, preceded by gross abnormalities, was observed only among embryos in the most acidic spawning pond (pH 4?3-4?5) in both years. Embryo transfers between ponds and laboratory studies indicated that reduced survival was due to the interaction of low pH with high tannin-lignin concentration. The use of amphibian embryonic survival to indicate acid rain effects is complicated by multiple habitat parameters and should only be attempted in conjunction with long-term population monitoring.
Bayesian inference for psychology. Part II: Example applications with JASP.
Wagenmakers, Eric-Jan; Love, Jonathon; Marsman, Maarten; Jamil, Tahira; Ly, Alexander; Verhagen, Josine; Selker, Ravi; Gronau, Quentin F; Dropmann, Damian; Boutin, Bruno; Meerhoff, Frans; Knight, Patrick; Raj, Akash; van Kesteren, Erik-Jan; van Doorn, Johnny; Šmíra, Martin; Epskamp, Sacha; Etz, Alexander; Matzke, Dora; de Jong, Tim; van den Bergh, Don; Sarafoglou, Alexandra; Steingroever, Helen; Derks, Koen; Rouder, Jeffrey N; Morey, Richard D
2018-02-01
Bayesian hypothesis testing presents an attractive alternative to p value hypothesis testing. Part I of this series outlined several advantages of Bayesian hypothesis testing, including the ability to quantify evidence and the ability to monitor and update this evidence as data come in, without the need to know the intention with which the data were collected. Despite these and other practical advantages, Bayesian hypothesis tests are still reported relatively rarely. An important impediment to the widespread adoption of Bayesian tests is arguably the lack of user-friendly software for the run-of-the-mill statistical problems that confront psychologists for the analysis of almost every experiment: the t-test, ANOVA, correlation, regression, and contingency tables. In Part II of this series we introduce JASP ( http://www.jasp-stats.org ), an open-source, cross-platform, user-friendly graphical software package that allows users to carry out Bayesian hypothesis tests for standard statistical problems. JASP is based in part on the Bayesian analyses implemented in Morey and Rouder's BayesFactor package for R. Armed with JASP, the practical advantages of Bayesian hypothesis testing are only a mouse click away.
A default Bayesian hypothesis test for mediation.
Nuijten, Michèle B; Wetzels, Ruud; Matzke, Dora; Dolan, Conor V; Wagenmakers, Eric-Jan
2015-03-01
In order to quantify the relationship between multiple variables, researchers often carry out a mediation analysis. In such an analysis, a mediator (e.g., knowledge of a healthy diet) transmits the effect from an independent variable (e.g., classroom instruction on a healthy diet) to a dependent variable (e.g., consumption of fruits and vegetables). Almost all mediation analyses in psychology use frequentist estimation and hypothesis-testing techniques. A recent exception is Yuan and MacKinnon (Psychological Methods, 14, 301-322, 2009), who outlined a Bayesian parameter estimation procedure for mediation analysis. Here we complete the Bayesian alternative to frequentist mediation analysis by specifying a default Bayesian hypothesis test based on the Jeffreys-Zellner-Siow approach. We further extend this default Bayesian test by allowing a comparison to directional or one-sided alternatives, using Markov chain Monte Carlo techniques implemented in JAGS. All Bayesian tests are implemented in the R package BayesMed (Nuijten, Wetzels, Matzke, Dolan, & Wagenmakers, 2014).
Bayesian Analysis of Silica Exposure and Lung Cancer Using Human and Animal Studies.
Bartell, Scott M; Hamra, Ghassan Badri; Steenland, Kyle
2017-03-01
Bayesian methods can be used to incorporate external information into epidemiologic exposure-response analyses of silica and lung cancer. We used data from a pooled mortality analysis of silica and lung cancer (n = 65,980), using untransformed and log-transformed cumulative exposure. Animal data came from chronic silica inhalation studies using rats. We conducted Bayesian analyses with informative priors based on the animal data and different cross-species extrapolation factors. We also conducted analyses with exposure measurement error corrections in the absence of a gold standard, assuming Berkson-type error that increased with increasing exposure. The pooled animal data exposure-response coefficient was markedly higher (log exposure) or lower (untransformed exposure) than the coefficient for the pooled human data. With 10-fold uncertainty, the animal prior had little effect on results for pooled analyses and only modest effects in some individual studies. One-fold uncertainty produced markedly different results for both pooled and individual studies. Measurement error correction had little effect in pooled analyses using log exposure. Using untransformed exposure, measurement error correction caused a 5% decrease in the exposure-response coefficient for the pooled analysis and marked changes in some individual studies. The animal prior had more impact for smaller human studies and for one-fold versus three- or 10-fold uncertainty. Adjustment for Berkson error using Bayesian methods had little effect on the exposure-response coefficient when exposure was log transformed or when the sample size was large. See video abstract at, http://links.lww.com/EDE/B160.
Feder, M E
1986-03-01
To determine the effects of thermal acclimation upon locomotor performance and the rate of oxygen consumption (MO2) during activity, small (less than 3 g), lungless salamanders, Desmognathus ochrophaeus Cope, were acclimated to three temperatures (5, 13 and 21 degrees C) and exercised at various controlled speeds within an exercise wheel while their MO2 was measured. MO2 increased with speed at low speeds (less than 14 cm min-1). Although animals could sustain greater speeds, MO2 did not increase further. These small, exclusively skin-breathing salamanders could increase their MO2 9-11 times during exercise and could sustain nearly half of the oxygen flux expected across a similar surface area of the mammalian lung. However, their maximum aerobic speed was remarkably slow (14 cm min-1) and their net cost of transport remarkably large (15-17 ml O2 g-1 km-1). Thermal acclimation affected MO2 during activity, the maximum sustainable speed and locomotor stamina in different ways. During exercise at 13 degrees C, cold-acclimated animals had a significantly greater MO2 than warm-acclimated animals, but did not differ in stamina or the maximum sustainable speed. During exercise at 21 degrees C, cold acclimation did not affect the MO2 significantly, but it decreased the stamina and increased the rate of lactate accumulation. Thus, these results suggest that thermal acclimation of the MO2 is not tightly coupled to thermal acclimation of locomotor performance in salamanders.
Early Miocene origin and cryptic diversification of South American salamanders
2013-01-01
Background The currently recognized species richness of South American salamanders is surprisingly low compared to North and Central America. In part, this low richness may be due to the salamanders being a recent arrival to South America. Additionally, the number of South American salamander species may be underestimated because of cryptic diversity. The aims of our present study were to infer evolutionary relationships, lineage diversity, and timing of divergence of the South American Bolitoglossa using mitochondrial and nuclear sequence data from specimens primarily from localities in the Andes and upper Amazon Basin. We also estimated time of colonization of South America to test whether it is consistent with arrival via the Panamanian Isthmus, or land bridge connection, at its traditionally assumed age of 3 million years. Results Divergence time estimates suggest that Bolitoglossa arrived in South America from Central America by at least the Early Miocene, ca. 23.6 MYA (95% HPD 15.9-30.3 MYA), and subsequently diversified. South American salamanders of the genus Bolitoglossa show strong phylogeographic structure at fine geographic scales and deep divergences at the mitochondrial gene cytochrome b (Cytb) and high diversity at the nuclear recombination activating gene-1 (Rag1). Species often contain multiple genetically divergent lineages that are occasionally geographically overlapping. Single specimens from two southeastern localities in Ecuador are sister to the equatoriana-peruviana clade and genetically distinct from all other species investigated to date. Another single exemplar from the Andes of northwestern Ecuador is highly divergent from all other specimens and is sister to all newly studied samples. Nevertheless, all sampled species of South American Bolitoglossa are members of a single clade that is one of several constituting the subgenus Eladinea, one of seven subgenera in this large genus. Conclusions The ancestors of South American salamanders likely arrived at least by the Early Miocene, well before the completion of the Late Pliocene Panamanian land bridge (widely accepted as ca. 3 MYA). This date is in agreement with recent, controversial, arguments that an older, perhaps short-lived, land connection may have existed between South America and present-day Panama 23–25 MYA. Since its arrival in South America, Bolitoglossa has diversified more extensively than previously presumed and currently includes several cryptic species within a relatively small geographic area. Rather than two upper Amazonian species currently recorded for this region, we propose that at least eight should be recognized, although these additional lineages remain to be formally described. PMID:23497060
Bayesian Unimodal Density Regression for Causal Inference
ERIC Educational Resources Information Center
Karabatsos, George; Walker, Stephen G.
2011-01-01
Karabatsos and Walker (2011) introduced a new Bayesian nonparametric (BNP) regression model. Through analyses of real and simulated data, they showed that the BNP regression model outperforms other parametric and nonparametric regression models of common use, in terms of predictive accuracy of the outcome (dependent) variable. The other,…
In this paper, we present methods for estimating Freundlich isotherm fitting parameters (K and N) and their joint uncertainty, which have been implemented into the freeware software platforms R and WinBUGS. These estimates were determined by both Frequentist and Bayesian analyse...
Editorial: Bayesian benefits for child psychology and psychiatry researchers.
Oldehinkel, Albertine J
2016-09-01
For many scientists, performing statistical tests has become an almost automated routine. However, p-values are frequently used and interpreted incorrectly; and even when used appropriately, p-values tend to provide answers that do not match researchers' questions and hypotheses well. Bayesian statistics present an elegant and often more suitable alternative. The Bayesian approach has rarely been applied in child psychology and psychiatry research so far, but the development of user-friendly software packages and tutorials has placed it well within reach now. Because Bayesian analyses require a more refined definition of hypothesized probabilities of possible outcomes than the classical approach, going Bayesian may offer the additional benefit of sparkling the development and refinement of theoretical models in our field. © 2016 Association for Child and Adolescent Mental Health.
Velo-Antón, G; Parra, J L; Parra-Olea, G; Zamudio, K R
2013-06-01
Tropical montane taxa are often locally adapted to very specific climatic conditions, contributing to their lower dispersal potential across complex landscapes. Climate and landscape features in montane regions affect population genetic structure in predictable ways, yet few empirical studies quantify the effects of both factors in shaping genetic structure of montane-adapted taxa. Here, we considered temporal and spatial variability in climate to explain contemporary genetic differentiation between populations of the montane salamander, Pseudoeurycea leprosa. Specifically, we used ecological niche modelling (ENM) and measured spatial connectivity and gene flow (using both mtDNA and microsatellite markers) across extant populations of P. leprosa in the Trans-Mexican Volcanic Belt (TVB). Our results indicate significant spatial and genetic isolation among populations, but we cannot distinguish between isolation by distance over time or current landscape barriers as mechanisms shaping population genetic divergences. Combining ecological niche modelling, spatial connectivity analyses, and historical and contemporary genetic signatures from different classes of genetic markers allows for inference of historical evolutionary processes and predictions of the impacts future climate change will have on the genetic diversity of montane taxa with low dispersal rates. Pseudoeurycea leprosa is one montane species among many endemic to this region and thus is a case study for the continued persistence of spatially and genetically isolated populations in the highly biodiverse TVB of central Mexico. © 2013 John Wiley & Sons Ltd.
Klymus, Katy E.; Richter, Cathy; Thompson, Nathan; Hinck, Jo E.
2017-01-01
Understanding how anthropogenic impacts on the landscape affect wildlife requires a knowledge of community assemblages. Species surveys are the first step in assessing community structure, and recent molecular applications such as metabarcoding and environmental DNA analyses have been proposed as an additional and complementary wildlife survey method. Here, we test eDNA metabarcoding as a survey tool to examine the potential use of uranium mine containment ponds as water sources by wildlife. We tested samples from surface water near mines and from one mine containment pond using two markers, 12S and 16S rRNA gene amplicons, to survey for vertebrate species. We recovered large numbers of sequence reads from taxa expected to be in the area and from less common or hard to observe taxa such as the tiger salamander and gray fox. Detection of these two species is of note because they were not observed in a previous species assessment, and tiger salamander DNA was found in the mine containment pond sample. We also found that sample concentration by centrifugation was a more efficient and more feasible method than filtration in these highly turbid surface waters. Ultimately, the use of eDNA metabarcoding could allow for a better understanding of the area’s overall biodiversity and community composition as well as aid current ecotoxicological risk assessment work.
Amphibians of Olympic National Park
,
2000-01-01
Amphibians evolved from fishes about 360 million years ago and were the first vertebrates adapted to life on land. The word amphibian means "double life." It refers to the life history of many amphibians, which spend part of their life in water and part on land. There are three major groups of amphibians: salamanders, frogs, and toads, and caecilians. Salamanders, frogs, and toads can be found in Olympic National Park (ONP), but caecilians live only in tropical regions. Many amphibians are generalist predators, eating almost any prey they can fit into their mouths.
Bayesian approach for counting experiment statistics applied to a neutrino point source analysis
NASA Astrophysics Data System (ADS)
Bose, D.; Brayeur, L.; Casier, M.; de Vries, K. D.; Golup, G.; van Eijndhoven, N.
2013-12-01
In this paper we present a model independent analysis method following Bayesian statistics to analyse data from a generic counting experiment and apply it to the search for neutrinos from point sources. We discuss a test statistic defined following a Bayesian framework that will be used in the search for a signal. In case no signal is found, we derive an upper limit without the introduction of approximations. The Bayesian approach allows us to obtain the full probability density function for both the background and the signal rate. As such, we have direct access to any signal upper limit. The upper limit derivation directly compares with a frequentist approach and is robust in the case of low-counting observations. Furthermore, it allows also to account for previous upper limits obtained by other analyses via the concept of prior information without the need of the ad hoc application of trial factors. To investigate the validity of the presented Bayesian approach, we have applied this method to the public IceCube 40-string configuration data for 10 nearby blazars and we have obtained a flux upper limit, which is in agreement with the upper limits determined via a frequentist approach. Furthermore, the upper limit obtained compares well with the previously published result of IceCube, using the same data set.
Dose rate estimation of the Tohoku hynobiid salamander, Hynobius lichenatus, in Fukushima.
Fuma, Shoichi; Ihara, Sadao; Kawaguchi, Isao; Ishikawa, Takahiro; Watanabe, Yoshito; Kubota, Yoshihisa; Sato, Youji; Takahashi, Hiroyuki; Aono, Tatsuo; Ishii, Nobuyoshi; Soeda, Haruhi; Matsui, Kumi; Une, Yumi; Minamiya, Yukio; Yoshida, Satoshi
2015-05-01
The radiological risks to the Tohoku hynobiid salamanders (class Amphibia), Hynobius lichenatus due to the Fukushima Dai-ichi Nuclear Power Plant accident were assessed in Fukushima Prefecture, including evacuation areas. Aquatic egg clutches (n = 1 for each sampling date and site; n = 4 in total), overwintering larvae (n = 1-5 for each sampling date and site; n = 17 in total), and terrestrial juveniles or adults (n = 1 or 3 for each sampling date and site; n = 12 in total) of H. lichenatus were collected from the end of April 2011 to April 2013. Environmental media such as litter (n = 1-5 for each sampling date and site; n = 30 in total), soil (n = 1-8 for each sampling date and site; n = 31 in total), water (n = 1 for each sampling date and site; n = 17 in total), and sediment (n = 1 for each sampling date and site; n = 17 in total) were also collected. Activity concentrations of (134)Cs + (137)Cs were 1.9-2800, 0.13-320, and 0.51-220 kBq (dry kg) (-1) in the litter, soil, and sediment samples, respectively, and were 0.31-220 and <0.29-40 kBq (wet kg)(-1) in the adult and larval salamanders, respectively. External and internal absorbed dose rates to H. lichenatus were calculated from these activity concentration data, using the ERICA Assessment Tool methodology. External dose rates were also measured in situ with glass dosimeters. There was agreement within a factor of 2 between the calculated and measured external dose rates. In the most severely contaminated habitat of this salamander, a northern part of Abukuma Mountains, the highest total dose rates were estimated to be 50 and 15 μGy h(-1) for the adults and overwintering larvae, respectively. Growth and survival of H. lichenatus was not affected at a dose rate of up to 490 μGy h(-1) in the previous laboratory chronic gamma-irradiation experiment, and thus growth and survival of this salamander would not be affected, even in the most severely contaminated habitat in Fukushima Prefecture. However, further studies of the adult salamanders may be required in order to examine whether the most severe radioactive contamination has any effects on sensitive endpoints, since the estimated highest dose rate to the adults exceeded some of the guidance dose rates proposed by various organisations and programmes for the protection of amphibians, which range from 4 to 400 μGy h(-1). Conversely, at one site in Nakadori, a moderately contaminated region in Fukushima Prefecture, the dose rate to the adult salamanders in spring of 2012 was estimated to be 0.2 μGy h(-1). Estimated dose rates to the overwintering larvae in spring of 2012 were 1 and 0.2 μGy h(-1) at one site in Nakadori, and in Aizu, a less contaminated region in Fukushima Prefecture, respectively. These results suggest that there is a low risk that H. lichenatus will be affected by radioactive contamination in these districts, though further studies on dose rate estimation are required for definitive risk characterisation. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Comparison of Imputation Methods for Bayesian Factor Analysis Models
ERIC Educational Resources Information Center
Merkle, Edgar C.
2011-01-01
Imputation methods are popular for the handling of missing data in psychology. The methods generally consist of predicting missing data based on observed data, yielding a complete data set that is amiable to standard statistical analyses. In the context of Bayesian factor analysis, this article compares imputation under an unrestricted…
Bayesian Meta-Analysis of Cronbach's Coefficient Alpha to Evaluate Informative Hypotheses
ERIC Educational Resources Information Center
Okada, Kensuke
2015-01-01
This paper proposes a new method to evaluate informative hypotheses for meta-analysis of Cronbach's coefficient alpha using a Bayesian approach. The coefficient alpha is one of the most widely used reliability indices. In meta-analyses of reliability, researchers typically form specific informative hypotheses beforehand, such as "alpha of…
USDA-ARS?s Scientific Manuscript database
As a first step towards the genetic mapping of quantitative trait loci (QTL) affecting stress response variation in rainbow trout, we performed complex segregation analyses (CSA) fitting mixed inheritance models of plasma cortisol using Bayesian methods in large full-sib families of rainbow trout. ...
ERIC Educational Resources Information Center
Zwick, Rebecca; Lenaburg, Lubella
2009-01-01
In certain data analyses (e.g., multiple discriminant analysis and multinomial log-linear modeling), classification decisions are made based on the estimated posterior probabilities that individuals belong to each of several distinct categories. In the Bayesian network literature, this type of classification is often accomplished by assigning…
Biogeography, phylogeny, and morphological evolution of central Texas cave and spring salamanders
2013-01-01
Background Subterranean faunal radiations can result in complex patterns of morphological divergence involving both convergent or parallel phenotypic evolution and cryptic species diversity. Salamanders of the genus Eurycea in central Texas provide a particularly challenging example with respect to phylogeny reconstruction, biogeography and taxonomy. These predominantly aquatic species inhabit karst limestone aquifers and spring outflows, and exhibit a wide range of morphological and genetic variation. We extensively sampled spring and cave populations of six Eurycea species within this group (eastern Blepsimolge clade), to reconstruct their phylogenetic and biogeographic history using mtDNA and examine patterns and origins of cave- and surface-associated morphological variation. Results Genetic divergence is generally low, and many populations share ancestral haplotypes and/or show evidence of introgression. This pattern likely indicates a recent radiation coupled with a complex history of intermittent connections within the aquatic karst system. Cave populations that exhibit the most extreme troglobitic morphologies show no or very low divergence from surface populations and are geographically interspersed among them, suggesting multiple instances of rapid, parallel phenotypic evolution. Morphological variation is diffuse among cave populations; this is in contrast to surface populations, which form a tight cluster in morphospace. Unexpectedly, our analyses reveal two distinct and previously unrecognized morphological groups encompassing multiple species that are not correlated with spring or cave habitat, phylogeny or geography, and may be due to developmental plasticity. Conclusions The evolutionary history of this group of spring- and cave-dwelling salamanders reflects patterns of intermittent isolation and gene flow influenced by complex hydrogeologic dynamics that are characteristic of karst regions. Shallow genetic divergences among several species, evidence of genetic exchange, and nested relationships across morphologically disparate cave and spring forms suggests that cave invasion was recent and many troglobitic morphologies arose independently. These patterns are consistent with an adaptive-shift hypothesis of divergence, which has been proposed to explain diversification in other karst fauna. While cave and surface forms often do not appear to be genetically isolated, morphological diversity within and among populations may be maintained by developmental plasticity, selection, or a combination thereof. PMID:24044519
Deep divergences and extensive phylogeographic structure in a clade of lowland tropical salamanders.
Rovito, Sean M; Parra-Olea, Gabriela; Vásquez-Almazán, Carlos R; Luna-Reyes, Roberto; Wake, David B
2012-12-29
The complex geological history of Mesoamerica provides the opportunity to study the impact of multiple biogeographic barriers on population differentiation. We examine phylogeographic patterns in a clade of lowland salamanders (Bolitoglossa subgenus Nanotriton) using two mitochondrial genes and one nuclear gene. We use several phylogeographic analyses to infer the history of this clade and test hypotheses regarding the geographic origin of species and location of genetic breaks within species. We compare our results to those for other taxa to determine if historical events impacted different species in a similar manner. Deep genetic divergence between species indicates that they are relatively old, and two of the three widespread species show strong phylogeographic structure. Comparison of mtDNA and nuclear gene trees shows no evidence of hybridization or introgression between species. Isolated populations of Bolitoglossa rufescens from Los Tuxtlas region constitute a separate lineage based on molecular data and morphology, and divergence between Los Tuxtlas and other areas appears to predate the arrival of B. rufescens in other areas west of the Isthmus of Tehuantepec. The Isthmus appears responsible for Pliocene vicariance within B. rufescens, as has been shown for other taxa. The Motagua-Polochic fault system does not appear to have caused population vicariance, unlike in other systems. Species of Nanotriton have responded to some major geological events in the same manner as other taxa, particularly in the case of the Isthmus of Tehuantepec. The deep divergence of the Los Tuxtlas populations of B. rufescens from other populations highlights the contribution of this volcanic system to patterns of regional endemism, and morphological differences observed in the Los Tuxtlas populations suggests that they may represent an undescribed species of Bolitoglossa. The absence of phylogeographic structure in B. nympha, in contrast to the other widespread species in the subgenus, may be due to historical forest contraction and more recent range expansion in the region. Phylogeographic data provide substantial insight into the evolutionary history of these morphologically similar species of salamanders, and contribute to our understanding of factors that have generated the high biodiversity of Mesoamerica.
Deep divergences and extensive phylogeographic structure in a clade of lowland tropical salamanders
2012-01-01
Background The complex geological history of Mesoamerica provides the opportunity to study the impact of multiple biogeographic barriers on population differentiation. We examine phylogeographic patterns in a clade of lowland salamanders (Bolitoglossa subgenus Nanotriton) using two mitochondrial genes and one nuclear gene. We use several phylogeographic analyses to infer the history of this clade and test hypotheses regarding the geographic origin of species and location of genetic breaks within species. We compare our results to those for other taxa to determine if historical events impacted different species in a similar manner. Results Deep genetic divergence between species indicates that they are relatively old, and two of the three widespread species show strong phylogeographic structure. Comparison of mtDNA and nuclear gene trees shows no evidence of hybridization or introgression between species. Isolated populations of Bolitoglossa rufescens from Los Tuxtlas region constitute a separate lineage based on molecular data and morphology, and divergence between Los Tuxtlas and other areas appears to predate the arrival of B. rufescens in other areas west of the Isthmus of Tehuantepec. The Isthmus appears responsible for Pliocene vicariance within B. rufescens, as has been shown for other taxa. The Motagua-Polochic fault system does not appear to have caused population vicariance, unlike in other systems. Conclusions Species of Nanotriton have responded to some major geological events in the same manner as other taxa, particularly in the case of the Isthmus of Tehuantepec. The deep divergence of the Los Tuxtlas populations of B. rufescens from other populations highlights the contribution of this volcanic system to patterns of regional endemism, and morphological differences observed in the Los Tuxtlas populations suggests that they may represent an undescribed species of Bolitoglossa. The absence of phylogeographic structure in B. nympha, in contrast to the other widespread species in the subgenus, may be due to historical forest contraction and more recent range expansion in the region. Phylogeographic data provide substantial insight into the evolutionary history of these morphologically similar species of salamanders, and contribute to our understanding of factors that have generated the high biodiversity of Mesoamerica. PMID:23273329
Impact of censoring on learning Bayesian networks in survival modelling.
Stajduhar, Ivan; Dalbelo-Basić, Bojana; Bogunović, Nikola
2009-11-01
Bayesian networks are commonly used for presenting uncertainty and covariate interactions in an easily interpretable way. Because of their efficient inference and ability to represent causal relationships, they are an excellent choice for medical decision support systems in diagnosis, treatment, and prognosis. Although good procedures for learning Bayesian networks from data have been defined, their performance in learning from censored survival data has not been widely studied. In this paper, we explore how to use these procedures to learn about possible interactions between prognostic factors and their influence on the variate of interest. We study how censoring affects the probability of learning correct Bayesian network structures. Additionally, we analyse the potential usefulness of the learnt models for predicting the time-independent probability of an event of interest. We analysed the influence of censoring with a simulation on synthetic data sampled from randomly generated Bayesian networks. We used two well-known methods for learning Bayesian networks from data: a constraint-based method and a score-based method. We compared the performance of each method under different levels of censoring to those of the naive Bayes classifier and the proportional hazards model. We did additional experiments on several datasets from real-world medical domains. The machine-learning methods treated censored cases in the data as event-free. We report and compare results for several commonly used model evaluation metrics. On average, the proportional hazards method outperformed other methods in most censoring setups. As part of the simulation study, we also analysed structural similarities of the learnt networks. Heavy censoring, as opposed to no censoring, produces up to a 5% surplus and up to 10% missing total arcs. It also produces up to 50% missing arcs that should originally be connected to the variate of interest. Presented methods for learning Bayesian networks from data can be used to learn from censored survival data in the presence of light censoring (up to 20%) by treating censored cases as event-free. Given intermediate or heavy censoring, the learnt models become tuned to the majority class and would thus require a different approach.
NASA Astrophysics Data System (ADS)
Vasilyan, Davit; Böhme, Madelaine; Winklhofer, Michael
2010-05-01
Cryptobranchids represent a group of large sized (up to 1.8 m) tailed amphibians known since the Middle Jurassic (Gao & Shubin 2003). Two species are living today in eastern Eurasia: Andrias davidianus (China) and A. japonicus (Japan). Cenozoic Eurasian fossil giant salamanders are known with two genera and two or three species from over 30 localities, ranging from the Late Eocene to the Early Pliocene (Böhme & Ilg 2003). The Late Eocene species Zaissanurus beliajevae is restricted to the Central Asian Zaissan Basin (SE-Kazakhstan, 50°N, 85°E), whereas the Late Oligocene to Early Pliocene species Andrias scheuchzeri is distributed from Central Europe to the Zaissan Basin. In the latter basin the species occur during two periods; the latest Oligocene and the late Early to early Middle Miocene (Chkhikvadse 1982). Andrias scheuchzeri is osteological indistinguishable from both recent species, indicating a similar ecology (Westfahl 1958). To investigate the palaeoclimatic significance of giant salamanders we analyzed the climate within the present-day distribution area and at selected fossil localities with independent palaeoclimate record. Our results indicate that fossil and recent Andrias species occur in humid areas where the mean annual precipitation reach over 900 mm (900 - 1.300 mm). As a working hypothesis (assuming a similar ecology of Andrias and Zaissanurus) we interpret occurrences of both fossil Eurasian giant salamanders as indicative for humid palaeoclimatic conditions. Based on this assumption the Late Eocene, the latest Oligocene (late Oligocene warming) and the late Early to early Middle Miocene (Miocene Climatic Optimum) of Central Asia (Zaissan Basin) are periods of elevated humidity, suggesting a direct (positive) relationship between global climate and Central Asian humidity evolution. Böhme M., Ilg A. 2003: fosFARbase, www.wahre-staerke.com/ Chkhikvadze V.M. 1982. On the finding of fossil Cryptobranchidae in the USSR and Mongolia. Vertebrata Hungarica, 21: 63-67. Gao K.-Q., Shubin N.H. 2003. Earliest known crown-group Salamanders. Nature, 422: 424-428. Westphal F. 1958. Die Tertiären und rezenten Eurasiatischen Riesensalamander. Palaeontolographica Abt. A, 110: 20-92.
Mckee, Anna; Calhoun, Daniel L.; Barichivich, William J.; Spear, Stephen F.; Goldberg, Caren S.; Glenn, Travis C
2015-01-01
Environmental DNA (eDNA) is an emerging tool that allows low-impact sampling for aquatic species by isolating DNA from water samples and screening for DNA sequences specific to species of interest. However, researchers have not tested this method in naturally acidic wetlands that provide breeding habitat for a number of imperiled species, including the frosted salamander (Ambystoma cingulatum), reticulated flatwoods salamanders (Ambystoma bishopi), striped newt (Notophthalmus perstriatus), and gopher frog (Lithobates capito). Our objectives for this study were to develop and optimize eDNA survey protocols and assays to complement and enhance capture-based survey methods for these amphibian species. We collected three or more water samples, dipnetted or trapped larval and adult amphibians, and conducted visual encounter surveys for egg masses for target species at 40 sites on 12 different longleaf pine (Pinus palustris) tracts. We used quantitative PCRs to screen eDNA from each site for target species presence. We detected flatwoods salamanders at three sites with eDNA but did not detect them during physical surveys. Based on the sample location we assumed these eDNA detections to indicate the presence of frosted flatwoods salamanders. We did not detect reticulated flatwoods salamanders. We detected striped newts with physical and eDNA surveys at two wetlands. We detected gopher frogs at 12 sites total, three with eDNA alone, two with physical surveys alone, and seven with physical and eDNA surveys. We detected our target species with eDNA at 9 of 11 sites where they were present as indicated from traditional surveys and at six sites where they were not detected with traditional surveys. It was, however, critical to use at least three water samples per site for eDNA. Our results demonstrate eDNA surveys can be a useful complement to traditional survey methods for detecting imperiled pond-breeding amphibians. Environmental DNA may be particularly useful in situations where detection probability using traditional survey methods is low or access by trained personnel is limited.
Bayesian analyses of time-interval data for environmental radiation monitoring.
Luo, Peng; Sharp, Julia L; DeVol, Timothy A
2013-01-01
Time-interval (time difference between two consecutive pulses) analysis based on the principles of Bayesian inference was investigated for online radiation monitoring. Using experimental and simulated data, Bayesian analysis of time-interval data [Bayesian (ti)] was compared with Bayesian and a conventional frequentist analysis of counts in a fixed count time [Bayesian (cnt) and single interval test (SIT), respectively]. The performances of the three methods were compared in terms of average run length (ARL) and detection probability for several simulated detection scenarios. Experimental data were acquired with a DGF-4C system in list mode. Simulated data were obtained using Monte Carlo techniques to obtain a random sampling of the Poisson distribution. All statistical algorithms were developed using the R Project for statistical computing. Bayesian analysis of time-interval information provided a similar detection probability as Bayesian analysis of count information, but the authors were able to make a decision with fewer pulses at relatively higher radiation levels. In addition, for the cases with very short presence of the source (< count time), time-interval information is more sensitive to detect a change than count information since the source data is averaged by the background data over the entire count time. The relationships of the source time, change points, and modifications to the Bayesian approach for increasing detection probability are presented.
Ecological separation in a polymorphic terrestrial salamander.
Anthony, Carl D; Venesky, Matthew D; Hickerson, Cari-Ann M
2008-07-01
1. When studying speciation, researchers commonly examine reproductive isolation in recently diverged populations. Polymorphic species provide an opportunity to examine the role of reproductive isolation in populations that may be in the process of divergence. 2. We examined a polymorphic population of Plethodon cinereus (red-backed salamanders) for evidence of sympatric ecological separation by colour morphology. Recent studies have correlated temperature and climate with colour morphology in this species, but no studies have looked at differences in diet or mate choice between colour morphs. We used artificial cover objects to assess salamander diet, mating preference and surface activity over a 2-year period at a field site in north-eastern Ohio. 3. We detected differences in diet between two colour morphs, striped and unstriped. The diets of striped individuals were significantly more diverse and were made up of more profitable prey than the diets of unstriped salamanders. 4. Opposite sex pairs were made up of individuals of the same colour morph and striped males were found more often with larger females than were unstriped males. 5. We corroborate findings of earlier studies suggesting that the unstriped form is adapted to warmer conditions. Unstriped individuals were the first to withdraw from the forest floor as temperatures fell in the late fall. We found no evidence that the colour morphs responded differently to abiotic factors such as soil moisture and relative humidity, and responses to surface temperatures were also equivocal. 6. We conclude that the two colour morphs exhibit some degree of ecological separation and tend to mate assortatively, but are unlikely to be undergoing divergence given the observed frequency of intermorph pairings.
Courtney L. Davis,; David A.W. Miller,; Walls, Susan; Barichivich, William J.; Riley, Jeffrey W.; Brown, Mary E.
2017-01-01
Plasticity in life history strategies can be advantageous for species that occupy spatially or temporally variable environments. We examined how phenotypic plasticity influences responses of the mole salamander, Ambystoma talpoideum, to disturbance events at the St. Marks National Wildlife Refuge (SMNWR), FL, USA from 2009 to 2014. We observed periods of extensive drought early in the study, in contrast to high rainfall and expansive flooding events in later years. Flooding facilitated colonization of predatory fishes to isolated wetlands across the refuge. We employed multistate occupancy models to determine how this natural experiment influenced the occurrence of aquatic larvae and paedomorphic adults and what implications this may have for the population. We found that, in terms of occurrence, responses to environmental variation differed between larvae and paedomorphs, but plasticity (i.e. the ability to metamorphose rather than remain in aquatic environment) was not sufficient to buffer populations from declining as a result of environmental perturbations. Drought and fish presence negatively influenced occurrence dynamics of larval and paedomorphic mole salamanders and, consequently, contributed to observed short-term declines of this species. Overall occurrence of larval salamanders decreased from 0.611 in 2009 to 0.075 in 2014 and paedomorph occurrence decreased from 0.311 in 2009 to 0.121 in 2014. Although variation in selection pressures has likely maintained this polyphenism previously, our results suggest that continued changes in environmental variability and the persistence of fish in isolated wetlands could lead to a loss of paedomorphosis in the SMNWR population and, ultimately, impact regional persistence in the future.
Ecological equivalency as a tool for endangered species management.
Searcy, Christopher A; Rollins, Hilary B; Shaffer, H Bradley
2016-01-01
The use of taxon substitutes for extinct or endangered species is a controversial conservation measure. We use the example of the endangered California tiger salamander (Ambystoma californiense; CTS), which is being replaced by hybrids with the invasive barred tiger salamander (Ambystoma mavortium), to illustrate a strategy for evaluating taxon substitutes based on their position in a multivariate community space. Approximately one-quarter of CTS's range is currently occupied by "full hybrids" with 70% nonnative genes, while another one-quarter is occupied by "superinvasives" where a specific set of 3/68 genes comprising 4% of the surveyed genome is nonnative. Based on previous surveys of natural CTS breeding ponds, we stocked experimental mesocosms with field-verified, realistic densities of tiger salamander larvae and their prey, and used these mesocosms to evaluate ecological equivalency between pure CTS, full hybrids, and superinvasives in experimental pond communities. We also included a fourth treatment with no salamanders present to evaluate the community effects of eliminating Ambystoma larvae altogether. We found that pure CTS and superinvasive larvae were ecologically equivalent, because their positions in the multivariate community space were statistically indistinguishable and they did not differ significantly along any univariate community axes. Full hybrids were ecologically similar, but not equivalent, to the other two genotypes, and the no-Ambystoma treatment was by far the most divergent. We conclude that, at least for the larval stage, superinvasives are adequate taxon substitutes for pure CTS and should probably be afforded protection under the Endangered Species Act. The proper conservation status for full hybrids remains debatable.
Bazar, Matthew A; Quinn, Michael J; Mozzachio, Kristie; Bleiler, John A; Archer, Christine R; Phillips, Carlton T; Johnson, Mark S
2010-05-01
The use of lead in military and civilian small arms projectiles is widely acknowledged to have resulted in high soil lead concentrations at many small arms ranges. These ranges are often adjacent to wildlife habitat or have become habitat when no longer used. To assess the potential toxicity of lead to terrestrial amphibians in contaminated areas, we exposed 100 red-backed salamanders (Plethodon cinereus) to either a control soil or one of four soil treatments amended with lead acetate for 28 days. Analytical mean soil concentrations were 14 (control), 553, 1700, 4700, and 9167 mg Pb/kg soil dry weight. An additional 60 salamanders were also exposed for 28 days to one of six field-collected soil samples from a small arms range and a skeet range. The field soil concentrations ranged from 11 (background) to 16,967 mg Pb/kg soil dry weight. Food consisted of uncontaminated flightless Drosophila melanogaster. Salamander survival was reduced in amended soil treatments of 4700 and 9167 mg/kg by 15% and 80%, respectively. Inappetence was observed at 4700 and 9167 mg/kg and growth decreased in the 9167 mg/kg treatment. Total white blood cells decreased 32% at 4700 mg/kg compared to controls and were 22% lower in the 9167 mg/kg treatment. In contrast, survival was 100% for all field-collected soils with no hematological effects. At 16,967 mg/kg there was evidence of soil avoidance and decreased growth. These data suggest marked differences in toxicity and bioavailability of the lead-amended soil in contrast to the field-collected soil containing lead.
Mechanics of lung ventilation in a large aquatic salamander, siren lacertina
Brainerd; j
1998-06-01
Lung ventilation in Siren lacertina was studied using X-ray video, measurements of body cavity pressure and electromyography of hypaxial muscles. S. lacertina utilizes a two-stroke buccal pump in which mixing of expired and inspired gas is minimized by partial expansion of the buccal cavity during exhalation and then full expansion after exhalation is complete. Mixing is further reduced by the use of one or two accessory inspirations after the first, mixed-gas cycle. Exhalation occurs in two phases: a passive phase in which hydrostatic pressure and possibly lung elasticity force air out of the lungs, and an active phase in which contraction of the transverse abdominis (TA) muscle increases body cavity pressure and forces most of the remaining air out. In electromyograms of the lateral hypaxial musculature, the TA became active 200-400 ms before the rise in body cavity pressure, and activity ceased at peak pressure. The TA was not active during inspiration, and no consistent activity during breathing was noted in the external oblique, internal oblique and rectus abdominis muscles. The finding that the TA is the primary expiratory muscle in S. lacertina agrees with findings in a previous study of another salamander, Necturus maculosus. Together, these results indicate that the use of the TA for exhalation is a primitive character for salamanders and support the hypothesis that the breathing mechanism of salamanders represents an intermediate step in evolution between a buccal pump, in which only head muscles are used for ventilation, and an aspiration pump, in which axial muscles are used for both exhalation and inhalation.
Ambystoma maculatum (spotted salamander). Reproduction
Glorioso, Brad M.; Waddle, Hardin; Hefner, Jeromi
2012-01-01
The Spotted Salamander is a wide-ranging salamander of the eastern United States that typically breeds in winter or early spring in ephemeral pools in lowland forests. Ambystoma maculatum is known to deposit 2-4 egg masses per year, each containing 1-250 eggs. As part of ongoing research into the ecology and reproductive biology of Spotted Salamanders in the Kisatchie District of Kisatchie National Forest in Natchitoches Parish, Louisiana, USA, we have been counting the number of embryos per egg mass. We captured seven female A. maculatum in a small pool, six of which were still gravid. We took standard measurements, including SVL, and then implanted a Passive Integrated Transponder (PIT tag) into each adult female as was the protocol. About an hour after processing these animals we marked new A. maculatum egg masses found in the same small pool using PVC pin flags pushed carefully through the outer jelly. We did not have enough time to process them that evening, and it was not until a few days later that we photographed those masses. We discovered that one of the masses contained a PIT tag in the outer jelly that corresponded to one of the six gravid females that were marked that same evening. To our knowledge, this is the first report of PIT tags being the means, albeit coincidentally, by which a particular egg mass of Ambystoma maculatum has been assigned to a particular female. For our purposes, losing the PIT tag from the adult female is counter to the goals of our study of this population, and we will no longer be implanting PIT tags into gravid females.
2012-01-01
Background A statistical analysis plan (SAP) is a critical link between how a clinical trial is conducted and the clinical study report. To secure objective study results, regulatory bodies expect that the SAP will meet requirements in pre-specifying inferential analyses and other important statistical techniques. To write a good SAP for model-based sensitivity and ancillary analyses involves non-trivial decisions on and justification of many aspects of the chosen setting. In particular, trials with longitudinal count data as primary endpoints pose challenges for model choice and model validation. In the random effects setting, frequentist strategies for model assessment and model diagnosis are complex and not easily implemented and have several limitations. Therefore, it is of interest to explore Bayesian alternatives which provide the needed decision support to finalize a SAP. Methods We focus on generalized linear mixed models (GLMMs) for the analysis of longitudinal count data. A series of distributions with over- and under-dispersion is considered. Additionally, the structure of the variance components is modified. We perform a simulation study to investigate the discriminatory power of Bayesian tools for model criticism in different scenarios derived from the model setting. We apply the findings to the data from an open clinical trial on vertigo attacks. These data are seen as pilot data for an ongoing phase III trial. To fit GLMMs we use a novel Bayesian computational approach based on integrated nested Laplace approximations (INLAs). The INLA methodology enables the direct computation of leave-one-out predictive distributions. These distributions are crucial for Bayesian model assessment. We evaluate competing GLMMs for longitudinal count data according to the deviance information criterion (DIC) or probability integral transform (PIT), and by using proper scoring rules (e.g. the logarithmic score). Results The instruments under study provide excellent tools for preparing decisions within the SAP in a transparent way when structuring the primary analysis, sensitivity or ancillary analyses, and specific analyses for secondary endpoints. The mean logarithmic score and DIC discriminate well between different model scenarios. It becomes obvious that the naive choice of a conventional random effects Poisson model is often inappropriate for real-life count data. The findings are used to specify an appropriate mixed model employed in the sensitivity analyses of an ongoing phase III trial. Conclusions The proposed Bayesian methods are not only appealing for inference but notably provide a sophisticated insight into different aspects of model performance, such as forecast verification or calibration checks, and can be applied within the model selection process. The mean of the logarithmic score is a robust tool for model ranking and is not sensitive to sample size. Therefore, these Bayesian model selection techniques offer helpful decision support for shaping sensitivity and ancillary analyses in a statistical analysis plan of a clinical trial with longitudinal count data as the primary endpoint. PMID:22962944
Adrion, Christine; Mansmann, Ulrich
2012-09-10
A statistical analysis plan (SAP) is a critical link between how a clinical trial is conducted and the clinical study report. To secure objective study results, regulatory bodies expect that the SAP will meet requirements in pre-specifying inferential analyses and other important statistical techniques. To write a good SAP for model-based sensitivity and ancillary analyses involves non-trivial decisions on and justification of many aspects of the chosen setting. In particular, trials with longitudinal count data as primary endpoints pose challenges for model choice and model validation. In the random effects setting, frequentist strategies for model assessment and model diagnosis are complex and not easily implemented and have several limitations. Therefore, it is of interest to explore Bayesian alternatives which provide the needed decision support to finalize a SAP. We focus on generalized linear mixed models (GLMMs) for the analysis of longitudinal count data. A series of distributions with over- and under-dispersion is considered. Additionally, the structure of the variance components is modified. We perform a simulation study to investigate the discriminatory power of Bayesian tools for model criticism in different scenarios derived from the model setting. We apply the findings to the data from an open clinical trial on vertigo attacks. These data are seen as pilot data for an ongoing phase III trial. To fit GLMMs we use a novel Bayesian computational approach based on integrated nested Laplace approximations (INLAs). The INLA methodology enables the direct computation of leave-one-out predictive distributions. These distributions are crucial for Bayesian model assessment. We evaluate competing GLMMs for longitudinal count data according to the deviance information criterion (DIC) or probability integral transform (PIT), and by using proper scoring rules (e.g. the logarithmic score). The instruments under study provide excellent tools for preparing decisions within the SAP in a transparent way when structuring the primary analysis, sensitivity or ancillary analyses, and specific analyses for secondary endpoints. The mean logarithmic score and DIC discriminate well between different model scenarios. It becomes obvious that the naive choice of a conventional random effects Poisson model is often inappropriate for real-life count data. The findings are used to specify an appropriate mixed model employed in the sensitivity analyses of an ongoing phase III trial. The proposed Bayesian methods are not only appealing for inference but notably provide a sophisticated insight into different aspects of model performance, such as forecast verification or calibration checks, and can be applied within the model selection process. The mean of the logarithmic score is a robust tool for model ranking and is not sensitive to sample size. Therefore, these Bayesian model selection techniques offer helpful decision support for shaping sensitivity and ancillary analyses in a statistical analysis plan of a clinical trial with longitudinal count data as the primary endpoint.
Gillespie, J. Hayley
2013-01-01
Background Understanding dietary trends for endangered species may be essential to assessing the effects of ecological disturbances such as habitat modification, species introductions or global climate change. Documenting temporal variation in prey selection may also be crucial for understanding population dynamics. However, the rarity, secretive behaviours and obscure microhabitats of some endangered species can make direct foraging observations difficult or impossible. Furthermore, the lethality or invasiveness of some traditional methods of dietary analysis (e.g. gut contents analysis, gastric lavage) makes them inappropriate for such species. Stable isotope analysis facilitates non-lethal, indirect analysis of animal diet that has unrealized potential in the conservation of endangered organisms, particularly amphibians. Methodology/findings I determined proportional contributions of aquatic macroinvertebrate prey to the diet of an endangered aquatic salamander Eurycea sosorum over a two-year period using stable isotope analysis of 13/12C and 15/14N and the Bayesian stable isotope mixing model SIAR. I calculated Strauss’ dietary electivity indices by comparing these proportions with changing relative abundance of potential prey species through time. Stable isotope analyses revealed that a previously unknown prey item (soft-bodied planarian flatworms in the genus Dugesia) made up the majority of E. sosorum diet. Results also demonstrate that E. sosorum is an opportunistic forager capable of diet switching to include a greater proportion of alternative prey when Dugesia populations decline. There is also evidence of intra-population dietary variation. Conclusions/significance Effective application of stable isotope analysis can help circumvent two key limitations commonly experienced by researchers of endangered species: the inability to directly observe these species in nature and the invasiveness or lethality of traditional methods of dietary analysis. This study illustrates the feasibility of stable isotope analysis in identifying preferred prey species that can be used to guide conservation management of both wild and captive food sources for endangered species. PMID:23341920
Gopalaswamy, Arjun M.; Royle, J. Andrew; Hines, James E.; Singh, Pallavi; Jathanna, Devcharan; Kumar, N. Samba; Karanth, K. Ullas
2012-01-01
1. The advent of spatially explicit capture-recapture models is changing the way ecologists analyse capture-recapture data. However, the advantages offered by these new models are not fully exploited because they can be difficult to implement. 2. To address this need, we developed a user-friendly software package, created within the R programming environment, called SPACECAP. This package implements Bayesian spatially explicit hierarchical models to analyse spatial capture-recapture data. 3. Given that a large number of field biologists prefer software with graphical user interfaces for analysing their data, SPACECAP is particularly useful as a tool to increase the adoption of Bayesian spatially explicit capture-recapture methods in practice.
Bayesian generalized linear mixed modeling of Tuberculosis using informative priors.
Ojo, Oluwatobi Blessing; Lougue, Siaka; Woldegerima, Woldegebriel Assefa
2017-01-01
TB is rated as one of the world's deadliest diseases and South Africa ranks 9th out of the 22 countries with hardest hit of TB. Although many pieces of research have been carried out on this subject, this paper steps further by inculcating past knowledge into the model, using Bayesian approach with informative prior. Bayesian statistics approach is getting popular in data analyses. But, most applications of Bayesian inference technique are limited to situations of non-informative prior, where there is no solid external information about the distribution of the parameter of interest. The main aim of this study is to profile people living with TB in South Africa. In this paper, identical regression models are fitted for classical and Bayesian approach both with non-informative and informative prior, using South Africa General Household Survey (GHS) data for the year 2014. For the Bayesian model with informative prior, South Africa General Household Survey dataset for the year 2011 to 2013 are used to set up priors for the model 2014.
O'Donnell, Katherine; Messerman, Arianne F; Barichivich, William J.; Semlitsch, Raymond D.; Gorman, Thomas A.; Mitchell, Harold G; Allan, Nathan; Fenolio, Dante B.; Green, Adam; Johnson, Fred A.; Keever, Allison; Mandica, Mark; Martin, Julien; Mott, Jana; Peacock, Terry; Reinman, Joseph; Romañach, Stephanie; Titus, Greg; McGowan, Conor P.; Walls, Susan
2017-01-01
At least one-third of all amphibian species face the threat of extinction, and current amphibian extinction rates are four orders of magnitude greater than background rates. Preventing extirpation often requires both ex situ (i.e., conservation breeding programs) and in situ strategies (i.e., protecting natural habitats). Flatwoods salamanders (Ambystoma bishopi and A. cingulatum) are protected under the U.S. Endangered Species Act. The two species have decreased from 476 historical locations to 63 recently extant locations (86.8% loss). We suggest that recovery efforts are needed to increase populations and prevent extinction, but uncertainty regarding optimal actions in both ex situ and in situ realms hinders recovery planning. We used structured decision making (SDM) to address key uncertainties regarding both captive breeding and habitat restoration, and we developed short-, medium-, and long-term goals to achieve recovery objectives. By promoting a transparent, logical approach, SDM has proven vital to recovery plan development for flatwoods salamanders. The SDM approach has clear advantages over other previous approaches to recovery efforts, and we suggest that it should be considered for other complex decisions regarding endangered species.
Harshbarger, J.C.; Chang, S.C.; DeLanney, L.E.; Rose, F.L.; Green, D.E.
1999-01-01
Spontaneous mastocytomas studied in 18 axolotls (Ambystoma mexicanum) and six tiger salamanders (Ambystoma tigrinum) were gray-white, uni- to multilobular cutaneous protrusions from 2mm to 2cm in diameter. Tumors were moderately cellular unencapsulated masses that usually infiltrated the dermis and hypodermis with the destruction of intervening tissues. Some tumors were invading superficial bundles of the underlying skeletal muscle. Tumors consisted of mitotically active cells derived from a single lineage but showing a range of differentiation. Immature cells had nearly smooth to lightly cleft or folded basophilic nuclei bordered by a band of cytoplasm with few cytoplasmic processes and containing a few small uniform eccentric granules. Mature cells had basophilic nuclei with deep clefts or folds and abundant eosinophilic cytoplasm with multiple long intertwining cytoplasmic extensions packed with metachromatic granules. The axolotls were old individuals from an inbred laboratory colony. The tiger salamanders were wild animals from a single polluted pond. They could have been old and inbred. Both groups were neotenic. These are the first mastocytomas discovered in cold-blooded animals.
Conservation genetics of the endangered Shenandoah salamander (Plethodon shenandoah, Plethodontidae)
Carpenter, D.W.; Jung, R.E.; Sites, J.W.
2001-01-01
The Shenandoah salamander (Plethodon shenandoah) is restricted to three isolated talus outcrops in Shenandoah National Park, VA, USA and has one of the smallest ranges of any tetrapod vertebrate. This species was listed as endangered under the US Endangered Species Act in 1989 over concern that direct competition with the red-backed salamander (Plethodon cinereus), successional habitat changes, and human impacts may cause its decline and possible extinction. We address two issues herein: (1) whether extensive introgression (through long-term hybridization) is present between the two species and threatens the survival of P. shenandoah, and (2) the level of population structure within P. shenandoah. We provide evidence from mtDNA haplotypes that shows no genetic differentiation among the three isolates of P. shenandoah, suggesting that their fragmentation is a geologically recent event, and/or that the isolates are still connected by occasional gene flow. There is also no evidence for extensive introgression of alleles in either direction between P. cinereus and P. shenandoah, which suggests that P. shenandoah may not be in danger of being genetically swamped out through hybridization with P. cinereus.
NASA Astrophysics Data System (ADS)
Berliner, M.
2017-12-01
Bayesian statistical decision theory offers a natural framework for decision-policy making in the presence of uncertainty. Key advantages of the approach include efficient incorporation of information and observations. However, in complicated settings it is very difficult, perhaps essentially impossible, to formalize the mathematical inputs needed in the approach. Nevertheless, using the approach as a template is useful for decision support; that is, organizing and communicating our analyses. Bayesian hierarchical modeling is valuable in quantifying and managing uncertainty such cases. I review some aspects of the idea emphasizing statistical model development and use in the context of sea-level rise.
Makowsky, Robert; Cox, Christian L; Roelke, Corey; Chippindale, Paul T
2010-11-01
Determining the appropriate gene for phylogeny reconstruction can be a difficult process. Rapidly evolving genes tend to resolve recent relationships, but suffer from alignment issues and increased homoplasy among distantly related species. Conversely, slowly evolving genes generally perform best for deeper relationships, but lack sufficient variation to resolve recent relationships. We determine the relationship between sequence divergence and Bayesian phylogenetic reconstruction ability using both natural and simulated datasets. The natural data are based on 28 well-supported relationships within the subphylum Vertebrata. Sequences of 12 genes were acquired and Bayesian analyses were used to determine phylogenetic support for correct relationships. Simulated datasets were designed to determine whether an optimal range of sequence divergence exists across extreme phylogenetic conditions. Across all genes we found that an optimal range of divergence for resolving the correct relationships does exist, although this level of divergence expectedly depends on the distance metric. Simulated datasets show that an optimal range of sequence divergence exists across diverse topologies and models of evolution. We determine that a simple to measure property of genetic sequences (genetic distance) is related to phylogenic reconstruction ability in Bayesian analyses. This information should be useful for selecting the most informative gene to resolve any relationships, especially those that are difficult to resolve, as well as minimizing both cost and confounding information during project design. Copyright © 2010. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Galbraith, Craig S.; Merrill, Gregory B.; Kline, Doug M.
2012-01-01
In this study we investigate the underlying relational structure between student evaluations of teaching effectiveness (SETEs) and achievement of student learning outcomes in 116 business related courses. Utilizing traditional statistical techniques, a neural network analysis and a Bayesian data reduction and classification algorithm, we find…
Arias, Erick; Kubicki, Brian
2018-01-07
A new salamander belonging to the genus Nototriton, subgenus Nototriton, is described from the Caribbean slopes of the southeastern Cordillera de Talamanca in Costa Rica, within Parque Internacional La Amistad, at an elevation ca. 1500 m a.s.l. This new taxon is distinguished from its congeners by its morphological characteristics and by its differentiation in DNA sequences of the 16S rRNA, cytochrome oxidase subunit I (COI), and cytochrome b mitochondrial genes. This new species represents the southernmost extension known for the genus Nototriton.
What Do Owls, Salamanders, Flycatchers and Cuckoos Have In Common?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musgrave, Maria A.
This is an article from the Los Alamos Living magazine. Los Alamos National Laboratory sits on a beautiful and unique landscape that provides important protected habitat to many species, including a few that are federally-listed as threatened or endangered. These species are the Jemez Mountains Salamander, the Mexican Spotted Owl, the Southwestern Willow Flycatcher, the Yellow-billed Cuckoo, and the New Mexico Meadow Jumping Mouse. Part of the job of the Laboratory's wildlife biologists is to survey for these species each year and determine what actions need to be taken if they are found.
Grant, Evan H. Campbell; Muths, Erin L.; Katz, Rachel A.; Canessa, Stefano; Adams, Michael J.; Ballard, Jennifer R.; Berger, Lee; Briggs, Cheryl J.; Coleman, Jeremy; Gray, Matthew J.; Harris, M. Camille; Harris, Reid N.; Hossack, Blake R.; Huyvaert, Kathryn P.; Kolby, Jonathan E.; Lips, Karen R.; Lovich, Robert E.; McCallum, Hamish I.; Mendelson, Joseph R.; Nanjappa, Priya; Olson, Deanna H.; Powers, Jenny G.; Richgels, Katherine L. D.; Russell, Robin E.; Schmidt, Benedikt R.; Spitzen-van der Sluijs, Annemarieke; Watry, Mary Kay; Woodhams, Douglas C.; White, C. LeAnn
2016-01-20
The recently (2013) identified pathogenic chytrid fungus, Batrachochytrium salamandrivorans (Bsal), poses a severe threat to the distribution and abundance of salamanders within the United States and Europe. Development of a response strategy for the potential, and likely, invasion of Bsal into the United States is crucial to protect global salamander biodiversity. A formal working group, led by Amphibian Research and Monitoring Initiative (ARMI) scientists from the U.S. Geological Survey (USGS) Patuxent Wildlife Research Center, Fort Collins Science Center, and Forest and Rangeland Ecosystem Science Center, was held at the USGS Powell Center for Analysis and Synthesis in Fort Collins, Colorado, United States from June 23 to June 25, 2015, to identify crucial Bsal research and monitoring needs that could inform conservation and management strategies for salamanders in the United States. Key findings of the workshop included the following: (1) the introduction of Bsal into the United States is highly probable, if not inevitable, thus requiring development of immediate short-term and long-term intervention strategies to prevent Bsal establishment and biodiversity decline; (2) management actions targeted towards pathogen containment may be ineffective in reducing the long-term spread of Bsal throughout the United States; and (3) early detection of Bsal through surveillance at key amphibian import locations, among high-risk wild populations, and through analysis of archived samples is necessary for developing management responses. Top research priorities during the preinvasion stage included the following: (1) deployment of qualified diagnostic methods for Bsal and establishment of standardized laboratory practices, (2) assessment of susceptibility for amphibian hosts (including anurans), and (3) development and evaluation of short- and long-term pathogen intervention and management strategies. Several outcomes were achieved during the workshop, including development of an organizational structure with working groups for a Bsal Task Force, creation of an initial influence diagram to aid in identifying effective management actions in the face of uncertainty, and production of a list of potential management actions and key research uncertainties. Additional products under development include a Bsal Strategic Action plan, an emergency response plan, a monitoring and surveillance program, a standardized diagnostic approach, decision models for natural resource agencies, and a reporting database for salamander mortalities. This workshop was the first international meeting to address the threat of Bsal to salamander populations in the United States, with more than 30 participants from U.S. conservation and resource management agencies (U.S. Fish and Wildlife Service, U.S. Forest Service, U.S. Department of Defense, U.S. National Park Service, and Association of Fish and Wildlife Agencies) and academic research institutions in Australia, the Netherlands, Switzerland, the United Kingdom, and the United States.
A Tutorial in Bayesian Potential Outcomes Mediation Analysis.
Miočević, Milica; Gonzalez, Oscar; Valente, Matthew J; MacKinnon, David P
2018-01-01
Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation of mediation analyses is challenging because randomization of subjects to levels of the independent variable does not rule out the possibility of unmeasured confounders of the mediator to outcome relation. Furthermore, commonly used frequentist methods for mediation analysis compute the probability of the data given the null hypothesis, which is not the probability of a hypothesis given the data as in Bayesian analysis. Under certain assumptions, applying the potential outcomes framework to mediation analysis allows for the computation of causal effects, and statistical mediation in the Bayesian framework gives indirect effects probabilistic interpretations. This tutorial combines causal inference and Bayesian methods for mediation analysis so the indirect and direct effects have both causal and probabilistic interpretations. Steps in Bayesian causal mediation analysis are shown in the application to an empirical example.
When mechanism matters: Bayesian forecasting using models of ecological diffusion
Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.
2017-01-01
Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.
Welsh, H.H.; Fellers, G.M.; Lind, A.J.
2007-01-01
Amphibian declines have been documented worldwide; however the vast majority are species associated with aquatic habitats. Information on the status and trends of terrestrial amphibians is almost entirely lacking. Here we use data collected across a 12-yr period (sampling from 1984-86 and from 1993-95) to address the question of whether evidence exists for declines among terrestrial amphibians in northwestern California forests. The majority of amphibians, both species and relative numbers, in these forests are direct-developing salamanders of the family Plethodontidae. We examined amphibian richness and evenness, and the relative abundances of the four most common species of plethodontid salamanders. We examined evidence of differences between years in two ecological provinces (coastal and interior) and across young, mature, and late seral forests and with reference to a moisture gradient from xeric to hydric within late seral forests. We found evidence of declines in species richness across years on late seral mesic stands and in the coastal ecological province, but these differences appeared to be caused by differences in the detection of rarer species, rather than evidence of an overall pattern. We also found differences among specific years in numbers of individuals of the most abundant species, Ensatina eschscholtzii, but these differences also failed to reflect a consistent pattern of declines between the two decadal sample periods. Results showing differences in richness, evenness, and relative abundances along both the seral and moisture continua were consistent with previous research. Overall, we found no compelling evidence of a downward trend in terrestrial plethodontid salamanders. We believe that continued monitoring of terrestrial salamander populations is important to understanding mechanisms of population declines in amphibian species. Copyright 2007 Society for the Study of Amphibians and Reptiles.
Fitzpatrick, Benjamin M; Johnson, Jarrett R; Kump, D Kevin; Shaffer, H Bradley; Smith, Jeramiah J; Voss, S Randal
2009-07-24
Hybrid zones represent valuable opportunities to observe evolution in systems that are unusually dynamic and where the potential for the origin of novelty and rapid adaptation co-occur with the potential for dysfunction. Recently initiated hybrid zones are particularly exciting evolutionary experiments because ongoing natural selection on novel genetic combinations can be studied in ecological time. Moreover, when hybrid zones involve native and introduced species, complex genetic patterns present important challenges for conservation policy. To assess variation of admixture dynamics, we scored a large panel of markers in five wild hybrid populations formed when Barred Tiger Salamanders were introduced into the range of California Tiger Salamanders. At three of 64 markers, introduced alleles have largely displaced native alleles within the hybrid populations. Another marker (GNAT1) showed consistent heterozygote deficits in the wild, and this marker was associated with embryonic mortality in laboratory F2's. Other deviations from equilibrium expectations were idiosyncratic among breeding ponds, consistent with highly stochastic demographic effects. While most markers retain native and introduced alleles in expected proportions, strong selection appears to be eliminating native alleles at a smaller set of loci. Such rapid fixation of alleles is detectable only in recently formed hybrid zones, though it might be representative of dynamics that frequently occur in nature. These results underscore the variable and mosaic nature of hybrid genomes and illustrate the potency of recombination and selection in promoting variable, and often unpredictable genetic outcomes. Introgression of a few, strongly selected introduced alleles should not necessarily affect the conservation status of California Tiger Salamanders, but suggests that genetically pure populations of this endangered species will be difficult to maintain.
O’Donnell, Katherine M.; Thompson, Frank R.; Semlitsch, Raymond D.
2015-01-01
Detectability of individual animals is highly variable and nearly always < 1; imperfect detection must be accounted for to reliably estimate population sizes and trends. Hierarchical models can simultaneously estimate abundance and effective detection probability, but there are several different mechanisms that cause variation in detectability. Neglecting temporary emigration can lead to biased population estimates because availability and conditional detection probability are confounded. In this study, we extend previous hierarchical binomial mixture models to account for multiple sources of variation in detectability. The state process of the hierarchical model describes ecological mechanisms that generate spatial and temporal patterns in abundance, while the observation model accounts for the imperfect nature of counting individuals due to temporary emigration and false absences. We illustrate our model’s potential advantages, including the allowance of temporary emigration between sampling periods, with a case study of southern red-backed salamanders Plethodon serratus. We fit our model and a standard binomial mixture model to counts of terrestrial salamanders surveyed at 40 sites during 3–5 surveys each spring and fall 2010–2012. Our models generated similar parameter estimates to standard binomial mixture models. Aspect was the best predictor of salamander abundance in our case study; abundance increased as aspect became more northeasterly. Increased time-since-rainfall strongly decreased salamander surface activity (i.e. availability for sampling), while higher amounts of woody cover objects and rocks increased conditional detection probability (i.e. probability of capture, given an animal is exposed to sampling). By explicitly accounting for both components of detectability, we increased congruence between our statistical modeling and our ecological understanding of the system. We stress the importance of choosing survey locations and protocols that maximize species availability and conditional detection probability to increase population parameter estimate reliability. PMID:25775182
Dodd, C.K.; Dorazio, R.M.
2004-01-01
A critical variable in both ecological and conservation field studies is determining how many individuals of a species are present within a defined sampling area. Labor intensive techniques such as capture-mark-recapture and removal sampling may provide estimates of abundance, but there are many logistical constraints to their widespread application. Many studies on terrestrial and aquatic salamanders use counts as an index of abundance, assuming that detection remains constant while sampling. If this constancy is violated, determination of detection probabilities is critical to the accurate estimation of abundance. Recently, a model was developed that provides a statistical approach that allows abundance and detection to be estimated simultaneously from spatially and temporally replicated counts. We adapted this model to estimate these parameters for salamanders sampled over a six vear period in area-constrained plots in Great Smoky Mountains National Park. Estimates of salamander abundance varied among years, but annual changes in abundance did not vary uniformly among species. Except for one species, abundance estimates were not correlated with site covariates (elevation/soil and water pH, conductivity, air and water temperature). The uncertainty in the estimates was so large as to make correlations ineffectual in predicting which covariates might influence abundance. Detection probabilities also varied among species and sometimes among years for the six species examined. We found such a high degree of variation in our counts and in estimates of detection among species, sites, and years as to cast doubt upon the appropriateness of using count data to monitor population trends using a small number of area-constrained survey plots. Still, the model provided reasonable estimates of abundance that could make it useful in estimating population size from count surveys.
Karakasiliotis, K; Thandiackal, R; Melo, K; Horvat, T; Mahabadi, N K; Tsitkov, S; Cabelguen, J M; Ijspeert, A J
2016-06-01
Robots are increasingly used as scientific tools to investigate animal locomotion. However, designing a robot that properly emulates the kinematic and dynamic properties of an animal is difficult because of the complexity of musculoskeletal systems and the limitations of current robotics technology. Here, we propose a design process that combines high-speed cineradiography, optimization, dynamic scaling, three-dimensional printing, high-end servomotors and a tailored dry-suit to construct Pleurobot: a salamander-like robot that closely mimics its biological counterpart, Pleurodeles waltl Our previous robots helped us test and confirm hypotheses on the interaction between the locomotor neuronal networks of the limbs and the spine to generate basic swimming and walking gaits. With Pleurobot, we demonstrate a design process that will enable studies of richer motor skills in salamanders. In particular, we are interested in how these richer motor skills can be obtained by extending our spinal cord models with the addition of more descending pathways and more detailed limb central pattern generator networks. Pleurobot is a dynamically scaled amphibious salamander robot with a large number of actuated degrees of freedom (DOFs: 27 in total). Because of our design process, the robot can capture most of the animal's DOFs and range of motion, especially at the limbs. We demonstrate the robot's abilities by imposing raw kinematic data, extracted from X-ray videos, to the robot's joints for basic locomotor behaviours in water and on land. The robot closely matches the behaviour of the animal in terms of relative forward speeds and lateral displacements. Ground reaction forces during walking also resemble those of the animal. Based on our results, we anticipate that future studies on richer motor skills in salamanders will highly benefit from Pleurobot's design. © 2016 The Author(s).
Karakasiliotis, K.; Thandiackal, R.; Melo, K.; Horvat, T.; Mahabadi, N. K.; Tsitkov, S.; Cabelguen, J. M.; Ijspeert, A. J.
2016-01-01
Robots are increasingly used as scientific tools to investigate animal locomotion. However, designing a robot that properly emulates the kinematic and dynamic properties of an animal is difficult because of the complexity of musculoskeletal systems and the limitations of current robotics technology. Here, we propose a design process that combines high-speed cineradiography, optimization, dynamic scaling, three-dimensional printing, high-end servomotors and a tailored dry-suit to construct Pleurobot: a salamander-like robot that closely mimics its biological counterpart, Pleurodeles waltl. Our previous robots helped us test and confirm hypotheses on the interaction between the locomotor neuronal networks of the limbs and the spine to generate basic swimming and walking gaits. With Pleurobot, we demonstrate a design process that will enable studies of richer motor skills in salamanders. In particular, we are interested in how these richer motor skills can be obtained by extending our spinal cord models with the addition of more descending pathways and more detailed limb central pattern generator networks. Pleurobot is a dynamically scaled amphibious salamander robot with a large number of actuated degrees of freedom (DOFs: 27 in total). Because of our design process, the robot can capture most of the animal's DOFs and range of motion, especially at the limbs. We demonstrate the robot's abilities by imposing raw kinematic data, extracted from X-ray videos, to the robot's joints for basic locomotor behaviours in water and on land. The robot closely matches the behaviour of the animal in terms of relative forward speeds and lateral displacements. Ground reaction forces during walking also resemble those of the animal. Based on our results, we anticipate that future studies on richer motor skills in salamanders will highly benefit from Pleurobot's design. PMID:27358276
Belden, Lisa K; Peterman, William E; Smith, Stephen A; Brooks, Lauren R; Benfield, E F; Black, Wesley P; Yang, Zhaomin; Wojdak, Jeremy M
2012-08-01
Metagonimoides oregonensis (Heterophyidae) is a little-known digenetic trematode that uses raccoons and possibly mink as definitive hosts, and stream snails and amphibians as intermediate hosts. Some variation in the life cycle and adult morphology in western and eastern populations has been previously noted. In the southern Appalachians, Pleurocera snails and stream salamanders, e.g., Desmognathus spp., are used as intermediate hosts in the life cycle. We completed a series of studies in this system examining some aspects of larval trematode morphology and first and second intermediate host use. Molecular sequencing of the 28S rDNA of cercariae in our survey placed them clearly within the heterophyid family. However, light and scanning electron microscopy revealed both lateral and dorso-ventral finfolds on the cercariae in our region, whereas original descriptions of M. oregonensis cercariae from the west coast indicate only a dorso-ventral finfold, so further work on the systematics of this group may be warranted. A survey of first intermediate host, Pleurocera proxima, from 7 streams in the region identified only M. oregonensis, virgulate-type cercariae, and cotylomicrocercous-type cercariae in the streams, with M. oregonensis having the highest prevalence, and the only type present that use amphibians as second intermediate hosts. Based on clearing and staining of 6 Desmognathus quadramaculatus salamander larvae, we found that individual salamanders could have over 600 metacercariae, which form between muscle fibers throughout the body. Histological observations suggest that the metacercariae do not cause excessive tissue damage or inflammation, and likely persist through metamorphosis, thereby transmitting potentially large numbers of worms to definitive host raccoons foraging along streams.
Fitzpatrick, Benjamin M; Johnson, Jarrett R; Kump, D Kevin; Shaffer, H Bradley; Smith, Jeramiah J; Voss, S Randal
2009-01-01
Background Hybrid zones represent valuable opportunities to observe evolution in systems that are unusually dynamic and where the potential for the origin of novelty and rapid adaptation co-occur with the potential for dysfunction. Recently initiated hybrid zones are particularly exciting evolutionary experiments because ongoing natural selection on novel genetic combinations can be studied in ecological time. Moreover, when hybrid zones involve native and introduced species, complex genetic patterns present important challenges for conservation policy. To assess variation of admixture dynamics, we scored a large panel of markers in five wild hybrid populations formed when Barred Tiger Salamanders were introduced into the range of California Tiger Salamanders. Results At three of 64 markers, introduced alleles have largely displaced native alleles within the hybrid populations. Another marker (GNAT1) showed consistent heterozygote deficits in the wild, and this marker was associated with embryonic mortality in laboratory F2's. Other deviations from equilibrium expectations were idiosyncratic among breeding ponds, consistent with highly stochastic demographic effects. Conclusion While most markers retain native and introduced alleles in expected proportions, strong selection appears to be eliminating native alleles at a smaller set of loci. Such rapid fixation of alleles is detectable only in recently formed hybrid zones, though it might be representative of dynamics that frequently occur in nature. These results underscore the variable and mosaic nature of hybrid genomes and illustrate the potency of recombination and selection in promoting variable, and often unpredictable genetic outcomes. Introgression of a few, strongly selected introduced alleles should not necessarily affect the conservation status of California Tiger Salamanders, but suggests that genetically pure populations of this endangered species will be difficult to maintain. PMID:19630983
Bayesian generalized linear mixed modeling of Tuberculosis using informative priors
Woldegerima, Woldegebriel Assefa
2017-01-01
TB is rated as one of the world’s deadliest diseases and South Africa ranks 9th out of the 22 countries with hardest hit of TB. Although many pieces of research have been carried out on this subject, this paper steps further by inculcating past knowledge into the model, using Bayesian approach with informative prior. Bayesian statistics approach is getting popular in data analyses. But, most applications of Bayesian inference technique are limited to situations of non-informative prior, where there is no solid external information about the distribution of the parameter of interest. The main aim of this study is to profile people living with TB in South Africa. In this paper, identical regression models are fitted for classical and Bayesian approach both with non-informative and informative prior, using South Africa General Household Survey (GHS) data for the year 2014. For the Bayesian model with informative prior, South Africa General Household Survey dataset for the year 2011 to 2013 are used to set up priors for the model 2014. PMID:28257437
A new species of Bolitoglossa (Amphibia, Caudata) from the Sierra de Juárez, Oaxaca, Mexico
Rovito, Sean M.; Parra-Olea, Gabriela; Lee, Dana; Wake, David B.
2012-01-01
Abstract We describe a new species of Bolitoglossa (Nanotriton) from the Sierra de Juárez and Sierra Mixe of Oaxaca, Mexico. Bolitoglossa chinanteca sp. n. is distinguished from the three other species in the subgenus Nanotriton by its more robust body, by having substantial numbers of maxillary teeth and differences in relative head width, foot width, and limb length. The new species occurs in sympatry with Bolitoglossa (Nanotriton) rufescens at the type locality. The description of another species of salamander from the Sierra de Juárez is noteworthy, given the already high plethodontid salamander species richness of the region. PMID:22577313
Woodcock, M Ryan; Vaughn-Wolfe, Jennifer; Elias, Alexandra; Kump, D Kevin; Kendall, Katharina Denise; Timoshevskaya, Nataliya; Timoshevskiy, Vladimir; Perry, Dustin W; Smith, Jeramiah J; Spiewak, Jessica E; Parichy, David M; Voss, S Randal
2017-01-31
The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning-candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyr a ) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyr a has a 142 bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyr a significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl.
Early gene expression during natural spinal cord regeneration in the salamander Ambystoma mexicanum.
Monaghan, James R; Walker, John A; Page, Robert B; Putta, Srikrishna; Beachy, Christopher K; Voss, S Randal
2007-04-01
In contrast to mammals, salamanders have a remarkable ability to regenerate their spinal cord and recover full movement and function after tail amputation. To identify genes that may be associated with this greater regenerative ability, we designed an oligonucleotide microarray and profiled early gene expression during natural spinal cord regeneration in Ambystoma mexicanum. We sampled tissue at five early time points after tail amputation and identified genes that registered significant changes in mRNA abundance during the first 7 days of regeneration. A list of 1036 statistically significant genes was identified. Additional statistical and fold change criteria were applied to identify a smaller list of 360 genes that were used to describe predominant expression patterns and gene functions. Our results show that a diverse injury response is activated in concert with extracellular matrix remodeling mechanisms during the early acute phase of natural spinal cord regeneration. We also report gene expression similarities and differences between our study and studies that have profiled gene expression after spinal cord injury in rat. Our study illustrates the utility of a salamander model for identifying genes and gene functions that may enhance regenerative ability in mammals.
Atwood, Trisha; Richardson, John S.
2012-01-01
Two native, stream-associated amphibians are found in coastal streams of the west coast of North America, the tailed frog and the coastal giant salamander, and each interacts with stream insects in contrasting ways. For tailed frogs, their tadpoles are the primary life stage found in steep streams and they consume biofilm from rock surfaces, which can have trophic and non-trophic effects on stream insects. By virtue of their size the tadpoles are relatively insensitive to stream insect larvae, and tadpoles are capable of depleting biofilm levels directly (exploitative competition), and may also “bulldoze” insect larvae from the surfaces of stones (interference competition). Coastal giant salamander larvae, and sometimes adults, are found in small streams where they prey primarily on stream insects, as well as other small prey. This predator-prey interaction with stream insects does not appear to result in differences in the stream invertebrate community between streams with and without salamander larvae. These two examples illustrate the potential for trophic and non-trophic interactions between stream-associated amphibians and stream insects, and also highlights the need for further research in these systems. PMID:26466536
Predation risk suppresses the positive feedback between size structure and cannibalism.
Kishida, Osamu; Trussell, Geoffrey C; Ohno, Ayaka; Kuwano, Shinya; Ikawa, Takuya; Nishimura, Kinya
2011-11-01
1. Cannibalism can play a prominent role in the structuring and dynamics of ecological communities. Previous studies have emphasized the importance of size structure and density of cannibalistic species in shaping short- and long-term cannibalism dynamics, but our understanding of how predators influence cannibalism dynamics is limited. This is despite widespread evidence that many prey species exhibit behavioural and morphological adaptations in response to predation risk. 2. This study examined how the presence and absence of predation risk from larval dragonflies Aeshna nigroflava affected cannibalism dynamics in its prey larval salamanders Hynobius retardatus. 3. We found that feedback dynamics between size structure and cannibalism depended on whether dragonfly predation risk was present. In the absence of dragonfly risk cues, a positive feedback between salamander size structure and cannibalism through time occurred because most of the replicates in this treatment contained at least one salamander larvae having an enlarged gape (i.e. cannibal). In contrast, this feedback and the emergence of cannibalism were rarely observed in the presence of the dragonfly risk cues. Once salamander size divergence occurred, experimental reversals of the presence or absence of dragonfly risk cues did not alter existing cannibalism dynamics as the experiment progressed. Thus, the effects of risk on the mechanisms driving cannibalism dynamics likely operated during the early developmental period of the salamander larvae. 4. The effects of dragonfly predation risk on behavioural aspects of cannibalistic interactions among hatchlings may prohibit the initiation of dynamics between size structure and cannibalism. Our predation trials clearly showed that encounter rates among hatchlings and biting and ingestion rates of prospective prey by prospective cannibals were significantly lower in the presence vs. absence of dragonfly predation risk even though the size asymmetry between cannibals and victims was similar in both risk treatments. These results suggest that dragonfly risk cues first suppress cannibalism among hatchlings and then prevent size variation from increasing through time. 5. We suggest that the positive feedback dynamics between size structure and cannibalism and their modification by predation risk may also operate in other systems to shape the population dynamics of cannibalistic prey species as well as overall community dynamics. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Xiaoqian Sun; Zhuoqiong He; John Kabrick
2008-01-01
This paper presents a Bayesian spatial method for analysing the site index data from the Missouri Ozark Forest Ecosystem Project (MOFEP). Based on ecological background and availability, we select three variables, the aspect class, the soil depth and the land type association as covariates for analysis. To allow great flexibility of the smoothness of the random field,...
Dahabreh, Issa J; Trikalinos, Thomas A; Lau, Joseph; Schmid, Christopher H
2017-03-01
To compare statistical methods for meta-analysis of sensitivity and specificity of medical tests (e.g., diagnostic or screening tests). We constructed a database of PubMed-indexed meta-analyses of test performance from which 2 × 2 tables for each included study could be extracted. We reanalyzed the data using univariate and bivariate random effects models fit with inverse variance and maximum likelihood methods. Analyses were performed using both normal and binomial likelihoods to describe within-study variability. The bivariate model using the binomial likelihood was also fit using a fully Bayesian approach. We use two worked examples-thoracic computerized tomography to detect aortic injury and rapid prescreening of Papanicolaou smears to detect cytological abnormalities-to highlight that different meta-analysis approaches can produce different results. We also present results from reanalysis of 308 meta-analyses of sensitivity and specificity. Models using the normal approximation produced sensitivity and specificity estimates closer to 50% and smaller standard errors compared to models using the binomial likelihood; absolute differences of 5% or greater were observed in 12% and 5% of meta-analyses for sensitivity and specificity, respectively. Results from univariate and bivariate random effects models were similar, regardless of estimation method. Maximum likelihood and Bayesian methods produced almost identical summary estimates under the bivariate model; however, Bayesian analyses indicated greater uncertainty around those estimates. Bivariate models produced imprecise estimates of the between-study correlation of sensitivity and specificity. Differences between methods were larger with increasing proportion of studies that were small or required a continuity correction. The binomial likelihood should be used to model within-study variability. Univariate and bivariate models give similar estimates of the marginal distributions for sensitivity and specificity. Bayesian methods fully quantify uncertainty and their ability to incorporate external evidence may be useful for imprecisely estimated parameters. Copyright © 2017 Elsevier Inc. All rights reserved.
Siwek, M; Finocchiaro, R; Curik, I; Portolano, B
2011-02-01
Genetic structure and relationship amongst the main goat populations in Sicily (Girgentana, Derivata di Siria, Maltese and Messinese) were analysed using information from 19 microsatellite markers genotyped on 173 individuals. A posterior Bayesian approach implemented in the program STRUCTURE revealed a hierarchical structure with two clusters at the first level (Girgentana vs. Messinese, Derivata di Siria and Maltese), explaining 4.8% of variation (amovaФ(ST) estimate). Seven clusters nested within these first two clusters (further differentiations of Girgentana, Derivata di Siria and Maltese), explaining 8.5% of variation (amovaФ(SC) estimate). The analyses and methods applied in this study indicate their power to detect subtle population structure. © 2010 The Authors, Animal Genetics © 2010 Stichting International Foundation for Animal Genetics.
The utility of Bayesian predictive probabilities for interim monitoring of clinical trials
Connor, Jason T.; Ayers, Gregory D; Alvarez, JoAnn
2014-01-01
Background Bayesian predictive probabilities can be used for interim monitoring of clinical trials to estimate the probability of observing a statistically significant treatment effect if the trial were to continue to its predefined maximum sample size. Purpose We explore settings in which Bayesian predictive probabilities are advantageous for interim monitoring compared to Bayesian posterior probabilities, p-values, conditional power, or group sequential methods. Results For interim analyses that address prediction hypotheses, such as futility monitoring and efficacy monitoring with lagged outcomes, only predictive probabilities properly account for the amount of data remaining to be observed in a clinical trial and have the flexibility to incorporate additional information via auxiliary variables. Limitations Computational burdens limit the feasibility of predictive probabilities in many clinical trial settings. The specification of prior distributions brings additional challenges for regulatory approval. Conclusions The use of Bayesian predictive probabilities enables the choice of logical interim stopping rules that closely align with the clinical decision making process. PMID:24872363
Bayesian inference of a historical bottleneck in a heavily exploited marine mammal.
Hoffman, J I; Grant, S M; Forcada, J; Phillips, C D
2011-10-01
Emerging Bayesian analytical approaches offer increasingly sophisticated means of reconstructing historical population dynamics from genetic data, but have been little applied to scenarios involving demographic bottlenecks. Consequently, we analysed a large mitochondrial and microsatellite dataset from the Antarctic fur seal Arctocephalus gazella, a species subjected to one of the most extreme examples of uncontrolled exploitation in history when it was reduced to the brink of extinction by the sealing industry during the late eighteenth and nineteenth centuries. Classical bottleneck tests, which exploit the fact that rare alleles are rapidly lost during demographic reduction, yielded ambiguous results. In contrast, a strong signal of recent demographic decline was detected using both Bayesian skyline plots and Approximate Bayesian Computation, the latter also allowing derivation of posterior parameter estimates that were remarkably consistent with historical observations. This was achieved using only contemporary samples, further emphasizing the potential of Bayesian approaches to address important problems in conservation and evolutionary biology. © 2011 Blackwell Publishing Ltd.
Phylogeny of sipunculan worms: A combined analysis of four gene regions and morphology.
Schulze, Anja; Cutler, Edward B; Giribet, Gonzalo
2007-01-01
The intra-phyletic relationships of sipunculan worms were analyzed based on DNA sequence data from four gene regions and 58 morphological characters. Initially we analyzed the data under direct optimization using parsimony as optimality criterion. An implied alignment resulting from the direct optimization analysis was subsequently utilized to perform a Bayesian analysis with mixed models for the different data partitions. For this we applied a doublet model for the stem regions of the 18S rRNA. Both analyses support monophyly of Sipuncula and most of the same clades within the phylum. The analyses differ with respect to the relationships among the major groups but whereas the deep nodes in the direct optimization analysis generally show low jackknife support, they are supported by 100% posterior probability in the Bayesian analysis. Direct optimization has been useful for handling sequences of unequal length and generating conservative phylogenetic hypotheses whereas the Bayesian analysis under mixed models provided high resolution in the basal nodes of the tree.
Hippert, Henrique S; Taylor, James W
2010-04-01
Artificial neural networks have frequently been proposed for electricity load forecasting because of their capabilities for the nonlinear modelling of large multivariate data sets. Modelling with neural networks is not an easy task though; two of the main challenges are defining the appropriate level of model complexity, and choosing the input variables. This paper evaluates techniques for automatic neural network modelling within a Bayesian framework, as applied to six samples containing daily load and weather data for four different countries. We analyse input selection as carried out by the Bayesian 'automatic relevance determination', and the usefulness of the Bayesian 'evidence' for the selection of the best structure (in terms of number of neurones), as compared to methods based on cross-validation. Copyright 2009 Elsevier Ltd. All rights reserved.
Estimating the Effective Sample Size of Tree Topologies from Bayesian Phylogenetic Analyses
Lanfear, Robert; Hua, Xia; Warren, Dan L.
2016-01-01
Bayesian phylogenetic analyses estimate posterior distributions of phylogenetic tree topologies and other parameters using Markov chain Monte Carlo (MCMC) methods. Before making inferences from these distributions, it is important to assess their adequacy. To this end, the effective sample size (ESS) estimates how many truly independent samples of a given parameter the output of the MCMC represents. The ESS of a parameter is frequently much lower than the number of samples taken from the MCMC because sequential samples from the chain can be non-independent due to autocorrelation. Typically, phylogeneticists use a rule of thumb that the ESS of all parameters should be greater than 200. However, we have no method to calculate an ESS of tree topology samples, despite the fact that the tree topology is often the parameter of primary interest and is almost always central to the estimation of other parameters. That is, we lack a method to determine whether we have adequately sampled one of the most important parameters in our analyses. In this study, we address this problem by developing methods to estimate the ESS for tree topologies. We combine these methods with two new diagnostic plots for assessing posterior samples of tree topologies, and compare their performance on simulated and empirical data sets. Combined, the methods we present provide new ways to assess the mixing and convergence of phylogenetic tree topologies in Bayesian MCMC analyses. PMID:27435794
Dembo, Mana; Radovčić, Davorka; Garvin, Heather M; Laird, Myra F; Schroeder, Lauren; Scott, Jill E; Brophy, Juliet; Ackermann, Rebecca R; Musiba, Chares M; de Ruiter, Darryl J; Mooers, Arne Ø; Collard, Mark
2016-08-01
Homo naledi is a recently discovered species of fossil hominin from South Africa. A considerable amount is already known about H. naledi but some important questions remain unanswered. Here we report a study that addressed two of them: "Where does H. naledi fit in the hominin evolutionary tree?" and "How old is it?" We used a large supermatrix of craniodental characters for both early and late hominin species and Bayesian phylogenetic techniques to carry out three analyses. First, we performed a dated Bayesian analysis to generate estimates of the evolutionary relationships of fossil hominins including H. naledi. Then we employed Bayes factor tests to compare the strength of support for hypotheses about the relationships of H. naledi suggested by the best-estimate trees. Lastly, we carried out a resampling analysis to assess the accuracy of the age estimate for H. naledi yielded by the dated Bayesian analysis. The analyses strongly supported the hypothesis that H. naledi forms a clade with the other Homo species and Australopithecus sediba. The analyses were more ambiguous regarding the position of H. naledi within the (Homo, Au. sediba) clade. A number of hypotheses were rejected, but several others were not. Based on the available craniodental data, Homo antecessor, Asian Homo erectus, Homo habilis, Homo floresiensis, Homo sapiens, and Au. sediba could all be the sister taxon of H. naledi. According to the dated Bayesian analysis, the most likely age for H. naledi is 912 ka. This age estimate was supported by the resampling analysis. Our findings have a number of implications. Most notably, they support the assignment of the new specimens to Homo, cast doubt on the claim that H. naledi is simply a variant of H. erectus, and suggest H. naledi is younger than has been previously proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lee, Jangwoo; Aguilar, Cristian; Gardiner, David
2013-01-01
The adult salamander has been studied as a model for regeneration of complex tissues for many decades. Only recently with the development of gain-of-function assays for regeneration, has it been possible to screen for and assay the function of the multitude of signaling factors that have been identified in studies of embryonic development and tumorigenesis. Given the conservation of function of these regulatory pathways controlling growth and pattern formation, it is now possible to use the functional assays in the salamander to test the ability of endogenous as well as small-molecule signaling factors to induce a regenerative response.
A bayesian approach to classification criteria for spectacled eiders
Taylor, B.L.; Wade, P.R.; Stehn, R.A.; Cochrane, J.F.
1996-01-01
To facilitate decisions to classify species according to risk of extinction, we used Bayesian methods to analyze trend data for the Spectacled Eider, an arctic sea duck. Trend data from three independent surveys of the Yukon-Kuskokwim Delta were analyzed individually and in combination to yield posterior distributions for population growth rates. We used classification criteria developed by the recovery team for Spectacled Eiders that seek to equalize errors of under- or overprotecting the species. We conducted both a Bayesian decision analysis and a frequentist (classical statistical inference) decision analysis. Bayesian decision analyses are computationally easier, yield basically the same results, and yield results that are easier to explain to nonscientists. With the exception of the aerial survey analysis of the 10 most recent years, both Bayesian and frequentist methods indicated that an endangered classification is warranted. The discrepancy between surveys warrants further research. Although the trend data are abundance indices, we used a preliminary estimate of absolute abundance to demonstrate how to calculate extinction distributions using the joint probability distributions for population growth rate and variance in growth rate generated by the Bayesian analysis. Recent apparent increases in abundance highlight the need for models that apply to declining and then recovering species.
Sensitivity of two salamander (Ambystoma) species to ultraviolet radiation
Calfee, R.D.; Bridges, C.M.; Little, E.E.
2006-01-01
Increased ultraviolet-B (UV-B) radiation reaching the Earth's surface has been implicated in amphibian declines. Recent studies have shown that many amphibian species have differences in sensitivity depending on developmental stage. Embryos and larvae of Ambystoma maculatum (Spotted Salamander) and larvae of Ambystoma talpoideum (Mole Salamander) were exposed to five simulated UV-B treatments in controlled laboratory experiments to determine the relative sensitivity of different lifestages. Hatching success of the embryos exceeded 95% in all treatments; however, the larvae of both species exhibited greater sensitivity to UV-B exposure. Older larvae of A. maculatum that were not exposed to UV-B as embryos were more sensitive than larvae that had hatched during exposure to UV-B. Growth of surviving larvae of A. maculatum was significantly reduced as UV-B intensity increased, whereas growth of A. talpoideum was unaffected. These results were compared to ambient UV-B conditions in natural environments. It appears that the embryo stage is relatively unaffected by UV-B levels observed in natural habitats, probably because of protection from vegetation, organic matter in the water column, oviposition depth, and egg jelly. The larval stage of these species may be at greater risk, particularly if there is an increase in UV-B radiation exposure caused by increases in water clarity and/or decreases in dissolved organic carbon.
Reilly, Stephen M; McElroy, Eric J; Andrew Odum, R; Hornyak, Valerie A
2006-01-01
The lumbering locomotor behaviours of tuataras and salamanders are the best examples of quadrupedal locomotion of early terrestrial vertebrates. We show they use the same walking (out-of-phase) and running (in-phase) patterns of external mechanical energy fluctuations of the centre-of-mass known in fast moving (cursorial) animals. Thus, walking and running centre-of-mass mechanics have been a feature of tetrapods since quadrupedal locomotion emerged over 400 million years ago. When walking, these sprawling animals save external mechanical energy with the same pendular effectiveness observed in cursorial animals. However, unlike cursorial animals (that change footfall patterns and mechanics with speed), tuataras and salamanders use only diagonal couplet gaits and indifferently change from walking to running mechanics with no significant change in total mechanical energy. Thus, the change from walking to running is not related to speed and the advantage of walking versus running is unclear. Furthermore, lumbering mechanics in primitive tetrapods is reflected in having total mechanical energy driven by potential energy (rather than kinetic energy as in cursorial animals) and relative centre-of-mass displacements an order of magnitude greater than cursorial animals. Thus, large vertical displacements associated with lumbering locomotion in primitive tetrapods may preclude their ability to increase speed. PMID:16777753
Larson, Diane L.; McDonald, Susan; Hamilton, Steven J.; Fivizzani, Albert J.; Newton, Wesley E.
1998-01-01
We exposed larval tiger salamanders (Ambystoma tigrinum) reared in the laboratory from eggs collected from a prairie wetland in North Dakota to three concentrations of atrazine (0, 75, and 250 i??g/L) in a static renewal test to determine the pesticide's effect on (1) plasma corticosterone and thyroxine concentrations, (2) larval size, and (3) days-to-stage at stages 2 and 4 of metamorphic climax. We found significant effects of atrazine on each of these response variables. Plasma thyroxine was elevated in both atrazine-exposed groups compared to the control group; plasma corticosterone was depressed in the 75 i??g/L treatment compared with both the control and 250 i??g/L treatment. Larvae exposed to 75 i??g/L atrazine reached stage 4 later, but at a size and weight comparable to the control group. By contrast, larvae in the 250 i??g/L treatment progressed to stage 4 at the same time but at a smaller size and lower weight than larvae in the control group. These results indicate that the herbicide has the potential to influence tiger salamander life history. We present a model consistent with our results, whereby corticosterone and thyroxine interact to regulate metamorphosis of tiger salamanders based on nutrient assimilation and adult fitness
Telocytes in pancreas of the Chinese giant salamander (Andrias davidianus).
Zhang, Hui; Yu, Pengcheng; Zhong, Shengwei; Ge, Tingting; Peng, Shasha; Guo, Xiaoquan; Zhou, Zuohong
2016-11-01
Telocytes (TCs), novel interstitial cells, have been identified in various organs of many mammals. However, information about TCs of lower animals remains rare. Herein, pancreatic TCs of the Chinese giant salamanders (Andrias davidianus) were identified by CD34 immunohistochemistry (IHC) and transmission electron microscopy (TEM). The IHC micrographs revealed CD34 + TCs with long telopodes (Tps) that were located in the interstitium of the pancreas. CD34 + TCs/Tps were frequently observed between exocrine acinar cells and were close to blood vessels. The TEM micrographs also showed the existence of TCs in the interstitium of the pancreas. TCs had distinctive ultrastructural features, such as one to three very long and thin Tps with podoms and podomers, caveolae, dichotomous branching, neighbouring exosomes and vesicles. The Tps and exosomes were found in close proximity to exocrine acinar cells and α cells. It is suggested that TCs may play a role in the regeneration of acinar cells and α cells. In conclusion, our results demonstrated the presence of TCs in the pancreas of the Chinese giant salamander. This finding will assist us in a better understanding of TCs functions in the amphibian pancreas. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra.
Buckley, David; Alcobendas, Marina; García-París, Mario; Wake, Marvalee H
2007-01-01
The way in which novelties that lead to macroevolutionary events originate is a major question in evolutionary biology, and one that can be addressed using the fire salamander (Salamandra salamandra) as a model system. It is exceptional among amphibians in displaying intraspecific diversity of reproductive strategies. In S. salamandra, two distinct modes of reproduction co-occur: the common mode, ovoviviparity (females giving birth to many small larvae), and a phylogenetically derived reproductive strategy, viviparity (females producing only a few large, fully metamorphosed juveniles, which are nourished maternally). We examine the relationship between heterochronic modifications of the ontogeny and the evolution of the new reproductive mode in the fire salamander. The in vitro development of embryos of ovoviviparous and viviparous salamanders from fertilization to metamorphosis is compared, highlighting the key events that distinguish the two modes of reproduction. We identify the heterochronic events that, together with the intrauterine cannibalistic behavior, characterize the derived viviparous reproductive strategy. The ways in which evolutionary novelties can arise by modification of developmental programs can be studied in S. salamandra. Moreover, the variation in reproductive modes and the associated variation of sequences of development occur in neighboring, conspecific populations. Thus, S. salamandra is a unique biological system in which evolutionary developmental research questions can be addressed at the level of populations.
Factors influencing detection of eDNA from a stream-dwelling amphibian
Pilliod, David S.; Goldberg, Caren S.; Arkle, Robert S.; Waits, Lisette P.
2013-01-01
Environmental DNA (eDNA) methods for detecting and estimating abundance of aquatic species are emerging rapidly, but little is known about how processes such as secretion rate, environmental degradation, and time since colonization or extirpation from a given site affect eDNA measurements. Using stream-dwelling salamanders and quantitative PCR (qPCR) analysis, we conducted three experiments to assess eDNA: (i) production rate; (ii) persistence time under different temperature and light conditions; and (iii) detectability and concentration through time following experimental introduction and removal of salamanders into previously unoccupied streams. We found that 44–50 g individuals held in aquaria produced 77 ng eDNA/h for 2 h, after which production either slowed considerably or began to equilibrate with degradation. eDNA in both full-sun and shaded treatments degraded exponentially to 2) and when samples were collected within 5 m of the animals. Concentrations of eDNA detected were very low and increased steadily from 6–24 h after introduction, reaching 0.0022 ng/L. Within 1 h of removing salamanders from the stream, eDNA was no longer detectable. These results suggest that eDNA detectability and concentration depend on production rates of individuals, environmental conditions, density of animals, and their residence time.
Budzik, Karolina A; Żuwała, Krystyna; Kerney, Ryan
2016-07-01
The latest research on direct developing caecilian and anuran species indicate presence of only one generation of taste organs during their ontogeny. This is distinct from indirect developing batrachians studied thus far, which possess taste buds in larvae and anatomically distinct taste discs in metamorphs. This study is a description of the tongue and taste organ morphology and development in direct developing salamander Plethodon cinereus (Plethodontidae) using histology and electron microscopy techniques. The results reveal two distinct stages tongue morphology (primary and secondary), similar to metamorphic urodeles, although only one stage of taste organ morphology. Taste disc sensory zones emerge on the surface of the oropharyngeal epithelium by the end of embryonic development, which coincides with maturation of the soft tongue. Taste organs occur in the epithelium of the tongue pad (where they are situated on the dermal papillae), the palate and the inner surface of the mandible and the maxilla. Plethodon cinereus embryos only possess taste disc type taste organs. Similar to the direct developing anuran Eleutherodactylus coqui (Eleutherodactylidae), these salamanders do not recapitulate larval taste bud morphology as an embryo. The lack of taste bud formation is probably a broadly distributed feature characteristic to direct developing batrachians. J. Morphol. 277:906-915, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Hime, Paul M; Hotaling, Scott; Grewelle, Richard E; O'Neill, Eric M; Voss, S Randal; Shaffer, H Bradley; Weisrock, David W
2016-12-01
Perhaps the most important recent advance in species delimitation has been the development of model-based approaches to objectively diagnose species diversity from genetic data. Additionally, the growing accessibility of next-generation sequence data sets provides powerful insights into genome-wide patterns of divergence during speciation. However, applying complex models to large data sets is time-consuming and computationally costly, requiring careful consideration of the influence of both individual and population sampling, as well as the number and informativeness of loci on species delimitation conclusions. Here, we investigated how locus number and information content affect species delimitation results for an endangered Mexican salamander species, Ambystoma ordinarium. We compared results for an eight-locus, 137-individual data set and an 89-locus, seven-individual data set. For both data sets, we used species discovery methods to define delimitation models and species validation methods to rigorously test these hypotheses. We also used integrated demographic model selection tools to choose among delimitation models, while accounting for gene flow. Our results indicate that while cryptic lineages may be delimited with relatively few loci, sampling larger numbers of loci may be required to ensure that enough informative loci are available to accurately identify and validate shallow-scale divergences. These analyses highlight the importance of striking a balance between dense sampling of loci and individuals, particularly in shallowly diverged lineages. They also suggest the presence of a currently unrecognized, endangered species in the western part of A. ordinarium's range. © 2016 John Wiley & Sons Ltd.
Phylogenetic Analyses: A Toolbox Expanding towards Bayesian Methods
Aris-Brosou, Stéphane; Xia, Xuhua
2008-01-01
The reconstruction of phylogenies is becoming an increasingly simple activity. This is mainly due to two reasons: the democratization of computing power and the increased availability of sophisticated yet user-friendly software. This review describes some of the latest additions to the phylogenetic toolbox, along with some of their theoretical and practical limitations. It is shown that Bayesian methods are under heavy development, as they offer the possibility to solve a number of long-standing issues and to integrate several steps of the phylogenetic analyses into a single framework. Specific topics include not only phylogenetic reconstruction, but also the comparison of phylogenies, the detection of adaptive evolution, and the estimation of divergence times between species. PMID:18483574
Luta, George; Ford, Melissa B; Bondy, Melissa; Shields, Peter G; Stamey, James D
2013-04-01
Recent research suggests that the Bayesian paradigm may be useful for modeling biases in epidemiological studies, such as those due to misclassification and missing data. We used Bayesian methods to perform sensitivity analyses for assessing the robustness of study findings to the potential effect of these two important sources of bias. We used data from a study of the joint associations of radiotherapy and smoking with primary lung cancer among breast cancer survivors. We used Bayesian methods to provide an operational way to combine both validation data and expert opinion to account for misclassification of the two risk factors and missing data. For comparative purposes we considered a "full model" that allowed for both misclassification and missing data, along with alternative models that considered only misclassification or missing data, and the naïve model that ignored both sources of bias. We identified noticeable differences between the four models with respect to the posterior distributions of the odds ratios that described the joint associations of radiotherapy and smoking with primary lung cancer. Despite those differences we found that the general conclusions regarding the pattern of associations were the same regardless of the model used. Overall our results indicate a nonsignificantly decreased lung cancer risk due to radiotherapy among nonsmokers, and a mildly increased risk among smokers. We described easy to implement Bayesian methods to perform sensitivity analyses for assessing the robustness of study findings to misclassification and missing data. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Bayesian hierarchical diffusion model decomposition of performance in Approach–Avoidance Tasks
Krypotos, Angelos-Miltiadis; Beckers, Tom; Kindt, Merel; Wagenmakers, Eric-Jan
2015-01-01
Common methods for analysing response time (RT) tasks, frequently used across different disciplines of psychology, suffer from a number of limitations such as the failure to directly measure the underlying latent processes of interest and the inability to take into account the uncertainty associated with each individual's point estimate of performance. Here, we discuss a Bayesian hierarchical diffusion model and apply it to RT data. This model allows researchers to decompose performance into meaningful psychological processes and to account optimally for individual differences and commonalities, even with relatively sparse data. We highlight the advantages of the Bayesian hierarchical diffusion model decomposition by applying it to performance on Approach–Avoidance Tasks, widely used in the emotion and psychopathology literature. Model fits for two experimental data-sets demonstrate that the model performs well. The Bayesian hierarchical diffusion model overcomes important limitations of current analysis procedures and provides deeper insight in latent psychological processes of interest. PMID:25491372
Levis, Nicholas A; Johnson, Jarrett R
2015-07-01
Glyphosate-based herbicides are the number one pesticide in the United States and are used commonly around the world. Understanding the affects of glyphosate-based herbicides on non-target wildlife, for example amphibians, is critical for evaluation of regulations pertaining to the use of such herbicides. Additionally, it is important to understand how variation in biotic and abiotic environmental conditions, such as UV-B light regime, could potentially affect how glyphosate-based herbicides interact with non-target species. This study used artificial pond mesocosms to identify the effects of generic glyphosate-based herbicide (GLY-4 Plus) on mortality, cellular immune response, body size, and morphological plasticity of larvae of the spotted salamander (Ambystoma maculatum) under conditions that reflect moderate (UV(M)) and low (UV(L)) UV-B light regimes. Survival within a given UV-B level was unaffected by herbicide presence or absence. However, when herbicide was present, survival varied between UV-B levels with higher survival in UV(M) conditions. Herbicide presence in the UV(M) treatments also decreased body size and reduced cellular immune response. In the UV(L) treatments, the presence of herbicide increased body size and affected tail morphology. Finally, in the absence of herbicide, body size and cellular immune response were higher in UV(M) treatments compared to UV(L) treatments. Thus, the effects of herbicide on salamander fitness were dependent on UV-B level. As anthropogenic habitat modifications continue to alter landscapes that contain amphibian breeding ponds, salamanders may increasingly find themselves in locations with reduced canopy cover and increased levels of UV light. Our findings suggest that the probability of surviving exposure to the glyphosate-based herbicide used in this study may be elevated in more open canopy ponds, but the effects on other components of fitness may be varied and unexpected.
Ellison, Aaron M.; Jackson, Scott
2015-01-01
Herpetologists and conservation biologists frequently use convenient and cost-effective, but less accurate, abundance indices (e.g., number of individuals collected under artificial cover boards or during natural objects surveys) in lieu of more accurate, but costly and destructive, population size estimators to detect and monitor size, state, and trends of amphibian populations. Although there are advantages and disadvantages to each approach, reliable use of abundance indices requires that they be calibrated with accurate population estimators. Such calibrations, however, are rare. The red back salamander, Plethodon cinereus, is an ecologically useful indicator species of forest dynamics, and accurate calibration of indices of salamander abundance could increase the reliability of abundance indices used in monitoring programs. We calibrated abundance indices derived from surveys of P. cinereus under artificial cover boards or natural objects with a more accurate estimator of their population size in a New England forest. Average densities/m2 and capture probabilities of P. cinereus under natural objects or cover boards in independent, replicate sites at the Harvard Forest (Petersham, Massachusetts, USA) were similar in stands dominated by Tsuga canadensis (eastern hemlock) and deciduous hardwood species (predominantly Quercus rubra [red oak] and Acer rubrum [red maple]). The abundance index based on salamanders surveyed under natural objects was significantly associated with density estimates of P. cinereus derived from depletion (removal) surveys, but underestimated true density by 50%. In contrast, the abundance index based on cover-board surveys overestimated true density by a factor of 8 and the association between the cover-board index and the density estimates was not statistically significant. We conclude that when calibrated and used appropriately, some abundance indices may provide cost-effective and reliable measures of P. cinereus abundance that could be used in conservation assessments and long-term monitoring at Harvard Forest and other northeastern USA forests. PMID:26020008
Milanovich, Joseph R; Peterman, William E; Nibbelink, Nathan P; Maerz, John C
2010-08-16
Significant shifts in climate are considered a threat to plants and animals with significant physiological limitations and limited dispersal abilities. The southern Appalachian Mountains are a global hotspot for plethodontid salamander diversity. Plethodontids are lungless ectotherms, so their ecology is strongly governed by temperature and precipitation. Many plethodontid species in southern Appalachia exist in high elevation habitats that may be at or near their thermal maxima, and may also have limited dispersal abilities across warmer valley bottoms. We used a maximum-entropy approach (program Maxent) to model the suitable climatic habitat of 41 plethodontid salamander species inhabiting the Appalachian Highlands region (33 individual species and eight species included within two species complexes). We evaluated the relative change in suitable climatic habitat for these species in the Appalachian Highlands from the current climate to the years 2020, 2050, and 2080, using both the HADCM3 and the CGCM3 models, each under low and high CO(2) scenarios, and using two-model thresholds levels (relative suitability thresholds for determining suitable/unsuitable range), for a total of 8 scenarios per species. While models differed slightly, every scenario projected significant declines in suitable habitat within the Appalachian Highlands as early as 2020. Species with more southern ranges and with smaller ranges had larger projected habitat loss. Despite significant differences in projected precipitation changes to the region, projections did not differ significantly between global circulation models. CO(2) emissions scenario and model threshold had small effects on projected habitat loss by 2020, but did not affect longer-term projections. Results of this study indicate that choice of model threshold and CO(2) emissions scenario affect short-term projected shifts in climatic distributions of species; however, these factors and choice of global circulation model have relatively small affects on what is significant projected loss of habitat for many salamander species that currently occupy the Appalachian Highlands.
Bayesian B-spline mapping for dynamic quantitative traits.
Xing, Jun; Li, Jiahan; Yang, Runqing; Zhou, Xiaojing; Xu, Shizhong
2012-04-01
Owing to their ability and flexibility to describe individual gene expression at different time points, random regression (RR) analyses have become a popular procedure for the genetic analysis of dynamic traits whose phenotypes are collected over time. Specifically, when modelling the dynamic patterns of gene expressions in the RR framework, B-splines have been proved successful as an alternative to orthogonal polynomials. In the so-called Bayesian B-spline quantitative trait locus (QTL) mapping, B-splines are used to characterize the patterns of QTL effects and individual-specific time-dependent environmental errors over time, and the Bayesian shrinkage estimation method is employed to estimate model parameters. Extensive simulations demonstrate that (1) in terms of statistical power, Bayesian B-spline mapping outperforms the interval mapping based on the maximum likelihood; (2) for the simulated dataset with complicated growth curve simulated by B-splines, Legendre polynomial-based Bayesian mapping is not capable of identifying the designed QTLs accurately, even when higher-order Legendre polynomials are considered and (3) for the simulated dataset using Legendre polynomials, the Bayesian B-spline mapping can find the same QTLs as those identified by Legendre polynomial analysis. All simulation results support the necessity and flexibility of B-spline in Bayesian mapping of dynamic traits. The proposed method is also applied to a real dataset, where QTLs controlling the growth trajectory of stem diameters in Populus are located.
The evolution of locomotor rhythmicity in tetrapods.
Ross, Callum F; Blob, Richard W; Carrier, David R; Daley, Monica A; Deban, Stephen M; Demes, Brigitte; Gripper, Janaya L; Iriarte-Diaz, Jose; Kilbourne, Brandon M; Landberg, Tobias; Polk, John D; Schilling, Nadja; Vanhooydonck, Bieke
2013-04-01
Differences in rhythmicity (relative variance in cycle period) among mammal, fish, and lizard feeding systems have been hypothesized to be associated with differences in their sensorimotor control systems. We tested this hypothesis by examining whether the locomotion of tachymetabolic tetrapods (birds and mammals) is more rhythmic than that of bradymetabolic tetrapods (lizards, alligators, turtles, salamanders). Species averages of intraindividual coefficients of variation in cycle period were compared while controlling for gait and substrate. Variance in locomotor cycle periods is significantly lower in tachymetabolic than in bradymetabolic animals for datasets that include treadmill locomotion, non-treadmill locomotion, or both. When phylogenetic relationships are taken into account the pooled analyses remain significant, whereas the non-treadmill and the treadmill analyses become nonsignificant. The co-occurrence of relatively high rhythmicity in both feeding and locomotor systems of tachymetabolic tetrapods suggests that the anatomical substrate of rhythmicity is in the motor control system, not in the musculoskeletal components. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Evolution and Diversity of Transposable Elements in Vertebrate Genomes.
Sotero-Caio, Cibele G; Platt, Roy N; Suh, Alexander; Ray, David A
2017-01-01
Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4-60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
BEASTling: A software tool for linguistic phylogenetics using BEAST 2
Forkel, Robert; Kaiping, Gereon A.; Atkinson, Quentin D.
2017-01-01
We present a new open source software tool called BEASTling, designed to simplify the preparation of Bayesian phylogenetic analyses of linguistic data using the BEAST 2 platform. BEASTling transforms comparatively short and human-readable configuration files into the XML files used by BEAST to specify analyses. By taking advantage of Creative Commons-licensed data from the Glottolog language catalog, BEASTling allows the user to conveniently filter datasets using names for recognised language families, to impose monophyly constraints so that inferred language trees are backward compatible with Glottolog classifications, or to assign geographic location data to languages for phylogeographic analyses. Support for the emerging cross-linguistic linked data format (CLDF) permits easy incorporation of data published in cross-linguistic linked databases into analyses. BEASTling is intended to make the power of Bayesian analysis more accessible to historical linguists without strong programming backgrounds, in the hopes of encouraging communication and collaboration between those developing computational models of language evolution (who are typically not linguists) and relevant domain experts. PMID:28796784
BEASTling: A software tool for linguistic phylogenetics using BEAST 2.
Maurits, Luke; Forkel, Robert; Kaiping, Gereon A; Atkinson, Quentin D
2017-01-01
We present a new open source software tool called BEASTling, designed to simplify the preparation of Bayesian phylogenetic analyses of linguistic data using the BEAST 2 platform. BEASTling transforms comparatively short and human-readable configuration files into the XML files used by BEAST to specify analyses. By taking advantage of Creative Commons-licensed data from the Glottolog language catalog, BEASTling allows the user to conveniently filter datasets using names for recognised language families, to impose monophyly constraints so that inferred language trees are backward compatible with Glottolog classifications, or to assign geographic location data to languages for phylogeographic analyses. Support for the emerging cross-linguistic linked data format (CLDF) permits easy incorporation of data published in cross-linguistic linked databases into analyses. BEASTling is intended to make the power of Bayesian analysis more accessible to historical linguists without strong programming backgrounds, in the hopes of encouraging communication and collaboration between those developing computational models of language evolution (who are typically not linguists) and relevant domain experts.
Torres-Carvajal, Omar; Schulte, James A; Cadle, John E
2006-04-01
The South American iguanian lizard genus Stenocercus includes 54 species occurring mostly in the Andes and adjacent lowland areas from northern Venezuela and Colombia to central Argentina at elevations of 0-4000m. Small taxon or character sampling has characterized all phylogenetic analyses of Stenocercus, which has long been recognized as sister taxon to the Tropidurus Group. In this study, we use mtDNA sequence data to perform phylogenetic analyses that include 32 species of Stenocercus and 12 outgroup taxa. Monophyly of this genus is strongly supported by maximum parsimony and Bayesian analyses. Evolutionary relationships within Stenocercus are further analyzed with a Bayesian implementation of a general mixture model, which accommodates variability in the pattern of evolution across sites. These analyses indicate a basal split of Stenocercus into two clades, one of which receives very strong statistical support. In addition, we test previous hypotheses using non-parametric and parametric statistical methods, and provide a phylogenetic classification for Stenocercus.
A Bayesian network approach to the database search problem in criminal proceedings
2012-01-01
Background The ‘database search problem’, that is, the strengthening of a case - in terms of probative value - against an individual who is found as a result of a database search, has been approached during the last two decades with substantial mathematical analyses, accompanied by lively debate and centrally opposing conclusions. This represents a challenging obstacle in teaching but also hinders a balanced and coherent discussion of the topic within the wider scientific and legal community. This paper revisits and tracks the associated mathematical analyses in terms of Bayesian networks. Their derivation and discussion for capturing probabilistic arguments that explain the database search problem are outlined in detail. The resulting Bayesian networks offer a distinct view on the main debated issues, along with further clarity. Methods As a general framework for representing and analyzing formal arguments in probabilistic reasoning about uncertain target propositions (that is, whether or not a given individual is the source of a crime stain), this paper relies on graphical probability models, in particular, Bayesian networks. This graphical probability modeling approach is used to capture, within a single model, a series of key variables, such as the number of individuals in a database, the size of the population of potential crime stain sources, and the rarity of the corresponding analytical characteristics in a relevant population. Results This paper demonstrates the feasibility of deriving Bayesian network structures for analyzing, representing, and tracking the database search problem. The output of the proposed models can be shown to agree with existing but exclusively formulaic approaches. Conclusions The proposed Bayesian networks allow one to capture and analyze the currently most well-supported but reputedly counter-intuitive and difficult solution to the database search problem in a way that goes beyond the traditional, purely formulaic expressions. The method’s graphical environment, along with its computational and probabilistic architectures, represents a rich package that offers analysts and discussants with additional modes of interaction, concise representation, and coherent communication. PMID:22849390
Antal, Péter; Kiszel, Petra Sz.; Gézsi, András; Hadadi, Éva; Virág, Viktor; Hajós, Gergely; Millinghoffer, András; Nagy, Adrienne; Kiss, András; Semsei, Ágnes F.; Temesi, Gergely; Melegh, Béla; Kisfali, Péter; Széll, Márta; Bikov, András; Gálffy, Gabriella; Tamási, Lilla; Falus, András; Szalai, Csaba
2012-01-01
Genetic studies indicate high number of potential factors related to asthma. Based on earlier linkage analyses we selected the 11q13 and 14q22 asthma susceptibility regions, for which we designed a partial genome screening study using 145 SNPs in 1201 individuals (436 asthmatic children and 765 controls). The results were evaluated with traditional frequentist methods and we applied a new statistical method, called Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA). This method uses Bayesian network representation to provide detailed characterization of the relevance of factors, such as joint significance, the type of dependency, and multi-target aspects. We estimated posteriors for these relations within the Bayesian statistical framework, in order to estimate the posteriors whether a variable is directly relevant or its association is only mediated. With frequentist methods one SNP (rs3751464 in the FRMD6 gene) provided evidence for an association with asthma (OR = 1.43(1.2–1.8); p = 3×10−4). The possible role of the FRMD6 gene in asthma was also confirmed in an animal model and human asthmatics. In the BN-BMLA analysis altogether 5 SNPs in 4 genes were found relevant in connection with asthma phenotype: PRPF19 on chromosome 11, and FRMD6, PTGER2 and PTGDR on chromosome 14. In a subsequent step a partial dataset containing rhinitis and further clinical parameters was used, which allowed the analysis of relevance of SNPs for asthma and multiple targets. These analyses suggested that SNPs in the AHNAK and MS4A2 genes were indirectly associated with asthma. This paper indicates that BN-BMLA explores the relevant factors more comprehensively than traditional statistical methods and extends the scope of strong relevance based methods to include partial relevance, global characterization of relevance and multi-target relevance. PMID:22432035
Zhu, Xiang; Stephens, Matthew
2017-01-01
Bayesian methods for large-scale multiple regression provide attractive approaches to the analysis of genome-wide association studies (GWAS). For example, they can estimate heritability of complex traits, allowing for both polygenic and sparse models; and by incorporating external genomic data into the priors, they can increase power and yield new biological insights. However, these methods require access to individual genotypes and phenotypes, which are often not easily available. Here we provide a framework for performing these analyses without individual-level data. Specifically, we introduce a “Regression with Summary Statistics” (RSS) likelihood, which relates the multiple regression coefficients to univariate regression results that are often easily available. The RSS likelihood requires estimates of correlations among covariates (SNPs), which also can be obtained from public databases. We perform Bayesian multiple regression analysis by combining the RSS likelihood with previously proposed prior distributions, sampling posteriors by Markov chain Monte Carlo. In a wide range of simulations RSS performs similarly to analyses using the individual data, both for estimating heritability and detecting associations. We apply RSS to a GWAS of human height that contains 253,288 individuals typed at 1.06 million SNPs, for which analyses of individual-level data are practically impossible. Estimates of heritability (52%) are consistent with, but more precise, than previous results using subsets of these data. We also identify many previously unreported loci that show evidence for association with height in our analyses. Software is available at https://github.com/stephenslab/rss. PMID:29399241
Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis
NASA Astrophysics Data System (ADS)
Chernoded, Andrey; Dudko, Lev; Myagkov, Igor; Volkov, Petr
2017-10-01
Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.
A Bayesian Approach to the Overlap Analysis of Epidemiologically Linked Traits.
Asimit, Jennifer L; Panoutsopoulou, Kalliope; Wheeler, Eleanor; Berndt, Sonja I; Cordell, Heather J; Morris, Andrew P; Zeggini, Eleftheria; Barroso, Inês
2015-12-01
Diseases often cooccur in individuals more often than expected by chance, and may be explained by shared underlying genetic etiology. A common approach to genetic overlap analyses is to use summary genome-wide association study data to identify single-nucleotide polymorphisms (SNPs) that are associated with multiple traits at a selected P-value threshold. However, P-values do not account for differences in power, whereas Bayes' factors (BFs) do, and may be approximated using summary statistics. We use simulation studies to compare the power of frequentist and Bayesian approaches with overlap analyses, and to decide on appropriate thresholds for comparison between the two methods. It is empirically illustrated that BFs have the advantage over P-values of a decreasing type I error rate as study size increases for single-disease associations. Consequently, the overlap analysis of traits from different-sized studies encounters issues in fair P-value threshold selection, whereas BFs are adjusted automatically. Extensive simulations show that Bayesian overlap analyses tend to have higher power than those that assess association strength with P-values, particularly in low-power scenarios. Calibration tables between BFs and P-values are provided for a range of sample sizes, as well as an approximation approach for sample sizes that are not in the calibration table. Although P-values are sometimes thought more intuitive, these tables assist in removing the opaqueness of Bayesian thresholds and may also be used in the selection of a BF threshold to meet a certain type I error rate. An application of our methods is used to identify variants associated with both obesity and osteoarthritis. © 2015 The Authors. *Genetic Epidemiology published by Wiley Periodicals, Inc.
A comment on priors for Bayesian occupancy models.
Northrup, Joseph M; Gerber, Brian D
2018-01-01
Understanding patterns of species occurrence and the processes underlying these patterns is fundamental to the study of ecology. One of the more commonly used approaches to investigate species occurrence patterns is occupancy modeling, which can account for imperfect detection of a species during surveys. In recent years, there has been a proliferation of Bayesian modeling in ecology, which includes fitting Bayesian occupancy models. The Bayesian framework is appealing to ecologists for many reasons, including the ability to incorporate prior information through the specification of prior distributions on parameters. While ecologists almost exclusively intend to choose priors so that they are "uninformative" or "vague", such priors can easily be unintentionally highly informative. Here we report on how the specification of a "vague" normally distributed (i.e., Gaussian) prior on coefficients in Bayesian occupancy models can unintentionally influence parameter estimation. Using both simulated data and empirical examples, we illustrate how this issue likely compromises inference about species-habitat relationships. While the extent to which these informative priors influence inference depends on the data set, researchers fitting Bayesian occupancy models should conduct sensitivity analyses to ensure intended inference, or employ less commonly used priors that are less informative (e.g., logistic or t prior distributions). We provide suggestions for addressing this issue in occupancy studies, and an online tool for exploring this issue under different contexts.
Chamberlain, Daniel B; Chamberlain, James M
2017-01-01
We demonstrate the application of a Bayesian approach to a recent negative clinical trial result. A Bayesian analysis of such a trial can provide a more useful interpretation of results and can incorporate previous evidence. This was a secondary analysis of the efficacy and safety results of the Pediatric Seizure Study, a randomized clinical trial of lorazepam versus diazepam for pediatric status epilepticus. We included the published results from the only prospective pediatric study of status in a Bayesian hierarchic model, and we performed sensitivity analyses on the amount of pooling between studies. We evaluated 3 summary analyses for the results: superiority, noninferiority (margin <-10%), and practical equivalence (within ±10%). Consistent with the original study's classic analysis of study results, we did not demonstrate superiority of lorazepam over diazepam. There is a 95% probability that the true efficacy of lorazepam is in the range of 66% to 80%. For both the efficacy and safety outcomes, there was greater than 95% probability that lorazepam is noninferior to diazepam, and there was greater than 90% probability that the 2 medications are practically equivalent. The results were largely driven by the current study because of the sample sizes of our study (n=273) and the previous pediatric study (n=61). Because Bayesian analysis estimates the probability of one or more hypotheses, such an approach can provide more useful information about the meaning of the results of a negative trial outcome. In the case of pediatric status epilepticus, it is highly likely that lorazepam is noninferior and practically equivalent to diazepam. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Bayesian analysis of heterogeneous treatment effects for patient-centered outcomes research.
Henderson, Nicholas C; Louis, Thomas A; Wang, Chenguang; Varadhan, Ravi
2016-01-01
Evaluation of heterogeneity of treatment effect (HTE) is an essential aspect of personalized medicine and patient-centered outcomes research. Our goal in this article is to promote the use of Bayesian methods for subgroup analysis and to lower the barriers to their implementation by describing the ways in which the companion software beanz can facilitate these types of analyses. To advance this goal, we describe several key Bayesian models for investigating HTE and outline the ways in which they are well-suited to address many of the commonly cited challenges in the study of HTE. Topics highlighted include shrinkage estimation, model choice, sensitivity analysis, and posterior predictive checking. A case study is presented in which we demonstrate the use of the methods discussed.
Bayesian analysis of non-homogeneous Markov chains: application to mental health data.
Sung, Minje; Soyer, Refik; Nhan, Nguyen
2007-07-10
In this paper we present a formal treatment of non-homogeneous Markov chains by introducing a hierarchical Bayesian framework. Our work is motivated by the analysis of correlated categorical data which arise in assessment of psychiatric treatment programs. In our development, we introduce a Markovian structure to describe the non-homogeneity of transition patterns. In doing so, we introduce a logistic regression set-up for Markov chains and incorporate covariates in our model. We present a Bayesian model using Markov chain Monte Carlo methods and develop inference procedures to address issues encountered in the analyses of data from psychiatric treatment programs. Our model and inference procedures are implemented to some real data from a psychiatric treatment study. Copyright 2006 John Wiley & Sons, Ltd.
Bayes in biological anthropology.
Konigsberg, Lyle W; Frankenberg, Susan R
2013-12-01
In this article, we both contend and illustrate that biological anthropologists, particularly in the Americas, often think like Bayesians but act like frequentists when it comes to analyzing a wide variety of data. In other words, while our research goals and perspectives are rooted in probabilistic thinking and rest on prior knowledge, we often proceed to use statistical hypothesis tests and confidence interval methods unrelated (or tenuously related) to the research questions of interest. We advocate for applying Bayesian analyses to a number of different bioanthropological questions, especially since many of the programming and computational challenges to doing so have been overcome in the past two decades. To facilitate such applications, this article explains Bayesian principles and concepts, and provides concrete examples of Bayesian computer simulations and statistics that address questions relevant to biological anthropology, focusing particularly on bioarchaeology and forensic anthropology. It also simultaneously reviews the use of Bayesian methods and inference within the discipline to date. This article is intended to act as primer to Bayesian methods and inference in biological anthropology, explaining the relationships of various methods to likelihoods or probabilities and to classical statistical models. Our contention is not that traditional frequentist statistics should be rejected outright, but that there are many situations where biological anthropology is better served by taking a Bayesian approach. To this end it is hoped that the examples provided in this article will assist researchers in choosing from among the broad array of statistical methods currently available. Copyright © 2013 Wiley Periodicals, Inc.
Bayesian Retrieval of Complete Posterior PDFs of Oceanic Rain Rate From Microwave Observations
NASA Technical Reports Server (NTRS)
Chiu, J. Christine; Petty, Grant W.
2005-01-01
This paper presents a new Bayesian algorithm for retrieving surface rain rate from Tropical Rainfall Measurements Mission (TRMM) Microwave Imager (TMI) over the ocean, along with validations against estimates from the TRMM Precipitation Radar (PR). The Bayesian approach offers a rigorous basis for optimally combining multichannel observations with prior knowledge. While other rain rate algorithms have been published that are based at least partly on Bayesian reasoning, this is believed to be the first self-contained algorithm that fully exploits Bayes Theorem to yield not just a single rain rate, but rather a continuous posterior probability distribution of rain rate. To advance our understanding of theoretical benefits of the Bayesian approach, we have conducted sensitivity analyses based on two synthetic datasets for which the true conditional and prior distribution are known. Results demonstrate that even when the prior and conditional likelihoods are specified perfectly, biased retrievals may occur at high rain rates. This bias is not the result of a defect of the Bayesian formalism but rather represents the expected outcome when the physical constraint imposed by the radiometric observations is weak, due to saturation effects. It is also suggested that the choice of the estimators and the prior information are both crucial to the retrieval. In addition, the performance of our Bayesian algorithm is found to be comparable to that of other benchmark algorithms in real-world applications, while having the additional advantage of providing a complete continuous posterior probability distribution of surface rain rate.
Uwano, Ikuko; Sasaki, Makoto; Kudo, Kohsuke; Boutelier, Timothé; Kameda, Hiroyuki; Mori, Futoshi; Yamashita, Fumio
2017-01-10
The Bayesian estimation algorithm improves the precision of bolus tracking perfusion imaging. However, this algorithm cannot directly calculate Tmax, the time scale widely used to identify ischemic penumbra, because Tmax is a non-physiological, artificial index that reflects the tracer arrival delay (TD) and other parameters. We calculated Tmax from the TD and mean transit time (MTT) obtained by the Bayesian algorithm and determined its accuracy in comparison with Tmax obtained by singular value decomposition (SVD) algorithms. The TD and MTT maps were generated by the Bayesian algorithm applied to digital phantoms with time-concentration curves that reflected a range of values for various perfusion metrics using a global arterial input function. Tmax was calculated from the TD and MTT using constants obtained by a linear least-squares fit to Tmax obtained from the two SVD algorithms that showed the best benchmarks in a previous study. Correlations between the Tmax values obtained by the Bayesian and SVD methods were examined. The Bayesian algorithm yielded accurate TD and MTT values relative to the true values of the digital phantom. Tmax calculated from the TD and MTT values with the least-squares fit constants showed excellent correlation (Pearson's correlation coefficient = 0.99) and agreement (intraclass correlation coefficient = 0.99) with Tmax obtained from SVD algorithms. Quantitative analyses of Tmax values calculated from Bayesian-estimation algorithm-derived TD and MTT from a digital phantom correlated and agreed well with Tmax values determined using SVD algorithms.
Ballistic tongue projection in a miniaturized salamander.
Deban, Stephen M; Bloom, Segall V
2018-05-20
Miniaturization of body size is often accompanied by peculiarities in morphology that can have functional consequences. We examined the feeding behavior and morphology of the miniaturized plethodontid salamander Thorius, one of the smallest vertebrates, to determine if its performance and biomechanics differ from those of its larger relatives. High-speed imaging and dynamics analysis of feeding at a range of temperatures show that tongue projection in Thorius macdougalli is ballistic and achieves accelerations of up to 600 G with low thermal sensitivity, indicating that tongue projection is powered by an elastic-recoil mechanism. Preceding ballistic projection is an unusual preparatory phase of tongue protrusion, which, like tongue retraction, shows lower performance and higher thermal sensitivity that are indicative of movement being powered directly by muscle shortening. The variability of tongue-projection kinematics and dynamics is comparable to larger ballistic-tongued plethodontids and reveals that Thorius is capable of modulating its tongue movements in response to prey distance. Morphological examination revealed that T. macdougalli possesses a reduced number of myofibers in the tongue muscles, a large projector muscle mass relative to tongue mass, and an unusual folding of the tongue skeleton, compared with larger relatives. Nonetheless, T. macdougalli retains the elaborated collagen aponeuroses in the projector muscle that store elastic energy and a tongue skeleton that is free of direct myofiber insertion, two features that appear to be essential for ballistic tongue projection in salamanders. © 2018 Wiley Periodicals, Inc.
Variation in mating systems of salamanders: mate guarding or territoriality?
Deitloff, Jennifer; Alcorn, Michael A; Graham, Sean P
2014-07-01
Two of the most common mating tactics in vertebrates are mate guarding and territoriality, yet much of the research on these strategies has focused on mating systems in birds, despite novel insights gained from studying less traditional systems. North American stream salamanders that comprise the Eurycea bislineata complex represent an excellent nontraditional system for comparing mating strategies because these species exhibit a continuum of male morphologies, diverse habitat associations, and various potential mating strategies. We studied two species within this complex that exhibit the extremes of this continuum, Eurycea aquatica (robust morph) and Eurycea cirrigera (slender morph). The larger head in males of E. aquatica is due to larger musculature around the jaw and may be associated with aggressive behavior. Therefore, we hypothesized that the robust morphology exhibited by males of E. aquatica provides benefits during either territorial defense or mate defense and that males of E. cirrigera would not exhibit aggression in either scenario. We found that neither species exhibited aggressive behavior to defend a territory. However, in the presence of a female, males of E. aquatica were significantly more aggressive toward intruding males than were males of E. cirrigera. Therefore, mate-guarding behavior occurs in E. aquatica, and the enlarged head of males likely aids in deterring rivals. This is the first demonstration of mate-guarding behavior in a plethodontid, the most speciose family of salamanders. Copyright © 2014 Elsevier B.V. All rights reserved.
Luan, Hui; Law, Jane; Quick, Matthew
2015-12-30
Obesity and other adverse health outcomes are influenced by individual- and neighbourhood-scale risk factors, including the food environment. At the small-area scale, past research has analysed spatial patterns of food environments for one time period, overlooking how food environments change over time. Further, past research has infrequently analysed relative healthy food access (RHFA), a measure that is more representative of food purchasing and consumption behaviours than absolute outlet density. This research applies a Bayesian hierarchical model to analyse the spatio-temporal patterns of RHFA in the Region of Waterloo, Canada, from 2011 to 2014 at the small-area level. RHFA is calculated as the proportion of healthy food outlets (healthy outlets/healthy + unhealthy outlets) within 4-km from each small-area. This model measures spatial autocorrelation of RHFA, temporal trend of RHFA for the study region, and spatio-temporal trends of RHFA for small-areas. For the study region, a significant decreasing trend in RHFA is observed (-0.024), suggesting that food swamps have become more prevalent during the study period. For small-areas, significant decreasing temporal trends in RHFA were observed for all small-areas. Specific small-areas located in south Waterloo, north Kitchener, and southeast Cambridge exhibited the steepest decreasing spatio-temporal trends and are classified as spatio-temporal food swamps. This research demonstrates a Bayesian spatio-temporal modelling approach to analyse RHFA at the small-area scale. Results suggest that food swamps are more prevalent than food deserts in the Region of Waterloo. Analysing spatio-temporal trends of RHFA improves understanding of local food environment, highlighting specific small-areas where policies should be targeted to increase RHFA and reduce risk factors of adverse health outcomes such as obesity.
Jiang, Zhehan; Skorupski, William
2017-12-12
In many behavioral research areas, multivariate generalizability theory (mG theory) has been typically used to investigate the reliability of certain multidimensional assessments. However, traditional mG-theory estimation-namely, using frequentist approaches-has limits, leading researchers to fail to take full advantage of the information that mG theory can offer regarding the reliability of measurements. Alternatively, Bayesian methods provide more information than frequentist approaches can offer. This article presents instructional guidelines on how to implement mG-theory analyses in a Bayesian framework; in particular, BUGS code is presented to fit commonly seen designs from mG theory, including single-facet designs, two-facet crossed designs, and two-facet nested designs. In addition to concrete examples that are closely related to the selected designs and the corresponding BUGS code, a simulated dataset is provided to demonstrate the utility and advantages of the Bayesian approach. This article is intended to serve as a tutorial reference for applied researchers and methodologists conducting mG-theory studies.
NASA Astrophysics Data System (ADS)
Reis, D. S.; Stedinger, J. R.; Martins, E. S.
2005-10-01
This paper develops a Bayesian approach to analysis of a generalized least squares (GLS) regression model for regional analyses of hydrologic data. The new approach allows computation of the posterior distributions of the parameters and the model error variance using a quasi-analytic approach. Two regional skew estimation studies illustrate the value of the Bayesian GLS approach for regional statistical analysis of a shape parameter and demonstrate that regional skew models can be relatively precise with effective record lengths in excess of 60 years. With Bayesian GLS the marginal posterior distribution of the model error variance and the corresponding mean and variance of the parameters can be computed directly, thereby providing a simple but important extension of the regional GLS regression procedures popularized by Tasker and Stedinger (1989), which is sensitive to the likely values of the model error variance when it is small relative to the sampling error in the at-site estimator.
A Bayesian Approach to More Stable Estimates of Group-Level Effects in Contextual Studies.
Zitzmann, Steffen; Lüdtke, Oliver; Robitzsch, Alexander
2015-01-01
Multilevel analyses are often used to estimate the effects of group-level constructs. However, when using aggregated individual data (e.g., student ratings) to assess a group-level construct (e.g., classroom climate), the observed group mean might not provide a reliable measure of the unobserved latent group mean. In the present article, we propose a Bayesian approach that can be used to estimate a multilevel latent covariate model, which corrects for the unreliable assessment of the latent group mean when estimating the group-level effect. A simulation study was conducted to evaluate the choice of different priors for the group-level variance of the predictor variable and to compare the Bayesian approach with the maximum likelihood approach implemented in the software Mplus. Results showed that, under problematic conditions (i.e., small number of groups, predictor variable with a small ICC), the Bayesian approach produced more accurate estimates of the group-level effect than the maximum likelihood approach did.
Townsend, Josiah H
2016-11-24
Moss salamanders (genus Nototriton) are represented in northern Central America by nine putative species: N. barbouri, N. brodiei, N. lignicola, N. limnospectator, N. mime, N. picucha, N. saslaya, N. stuarti, and N. tomamorum. I estimate the phylogenetic relationships for these species based on data from three mitochondrial gene fragments (16S, cytochrome b, and COI), and compare morphological variation among putative taxa. As evidenced here and in previous studies, the taxon N. barbouri is paraphyletic with respect to populations from the Cordillera Nombre de Dios in northern Honduras. I restrict this taxon to populations from the Sierra de Sulaco in central Yoro, Honduras, and describe two new species from the Cordillera Nombre de Dios.
Visual implant elastomer mark retention through metamorphosis in amphibian larvae
Campbell Grant, Evan H.
2008-01-01
Questions in population ecology require the study of marked animals, and marks are assumed to be permanent and not overlooked by observers. I evaluated retention through metamorphosis of visual implant elastomer marks in larval salamanders and frogs and assessed error in observer identification of these marks. I found 1) individual marks were not retained in larval wood frogs (Rana sylvatica), whereas only small marks were likely to be retained in larval salamanders (Eurycea bislineata), and 2) observers did not always correctly identify marked animals. Evaluating the assumptions of marking protocols is important in the design phase of a study so that correct inference can be made about the population processes of interest. This guidance should be generally useful to the design of mark–recapture studies, with particular application to studies of larval amphibians.
Data mining in newt-omics, the repository for omics data from the newt.
Looso, Mario; Braun, Thomas
2015-01-01
Salamanders are an excellent model organism to study regenerative processes due to their unique ability to regenerate lost appendages or organs. Straightforward bioinformatics tools to analyze and take advantage of the growing number of "omics" studies performed in salamanders were lacking so far. To overcome this limitation, we have generated a comprehensive data repository for the red-spotted newt Notophthalmus viridescens, named newt-omics, merging omics style datasets on the transcriptome and proteome level including expression values and annotations. The resource is freely available via a user-friendly Web-based graphical user interface ( http://newt-omics.mpi-bn.mpg.de) that allows access and queries to the database without prior bioinformatical expertise. The repository is updated regularly, incorporating new published datasets from omics technologies.
Grieve, Richard; Nixon, Richard; Thompson, Simon G
2010-01-01
Cost-effectiveness analyses (CEA) may be undertaken alongside cluster randomized trials (CRTs) where randomization is at the level of the cluster (for example, the hospital or primary care provider) rather than the individual. Costs (and outcomes) within clusters may be correlated so that the assumption made by standard bivariate regression models, that observations are independent, is incorrect. This study develops a flexible modeling framework to acknowledge the clustering in CEA that use CRTs. The authors extend previous Bayesian bivariate models for CEA of multicenter trials to recognize the specific form of clustering in CRTs. They develop new Bayesian hierarchical models (BHMs) that allow mean costs and outcomes, and also variances, to differ across clusters. They illustrate how each model can be applied using data from a large (1732 cases, 70 primary care providers) CRT evaluating alternative interventions for reducing postnatal depression. The analyses compare cost-effectiveness estimates from BHMs with standard bivariate regression models that ignore the data hierarchy. The BHMs show high levels of cost heterogeneity across clusters (intracluster correlation coefficient, 0.17). Compared with standard regression models, the BHMs yield substantially increased uncertainty surrounding the cost-effectiveness estimates, and altered point estimates. The authors conclude that ignoring clustering can lead to incorrect inferences. The BHMs that they present offer a flexible modeling framework that can be applied more generally to CEA that use CRTs.
Bayesian Nonparametric Ordination for the Analysis of Microbial Communities.
Ren, Boyu; Bacallado, Sergio; Favaro, Stefano; Holmes, Susan; Trippa, Lorenzo
2017-01-01
Human microbiome studies use sequencing technologies to measure the abundance of bacterial species or Operational Taxonomic Units (OTUs) in samples of biological material. Typically the data are organized in contingency tables with OTU counts across heterogeneous biological samples. In the microbial ecology community, ordination methods are frequently used to investigate latent factors or clusters that capture and describe variations of OTU counts across biological samples. It remains important to evaluate how uncertainty in estimates of each biological sample's microbial distribution propagates to ordination analyses, including visualization of clusters and projections of biological samples on low dimensional spaces. We propose a Bayesian analysis for dependent distributions to endow frequently used ordinations with estimates of uncertainty. A Bayesian nonparametric prior for dependent normalized random measures is constructed, which is marginally equivalent to the normalized generalized Gamma process, a well-known prior for nonparametric analyses. In our prior, the dependence and similarity between microbial distributions is represented by latent factors that concentrate in a low dimensional space. We use a shrinkage prior to tune the dimensionality of the latent factors. The resulting posterior samples of model parameters can be used to evaluate uncertainty in analyses routinely applied in microbiome studies. Specifically, by combining them with multivariate data analysis techniques we can visualize credible regions in ecological ordination plots. The characteristics of the proposed model are illustrated through a simulation study and applications in two microbiome datasets.
Highton, Richard; Hastings, Amy Picard; Palmer, Catherine; Watts, Richard; Hass, Carla A.; Culver, Melanie; Arnold, Stevan
2012-01-01
Salamanders of the North American plethodontid genus Plethodon are important model organisms in a variety of studies that depend on a phylogenetic framework (e.g., chemical communication, ecological competition, life histories, hybridization, and speciation), and consequently their systematics has been intensively investigated over several decades. Nevertheless, we lack a synthesis of relationships among the species. In the analyses reported here we use new DNA sequence data from the complete nuclear albumin gene (1818 bp) and the 12s mitochondrial gene (355 bp), as well as published data for four other genes (Wiens et al., 2006), up to a total of 6989 bp, to infer relationships. We relate these results to past systematic work based on morphology, allozymes, and DNA sequences. Although basal relationships show a strong consensus across studies, many terminal relationships remain in flux despite substantial sequencing and other molecular and morphological studies. This systematic instability appears to be a consequence of contemporaneous bursts of speciation in the late Miocene and Pliocene, yielding many closely related extant species in each of the four eastern species groups. Therefore we conclude that many relationships are likely to remain poorly resolved in the face of additional sequencing efforts. On the other hand, the current classification of the 45 eastern species into four species groups is supported. The Plethodon cinereus group (10 species) is the sister group to the clade comprising the other three groups, but these latter groups (Plethodon glutinosus [28 species], Plethodon welleri [5 species], and Plethodon wehrlei [2 species]) probably diverged from each other at approximately the same time.
Clemow, Yvonne H; Manning, Gillian E; Breton, Roger L; Winchell, Michael F; Padilla, Lauren; Rodney, Sara I; Hanzas, John P; Estes, Tammara L; Budreski, Katherine; Toth, Brent N; Hill, Katie L; Priest, Colleen D; Teed, R Scott; Knopper, Loren D; Moore, Dwayne Rj; Stone, Christopher T; Whatling, Paul
2018-03-01
The California red-legged frog (CRLF), Delta smelt (DS), and California tiger salamander (CTS) are 3 species listed under the United States Federal Endangered Species Act (ESA), all of which inhabit aquatic ecosystems in California. The US Environmental Protection Agency (USEPA) has conducted deterministic screening-level risk assessments for these species potentially exposed to malathion, an organophosphorus insecticide and acaricide. Results from our screening-level analyses identified potential risk of direct effects to DS as well as indirect effects to all 3 species via reduction in prey. Accordingly, for those species and scenarios in which risk was identified at the screening level, we conducted a refined probabilistic risk assessment for CRLF, DS, and CTS. The refined ecological risk assessment (ERA) was conducted using best available data and approaches, as recommended by the 2013 National Research Council (NRC) report "Assessing Risks to Endangered and Threatened Species from Pesticides." Refined aquatic exposure models including the Pesticide Root Zone Model (PRZM), the Vegetative Filter Strip Modeling System (VFSMOD), the Variable Volume Water Model (VVWM), the Exposure Analysis Modeling System (EXAMS), and the Soil and Water Assessment Tool (SWAT) were used to generate estimated exposure concentrations (EECs) for malathion based on worst-case scenarios in California. Refined effects analyses involved developing concentration-response curves for fish and species sensitivity distributions (SSDs) for fish and aquatic invertebrates. Quantitative risk curves, field and mesocosm studies, surface-water monitoring data, and incident reports were considered in a weight-of-evidence approach. Currently, labeled uses of malathion are not expected to result in direct effects to CRLF, DS or CTS, or indirect effects due to effects on fish and invertebrate prey. Integr Environ Assess Manag 2018;14:224-239. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
A comment on priors for Bayesian occupancy models
Gerber, Brian D.
2018-01-01
Understanding patterns of species occurrence and the processes underlying these patterns is fundamental to the study of ecology. One of the more commonly used approaches to investigate species occurrence patterns is occupancy modeling, which can account for imperfect detection of a species during surveys. In recent years, there has been a proliferation of Bayesian modeling in ecology, which includes fitting Bayesian occupancy models. The Bayesian framework is appealing to ecologists for many reasons, including the ability to incorporate prior information through the specification of prior distributions on parameters. While ecologists almost exclusively intend to choose priors so that they are “uninformative” or “vague”, such priors can easily be unintentionally highly informative. Here we report on how the specification of a “vague” normally distributed (i.e., Gaussian) prior on coefficients in Bayesian occupancy models can unintentionally influence parameter estimation. Using both simulated data and empirical examples, we illustrate how this issue likely compromises inference about species-habitat relationships. While the extent to which these informative priors influence inference depends on the data set, researchers fitting Bayesian occupancy models should conduct sensitivity analyses to ensure intended inference, or employ less commonly used priors that are less informative (e.g., logistic or t prior distributions). We provide suggestions for addressing this issue in occupancy studies, and an online tool for exploring this issue under different contexts. PMID:29481554
Dokoumetzidis, Aristides; Aarons, Leon
2005-08-01
We investigated the propagation of population pharmacokinetic information across clinical studies by applying Bayesian techniques. The aim was to summarize the population pharmacokinetic estimates of a study in appropriate statistical distributions in order to use them as Bayesian priors in consequent population pharmacokinetic analyses. Various data sets of simulated and real clinical data were fitted with WinBUGS, with and without informative priors. The posterior estimates of fittings with non-informative priors were used to build parametric informative priors and the whole procedure was carried on in a consecutive manner. The posterior distributions of the fittings with informative priors where compared to those of the meta-analysis fittings of the respective combinations of data sets. Good agreement was found, for the simulated and experimental datasets when the populations were exchangeable, with the posterior distribution from the fittings with the prior to be nearly identical to the ones estimated with meta-analysis. However, when populations were not exchangeble an alternative parametric form for the prior, the natural conjugate prior, had to be used in order to have consistent results. In conclusion, the results of a population pharmacokinetic analysis may be summarized in Bayesian prior distributions that can be used consecutively with other analyses. The procedure is an alternative to meta-analysis and gives comparable results. It has the advantage that it is faster than the meta-analysis, due to the large datasets used with the latter and can be performed when the data included in the prior are not actually available.
Cross-validation to select Bayesian hierarchical models in phylogenetics.
Duchêne, Sebastián; Duchêne, David A; Di Giallonardo, Francesca; Eden, John-Sebastian; Geoghegan, Jemma L; Holt, Kathryn E; Ho, Simon Y W; Holmes, Edward C
2016-05-26
Recent developments in Bayesian phylogenetic models have increased the range of inferences that can be drawn from molecular sequence data. Accordingly, model selection has become an important component of phylogenetic analysis. Methods of model selection generally consider the likelihood of the data under the model in question. In the context of Bayesian phylogenetics, the most common approach involves estimating the marginal likelihood, which is typically done by integrating the likelihood across model parameters, weighted by the prior. Although this method is accurate, it is sensitive to the presence of improper priors. We explored an alternative approach based on cross-validation that is widely used in evolutionary analysis. This involves comparing models according to their predictive performance. We analysed simulated data and a range of viral and bacterial data sets using a cross-validation approach to compare a variety of molecular clock and demographic models. Our results show that cross-validation can be effective in distinguishing between strict- and relaxed-clock models and in identifying demographic models that allow growth in population size over time. In most of our empirical data analyses, the model selected using cross-validation was able to match that selected using marginal-likelihood estimation. The accuracy of cross-validation appears to improve with longer sequence data, particularly when distinguishing between relaxed-clock models. Cross-validation is a useful method for Bayesian phylogenetic model selection. This method can be readily implemented even when considering complex models where selecting an appropriate prior for all parameters may be difficult.
Can the eastern red-backed salamander (Plethodon cinereus) persist in an acidified landscape?
Bondi, Cheryl A; Beier, Colin M.; Ducey, Peter K; Lawrence, Gregory B.; Bailey, Scott W.
2016-01-01
Hardwood forests of eastern North America have experienced decades of acidic deposition, leading to soil acidification where base cation supply was insufficient to neutralize acid inputs. Negative impacts of soil acidity on amphibians include disrupted embryonic development, lower growth rates, and habitat loss. However, some amphibians exhibit intraspecific variation in acid tolerance, suggesting the potential for local adaptation in areas where soils are naturally acidic. The eastern red-backed salamander (Plethodon cinereus) is a highly abundant top predator of the northern hardwood forest floor. Early research found that P. cinereus was sensitive to acidic soils, avoiding substrates with pH < 3.8 and experiencing decreased growth rates in acidic habitats. However, recent studies have documented P. cinereus populations in lower pH conditions than previously observed, suggesting some populations may persist in acidic conditions. Here, we evaluated relationships between organic horizon soil pH and P. cinereus abundance, adult health (body size and condition), and microhabitat selection, based on surveys of 34 hardwood forests in northeastern United States that encompass a regional soil pH gradient. We found no associations between soil pH and P. cinereus abundance or health, and observed that this salamander used substrates with pH similar to that available, suggesting that pH does not mediate their fine-scale distributions. The strongest negative predictor of P. cinereus abundance was the presence of dusky salamanders (Desmognathus spp.), which were most abundant in the western Adirondacks. Our results indicate that P. cinereus occupies a wider range of soil pH than has been previously thought, which has implications for their functional role in forest food webs and nutrient cycles in acid-impaired ecosystems. Tolerance of P. cinereus for more acidic habitats, including anthropogenically acidified forests, may be due to local adaptation in reproductively isolated populations and/or generalist life history traits that allow them to exploit a wider resource niche.
Plethodon cinerius (eastern red-backed salamander) movement
Sterrett, Sean; Brand, Adrianne B,; Fields, William R.; Katz, Rachel A.; Grant, Evan H. Campbell
2015-01-01
Lungless salamanders (family Plethodontidae) are relatively sedentary and are presumed to have limited dispersal ability (Marsh et al. 2004. Ecology 85:3396–3405). Site fidelity in Plethodontidae is high, and individuals displaced 90 m return to home territories (Kleeberger and Werner 1982. Copeia 1982:409–415). Individuals defend territories (Jaeger et al. 1982. Anim. Behav. 30:490–496) and female home ranges have been estimated to be 24.34 m2 (Kleeberger and Werner 1982, op. cit.). Females may seek out suitable subsurface habitat to oviposit eggs, yet little is known about their maximum movement distances (Petranka 1998. Salamanders of the United States and Canada. Smithsonian Institution Press, Washington. 587 pp.).On 18 September 2014, a female P. cinereus (lead back morphotype; SVL = 44.68 mm; 0.89 g) was found under a coverboard during a standard sampling event and uniquely marked using visual implant elastomer at the S.O. Conte Anadromous Fish Research Center, Massachusetts, USA (42.59280°N, 72.58070°W, datum WGS84; elev. 74 m). This individual was subsequently recaptured at ~1500 h on 8 October 2014 under a coverboard within 3 m of the original capture location and then again ~1430 h on 16 October 2014 under a log, within the same forest patch, though in a 50 x 150 m area adjacent to the original study area. Because we found the marked salamander while collecting multiple individuals for a laboratory study, the exact recapture location of the marked individual is not known. However, the distance between the 8 October capture location and the nearest edge of the 16 October search area (i.e. 50 x 150 m) was 143 m, indicating a minimum movement distance. As far as we are aware, this is the longest recorded movement for P. cinereus by more than 53 m (Kleeberger and Werner 1982, op. cit.). This finding followed a rain event of 1.63 cm within 24 h and the second largest sustained rain event during October. The movement we observed may have been due to disturbance from handling and marking, although this was minimized in the field.
USDA-ARS?s Scientific Manuscript database
Fusarium (Hypocreales, Nectriaceae) is one of the most economically important and systematically challenging groups of mycotoxigenic phytopathogens and emergent human pathogens. We conducted maximum likelihood (ML), maximum parsimony (MP) and Bayesian (B) analyses on partial RNA polymerase largest (...
Tom, Jennifer A; Sinsheimer, Janet S; Suchard, Marc A
Massive datasets in the gigabyte and terabyte range combined with the availability of increasingly sophisticated statistical tools yield analyses at the boundary of what is computationally feasible. Compromising in the face of this computational burden by partitioning the dataset into more tractable sizes results in stratified analyses, removed from the context that justified the initial data collection. In a Bayesian framework, these stratified analyses generate intermediate realizations, often compared using point estimates that fail to account for the variability within and correlation between the distributions these realizations approximate. However, although the initial concession to stratify generally precludes the more sensible analysis using a single joint hierarchical model, we can circumvent this outcome and capitalize on the intermediate realizations by extending the dynamic iterative reweighting MCMC algorithm. In doing so, we reuse the available realizations by reweighting them with importance weights, recycling them into a now tractable joint hierarchical model. We apply this technique to intermediate realizations generated from stratified analyses of 687 influenza A genomes spanning 13 years allowing us to revisit hypotheses regarding the evolutionary history of influenza within a hierarchical statistical framework.
Tom, Jennifer A.; Sinsheimer, Janet S.; Suchard, Marc A.
2015-01-01
Massive datasets in the gigabyte and terabyte range combined with the availability of increasingly sophisticated statistical tools yield analyses at the boundary of what is computationally feasible. Compromising in the face of this computational burden by partitioning the dataset into more tractable sizes results in stratified analyses, removed from the context that justified the initial data collection. In a Bayesian framework, these stratified analyses generate intermediate realizations, often compared using point estimates that fail to account for the variability within and correlation between the distributions these realizations approximate. However, although the initial concession to stratify generally precludes the more sensible analysis using a single joint hierarchical model, we can circumvent this outcome and capitalize on the intermediate realizations by extending the dynamic iterative reweighting MCMC algorithm. In doing so, we reuse the available realizations by reweighting them with importance weights, recycling them into a now tractable joint hierarchical model. We apply this technique to intermediate realizations generated from stratified analyses of 687 influenza A genomes spanning 13 years allowing us to revisit hypotheses regarding the evolutionary history of influenza within a hierarchical statistical framework. PMID:26681992
Sandoval-Castellanos, Edson; Palkopoulou, Eleftheria; Dalén, Love
2014-01-01
Inference of population demographic history has vastly improved in recent years due to a number of technological and theoretical advances including the use of ancient DNA. Approximate Bayesian computation (ABC) stands among the most promising methods due to its simple theoretical fundament and exceptional flexibility. However, limited availability of user-friendly programs that perform ABC analysis renders it difficult to implement, and hence programming skills are frequently required. In addition, there is limited availability of programs able to deal with heterochronous data. Here we present the software BaySICS: Bayesian Statistical Inference of Coalescent Simulations. BaySICS provides an integrated and user-friendly platform that performs ABC analyses by means of coalescent simulations from DNA sequence data. It estimates historical demographic population parameters and performs hypothesis testing by means of Bayes factors obtained from model comparisons. Although providing specific features that improve inference from datasets with heterochronous data, BaySICS also has several capabilities making it a suitable tool for analysing contemporary genetic datasets. Those capabilities include joint analysis of independent tables, a graphical interface and the implementation of Markov-chain Monte Carlo without likelihoods.
BM-Map: Bayesian Mapping of Multireads for Next-Generation Sequencing Data
Ji, Yuan; Xu, Yanxun; Zhang, Qiong; Tsui, Kam-Wah; Yuan, Yuan; Norris, Clift; Liang, Shoudan; Liang, Han
2011-01-01
Summary Next-generation sequencing (NGS) technology generates millions of short reads, which provide valuable information for various aspects of cellular activities and biological functions. A key step in NGS applications (e.g., RNA-Seq) is to map short reads to correct genomic locations within the source genome. While most reads are mapped to a unique location, a significant proportion of reads align to multiple genomic locations with equal or similar numbers of mismatches; these are called multireads. The ambiguity in mapping the multireads may lead to bias in downstream analyses. Currently, most practitioners discard the multireads in their analysis, resulting in a loss of valuable information, especially for the genes with similar sequences. To refine the read mapping, we develop a Bayesian model that computes the posterior probability of mapping a multiread to each competing location. The probabilities are used for downstream analyses, such as the quantification of gene expression. We show through simulation studies and RNA-Seq analysis of real life data that the Bayesian method yields better mapping than the current leading methods. We provide a C++ program for downloading that is being packaged into a user-friendly software. PMID:21517792
ERIC Educational Resources Information Center
Serrao, John
1976-01-01
Emphasizing the spring migration of frogs, toads, and salamanders to their watery breeding sites, this article presents information on numerous amphibians and suggests both indoor and outdoor educational activities appropriate for elementary and/or early secondary instruction. (JC)
Quality of sediment discharging from the Barton Springs system, Austin, Texas, 2000-2002
Mahler, Barbara J.
2003-01-01
Four spring outlets of the Barton Springs system provide the only known habitat for the Barton Springs salamander (Eurycea sosorum), a federally listed endangered species. After heavy rainfall, sediment is flushed through the Barton Springs segment of the Edwards aquifer and springflow often becomes turbid (cloudy). Sediment in urban areas often has high concentrations of hydrophobic contaminants, such as DDT, polycyclic aromatic hydrocarbons (PAHs), and lead. In response to concerns that sediment discharging from the Barton Springs outlets could contain contaminants at levels that pose a threat to the health of the salamander or its prey, the U.S. Geological Survey (USGS), in cooperation with the U.S. Fish and Wildlife Service, collected samples of suspended sediment discharging from each of the four spring outlets after two rainstorms and analyzed them for a suite of hydrophobic contaminants.
Becker, Matthew H; Brucker, Robert M; Schwantes, Christian R; Harris, Reid N; Minbiole, Kevin P C
2009-11-01
The disease chytridiomycosis, which is caused by the chytrid fungus Batrachochytrium dendrobatidis, is associated with recent declines in amphibian populations. Susceptibility to this disease varies among amphibian populations and species, and resistance appears to be attributable in part to the presence of antifungal microbial species associated with the skin of amphibians. The betaproteobacterium Janthinobacterium lividum has been isolated from the skins of several amphibian species and produces the antifungal metabolite violacein, which inhibits B. dendrobatidis. In this study, we added J. lividum to red-backed salamanders (Plethodon cinereus) to obtain an increased range of violacein concentrations on the skin. Adding J. lividum to the skin of the salamander increased the concentration of violacein on the skin, which was strongly associated with survival after experimental exposure to B. dendrobatidis. As expected from previous work, some individuals that did not receive J. lividum and were exposed to B. dendrobatidis survived. These individuals had concentrations of bacterially produced violacein on their skins that were predicted to kill B. dendrobatidis. Our study suggests that a threshold violacein concentration of about 18 microM on a salamander's skin prevents mortality and morbidity caused by B. dendrobatidis. In addition, we show that over one-half of individuals in nature support antifungal bacteria that produce violacein, which suggests that there is a mutualism between violacein-producing bacteria and P. cinereus and that adding J. lividum is effective for protecting individuals that lack violacein-producing skin bacteria.
Becker, Matthew H.; Brucker, Robert M.; Schwantes, Christian R.; Harris, Reid N.; Minbiole, Kevin P. C.
2009-01-01
The disease chytridiomycosis, which is caused by the chytrid fungus Batrachochytrium dendrobatidis, is associated with recent declines in amphibian populations. Susceptibility to this disease varies among amphibian populations and species, and resistance appears to be attributable in part to the presence of antifungal microbial species associated with the skin of amphibians. The betaproteobacterium Janthinobacterium lividum has been isolated from the skins of several amphibian species and produces the antifungal metabolite violacein, which inhibits B. dendrobatidis. In this study, we added J. lividum to red-backed salamanders (Plethodon cinereus) to obtain an increased range of violacein concentrations on the skin. Adding J. lividum to the skin of the salamander increased the concentration of violacein on the skin, which was strongly associated with survival after experimental exposure to B. dendrobatidis. As expected from previous work, some individuals that did not receive J. lividum and were exposed to B. dendrobatidis survived. These individuals had concentrations of bacterially produced violacein on their skins that were predicted to kill B. dendrobatidis. Our study suggests that a threshold violacein concentration of about 18 μM on a salamander's skin prevents mortality and morbidity caused by B. dendrobatidis. In addition, we show that over one-half of individuals in nature support antifungal bacteria that produce violacein, which suggests that there is a mutualism between violacein-producing bacteria and P. cinereus and that adding J. lividum is effective for protecting individuals that lack violacein-producing skin bacteria. PMID:19717627
Mullen, Lindy B; Arthur Woods, H; Schwartz, Michael K; Sepulveda, Adam J; Lowe, Winsor H
2010-03-01
The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho giant salamander, Dicamptodon aterrimus, in stream networks of Idaho and Montana, USA. We used microsatellite data to test population structure models by (i) examining hierarchical partitioning of genetic variation in stream networks; and (ii) testing for genetic isolation by distance along stream corridors vs. overland pathways. Replicated sampling of streams within catchments within three river basins revealed that hierarchical scale had strong effects on genetic structure and gene flow. amova identified significant structure at all hierarchical scales (among streams, among catchments, among basins), but divergence among catchments had the greatest structural influence. Isolation by distance was detected within catchments, and in-stream distance was a strong predictor of genetic divergence. Patterns of genetic divergence suggest that differentiation among streams within catchments was driven by limited migration, consistent with a stream hierarchy model of population structure. However, there was no evidence of migration among catchments within basins, or among basins, indicating that gene flow only counters the effects of genetic drift at smaller scales (within rather than among catchments). These results show the strong influence of stream networks on population structure and genetic divergence of a salamander, with contrasting effects at different hierarchical scales.
Iteroparity in the variable environment of the salamander Ambystoma tigrinum
Church, D.R.; Bailey, L.L.; Wilbur, H.M.; Kendall, W.L.; Hines, J.E.
2007-01-01
Simultaneous estimation of survival, reproduction, and movement is essential to understanding how species maximize lifetime reproduction in environments that vary across space and time. We conducted a four-year, capture–recapture study of three populations of eastern tiger salamanders (Ambystoma tigrinum tigrinum) and used multistate mark–recapture statistical methods to estimate the manner in which movement, survival, and breeding probabilities vary under different environmental conditions across years and among populations and habitats. We inferred how individuals may mitigate risks of mortality and reproductive failure by deferring breeding or by moving among populations. Movement probabilities among populations were extremely low despite high spatiotemporal variation in reproductive success and survival, suggesting possible costs to movements among breeding ponds. Breeding probabilities varied between wet and dry years and according to whether or not breeding was attempted in the previous year. Estimates of survival in the nonbreeding, forest habitat varied among populations but were consistent across time. Survival in breeding ponds was generally high in years with average or high precipitation, except for males in an especially ephemeral pond. A drought year incurred severe survival costs in all ponds to animals that attempted breeding. Female salamanders appear to defer these episodic survival costs of breeding by choosing not to breed in years when the risk of adult mortality is high. Using stochastic simulations of survival and breeding under historical climate conditions, we found that an interaction between breeding probabilities and mortality limits the probability of multiple breeding attempts differently between the sexes and among populations.
Coordinated Body Bending Improves Performance of a Salamander-like Robot
NASA Astrophysics Data System (ADS)
Ozkan Aydin, Yasemin; Chong, Baxi; Gong, Chaohui; Rieser, Jennifer M.; Choset, Howie; Goldman, Daniel I.
Analyzing body morphology and limb-body coordination in animals that can both swim and walk is important to understand the evolutionary transition from an aquatic to a terrestrial environment. Based on previous salamander experiments (a modern analog to early tetrapods and performed by Hutchinson's group at RVC in the UK) we built a robophysical model of a salamander and tested its performance on yielding granular media (GM) of poppy seeds. Our servo-driven robot (405 g, 38 cm long) has four limbs, a flexible body, and an active tail. Each limb has two servo motors to control up/down and fore/aft positions of limb. A joint in the middle of the body controls horizontal bending. We assessed performance of the robot by changing the body bending limit from 0°to 90°and measured body displacement and power consumption over a few limb cycles at 0°and 10°sandy slope. We fixed the angle of the legs according to body to test the effect of body bending directly. On GM, step length increased from 0 to 9.5 cm at 0° and 0 to 7 cm at 10°slope while the average power consumption increased 50 % . A geometric mechanics model revealed that on level GM body bending was most beneficial when phase offset 180°from leg movements; increasing the maximum body angular bend from 45°to 90° led to step length increases of up to 90 % .
USDA-ARS?s Scientific Manuscript database
The objective was to study alternative models for genetic analyses of carcass traits assessed by ultrasonography in Guzerá cattle. Data from 947 measurements (655 animals) of Rib-eye area (REA), rump fat thickness (RFT) and backfat thickness (BFT) were used. Finite polygenic models (FPM), infinitesi...
Tarasov, Sergei; Génier, François
2015-01-01
Scarabaeine dung beetles are the dominant dung feeding group of insects and are widely used as model organisms in conservation, ecology and developmental biology. Due to the conflicts among 13 recently published phylogenies dealing with the higher-level relationships of dung beetles, the phylogeny of this lineage remains largely unresolved. In this study, we conduct rigorous phylogenetic analyses of dung beetles, based on an unprecedented taxon sample (110 taxa) and detailed investigation of morphology (205 characters). We provide the description of morphology and thoroughly illustrate the used characters. Along with parsimony, traditionally used in the analysis of morphological data, we also apply the Bayesian method with a novel approach that uses anatomy ontology for matrix partitioning. This approach allows for heterogeneity in evolutionary rates among characters from different anatomical regions. Anatomy ontology generates a number of parameter-partition schemes which we compare using Bayes factor. We also test the effect of inclusion of autapomorphies in the morphological analysis, which hitherto has not been examined. Generally, schemes with more parameters were favored in the Bayesian comparison suggesting that characters located on different body regions evolve at different rates and that partitioning of the data matrix using anatomy ontology is reasonable; however, trees from the parsimony and all the Bayesian analyses were quite consistent. The hypothesized phylogeny reveals many novel clades and provides additional support for some clades recovered in previous analyses. Our results provide a solid basis for a new classification of dung beetles, in which the taxonomic limits of the tribes Dichotomiini, Deltochilini and Coprini are restricted and many new tribes must be described. Based on the consistency of the phylogeny with biogeography, we speculate that dung beetles may have originated in the Mesozoic contrary to the traditional view pointing to a Cenozoic origin. PMID:25781019
A Bayesian sequential design using alpha spending function to control type I error.
Zhu, Han; Yu, Qingzhao
2017-10-01
We propose in this article a Bayesian sequential design using alpha spending functions to control the overall type I error in phase III clinical trials. We provide algorithms to calculate critical values, power, and sample sizes for the proposed design. Sensitivity analysis is implemented to check the effects from different prior distributions, and conservative priors are recommended. We compare the power and actual sample sizes of the proposed Bayesian sequential design with different alpha spending functions through simulations. We also compare the power of the proposed method with frequentist sequential design using the same alpha spending function. Simulations show that, at the same sample size, the proposed method provides larger power than the corresponding frequentist sequential design. It also has larger power than traditional Bayesian sequential design which sets equal critical values for all interim analyses. When compared with other alpha spending functions, O'Brien-Fleming alpha spending function has the largest power and is the most conservative in terms that at the same sample size, the null hypothesis is the least likely to be rejected at early stage of clinical trials. And finally, we show that adding a step of stop for futility in the Bayesian sequential design can reduce the overall type I error and reduce the actual sample sizes.
Lo, Benjamin W. Y.; Macdonald, R. Loch; Baker, Andrew; Levine, Mitchell A. H.
2013-01-01
Objective. The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH). Methods. The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients). Results. Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs). Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique) denoted cut-off points for poor prognosis at greater than 2.5 clusters. Discussion. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication. PMID:23690884
77 FR 40406 - Cancellation of Supplemental Environmental Impact Statement (SEIS); Travis County, TX
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-09
... changes in funding mechanisms, changes in adjacent land use, State and Federal listing of the Barton Springs salamander as endangered, public input, and proposed design modifications since the issuance of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-16
..., invertebrates, and plants, as well as to enhance ecosystem processes on the islands. The South Farallon Islands... amphibians, invertebrates, and plants, including the endemic Farallon arboreal salamander (Aneides lugubris...
Larval salamander growth responds to enrichment of a nutrient poor headwater stream
Brent J. Johnson; J. Bruce Wallace; AmyD Rosemond; Wyatt F. Cross
2006-01-01
While many studies have measured effects of nutrient enrichment on higher trophic levels in grazing food webs, few such studies exist for detritus-based systems. We measured effects of nitrogen and...
Gucciardi, Daniel F; Zhang, Chun-Qing; Ponnusamy, Vellapandian; Si, Gangyan; Stenling, Andreas
2016-04-01
The aims of this study were to assess the cross-cultural invariance of athletes' self-reports of mental toughness and to introduce and illustrate the application of approximate measurement invariance using Bayesian estimation for sport and exercise psychology scholars. Athletes from Australia (n = 353, Mage = 19.13, SD = 3.27, men = 161), China (n = 254, Mage = 17.82, SD = 2.28, men = 138), and Malaysia (n = 341, Mage = 19.13, SD = 3.27, men = 200) provided a cross-sectional snapshot of their mental toughness. The cross-cultural invariance of the mental toughness inventory in terms of (a) the factor structure (configural invariance), (b) factor loadings (metric invariance), and (c) item intercepts (scalar invariance) was tested using an approximate measurement framework with Bayesian estimation. Results indicated that approximate metric and scalar invariance was established. From a methodological standpoint, this study demonstrated the usefulness and flexibility of Bayesian estimation for single-sample and multigroup analyses of measurement instruments. Substantively, the current findings suggest that the measurement of mental toughness requires cultural adjustments to better capture the contextually salient (emic) aspects of this concept.
Posterior Predictive Bayesian Phylogenetic Model Selection
Lewis, Paul O.; Xie, Wangang; Chen, Ming-Hui; Fan, Yu; Kuo, Lynn
2014-01-01
We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The Gelfand–Ghosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-fit (GGg), which distinguishes this method from the posterior predictive P-value approach. The conditional predictive ordinate (CPO) method provides a site-specific measure of model fit useful for exploratory analyses and can be combined over sites yielding the log pseudomarginal likelihood (LPML) which is useful as an overall measure of model fit. CPO provides a useful cross-validation approach that is computationally efficient, requiring only a sample from the posterior distribution (no additional simulation is required). Both GG and CPO add new perspectives to Bayesian phylogenetic model selection based on the predictive abilities of models and complement the perspective provided by the marginal likelihood (including Bayes Factor comparisons) based solely on the fit of competing models to observed data. [Bayesian; conditional predictive ordinate; CPO; L-measure; LPML; model selection; phylogenetics; posterior predictive.] PMID:24193892
Mechanisms of motivational interviewing in health promotion: a Bayesian mediation analysis
2012-01-01
Background Counselor behaviors that mediate the efficacy of motivational interviewing (MI) are not well understood, especially when applied to health behavior promotion. We hypothesized that client change talk mediates the relationship between counselor variables and subsequent client behavior change. Methods Purposeful sampling identified individuals from a prospective randomized worksite trial using an MI intervention to promote firefighters’ healthy diet and regular exercise that increased dietary intake of fruits and vegetables (n = 21) or did not increase intake of fruits and vegetables (n = 22). MI interactions were coded using the Motivational Interviewing Skill Code (MISC 2.1) to categorize counselor and firefighter verbal utterances. Both Bayesian and frequentist mediation analyses were used to investigate whether client change talk mediated the relationship between counselor skills and behavior change. Results Counselors’ global spirit, empathy, and direction and MI-consistent behavioral counts (e.g., reflections, open questions, affirmations, emphasize control) significantly correlated with firefighters’ total client change talk utterances (rs = 0.42, 0.40, 0.30, and 0.61, respectively), which correlated significantly with their fruit and vegetable intake increase (r = 0.33). Both Bayesian and frequentist mediation analyses demonstrated that findings were consistent with hypotheses, such that total client change talk mediated the relationship between counselor’s skills—MI-consistent behaviors [Bayesian mediated effect: αβ = .06 (.03), 95% CI = .02, .12] and MI spirit [Bayesian mediated effect: αβ = .06 (.03), 95% CI = .01, .13]—and increased fruit and vegetable consumption. Conclusion Motivational interviewing is a resource- and time-intensive intervention, and is currently being applied in many arenas. Previous research has identified the importance of counselor behaviors and client change talk in the treatment of substance use disorders. Our results indicate that similar mechanisms may underlie the effects of MI for dietary change. These results inform MI training and application by identifying those processes critical for MI success in health promotion domains. PMID:22681874
Beach, Jeremy; Burstyn, Igor; Cherry, Nicola
2012-07-01
We previously described a method to identify the incidence of new-onset adult asthma (NOAA) in Alberta by industry and occupation, utilizing Workers' Compensation Board (WCB) and physician billing data. The aim of this study was to extend this method to data from British Columbia (BC) so as to compare the two provinces and to incorporate Bayesian methodology into estimates of risk. WCB claims for any reason 1995-2004 were linked to physician billing data. NOAA was defined as a billing for asthma (ICD-9 493) in the 12 months before a WCB claim without asthma in the previous 3 years. Incidence was calculated by occupation and industry. In a matched case-referent analysis, associations with exposures were examined using an asthma-specific job exposure matrix (JEM). Posterior distributions from the Alberta analysis and estimated misclassification parameters were used as priors in the Bayesian analysis of the BC data. Among 1 118 239 eligible WCB claims the incidence of NOAA was 1.4%. Sixteen occupations and 44 industries had a significantly increased risk; six industries had a decreased risk. The JEM identified wood dust [odds ratio (OR) 1.55, 95% confidence interval (CI) 1.08-2.24] and animal antigens (OR 1.66, 95% CI 1.17-2.36) as related to an increased risk of NOAA. Exposure to isocyanates was associated with decreased risk (OR 0.57, 95% CI 0.39-0.85). Bayesian analyses taking account of exposure misclassification and informative priors resulted in posterior distributions of ORs with lower boundary of 95% credible intervals >1.00 for almost all exposures. The distribution of NOAA in BC appeared somewhat similar to that in Alberta, except for isocyanates. Bayesian analyses allowed incorporation of prior evidence into risk estimates, permitting reconsideration of the apparently protective effect of isocyanate exposure.
Matthews, Luke J.; Tehrani, Jamie J.; Jordan, Fiona M.; Collard, Mark; Nunn, Charles L.
2011-01-01
Background Archaeologists and anthropologists have long recognized that different cultural complexes may have distinct descent histories, but they have lacked analytical techniques capable of easily identifying such incongruence. Here, we show how Bayesian phylogenetic analysis can be used to identify incongruent cultural histories. We employ the approach to investigate Iranian tribal textile traditions. Methods We used Bayes factor comparisons in a phylogenetic framework to test two models of cultural evolution: the hierarchically integrated system hypothesis and the multiple coherent units hypothesis. In the hierarchically integrated system hypothesis, a core tradition of characters evolves through descent with modification and characters peripheral to the core are exchanged among contemporaneous populations. In the multiple coherent units hypothesis, a core tradition does not exist. Rather, there are several cultural units consisting of sets of characters that have different histories of descent. Results For the Iranian textiles, the Bayesian phylogenetic analyses supported the multiple coherent units hypothesis over the hierarchically integrated system hypothesis. Our analyses suggest that pile-weave designs represent a distinct cultural unit that has a different phylogenetic history compared to other textile characters. Conclusions The results from the Iranian textiles are consistent with the available ethnographic evidence, which suggests that the commercial rug market has influenced pile-rug designs but not the techniques or designs incorporated in the other textiles produced by the tribes. We anticipate that Bayesian phylogenetic tests for inferring cultural units will be of great value for researchers interested in studying the evolution of cultural traits including language, behavior, and material culture. PMID:21559083
Zhang, Xiang; Faries, Douglas E; Boytsov, Natalie; Stamey, James D; Seaman, John W
2016-09-01
Observational studies are frequently used to assess the effectiveness of medical interventions in routine clinical practice. However, the use of observational data for comparative effectiveness is challenged by selection bias and the potential of unmeasured confounding. This is especially problematic for analyses using a health care administrative database, in which key clinical measures are often not available. This paper provides an approach to conducting a sensitivity analyses to investigate the impact of unmeasured confounding in observational studies. In a real world osteoporosis comparative effectiveness study, the bone mineral density (BMD) score, an important predictor of fracture risk and a factor in the selection of osteoporosis treatments, is unavailable in the data base and lack of baseline BMD could potentially lead to significant selection bias. We implemented Bayesian twin-regression models, which simultaneously model both the observed outcome and the unobserved unmeasured confounder, using information from external sources. A sensitivity analysis was also conducted to assess the robustness of our conclusions to changes in such external data. The use of Bayesian modeling in this study suggests that the lack of baseline BMD did have a strong impact on the analysis, reversing the direction of the estimated effect (odds ratio of fracture incidence at 24 months: 0.40 vs. 1.36, with/without adjusting for unmeasured baseline BMD). The Bayesian twin-regression models provide a flexible sensitivity analysis tool to quantitatively assess the impact of unmeasured confounding in observational studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
McCarron, C Elizabeth; Pullenayegum, Eleanor M; Thabane, Lehana; Goeree, Ron; Tarride, Jean-Eric
2013-04-01
Bayesian methods have been proposed as a way of synthesizing all available evidence to inform decision making. However, few practical applications of the use of Bayesian methods for combining patient-level data (i.e., trial) with additional evidence (e.g., literature) exist in the cost-effectiveness literature. The objective of this study was to compare a Bayesian cost-effectiveness analysis using informative priors to a standard non-Bayesian nonparametric method to assess the impact of incorporating additional information into a cost-effectiveness analysis. Patient-level data from a previously published nonrandomized study were analyzed using traditional nonparametric bootstrap techniques and bivariate normal Bayesian models with vague and informative priors. Two different types of informative priors were considered to reflect different valuations of the additional evidence relative to the patient-level data (i.e., "face value" and "skeptical"). The impact of using different distributions and valuations was assessed in a sensitivity analysis. Models were compared in terms of incremental net monetary benefit (INMB) and cost-effectiveness acceptability frontiers (CEAFs). The bootstrapping and Bayesian analyses using vague priors provided similar results. The most pronounced impact of incorporating the informative priors was the increase in estimated life years in the control arm relative to what was observed in the patient-level data alone. Consequently, the incremental difference in life years originally observed in the patient-level data was reduced, and the INMB and CEAF changed accordingly. The results of this study demonstrate the potential impact and importance of incorporating additional information into an analysis of patient-level data, suggesting this could alter decisions as to whether a treatment should be adopted and whether more information should be acquired.
Means, D Bruce; Lamb, Jennifer Y; Bernardo, Joseph
2017-05-10
The Coastal Plain of the southeastern U. S. is one of the planet's top biodiversity hotspots and yet many taxa have not been adequately studied. The plethodontid salamander, Desmognathus auriculatus, was originally thought to occur from east Texas to Virginia, a range spanning dozens of interfluves and large river systems. Beamer and Lamb (2008) found five independent mitochondrial lineages of what has been called D. auriculatus in the Atlantic Coastal Plain, but did not examine the extensive distribution of D. auriculatus in the Gulf Coastal Plain. We present morphological and molecular genetic data distinguishing two evolutionarily independent and distantly related lineages that are currently subsumed under the taxon D. auriculatus in the eastern Gulf Coastal Plain. We describe one of these as a new species, Desmognathus valentinei sp. nov., and assign the second one to D. auriculatus which we formally redescribe.
Khattak, Shahryar; Schuez, Maritta; Richter, Tobias; Knapp, Dunja; Haigo, Saori L.; Sandoval-Guzmán, Tatiana; Hradlikova, Kristyna; Duemmler, Annett; Kerney, Ryan; Tanaka, Elly M.
2013-01-01
The salamander is the only tetrapod that regenerates complex body structures throughout life. Deciphering the underlying molecular processes of regeneration is fundamental for regenerative medicine and developmental biology, but the model organism had limited tools for molecular analysis. We describe a comprehensive set of germline transgenic strains in the laboratory-bred salamander Ambystoma mexicanum (axolotl) that open up the cellular and molecular genetic dissection of regeneration. We demonstrate tissue-dependent control of gene expression in nerve, Schwann cells, oligodendrocytes, muscle, epidermis, and cartilage. Furthermore, we demonstrate the use of tamoxifen-induced Cre/loxP-mediated recombination to indelibly mark different cell types. Finally, we inducibly overexpress the cell-cycle inhibitor p16INK4a, which negatively regulates spinal cord regeneration. These tissue-specific germline axolotl lines and tightly inducible Cre drivers and LoxP reporter lines render this classical regeneration model molecularly accessible. PMID:24052945
Muths, E.; Campbell, D.H.; Corn, P.S.
2003-01-01
The snowpack in the vicinity of the Mount Zirkel Wilderness Area is among the most acidic in the western United States. We analyzed water chemistry and examined hatching success in tiger salamanders and chorus frogs at ponds there and at nearby Rabbit Ears Pass (Dumont) to determine whether acid deposition affects amphibians or their breeding habitats at these potentially sensitive locations. We found a wide range of acid neutralizing capacity among ponds within sites; the minimum pH recorded during the experiment was 5.4 at one of 12 ponds with all others at pH ??? 5.7. At Dumont, hatching success for chorus frogs was greater in ponds with low acid neutralizing capacity; however, lowest pHs were >5.8. At current levels of acid deposition, weather and pond characteristics are likely more important than acidity in influencing hatching success in amphibian larvae at these sites.
Mechanical vibrations from tadpoles' flapping tails transform salamander's carnivorous morphology.
Michimae, Hirofumi; Nishimura, Kinya; Wakahara, Masami
2005-03-22
Some prey or predator organisms exhibit striking rapid morphological plastic changes with distinct morphology under the condition of predator or prey presence. Remote chemicals propagating from the inducing agents are the prevalent induction cues for most examples of induction of distinct morphs. Sonic and visual cues, as well as chemical cues, are known as triggers for induction of behavioural plasticity. Here we show that hydraulic vibration originating from flapping tails of anuran tadpoles is a key cue in relation to induction of a distinct carnivorous morphology, a broad-headed morph, in larval salamander Hynobius retardatus, which is able to efficiently capture and handle prey. This result was further supported by the fact that simple mechanical vibrations of tail-like vinyl fins were able to induce the morph without any biological cues. Induction of the morph triggered by hydraulic vibration provides a novel concept for understanding the proximate mechanisms of induction of morphological changes.
Early action to address an emerging wildlife disease
Adams, Michael J.; Harris, M. Camille; Grear, Daniel A.
2017-02-23
A deadly fungal pathogen, Batrachochytrium salamandrivorans (Bsal) that affects amphibian skin was discovered during a die-off of European fire salamanders (Salamandra salamandra) in 2014. This pathogen has the potential to worsen already severe worldwide amphibian declines. Bsal is a close relative to another fungal disease known as Batrachochytrium dendrobatidis (Bd). Many scientists consider Bd to be the greatest threat to amphibian biodiversity of any disease because it affects a large number of species and has the unusual ability to drive species and populations to extinction.Although not yet detected in the United States, the emergence of Bsal could threaten the salamander population, which is the most diverse in the world. The spread of Bsal likely will lead to more State and federally listed threatened or endangered amphibian species, and associated economic effects.Because of the concern expressed by resource management agencies, the U.S. Geological Survey (USGS) has made Bsal and similar pathogens a priority for research.
Ned B. Klopfenstein; Jane E. Stewart; Yuko Ota; John W. Hanna; Bryce A. Richardson; Amy L. Ross-Davis; Ruben D. Elias-Roman; Kari Korhonen; Nenad Keca; Eugenia Iturritxa; Dionicio Alvarado-Rosales; Halvor Solheim; Nicholas J. Brazee; Piotr Lakomy; Michelle R. Cleary; Eri Hasegawa; Taisei Kikuchi; Fortunato Garza-Ocanas; Panaghiotis Tsopelas; Daniel Rigling; Simone Prospero; Tetyana Tsykun; Jean A. Berube; Franck O. P. Stefani; Saeideh Jafarpour; Vladimir Antonin; Michal Tomsovsky; Geral I. McDonald; Stephen Woodward; Mee-Sook Kim
2017-01-01
Armillaria possesses several intriguing characteristics that have inspired wide interest in understanding phylogenetic relationships within and among species of this genus. Nuclear ribosomal DNA sequenceâbased analyses of Armillaria provide only limited information for phylogenetic studies among widely divergent taxa. More recent studies have shown that translation...
Liang, Li-Jung; Weiss, Robert E; Redelings, Benjamin; Suchard, Marc A
2009-10-01
Statistical analyses of phylogenetic data culminate in uncertain estimates of underlying model parameters. Lack of additional data hinders the ability to reduce this uncertainty, as the original phylogenetic dataset is often complete, containing the entire gene or genome information available for the given set of taxa. Informative priors in a Bayesian analysis can reduce posterior uncertainty; however, publicly available phylogenetic software specifies vague priors for model parameters by default. We build objective and informative priors using hierarchical random effect models that combine additional datasets whose parameters are not of direct interest but are similar to the analysis of interest. We propose principled statistical methods that permit more precise parameter estimates in phylogenetic analyses by creating informative priors for parameters of interest. Using additional sequence datasets from our lab or public databases, we construct a fully Bayesian semiparametric hierarchical model to combine datasets. A dynamic iteratively reweighted Markov chain Monte Carlo algorithm conveniently recycles posterior samples from the individual analyses. We demonstrate the value of our approach by examining the insertion-deletion (indel) process in the enolase gene across the Tree of Life using the phylogenetic software BALI-PHY; we incorporate prior information about indels from 82 curated alignments downloaded from the BAliBASE database.
Luce, Bryan R; Broglio, Kristine R; Ishak, K Jack; Mullins, C Daniel; Vanness, David J; Fleurence, Rachael; Saunders, Elijah; Davis, Barry R
2013-01-01
Background Randomized clinical trials, particularly for comparative effectiveness research (CER), are frequently criticized for being overly restrictive or untimely for health-care decision making. Purpose Our prospectively designed REsearch in ADAptive methods for Pragmatic Trials (RE-ADAPT) study is a ‘proof of concept’ to stimulate investment in Bayesian adaptive designs for future CER trials. Methods We will assess whether Bayesian adaptive designs offer potential efficiencies in CER by simulating a re-execution of the Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) study using actual data from ALLHAT. Results We prospectively define seven alternate designs consisting of various combinations of arm dropping, adaptive randomization, and early stopping and describe how these designs will be compared to the original ALLHAT design. We identify the one particular design that would have been executed, which incorporates early stopping and information-based adaptive randomization. Limitations While the simulation realistically emulates patient enrollment, interim analyses, and adaptive changes to design, it cannot incorporate key features like the involvement of data monitoring committee in making decisions about adaptive changes. Conclusion This article describes our analytic approach for RE-ADAPT. The next stage of the project is to conduct the re-execution analyses using the seven prespecified designs and the original ALLHAT data. PMID:23983160
McLeod, Lianne; Bharadwaj, Lalita; Epp, Tasha; Waldner, Cheryl L.
2017-01-01
Groundwater drinking water supply surveillance data were accessed to summarize water quality delivered as public and private water supplies in southern Saskatchewan as part of an exposure assessment for epidemiologic analyses of associations between water quality and type 2 diabetes or cardiovascular disease. Arsenic in drinking water has been linked to a variety of chronic diseases and previous studies have identified multiple wells with arsenic above the drinking water standard of 0.01 mg/L; therefore, arsenic concentrations were of specific interest. Principal components analysis was applied to obtain principal component (PC) scores to summarize mixtures of correlated parameters identified as health standards and those identified as aesthetic objectives in the Saskatchewan Drinking Water Quality Standards and Objective. Ordinary, universal, and empirical Bayesian kriging were used to interpolate arsenic concentrations and PC scores in southern Saskatchewan, and the results were compared. Empirical Bayesian kriging performed best across all analyses, based on having the greatest number of variables for which the root mean square error was lowest. While all of the kriging methods appeared to underestimate high values of arsenic and PC scores, empirical Bayesian kriging was chosen to summarize large scale geographic trends in groundwater-sourced drinking water quality and assess exposure to mixtures of trace metals and ions. PMID:28914824
Dutton, P; Love, S B; Billingham, L; Hassan, A B
2018-05-01
Trials run in either rare diseases, such as rare cancers, or rare sub-populations of common diseases are challenging in terms of identifying, recruiting and treating sufficient patients in a sensible period. Treatments for rare diseases are often designed for other disease areas and then later proposed as possible treatments for the rare disease after initial phase I testing is complete. To ensure the trial is in the best interests of the patient participants, frequent interim analyses are needed to force the trial to stop promptly if the treatment is futile or toxic. These non-definitive phase II trials should also be stopped for efficacy to accelerate research progress if the treatment proves to be particularly promising. In this paper, we review frequentist and Bayesian methods that have been adapted to incorporate two binary endpoints and frequent interim analyses. The Eurosarc Trial of Linsitinib in advanced Ewing Sarcoma (LINES) is used as a motivating example and provides a suitable platform to compare these approaches. The Bayesian approach provides greater design flexibility, but does not provide additional value over the frequentist approaches in a single trial setting when the prior is non-informative. However, Bayesian designs are able to borrow from any previous experience, using prior information to improve efficiency.
McLeod, Lianne; Bharadwaj, Lalita; Epp, Tasha; Waldner, Cheryl L
2017-09-15
Groundwater drinking water supply surveillance data were accessed to summarize water quality delivered as public and private water supplies in southern Saskatchewan as part of an exposure assessment for epidemiologic analyses of associations between water quality and type 2 diabetes or cardiovascular disease. Arsenic in drinking water has been linked to a variety of chronic diseases and previous studies have identified multiple wells with arsenic above the drinking water standard of 0.01 mg/L; therefore, arsenic concentrations were of specific interest. Principal components analysis was applied to obtain principal component (PC) scores to summarize mixtures of correlated parameters identified as health standards and those identified as aesthetic objectives in the Saskatchewan Drinking Water Quality Standards and Objective. Ordinary, universal, and empirical Bayesian kriging were used to interpolate arsenic concentrations and PC scores in southern Saskatchewan, and the results were compared. Empirical Bayesian kriging performed best across all analyses, based on having the greatest number of variables for which the root mean square error was lowest. While all of the kriging methods appeared to underestimate high values of arsenic and PC scores, empirical Bayesian kriging was chosen to summarize large scale geographic trends in groundwater-sourced drinking water quality and assess exposure to mixtures of trace metals and ions.
Bayesian meta-analysis of Cronbach's coefficient alpha to evaluate informative hypotheses.
Okada, Kensuke
2015-12-01
This paper proposes a new method to evaluate informative hypotheses for meta-analysis of Cronbach's coefficient alpha using a Bayesian approach. The coefficient alpha is one of the most widely used reliability indices. In meta-analyses of reliability, researchers typically form specific informative hypotheses beforehand, such as 'alpha of this test is greater than 0.8' or 'alpha of one form of a test is greater than the others.' The proposed method enables direct evaluation of these informative hypotheses. To this end, a Bayes factor is calculated to evaluate the informative hypothesis against its complement. It allows researchers to summarize the evidence provided by previous studies in favor of their informative hypothesis. The proposed approach can be seen as a natural extension of the Bayesian meta-analysis of coefficient alpha recently proposed in this journal (Brannick and Zhang, 2013). The proposed method is illustrated through two meta-analyses of real data that evaluate different kinds of informative hypotheses on superpopulation: one is that alpha of a particular test is above the criterion value, and the other is that alphas among different test versions have ordered relationships. Informative hypotheses are supported from the data in both cases, suggesting that the proposed approach is promising for application. Copyright © 2015 John Wiley & Sons, Ltd.
A Comparison of Japan and U.K. SF-6D Health-State Valuations Using a Non-Parametric Bayesian Method.
Kharroubi, Samer A
2015-08-01
There is interest in the extent to which valuations of health may differ between different countries and cultures, but few studies have compared preference values of health states obtained in different countries. We sought to estimate and compare two directly elicited valuations for SF-6D health states between the Japan and U.K. general adult populations using Bayesian methods. We analysed data from two SF-6D valuation studies where, using similar standard gamble protocols, values for 241 and 249 states were elicited from representative samples of the Japan and U.K. general adult populations, respectively. We estimate a function applicable across both countries that explicitly accounts for the differences between them, and is estimated using data from both countries. The results suggest that differences in SF-6D health-state valuations between the Japan and U.K. general populations are potentially important. The magnitude of these country-specific differences in health-state valuation depended, however, in a complex way on the levels of individual dimensions. The new Bayesian non-parametric method is a powerful approach for analysing data from multiple nationalities or ethnic groups, to understand the differences between them and potentially to estimate the underlying utility functions more efficiently.
Moscoso del Prado Martín, Fermín
2013-12-01
I introduce the Bayesian assessment of scaling (BAS), a simple but powerful Bayesian hypothesis contrast methodology that can be used to test hypotheses on the scaling regime exhibited by a sequence of behavioral data. Rather than comparing parametric models, as typically done in previous approaches, the BAS offers a direct, nonparametric way to test whether a time series exhibits fractal scaling. The BAS provides a simpler and faster test than do previous methods, and the code for making the required computations is provided. The method also enables testing of finely specified hypotheses on the scaling indices, something that was not possible with the previously available methods. I then present 4 simulation studies showing that the BAS methodology outperforms the other methods used in the psychological literature. I conclude with a discussion of methodological issues on fractal analyses in experimental psychology. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Habitat predictors of genetic diversity for two sympatric wetland-breeding amphibian species.
McKee, Anna M; Maerz, John C; Smith, Lora L; Glenn, Travis C
2017-08-01
Population genetic diversity is widely accepted as important to the conservation and management of wildlife. However, habitat features may differentially affect evolutionary processes that facilitate population genetic diversity among sympatric species. We measured genetic diversity for two pond-breeding amphibian species (Dwarf salamanders, Eurycea quadridigitata ; and Southern Leopard frogs, Lithobates sphenocephalus ) to understand how habitat characteristics and spatial scale affect genetic diversity across a landscape. Samples were collected from wetlands on a longleaf pine reserve in Georgia. We genotyped microsatellite loci for both species to assess population structures and determine which habitat features were most closely associated with observed heterozygosity and rarefied allelic richness. Both species exhibited significant population genetic structure; however, structure in Southern Leopard frogs was driven primarily by one outlier site. Dwarf salamander allelic richness was greater at sites with less surrounding road area within 0.5 km and more wetland area within 1.0 and 2.5 km, and heterozygosity was greater at sites with more wetland area within 0.5 km. In contrast, neither measure of Southern Leopard frog genetic diversity was associated with any habitat features at any scale we evaluated. Genetic diversity in the Dwarf salamander was strongly associated with land cover variables up to 2.5 km away from breeding wetlands, and/or results suggest that minimizing roads in wetland buffers may be beneficial to the maintenance of population genetic diversity. This study suggests that patterns of genetic differentiation and genetic diversity have associations with different habitat features across different spatial scales for two syntopic pond-breeding amphibian species.
Roth, F C; Laberge, F
2011-03-17
Previous work suggested that the telencephalic pathways of the main olfactory and vomeronasal systems of vertebrates are mostly isolated from each other, with the possible exception of convergence of the two systems into a small part of the olfactory amygdala. We tested the hypothesis of convergence between the main olfactory and vomeronasal systems by investigating the physiology of telencephalic olfactory responses in an in vitro brain preparation of the salamander Plethodon shermani. This animal was chosen because its olfactory and vomeronasal nerves can be separated and stimulated independently. The nerves were stimulated by short current pulses delivered through suction electrodes. Evoked field potentials and intracellular responses were systematically recorded in the telencephalon. The results showed an abundant overlap of olfactory and vomeronasal nerve-evoked field potentials in the ipsilateral lateral telencephalon and the amygdala. Single neurons receiving bimodal main olfactory and vomeronasal input were found in the dorsolateral telencephalon and amygdala. A classification of response latencies suggested that a subset of these neurons received direct input from both the main and accessory olfactory bulbs. Unimodal excitatory main olfactory responses were mostly found in neurons of the caudal telencephalic pole, but were also present in the striato-pallial transition area/lateral pallium region and striatum. Unimodal excitatory vomeronasal responses were found in neurons of the striato-pallial transition area, vomeronasal amygdala, and caudal amygdala. We conclude that the main olfactory and vomeronasal systems are extensively integrated within the salamander telencephalon and probably act in concert to modulate behavior. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Decision analysis for habitat conservation of an endangered, range-limited salamander
Robinson, Orin J.; McGowan, Conor P.; Apodaca, J.J.
2016-01-01
Many species of conservation concern are habitat limited and often a major focus of management for these species is habitat acquisition and/or restoration. Deciding the location of habitat restoration or acquisition to best benefit a protected species can be a complicated subject with competing management objectives, ecological uncertainties and stochasticity. Structured decision making (SDM) could be a useful approach for explicitly incorporating those complexities while still working toward species conservation and/or recovery. We applied an SDM approach to Red Hills salamander Phaeognathus hubrichti habitat conservation decision making. Phaeognathus hubrichti is a severely range-limited endemic species in south central Alabama and has highly specific habitat requirements. Many known populations live on private lands and the primary mode of habitat protection is habitat conservation planning, but such plans are non-binding and not permanent. Working with stakeholders, we developed an objectives hierarchy linking land acquisition or protection actions to fundamental objectives. We built a model to assess and compare the quality of the habitat in the known range of P. hubrichti. Our model evaluated key habitat attributes of 5814 pixels of 1 km2 each and ranked the pixels from best to worst with respect to P. hubrichti habitat requirements. Our results are a spatially explicit valuation of each pixel, with respect to its probable benefit to P. hubrichti populations. The results of this effort will be used to rank pixels from most to least beneficial, then identify land owners in the most useful areas for salamanders who are willing to sell or enter into a permanent easement agreement.
From biomedicine to natural history research: EST resources for ambystomatid salamanders
Putta, Srikrishna; Smith, Jeramiah J; Walker, John A; Rondet, Mathieu; Weisrock, David W; Monaghan, James; Samuels, Amy K; Kump, Kevin; King, David C; Maness, Nicholas J; Habermann, Bianca; Tanaka, Elly; Bryant, Susan V; Gardiner, David M; Parichy, David M; Voss, S Randal
2004-01-01
Background Establishing genomic resources for closely related species will provide comparative insights that are crucial for understanding diversity and variability at multiple levels of biological organization. We developed ESTs for Mexican axolotl (Ambystoma mexicanum) and Eastern tiger salamander (A. tigrinum tigrinum), species with deep and diverse research histories. Results Approximately 40,000 quality cDNA sequences were isolated for these species from various tissues, including regenerating limb and tail. These sequences and an existing set of 16,030 cDNA sequences for A. mexicanum were processed to yield 35,413 and 20,599 high quality ESTs for A. mexicanum and A. t. tigrinum, respectively. Because the A. t. tigrinum ESTs were obtained primarily from a normalized library, an approximately equal number of contigs were obtained for each species, with 21,091 unique contigs identified overall. The 10,592 contigs that showed significant similarity to sequences from the human RefSeq database reflected a diverse array of molecular functions and biological processes, with many corresponding to genes expressed during spinal cord injury in rat and fin regeneration in zebrafish. To demonstrate the utility of these EST resources, we searched databases to identify probes for regeneration research, characterized intra- and interspecific nucleotide polymorphism, saturated a human – Ambystoma synteny group with marker loci, and extended PCR primer sets designed for A. mexicanum / A. t. tigrinum orthologues to a related tiger salamander species. Conclusions Our study highlights the value of developing resources in traditional model systems where the likelihood of information transfer to multiple, closely related taxa is high, thus simultaneously enabling both laboratory and natural history research. PMID:15310388